COURS D'APPRENTISSAGE STATISTIQUE (SYLVAIN ARLOT ET FRANCIS BACH) MASTÈRE M2 PROBABILITÉS-STATISTIQUE 2011

COURS 4 - MÉTHODES À NOYAUX

NOTES DE COURS PRISES PAR LUCIE MONTUELLE ET LINE LE GOFF

1. Introduction

Données: $(X_i, Y_i) \in \mathcal{X} \times \mathcal{Y}, i \in [|1, n|]$

But: estimer $f: \mathcal{X} \to \mathbb{R}$ en minimisant le risque empirique: $\hat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i))$

Pour y arriver, il faut contraindre l'espace de fonctions. Il y a deux méthodes :

 $- +\lambda\Omega(f)$

- contrainte : $\Omega(f) \leq B$

Les deux formulations sont à peu de choses près équivalentes. En effet, si on suppose tout convexe, alors on peut écrire le Lagrangien $\mathcal{L}(f,\lambda) = \mathcal{R}(f) + \lambda(\Omega(f) - B)$.

Mais la première méthode est plus facile à calibrer que la deuxième. On va donc effectuer la première : minimiser $\hat{\mathcal{R}}(f) + \lambda \Omega(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)) + \lambda \Omega(f)$. On peut prendre $\Omega(f)$ comme la norme dans L^2 ou dans L^1 . Ici on traite le cas L^2 .

2. Espaces de Hilbert à noyaux reproduisants (RKHS)

Soit \mathcal{X} un ensemble quelconque

But: Trouver un espace de fonctions où "tout se passe bien" (bornes générales d'apprentissage et optimisation facile).

Exemple 1.
$$-\mathcal{X} = \mathbb{R}^p$$
, $f(x) = w^\top x$, norme : $\sqrt{w^\top w}$ $-\mathcal{X} = \mathbb{R}^p$, $\mathcal{F} = L^2(\mathbb{R}^p)$, norme : L^2

Définition 1. Un espace vectoriel de fonctions de \mathcal{X} dans \mathbb{R} est un RKHS s'il est de Hilbert et si les formes linéaires $f \mapsto f(x)$ sont continues pour tout $x \in \mathcal{X}$

Proposition 2.1. Si \mathcal{F} est un RKHS alors il existe une unique fonction Φ de \mathcal{X} dans \mathcal{F} telle que pour tout $x \in \mathcal{X}$, pour tout $f \in \mathcal{F}$, $f(x) = \langle \Phi(x), f \rangle$. Φ est appelée feature map et \mathcal{F} feature space.

Proposition 2.2. Soit \mathcal{F} un RKHS de feature map Φ . Soit $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ tel que $\forall x, y \in \mathcal{X}$, $k(x,y) = \langle \Phi(x), \Phi(y) \rangle$, alors k est une fonction symétrique définie positive. On dit que k est un noyau.

Définition 2. $K = (k(x_i, x_j))_{i,j}$ est appelée la matrice de noyau.

Proposition 2.3. Propriétés reproduisantes: Pour tout $x, y \in \mathcal{X}, f \in \mathcal{F}$,

$$(1) f(x) = \langle k(.,x), f \rangle$$

(2)
$$k(x,y) = \langle k(.,x), k(.,y) \rangle$$

Démonstration. (1) appliqué à $k(.,y) \Rightarrow (2)$

$$f(x) = \langle f, \Phi(x) \rangle$$

$$\Phi(x) = k(.,x) \Leftrightarrow \forall y, \Phi(x)(y) = k(x,y) \Leftrightarrow \forall y \langle \Phi(x), \Phi(y) \rangle = k(x,y)$$

Remarque 1. $L^2(\mathbb{R}^n)$ n'est pas un RKHS (les formes linéaires d'évaluation n'y sont pas continues).

Date: Mercredi 9 Mars 2011.

Remarque 2. Les formes linéaires sont bien continues : $|f(x)| \leq \sqrt{k(x,x)} ||f||$

Théorème 2.4. Théorème d'Aronszajn (1950) : k est un noyau défini positif si et seulement si il existe un espace de Hilbert \mathcal{F} , et $\Phi: \mathcal{X} \to \mathcal{F}$ tel que $\forall x, y, k(x, y) = \langle \Phi(x), \Phi(y) \rangle$.

 $D\acute{e}monstration. \Leftarrow trivial$

- \Rightarrow a) Soit \mathcal{F}_0 sous espace engendré par tous les vecteurs $k(.,x), x \in \mathcal{X}$.
- b) On définit un produit scalaire sur \mathcal{F}_0 par : $\langle \sum_i \alpha_i k(.,x_i), \sum_j \beta_j k(.,y_j) \rangle = \sum_{i,j} \alpha_i \beta_j k(x_i,x_j)$. Cela revient à définir le produit scalaire sur chacun des éléments générateurs par $\langle k(.,x), k(.,y) \rangle = k(x,y)$.

C'est bien un produit scalaire, car :

- k est bilinéaire, symétrique sur \mathcal{F}_0 .
- Soit $f \in \mathcal{F}_0$, $f = \sum_{i=1}^n \alpha_i k(., x_i)$ et $||f||_{\mathcal{F}_0}^2 = \sum_{i=1}^n \alpha_i k(x_i, x_j) \ge 0$
- montrer que $||f||_{\mathcal{F}_0} = 0 \Rightarrow f = 0$. $\forall x \in \mathcal{X}, f(x) = \langle f, k(., x) \rangle$ et $|f(x)| \leq ||f||_{\mathcal{F}_0} k(x, x)^{\frac{1}{2}}$

Il ne reste plus qu'à montrer que \mathcal{F}_0 est préhilbertien. Indication : Soit \mathcal{F} le complété de \mathcal{F}_0 (i.e. $\mathcal{F} = \{ \text{limites de suites de Cauchy de } \mathcal{F}_0 \}$).

2.1. Exemples.

Remarque 3. Donc un noyau défini positif fournit :

- un espace de fonctions de \mathcal{X} dans \mathbb{R}
- une norme sur cet espace
- un feature map $\Phi: \mathcal{X} \to \mathcal{F}, k(x,y) = \langle \Phi(x), \Phi(y) \rangle$

Exemple 2. Noyau linéaire : $\mathcal{X} = \mathbb{R}^p$, $k(x,y) = x^t y$, \mathcal{F} est l'espace des fonctions linéaires auquel on associe la norme $\|x \longmapsto w^t x\|^2 = w^t w$. $\Phi = id$

Exemple 3. Noyau polynômial : $\mathcal{X} = \mathbb{R}^p$, $k(x,y) = (x^t y)^r$

$$k(x,y) = (\sum_{i=1}^{p} x_i y_i)^r = \sum_{\alpha_1 + \dots + \alpha_p = r} {r \choose \alpha_1, \dots, \alpha_p} \underbrace{(x_1 y_1)^{\alpha_1} \dots (x_p y_p)^{\alpha_p}}_{(x_1^{\alpha_1} \dots x_p^{\alpha_p})(y_1^{\alpha_1} \dots y_p^{\alpha_p})}$$

$$\Phi(x) = \left\{ \begin{pmatrix} r \\ \alpha_1, \dots, \alpha_p \end{pmatrix}^{\frac{1}{2}} x_1^{\alpha_1} \dots x_p^{\alpha_p} \right\} \\ k(x, y) = \langle \Phi(x), \Phi(y) \rangle$$

 $\mathcal{F} = \{\text{fonctions polynomiales homogènes de degré } p\}$

Remarque 4. dim $\mathcal{F} \simeq p^r$ c'est un grand espace. Le noyau nous permet de manipuler un grand espace sans en payer le coût.

Exemple 4. Noyau invariant par translation : $\mathcal{X} = \mathbb{R}^p, k(x,y) = q(x-y)$ avec $q: \mathbb{R}^p \to \mathbb{R}$,

Théorème 2.5. Théorème de Böchner : k est défini positif $\Leftrightarrow q$ est la transformée de Fourier d'une mesure de Borel finie positive $\Leftarrow q \in L^1$ et sa transformée de Fourier est positive.

Démonstration. (partielle) Soit $x_1,...x_n \in \mathbb{R}^p$, soit $\alpha_1,...,\alpha_n \in \mathbb{R}$,

$$\sum \alpha_s \alpha_j k(x_s, x_j) = \sum \alpha_s \alpha_j q(x_s - x_j)$$

$$= \sum \alpha_s \alpha_j \int \exp^{-iw^\top (x_s - x_j)} d\mu(w)$$

$$= \int (\sum \alpha_s \alpha_j \exp^{-iw^\top x_s} \overline{\exp^{-iw^\top x_j}}) d\mu(w)$$

$$= \int |\sum \alpha_s \exp^{-iw^\top x_s}|^2 d\mu(w) \ge 0$$

Proposition 2.6. Soit $q \in L^1$ tel que $\hat{q} \in L^1$ et $\forall w \in \mathbb{R}^p$, $\hat{q}(w) > 0$, alors $||f||_{\mathcal{F}}^2 = \frac{1}{(2\pi)^d} \int \frac{|\hat{f}(w)|^2}{\hat{q}(w)} dw$

 \Box

Démonstration. Soit
$$\langle f, g \rangle = \frac{1}{(2\pi)^d} \int \frac{\hat{f}(w)\overline{\hat{g}(w)}}{\hat{q}(w)} dw$$
,

$$\begin{split} f(x) = &\langle f, k(., x) \rangle \\ = & \frac{1}{(2\pi)^d} \int \frac{\hat{f}(w)\hat{g}(w) \exp^{-iw^\top y}}{\hat{q}(w)} dw \\ = & \hat{\hat{f}}(x) = f(x) \end{split}$$

Exemple 5. Noyau exponentiel: $\mathcal{X} = \mathbb{R}$ et $\hat{q}(w) = \frac{1}{1+w^2}$, $q(x) = e^{\frac{-|x|}{2}}$ alors $||f||_{\mathcal{F}}^2 = \frac{1}{2\pi} \int |\hat{f}(w)|^2 (1+w^2) dw = ||f||_{L^2}^2 + ||f'||_{L^2}^2$, si $f' \in L^2$. On retrouve la norme de Sobolev.

Exemple 6. Noyau gaussien : $\mathcal{X} = \mathbb{R}$, $q(x) = e^{\frac{-x^2}{2}} = \hat{q}(x)$ alors

$$\begin{split} \|f\|_{\mathcal{F}}^2 &= \int |\hat{f}(w)|^2 e^{\frac{w^2}{2}} dw \\ &= \int |\hat{f}(w)|^2 \sum_k \frac{w^{2k}}{2^k k!} dw \\ &= \sum_k \frac{1}{2^k k!} ||f^{(k)}||_{L^2}^2 \text{ (modulo de bonnes hypothèses)} \end{split}$$

 $k(x,y) = e^{\frac{-\|x-y\|_2^2}{2\sigma^2}}$ mais Φ n'est pas explicite

Proposition 2.7. Pour le noyau gaussien, \mathcal{F} est dense dans $L^2(\mathbb{R}^p)$.

Proposition 2.8. Soient k_1 et k_2 deux noyaux définis sur le même espace, définis positifs. Alors $k_1 + k_2$ et $k_1 k_2$ sont des noyaux définis positifs. Pour $k_1 + k_2$, $\mathcal{F} = \mathcal{F}_1 + \mathcal{F}_2$ et $\Phi(x) = \begin{pmatrix} \Phi_1(x) \\ \Phi_2(x) \end{pmatrix}$.

Pour
$$k_1 + k_2$$
, $\mathcal{F} = \mathcal{F}_1 + \mathcal{F}_2$ et $\Phi(x) = \binom{\varphi_1(x)}{\Phi_2(x)}$.
Pour k_1k_2 , $\mathcal{F} = \mathcal{F}_1 \otimes \mathcal{F}_2$ et $K = K_1 \circ K_2$ avec \circ le produit d'Hadamard.

Exemple 7. Noyau sur données non vectorielles : $\mathcal{X} = \{$ ensemble des séquences d'éléments d'un alphabet donné}. Voir la page de Jean-Philippe Vert (http://cbio.ensmp.fr/~jvert/teaching/).

2.2. Noyau de Mercer.

Définition 3. k est un noyau de Mercer, si $\forall (x,y) \in \mathcal{X} \times \mathcal{X}$,

$$k(x,y) = \sum_{n=1}^{\infty} \lambda_n \Phi_n(x) \Phi_n(y)$$
 avec $\lambda_n \ge 0, \sum \lambda_n \langle \infty = \langle (\lambda_n^{\frac{1}{2}} \Phi_n(x))_n, (\lambda_n^{\frac{1}{2}} \Phi_n(x))_n \rangle$

2.3. Lien avec les splines. En fait les splines du monde des statistiques et les RKHS de celui de l'informatique sont à peu de choses près les mêmes notions.

Prenons $\mathcal{F} = \{f : [0,1] \to \mathbb{R}/f(0) = 0, f \text{ continue}, f \text{ dérivable pp}\}.$ \mathcal{F} est un RKHS associé à $k(x,y) = \min(x,y),$ noyau sur [0,1]. De plus $||f||_{\mathcal{F}}^2 = \int_0^1 f'(t) dt.$

3. Théorème du représentant

Théorème 3.1. Théorème du représentant (1971) :

Soit \mathcal{F} un RKHS, soit $(x_1,...,x_n) \in \mathcal{X}^n$, soit $\Psi: \mathbb{R}^{n+1} \to \mathbb{R}$ strictement croissante par rapport à sa dernière variable,

alors le minimum de $\Psi(f(x_1),...,f(x_n),||f||_{\mathcal{F}}^2)$ est atteint pour $f=\sum_{i=1}^n \alpha_i k(.,x_i)$ avec $\alpha\in\mathbb{R}^n$.

Démonstration. soit $f \in \mathcal{F}$, soit $\mathcal{F}_D = \{\sum \alpha_i k(., x_i) / \alpha \in \mathbb{R}^n \}$, soit $f_D \in \mathcal{F}_D$ et $f_{\perp} \in \mathcal{F}_D^{\perp}$ tel que $f = f_D + f_{\perp}$,

alors $\forall i, f(x_i) = f_D(x_i) + f_{\perp}(x_i)$ avec $f_{\perp}(x_i) = \langle f_{\perp}, k(., x_i) \rangle = 0$ D'après le théorème de Pythagore, on a : $||f||_{\mathcal{F}}^2 = ||f_D||_{\mathcal{F}}^2 + ||f_{\perp}||_{\mathcal{F}}^2$. Par Conséquent, on a :

$$\Psi(f(x_1), ..., f(x_n), ||f||_{\mathcal{F}}^2) = \Psi(f_D(x_1), ..., f_D(x_n), ||f_D||_{\mathcal{F}}^2 + ||f_{\perp}||_{\mathcal{F}}^2)$$

$$\geq \Psi(f_D(x_1), ..., f_D(x_n), ||f_D||_{\mathcal{F}}^2)$$

Donc

$$\inf_{f \in \mathcal{F}} \Psi(f(x_1), ..., f(x_n), ||f||_{\mathcal{F}}^2) = \inf_{f \in \mathcal{F}_D} \Psi(f(x_1), ..., f(x_n), ||f||_{\mathcal{F}}^2)$$

Corollaire 3.2. $\min_{f \in \mathcal{F}} \frac{1}{n} \sum \ell(y_i, f(x_i)) + \frac{\lambda}{2} ||f||_{\mathcal{F}}^2$ est atteint en $f = \sum_{i=1}^n \alpha_i k(., x_i)$.

Remarque 5. Il est important de remarquer qu'il n'y a aucune hypothèse sur ℓ (pas de convexité).

Écrivons : $\forall j \in [|1,n|], \ f(x_j) = \sum_{i=1}^n \alpha_i k(x_i,x_j) = (K\alpha)_j$ où K est la matrice de noyau et $||f||^2 = \alpha^\top K\alpha$. On peut alors réécrire :

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum \ell(y_i, f(x_i)) + \frac{\lambda}{2} ||f||_{\mathcal{F}}^2 = \min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum \ell(y_i, (K\alpha)_i) + \frac{\lambda}{2} \alpha^\top K\alpha$$

L'astuce du noyau permet donc de :

- remplacer \mathcal{F} par \mathbb{R}^n
- séparer le problème de représentation (définir un noyau sur un ensemble \mathcal{X}) et des problèmes d'algorithmes et d'analyse (qui n'utilisent que la matrice de noyau K).
- 3.1. Théorème du représentant convexe. Posons : $H(f) = \frac{1}{n} \sum \ell(y_i, \langle f, \Phi(x_i) \rangle) + \frac{\lambda}{2} \langle f, f \rangle$ avec $\forall y, u \to \ell(y, u)$ convexe.

On veut : $\min_{f \in \mathcal{F}, u \in \mathbb{R}^n} \frac{1}{n} \sum \ell(y_i, u_i) + \frac{\lambda}{2} \langle f, f \rangle$ tel que : $\forall i, u_i = \langle f, \Phi(x_i) \rangle$.

Le lagrangien associé à ce problème est :

$$\mathcal{L}(f, u, \alpha) = \frac{1}{n} \sum_{i} \ell(y_i, u_i) + \frac{\lambda}{2} \langle f, f \rangle + \sum_{i} \lambda \alpha_i (u_i - \langle f, \Phi(x_i) \rangle)$$

Le problème dual est alors :

$$\inf_{f,u} \mathcal{L}(f, u, \alpha) = \underbrace{\frac{1}{n} \sum_{i} \inf_{u_i} \{\ell(y_i, u_i) + n\lambda \alpha_i u_i\}}_{\text{concave en } \alpha} - \frac{\lambda}{2} \alpha^\top K \alpha$$

gradient/
$$f: \lambda f - \lambda \sum \alpha_i \Phi(x_i) = 0 \Leftrightarrow f = \sum \alpha_i k(., x_i)$$

Nous avons vu désormais deux problèmes d'obtimisation :

- problème dual (D): $\max_{\alpha \in \mathbb{R}^n} J(\alpha) \frac{\lambda}{2} \alpha^\top K \alpha$
- problème primal + représentant (P) : $\min_{\alpha \in \mathbb{R}^n} \frac{1}{n} \sum \ell(y_i, (K\alpha)_i) + \frac{\lambda}{2} \alpha^\top K \alpha$

Proposition 3.3. Si α est optimal pour (D), alors α est optimal pour (P).

Cas particulier

Prenons : $H(f) = \frac{1}{2n} \sum (y_i, \langle f, \Phi(x_i) \rangle)^2 + \frac{\lambda}{2} \langle f, f \rangle$. Le problème devient :

$$\min_{f \in \mathcal{F}, u \in \mathbb{R}^n} \frac{1}{n} \sum_{i=1}^n \frac{1}{2} (y_i - u_i)^2 + \frac{\lambda}{2} \langle f, f \rangle$$

et le lagrangien

$$\inf_{f,u} \mathcal{L}(f,u,\alpha) = \frac{1}{n} \sum_{i} \inf_{u_i} \left\{ \frac{1}{2} (y_i - u_i)^2 + n\lambda \alpha_i u_i \right\} - \frac{\lambda}{2} \alpha^\top K \alpha$$

- (1) problème dual : $\max_{\alpha \in \mathbb{R}^n} \frac{\lambda}{2} \alpha^\top K \alpha \frac{1}{2n} ||y n\lambda \alpha||_2^2$
- (2) problème primal + représentant : $\min_{\alpha \in \mathbb{R}^n} \frac{1}{2n} ||y K\alpha||_2^2 + \frac{\lambda}{2} \alpha^\top K\alpha$

M'ethode du noyau: Commençons par optimiser par rapport à α

gradient $1/\alpha: -\lambda K\alpha - \frac{n\lambda}{n}(n\lambda\alpha - y) = 0 \Leftrightarrow (\lambda K + n\lambda^2)\alpha = \lambda y \Leftrightarrow \alpha = (K + n\lambda I)^{-1}y$ unique solution

gradient $2/\alpha: \frac{1}{n}K(K\alpha - y) + \lambda K\alpha = 0 \Leftrightarrow (K^2 + n\lambda K)\alpha = Ky \Leftrightarrow K((K + n\lambda I)\alpha - y) = 0$. Si K est non inversible, la solution n'est pas unique : $\alpha = (K + n\lambda I)^{-1}y + Ker(K)$. Par contre, la prédiction est unique : $K\alpha = K(K + n\lambda I)^{-1}y$.

Méthode directe: Maintenant optimisons par rapport à f et faisons l'hypothèse que : $\mathcal{F} = \mathbb{R}^p$. gradient de $H / f : \frac{1}{n} \sum_i (\langle \Phi(x_i), f \rangle - y_i) \Phi(x_i) + \lambda f = 0 \Leftrightarrow (\frac{1}{n} \sum_i \Phi(x_i) \Phi(x_i)^\top + \lambda I) f = \frac{1}{n} \sum_i y_i \Phi(x_i)$

alors avec $\Phi \in \mathbb{R}^{n \times p}$, $f = (\frac{1}{n}\Phi^{\top}\Phi + \lambda I)^{-1}\frac{1}{n}\Phi^{\top}y \Leftrightarrow \Phi f = \Phi(\frac{1}{n}\Phi^{\top}\Phi + \lambda I)^{-1}\frac{1}{n}\Phi^{\top}y$.

En posant $K = \Phi \Phi^{\top}$ et en comparant les résultats donnés par les deux méthodes, on obtient l'égalité :

$$\underbrace{\Phi\Phi^{\top}(\underbrace{\Phi\Phi^{\top}}_{n\times n} + n\lambda I)^{-1}y}_{\text{nown}} = \underbrace{\Phi(\underbrace{\Phi^{\top}\Phi}_{p\times p} + n\lambda I)^{-1}\Phi^{\top}y}_{\text{directe}}$$

Ce résultat n'est autre que le lemme suivant :

Lemma 3.4. : lemme d'inversion de matrices : $\forall A$ matrice, $(A^{\top}A + I)^{-1}A = A(A^{\top}A + I)^{-1}$

On a donc une équivalence entre ce lemme et le théorème du représentant.

4. Analyse statistique

Cadre classique d'apprentissage statistique : (X_i, Y_i) i.i.d. de loi P(X, Y), soit \hat{f} un estimateur, soit $\mathcal{R}(f) = E(\ell(Y, f(X)))$ le risque, $\hat{\mathcal{R}}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i))$ le risque empirique et $\mathcal{R}^* = \inf_f (E(\ell(Y, f(X))))$ le risque idéal, soit \mathcal{G} un espace de fonction et $g \in \mathcal{G}$,

$$\mathcal{R}(\hat{f}) - \mathcal{R}^* = \underbrace{\mathcal{R}(\hat{f}) - \hat{\mathcal{R}}(\hat{f})}_{\text{I}} + \underbrace{\hat{\mathcal{R}}(\hat{f}) - \hat{\mathcal{R}}(g)}_{\text{II}} + \underbrace{\hat{\mathcal{R}}(g) - \mathcal{R}(g)}_{\text{III}} + \underbrace{\mathcal{R}(g) - \mathcal{R}^*}_{\text{IV}}$$

II < 0

I et III $\leq \sup_{g \in \mathcal{G}} |\mathcal{R}(g) - \hat{\mathcal{R}}(g)|$

Pour le IV, on minimise par rapport à \mathcal{G} . On obtient :

$$\mathcal{R}(\hat{f}) - \mathcal{R}^* \leq \underbrace{2\sup_{g \in \mathcal{G}} |\mathcal{R}(g) - \hat{\mathcal{R}}(g)|}_{\text{estimation}} + \underbrace{\inf_{g \in \mathcal{G}} (\mathcal{R}(g) - \mathcal{R}^*)}_{\text{approximation}}$$

Hypothèse : $\mathcal{G} = \{f/||f||_{\mathcal{F}}^2 \leq B\}.$

Définition 4. k est un noyau universel, si \mathcal{F} est dense dans $L^2(X)$. Dans ce cas, quand B tend vers $+\infty$, l'erreur d'approximation tend vers zéro.

On suppose que ℓ est lipschitzienne par rapport à sa deuxième variable et borné par M. On a alors (voir [1] pour une preuve utilisant les complexités de Rademacher) :

$$\sup_{||f|| \leq B} |\mathcal{R}(f) - \hat{\mathcal{R}}(f)| \leq 3M\sqrt{\frac{\log(\frac{2}{\delta})}{2n}} + 2\frac{LB}{\sqrt{n}}$$

avec probabilité supérieure à $1 - \delta$.

Références

 Stéphane Boucheron, Olivier Bousquet, Gábor Lugosi, Theory of Classification: a Survey of Some Recent Advances, ESAIM, Volume 9, Juin 2005, pages 323-375