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Model

& Y,
Observations: Y=(Y...,Y")=
i oW
Yl,...,Y” c RX i.i.d. symmetric

@ Unknown mean p = (k)

@ Unknown covariance matrix X

o nkK K
Aims:  Find a confidence region for u or  {ks.t. ux # 0}
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llustration (1): K = 16384 >> n, spatially correlated noise
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lllustration (2): K = 16384 >> n, textured noise
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lllustration (3): neuroimaging and microarrays

Coupling between M1 and multiple Brain areas

: d‘i‘g@j\@
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(neural activity)

(gene expression levels)
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Multiple simultaneous hypothesis testing

For every k we test: Hox: “pux = 0" against Hy j: “px #0".

A multiple testing procedure rejects:
R(Y)cCA1,...,K}.
Type | errors measured by the Family Wise Error Rate:
FWER(R) =P (3k € R(Y)s.t. ux = 0).

= build a procedure R such that FWER(R) < a?
e strong control of the FWER: Vu € R¥
e power: Card(R(Y)) as large as possible
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Thresholding

Reject  R(Y) = {ks.t.v/n|Yy| > t}
where
o Y =1%" Y empirical mean
o t = t,(Y) threshold (independent of k € {1,...,K})

FWER(R) =P(3k s.t. pux=0and n|Yi| >1t)
=P(Vn sup [Yi|>t)
ks.t. ug=0
< P(Vnsup [Yi| > t)
k
=P (HV — pt]|oo > tn_1/2>

So, L*° confidence region =- control of the FWER
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Bonferroni threshold, Gaussian case

Union bound:

FWER(R) <P (Fk st /n|Yi— | > t)
< KsupP(Vn|Yy — k| > t)
k

<2K®(t/o) ,

where ® is the standard Gaussian upper tail function.
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Bonferroni threshold, Gaussian case

Union bound:

FWER(R) <P (Fk st /n|Yi— | > t)
< KsupP(Vn|Yy — k| > t)
k

<2K®(t/o) ,

where ® is the standard Gaussian upper tail function.

Bonferroni's threshold: t2onf = 0571(04/(2!()).
@ deterministic threshold

@ too conservative if there are strong correlations between the
coordinates Y

= how to do better ?
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Goal

For every p € [1,+0o0], find a threshold t,(Y) such that
VYue R P(Vn|Y —pllp > ta(Y)) <a .

= LP confidence ball for ;1 at level o (FWER(R) < av if p = 4+00)
@ Non-asymptotic: VK, n
@ General correlations

@ Assumptions:
(Gauss) Y ~ N (i, X) with 0 = (Zk k)k=1..k known
(SB) Y/ — i~ 1 — Y (symmetry) and Vk, |Y/| < M ass.

Ideal threshold: t = g, (1 — a)-quantile of D (/n||Y — p||p)

q}. depends on D(Y) unknown = estimated by resampling.
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@ Parametric statistics: no, because K2 > nK .

e Asymptotic results (e.g. [van der Vaart and Wellner 1996]):
not valid, because K > n.
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Classical procedures and known results

@ Parametric statistics: no, because K2 > nK .

e Asymptotic results (e.g. [van der Vaart and Wellner 1996]):
not valid, because K > n.

@ Holm's multiple testing procedure: better than Bonferroni,
but unefficient with strong correlations

e (Multiple) tests by symmetrization:
do not work if Hop x = {px < 0}.
do not give confidence regions.
not translation-invariant = less powerful if ||| o is large
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Resampling
°

Resampling principle [Efron 1979 ; ..]

Sample  Y1,...,y" "2 (n y1) (W, Y")  weighted sample

e “Y'is kept W; times in the resample”

e Weight vector: (W4,..., W,), independent of Y

e Example 1: Efron’s bootstrap < n-sample with replacement
s (Wh,...,W,) ~ M(n;nt, ... 071

@ Example 2: Rademacher weights: W, i.i.d. ~ %(5,1 + %51 &
subsampling, with subsample size ~ n/2

Heuristics: D(sample|true distribution) =~ D (resample|sample)



Resampling
[ I}

Concentration method

o ||Y — u|, concentrates around its expectation,
standard-deviation < ||a||,n~1/?

o Estimate E [||[Y — || by resampling



Resampling
[ I}

Concentration method

o ||Y — u|, concentrates around its expectation,
standard-deviation < ||a||,n~1/?

o Estimate E [||[Y — || by resampling

= g2 (Y) = cst x VnE [[|[¥Yw — WY|p|Y] + remainder(||o||5, , n)

(67

Works well if expectations (x 1/log(K)) are larger than
fluctuations (o< $_l(a/2))
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Quantile method

Ideal threshold: g = (1 — «)-quantile of D (v/n[lY — p| )

= Resampling estimate of g}, : B -
ga®™(Y) = (1 — a)-quantile of D (v/n||Yyw — WY||,|Y)

_ 1 <&
ith W .= — W;
Wi - ;

_ 1 < )
Yw:=— Z w;y' Resampling empirical mean
ni=

quant

ga . (Y) depends only on Y = can be computed with real data
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Concentration theorem

Assume (Gauss) and W Rademacher. For every o € (0,1),

conc,1 ﬁE [HVW - W7HP|Y] —1 CW

“(Y) = ) 2 +1
9o (Y) B +loll® ™ (a/2) | =5~
satisfies B
P (VallY — ullp > g™ (Y)) < @

. L 1

with o 1= ( var(Y, )) ke’ and

. 1/2
BW:—E<1Z(WI'_W>2> =1-0(n %) and Cy=1

n i=1

Main tool: Gaussian concentration theorem [Cirel'son, lbragimov
and Sudakov, 1976]
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@ |||l can be replaced by sup, (-), = one-sided multiple tests
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Remarks

e Valid for quite general weights (with By and Cy are
independent of K and easy to compute).

e Similar result under assumption (SB) (with larger constants).

@ |||l can be replaced by sup, (-), = one-sided multiple tests

@ Almost deterministic threshold:
= if p =00, ¢*"“*(Y) ~ min (th"f, qfionc’l(Y)> still has a
FWER < a.
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Practical computation

e Monte-Carlo approximation with W1, ..., WE only (with an
additionnal term of order B~1/?)

@ Alternatively, V-fold cross-validation weights
= computation time o V/, accuracy CWB;‘/l ~/n/V.
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Practical computation

e Monte-Carlo approximation with W1, ..., WE only (with an
additionnal term of order B~1/?)

@ Alternatively, V-fold cross-validation weights
= computation time o V/, accuracy CWB;‘/l ~/n/V.

e Estimation of o : under (Gauss), if

then for every § € (0,1),

(Il < (- 27 (3) ) 161) 215

with G, =1 - 0O(n71).
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Simulations: p = 400, n = 1000, K = 16384, 0 =1

0.2 T T T T T T T
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—— Bonferroni
0.18F ---- Est. true quantile ]
0.16}F .
e
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Simulations: p = 400, n = 1000, K = 16384, 0 =1

0.2 T T T T T T T
— conc
-==min(conc,bonf)
i —— Bonferroni -
0.18 ---- Est. true quantile
0.16}

Threshold

0.08 A A A 1 A
0

5 10 15 20 25 30 35 40
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Quantile method

@ Rademacher weights only: W, i.i.d. ~ %5_1 + %51

quant

@ ga " (Y) = (1 - «a)-quantile of
D (Vil¥w — WY, |Y)

Heuristics = should satisfy P (||Y — x|, > ¢2*"™(Y)) < a
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Quantile theorem: need for a supplementary term

Theorem

Y symmetric. W Rademacher. a,d,~ € (0,1).
If f is a non-negative threshold with level bounded by oy :

P (Vall¥ = ullp > F(Y)) <

uan uan 2log(2/(dcx
() = gt () 4 /2820 gy

yields a level bounded by o :

Then,

P (VAlY = ullp > g2 (¥)) <a
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@ The supplementary threshold f only appears in a second-order
term.

(Gauss) = three thresholds:
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take f among g;5" (if p = +00), gary ~ and qary
(SB) = f = q2r=°B

@ In simulation experiments, f is almost unnecessary.
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Remarks

@ Uses only the symmetry of Y around its mean

@ |||, can be replaced by sup,(-)+ = one-sided multiple tests

@ The supplementary threshold f only appears in a second-order
term.
(Gauss) = three thresholds:
take f among qBonf (if p=+40), gay * ! and dor

(SB) = f = cczync ,SB

conc,2

@ In simulation experiments, f is almost unnecessary.

° qg?iitg)(lﬂ,)(Y) can be replaced by a Monte-Carlo estimated
quantile (i.e., simulate only W1, ... WB)

= loose at most (B + 1)1 in the level, nothing if
a(l—0)(1—v)(B+1)eN.
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Simulations: n = 1000, K = 16384, 0 =1, p = +©

0.2 T T T T T T T
conc
min(conc,bonf)
quant+conc |
0:18 quant+bonf
Bonferroni
k Est. true quantile
0.16
e
(o]
=
£ 0.14
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0.1
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Simulations: without the additive term?

0.17

0.16}

o
X
[9)]

Threshold
© ©
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o
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0.11 —— quant+conc “reny sl
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--=-- quant s
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Simulations: role of p (n = 1000, p = 16)

0.16 T T T T
— Bonferroni
— conc

0.14 —— min(conf,bon
— quant+conc
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Simulations: role of p (n = 1000, p = 10)

0.16 T T T T
— Bonferroni
— conc

0.14f — min(conf,bon
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Simulations: role of p (n = 1000, p = 2)

0.16 T T T :
— Bonferroni
— conc
0.14f — min(conf,bon
— quant+conc
— expectation
0.12f Est. true quani
B 04k
[<]
=
n
@
= 0.08f
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Simulations: role of p (n = 1000, p = 1)

0.16 T T T T
— Bonferroni
— conc
0.14f — min(conf,bon
— quant+conc
—— expectation
QA2 Est. true quant
e
< O01f T
L
(2]
g
rE 0.08F .
0.06
0.04
0‘02 L ' ' L
0 20 40 60 80 100

width



Multiple testing
[ I}

Quantile approach vs. Symmetrization

e Define g&/™ (Y, p) as the (1 — «)-quantile of

D (ValYwlp|Y)



Multiple testing
[ I}

Quantile approach vs. Symmetrization

o Define g2/ (Y, p) as the (1 — a)-quantile of
D (VnllYwllp|Y)

@ Symmetrization argument: if Y symmetric and W
Rademacher, then

PIY = plp > g™ (Y = p,p) <

since

1 : 1, -
Y Dy =S WY )~ S (Y ) =Y .
(Y= == WY —p)~ =3 (Y =) I

i=1 i=1
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Quantile approach vs. Symmetrization

o Define g2/ (Y, p) as the (1 — a)-quantile of
D (VnllYwllp|Y)

@ Symmetrization argument: if Y symmetric and W
Rademacher, then

P(IY = ullp > ad™(Y = p,p)) <
since
= = S WY =)~ 23— =Y
)y = n 2V [ =Y —pu.

n <
i=1

e ¢ (Y — p, p) unknown = replacing 1 by Y leads to

aa"(Y.p) = a™ (Y — Y, p)
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Multiple testing with the uncentered quantile threshold

If t > qzvym((Yk)ks.t. 1k=0> +OO) ' then

FWER(R) =P(3k s.t. pux=0and /n|Y|>1t)

=P(vn sup [Yi|>t)<a
ks.t. pg=0

by symmetry of Y.
This holds in particular for
qguant. uncent.(Y) = q(slym(Y,—i-OO) 2 qzym((Y)ks.t.,uk:m'i_oo)

= can be used for multiple testing, but more conservative,
especially when the signal p is strong
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Simulations: n = 1000, K = 16384, 0 =1, 0 < pux < 2.9

0.28 T T T T T T T
—— quant+conc

0.26F === quant+bonf g
-=--- quant

0.24F quant uncentered 4
—— Bonferroni

0.22F ---- Est. true quantile i

0.2} g

Threshold
o
»

0.08 - L L L L L L
0
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Step-down procedure [Holm 1979 ; Westfall and Young

1993 ; Romano and Wolf 2005]

© Reorder the coordinates: oo
Yo == Youo) o

@ Define the thresholds
ty = t(Yo.(k), ... 7YO'(K)) for 05
k:].,...,K > 04

Define k = os-\
max {kS.t.VkI < k,vo.(k/) > tk/(Y)} 02

Reject Ho for all k < k ’ —

L L L L 1.,
0 10 20 30 40 50 60 70

= this procedure has a FWER controlled by « if each t; has (use
that tic = t((Yk)kek) is a non-decreasing function of K).
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Simulations: n = 1000, K = 16384, 0 =1, 0 < pux < 2.9

0.28 T T T T T T T

0.26 === quant+bonf )
—— Bonferroni

0.24f ---- Est. true quantile 1
i holm

0.22F === 8-D quant+bonf E

guant uncentered
0.2f S-D quant uncent g

Threshold
o
»

0.14F<(

0.1F

0.08 A A A 1 A A .
0



Simulations: power (0

Multiple testing
00®000

095+

Power
v

0.94

0921

=== Est. true quantile

—— Bonferroni

+ quant+bonf

S-D quant+bonf

=== guant -
quant uncentered
S-D quant uncent

091
0

15 20 25
width

30 35 40
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Hybrid approach, computational cost

@ Idea: (centered) quantile better when the signal is strong,
uncentered quantile better for weak signals

o First step: use gd"*"B°" () to reject a first set of
hypotheses.

@ Second step: apply the step-down procedure associated with

qzl(’iit;/)uncent‘(Y) to the remaining hypotheses.
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Hybrid approach, computational cost

@ Idea: (centered) quantile better when the signal is strong,
uncentered quantile better for weak signals

o First step: use qg”a"t+B°nf(Y) to reject a first set of
hypotheses.

@ Second step: apply the step-down procedure associated with

qg‘(’i’"_t;/)unce“t‘(Y) to the remaining hypotheses.

@ Goal: reduce the computational cost / increase the power for
a given number of iterations
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Hybrid approach: average number of iterations

7.5
7
6.5
6
55
5
4.5
4

s-d. quént. uncent.
hybrid approach -

Av. number of iterations

35 - - - -
5 10 15 20 25 30

Signal range (dB)




Multiple testing

O0000e

With early stopping: power vs. number of iterations

T
; -
g 08r N\ 0 T
o
><. ~~~~~~ -
s TN
E o6l NC e |
o N
% ' sdqu, t=1 —— o
£ sdqu, t=2 -eeeees
= 04 r hsgqgi t:% .............. |
< ybrid, t=1

03t hybrid, t=2 -==---- i

hybrid, t=3 ===
02 L T ! .

Signal range (dB)
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Conclusion

Two resampling-based procedures:

concentration (almost deterministic threshold)

quantile (related to symmetrization techniques)

= Multiple testing 4+ Confidence regions

FWER / level control (non-asymptotic, K may be > n)
very general correlation structures allowed
Simulations: efficient in presence of correlations

step-down procedures are possible

Open problems:

quantile threshold without 77
with other weights?

with non-symmetric Y 7

Conclusion
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