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Model

Observations: Y = (Y 1, . . . ,Y n) =


Y 1

1 . . . Y n
1

...
...

...
...

Y 1
K . . . Y n

K


Y 1, . . . ,Y n ∈ RK i.i.d. symmetric

Unknown mean µ = (µk)k

Unknown covariance matrix Σ

n� K

Aims: Find a confidence region for µ or {k s.t.µk 6= 0}



2/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Model

Observations: Y = (Y 1, . . . ,Y n) =


Y 1

1 . . . Y n
1

...
...

...
...

Y 1
K . . . Y n

K


Y 1, . . . ,Y n ∈ RK i.i.d. symmetric

Unknown mean µ = (µk)k

Unknown covariance matrix Σ

n� K

Aims: Find a confidence region for µ or {k s.t.µk 6= 0}



2/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Model

Observations: Y = (Y 1, . . . ,Y n) =


Y 1

1 . . . Y n
1

...
...

...
...

Y 1
K . . . Y n

K


Y 1, . . . ,Y n ∈ RK i.i.d. symmetric

Unknown mean µ = (µk)k

Unknown covariance matrix Σ

n� K

Aims: Find a confidence region for µ or {k s.t.µk 6= 0}



3/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Illustration (1): K = 16384� n, spatially correlated noise
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Illustration (2): K = 16384� n, textured noise



5/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Illustration (3): neuroimaging and microarrays

(neural activity) (gene expression levels)
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Multiple simultaneous hypothesis testing

For every k we test: H0,k : “µk = 0” against H1,k : “µk 6= 0”.

A multiple testing procedure rejects:

R(Y) ⊂ {1, . . . ,K} .

Type I errors measured by the Family Wise Error Rate:

FWER(R) = P (∃k ∈ R(Y) s.t.µk = 0) .

⇒ build a procedure R such that FWER(R) ≤ α?

strong control of the FWER: ∀µ ∈ RK

power: Card(R(Y)) as large as possible
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Thresholding

Reject R(Y) = {k s.t.
√

n|Yk | > t}

where

Y = 1
n

∑n
i=1 Y i empirical mean

t = tα(Y) threshold (independent of k ∈ {1, . . . ,K})

FWER(R) = P(∃k s.t. µk = 0 and
√

n|Yk | > t)

= P(
√

n sup
k s.t.µk=0

|Yk | > t)

≤ P(
√

n sup
k
|Yk | > t)

= P
(
‖Y − µ‖∞ > tn−1/2

)
So, L∞ confidence region ⇒ control of the FWER



7/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Thresholding

Reject R(Y) = {k s.t.
√

n|Yk | > t}

where

Y = 1
n

∑n
i=1 Y i empirical mean

t = tα(Y) threshold (independent of k ∈ {1, . . . ,K})

FWER(R) = P(∃k s.t. µk = 0 and
√

n|Yk | > t)

= P(
√

n sup
k s.t.µk=0

|Yk | > t)

≤ P(
√

n sup
k
|Yk | > t)

= P
(
‖Y − µ‖∞ > tn−1/2

)
So, L∞ confidence region ⇒ control of the FWER



8/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Bonferroni threshold, Gaussian case

Union bound:

FWER(R) ≤ P
(
∃k s.t.

√
n
∣∣Yk − µk

∣∣ > t
)

≤ K sup
k

P(
√

n|Yk − µk | > t)

≤ 2K Φ(t/σ) ,

where Φ is the standard Gaussian upper tail function.

Bonferroni’s threshold: tBonf
α = σΦ

−1
(α/(2K )).

deterministic threshold

too conservative if there are strong correlations between the
coordinates Yk

⇒ how to do better ?



8/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Bonferroni threshold, Gaussian case

Union bound:

FWER(R) ≤ P
(
∃k s.t.

√
n
∣∣Yk − µk

∣∣ > t
)

≤ K sup
k

P(
√

n|Yk − µk | > t)

≤ 2K Φ(t/σ) ,

where Φ is the standard Gaussian upper tail function.

Bonferroni’s threshold: tBonf
α = σΦ

−1
(α/(2K )).

deterministic threshold

too conservative if there are strong correlations between the
coordinates Yk

⇒ how to do better ?



9/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Goal

For every p ∈ [1,+∞] , find a threshold tα(Y) such that

∀µ ∈ RK P
(√

n‖Y − µ‖p > tα (Y)
)
≤ α .

⇒ Lp confidence ball for µ at level α (FWER(R) ≤ α if p = +∞)

Non-asymptotic: ∀K , n

General correlations

Assumptions:
(Gauss) Y i ∼ N (µ,Σ) with σ = (Σk,k)k=1...K known
(SB) Y i − µ ∼ µ− Y i (symmetry) and ∀k,

∣∣Y i
k

∣∣ ≤ M a.s.

Ideal threshold: t = q?α, (1− α)-quantile of D
(√

n‖Y − µ‖p
)

q?α depends on D(Y) unknown ⇒ estimated by resampling.
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Classical procedures and known results

Parametric statistics: no, because K 2 � nK .

Asymptotic results (e.g. [van der Vaart and Wellner 1996]):
not valid, because K � n .

Holm’s multiple testing procedure: better than Bonferroni,
but unefficient with strong correlations

(Multiple) tests by symmetrization:
do not work if H0,k = {µk ≤ 0} .
do not give confidence regions.
not translation-invariant ⇒ less powerful if ‖µ‖∞ is large
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Resampling principle [Efron 1979 ; ...]

Sample Y 1, . . . ,Y n resampling−→ (W1,Y
1), . . . , (Wn,Y

n) weighted sample

“Y i is kept Wi times in the resample”

Weight vector: (W1, . . . ,Wn), independent of Y

Example 1: Efron’s bootstrap ⇔ n-sample with replacement
⇔ (W1, . . . ,Wn) ∼M(n; n−1, . . . n−1)

Example 2: Rademacher weights: Wi i.i.d. ∼ 1
2δ−1 + 1

2δ1 ⇔
subsampling, with subsample size ≈ n/2

Heuristics: D(sample|true distribution) ≈ D (resample|sample)
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Concentration method

‖Y − µ‖p concentrates around its expectation,
standard-deviation ≤ ‖σ‖pn−1/2

Estimate E
[
‖Y − µ‖p

]
by resampling

⇒ qconc
α (Y) = cst×

√
nE
[
‖YW −W Y‖p|Y

]
+ remainder(‖σ‖p, α, n)

Works well if expectations (∝
√

log(K )) are larger than

fluctuations (∝ Φ
−1

(α/2))
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Quantile method

Ideal threshold: q?α = (1− α)-quantile of D
(√

n‖Y − µ‖p
)

⇒ Resampling estimate of q?α :
qquant
α (Y) = (1− α)-quantile of D

(√
n‖YW −W Y‖p|Y

)
with W :=

1

n

n∑
i=1

Wi

YW :=
1

n

n∑
i=1

WiY
i Resampling empirical mean

qquant
α (Y) depends only on Y ⇒ can be computed with real data
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Concentration theorem

Theorem

Assume (Gauss) and W Rademacher. For every α ∈ (0, 1) ,

qconc,1
α (Y) :=

√
nE
[
‖YW −W Y‖p|Y

]
BW

+ ‖σ‖pΦ
−1

(α/2)

[
CW√
nBW

+ 1

]
satisfies

P
(√

n‖Y − µ‖p > qconc,1
α (Y)

)
≤ α

with σ :=
(√

var(Y 1
k )
)

1≤k≤K
, and

BW := E
 

1

n

nX
i=1

“
Wi −W

”2
!1/2

= 1−O(n−1/2) and CW = 1

Main tool: Gaussian concentration theorem [Cirel’son, Ibragimov
and Sudakov, 1976]
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Remarks

Valid for quite general weights (with BW and CW are
independent of K and easy to compute).

Similar result under assumption (SB) (with larger constants).

‖·‖p can be replaced by supk (·)+ ⇒ one-sided multiple tests

Almost deterministic threshold:
⇒ if p =∞, qconc,2

α (Y) ≈ min
(

tbonf
α , qconc,1

α (Y)
)

still has a

FWER ≤ α.
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Practical computation

Monte-Carlo approximation with W 1, . . . ,W B only (with an
additionnal term of order B−1/2)

Alternatively, V -fold cross-validation weights
⇒ computation time ∝ V , accuracy ∝ CW B−1

W ≈
√

n/V .

Estimation of σ : under (Gauss), if

σ̂k :=

√√√√1

n

n∑
i=1

(
Y i

k − Y
)2

then for every δ ∈ (0, 1) ,

P
(
‖σ‖p ≤

(
Cn −

1√
n

Φ
−1
(
δ

2

))
‖σ̂‖p

)
≥ 1− δ ,

with Cn = 1−O(n−1) .



16/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Practical computation

Monte-Carlo approximation with W 1, . . . ,W B only (with an
additionnal term of order B−1/2)

Alternatively, V -fold cross-validation weights
⇒ computation time ∝ V , accuracy ∝ CW B−1

W ≈
√

n/V .

Estimation of σ : under (Gauss), if

σ̂k :=

√√√√1

n

n∑
i=1

(
Y i

k − Y
)2

then for every δ ∈ (0, 1) ,

P
(
‖σ‖p ≤

(
Cn −

1√
n

Φ
−1
(
δ

2

))
‖σ̂‖p

)
≥ 1− δ ,

with Cn = 1−O(n−1) .



17/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Simulations: p = +∞, n = 1000, K = 16384, σ = 1
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Simulations: p = +∞, n = 1000, K = 16384, σ = 1
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Quantile method

Rademacher weights only: Wi i.i.d. ∼ 1
2δ−1 + 1

2δ1

qquant
α (Y) = (1− α)-quantile of

D
(√

n‖YW −W Y‖p
∣∣Y)

Heuristics ⇒ should satisfy P
(
‖Y − µ‖p > qquant

α (Y)
)
≤ α
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Quantile theorem: need for a supplementary term

Theorem

Y symmetric. W Rademacher. α, δ, γ ∈ (0, 1).
If f is a non-negative threshold with level bounded by αγ :

P
(√

n‖Y − µ‖p > f (Y)
)
≤ αγ

Then,

qquant+f
α (Y) = qquant

α(1−δ)(1−γ)(Y) +

√
2 log(2/(δα))

n
f (Y)

yields a level bounded by α :

P
(√

n‖Y − µ‖p > qquant+f
α (Y)

)
≤ α
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Remarks

Uses only the symmetry of Y around its mean

‖·‖p can be replaced by supk(·)+ ⇒ one-sided multiple tests

The supplementary threshold f only appears in a second-order
term.

(Gauss) ⇒ three thresholds:
take f among qBonf

αγ (if p = +∞), qconc,1
αγ and qconc,2

αγ

(SB) ⇒ f = qconc,SB
αγ

In simulation experiments, f is almost unnecessary.

qquant
α(1−δ)(1−γ)(Y) can be replaced by a Monte-Carlo estimated

quantile (i.e., simulate only W 1, . . . ,W B)
⇒ loose at most (B + 1)−1 in the level, nothing if
α(1− δ)(1− γ)(B + 1) ∈ N .
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Simulations: n = 1000, K = 16384, σ = 1, p = +∞
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Simulations: without the additive term?
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Simulations: role of p (n = 1000, p = 16)
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Simulations: role of p (n = 1000, p = 10)
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Simulations: role of p (n = 1000, p = 2)
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Simulations: role of p (n = 1000, p = 1)
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Quantile approach vs. Symmetrization

Define qsym
α (Y, p) as the (1− α)-quantile of

D
(√

n‖YW ‖p
∣∣Y)

Symmetrization argument: if Y symmetric and W
Rademacher, then

P
(
‖Y − µ‖p > qsym

α (Y − µ, p)
)
≤ α

since

(Y − µ)W =
1

n

n∑
i=1

Wi (Y i − µ) ∼ 1

n

n∑
i=1

(Y i − µ) = Y − µ .

qsym
α (Y − µ, p) unknown ⇒ replacing µ by Y leads to

qquant
α (Y, p) = qsym

α (Y − Y, p)
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Multiple testing with the uncentered quantile threshold

If t ≥ qsym
α ((Yk)k s.t.µk=0,+∞) , then

FWER(R) = P(∃k s.t. µk = 0 and
√

n|Yk | > t)

= P(
√

n sup
k s.t.µk=0

|Yk | > t) ≤ α

by symmetry of Y .

This holds in particular for

qquant. uncent.
α (Y) := qsym

α (Y,+∞) ≥ qsym
α ((Y)k s.t.µk=0,+∞)

⇒ can be used for multiple testing, but more conservative,
especially when the signal µ is strong
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Simulations: n = 1000, K = 16384, σ = 1, 0 ≤ µk ≤ 2.9
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Step-down procedure [Holm 1979 ; Westfall and Young
1993 ; Romano and Wolf 2005]

Reorder the coordinates:∣∣Yσ(1)

∣∣ ≥ · · · ≥ ∣∣Yσ(K)

∣∣
Define the thresholds
tk = t(Yσ(k), . . . ,Yσ(K)) for
k = 1, . . . ,K

Define k̂ =
max

{
k s.t.∀k ′ ≤ k ,Yσ(k ′) > tk ′(Y)

}
Reject H0,k for all k ≤ k̂

⇒ this procedure has a FWER controlled by α if each tk has (use
that tK = t((Yk)k∈K) is a non-decreasing function of K).



32/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Simulations: n = 1000, K = 16384, σ = 1, 0 ≤ µk ≤ 2.9
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Simulations: power (0 ≤ µk ≤ 2.9)
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Hybrid approach, computational cost

Idea: (centered) quantile better when the signal is strong,
uncentered quantile better for weak signals

First step: use qquant+Bonf
α (Y) to reject a first set of

hypotheses.

Second step: apply the step-down procedure associated with
qquant. uncent.
α(1−γ) (Y) to the remaining hypotheses.

Goal: reduce the computational cost / increase the power for
a given number of iterations



34/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Hybrid approach, computational cost

Idea: (centered) quantile better when the signal is strong,
uncentered quantile better for weak signals

First step: use qquant+Bonf
α (Y) to reject a first set of

hypotheses.

Second step: apply the step-down procedure associated with
qquant. uncent.
α(1−γ) (Y) to the remaining hypotheses.

Goal: reduce the computational cost / increase the power for
a given number of iterations



34/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Hybrid approach, computational cost

Idea: (centered) quantile better when the signal is strong,
uncentered quantile better for weak signals

First step: use qquant+Bonf
α (Y) to reject a first set of

hypotheses.

Second step: apply the step-down procedure associated with
qquant. uncent.
α(1−γ) (Y) to the remaining hypotheses.

Goal: reduce the computational cost / increase the power for
a given number of iterations



35/37

Introduction Resampling Concentration method Quantile method Multiple testing Conclusion

Hybrid approach: average number of iterations
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With early stopping: power vs. number of iterations
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Conclusion

Two resampling-based procedures:

concentration (almost deterministic threshold)

quantile (related to symmetrization techniques)

⇒ Multiple testing + Confidence regions

FWER / level control (non-asymptotic, K may be � n)

very general correlation structures allowed

Simulations: efficient in presence of correlations

step-down procedures are possible

Open problems:
quantile threshold without f ?
with other weights?
with non-symmetric Y ?
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