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Example 1: 1-D signal

0. . . . . . . . . .
0 10 20 30 40 50 60 70 80 90 100

Position t

Consistent change-point detection with kernels Sylvain Arlot




Introduction
e0

Example 1: 1-D signal: Find abrupt changes in the mean
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Example 2: shot detection in a movie
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Example 2: shot detection in a movie
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The change-point problem

@ Observation: Xi,..., X, € X independent random variables
(X arbitrary measurable set).

@ Px,: distribution of X;.

= find where are the abrupt changes in the sequence

Px,,...,Px,?
Notation:
TP :={(r,....,p) eNPTL 0=r9 <7y <--- <7p=n}

segmentation (of {1,...,n}) into D, = D € {1,..., n} segments.
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Challenges for (multiple) change-point detection

@ Detect changes in the whole distribution (not only the mean)
e Mean:
o homoscedastic: Birgé & Massart (2001), Comte & Rozenholc
(2002, 2004), Baraud, Giraud & Huet (2010)...
o heteroscedastic: A. & Celisse (2011)
o Mean and variance: Picard et al. (2007), Fryzlewicz and
Subba Rao (2014)
o Full distribution: Zou et al. (2014) in R, Matteson & James
(2014) in R4
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Challenges for (multiple) change-point detection

@ Detect changes in the whole distribution (not only the mean)
e Mean:
o homoscedastic: Birgé & Massart (2001), Comte & Rozenholc
(2002, 2004), Baraud, Giraud & Huet (2010)...
o heteroscedastic: A. & Celisse (2011)
o Mean and variance: Picard et al. (2007), Fryzlewicz and
Subba Rao (2014)
o Full distribution: Zou et al. (2014) in R, Matteson & James
(2014) in R4

@ High-dimensional data of different nature:

o Vectorial: measures in R9, curves (sound recordings,. .. )
e Non vectorial: phenotypic data, graphs, DNA sequence,. ..
e Both vectorial and non vectorial data.
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Challenges for (multiple) change-point detection

@ Detect changes in the whole distribution (not only the mean)
e Mean:
o homoscedastic: Birgé & Massart (2001), Comte & Rozenholc
(2002, 2004), Baraud, Giraud & Huet (2010)...
o heteroscedastic: A. & Celisse (2011)
o Mean and variance: Picard et al. (2007), Fryzlewicz and
Subba Rao (2014)
o Full distribution: Zou et al. (2014) in R, Matteson & James
(2014) in R4

@ High-dimensional data of different nature:

o Vectorial: measures in R9, curves (sound recordings,. .. )
e Non vectorial: phenotypic data, graphs, DNA sequence,. ..
e Both vectorial and non vectorial data.

© Efficient algorithm allowing to deal with large data sets
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Kernels: a quick reminder

@ k:X x X — R measurable is a positive semidefinite kernel if
VX1, ..., xm € X, the matrix (k(x;, Xj))1<ij<m is positive
semidefinite.

@ Examples:
o linear kernel: k(x,y) = (x,y),
polynomial kernel: k(x,y) = (1 + (x,y))",
o Gaussian kernel: k(x,y) = exp(— ||x — y|* /(2h?)),

x? kernel on AY: k(x,y) = exp (_Tld ;1:1 %
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The kernel least-squares criterion

o Least-squares criterion (when X = R): V7 € T, := Ups; 7.2,

Z Z (Xi — y‘Fe71+1,7'z)2 .

Z 1i=7p_1+1

@ Kernel least-squares criterion:

~

1 n
Ra(7) := - > k(Xi, Xi)
i=1
D

_72 Zé Zg k(Xivxj)

My | T =1 7 1 jmry 41

@ The two definitions coincide when X = R and k(x,y) = xy.
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Kernel change-point detection (KCP)

kernel (A., Celisse & Harchaoui, 2012-19)

least-squares
criterion

7 € argmin{ R,(r) 4+ pen(r)
T€Tn v

penalty

function

where pen is a function increasing with D, such as:

1 -1
pen(7) = - [cl log ([,)7 3 1) + czDT]

pen(7) = b- {cl log (n) + cz]
n D,
C1D7—
-
For X =R, linear kernel, Birgé & Massart (2001) and Lebarbier
(2005) take pen(1) = < DT [cl log ( ) + cz}
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(Abstract) intuition on KCP

@ KCP & kernelized version of (penalized) least-squares
change-point detection
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(Abstract) intuition on KCP

@ KCP & kernelized version of (penalized) least-squares
change-point detection
e Canonical feature map ® : x € X +— k(x,-) € H reproducing
kernel Hilbert space (RKHS)
e Y; = ®(X;) € H are independent H-valued r.v.
T OX)=k(,X)
X .
o > W,
original space) ~ Mapping to '
g be) a Hilbert space / H(RKHS)
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(Abstract) intuition on KCP

@ KCP & kernelized version of (penalized) least-squares
change-point detection

e Canonical feature map ® : x € X +— k(x,-) € H reproducing
kernel Hilbert space (RKHS)

e Y; = ®(X;) € H are independent H-valued r.v.
T OX) =k, X)

X .
=D ° ,I_>
(original space) ~ Mapping

a Hilbert space / H(RKHS)

o E[/k(Xi, Xi)] < oo = can define u7 € H the “mean” of Y;
= KCP detects jumps of the “mean” p7 of Y;
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(Abstract) intuition on KCP

@ KCP & kernelized version of (penalized) least-squares
change-point detection

e Canonical feature map ® : x € X +— k(x,-) € H reproducing
kernel Hilbert space (RKHS)

e Y; = ®(X;) € H are independent H-valued r.v.
T OX)=k(,X)
X .
v P AN
iginal mapping to I

(gl space) a Hilbert space / H(RKHS)

o E[/k(Xi, Xi)] < oo = can define u7 € H the “mean” of Y;
= KCP detects jumps of the “mean” p7 of Y;

e Remark: if k is characteristic (eg, Gaussian kernel),
p; characterizes Py;.
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KCP for fixed D (Harchaoui & Cappé, 2007)

7(D) € argmin{R,(7)}
TeTP

@ Dynamic programming algorithm
@ No computation in A, only needs to compute the k(Xj, X;)
(cost Ck)

o Complexity of computing (7(D)),_p.p

time (9((Ck+Dmax)n2) and space  O(Dmaxn)

(Celisse et al., 2018).
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Main assumptions

@ H separable
@ Bounded kernel/data:

IM < 400, Vi € {1,...,n}, k(X:, X;) < M? a.s. (Db)

= always satisfied for Gaussian and y? kernel.
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D = D.. known: notations

@ True segmentation 7*:

* * * * * *
PL = S gy F oy = S oy Fo F P 1= = oy

® Smallest jump size: A = min; sz | | = wiially
(MMD, Gretton et al. 2006).

® Smallest segment length: A, := L mini<y<p_ |70 — 7o-1].

o Loss between segmentations 71,72 € T,

7',-1 —7‘]2‘}

if D1 = D,2 and 71,72 “close”

1 .
doon(7h,72) := = max min
n1<i<D_-1|1<j<D,> -1

1
= - max
n 1<i§D71—1

1 2
TP — T
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D = D.- known: estimation of change-points locations

Theorem (A. & Garreau, 2018)
Assume: H separable, (Db), y > 0 and

148D,+M? y +logn+1
Aox > vp(y) = AT2 . p .

Then, with probability 1 —e™7,

V7(Dr+) € argmin{?i,,(T)}7 doo,n (7%, 7(Dr+)) < va(y) .-
TET,,DT*
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D = D.. known: estimation of change-points locations (2)

Corollary (A. & Garreau, 2018, simplified result)

A2 DT* Iogn
M2 < JA. n

Assume: H separable, (Db) and

Then, with probability 1 — n2,

D,«M? logn
A? n '

V7 (D) € argmin{ﬁn(T)}, doo,n (7%, 7(D7+)) S
T€7}DT*

A2 . . .
@ > ~ signal-to-noise ratio.

e Matches minimax lower bound log(n)/n (Brunel, 2014).

@ Remark: log(n) factor not necessary in the standard
“asymptotic” setting (Korostelev & Tsybakov, 2012).
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KCP: data-driven D by model selection

e Notation: Y =(Y1,...,Y,) € H", " = (pf,..., 1) € H"
e Forany 7 € Ty, N, : H" — H" orthogonal projection onto
Fr=A(f,....f0) e/ b 1= =F,Vl=1,...,D:}
= Least-squares estimator i, = 1,Y

and least-squares criterion:
Ra(1) = 3 1Y =" = 3 e 11Y: = (Bn)ill3,
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KCP: data-driven D by model selection

e Notation: Y = (Y1,...,Yn) € H", p* = (p3,...,u}) € H"

e Forany 7 € Ty, N, : H" — H" orthogonal projection onto
Fr=A{(f,....f)eH" ) fry_jy1=---=F,¥=1,...,Dr}

= Least-squares estimator i, = 1,Y
and least-squares criterion:
Ro(r) = 5 1Y = 1i-[1* = £ S Vi = (B )ill3,

e Quadratic risk of u € H":
1 *12 1 ¢ *12
R(u) = EHM—M I© = EZ”M — il -
i=1

@ Usual approach for model selection: take a penalty such that

~

vreTa,  pen(r) = penig(7) == R(fir) — Ra(T) + cst.
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Oracle inequality for KCP

Theorem (A., Celisse & Harchaoui, 2012-19)
Assume: H separable, (Db), y >0, C > 119 and

CM? n—1
V ns 2 | DT
TE€T; pen(7) p [og (Dr—1> +

Then, with probability 1 —e™Y,

VYT € argmin {7@,,(7') + pen(r)} )
7€Tn
83yM?>

R(@z) < 2 inf {R(fr) + pen(r)} + —2—.

CM?D,
@ applies to pen(7) = if C > 465log(n).

n
o X =R, linear kernel: Birgé & Massart (2001), Lebarbier (2005).




D =D
[ I}

Change-point estimation performance of KCP

Theorem (A. & Garreau, 2018)
Assume: H separable, (Db), y > 0 and

74 A% A
min := — (D +1 | 1 max -—
G 3 (D +1)(y +logn+1) < € < G V6D
Then, with probability 1 —e™Y,
CM?D,
V7 € argmind R, (7) + , D~ = D;+
TETh i

~ 148D,-M? y +logn+1
and doo,n (75, 7) < valy) := ATz 34 5

Previous works (Lavielle & Moulines, 2000, among many others):
real case (1 = R) only (with dependent data).
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Change-point estimation performance of KCP (2)

Corollary (A. & Garreau, 2018, simplified result)

Assume: H separable, (Db) and

A% A

D:«logn < C < ﬁBﬂn.
Then, with probability 1 — n~2,
= CM?D,
V7 € argming R, (1) + , D~ = D,
TETn n
D;«M? |
and doo,n(7%,7) S > - o8 n
k) é n

2
%
@ Lower bound on C: log(n) necessary (Birgé & Massart, 2007).
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Oracle inequality: proof ideas

@ Notation: e =Y —u* € H"
o l|deal penalty:

JENS 1
penig(7) = R(fir) = Ra(7) + e

2 2
=S = e+ = [N
n —— n ~e——

=—L-(linear term) =Q- (quadratic term)

@ Concentration for L. and @, around their expectations

= show that pen(7) > pen;q(7) simultaneously for all T € 7,
with probability > 1 —e™.

@ Previous work (Birgé & Massart, 2001): Gaussian assumption
+ real-valued functions = does not apply to RKHS case.
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Concentration of the quadratic term

Proposition (A., Celisse & Harchaoui, 2012-19)
Assume: H separable and (Db). Then, for every T € T,, x > 0:

14M?
IMel® — E [IMel?| < <5—(x+2v2xD;) |

X

with probability at least 1 — e™*.

Proof ideas:
@ Pinelis-Sakhanenko's inequality (||>Zcx €ill5)-

@ Bernstein's inequality (upper bounding moments).
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Concentration of the linear term

Proposition

Assume: H separable and (Db). Then, for every 7 € T,, x > 0,
with probability at least 1 — 2e™*:
1 4

I_IT * ok < I-IT * %2 (_ —>M2
i = i, ) < OINo* — P + ( + 2) M

for every 6 > 0.

Proof: Bernstein's inequality.
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|dentification of change-points: proof ideas

7 € argmin{R,(7) + pen(r)}
T7€Tn

@ Empirical risk:

n
=A- (approximation) =L, (linear term) =Q; (quadratic term) (constant)

. 1 2, 1 1
Rn(T)=; % = M| += (0 = N, €) — - Nl + EHSH2

@ Previous concentration inequalities for L., Q;.

@ Deterministic bounds on A;:
D <Dy = LA > IN.A?  (for showing D~ > D.+)

1
1A, > 5 min{/\T* : doo,n(f*,f)}Az (for 7(D;+))
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Constant mean and

variance: results (D)
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Constant mean and variance: results (D)
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Histogram-valued synthetic data

X; € d-dimensional simplex, Dirichlet distribution (p{, ... ,pf;) on
the ¢-th segment, with p! independent ~ 2/([0,0.2]).
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(first three coordinates)
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Histogram-valued synthetic data: results (D;+)
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Histogram-valued synthetic data: results (D)
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KCP with D data-driven.
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Real data experiments with KCP

e wave heights (A., Celisse & Harchaoui, 2012-19): distribution
changes, X =R

@ composite biological data, DNA copy number and allele B
frequencies (Celisse et al., 2018): X = R?

@ human activity recognition using smartphones data set
(Garreau & A. 2018): X = R = X = R3° (sliding
frequency-domain representation)

e correlation changes in a multivariate time series (Cabrieto et
al. 2017), application to behavioral sciences

@ covariance structure changes (Cabrieto et al., 2018) with KCP
on running empirical correlations, application to psychology

@ autocorrelation structure changes (Cabrieto et al., 2018) with
KCP on running empirical autocorellations, application to
psychology
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Conclusion

Conclusion

Take-home message:
o Kernelized version of penalized least-squares change-point
detection (eg, Lebarbier, 2005).
@ Detection of changes in the distribution, not only the first
moments.
@ Can deal with structured data.

@ Under reasonable assumptions and for a class of penalty
functions:

e oracle inequality;
o identifies the correct number of change-points;
e estimates at the correct rate the change-points locations.

Open problems:
e Unbounded data/kernel.
@ Dependent data?
@ Learn how to choose the kernel.
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