The de Rham period ring, B_{dR}

Vincent Bouis

p-adic Hodge theory seminar 2020, Session 2

Introduction : We present the definition and first properties of the field B_{dR} . This field, and its associated valuation ring B_{dR}^+ were introduced by Fontaine in the 1980's. Their are not only necessary to formulate a comparison between étale and de Rham cohomology, but also provide a good context to study *p*-adic periods (which are the *p*-adic analogue of the numbers called periods in \mathbb{C}).

1	Introduction	1
2	$B_{\rm dR}$, first properties	2

Let us fix a prime number p.

1 Introduction

As usual in *p*-adic Hodge theory, we consider a discrete valuation field K (for instance a finite extension of \mathbb{Q}_p) of mixed characteristic, and with perfect residue field k of characteristic p. We denote by W(k) the ring of Witt vectors over k, K_0 the fraction field of W(k), \overline{K} an algebraic closure of K with residue field \overline{k} , C the completion of \overline{K} (that is $C = \mathbb{C}_p$ if K is a finite extension of \mathbb{Q}_p) and $C^{\flat} := \lim_{\phi} C/p$ its tilt, $G_K := \operatorname{Gal}(\overline{K}/K)$ the absolute Galois group of K and \mathcal{O}_K , $\mathcal{O}_{\overline{K}}$, \mathcal{O}_C and $\mathcal{O}_{C^{\flat}}$ the rings of integers of the fields K, \overline{K} , C and C^{\flat} .

We also let $A_{\inf} := W(\mathcal{O}_{C^{\flat}})$ and $A_{\inf,K} := A_{\inf} \otimes_{\mathcal{O}_K} K = A_{\inf}[\frac{1}{p}]$. Remark that the map $\theta : A_{\inf} \to \mathcal{O}_C$ extends uniquely into a morphism of K-algebras $\theta_{\mathbb{Q}} : A_{\inf,K} \to C$. The morphisms θ and $\theta_{\mathbb{Q}}$ are surjective, with principal kernel generated by an element $\xi \in A_{\inf}$. We are now able to define the following de Rham period ring:

$$B_{\mathrm{dR}}^+ := \lim_{n \to \infty} (A_{\mathrm{inf}} / \xi^n [1/p]) = (A_{\mathrm{inf},K} / (\mathrm{ker}\theta_{\mathbb{Q}})^n).$$

The field B_{dR} is then defined as the fraction field of B_{dR}^+ . The field B_{dR} is useful to state the étale-de Rham comparison theorem:

October 28, 2020

Theorem 1.1. Let X be a proper smooth algebraic variety over K. Then there is a G_K -equivariant isomorphism of filtered B_{dR} -vector spaces:

$$H^*_{dR}(X/K) \otimes_K B_{dR} \cong H^*_{\acute{e}t}(X_{\overline{K}}, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} B_{dR}.$$

Remark in this statement that the Galois action is induced on the left-hand side by the Galois action on B_{dR} and is trivial on de Rham cohomology $H^*_{dR}(X/K)$, while it is given by transport de structure on étale cohomology $H^*_{\acute{e}t}(X_{\overline{K}}, \mathbb{Z}_p)$. Remark similarly that the filtration of B_{dR} is induced by the "t-adic filtration" on B_{dR} , by the Hodge filtration on de Rham cohomology $H^*_{\acute{e}t}(X_{\overline{K}}, \mathbb{Z}_p)$.

In fact, one can prove that the G_K -action on B_{dR} satisfies $B_{dR}^{G_K} = K$, so one can recover the de Rham cohomology of X from its étale cohomology:

$$\mathrm{H}^*_{\mathrm{dR}}(X/K) \cong (\mathrm{H}^*_{\mathrm{\acute{e}t}}(X_{\overline{K}}, \mathbb{Z}_p) \otimes_{\mathbb{Z}_p} B_{\mathrm{dR}})^{G_K}.$$

From this statement and the following equality of dimensions: $\dim_K H^*_{dR}(X/K) = \dim_{\mathbb{Q}_p} H^*_{\text{ét}}(X_{\overline{K}}, \mathbb{Q}_p)$, one can say that étale cohomology $H^*_{\text{ét}}(X_{\overline{K}}, \mathbb{Q}_p)$ is, as a \mathbb{Q}_p -vector space, a *de Rham representation* of G_K .

2 B_{dR} , first properties

By definition, B_{dR}^+ is the ξ -adic completion of $A_{inf,K}$. In particular, $A_{inf,K} = A_{inf}[1/p]$ is a dense subring of B_{dR}^+ .

Proposition 2.1. For each integer $n \ge 0$, we have $(ker\theta_{\mathbb{Q}})^n \cap A_{inf} = (ker\theta)^n$, and $\cap_{n\ge 0} (ker\theta_{\mathbb{Q}})^n = 0$. In particular B_{dR}^+ is a complete discrete valuation ring with residue field C.

Proof. The first claim follows from the characterization of A_{inf} as the universal pro-nilpotent *p*-complete thickening of \mathcal{O}_C . Since *p* is a nonzero divisor in A_{inf} , the second claim reduces to proving that $\bigcap_{n\geq 0}(\xi)^n = 0$ in A_{inf} , which is true since ξ is a generator of the kernel of θ and a nonzero divisor.

The completeness (which includes by definition being separated) of B_{dR}^+ follows from $\cap_{n \ge 0} (\ker \theta_{\mathbb{Q}})^n = 0$. Finally, the residue field of B_{dR}^+ identifies with $B_{dR}^+/(\xi) \cong A_{\inf,K}/(\xi)$, which is isomorphic to C since $\theta_{\mathbb{Q}}$ is surjective.

Proposition 2.2. There is a Galois equivariant inclusion $\overline{K} \hookrightarrow B^+_{dR}$.

In fact, Colmez proved (in 1994) that \overline{K} is dense inside B_{dR}^+ via this embedding.

Proof. There is a natural inclusion $\overline{k} \hookrightarrow \mathcal{O}_{C^{\flat}}$ sending $x \mapsto (x^{p^{-n}})$, which induces an inclusion $W(\overline{k}) \hookrightarrow A_{\inf} = W(\mathcal{O}_{C^{\flat}})$, and thus an inclusion $W(\overline{k})[1/p] \hookrightarrow B_{\mathrm{dR}}^+$. Now, any element of \overline{K} is a root of a monic polynomial with coefficients in $W(\overline{k})[1/p]$. Such a polynomial splits completely in C; but C is the residue field of B_{dR}^+ , thus b Hensel's lemma, it also splits completely in B_{dR}^+ . This proves there is a unique inclusion $\overline{K} \hookrightarrow B_{\mathrm{dR}}^+$. The Galois-equivariance follows from the construction.

We will now construct an element $t \in B_{dR}^+$, and show this is a uniformizer for the discrete valuation of B_{dR}^+ . In particular, this will prove the relation $B_{dR} = B_{dR}^+[1/t]$, and the fact that t and ξ differ by a unit in B_{dR}^+ .

Let $\varepsilon \in \mathcal{O}_{C^{\flat}}$ be a (non-trivial) system of *p*-power roots of unity in $\mathcal{O}_{C^{\flat}}$. By definition of A_{inf} , this produces an element $[\varepsilon] \in A_{inf} = W(\mathcal{O}_{C^{\flat}})$ (that is, the Teichmüller lift of $\varepsilon \in \mathcal{O}_{C^{\flat}}$). In fact,

doing this for all such elements ε of $\mathbb{Z}_p(1)^a$ defines a natural embedding of $\mathbb{Z}_p(1) \hookrightarrow A_{\inf}^{\times}$. Now we define the map:

$$\varepsilon \mapsto t := \log([\varepsilon]) = \sum_{n \ge 1} (-1)^{n+1} \frac{([\varepsilon] - 1)^n}{n}$$

This sum converges in the maximal ideal of B_{dR}^+ : indeed, ξ divides $[\varepsilon] - 1$, and B_{dR}^+ is the ξ -adic completion of $A_{inf}[1/p]$. In particular, this identifies $\mathbb{Z}_p(1)$ with a subgroup of the additive group B_{dR}^+ .

Proposition 2.3. With the previous notations, t is a uniformizer of B_{dR}^+ .

Proof. We already know that $t \in \xi B_{dR}^+$, so we just need to prove that $t \notin \xi^2 B_{dR}^+$. It suffices to prove that $[\varepsilon] - 1 \notin \xi^2 B_{dR}^+$, or equivalently that $[\varepsilon] - 1 \notin \xi^2 A_{inf}$. This can be done by technical computation on valuations, or by identifying $A_{inf}/(\xi)^2$ with a construction involving the de Rham complex of $\mathcal{O}_{\overline{K}}$ over \mathcal{O}_K (done in Fontaine's "Le corps des périodes *p*-adiques", 1994).

We can thus identify the ξ -adic filtration on B_{dR} with its *t*-adic filtration. The purpose of defining *t* instead of ξ is that the action of *t* is (by definition, thanks to the previous construction) given by the cyclotomic character. In particular, the graded pieces for this filtrations are indexed by the integers $i \in \mathbb{Z}$, and we have the identification $\operatorname{gr}^{i}B_{dR} \cong C \cdot t^{i} = C(i)$ for any $i \in \mathbb{Z}$. This last equality, where $C(i) := \mathbb{Z}_{p}(i) \otimes_{\mathbb{Z}_{p}} C$ is the *i*th Tate twist of *C*, follows from the description of the G_{K} -action on *t* as being given by the cyclotomic character χ . The Hodge-Tate period ring B_{HT} is defined as the graded ring associated to this filtration:

$$B_{\mathrm{HT}} := \bigoplus_{i \in \mathbb{Z}} C(i) = \bigoplus_{i \in \mathbb{Z}} \mathrm{gr}^i B_{\mathrm{dR}}.$$

Proposition 2.4. There is a natural isomorphism $B_{dR}^{G_K} \cong (B_{dR}^+)^{G_K} \cong K$.

Proof. The Ax-Sen-Tate theorem shows that $C^{G_K} = K$, and $C(n)^{G_K} = 0$ if $n \neq 0$. The result thus follows from studying the filtration on B_{dR} , whose graded pieces are equal to $\operatorname{gr}^n B_{dR} \cong C(n)$, for $n \in \mathbb{Z}$.

Remark 2.5. The period ring A_{inf} , and then the de Rham period rings B_{dR} and B_{dR}^+ , can be defined more generally for any perfectoid ring R instead of just the ring of integers \mathcal{O}_{C^b} of C^b . In this generality, the fundamental exact sequence of p-adic Hodge theory can be proved ([AMMN19]), and involves the pro-étale cohomology of the generic fibre of R. Moreover, the de Rham period ring $B_{dR}^+(R)$ can be identified with the Hodge completion $(\widehat{L\Omega}_R)_{\mathbb{Q}_p}$ of derived de Rham cohomology $L\Omega_R$ of R, as developed in [Bha12]. Under this identification, the ξ adic filtration on B_{dR}^+ corresponds to the Hodge filtration on the completed derived de Rham cohomology.

^aRecall that $\mathbb{Z}_p(1)$ is defined as the Tate module $T_p(\overline{K}^{\times}) = \lim_n \overline{K}^{\times}[p^n]$ of the *p*-divisible group \overline{K}^{\times} of roots of unity.