
(ϕ-Γ) Modules

Mohamed Moakher

October 2020

Contents

1 Introduction 1

2 Idea Behind (ϕ,Γ)-modules 2

3 Characteristic p-theory 2

1 Introduction

Let us start with the most basic example of perfectoid tilting. Let K be the p-adic com-
pletion of Qp(ζp∞) with ring of integers K◦ being the p-adic completion of Zp[ζp∞ ]. Noting
that xp−1

x−1 ≡ (x− 1)p mod p, we find that

K◦/(p) = Zp[ζp∞ ]/(p) ∼= Fp[X
1

p∞ ]/(X − 1)p−1 ∼= Fp[T
1

p∞ ]/(T p−1)

where this chain of isomorphisms take ζp to X, and X to T+1. Now we have a well defined
morphism (

Fp[T
1

p∞ ]/(T p−1)
)perf → lim←−

n

Fp[T
1

p∞ ]/(T (p−1)pn)

(xn mod T p−1)n≥0 7→ (xp
n

n mod T (p−1)pn)0≥1

whose inverse is given by sending (y0 mod T p−1, y1 mod T p(p−1), . . . ) to (y0 mod , T p−1, y
1
p

1

mod T p−1, . . . ). Hence combining the above calculations, we get an isomorphism

(K◦)[
∼−→ Fp〈T

1
p∞ 〉 (T -adic completion)

Recall that we have a sharp map, which is a multiplicative map

] : K◦,[ = lim←−
ϕ

K◦/(p)
∼−→ lim←−

x 7→xp
K◦

pr0−−→ K◦

sending (xn mod p)n≥0 to Recall that we have a commutative diagram

W (K◦,[) K◦

K◦,[

θ

[·]
]

where θ is a surjective ring homomorphism called the Fontaine map, and concretely, θ :∑∞
n=0 p

n[xn] 7→
∑∞

n=0 p
n]xn.
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2 Idea Behind (ϕ,Γ)-modules

3 Characteristic p-theory

As we have seen the strategy is to work with fields of the form E = k((u)), i.e., the field of
Laurent series with coefficients in a perfect field k of characteristic p > 0. The reason for
this is that the category of Galois representations associated to a field of characteristic p
E can be interpreted as a category of vector spaces over the separable closure Es equipped
with a Frobenius morphism ϕ.

For V ∈ RepFp
(GE), define DE(V ) = (Es ⊗ V )GE equipped with a ϕE-semilinear endo-

morphism ϕDE
(V ) induced by ϕEs ⊗ 1. For M ∈ ΦMét

E define VE(M) to be the Fp-vector
space

(Es ⊗E M)ϕ=1

with it’s GE-action induced by the GE-action on E and ϕ = ϕEs ⊗ϕM . We need to check
that these functors we just defined take value in the right category and are inverse of each
other. The main ingredient for this is the famous Hilbert’s 90 Theorem.

Theorem 3.1 (Hilbert’s 90). Suppose that V is a Es-vector space with a continuous semi-
linear action of GE (for the discrete topology), then the Es-linear map

Es ⊗E V GE → V

λ⊗ v 7→ λv

is an isomorphism.

Proof. Let us first show that this map is injective, i.e., an E-free family in V GE is Es-free in
V . So let v1, . . . , vn ∈ V GE be a free family, and λ1, . . . , λn ∈ Es be such that

∑
i λivi = 0.

Suppose that λj 6= 0 for some 1 ≤ j ≤ n, and let M/E be a finite extension containing λj .
Then by non-degeneracy of the Trace pairing, there exists x ∈M such that TrM/E(xλj) 6=
0. But for σ ∈ Gal(M/E), we have that:

0 = σ(
∑
i

xλivi) =
∑
i

σ(xλi)σ(vi) =
∑
i

σ(xλi)vi

summing over σ ∈ Gal(M/K), we get∑
i

Tr(xλi)vi = 0

which contradicts the freeness hypothesis.

To prove surjectivity, we need to show that V GE generates V as an Es-vector space. For
v ∈ V \ {0}, let Vv be the Es-sub-vector space generated by the orbit of v. If we show that
V GE
v generates Vv, then we win.

Since the action is continuous, there exists a finite extension M/E such that v ∈ V GM .
Let λ1, . . . , λn is a basis for M , {σ1, . . . , σn} = Gal(M/K). We know that the matrix
(σj(λi))i,j is invertible. Since Vv is Es-linearly generated by the σj(v), it is generated by
the

∑
j σj(λi)σj(v) =

∑
σ σ(λiv) ∈ V GE .

Lemma 3.2. 1. For V ∈ RepFp
(GE), the E-vector space DE(V ) is finite dimensional

of dimension dimFp V , and the E-linearlisation of ϕDE(V ) is an isomorphism.
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2. For M ∈ ΦMét
E , the Fp-vector space VE(M) is finite dimensional with dimension at

most dimEM .

Proof. 1) By Hilbert’s 90 theorem applied to the Es-vector space Es⊗Fp V equipped with
the diagonal GE-action (which is continuous for the discrete topology since it is continuous
on each term), we get that the natural morphism

Es ⊗E DE(V ) = Es ⊗E (Es ⊗Fp V )GE → Es ⊗Fp V (3.1)

is an isomorphism. This shows that DE(V ) is a finite dimensional E-vector space of
dimension dimFp V . To show that the linear map Lin(ϕ) : ϕ∗E(DE(V )) → DE(V ) is an
isomorphism, note that we have Es⊗Eϕ∗E(DE(V )) ∼= ϕ∗Es

(Es⊗EDE(V )) sending es⊗(e⊗d)
to ese⊗ (1⊗ d) inducing a commutiative diagram

Es ⊗ϕ,Es (Es ⊗E DE(V ))

Es ⊗E (E ⊗ϕ,E DE(V )) Es ⊗E DE(V )

Lin(ϕ)∼=

id⊗Lin(ϕ)

this shows that we can check that Lin(ϕ) is an isomorphism after extension of scalars to
Es. Since we have that Es⊗E DE(V ) ∼= Es⊗Fp V compatibly with the action of ϕ (which
is on the first term of the left hand side), it suffices to check that the morphism

Es ⊗ϕ,Es (Es ⊗Fp V )→ Es ⊗Fp V

is an isomorphism. But this is just ⊗FpV applied to the map Es ⊗ϕ,Es Es → Es which is
obviously an isomorphism. Hence the result.
2) Now we prove that VE(M) is a finite dimensional Fp-vector space. For this, it suffices
to check that the natural morphism

Es ⊗Fp VE(M) = Es ⊗Fp (Es ⊗E M)ϕ=1 → Es ⊗E M (3.2)

is injective. For this, it suffices to show that every Fp-free family in VE(M) is Es-free in
Es⊗EM . Suppose that this is not true and choose a family v1, . . . , vr ∈ VE(M) providing
a counterexample with a minimal r. Then we have∑

i

aivi = 0

for some non-zero ai ∈ Es (by minimality). We can suppose that a1 = 1, which gives
v1 = −

∑
i>1 aivi. Applying ϕ, we get:

v1 = ϕ(v1) = −
∑
i>1

ϕ(ai)ϕ(vi) = −
∑
i>1

ϕ(ai)vi

Hence we get that
∑

i>1(ai − ϕ(ai))vi = 0 which by minimality of r can only be true if
ai = ϕ(ai) for all i > 1, i.e., ai ∈ Fp which contradicts the freeness of the vi over Fp.

Now we are able to prove the equivalence of categories we are seeking.

Theorem 3.3. The functors DE and VE are exact, rank preserving and induce an equiv-
alence of categories{

GE-representations on finite
dimensional Fp-vector spaces

}
∼−→
{
ϕ-modules
over E

}
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Proof. By the morphism in (3.1), we have

VE ◦DE(V ) = (Es ⊗E DE(V ))ϕ=1 ∼= (Es ⊗Fp V )ϕ=1 = V

this shows that VE ◦DE
∼= id.

Now let us analyse DE ◦ VE . Passing to GE-invariants in (3.2), we get an injection

DE ◦ VE(M) = (Es ⊗Fp VE(M))GE ↪→ (Es ⊗E M)GE = M

So to prove that DE ◦VE ∼= id, we only need to prove that #VE(M) = pd for d = dimEM .
To do this, note that we have an isomorphism

VE(M)
∼−→ HomE,ϕ(M∨, Es)

Choose a basis {m∨1 , . . . ,m∨d } of M∨ and ϕM∨(m∨j ) =
∑

i cijm
∨
i with (cij)i,j ∈ Gld(E).

In general, an E-linear map M∨ → Es is given by m∨i → xi ∈ Es for each i, and the
compatibility with the ϕ-action imposes the equality xpj =

∑
i cijxi for all j. Therefore,

we have an identification VE(M) = HomE-alg(A,Es) where

A = E[X1, . . . , Xd]/(X
p
j −

∑
i

cijXi)1≤j≤d

A is a finite E-algebra of rank pd and we want to prove that the set of its Es-valued points
has size equal to pd = dimE A. This amounts to saying that A is an étale E-algebra which
can be checked by proving the vanishing of ΩA/E . But by direct computation, we have

ΩA/E = (⊕jA · dXj)/(
∑
j

cijXi)1≤j≤d

but since the matrix (cij)i,j is invertible in E hence in A, the vanishing follows.

Using this result, we are able to describe the category RepZp
(GE) of continuous GE-

representations on finitely generated Zp-modules by successive approximation. To do this,
we need a process that allows us to go from characteristic p objects to characteristic 0
objects. The main tool in our disposal is use of Witt vectors, but recall that we are
dealing with fields E that are not necessarily perfect for which the Witt vectors W (E)
do not behave well. Nevertheless, to carry on with the theory, we need to suppose that
there exists a complete discrete valuation ring OE of characteristic 0, with uniformizer p,
fraction field E , and residue field E. Let us also assume that this ring is equipped with an
endomorphism ϕ : OE → OE lifting the Frobenius morphism on E. We will construct this
ring in the specific cases that we will need.

Definition 3.4. The category ΦMét
OE

of étale ϕ-modules over OE consists of pairs (M, ϕM)
where M is a finitely generated OE -module and ϕM is a ϕ-semilinear endomorphism of
M whose OE -linearisation ϕ∗OE

(M)→M is an isomorphism.

Consider the (unique) maximal unramified extension Eunr of E with ring of integers
Ounr
E . The ring Ounr

E is the strict Hensialisation of OE and it is a discrete valuation ring
with uniformizer p and residue field Es. By lemma [Sta18, Tag04GP ], if f : OE → OE is a
local map whose reduction f : E → E lifts to a map f ′ : Es → Es, there exists a unique
local map f ′ : Ounr

E → Ounr
E lifting f . Applying this to ϕ, we get a unique local morphism

still denoted ϕ on Ounr
E lifting ϕ and reducing to the Frobenius morphism on Es.

Likewise, taking f = id and f ′ to be an element of Gal(Es/E), we also get an action of GE
on Ounr

E which is simply the identification of Gal(Eunr/E). Moreover, this action of GE is
continuous and commutes with ϕ by uniqueness of the lift f ′. Taking the p-adic completion
Ôunr
E we get the same properties. In fact we have the following useful properties
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Lemma 3.5. [BC09, 3.2.4] We have the following identities

Ôunr
E

GE
= OE ÊunrGE

= E

Ôunr
E

ϕ=1
= Zp Êunrϕ=1

= Qp

Proof. Note that we only need to prove the integral claims. The inclusions Zp ↪→ Ôunr
E

ϕ=1

and OE ↪→ Ôunr
E

GE
are local maps between p-adically separated and complete local rings.

So it suffices to show the equality modulo pn for n ≥ 1. We do this by induction, so let us
first check this for n = 1.
Taking the GE-invariants of the exact sequence

0→ Ôunr
E

×p−−→ Ôunr
E → Es → 0

we get an injection Ôunr
E

GE
/(p) ↪→ EGE

s = E which is bijective since the image contains

OE/(p) = E, showing that OE → Ôunr
E

GE
/(p) is surjective. Similarly, given that Eϕ=1

s =
Fp, we get the same conclusion for Zp.
Now suppose that n > 1 and that OE → Ôunr

E
GE
/(pn−1) is surjective. Let ξ ∈ Ôunr

E
GE

,
we need to show that there exists x ∈ OE such that x ≡ ξ mod pn. By the induction
hypothesis, we can choose c ∈ OE such that ξ = c+ pn−1ξ′ with c ∈ OE and ξ′ ∈ Ôunr

E
GE

.
Applying the case n = 1 to ξ′, we get an element c′ ∈ OE such that ξ′ ≡ c′ mod p. Hence
ξ ≡ c + pn−1c′ mod pn, with c + pn−1c′ ∈ OE which is what we wanted to prove. The
second case follows using the same argument.

Now we are able to state the main theorem of this section which is due to Fontaine:

Theorem 3.6. There are covariant naturally quasi-inverse equivalences of abelian cate-
gories

DE : RepZp
(GE)→ ΦMét

OE , VE : ΦMét
OE → RepZp

(GE)

defined by

DE(V ) = (Ôunr
E

GE ⊗Zp V )GE VE(M) = (Ôunr
E

GE ⊗O EM)ϕ=1
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