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Introduction

This paper discusses the model problem of detecting whether or not in a given network, there is a

cluster of connected nodes which exhibit an “unusual behavior”.

The model. For concreteness, we model the network as the d-dimensional lattice Z
d. In the

spatial setting, a random variable Xv is attached to each node v ∈ Z
d. We observe {Xv : v ∈ Z

d}
and want to decide between the following two hypotheses. For specificity again, we assume a normal

location family: under the null, Xv ∼i.i.d. N (0, 1); under the alternative, there is a cluster (connected

component) K ⊂ Z
d and µ > 0 such that Xv ∼i.i.d. N (µ|K|−1/2, 1) for v ∈ K, while Xv ∼i.i.d. N (0, 1)

for v /∈ K. (|K| denotes the size of K.) The cluster K is unknown, but restricted to belong to a class

of interest, denoted by K. The calibration makes detecting clusters of different sizes of comparable

difficulty. In the spatio-temporal setting, a time series Xv(·) is attached to each node v ∈ Z
d. We

observe {Xv(t) : v ∈ Z
d, t ∈ T}. Under the null, Xv(t) ∼i.i.d. N (0, 1) for all v ∈ Z

d and t ∈ T; under

the alternative, there is an emerging cluster (Kt) and µ > 0 such that Xv(t) ∼i.i.d. N (µ|Kt−t0 |−1/2, 1)

for v ∈ Kt−t0 , while Xv(t) ∼i.i.d. N (0, 1) for v /∈ Kt−t0 . The emerging cluster Kt is random and

its distribution is known up to some parameters defining the growth model. The starting time t0 is

unknown.

Motivation. Such a model is relevant in a surprisingly wide array of applications, e.g. in

surveillance based on sensor networks [11]. Specific examples include the detection of radioactive

materials [8], as well as other types of hazardous substances, such as biological or chemical [10]; and

target tracking [35]. As a digital camera may be seen as a sensor network, with CCD or CMOS

pixel sensors, the setting also includes detection problems in images, for which the literature is quite

extensive, spanning several decades, in particular in satellite imagery [16], computer vision [36] and

medical imaging [28]. Disease outbreak detection is another area where the goal is to detect emerging

epidemics based on a network of information incorporating data from hospital emergency visits, am-

bulance dispatch calls and pharmacy sales of over-the-counter drugs [25]. Diseases affect computers

as well, in the form of viruses and worms spreading from host to host in a computer network [34].

The information network may also take the form of a field survey. For example in [29], water quality

in a network of streams in Pennsylvania is being assessed by field biologists performing a variety of

analyses at various locations along the streams.
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Methods. By far, the most common test rejects for large values of the scan statistic [23]. The

method is quite pervasive and appears under different names, such as matched filters or deformable

templates in the engineering literature, and corresponds to the generalized likelihood ratio test under

the normal model assumed here. The scan statistic was originally proposed for point processes [17].

In our particular model, the scan statistic takes the form of

max
K∈K

|K|−1/2
∑

v∈K

Xv .

The scan statistic is often implicitly assumed to be near-optimal, which explains its popularity. Many

variations have been proposed, motivated in part by the fact that it is challenging to compute, in

particular when the class K is nonparametric. We mention the level-sets method proposed in [30],

which extracts upper level sets of the node values and sums the node values over each connected

component.

Literature. Although the detection problem formulated above seems of great practical rele-

vance, the statistics literature is almost silent on the subject, with the notable exception of the sibling

topics of change-point analysis [9] and sequential analysis [33]. Indeed, the former is a special instance

of the spatial setting where the graph is the one-dimensional lattice; the latter is a special case of

the spatio-temporal setting where the graph is reduced to a single node. The framework of multiple

hypothesis testing [5, 15,14] may also be seen as a special case of our spatial setting where the graph

is the complete graph, essentially ignoring the spatial information.

The vast majority of publications addressing the task of detection in sensor networks are found

the engineering literature. They tend to assume overly simplistic models where the alternative is

simple; the papers instead focus on other aspects of sensor networks such as bandwith. In stark

contrast, in all the applications described earlier, the set of alternatives is composite. On the other

hand, most papers addressing composite alternatives assume a parametric model (e.g. discs) for

clusters [23, 26, 19], for which theoretical results are available, especially in the case of images [3, 13,

21,31,7]. In particular, the scan statistic performs well in the sense that it is asymptotically minimax;

this is shown in [3] in a slightly different context tailored to image processing applications. The scan

statistic performs well in nonparametric settings as well; in [3], the scan statistic is indeed shown to be

asymptotically minimax for the case of star-shaped clusters with ‘smooth’ boundaries. In [2], the focus

is on clusters that are paths of a certain length, and again the scan statistic is asymptotically minimax

when the graph is a complete, regular tree, and near-minimax for many other types of graphs, such

as the d-dimensional lattice for d ≥ 3.

Our contribution. In this paper, we further investigate theoretical detection thresholds and the

performance of the scan statistic both in the spatial and spatio-temporal models. For the practitioner,

the main implication of this work is to confirm that the scan statistic enjoys a good performance in

a wide variety of settings. This is the short version of a longer paper to be published later on, where

the reader will find the proofs of the results stated here, extensions to other types of graphs and other

node distributions, numerical experiments exploring a variety of algorithms, some novel, and a larger

bibliography.

The spatial setting

We implicitly assume that the graph Z
d is naturally embedded in R

d. We let B(x, r) denote the closed

ball for the ℓ1 (or any other) norm on R
d with center x and radius r ≥ 0. (Note that the ℓ1-norm

coincides with the shortest path metric on Z
d.) For a set of vertices K ⊂ Z

d, define XK =
∑

v∈K Xv.

Let |K| denote the size of K, i.e. the number of vertices belonging to K. We consider an asymptotic

setting (m → ∞) relative to a sequence of problems defined by a sequence of clusters classes (Km),



and a sequence of positive numbers (µm); the resulting alternative hypothesis is denoted Hm
1 . Often,

we will focus on the subgraph Bm = {−m, . . . ,m}d. For two sequences of real numbers (am) and (bm),

am ≍ bm means that am = O(bm) and bm = O(am). For a, b ∈ R, we use a ∨ b (resp. a ∧ b) to denote

max(a, b) (resp. min(a, b)).

A lower bound on the minimax detection rate

When the clusters in the class Km are disjoint, namely Km = {K1, . . . ,Km} with Ki ∩ Kj = ∅ for

i 6= j, the statistics |K1|−1/2XK1
, . . . , |Km|−1/2XKm

, which are jointly sufficient, are i.i.d. standard

normal under the null, while under an alternative one of them has mean µm. This is the classical

‘Needle in a Haystack Problem’ [20] and it is known that the two hypotheses are asymptotically

inseparable (contiguous) if limm→∞ µm(log m)−1/2 <
√

2. This is easily extended to the general case

where the clusters may intersect. Let ⊔m denote the maximum number of disjoint clusters in Km.

Then, H0 and Hm
1 are asymptotically inseparable if limm→∞ µm(log⊔m)−1/2 <

√
2. When clusters

intersect substantially, we employ the usual stratagem of defining a prior on the set of alternatives,

here indexed by clusters in Km; this is for example done in [2].

Lemma 1 Suppose there is a prior Ψm on Km with positive constants km, am such that for all K ∈
supp(Ψm), |K| ≍ km and, for K,K ′ ∼ Ψm independent,

P
{

|K ∩ K ′| ≥ ℓ
}

≤ Bme−ℓ/Bm , ∀ℓ ≥ 0.

Then, H0 and Hm
1 are asymptotically inseparable if

lim
m→∞

µmk−1/2
m (Bm log Bm)1/2 = 0.

An entropy bound for the scan statistic

Regarding the performance of the scan statistic, a simple application of Boole’s inequality and standard

bounds on the tail of the normal distribution shows that it asymptotically separates H0 and Hm
1 if

limm→∞ µm(log #Km)−1/2 >
√

2, where #Km denotes the number of clusters in Km. A refinement is

obtained in the usual way, by ‘thinning out’ the class of clusters using ε-nets; this is done in [4, 3] to

provide an upper bound on the detection rate achieved by the scan statistic. We follow this line of

thought here. Given a class of clusters K and ε > 0, we consider its ε-covering number with respect

to the symmetric difference (we call ε-net an ε-covering of minimal size):

Nε(K) = arg min
n

{

K1, . . . ,Kn ⊂ Z
d : max

K∈K
min

j

|K∆Kj|
|K| ∧ |Kj |

≤ ε

}

.

The following result is similar to [3, Theorem 4.1].

Lemma 2 The scan statistic asymptotically separates H0 and Hm
1 if there is a sequence (εm) such

that

lim
m→∞

µm(log Nεm
(Km) + εm log #Km)−1/2 >

√
2.

Moreover, if restricted to an εm-net, the scan statistic asymptotically separates H0 and Hm
1 if

lim
m→∞

µm(1 − εm)1/2(log Nεm
(Km))−1/2 >

√
2.

The second part of Lemma 2 is particularly useful for large (nonparametric) classes of clusters, where

scanning over all clusters in the class is often impractical.



Specific examples

Equipped with tools to obtain lower bounds on the minimax detection rate and upper bounds on the

rate achieved by the scan statistic, we now consider specific classes of cluters. The variety of settings

we examine is wide and large.

Classes of thick clusters. Consider the simple class Km of d-dimensional hypercubes of side

rm that are within Bm. Assuming that rm = o(m), there is a subset of disjoint clusters with cardinality

[m/rm]d, so that we get the following lower bound on the minimax detection rate for Km:

lim
m→∞

µm(log m)−1/2 <
√

2d.

In the context of pixel images, it is shown in [3] that the scan statistic achieves that rate for a wide

range of (mostly parametric) clusters classes. The same holds in our setting, and we prove that for

a larger class of ‘thick’ clusters. For C ≥ 1, let Fp,d(C) be the subclass of bi-Lipschitz functions

f : [−1, 1]p → [−1, 1]d satisfying

sup
x 6=y

‖f(x) − f(y)‖
‖x − y‖ ≤ C inf

x 6=y

‖f(x) − f(y)‖
‖x − y‖ .

For f : [−1, 1]p → R
d, define

im(f) = {f(x) : x ∈ [−1, 1]p}.

Proposition 1 Let Km be the class of clusters of the form Kf = im(mf) ∩ Z
d, f ∈ Fd,d(C). Then,

for εm → 0 slowly enough, log Nεm
(Km) ∼ d log m; as a consequence, the scan statistic over an εm-net

asymptotically separates H0 and Hm
1 if

lim
m→∞

µm(log m)−1/2 >
√

2d.

Classes of smooth, thin clusters. Here we consider thin clusters that are smooth. For

f : [−1, 1]p → R
d and r > 0, define

im(f, r) = {y ∈ R
d : min

x∈[−1,1]p
‖y − f(x)‖ ≤ r}.

For a class of functions F , let Mη(F) be its η-covering number for the supnorm (we call η-net an

η-covering of minimal size):

Mη(F) = arg min
n

{∃f1, . . . , fn : max
f∈F

min
j

‖f − fj‖∞ ≤ η}.

For most parametric classes, log Mη(F) ∼ q log(1/η), where q is the number of parameters defining

the class. For most nonparametric smoothness classes, such as Hölder, log Mη(F) ≍ (1/η)γ for some

exponent γ > 0 [22].

Proposition 2 Fix two sequences, Rm = o(m) and rm ≤ Rm with rm → ∞. Let F be a subclass

of Fp,d(C), p < d, with each f ∈ F having Lipschitz constant bounded below by C−1, and let Km be

the class of clusters K of the form Kf = im(mf, r) ∩ Z
d, f ∈ F , rm ≤ r ≤ Rm. Let f1, . . . , fMm

be an ηm-net for F , with ηm = o(rm/m). Then the scan statistic over Kf1
, . . . ,KfMm

asymptotically

separates H0 and Hm
1 if

lim
m→∞

µm(log Mm)−1/2 >
√

2.

Classes of bands and paths. We continue with larger classes of thin clusters. A band of

length m and width r is of the form
⋃m

j=0 B(vj, r) where (v0, . . . , vm) forms a path in Z
d (of length

m); we always assume that r ≤ m. A band with zero width (r = 0) is an actual path. In the following,

we exclude the case where Z
d is of dimension d = 1 as it is covered by Proposition 1.



Proposition 3 Suppose d ≥ 2, and let Km be the class of bands of width at least rm generated by

paths in Z
d of length at most m of the form (v0, . . . , vm), starting at v0 = 0. Then, H0 and Hm

1 are

asymptotically inseparable if

lim
m→∞

µmm−1/2(rm ∨ 1) log(m)3/2 log(rm ∨ log m)1/2 = 0, for d = 2;

lim
m→∞

µmm−1/2(rm ∨ 1) log(rm ∨ 1)(2d−1)/(2d−2) = 0, for d ≥ 3.

On the other hand, for any d ≥ 2, log N1/2(Km) ≍ m(rm ∨ 1)−1. As a consequence, the scan statistic

over a corresponding εm-net asymptotically separates H0 and Hm
1 if

lim
m→∞

µmm−1/2(rm ∨ 1)1/2 is large enough.

The lower bound on the minimax detection rate is actually valid for the subclass of bands of width

exactly rm and generated by nondecreasing paths in (Z+)d, that is paths with transitions of the form

(n1, . . . , nd) → (n1 + ε1, . . . , nd + εd) with εj ∈ {0, 1} and ε1 + · · ·+ εd = 1. Also, if the starting point

is unknown, then the problem is of course at least as hard.

Classes of arbitrary clusters. By arbitrary cluster we simply mean a connected component.

Arbitrary connected components in the square lattice are sometimes called animals or polyominos,

which are well-studied objects in combinatorics. We mention in passing the results in [12] which

provide a law of large numbers for the scan statistic under the null. Otherwise, such objects are

fairly new to statistics. Detecting animals is of course harder than detecting paths, since paths are

themselves animals; so in general the rate is nonparametric. However, using the simplest bounds on

the detection rate and on the rate achieved by the scan statistic, we obtain a sharp, parametric rate

for small, arbitrary clusters.

Proposition 4 Let Km be the class of animals of size km = o(m) contained in Bm. Then H0 and

Hm
1 are asymptotically inseparable if

lim
m→∞

µm(log m)−1/2 <
√

2d.

On the other hand, if Km is the class of animals of size not exceeding km = o(log m) contained in Bm,

the scan statistic asymptotically separates H0 and Hm
1 if

lim
m→∞

µm(log m)−1/2 >
√

2d.

Note that, in general, we can obtain a quick (naive) upper bound on the detection rate for

large clusters by considering the simple test that rejects for large values of
∑

v∈Bm
Xv. This test

asymptotically separates H0 and Hm
1 if limm→∞ µmk

1/2
m m−d/2 = ∞, assuming the clusters in Km have

size bounded below by km.

The spatio-temporal setting

For concreteness, and because of its relevance to applications such as disease outbreak detection, we

assume that the graph is the two dimensional lattice Z
2. Though it is tempting to see this setting as a

special case of the spatial setting in Z
3, with time as the third dimension, we only consider space-time

clusters that grow over time. Therefore, we only search through time starting at the most recent time

and this only adds a negligible term in the detection rate. In the discussion that follows, we observe

the process {Xv(t) : v ∈ Z
2; t = 0, . . . ,m}.



Growth models

We start by describing the Richardson’s model [32], which is perhaps the simplest. Using standard

terminology, we say that a node is occupied if it belongs to the cluster. Given a parameter p ∈ (0, 1),

the cluster grows as follows. At time 0, a few nodes are occupied. When a node is occupied, it

remains so indefinitely. At time t, a node becomes occupied with probability p if one of its neighbors

is occupied. All the decisions at different times and different locations are made independently of each

other. Richardson’s model is a special case of threshold growth automata [18,6], which have been used

to model epidemics [1]. Here, a site is occupied with probability non-decreasing in the number of its

neighbors already occupied.

Growth models with limiting shape

We say that a growth process Kt in Z
2 has limiting shape S ⊂ R

2 if there is v0 ∈ Z
2 such that

lim
t→∞

P
(

(1 − ε)tS ∩ Z
d ⊂ Kt − v0 ⊂ (1 + ε)tS ∩ Z

d
)

= 1, ∀ε > 0.

Threshold growth automata develop a polygonal limiting shape [18, 6]. Perhaps less relevant for

modeling epidemics, internal diffusion limited aggregation is another growth model with a limiting

shape [27]. The following proposition considers a setting similar to that of Proposition 1.

Proposition 5 Suppose the growth process Kt has limiting shape S = im(f) for some f ∈ F2,2(C),

and that Kt ⊂ Bt for all times t0 ≤ t ≤ m. Then, H0 and Hm
1 are asymptotically inseparable if

lim
m→∞

µm(log m)−1/2 < 2.

On the other hand, consider the scan statistic over space-time cones with base any spatial cluster in

an εm-net implicitly defined in Proposition 1; it asymptotically separates H0 and Hm
1 if

lim
m→∞

µm(log m)−1/2 > 2.

Near-isotropic growth models

The condition that the growth model has a limiting shape may be relaxed. For a constant C > 1, a

growth model Kt is said to be near-isotropic if there is a node v0 such that

lim
t→∞

P
(

B(v0, C
−1t) ⊂ Kt ⊂ B(v0, Ct)

)

= 1.

For instance, growth models with asymptotic limiting shape corresponding to a bounded, open subset

of R
2 containing the origin, are near-isotropic.

Proposition 6 Assume that the growth process Kt is near-isotropic, with Kt ⊂ Bt for all times

t0 ≤ t ≤ m. Then, H0 and Hm
1 are asymptotically inseparable if

lim
m→∞

µm(log m)−1/2 is sufficiently small.

On the other hand, consider the scan statistic over space-time cylinders with base B(v, r) ⊂ Bm; it

asymptotically separates H0 and Hm
1 if

lim
m→∞

µm(log m)−1/2 is sufficiently large.

Of course, using cones instead of cylinders would provide even sharper (implicit) constants. Here we

chose to use cylinders to draw a connection with the literature in disease outbreak detection [25,24].
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