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CHAPTER 1

Elementary Diophantine approximation

1.1. Very well approximable numbers

Diophantine approximation is originally concerned with the approximation of
real numbers by rational numbers or, more generally, the approximations of points
in R? by points with integer coordinates. The first result on this topic is due to
Dirichlet and is a simple consequence of the pigeon-hole principle. In the statement,
| - |oo stands for the supremum norm in R

THEOREM 1.1 (Dirichlet, 1842). Let us consider a point x € R%. Then, for any
integer QQ > 1, the system
1<g<Q?
lgr — pleo < 1/Q

admits a solution (p,q) in Z¢ x N.

PROOF. As mentioned above, this is an illustration of the pigeon-hole principle.
Let us consider the points

0,1,{z},{2z},...,{(Q* — 1)z},

where { - } denotes the coordinate-wise fractional part, and 1 is the point whose all
coordinates are equal to one. These points all lie in the unit cube [0, 1]¢, which we
may decompose as the disjoint union over uy,...,uq € {0,...,Q — 1} of the cubes

d w; u; +1
H{@’ Q >

i=1

where ) stands for the symbol ] if u; = @ — 1, and for the symbol ) otherwise; in
other words, the interval is closed if and only if u; = @ — 1.

There are Q% such subcubes, and Q¢+ 1 points. Thus, the pigeon-hole principle
ensures that there is at least one subcube that contains two of the points. As a
result, there exist either two integers distinct integers r1 and ro between zero and
Q?—1 such that {r;z} and {roz} are in the same subcube, or one integer r, between
one and @ — 1 such that {r,x} and 1 belong to the same subcube. In both cases,
we deduce that there exist two integers 7 and ry satisfying 0 < 71 < 75 < Q%, and
two points with integers coordinates s; and s, in Z¢ such that

|(rix —s1) — (rox — s2)| o < %

The result now follows from letting ¢ = ro — ry and p = s — s7. O

Theorem means that the d real numbers x1,...,xr4y may simultaneously
be approximated at a distance at most 1/Q by d rational numbers with common
denominator an integer less than Q¢, namely, the rationals p; /g, . . ., pa/q. In what
follows, P4 is the set defined by

Py = {(p,q) € Z* x N| ged(p, q) = 1},

5



6 1. ELEMENTARY DIOPHANTINE APPROXIMATION
where ged(p, ¢) denotes the greatest common divisor of ¢ and all the coordinates of
the integer point p.

COROLLARY 1.1. For any point x € R4\ Q%, there exist infinitely many pairs
(p,q) € Py such that

rT—= < —.
gl " gtti/d

p‘ 1
ProoF. For any point z € R? \ Q?, let us consider the set

p 1
T — q‘oo < q1+1/d}

1
¢<Q%and gz — ploe < = .
Q
Theorem ensures that the sets £,(Q) are all nonempty. Moreover, the mapping
(p,q) — (p,q)/ged(p, q) sends the sets £,(Q) into &, and reduces the value of
gz — ploc. Thus,

gz = {(p7q) € ]Pd

and, for any integer (Q > 1, the set

&(Q) = {(p,Q) €Z*xN

1
inf  |gr — ple < inf QT — Pl < —.
(P,9)EEL | o (p,9)€E:(Q) | o Q

Letting @ — oo, we deduce that the infimum of |gz — p| over (p,q) € &, vanishes.
Since x has no rational coordinates, this implies that £, is necessarily infinite. [

Corollary ensures that for any point 2 € R?, the Diophantine inequality
|z — p/qloe < 1/¢*+1/¢ holds infinitely often. In other words, the set

Jir= {x e R4

T —

1
p’ < — forim. (p,q) € Z* x N (1)
90 4q"
is equal to the whole space R? as soon as 7 < 1+ 1/d. In the above formula,
i.m. stands for “infinitely many”. Note that the mapping 7 +— Jg - is nonincreasing;
this enables us to introduce the following definition.

DEFINITION 1.1. Let us consider a point x € R¥\Q¢. The irrationality exponent
of = is defined by

1
T(x) =sup{r eR|z € Jy,}> 1+E' (2)
The point x is called very well approximable if its irrationality exponent satisfies
1
>14-.
7(x) + pi

The set of very well approximable points is denoted by Well,.

It is clear from the above definition that the irrationality exponent reflects the
quality with which the points in R? \ Q¢ are approximated by those with ratio-
nal coordinates: the higher the exponent, the better the approximation. Besides,
observe that the set of very well approximable points satisfies

Well; = (RN\QY) N | Jar (3)

T>141/d
The main purpose of the metric theory of Diophantine approximation is then
to describe the size properties of sets such as Jg ,, or generalizations thereof, in
the case of course where they do not coincide with the whole space R?. To this
purpose, the most basic tool, but also the less precise one, is the Lebesgue measure.
As regards the specific case of the sets Jg ,, and their companion set Well;, we
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plainly have the following result. The Lebesgue measure in R? is denoted by £¢ in
what follows; we refer to Section for its construction and its main properties.

PROPOSITION 1.1. The set Welly of very well approximable points has Lebesgue
measure zero, that is,

L4 (Welly) = 0.

Equivalently, we also have
1
V> 145 LYJy7) =0

PROOF. The proof is elementary, and amounts to using an appropriate covering
of the set Jg .. To be specific, for any integer Q > 1, we have

p 1
Jd‘r U U Boo (qvq.r)a

3>Q pe{o0,..

where B (z,7) denotes the open ball centered at x with radius r, in the sense of
the supremum norm. As a result,

d
£ < Y+ 1 ()

7>Q

The above series clearly converges when 7 > 1 + 1/d. Letting @ — oo, we deduce
that the Lebesgue measure of Jy . N [0, 1]d vanishes. The set J; , being invariant
under the action of Z?, its Lebesgue measure thus vanishes in the whole space.

To establish that the set Well; has Lebesgue measure zero as well, it suffices to
observe that the union in may be indexed by a countable dense subset of values
of 7, because of the monotonicity of the sets J; » with respect to 7. More precisely,
letting for instance 7, = (1 + 1/d) + 1/n, we may write that

L4(Welly) < £ (U Jdm> < Zﬁd Jar,) = 0.

n=1

Finally, knowing that Well; has Lebesgue measure zero, we can easily recover
the fact that the sets Jy -, for 7 > 1+ 1/d, all have Lebesgue measure zero as well.
It suffices to make use of (3) again, and to recall that the set Q¢ of points with
rational coordinates is countable and therefore Lebesgue null. O

It readily follows from Proposition that, in the sense of Lebesgue measure,
the irrationality exponent is minimal almost everywhere, that is,

1
for £L%a.e. z € RY\ Q¢ T(x) =1+ > (4)

where a.e. means “almost every”. Moreover, as shown by Proposition[I.1] describing
the size of the sets J4 r in terms of Lebesgue measure only is not very precise, as
we just have the following dichotomy:

r<1+1/d = LYRI\ Jz,)=0
r>14+1/d = L4Js,)=0.

A standard way of giving a more precise description is then to compute the Haus-
dorff dimension of the set Jg ,; this will be performed in Section below.
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1.2. Continued fractions

Throughout this section, we consider the one-dimensional case, thus assuming
that d = 1. In that situation, we know from Corollary [[.1] that an arbitrary irra-
tional number 2 may be approximated with precision at most 1/¢* by a sequence
of rationals p/q; the optimal rational approximates p/q of  may then be computed
through the continued fraction algorithm that we now discuss. The material de-
veloped in this section is very classical; our main references are [24] Chapter 3]
and [55 Chapter 1].

1.2.1. Continued fraction expansions.

1.2.1.1. Synthesis: from partial quotients to continued fractions. Let ag be a
nonnegative integer and, for any n € N, let a,, be a positive integer. The continued
fraction associated with the sequence (a,)n>0 is defined by

1

[ao;al,ag,a;g,...] =ap + (5)
ai +

CLQ-l-

1
as+ ...

At the moment, this definition is purely formal; we shall give it a rigorous sense
later, see . In addition, we shall consider the finite fraction associated with the
integers aq, . . ., a,, namely,

(6)

lao; a1, as,...,a,) = ao +

a1 +
as + ...+ 1

Ap—1 + —
29

In particular, using the above notation, we clearly have, for any choice of the
integers ag, . .., ay,
1

lag; a1, az,...,a,] = ag + ————.
[a1; a2, ..., a,)
The integers a,, are called the partial quotients of the continued fraction. Moreover,
the irreducible rational numbers p,, /¢, defined by
Pn
QN
are called the convergents of the continued fraction. The next lemma gives an
expression of the numerator and the denominator of the convergents in terms of
the partial quotients.

ag; a1, a2, . .., ay] (7)

LEMMA 1.1. For any nonnegative integer ag, and any sequence of positive in-
tegers ay, as, ..., the irreducible rational numbers p, /q, defined by @ satisfy

n  Pn—1 ap 1 ap 1 a, 1
> = ... .
=0 (qn qn—1> ( 1 0) ( 1 0) < 1 0) ®)
with the convention thatp_1 =1, g1 =0, po = ag and ¢o = 1.

PROOF. The lemma may be proven by induction. In view of the adopted
conventions, the formula is clearly true for n = 0. Moreover, let us assume
that holds up to n = m, regardless of the choice of the m+1 integers ag, . .., ap,.
Then, let us consider m + 2 integers denoted by ag,...,am+1; we need to prove
that holds for these integers, and for n = m + 1.
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To this end, let us apply to the m + 1 integers ai, ..., apy+1. Thus,

p Y _(an 1\ fampr 1
qg ¢) \1 0 1 0/

where p/q and p’/q’ respectively denote the irreducible rational numbers equal to
[a1;as,...,am+1] and [aq; a9, ..., amy]. On the one hand, we deduce that

ap 1\ (ami1 1\ _ fag 1\ (p p'\ _ (aop+q aop'+¢
1 0 1 0/ \1 0)\q ¢/ p p’ ’
On the other hand, agp 4+ ¢ and p are coprime, and their quotient is equal to

aop + 1
WP
p [a’17a27"‘7am+1]

= [ao;al,...,am+1].

Likewise, agp’ + ¢’ and p’ are coprime and their quotient is equal to the frac-
tion [ag;ai,...,am]. This means that holds for n = m + 1, with the integers
a0y -y Qpt1- O

It directly follows from that for any integer n > 0,

(pn+1 pn> _ (pn pn—l) (an+1 1)
dn+1  4n dn  Q4n-1 1 0/’
from which we deduce the next recursive formulas for the convergents:
{ DPn+1 = An41Pn + Pn—1 )
qn+1 = An+1Gn + Gn—1.
In particular, since a,, > 1 for all n > 1, it is easy to establish by induction that the

numerators p,, and the denominators g, of the convergents are at least 2("~2)/2 for
all integers n > 1. Furthermore, taking the determinant in , we readily obtain

Pndn—-1 — Pn—-149n = (_1)n+17 (10)
so that o
_ -1
o _Pooy_ CD"T (11)
dn qn—1 dn—19n
As a result, the convergents p,, /g, have a finite limit when n — oo, namely,
oo
P -n"
[ao;al,a2,...,an]:—n‘——+a0+2!. (12)
qn MO0 n—0 dndn+1

This means that the formula ([5)) is not merely formal, but defines a true real number
that corresponds to

— (="
x = [ag; a1, a2,a3,...] = ag + .
n=0 dndn+1
Then, [ag;a1,as,as,...] is called the continued fraction expansion of x.

Note that the above series converges because it satisfies the alternating series
test. Indeed, it is clear that the sequence (¢n¢n+1)n>0 monotonically diverges to
infinity. (In fact, the series is also absolutely convergent, since ¢,¢n+1 > on—3/2
for all n > 1.) Thus, the even terms pa,,/g2m increase to x, while the odd terms
P2m+1/G2m+1 decrease to x, and moreover

Pn 1 1

_fn <
TS Gt @ 13)
where the latest inequality is due to the fact that the sequence (gy)n>0 is nonde-
creasing. This means that the convergents of the continued fraction expansion of
x yield a sequence of irreducible rational numbers p,, /¢, that approximate x with

an error smaller than 1/¢2. This is clearly in accordance with Theorem

Vn >0 <
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Note in passing that = is necessarily irrational. As a matter of fact, let us
assume that x can be written as an irreducible fraction of the form p/q. Then,

V>0 |pgn —padl < .
an
Thus, as ¢, — oo, the integer pg,, — pnq necessarily vanishes for n large enough.
In view of the coprimeness of p and ¢, and that of p, and g,, this implies that
pn = p and g, = g for n large enough, which contradicts the fact that ¢, — co. We
shall show in Section [[.2.1.2 below that, conversely, any irrational real number has
a continued fraction expansion, and this expansion is unique.
1.2.1.2. Analysis: continued fraction expansion of an irrational number. Let us
begin by establishing the uniqueness of the continued fraction expansion; this is the
purpose of the next proposition.

PROPOSITION 1.2. The following mapping is injective:
No x NV —s (0, 00)
(an)n>0 +— [aosai,a9,as,. ...
PRrROOF. Note that a continued fraction expansion is clearly always positive,
and recall the inductive relation
1 1
[al;ag,ag,...]:a0+ 1

a + ————
[ag; as, .. .]

[ao;alaGZaaf,, .. ] = ag +

Thus, letting = denote the left-hand side above, we have
a0<x<a0+i§ao+1,
a
so that x uniquely determines ag. Applying the above argument to
1
T —ag

[a1;a2,a3,...] =

we deduce that = also uniquely determines a;. We can clearly iterate this procedure;
this shows that x uniquely determines all the integers a,,. O

The procedure employed in the above proof suggests a way of computing the
continued fraction expansion of a given irrational number. Let us first consider
the irrational numbers between zero and one. Specifically, let us define the set
X =10,1)\ Q and the mapping T from X onto itself given by

T(z) = {1} (14)

T

for all x € X. The mapping T is called the Gauss map, or continuous fraction
map. The Gauss map enables one to compute the continued fraction expansion of
an irrational number in X. As a matter of fact, for any irrational number z € X
and any integer n > 1, let us define

an(z) = {Tnll(I)J : (15)

where | - | denotes integer part. Moreover, for any sequence (a,)n>1 of positive
integers, let

[al,ag,. . ] = [0;(11,(12,. . ]7
this is merely the continued fraction defined by with partial quotient ag equal
to zero, and thus belonging to [0,1). We then have the following result.
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PROPOSITION 1.3. For any irrational number r € X, we have the following
continued fraction expansion

z = [ai(x),az(x),.. ]
PROOF. Let us prove by induction on n > 0 that for any irrational z € X,

[a1(x),... a9, (2)] <z < [a1(z),..., a2nt1(x)]. (16)

When n = 0, this amounts to proving that 0 < z < 1/a;(z), which readily follows
from the definition of a;(x). Let us suppose that the result holds for a given integer
n > 0 and for all € X. Then, applying this result to T'(z) instead of =, we obtain
in particular

T(2) < [a(T(x)), ..., azn1 (T(2))],
which gives
% — al(x) < [CLQ(I), ey a2(n+1)(1’)],
that is,
x> lai1(x),. .., a2m41)(2)];

this is the lower bound in with n + 1 instead of n. Replacing = by T'(x) again
in the above inequality, and repeating the procedure, we also get

r < lai(x),...,a2m+1)4+1(2)],

which is the upper bound in with n 4 1 instead of n. Finally, holds for all
n > 0 and all x € X. To conclude, it suffices to recall that the both bounds in
both converge to the continued fraction [a1(x), as(z), .. ] O

We may now give the continued fraction expansion of an irrational number that
does not necessarily belong to the interval [0,1). If « denotes a positive irrational
number, its fractional part {z} then belongs to X, and we may extend by
letting

an(x) = an({x})

for any integer n > 1. In addition, let us define ag(x) as the integer part |x]. We
now deduce that

z = |z] +{z} = ao(2) + [a1(2), az(2), . . .| = [ao(2); a1 (2), az(x), ..}, (17)

as an immediate consequence of Proposition [T.3}

1.2.2. Implications for Diophantine approximation.

1.2.2.1. Better rational approximants. Let x be an irrational number with con-
tinued fraction expansion [ag; a1, ag,...| as above and let p, /g, denote the corre-
sponding convergents, defined by . Due to and in accordance with Theo-
rem these convergents yield a sequence of irreducible rational numbers p,, /¢,
that approximate x with an error smaller than 1/¢2. This property can be improved
by the next two results.

PROPOSITION 1.4 (Vahlen, 1895). Let x be an irrational number with continued
fraction expansion [ag;ay,as,...], and let p,/q, denote the corresponding conver-
gents. For any fized integer n > 0, at least one among the two convergents py,/qn

and pny1/qni1 satisfies
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ProOOF. We begin by observing that

Pn
r— —

qn
In fact, as the convergents tend to the limit x in an alternating manner, the three
terms above all have the same sign, so that we can remove the absolute values
around them, thus ending with a trivial equality. Using and the fact that
uv < (u? 4+ v?)/2 for any distinct real numbers u and v, we deduce that

pn+1
QnJrl

Pn+1 Pn

—x|+ (18)

dn+1 dn

1 1 1
Pn+1 —zl 4|z — & — 5 + R
Gn+1 In|  Qun+1 20,41 24
and the result follows. O

Before stating the second improvement on the approximation property ,
let us point out a useful relationship between a given continued fraction expansion
x = [ap; a1, as,...|] and its n-th tail defined by z,, = [an;an+1, anta,...]. For any
k > 0, Lemma|l.1| ensures that

Ptk _ (a0 1\ fan 1\ fapnti 1\  fapgre 1Y) (1
nik) \1 0 1 0 1 0 1 0/ \0
_(Pn Pr-1) (Pr—1(Znt1)  Pr—2(zni1)) (1
dn Gn-1) \@k-1(Tnt1)  q—2(Tn41)) \0/)"
where pg(zn+1)/qx(xne1) denotes the k-th convergent to the (n + 1)-th tail. It
follows that
Ptk _ PnPh—1(Tnt1) + Pno1qk—1(Tny1)
An+k @nPk—1(Tnt1) + Gn—1qk—1(Tn41)
Letting k£ go to infinity, we finally deduce that
7= pnanrl +pn71
dnTn+1 + dn—1
This formula will come into play in the proof of the following improvement on .

(19)

PROPOSITION 1.5 (Borel, 1903). Let x be an irrational number with continued
fraction expansion |ag; a1, az,...], and let p, /g, denote the corresponding conver-
gents. For any fized integer n > 0, at least one among the three convergents py/qn,

Drnt1/qn+1 and ppyo/qnia satisfies
p 1
rT——1 < .
Q‘ V54?2
PROOF. Let 2,41 denote the (n+1)-th tail of the continued fraction expansion
of . Then, owing to and (19)), we have
PnTn+1 + Pn—-1 _ _ (_1)77,
n n — .
GnTnt1 + Gn-1 GnTn4+1 + gn—1

nT — Pn = ¢ (2O>

As a consequence, letting 8, denote the ratio ¢,—1/¢,, we have
1
Tni1+ Bn
The proof now reduces to establishing that at least one among the three real num-

bers Z,41 + Bn, Tnio + Buy1 and 43 + Bngo is larger than /5.
Let us assume that x,41 + B, and x,42 + Br+1 are both bounded above by
V5. Note that &, 41 = apy1 + 1/2n42 and, in view of (9),

Qn‘an _pn| =

1 _
_ Gnt1 _ Ont1dn + gn-1 = anir + B, (21)
ﬁn—i—l dn dn
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from which we deduce that 1/z,42 + 1/8n4+1 = Znt1 + Bn. The supposed bounds
on Tpi+1 + Bn and Tpyo + Pre1 then imply that

e ) (- 22).

nt2 Brt1

which means that the polynomial Z? — /5Z + 1 takes a nonpositive value when
evaluated at B,,41. In particular, 8,41 is larger than or equal to the smallest root of
this polynomial. However, (3,11 is rational, so the inequality is strict, specifically,
V5 —1

ﬂnJrl > 2 .
Likewise, assuming that , o + Bnt1 and x,43 + Bn42 are both bounded above by
V5 leads to the same lower bound on (4. Using with n 4+ 1 instead of n,
along with the above bounds, we then conclude that

1 2 V-1
—— = Bun1 < - =1,
Br+2 V-1 2
which is a contradiction. O

1 < Up42 =

The next result shows that, conversely, an approximation result that beats (13
is necessarily realized by some convergent.

PROPOSITION 1.6 (Legendre). Let x be an irrational real number with con-
tinued fraction expansion [ag;a1,az,...], and let p,/q, denote the corresponding

convergents. Then, for any pair of coprime integers (p,q) € Py,
1

:1778<—2 i dn >0 B:&.

ql  2q q n

PROOF. Let (p,q) denote a pair in P; such that |x — p/q| < 1/(2¢%). Then,
there exist € € {—1,1} and 0 € (0,1/2) such that
_p_h
¢ ¢
Moreover, it is easy to prove by induction on ¢ that the rational number p/q has
exactly two finite continued fraction expansions, specifically,

p
a: [cosc1y..vyek] = [cos ety ey a1, i — 1,1],

with ¢, > 2 unless k is equal to zero, in which case p/q is an integer. Among these
two representations, we may thus privilege that with odd length if € = 1, and that
with even length if e = —1. This yields a decomposition of the form

E = [bo;bla"'abn]a
q

where by € Ny, a1, ...,a, € Nand n > 01is such that (—1)" = €. For k € {0,...,n},
let 71 /sy denote the convergents corresponding to the above continued fraction
expansion. In particular, r,/s, = p/q. As z is irrational, we may define

n—1 — Sn—1T

Sp — Ty
Then, let us observe that, in view of ,
e &0 P TpWAThno1  Th (=™
52 - 2 -t q T S@ t Smo1 Sm Sn(Snw + Sp—1)
Solving for w, we infer that
w= Lty oy

0 Sn
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Furthermore, note that w is irrational, so we may consider its continued fraction
expansion, specifically,

w = [bn+1; bn+2, . ]
Since w is larger than one, all its partial quotients are positive. This means that we

may concatenate the continued fraction expansion of p/q with that of w, thereby
recovering x. As a matter of fact, owing to , we have

TpW + Th—1
bo; b1, b by, | = ——mm==x
[O 1 ny Un+1 } Snw+8n71
As z is irrational, its continued fraction expansion is unique, see Proposition [1.2
In particular, by = ay, for all k € {0,...,n}, so that p/q = rn/Sn = Pn/qn- O

1.2.2.2. The golden ratio and Hurwitz’s theorem. The most simple example of
continued fraction expansion is certainly that of the golden ratio

1+5

b= —5—. (22)

It is clear that ¢ — 1 is equal to 1/¢ and belongs to the interval (0,1). Thus the
partial quotients of the golden ratio are all equal to one, that is, its continued
fraction expansion is given by

p=1[1;1,1,..] =1+
1+

1+...

Moreover, in view of @D and the initial value of the convergents p,, /g, one easily
checks that p, = fn42 and ¢, = fp11 for all n > 0, where (fy,)n>0 denotes the
Fibonacci sequence, defined by the recursive relation f, 12 = fn+1 + fn, along with
the initial terms fo = 0 and f; = 1. It is then straightforward to establish Binet’s
formula, namely,

" — (=) "

NG

Hence, the convergents p, /g, to the golden ratio ¢ satisfy

Vn >0 fn=

Qn(qn¢ _pn) = fn+1(fn+1¢ - fn+2) = % ((_1)77, + (Z;n) :

As a consequence, we end up with
o bn . D"
dn \/gq%

as n — 0o. The next result shows that the same property holds for any irrational
number whose continued fraction expansion is ultimately constant equal to one.

(23)

PROPOSITION 1.7. Given ay € Ny and (ay,...,ax) € N¥, let  denote the
irrational number with continued fraction expansion [ag;aq,...,ax,1,1,...], and let
Dn/qn denote the corresponding convergents. Then, as n goes to infinity,

_ P (D"

dn \/5%% .

PrROOF. We adopt the same notations as in the proof of Proposition [1.5l In
particular, recall that yields

="
—————— = ZTnt1 + Bn,
Qn(QHx _pn) mt '
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where 41 is (n + 1)-th tail of the continued fraction expansion of z, and 3, is
the ratio ¢,—1/qn. Note that z,y; is equal to the golden ratio ¢ when n > k.
Furthermore, 3, satisfies

1 n
- = = [an;anflu”-yakhl’laakw”7a17a0] = [1;17"'717@]67"‘70'170'0]7
Bn dn—1 ———
n—k times
so that 1/4,, is between the two convergents of the form [1;1,...,1] whose lengths

are n — k — 1 and n — k. These convergents both tend to ¢ as n — oo. Finally,
1
Tn+1 +6n —>¢+7 :\/57
n—o0 10}
and the announced result follows. O

The above results lead to the following optimal refinement of the corollary to
Dirichlet’s theorem, namely, Corollary [[.1]in the one-dimensional case.

THEOREM 1.2 (Hurwitz, 1891). For any irrational number x, there are infin-
itely many pairs (p,q) € Py such that
P 1
rT— = < —.
‘ q‘ V5¢?
Moreover, this property does not hold when \/5 is replaced by any larger constant.

PROOF. The first part of the theorem readily follows from applying Proposi-
tion to the absolute value of . In order to prove the optimality of the constant,
let us assume that the inequality holds for all irrational number x and infinitely
many pairs (p,q) € Py, with v/5 replaced by some larger constant A. In particular,
applying this to the golden ratio yields an infinite number of coprime integers p and
q such that |¢ — p/q| < 1/(Aq?). However, A is larger than two, so Proposition
ensures that p/q is a convergent to ¢. Thus, there exists an increasing sequence
(ng)r>1 of nonnegative integers such that

1
Aqﬁk

‘qsp"k
qn

k

for all k£ > 1; this contradicts . O

For any real number z, let us define the exponent

k(z) = liminf q ||qz||, (24)
q—00

where ||y|| denotes the distance from a real y to the integers, that is, the infimum
of |y — p| over all p € Z. Note that k(z) clearly vanishes when x is rational; we
shall see in Section [I.3] that this exponent also characterizes the badly approzimable
numbers. Moreover, Theoremimplies that () is bounded above by 1/v/5, and
its proof shows that the bound is attained by the golden ratio. Thus,

()=

sup k(x) = —.

z€R \/g

In fact, Proposition [I.7] shows that the irrational numbers with continued fraction
expansion ultimately equal to one also satisfy ; this implies that they also attain
the above bound. Furthermore, Hurwitz showed that the bound is attained by

these numbers only; in fact, every irrational number x with infinitely many partial
quotients strictly greater than one satisfies x(x) < 1/v/8, see [55, Theorem 6C].
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1.2.2.3. Optimality of the convergents. The convergents py, /¢, yield the optimal
rational approximants to the irrational number z in the sense of Theorem [I.3|below.
The proof of this result calls upon the following simple lemma.

LEMMA 1.2. Let x be an irrational number with continued fraction erpansion
[ap; a1,aq,...], and let p,/q, denote the corresponding convergents. Then, the se-
quence (|gnx — pn|)n>o0 s decreasing.

PROOF. In view of and , we can deduce from that

Lo Pn 1 1 _ 42— Gn _ Gny2

an

> >

dnqn+1 dndn+1 An+149n+2 ndn+14n+2 Anqn+2 '

the latest equality follows from the recursive formula for ¢,. As a,42 is greater
than or equal to one, this readily implies that

1
< |gnr = pa| < . (25)
An+2 dn+1

The result follows. u

We are now in position to show the optimality of the rational approximants
supplied by the convergents.

THEOREM 1.3 (Lagrange, 1770). Let x be an irrational number with continued

fraction expansion [ag;ay,as,...], and let p,/q, denote the corresponding conver-
gents. Then, for any integer n > 1 and any pair (p,q) € Py such that 0 < q¢ < g,
p_Pn

= or  |gnx —pn| <|qz —pl.
q

In the latter case, we also have

Pn
T — —

an

<|lr——|.

q

p ‘

PROOF. We begin by dealing with the elementary case where ¢ = g,. In that
situation, if p/q # pn/qn, we deduce from and the fact that g,41 > 2 that

1 1 1
> — - > >

P 1
dn qndn+1 2qn qndn+1

q

P _Pn
q Gn

_Pn
Gn

b

‘ Pn
|y _Pn
an

> o

which gives |qz — p| > |gnx — pnl-
Let us now assume that ¢,—1 < q¢ < ¢,. There are two integers a and b in Z

such that
¢ 2)0)-0)
Gn  Gn-1) \b q

Indeed, the above matrix has integer-valued entries and determinant +1, so its
inverse exists and also has integer-valued entries. Note that the integers a and
b are nonvanishing, as we would have ¢ € {¢,—_1,qn} otherwise. Moreover, ¢ =
agn + bgn—1 < qn, so that a and b must be of opposite signs. This is also the case
of ¢,z — p, and ¢, 12 — p,_1, because the convergents tend to z in an alternating
manner. Thus, the products a(¢,z — pp) and b(¢n—12 — pr—1) are of the same sign;
their sum is equal to gx — p, and is also of the same sign. Therefore,

|q$ _p| = |a(an _pn)| + |b(Qn71$ —pn71)| > |Qn33 _pn"

Thus, we have proven the result for any integer n > 1 and any integers p and ¢
such that ged(p,q) =1 and ¢r—1 < ¢ < ¢p.
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Now, let us assume that n > 1 is fixed, and that ¢,, < ¢ < ¢n41 for some
integer m € {0,...,n —1}. Then, applying what precedes with m + 1 instead of n,
we deduce that for any integer p such that ged(p, q) = 1, we have either
P _ Pm+1

q dm+1
Given that 0 < m + 1 < n, we now deduce from Lemma [I.2] that

or |Qm+1x *pm+1| < ‘qz *p|'

‘an 7pn| < |Qm+1x 7pm+1‘ < |q9€ 7p|-

Finally, it remains to address the case where ¢ = qop = 1. If ¢ = 1, then we
may use the beginning of the present proof to infer that

p# D = lgz —p| > |q17 — p1,

so the result holds for n = 1. In particular, regardless of the value of p, the large
inequality holds and Lemma [I.2] implies that for n > 2 and for any p,

gz = pl = | — p1| > |gna — pul-
If g1 > 1, then for any integer p # pg, making use of , we have

Do I 1 Po
lgz —p| > |p—pol = |z —=|>1—-—2> 5> —> |z ——| = [g0r — pol,
) Q2T ¢
so that regardless of the value of p, the left-hand side is greater than or equal to
the right-hand side. The result follows from Lemma O

1.2.2.4. Characterization of the irrationality exponent. Recall that, according
to Definition the irrationality exponent of an irrational real number z is defined
as the supremum of all reals 7 such that the inequality |x —p/q| < ¢ has infinitely
many solutions (p,q) € Z x N. In addition, due to Corollary the irrationality
exponent of an irrational number is bounded below by two. The following result
shows that the irrationality exponent directly depends on the growth rate of the
denominators of the convergents.

PROPOSITION 1.8. Let x be an irrational number with convergents p,, /qn. Then,
the irrationality exponent of x satisfies

7(x) =1+ limsup %.
n—oo  10g Gy
PrROOF. The right-hand side is clearly bounded below by two. Thus, in order
to prove the upper bound on 7(x), we may assume that 7(z) > 2. Then, for any real
number 7 strictly between two and 7(x), there are infinitely many pairs (p,q) € Py
such that

q
Owing to Proposition each of these rationals p/q actually corresponds to a

convergent p,/q,. Now, it follows from , and that

1 1 1 1

‘x Pnly — > .

dn dndn+1 An+14n+2 2ann+1

For the last inequality, we used the fact that g,4+2 > 2¢,, owing to @ We straight-
forwardly infer that

log 2 + log ¢n+1

log gn
for infinitely many integers n > 1, from which we deduce that 7(z) — 1 is bounded
above by the upper limit of log g, 41/ log gx.

For the lower bound, let us consider a real number 7 such that 7 — 1 is smaller

than the aforementioned upper limit. Then, one easily checks that ¢, > ¢~ 1

T<1+4
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for infinitely many integers n > 1. We finally make use of to conclude that
7 < 7(x), and the result follows. O

Thanks to the recursive relation on the denominators of the convergents, we
may give an alternate expression to that given above, specifically,

log an
7(x) = 2+ limsup — S etn
n—oo 108 qn

This is actually a direct consequence of Proposition together with the observa-
tion that g,+1 is between a,+1¢, and 2a,1g,, owing to @

1.3. Badly approximable points

1.3.1. Definition and first properties. This section is devoted to the study
of a class of points that are very particular from the perspective of Diophantine
approximation: the badly approximable points, which are defined as follows.

DEFINITION 1.2. A point z € R? is called badly approzimable if the following
condition is satisfied:

€
= giti/d

:

Je>0 VY(p,q) €Z?xN
9100

The set of badly approximable points is denoted by Bady. In dimension d = 1, the
badly approximable points are called badly approrimable numbers.

As the name seems to indicate, the elements of Bad, are badly approximated by
the points with rational coordinates. Indeed, the irrationality exponent, introduced
by Definition [1.1] satisfies

1
Va € Bady T(z) =1+ 7
This means that the points in Bad, attain the bound imposed by Dirichlet’s theorem
and its corollary, that is, Theorem and Corollary In other words,

Bady C (R%\ Q%) \ Wellg, (26)

where Well; denotes the set of points that are very well approximable, see Defi-
nition Due to Proposition the set in the right-hand side of has full
Lebesgue measure in R% \ Q?. The badly approximable points thus supply specific
examples of points for which the typical property (4)) holds.

Turning our attention to the left-hand side of7 we now establish the fol-
lowing result. Its proof relies on the corollary to Dirichlet’s theorem, along with
general tools from measure theory that are presented in Chapter |4} we postpone
it to Section for the sake of clarity. The one-dimensional case may also be
settled with the help of continued fractions, as detailed in Section [1.3.3

ProrosITION 1.9. The set Bady of badly approximable points has Lebesgue
measure zero, that is,

L£%(Badg) = 0.

The above measure theoretic considerations directly imply that the inclusion
in is strict. As a matter of fact, Lebesgue-almost every point in the set R?\ Q4
is neither very well nor badly approximable. The next step in the description of
the size properties of the set Bady would be to consider its Hausdorff dimension;
this will be discussed in Sections B.3] and [2.21
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1.3.2. Size properties. This section details the proof of Proposition [[.9] We
begin by observing that the set of badly approximable points satisfies

R\ Bady 2 () Jue, (27)
e>0

where jd’e denotes the set obtained when replacing by ¢/ ¢'t1/? the approximation
radii 1/¢" in the definition of the set Jg . To be more specific,

jd,e:{J?ERd P °

. d
x—q’oo<q1+1/d for im. (p,q) €Z XN}.

It is clear that the mapping ¢ — jd,s is nondecreasing, so that the intersection
in may be taken on a sequence of positive values of ¢ that converge to zero,
such as €, = 1/n for instance. In order to show that Bady has Lebesgue measure
zero, it thus suffices to prove that

Ve>0  LYRI\ Jy.) =0. (28)
As a matter of fact, assuming that holds, we would then be able to write that

L£4(Badg) < £ (U R*\ fd> <Y LURIN Jae,) =0,

n=1 n=1
which would directly lead to Proposition [[.9] The proof now reduces to establish-
ing . To proceed, we begin by remarking that this assertion holds for e = 1. In

fact, the corollary to Dirichlet’s theorem, namely, Corollary implies that
jd,l =Ja141/4 = R%. (29)

In view of the monotonicity of the sets jdﬁ with respect to €, the assertion also
holds a fortiori for € > 1.

The remaining case in which € € (0,1) may be settled by means of general
measure theoretic tools for sets of limsup type that are detailed in Chapter [4]
Specifically, Proposition[f.4] therein directly leads to the following weaker statement.
Recall that the limsup of a sequence (E,,),>1 of subsets of R? is defined by

limsup F,, = ﬁ [j E,,

n—00
m=1n=m

and consists of the points that belong to infinitely many sets of the form FE,,.

LEMMA 1.3. Let us consider a sequence (xp)n>1 in RY and a sequence (Tp)n>1
in (0,1] such that for every integer m > 1, only finitely many indices n > 1 satisfy
both |z)eo < m and r, > 1/m. Then,

R? = lim sup Bo(Zp,mn) = V>0 e (Rd \ lim sup Boo(xn,crn)> =0.
n—oo n—oo

It is clear that the sets jd’g fit nicely in the setting supplied by Lemma E In

fact, letting (pn,¢n)n>1 denote an enumeration of the countable set Z? x N, and

then defining z,, = p, /¢, and r, = 1/q}t+1/d, we easily see that for any € > 0,

jd,a = lim sup Beo (T, £ 7).
n— oo

Moreover, as a result of 7 the above limsup set coincides with the whole space
R? when ¢ = 1, so that the assumptions of the lemma are fulfilled by the sequences
(xn)n>1 and (r,)n>1. We may conclude that all the sets Ju have full Lebesgue
measure in R, This leads to , and thus to Proposition
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1.3.3. Link with continued fractions. We assume in this section that the
dimension d of the ambient space is equal to one. For any real number x, recall
that the exponent k(z) is defined by . This exponent characterizes the badly
approximable numbers: Definition directly ensures that

x € Bad; — k(z) > 0. (30)

Moreover, we showed in Section that s(x) is bounded above by 1/v/5, and
the bound is attained by the irrational numbers whose continued fraction expansion
is ultimately equal to one, so in particular by the golden ratio ¢ defined by .
These numbers may therefore be seen as the “most badly” approximable one.

The emblematic example of the golden ratio hints at the following characteri-
zation of the badly approximable numbers in terms of the partial quotients of their
continued fraction expansion.

ProOPOSITION 1.10. Let x be a positive irrational real number with continued
fraction expansion [ag; a1, az,...]. Then,
z € Bad; <= sup a, < oo.
n>0
PRrROOF. Let us assume that z is badly approximable. Then, for some € > 0
and all n > 0, the corresponding convergents p,,/q, satisfy

PR i I 1 < : 2

qn Adn dndn+1 an+1qn
in view of (9) and (13)). This implies that the partial quotients a4 are bounded
by 1/¢ for all n > 0.

Conversely, let us assume that the partial quotients are bounded by some real

M > 0. Then, making use of again, we see that g,11 < (M + 1)g, for all
n > 0. Now, let us consider a pair (p,q) € P;. By virtue of the optimality of the
convergents, combined with (25]), we have

Pl Pn 1 S 1 < 1
P _Pn
- GnGn+2 ~ (M +1)%2_, = (M +1)%¢?

€ Pn

x >

q dn

if n is chosen in such a way that ¢,—1 < ¢ < gy, see Theorem[I.3] Thus, the number
x is badly approximable. O

The previous proposition yields a description of the size of the set of badly
approximable numbers in terms of cardinality.

COROLLARY 1.2. There exist continuum many badly approximable numbers,
and there exist continuum many numbers that are not badly approximable. In other
words, the sets Bady and R\ Bad; have cardinality equal to that of R.

The results of Section[3:2] give the asymptotic behavior of the continued fraction
expansion of typical irrational numbers. In particular, Proposition [3.3|ensures that
for Lebesgue-almost every irrational number, the mean of the n first partial quo-
tients tends to infinity as n — oco. The partial quotients thus grow typically some-
what fast to infinity and, from this perspective, the badly approximable numbers
behave very peculiarly. This observation implies that the set Bad; has Lebesgue
measure zero. We therefore recover Proposition [I.9)in the one-dimensional case.

1.4. Quadratic irrationals

Recall that a quadratic irrational is an irrational real number x such that
there are integers a, b and ¢ with az? + bx + ¢ = 0, or equivalently such that
Q(z) is a field extension of degree two over Q. The golden ratio defined by
provides a simple example of quadratic irrational, and also happens to supply the



1.4. QUADRATIC IRRATIONALS 21

most simple example of continued fraction expansion that is ultimately periodic.
This coincidence is actually emblematic of a result due to Euler and Lagrange
that characterizes the quadratic irrationals in terms of the partial quotients of
their continued fraction expansion. In order to state this result, let us begin by a
definition.

DEFINITION 1.3. A continued fraction is eventually periodic if there are integers
m > 0 and k£ > 1 such that a,4+; = a, for all integers n > m. Such a continued
fraction is written
(@05 @15+ - s Q15 Ty - - - G 1)
The aforementioned characterization of the quadratic irrationals is then given
by the following result.

THEOREM 1.4 (Euler, 1737; Lagrange, 1770). Let x be an irrational positive
real number. Then, the continued fraction expansion of x is ultimately periodic if
and only if T is a quadratic irrational.

PROOF. The first proof of the direct part is due to Euler. Let us assume that
x has a strictly periodic continued fraction expansion, namely, x = [ag;az, .-, G-
As a consequence, the (k + 1)-th tail of the continued fraction expansion of z is
equal to x itself, and implies that

p— + Pr—1
QT+ qr—1’
so that x is a root of the polynomial g, Z2 + (qx—1 — px)Z — pr—1, and is therefore
a quadratic irrational. Note in passing that the discriminant of this polynomial is
equal to (pr + qx—1)% +4(—1)* owing to , and thus cannot be a perfect square;
this is compatible with the fact that x is irrational.

Let us now consider the general case in which x has a continued fraction ex-
pansion that is periodic only ultimately. Then, the continued fraction expansion
of x is of the form [ag;a1,...,0m—1,Gm,---;Gmik—1)- In particular, its m-th tail
Ty, has a strictly periodic continued fraction expansion, thereby being a quadratic
irrational. By virtue of again, we have
_ Pm—1Tm + Pm—2

gm—1Tm + qm—2 ’
which proves that the two field extensions Q(x) and Q(x,,) coincide. In particular,
Q(x) is of degree two over Q, so that x is a quadratic irrational.

The converse part is more difficult and was first established by Lagrange. Let
us suppose that = is a quadratic irrational. Then, x is a root of a polynomial
Ry = agZ?%+ By Z + o with coefficients oy, By and 7 in Z, and with a discriminant
§ = B2 — 4apyo that cannot be a perfect square. Moreover, letting x, denote
the n-th tail of the continued fraction expansion of x, we see again that the two
field extensions Q(z) and Q(zx,) coincide, so that x, is a root of a polynomial
R, = a,Z?% + B, Z 4 7y, of the above form.

It is possible to choose these polynomials in such a way that they satisfy a
simple recurrence relation. Since x,, = a, + 1/x,11, we see that

T

xR (an + ) = (apan + anfn + yn)Th 11 + (2an0n + Ba)z)n + 1+ ay

anrl
vanishes, so that we may assume that the coefficients of the polynomial R, ; are
obtained from those of R,, thanks to the following relations:

Qpt1 = a%an + anfn + Tn

ﬁn+1 = 2anan + /Bn

Yn+1 = Op.
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In particular, these relations imply that the integer 52 — 4o, v, does not depend
on n. As a result, all the polynomials R,, have discriminant ¢, which cannot be a
perfect square. Thus, a,, # 0 for all integers n > 0.

Let us assume that there exists an integer m > 0 such that «,, is positive for
any n > m. As a, is also positive, it follows from the above recurrence relations
that the sequence (8,,)n>m is increasing, and furthermore that the three integers
Qn, Bn and 7, are simultaneously positive for n large enough. This contradicts the
fact that z,, is a positive root of R,. We deduce that there is an infinite subset N/
of N such that a,_1a, < 0 for all n € M. In that case, we see that

0< 5721 <46 and 0 < —dapy, <9.

This gives a bound on the coefficients of the polynomial R, when n € N, namely,

1)
[Bn| < NG and max{|an|, |vnl} < 1

This means that when the index n runs through the infinite set N, there are
only finitely many different polynomials R,,. As a consequence, there is at least a
polynomial that is chosen infinitely often. In particular, there are three integers
n1 < ng < ng for which the polynomials R,,,, R,, and R,, coincide. Thus, z,,
Zn, and x,, are a root of the same polynomial. Since a quadratic polynomial has at
most two zeros, we deduce that at least two among these three numbers coincide.
This ensures that the continued fraction expansion of x is ultimately periodic. [

Thanks to Proposition [1.10}, one easily checks that Theorem leads to the
following corollary.

COROLLARY 1.3. Any quadratic irrational is badly approximable.

1.5. Inhomogeneous approximation

Inhomogeneous Diophantine approximation usually refers to the approximation
of points in R? by the system obtained by the points of the form (p + a)/q, where
as usual p is an integer point, and ¢ is a positive integer, and where « is a point in
R? that is fixed in advance. When « is equal to zero, one obviously recovers the
situation discussed in Section [I.I] which is referred to as the homogeneous one.

In this context, a point a being fixed arbitrarily in R¢, the analog of the set
Ja,r defined by is now the set

P+
q

Jir= {xERd

1
‘x— < e for i.m. (p,q)EdeN}. (31)

o0
Proposition [I.I may straightforwardly be extended to the inhomogeneous setting.
Specifically, one easily checks that the Lebesgue measure of the set J 4. vanishes for
any real number 7 > 1+ 1/d. Some more work is required to show that, just as in
the homogeneous setting, the set J7 has full Lebesgue measure in the whole space
R? in the opposite case; this will actually appear in the statement of Corollary
A much more precise description of the size of the set J§_ will in fact be given in
this statement, and subsequently in that of Corollary as well.

1.5.1. A theorem of Khintchine. The main purpose of this section is to
establish the following result due to Khintchine [39], which in some sense comple-
ments Dirichlet’s theorem, namely, Theorem Our proof sticks to Khintchine’s
method very closely, but we find it valuable to detail the arguments anyway, because
Khintchine’s original paper [39] is written in German.
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THEOREM 1.5. Let us consider a point x € R? and assume that there exists a
real number v > 0 such that for any integer Q > 1, the system

1<q<~yQ?
‘qm_p‘oo Sl/Q

admits no solution (p,q) in Z% x N. Then, there exists a real number T' > 0, which
depends on v and d only, such that for any point o € R? and any integer Q > 1,
the system

lgz —p — ol < 1/Q
admits a solution (p,q) in Z% x N.

{ 1<qg<TQ?

The remainder of this section is devoted to establishing Theorem Let us
begin by introducing some notations. Let us consider a point  in R? and an integer
@ > 1. Theorem [I.1] ensures that the system

1<qg<Q?
lgr — ploe <1/Q

admits a solution (p, ¢) in Z? x N; we assume that ¢ is minimal. Combined with
the assumption that bears on z in the statement of Theorem [I.5] this implies that

ged(p,g) =1  and  ¢>~Q"

In particular, v is necessarily smaller than one. Now, for any ¢ € {1,...,d}, let p;
denote the i-th coordinate of p, and let e;, p; and ¢, be the integers defined by

€ = ng<p1a Q)

Pi = €ip;

q= ei%
In addition, since p; and ¢} are coprime, p; is invertible modulo ¢}, and we may find
an integer b; such that

pibi=1 mod ¢}
ged(eq, b;) = 1.
As a matter of fact, the solutions of the first equation are of the form b; = b} + z¢/,

for z € Z, when b} is already a solution. The fact that one of these solutions also
satisfies the second condition is a plain consequence of the following fact.

LEMMA 1.4. Let b and ¢ be two integers in Z with ged(b,c) = 1. Then,
VaeZ 3zelZ ged(a, b+ zc) = 1.

PROOF. When « divides ¢, we have ged(a, b) = 1, and the result clearly holds.
In the opposite case, let n denote the product of the prime numbers that divide a
and do not divide c¢. Clearly, the integers ¢ and n are coprime, so there exists an
integer z € Z such that

zc=1—b mod n.

Let us consider a prime divisor ¢ of a, and let us observe that £ 1 zc+b. When ¢ 1 ¢,
this comes from the fact that ¢ | n. When ¢ | ¢, this is because £ 1 b. Finally, no
prime divisor of a divides zc 4+ b, and the result follows. O

On top of that, let £ denote the product of the integers e;, that is,
E=e...eq.

We observe that E | ¢?~1. Indeed, since ¢ = Eq; ...q}, it suffices to show that
q|dqi...q; Let us consider a prime number ¢ and an integer s > 1 such that ¢° | g.
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The components of p are mutually coprime with ¢, so we must have ¢t p; for some
i. As e; | p;, we necessarily have ¢ { e; as well. Since g = e;¢;, we deduce that £°
divides ¢j, thereby dividing ¢} ...¢}. It follows that ¢ | ¢} ... ¢}, and therefore that
E | ¢*'. We may thus introduce the integer

qd—l

E
Following the lines of Khintchine’s original proof, We now state and establish
a series of lemmas.

CcC =

LEMMA 1.5. Let us consider d integers ny,...,nqg € Z, with each n; being less
than e; in absolute value, and let us further assume that

nib1q; = ... =ngbaq, mod q.
Then, the integers nq,...,nq are all equal to zero.

PROOF. The assumption of the lemma directly yields

nib1gq?t = ... = ngbagig®™ mod ¢%.
We have ¢? = Eq) ...q}, and e; = g/q; for each integer 4, so that
E E
n1b1— =...= ndbd— mod E.
€1 €q
Let us consider an integer ¢ € {1,...,d}. We may obviously exclude the trivial case

where e; is equal to one. Thus, assuming that e; > 1, we may consider a prime

number ¢ and an integer s > 1 such that ¢° | e;. Since ¢ and the coordinates of p

are mutually coprime, there exists an integer i’ # ¢ such that £t e;;. We have
nibiey = ni/bi/ei mod €€/,

so that ¢° divides n;b;e;;. Moreover, as b; and e; are coprime, the prime number
¢ cannot divide b;. It does not divide e; either, so we deduce that £° | n;. The
previous analysis implies that the integer n; is a multiple of e;, and the result follows
from the assumption that it is smaller than e; in absolute value. 0

LEMMA 1.6. There exist a real number Cy > 0 and an integer Qo > 1 that
depend on vy and d only such that if Q > Qq, then there are 2d? integers z®

, and
yl(k), fori k€ {1,...,d}, such that the following conditions hold simultaneously:

(1) for any k € {1,...,d},
:cgk)bl =...= m&k)bd mod ¢;
(2) for any i ke {1,...,d},
2 =y mod ¢};
(3) there exists an integer a > 1 such that
(1) (1)

Y1 Yy
A= = ac;
gyl
(4) for any i,k e {1,...,d},
(d-1)/d
[yl < Co T

Specifically, one may choose Cy as the (d—1)-th power of an arbitrary integer larger
than 2(d — 1) /4%, and Qo as any integer larger than Cy/~"/2.
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PROOF. Let C denote an arbitrary integer larger than 2(d — 1)/y/¢, and let
Co = C4=1. Moreover, let Qo denote an arbitrary integer larger than Cy/y'/¢. We
assume throughout the proof that the condition @ > @ is verified.
Then, let us consider 2d integers z; and j; satisfying the conditions
gld=1/d
0< 2z, <Cy— and Ogji<€i,

€i

for i € {1,...,d}, and let us then define
ui = Jig; + 2.

We obviously have e; possible values for the integer j;, and LC’Oq(d_l)/d/eiJ + 1 for
;. Moreover, note that Q > Qo > Co/y*% and ¢ > yQ%, so that ¢ > Cd. This
implies that the maximal possible value for z; is smaller than ¢, and thus that the

set of all possible values of the d-tuple (uq,...,u4) has cardinality equal to
d
Clhgld—1)/d
I (e ([#5—] 1)) > e
i=1 i

Let U denote this set, and let ® be the mapping defined on U by
D(ug, ... ,uq) = (urby —ugba, ..., urby —ugby) mod gq. (32)

The mapping ® sends the set U to a subset of (Z/qZ)¢~1. Therefore, the preimage
sets @~ L({f}), for f € (Z/qZ)?~1, form a partition of U. As a result,

Cig ' <#U =Y #o'({fH<q¢t  max #'({f}).

fe(@/qnyi- fe/any

Consequently, there necessarily exists an element in (Z/qZ)?~! whose preimage has
cardinality larger than C§. Thus, we can find C¢+1 distinct d-tuples (ugk), . u&k)),
with k € {0, .. Cg} whose images under the mapping ® coincide. The correspond—

ing values for the integers z; and j; are denoted by z(k) and jl(k) respectively.

We consider in Z¢ the vectors y(¥) = (yg (k) . ,y((ik)) defined by y( ) = (k) —zi(o)
Note that there are Cd + 1 such vectors, and that the null vector is obtalned for k
equal to zero. Let us assume that these vectors span a linear subspace of dimension
at most d — 1, so that they all lie in a hyperplane with normal vector denoted by
(a1,...,aq). Without loss of generality, we may assume that |a;|/e; is maximal

when ¢ = 1. We may thus write the equation of the hyperplane in the form

d
€1Y1 = E Vi€ilYi,
i=2

where the real numbers v; are bounded above by one in absolute value.

Recalling that C' is the positive integer for which Cy = C%~!, we may split
each interval [0, Coq(*=1/?/e;] into C¢ disjoint subintervals with common length
q\=1/4/(Ce;). Accordingly, the rectangle formed by the product of these intervals
over all ¢ € {2,...,d} may be partitioned into Cg disjoint rectangles. The C’g +1
points (zék), . .,zc(lk)) are all contained in the large rectangle. The pigeon-hole
principle then ensures that at least two points lie in the same smaller rectangle.
These points correspond to two distinct choices of the index k and, for simplicity,
their components are denoted by 2, and 2!, respectively. We thus have

q(d_l)/d

Vie{2,...,d T2 <
e {2 d A < T
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It is clear that the corresponding components y, and y.’ satisfy the same inequalities
because they are equal to z, — 21(0) and 2 — 21(0)7 respectively. In addition, as the

points 3’ and y” both belong to the aforementioned hyperplane, we have

/ " d / d q(d 1/d d—1 (d—1)/d
elyt — i1 <> lwileilyf —y |<Zez — = :
i=2
We finally deduce that

. d—1 qld-n/d
vie{l..a |-el< ot T (33)
(3

Let us suppose that all the differences y, — y/’ vanish, i.e. that the points 2’
and 2" coincide. As the corresponding d-tuples (uf},...,u}) and (uf,...,u)) have

the same image under the mapping ®, we have for any index i € {2,...,d},
uiby — ub; = ufby —ub; mod g, (34)

that is,

"1

(rar + 21)br = (Fig; + 20)bi = (37d1 + 21)br — (ji'q; + 2{)b;  mod q.
As a consequence, making use of the assumption that the points 2z’ and 2" are the
same, we deduce that
(1 —Ji)arbr = ... = (jg — jq)4gba mod g.
However, every integer j; — j/’ is smaller than e; in absolute value, so we may apply
Lemma [1.5|to conclude that it is equal to zero. This is a contradiction because the
points u’ and u”" were chosen to be distinct. Thus, all the differences y; — y)' cannot

vanish simultaneously.
Moreover, we also deduce from that there is an integer g such that

(uy —uf )by = ... = (u); —u)))bg =g mod ¢
—q<29<q

As a result, for each fixed i, since ¢} divides ¢ and b; is the inverse of p; modulo ¢,
we infer that
gp; = (i — u)bipi = (G — 5 )bipidi + (2 — 2 )bipi = y; — v mod g
This plainly means that gp, is equal to y; —y!’ 4+ n;q; for some integer n; € Z, which
directly leads to
d—1
g q — Ny qu/d’
thanks to (33). Meanwhile, we know that |gz; — p;| is bounded above by 1/Q. It
then follows from the triangle inequality that

//|

‘pi

€; €;
= élgpé —niql| = jlyé -

pi lg| 1 1 d-1)\1

v M S otoaas\stea) o

q qQ  Cql/ 2 Oyl/i)Q
where the latter inequality is due to the fact that |g| < ¢/2 and ¢ > vQ?. We now
recall that the integer C' is larger than 2(d — 1)/+'/?; this implies that the upper

bound above is at most 1/Q), specifically,

[

l‘i—]i + |9
q

lgzi —n4| < |g]

1
gz — nleo < —=.

Q

Along with the fact that |g| is smaller than g, this contradicts the minimality of g,
unless the integer g vanishes. Thus, the only possibility is that g is equal to zero,
which means that

Vie{l,...,d} (u; —u)b; =0 mod gq.
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Given that ¢, divides ¢ and is coprime with b;, we deduce that the integers u) and
uf coincide modulo ¢;. The integers y; and y.’ share the same property, specifically,

O —af ol =l ol® = o 0

On top of that, implies that |y, — y/| is smaller than ¢}. In fact, this holds
because ¢ is large enough, specifically,

/ / " /
Yi=%2; — % =Y; mod q;-

gt > AMIQ > 4MIQy > Cp > %
We deduce that the differences y;—y!" are all equal to zero, a contradiction with what
precedes. This means that the vectors y*) cannot belong to a common hyperplane,
and thus that they span the whole space R?.

The upshot is that d of the vectors y*) are linearly independent; up to reorder-
ing, we may assume that these vectors are those indexed by k € {1,...,d} and that
their determinant A is positive. These vectors satisfy the condition appearing
in the statement of the lemma, because of the bounds on the integers z;. We now
Ek) Ek) — uz(»o) for any indices ¢ and k in {1, ..., d}, so that

o) = GO 19— (O 20 = B0 2y oa gl

define x;"’ as being equal to u

i.e. the condition is verified. Furthermore, the vectors (ugk), . ,ugk)) were
chosen in such a way that they have the same image under the mapping ®. In
particular, for any ¢ € {2,...,d} and any k € {1,...,d},

u(lk)bl — uz(-k)bi = u(lo)bl — ugo)bi mod g,
which directly leads to the condition .

The discriminant A of the integers yik is a positive integer but, in order to
obtain the condition , it remains to prove that A is a multiple of the integer

c. Let us consider the integers tgk) = eiy(k)

; , and let A’ denote their discriminant.
Clearly, A’ is equal to FA, so it suffices to establish that ¢~ | A’. This is the
purpose of the remainder of the proof.

Given four indices ¢,i', k, k" € {1,...,d}, the condition gives

{ eiei/xgk)xl(»fc/)bi = eieirmg,k):vgc/)bi/ mod qeiei/xz(.,kl)

(k) (), (k) (k)

*) (35)
=ejeyx; ', by mod geepxy .

€i€irT;
Let us consider a prime number ¢ and an integer s > 1 such that ¢° | ¢, and

let r denote the maximal integer satisfying ¢ | tgk) for all i,k € {1,...,d}. The
condition , combined with the fact that ¢ is equal to e;q}, gives

tgk) = eiyi(k) = eixgk) mod gq. (36)
Case where r < s. We see that ¢ divides both tgk) and ¢, which itself divides
tz(k) — eixgk). Thus, ¢" divides eixgk) for any choice of 7 and k. This means that

qe;¢" divides both qeiei/xg,lc/) and qeiei/a:l(fc), and taking the two equations in

modulo ge;¢", we deduce that
(k) _.( (k) (k")

,L' .'I; Z‘I :I;'L,

so that

K’ k
z(” ).TE/ )bi/ = €;€;/ X

(k")

k') (k) r
b; = e;epx by = ejepx ;% b mod gel",

€;,€;r X i
eieifbi(xl(-k)xz(-/k/) — xgk/)acl(.,k)) =0 mod ge;l". (37)

We now observe that b; is coprime with ge;#". As a matter of fact, assuming
that this does not hold, let us consider a prime number n that divides both b;
and ge;¢". Since b; and e; are coprime, n does not divide e;, and thus necessarily
divides ¢¢". Furthermore, if n is different from ¢, it then divides ¢ = e;q}, thereby
necessarily dividing ¢;. This is impossible because b; and ¢} are coprime. Hence,
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the prime number n is equal to £. As a consequence, £° divides ¢ and is coprime
with e;, so it must divide ¢;. This means that n divides both b; and ¢}, which is
impossible because these two integers are coprime. Finally, b; is invertible modulo
ge:{", a multiple of 57", and we may thus deduce from that

ey ( (k) ( 0 xz(-kl):rg,k)) =0 mod 77, (38)

Now, starting from (36)) again, up to replacing i and k by 7’ and k', respectively,

(k)

and recalling that the integer {" divides both tg,k ) and e;x; , we also have

{ Ek) Ek) elx(k) E,k/) mod ¢f”
(k

t; )e x( ) = =e;ey x(k)x(, ) mod ql",

from which we directly infer that

O B N R s

s =eiepx; T,
We may obviously exchange the role of k and k' and deduce a similar equality.
Combined with , this leads to

tgk)tz(-fc) t(k) *) mod st

il

Since all the integers tgk) are divisible by ¢", they may be written in the form

tl(.k) = E’”vgk) for some integer v(k) The previous equation thus gives
ng)vg,k/) v(k) ( ) =0 mod £ (39)

The determinant of the integers vg ) is denoted by A”, and is thus equal to
¢~ A’. The maximality of r ensures that there is a pair (¢, ) of indices in {1,...,d}
such that the integer vfn) is not divisible by £. We now transform the discriminant
A" as follows: for each index i # ¢, we replace the i-th column by its product
by v( ), minus v(K’) times the ¢-th column. Hence, if i # ¢, the coefficient vgk) is
replaced by v(k) L('i) (R)vfk) which, in view of , may be written in the form
5T Z( ) for some wl( ) € Z. The newly obtained discriminant is thus equal to both
(vI)A=1A" and €61 E=DA where A" denotes the discriminant of the matrix
formed by the integers w( ) ,for i £, and the integers v . In particular, (v (K))d 1
divides £(s=Md=D A" and, since £ 1 v, we deduce that (v{"™)?~! divides A",
i.e. that A" may be written in the form (v{™))?-1
p(s—r)(d—1)

(Uf“))dfl

m for some m € Z. Finally,

A = edrAl/ — Edr A — é(dfl)s%»rm

3

from which we conclude that (¢£2)?~! divides A’.

Case where r > s. In that situation, all the integers tl(.
that their discriminant A’ is clearly divisible by (¢£5)4~1

The previous analysis shows that for any prime number ¢ and any integer s > 1
such that £° | ¢, we have (£2)?=1 | A’. Tt follows that ¢~ | A’ as required, and the
condition readily follows. O

%) are divisible by £%, so

LEMMA 1.7. Let us consider 2d* integers xz(k) and yz(k), for ik € {1,...,d},
such the conditions and @ of the statement of Lemma hold, such that the
condition @ holds with a > 1, and such that for any i,k € {1,...,d},

qz

d’

Then, there are 2d? integers fgk) and gf’“), for ik € {1,...,d}, that satisfy the
aforementioned conditions and (@, and also the following conditions:

W< with 0< A<
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(3%) there exists an integer a € {1,...,a — 1} such that

g g
A=| D | =ac;
(d _(d
IR
(4°) for any ik € {1,...,d},
7] < dXi.
PROOF. The vectors y(1), ..., y(® form a sublattice L, of Z¢ with dimension

equal to d. Its fundamental domain, i.e. the half-open parallelepiped spanned by
these vectors, is denoted by J,. The Lebesgue measure of J, is the fundamental
volume of the lattice and is equal to A = ac. The index of L, in Z? is the cardinality
of the quotient Z?/L, ; it is equal to A and also gives the number of points in Z%
that belong to J,, see e.g. [58, Lecture V] for details.

Let us then consider the set A formed by the 2d-tuples (j1,...,7d,Y1s---,Yd)
with (y1,...,94) € Jo NZ% and j; € {0,...,e; — 1} for each index i. The mapping
U defined on A by

\Ij(jlv s vjd,ylv s 7yd) = (.71qI1 + Y1, 7jdq& + yd) (40)
is one-to-one. Indeed, let us assume that jiq} + vy} = j/'q; + y; for all 4, for two
distinct 2d-tuples. There necessarily exists an index m for which j/, # j/, as

otherwise the two 2d-tuples would coincide. Consequently,
Y = Ym| = i — Jm| @ = G-
Given that (yi,...,y,) and (y7,...,y}) both belong to the parallelepiped J,, the

distance between g/, and y./ is bounded above by the diameter of the projection of
Jq onto the m-th axis. Hence,

Y — Yl < S+ .+ [y D) < dh < s

thereby giving a contradiction. The mapping ¥ being one-to-one, its image A’ has
cardinality equal to that of A, namely,

HA =H#HA=e...eq-#(J,NZY = EA = Eac = ag?™ .
In particular, since the integer a is greater than one, the set A’ has cardinality
larger than that of (Z/qZ)*~!, namely, ¢~!. Thus, the mapping ® defined on A’
as in cannot be one-to-one. This means that there exist two distinct d-tuples
(xh,...,2}) and (2f,...,2)) in A’ such that for any index i € {2,...,d},
2y by — xib; = 2by — 2/b; mod q.

Naturally, the corresponding 2d-tuples in A are denoted by (ji,...,7,Y1,---,Yy)
and (j1,...,35,y{,-..,yY), respectively. For any 4, we then define

u; =z} —

b= ji —ji
vz:yé_yl/‘/
and we point out that
u1by = ... =ugbpy mod
101 dYb q (41)
|€1|<617-~-,|€d|<€d-

Now fix an index k € {1,...,d}. Since the vector ¢’ = (y1,...,y}) belongs to
J,, the parallelepiped spanned by the vectors y(), ... y* =1 o/ o(k+D (@) g
included in the parallelepiped J,. By a volume comparison argument, we deduce
that the determinant obtained when replacing the k-th line of A by (vi,...,v})
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belongs to the interval [0,A). A similar argument holds for v’ = (v{,...,y7).
The difference of the two determinants obtained in this manner is thus less than
A in absolute value; it is denoted by A®) and is equal to the Lebesgue measure of
the parallelepiped spanned by the vectors y™), ...,y =D o ¢E+tD () where
v stands for (v1,...,v4). As in the proof of Lemma we observe that A®*) is
a multiple of ¢, i.e. there exists an integer a®) such that A® = ¢, Up to
exchanging the role of 3 and y”, we may assume that a(*) > 0. Furthermore,
A®) = ¢ ¢ is smaller than A = ac, so that a®) < a.

Let us now assume that the determinant A®*) vanishes regardless of the value
of k. Expanding A®) along the k-th line, we get

d
0= A0 =S uy®),
i=1

where Yi(k) denotes the (k,7)-cofactor in A, i.e. that in the same position as yz(k).
As a consequence of Cramer’s rule, the determinant of the integers Yi(k) is equal
to A1 and is therefore positive. It follows that all the integers v; vanish. Thus,

u; = £;q, for all 4, so that
l1g1by = ... = Laqby mod gq.

Applying Lemma with the help of , we deduce that all the integers ¢;
vanish as well. Finally, the integers u; are all equal to zero. This contradicts the
distinctness of the d-tuples (zf,...,2}) and (z¥,..., /), and means that one of the
determinants A®*) is nonvanishing. Without loss of generality, we may thus assume
that A > 0. In particular, a(!) > 0.

To conclude, we define as follows the 2d? integers Z
the statement of the lemma:

(k)

i

(k)

and y; ’ announced in

z® =™ k>

i

fgl) = U;
NI
§§1) =

The conditions and obviously hold for k > 2. When k is equal to one, the
condition follows from above, and the condition is due to the simple
observation that u; and v; coincide modulo ¢} for any index i. On top of that,
let us remark that the determinant A of the integers gjgk) defined above is equal
to A the condition thus holds with @ = a("). Tt remains to establish the

condition (#]). The case where k > 2 is elementary since we then have
(k k
7] = 1] < x < g
for all index i. To deal with the case where k = 1, we use of the fact that the vector

v joins two points that belong to the parallelepiped J,. Thus, its component satisfy

_ d
157 = Jui] < [y P < dAs (42)

3

for all 4, as announced. [l

LEMMA 1.8. There exist a real number C; > 0 and an integer Q1 > 1 that
depend on v and d only such that if Q > Q1, then for any integers mao, ..., my,
there are 2d integers xF and y;, fori € {1,...,d}, such that the following conditions
hold simultaneously:

(17) for any i€ {2,...,d},

x7by —x;b; =m; mod ¢;
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(27) for any i€ {1,...,d}, there exists an integer j; € {0,...,e; —1} such that
v =it + i
(47) for any i€ {1,...,d},

q(d_l)/d
lyi| < Cr ——.

7

Specifically, one may choose Cy as being equal to C’ongdd/2, and Q1 as any integer

larger than C /y/?.

ProoOF. Let C; = Congdd/2, and let ()1 denote an arbitrary integer larger

than C/v'/?. We assume throughout the proof that Q > Q1. In particular, Q is

larger than Qg, so we may start from the 2d? integers :El(-k) and yfk) that are obtained

with the help of Lemma Each integer eiy(k) is bounded above by Coql4=1/4 in

i
absolute value, so that the Euclidean norm of the vector (elygk), R edyflk)) satisfies

|(€1y§k), . .,edyflk))h < dv? |(613/§k)» e »edyf(ik)ﬂoo < Cod'/2qld=1/,

Moreover, the determinant of the integers e,—yfk) is equal to EA, which is itself
equal to ag?~'. We then deduce from Hadamard’s inequality that

d
ag®™ = |BA| < [] (ew™, - .. eay§)]2 < Ca?/2q?1.
k=1

It follows that the integer @ is smaller than or equal to ngd/ 2. Along with the
assumption that ¢ > @1, this yields

¢4 > VAQ > 4AQ, > O = Cpdh
We now consider for each index ¢ the real number \; defined by

(d—1)/d C,
_ q o 0

By virtue of , each )\; is smaller than ¢}/d. If a > 1, we may therefore apply
Lemma to the integers xl(k) and y(k), with the above values for the parameters

K3
Ai. We end up with other integers 5:5’“) and gi(k) such that the condition holds
with a replaced by some other integer a € {1,...,a — 1}. We may in fact apply
Lemma [1.7] iteratively, thereby decreasing the value of a up to one, provided that
the parameters \; remain sufficiently small. Specifically, we apply this lemma at
most a — 1 times; this may be done if the initial values of the parameters satisfy
Ai < ¢;/d® for all i, a requirement that is guaranteed by . The upshot is that we
. . . d gd/2

may assume that a = 1 in what follows, up to multiplying by d“0¢"""~1 the upper
bound appearing in the condition . Thus, we may finally consider 2d? integers
xgk) and yi(k) that satisfy the conditions and , the condition with a = 1,
and the condition with Cy replaced by COngddm’l =C4/d.

We now proceed as in (tl)le proof of Lemma except that @ = 1 and the
k

4?5 Cod® > Cod. (43)

bounds A; on the integers y, ' satisfy
¢ g g
A= e S0 (44)

Specifically, we consider the parallelepiped J; spanned by the vectors y™1), ... y(@,
and we also consider the corresponding set A’. Here, the integers a(*) satisfy

OSa(k)<a:1.
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Thus, all the determinants A(¥) necessarily vanish. This implies that the mapping
® defined on the set A’ as in is one-to-one. Also, again because a = 1, we have

#A = ¢ = #(L/qL)" .
We deduce that the mapping ® is a bijection from A’ onto (Z/qZ)%~!. As a conse-
quence, for every integers ms,...,mg in Z,

Mx1,...,xq) €A ®(z1,...,24) = (M2,...,mg) mod q. (45)

Furthermore, as shown in the proof of Lemma the mapping ¥ defined on the
set A by is a bijection onto A’. Hence,

3!(j17"'7jd7y17"'7yd)EA \Il(jla"'7jd7y17"'ayd):(mla---wrd)' (46)

To conclude, it suffices to define z} = x; and y; = y; for all indices ¢. In fact, the
conditions and follow straightforwardly from and , respectively.
The condition is a direct consequence of the approach developed in the proof of
Lemma along with the values of the bounds \;. More precisely, the point
(y7, ...,y belonging to the parallelepiped J, its i-th component is bounded by d;
in absolute value, in a way similar to , and the condition finally holds. [

LEMMA 1.9. There exists a real number Cy > 0 that depends on v and d only
such that
max e; < Cy q(dfl)/d.
1<i<d

Specifically, we may choose Cy as any real number larger than 2y —9/d,
PROOF. Let us fix an arbitrary real number Cy > 27(1=4/4 and let us suppose
that the reverse inequality e,, > Cy ¢(*~1)/4 holds for some index m. Thus,

o< ()T Jem G _em
- Cy 2 2

Y
We now consider the point (¢/, @1, ..., ¢ Tm—1,@nTmits---,qnrq) in RI™L and
apply Dirichlet’s theorem, that is, Theorem[I.1] Accordingly, we infer the existence
of an integer k and a (d—1)-tuple of integers (n1, ..., Nm—1, Nm+t1, - - -, Ng) such that
1

1<k<@i! and Vi#m |kq,xi — nil Sa.

In addition, regarding the m-th component, we have

k =1
— < @ < —.

em@ em@ 2Q

Therefore, letting n,, stand for the product kp/,, and letting n denote as usual the
d-tuple (ni,...,nq), we end up with

k
\kqrzm — kpiy| = —q@m — pm| <
em

1
|kq:nx - n|0<> <=

Q
The minimality of the integer ¢ implies that it is less than or equal to kg, so that
k is bounded below by e,,. This contradicts the fact that k < Q4~! < e,,/2, and

the result follows. O
We are now in position to finish the proof of Theorem We thus consider a
point a = (ay,...,aq) in R and for any index i, we define
si = |qjoi] = {qaiJ .
€;

Given that p; and ¢} are coprime, there exists an integer r; such that

/ !
p;ri =s; mod g;.
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We then define m; =r; —rq for any i € {2,...,d}. We assume that Q > @1, so as
to apply Lemma Therefore, we obtain 2d integers z and y, for ¢ € {1,...,d},
such that the conditions , and hold simultaneously. In particular, the
condition implies that for any i € {2,...,d},

xiby —xib; =7; —r1 mod q, (47)

so that the value of z}b; 4+ r; modulo ¢ does not depend on the choice of ¢. This
common value is denoted by k and taken in {0,...,q — 1}. Therefore, using the
fact that ¢, divides g, we get

pik = pl(xbi + ;) = pibix + piri = xf +s; =y +s; mod ¢..

Note that the last equality above follows directly from the condition . In view
of the condition , this implies that there exists an integer y; such that

/ ’ * q(d_l)/d
ik — qiyi — sil = ly;| < Cr ———.

7

Consequently, due to the definition of the integers s;, we get

(d—1)/d
q
Pk — ¢y — i < |pik — @iy — si| + |si — o] <1+ Cy ——

(3
Multiplying by e; and making use of Lemma [I.9] we obtain

pik — qyi — qou| = eilpik — qlys — gou| < e + C1 gD/ < (Cy + Cy)gl? =D/

Using the approximation property satisfied by the rational number p; /¢ with respect
to the real number x;, we deduce that

Di Pi Cl +C2 k
kx; —y; — ;| < ‘k_yi_ai +klpi——| < —F— +—,
| | q q gt qQ

and consequently that
Ci1+Cy+1

To conclude, we consider an integer Q > 1, and we suppose that Q is sufficiently
large to ensure that the above arguments may be applied with @ = |C3Q]+1, where
Cj5 stands for (C7 + Cy + 1)/71/‘1. To be more specific, we assume that @ > Q1
or, equivalently, that Q > Q;, where Q; = [Q1/C3] and [-] denotes the ceiling
function. Recalling that yQ? < ¢ < Q? and that k < ¢, and defining y as the
d-tuple of integers (y1,...,yq), we may then write that

1<k < Q< (205)4Q1
lkx —y — oo < (C1 +C2+ 1)g7 Ve < C3Q7 1 < Q7L

In the opposite case where Q < Q;, we apply what precedes with Q = [C5301] +1,
and we therefore obtain

1<k<Qf<(20501)? < (C5+ Q1)?Q1¢
kz —y — oo < (C1 +Co+ 1)< C3Q7 <97 < QL

We thus finally see that the conclusion of Theorem holds with the real number
I" being equal for instance to the maximum of (2C3)¢ and (Cs + Q1)%, a value that
depends on v and d only.
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1.5.2. A companion result. Inspecting the proof of Theorem [1.5] we may

easily establish the next complementary result, which will be called upon in the
proof of Theorem [7.3| For any point z € R? and any integer @ > 1, let us define

q(z,Q) inf{qGN

1
lgz — ploc < 0 for some p € Zd} .

It follows from Dirichlet’s theorem that ¢(z, Q) is finite; in fact, ¢(x, Q) is less than
Q?, see Theorem above.

PROPOSITION 1.11. For any real number v € (0,1), there exist a real number
Ty > 1 and an integer Q. > 1, both depending on v and d only, such that the
following property holds: for any points x and o in R? and for any integer Q > Q.

q(z,Q) < q < 2q(z,Q)
lgz —p — afe < Tu/q(z, Q).

PROOF. It suffices to recast the last part of the proof of Theorem Indeed,
assuming that Q > @1 and applying Lemma we ended up therein with ,
and then with some crucial integer k, that will play the réle of ¢ in the statement of
Proposition Note that & is determined modulo ¢(x, Q) so, instead of choosing
this integer between zero and ¢(z, @) — 1 as in the proof of Theorem [1.5, we may
choose it between ¢(z, Q) and 2¢(x,Q) — 1. The required approximation property
is then a reformulation of . This means in particular that the real number I',
corresponds to the term C; + Cy + 1 in the proof of Theorem and that the
integer (), may be chosen to be equal to Q1. O

q(,Q)>~Q* = 3I(p,q) €Z?xN {

1.5.3. Converse to the theorem. Khintchine actually showed in [39] that
Theorem [I.5 gives a characterization of the uniform inhomogeneous approximation.
As a matter of fact, it is quite easy to establish the following converse result.

PROPOSITION 1.12. Let us consider a point x € R% and let us assume that there
exists a real number ' > 0 such that for any point o € R? and any integer Q > 1,
the system

1<q<IQ?
lgz —p — oo £ 1/Q

admits a solution (p,q) in Z¢ x N. Then, there exists another real number v > 0
such that for any integer Q > 1, the system

1<g<yQ?
lgz — ploc <1/Q

admits no solution (p,q) in Z* x N.

ProOOF. We argue by contradiction. Thus, for any real number ¢ > 0, there
exists an integer Q > 1, and a pair (p, ¢) € Z? x N satisfying

1
1< q<eldt2)d and lgz — Ploo < o
Now, letting Boo (7, 7) denote the closed ball centered at x with radius r, in the
sense of the supremum norm, we define the set

q
= U U B (40 2.
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We assume from now on that ¢ is smaller than 1/12. For each integer k, there are
at most 3¢ points y in Z¢ for which the above closed ball meets the cube [0,1)%.
This means that the volume occupied in the unit cube by the set M. satisfies

4e

d
1/d> = (12¢)¢ < 1.
q

£4(0,1)4 A M) < 3dq(

We may therefore consider a point a in the unit cube [0,1)% that does not belong

to the set M.. We also introduce the integer @ = [¢*/?/e]. The point « verifies
2¢

> g4

a—k2 - y‘

q oo
for all points y € Z? and all integers k € {1,...,q}. In addition, if the integer k is
smaller than Q?/(2%), then it is a fortiori smaller than ¢/e%!, so that

€d+2 €

— < =7
qi/d "~ gl/d

kx — k2
q

k k

= —|qz = ploc < =~
o 4 q
We thus built the point a and the integer Q in such a way that for any point y in
7% and any positive integer k& smaller than Q¢/(2%), we have

€ 1
PCAe)
We deduce that I' must be larger than 1/(2%). However, the above arguments are
valid for arbitrarily small values of €. This leads to a contradiction. O

lkx —y — oo >

Among Khintchine’s works, Theorem and its converse, namely, Proposi-
tion may be regarded as an anticipation of his deep transference principle that
relates homogeneous and inhomogeneous problems, see e.g. [16, Chapter V].






CHAPTER 2

Hausdorff measures and dimension

The material discussed in this section is standard; our main references are [29]
Chapters 2 and 4] and [46, Chapter 4], as well as [5I]. The notion of Hausdorff
dimension relies on that of Hausdorff measure; the first definitions and properties of
Hausdorff measures were established by Carathéodory (1914) and Hausdorff (1919).
Throughout this section, we restrict our attention to the space R?, even if the
discussed notions may be defined in more general metric spaces.

2.1. Outer measures and measurability

Before dealing with Hausdorff measures, we introduce general definitions and
establish standard results from geometric measure theory. We shall not follow
here the standard approach that originates in the work of Radon and consists in
defining measures on prespecified o-fields. Instead, our viewpoint is that initiated
by Carathéodory: considering outer measures on all the subsets of the space R,
and then discussing further measurability properties of the subsets. The collection
of all subsets of R? is denoted by P(R%).

DEFINITION 2.1. A function p : P(RY) — [0, 00] is called an outer measure if
the following conditions are fulfilled:

(1) u(@) =0;
(2) for any sets By and E; in P(R?),

EiCE, = ) < p(E);
(3) for any sequence (E,),>1 in P(R?),
1 <U En> <> u(E,).
n=1 n=1

Hence, outer measures are defined on the whole collection P(R?). However,
they will enjoy further properties when restricted to the subcollection formed by
the sets that are measurable.

DEFINITION 2.2. Let u be an outer measure. Then, a set E in P(R?) is called
u-measurable if for all sets A and B in P(R?),

ACE
{ BCRI\E = AU B) = p(A) + u(B).

The collection of all y-measurable sets is denoted by F,.

The two sets A and B arising in the above definition are said to be separated
by the set E. Thus, a set E is u-measurable if the outer measure p is additive on
sets that are separated by E. Let us also mention that it suffices to consider the
case in which the sets A and B have finite u-mass, and to prove that u(A U B) is
bounded below by the sum of y(A) and u(B).

37
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The connection with the standard approach of measures on o-fields is then
given by the following result. In its statement, we say that a set N € P(R?) is
u-negligible if its measure vanishes, namely, u(N) = 0.

THEOREM 2.1. Let v be an outer measure, and let F,, denote the collection of
all p-measurable sets. Then, the following properties hold:

(1) the collection F,, is a o-field of R%;
(2) every p-negligible set in P(R?) belongs to F,;
(3) for any sequence (Ey)n>1 of disjoint sets in F,,, we have

H <|_| En) = Zﬂ(En)

ProOF. We begin by establishing . To proceed, let us consider a set N in
P(R9) such that p(N) = 0. Then, for any sets A C N and B C R%\ N, we have

1(B) < p(AU B) < p(A) + p(B) < u(N) + u(B) = w(B),

from which we deduce that u(A U B) is equal to the sum of u(A) and u(B). This
implies that N belongs to F),.

In particular, as the empty set is p-negligible, it belongs to the collection F,,.
Furthermore, the definition of a pu-measurable set is symmetric, in such a way that
if a set &/ belongs to F,, then its complement R?\ E belongs to F. as well.

Let us now consider two sets E; and E5 in F,, and show that their union E1UE,
belongs to F,,. To this purpose, let A and B denote two sets with finite p-mass
that satisfy A C E; U Fy and B C R\ (E; U Ey). Now, remark that the two sets
ANE; and (AUB)N (R4 \ E;) are separated by the measurable set F; and that
their union reduces to AU B. Hence,

(AU B) = p(AN ) + p((AUB) N R\ Ey)).

Moreover, the sets AN (R?\ E;) and B are separated by the measurable set Es,
and their union is equal to the set whose measure corresponds to the second term
above. Therefore,

wW(AUB) = (AN Ey) + (AN R\ Ey)) + u(B).

However, the sets arising in the first two terms are clearly separated by F; and
their union is equal to A, so the sum of these two terms reduces to p(A). This
means that £ U Es is y-measurable.

Now, let us consider a sequence (E,,),>1 of disjoint sets in F,,, and let us show
that their union, denoted by E, belongs to the collection F,, and that the formula
in holds. To proceed, let A denote a subset of E and let B denote a subset of its
complement R?\ E. Fixing an integer m > 1 and applying what precedes iteratively

to the sets Fy, ..., F,,, we infer that the union of these sets is y-measurable, so
wWAUB) > p ((Aﬂ | | En> UB) =1 (Am | ] En> + w(B),
n=1 n=1

because the aforementioned union separates its intersection with the set A from
the set B. Furthermore, the set F,, is disjoint from the sets Fy,..., F,,_1 and is
p-measurable, so the first term in the right-hand side is equal to

u((AmT_T&) u(AmEm)> :M<Am"|l__|1En> + (AN E,).

n=1 n=1
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Tterating this procedure, we infer that this term is equal to the sum of u(A N E,)
over all n € {1,...,m}. Thus, letting m go to infinity, we end up with
oo (oo}
(AU B) Z (ANE,) +uB)>p <Am L] En> + u(B) = p(A) + u(B),
= n=1
from which we derlve that the set E is py-measurable. Furthermore, letting B be
the empty set, we readily deduce that

o0
A) =Y uANE,); (49)
n=1
the formula in now follows from choosing A to be equal to the whole set E.

In order to establish 7 it remains to show that when (E,,),>1 is a sequence
of sets in F, that are not necessarily disjoint, the union of these sets also belongs to
F,. Given an integer m > 1, what precedes ensures that the union FyU...UF,;,_;
is p-measurable, as well as the set

m—1

Emﬁ<Rd\UEn>:Rd\<Rd\E UE)
n=1

Here, we adopt the convention that the union is equal to the empty set if m is equal

to one. When m varies, the latter sets form a sequence of disjoint measurable sets,

and what precedes implies that their union, which coincides with the union of the

original sets E,, belongs to F,,. U

Theorem 2.1] helps clarifying the connection between the standard viewpoint,
and the approach of outer measures that we adopt here. To be specific, this result
ensures that the restriction of an outer measure u to the o-field F,, is a measure
in the usual sense of for instance [61, Chapter 1]. Conversely, let us consider a
measure v defined on some o-field F of subsets of R?. We may extend v to the
whole collection P(R%) by letting

v*(E) = inf v(F) (50)

FeF
FDE

for any set E € P(R?). This way, we obtain an outer measure, and the o-field of
all v*-measurable sets contains the original o-field F. This is indeed a particular
case of a more general construction that we now present.

2.2. From premeasures to outer measures: the abstract viewpoint

Rather than just building an outer measure as the extension of a usual measure,
we shall explain how to obtain an outer measure starting from a function defined
on a class of subsets of R

DEFINITION 2.3. A premeasure is a function of the form ¢ : C — [0, co], where
C is a collection of subsets of R? containing the empty set, that satisfies ¢(0)) = 0.

The construction makes use of the standard notion of covering. Given a set E
in P(R%) and a collection C of subsets of R? containing the empty set, recall that
a sequence of sets (C,),>1 in C is called a covering of E if

relen
n=1

Note that this definition encompasses the case of coverings by finitely many sets,
as we can choose the sets (), to be empty when n is large enough. The next result
gives a general method to build an outer measure starting from a premeasure.
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THEOREM 2.2. Let C be a collection of subsets of R containing the empty set,
and let ¢ be a premeasure defined on C. Then, the function ¢* defined on P(R?) by

¢'(B) =, inf Zc (51)
cn%cnn 1

is an outer measure. Here, the infimum is taken over all coverings of the set E by
sequences (Cp)n>1 of sets that belong to C.

PROOF. It is clear from the definition that ¢* is a function defined on P(R?)
with values in [0, co]. Moreover, as the empty set belongs to the collection C, it can
be used to cover itself, so that ¢*(#) < ¢(#) = 0. In addition, if two subsets E; and
E5 of R are such that E; C Es, then any covering of Es is also a covering of F1,
so that (*(E1) < (*(E2).

The only nontrivial property is thus the subadditivity of {*. To prove this fact,
let us consider a sequence (E,),>1 of subsets of R4, and let E denote their union.
We may clearly assume that the sum of the (*-masses of the sets F,, is finite. In
particular, every set F,, has finite measure, so that if some real ¢ > 0 is fixed in
advance, we have

o0
D G(Ch) < CH(Bn) +e27"
m=1
for some covering (C)n>1 of the set E, by sets from the collection C. Then, the

doubly-indexed sequence (CJ}).,.n>1 clearly forms a covering of the set E by sets
from the collection C. Hence,

SIHWCIE

n=1m=1

HM8

((*(En)+€2 ") (Zg )—f—e,

and the result follows by letting € go to zero. O

The next result is elementary and shows that the above procedure is “closed”,
in the sense that it leaves the outer measures unchanged.

PROPOSITION 2.1. Let p be an outer measure. Then, u may be seen as a
premeasure on P(R?) and the outer measure u* defined via coincides with L.

PROOF. Let E denote a subset of R?. Covering the set E by itself and the
empty set, we infer that p*(E) < u(F). Conversely, let us observe that for any
covering (Cp,),>1 of the set E by subsets of R?,

E) SU(U Cn) < ZN(Cn)

Taking the infimum over all the possible coverings in the right-hand side, we deduce
that u(E) < p*(E). O

The next result now gives a rigorous justification to the remarks that we made
around the formula above. In particular, we shall show that if v* is defined
through , then it actually takes the simpler form .

PROPOSITION 2.2. Let v be a measure defined on a o-field F of subsets of
R?. Then, v may be seen as a premeasure on F and the outer measure v* defined
via satisfies the following properties:

(1) the o-field F,- of all v*-measurable sets contains F;
(2) the restriction of v* to the o-field F coincides with v;
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(3) the formula (50) holds, namely,
v*(E) = inf v(F)
FS5E

for any set E € P(RY), and the infimum is attained.

PROOF. Let us consider a subset E of R? and a covering (Fn)n>1 of the set E
by sets belonging to the o-field . Then, the union F' of the sets F;, belongs to F,
as well as the sets G,, = F,, \ (F1 U...UF,_1). The latter sets form a partition of
F and each of them is included in the corresponding set F),, so that

ZV(Fn) > Zu(Gn) =v (U Gn> =v(F).

Taking the infima above, we deduce that v*(E) is bounded below by the infimum
of v(F') over all sets F' € F such that F' D E.

Conversely, let us consider a set F' € F satisfying F' O E. Covering the set E by
F and the empty set, we infer that v*(F) < v(F). We may now take the infimum
over all sets F'. Combined with what precedes, this ensures that holds.

Moreover, ensures that there exists a sequence (F),),>1 of supersets of
E that belong to F and satisfy v(F,) < v*(E) + 1/n for all n > 1. Now, the
intersection F' of these sets belongs to F and contains F, so that

V'(E) <v(F) <v(F,) <v'(E)+ %

for all n > 1. Letting n go to infinity, we deduce that v*(E) = v(F), so that
the infimum in is attained. Besides, note that also ensures that v*(E)
coincides with v(E) when E belongs to F.

It remains to establish that any set F' in F is v*-measurable. To proceed, let
us consider a subset A of F' and a subset B of R?\ F. As the infimum is attained
in , there exists a superset G of AU B that belongs to the o-field F and satisfies
v*(AU B) = v(G). Then, the sets F NG and (R?\ F) NG are disjoint, belong to
F, and contain the sets A and B, respectively. Hence,

v'(A)+v*(B) <v(FNG)+ V((Rd \F)NG)=v(G)=v*"(AUB),
from which we deduce that F' is v*-measurable. O

Note that the restriction of an outer measure p to the o-field F,, of its measur-
able sets is a measure in the classical sense. It is then natural to ask whether we
can recover the outer measure p by applying the above procedure to its restriction.
This will not happen in general, except if the outer measure p is reqular in the
following sense.

DEFINITION 2.4. An outer measure p on R? is said to be regular if for any set
E € P(RY), there exists a set F € F, such that

ECF and w(E) = u(F).

Using the terminology of this definition, we may deduce from Proposition [2.2
that for any measure v defined on a o-field F, the outer measure v* defined via
is regular. Indeed, given a set £ € P(R?), Proposition ensures that there
exists a set F' € F such that £ C F and v*(E) = v(F'), which coincides with v*(F)
by virtue of Proposition . The above discussion can be summarized in the
following statement.

PROPOSITION 2.3. Let i be an outer measure, and let v denote the restriction
of u to the o-field F,, of its measurable sets. Then, v may be seen as a premeasure
on F,, and the outer measure v* defined via satisfies the following properties:
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) the outer measure v* is regular;

) all p-measurable sets are v*-measurable, that is, F,, C Fy»;
) all v*-measurable sets of finite v*-mass are p-measurable;

) v* coincides with p if and only if u is regular.

PROOF. To begin with, Theorem [2.1|ensures that v is a measure on the o-field
Fu. Then, as already mentioned above, Proposition ensures that the outer
measure v* is regular, coincides with v on F,, and satisfies

vV*(E) = Flgn}fﬂ v(F)
FDE
for any set £ € P(R?), where the infimum is attained. Moreover, Proposition
also ensures that F,, C F,-.

Conversely, let us now consider a set F in F,+ and assume that E has finite
v*-mass. Then, as the infimum above is attained, there exists a set F' € F, that
contains E and satisfies v(F') = v*(E), the latter quantity being equal to v*(F)
because v* and v coincide on F,,. We deduce that

v (B) = v*(F) = v*(F \ E) + v*(E).

Given that v*(FE) is finite, it follows that F'\ F is v*-negligible. Thus, using again
the fact that the above infimum is attained, we infer that there exists a set G € F,
that contains F' \ E and satisfies v(G) = v*(FE \ F') = 0. Since v coincides with
the outer measure p on F,, we see that pu(E \ F') < u(G) = v(G) = 0. Thus, the
set E'\ F' is p-negligible, and is therefore u-measurable, by virtue of Theorem
Recalling that F' is u-measurable, we conclude that E is u-measurable as well.

Finally, if u coincides with v*, then it is necessarily regular, because v* is so.
Conversely, if u is regular, then

W(E) = inf u(F) = inf v(F)=v"(E)

FeF,
FDE FDE
for any set E € P(R%), so that the outer measures p and v* coincide. O

2.3. Further properties of measurable sets

Let us now mention some useful properties satisfied by the measurable sets.
PROPOSITION 2.4. Let u denote an outer measure on R? and let (Fn)n>1 be a
nondecreasing sequence of subsets of R®. The following properties hold:

(1) if the sets F,, are u-measurable and E is an arbitrary subset of R, then

u(Eﬂ U TFn> = lim tp(ENF,);

n=1

(2) if the outer measure p is regular, then

p (HT&) = lim 1 u(Fy).

PROOF. Let us begin by assuming that the sets F;, are y-measurable and that
E is a set in P(R?). Given that the sequence (F},),>1 is nondecreasing, we obtain
a sequence (Gyp)n>1 of disjoint pu-measurable sets simply by letting G; = Fy and
G, = F, \ F,_1 for any integer n > 2. Then, for any subset A of the union of the
sets Gy, it follows from that w(A) is the sum of (A N G,) over all n > 1.
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Thus, on the one hand, choosing A to be the intersection of the set E with the
union of all the sets F;,, we deduce that

p (Em U TFn> => WENG,)
n=1 n=1

On the other hand, fixing an integer m > 1 and letting A be the intersection of F

with the union of the sets Gy, ..., Gy, we get

m m
ZM(EﬂGn) =pu (Eﬂ |_| Gn> =u(ENE,).
n=1 n=1
The first part of the result then follows from letting m go to infinity.
Let us now drop the measurability assumption on the sets F;, and suppose
instead that the outer measure p is regular. First, it is clear that the p-mass of

every single set [}, is bounded by that of the union of these sets. Thus,

o0
Tg&TMEJSM<£%TE>- (52)
For the reverse inequality, let us observe that for any integer n > 1, the regularity
of p ensures the existence of a y-measurable superset H,, of F), that has the same p-
mass. Then, the monotonicity of the sequence (F},),>1 implies that F,, C I,, C H,,
for all n, where I,, is defined as the intersection over all m > n of the sets H,,.
Now, observe that (I,,),>1 is a nondecreasing sequence of y-measurable sets, each
of them having the same p-mass as its counterpart in the original sequence (F},)n>1.
As a consequence, the first part of the proof above ensures that

u(UTEJSM(UTQ>=££ju@J=ﬁ&TMﬂ%
n=1 n=1

and the result follows. O

PROPOSITION 2.5. Let u denote an outer measure on R and let (Fn)n>1 be a
nonincreasing sequence of ji-measurable sets. Then, for any subset E of R such
that w(ENF,) < 0o for some integer n > 1,

PL<E7Q (1~LF%> ::JEK>¢M(E(WF%)

n=1

PROOF. Let m denote an integer for which u(E N F,,) is finite. Then, let us
consider the sets G,, = Fy,, \ Fintn, for n > 1; they form a nondecreasing sequence
of p-measurable sets to which we may apply Proposition [2.4{|1]), thereby getting

n=1

u(Em U TGn> = lim 1 u(ENGy)

Now, the subsequence (F},),>m+1 is formed of y-measurable sets, and the set ENF,,
has finite p-mass, so that the left-hand side of this equality is equal to

ﬂ/<EUWF%1\ Fﬁ ¢}%> =lﬂf5ﬁfﬂn)—lt<5”7f%zﬂ Fﬁ ¢E%>~

n=m-+1 n=m+1
Likewise, its right-hand side is the limit as n goes to infinity of
WENF,\F,) =pENE,) —uwENF,NE,).

It is now plain that the above equalities lead to desired result. O
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2.4. From premeasures to outer measures: the metric viewpoint

We explained in Section [2.2] how to build an outer measure starting from a
premeasure defined on a class of subsets of R?. Let us now present another way of
extending a premeasure into an outer measure, by taking additionally into account
the metric structure of the ambiant space R%. Accordingly, the next result is the
counterpart of Theorem The diameter of an arbitrary set E € P(R?) is denoted
by |E| in what follows.

THEOREM 2.3. Let C be a collection of subsets of R containing the empty set,
and let ¢ be a premeasure defined on C. Then, the function (. defined on P(R?) by

G(E) =Tm 1 G(B)  with  (5(B) = Eg¢f07<5§<(0n> (53)

is an outer measure. Here, the infimum is taken over all coverings of the set E by
sequences (Cp)n>1 of sets belonging to C with diameter at most 6.

PROOF. The result follows straightforwardly from Theorem[2:2] combined with
a simple observation. As a matter of fact, for any fixed § > 0, Theorem implies
that (s is an outer measure, namely, that obtained from the restriction of the
premeasure ¢ to the collection of sets in C whose diameter is at most §. It now
suffices to observe that (, may also be written as the supremum over all § > 0 of
the outer measures (s, and make use of the obvious fact that the supremum of an
arbitrary family of outer measures is also an outer measure. O

Let us mention that it is obvious from and that for any premeasure
¢ and any subset E of R? we have (*(E) < (s(E) for all § > 0; thus, taking the
limit as § goes to zero, we deduce that

VECR?  (*(E) <((E). (54)

The main advantage of the above construction over that given by Theorem [2.2]
is that one does not need to check whether two given disjoint sets are measurable
when intending to apply the additivity property of the outer measure (, to their
union. Thus, (, falls into the category of metric outer measures that we now define.

DEFINITION 2.5. An outer measure y on R? is said to be metric if for all sets
A and B in P(R%)\ {0},

d(A,B)>0 =  u(AUB) = u(A) + u(B).

In the previous definition, d(A, B) denotes the distance between the sets A and
B, that is, the infimum of |a — b| over all « € A and b € B. When this distance
is positive, the sets are said to be positively separated. The previous remark now
takes the form of the following precise result.

PROPOSITION 2.6. For any choice of the premeasure C, the outer measure (s
defined via is metric.

PROOF. Let us consider two nonempty subsets A and B of R%, and let us
assume that d(A, B) > 0. As (, is an outer measure, it suffices to prove that the sum
of the (,-masses of these sets A and B is at most the (,-mass of their union, which
we may assume to be finite. For any ¢, 61,02 > 0, letting § = min{d1, d2,d(A, B)/2},
we deduce from that there exists a sequence (Cy,)p>1 of sets in C with diameter
at most § such that

AuBC |JCn  and ) ((Cn) <G(AUB) +e.
n=1

n=1
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Note that none of the sets C,, can intersect both A and B. Indeed, in that situation,
there would exist two points a € AN C,, and b € BN C,,, which would lead to
2|la —b| <2|C,| <25 <d(A,B) <la—b|,

a contradiction with the disjointness of the sets A and B. As a consequence, letting
A, = C, if C,, intersects A and A,, = () otherwise, and letting B, = C, if C,
intersects B and B,, = () otherwise, we have

D CCh) =D T C(An) + Y C(B).
n=1 n=1 n=1

Moreover, one easily checks that (A4,),>1 and (B,),>1 are two sequences of sets
in C with diameter at most d; and J9, respectively, that cover the sets A and B,
respectively. Thus, we end up with

<*(A U B) +e2 451(‘4) + Céz(B)
We conclude by letting 41, d2 and € go to zero. O

On account of the fact that the outer measures of the form (, are metric, we
may now state an analogue of Proposition 2.4 where the measurability assumptions
are replaced by positive separateness conditions.

PROPOSITION 2.7. Let (. be the outer measure defined in terms of a given
premeasure ¢ through , and let (Eyp)p>1 denote a nondecreasing sequence of
subsets of R%. If d(E,,R\ E,11) is positive for any integer n > 1, then

G <U TEn> = lim 1 G (By).
n=1

PROOF. It is clear that holds for the sets F,. We thus need to prove the
reverse inequality, and we may assume that the sequence ((.(E,))n>1 is bounded.
Now, let us consider the sets Fy = Fy and F,, = E, \ E,,_; for all n > 2. Then, for
any integer n > 1, the set Fy U F5 U ... U F5,_1 is included in Fs,_1 and the set
F,41 is included in R?\ Es,,, so that

d(FLUFsU. ..U Fs,_1, Fopy1) > d(Eon_1,RY\ Ey,) > 0.
By virtue of Proposition [2.6] the outer measure (, is metric, and therefore
CFIUFU. ..U Foni) = G(FLUF3 U U Fon1) + Co(Fanga)-

Tterating this procedure, we readily deduce that
N

N
Z Ce(Fan—1) = (s <|_| F2n1> < ((Fan—1).

n=1
We may obviously apply the same ideas to the sets F),, for the even values of n,
thereby inferring that

N N

n=1

Recalling that the sequence ((«(E)))n>1 is bounded, we deduce that the series
> G (Fp) converges. Now, for all N > 1, we have

n=1

n=N+1 n=N+1
and the desired inequality follows from letting IV go to infinity. (]
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We are now in position to state the main result concerning the outer measures
of the form (., namely, that the Borel sets are measurable. The Borel o-field is
denoted by B in what follows.

THEOREM 2.4. Let , be the outer measure obtained from a given premeasure
¢ through . Then, the Borel subsets of R are (.-measurable, that is, B C Fe,.

PRrROOF. We know from Theorem [2.1/[1)) that the (.-measurable subsets of R?
form a o-field denoted by F¢,. In order to show that the Borel o-field is included
in F¢,, it thus suffices to establish that every closed subset of R? is (.-measurable.

Given a closed subset F' of R?, let us consider two sets A and B in P(R?) that
are included in F' and R?\ F, respectively. We may suppose that A and B are
nonempty. Now, for any integer n > 1, let B,, denote the set of points b € B such
that d({d}, F') > 1/n. The sets B,, clearly form a nondecreasing sequence of subsets
of B. Moreover, if b denotes a point in B, then d({b}, F') is positive, because the
set I is closed and cannot contain b. Thus, the point b belongs to B,, for n large
enough. It follows that

o0
B= L_J1¢Bn.

For any integer n > 1, let us consider two points b € B,, and ¢ € R%\ B,,;;. Then,
the distance between the point ¢ and the set F' is at most 1/(n + 1), so that there
exists a point f € F satisfying |c — f| <2/(2n + 1). Hence,

1 2 1

ocl 2 b fl = le = f1 2 A} F) ~le — f1 > - = 5oy = oo

> 0.

We may thus conclude that the distance between the sets B, and R4 \ Bpnt1 is
positive, regardless of the value of n. The sets A U B,, satisfy the same property:

d(AUB,, R\ (AU B,41)) > min{d(A,R%\ B, 11),d(B,,R\ B,41)} >0,

where the distance between A and B, is clearly positive in view of the definition
of B,+1 and the fact that A is contained in F. This means that we may apply
Proposition to the sequence of sets (AU B,),>1, as well as to the mere sequence
(Br)n>1, thereby obtaining

CG(AUB) = lim 1 G(AUB,) = G(A) + lim 1 C(Ba) = G (A) + G.(B).

Here, we also used the fact that the outer measure (, is metric: this enabled us to
write the (,-mass of the union of the sets A and B,, as the sum of their (,-masses,
because the distance separating them is positive. We may thus conclude that the
set F' is (,-measurable. O

2.5. Lebesgue measure

The general theory developed in Sections and may be applied to define
the important example of Lebesgue measure and recover its main properties. The
starting point is the premeasure v defined on the open rectangles of R? by

d d
v (H(ai, bz)> = H(bz - ai) (55)

for any choice of points (ay,...,aq) and (by,...,byq) in the space R? such that the
condition a; < b; holds for any i € {1,...,d}.
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DEFINITION 2.6. Let v be the premeasure defined by on the open rectan-
gles of R?. The d-dimensional Lebesque outer measure L% is the outer measure on
P(R?) defined with the help of from the premeasure v, namely,

£4 = v*.

The d-dimensional Lebesque measure, still denoted by £%, is then the restriction of
this outer measure to the o-field of its measurable sets.

A noteworthy property that readily follows from Definition [2.6] is that the
Lebesgue outer measure is translation invariant and homogeneous of degree d under
dilations. We also observe that, according to this definition, the Lebesgue outer
measure is obtained through . It is therefore an outer measure, as its name
suggests, as a consequence of Theorem [2.2] However, as shown by the next result,
the Lebesgue outer measure may also been obtained recovered with the help of .
It will thus satisfy the additional metric properties discussed in Section [2.4

PROPOSITION 2.8. The Lebesque outer measure L coincides with the outer
measure defined on P(R?) from the premeasure v with the help of , that is,

L% = 0,.

ProoF. In view of , we already know that £¢(E) is smaller than or equal
to v, (E), for any subset E of R?. In order to prove the reverse inequality, we may
clearly assume that £¢(F) is finite and, given a real number £ > 0, consider a
sequence (C,)p>1 of open rectangles such that

Ec|JC, and > 0(Cn) < LYE) +e.
n=1 n=1

A real number § > 0 being fixed, we now need to derive from the sequence (Cy,)n>1
a covering of the set F with open rectangles with diameter at most §.

To proceed, we shall make use of the following elementary observation. We
consider an open rectangle R that is determined by two points (ai,...,aq) and
(b1,...,bg) in R, For any integer ¢ > 1 and any real number i > 0, the set R is
clearly contained in the union of the open rectangles

d
i — 1 i
Rp:H<ai+p p (bi—ai),ai—kp ;n(bi—ai)>,

=1

where p = (p1, ..., pq) ranges in the set {1,...,q}?. Letting ¢ denote a positive real
number such that |z| < ¢|z| for all # € RY, we see that the diameter of each set
R, satisfies

1+n
Byl < c

b — aloo < 0,

where the last inequality holds for an appropriate choice of ¢ and 7. Furthermore,
turning our attention to the premeasure v, we have

d
1+n
> o) =[] <q<bi - >) = (1+0)"0(R),
p€{l,....q}¢ =1
a value that may be arbitrarily close to v(R) if 7 is sufficiently small.

The upshot is that every rectangle C,, may be covered by finitely many open
rectangles C, 1, ..., C), m,, with diameter at most ¢ and such that

Mp

Z v(Chm) <v(Cp)+e27™

m=1
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Collecting all the rectangles C,, ,,,, we obtain a covering of the set E with sets of
diameter bounded above by §, and therefore

R

where vg is defined as in . We conclude by letting §, and then €, go to zero. [

My, 0o

Z Y4+e27™) < LUE) + 2,

1m=1 n=1

M

It follows from Proposition that the Lebesgue outer measure enjoys all the
properties presented in Section For instance, Theorem ensures that the
Borel subsets of R? are measurable with respect to the Lebesgue outer measure.
Equivalently, the Lebesgue measure is well defined on Borel sets.

We finish this discussion of Lebesgue measure by a simple expected result that
however does not follow from the general theory presented in the previous sections.

PROPOSITION 2.9. For any open rectangle R of R?,

Proor. Clearly, Definition ensures that £¢(R) is bounded above by v(R)
for any open rectangle R. For the reverse inequality, we consider a closed hyper-
rectangle S delimited by two points (a1, ...,aq) and (by,...,by) satisfying a; < b;
for all ¢ € {1,...,d}, namely,

d

S = H[(Li, bz}

i=1

We further consider a covering (C),)n>1 of the rectangle S composed of open rect-
angles. The set S is compact and the sets C),, are open, so there exists a finite
subset N of N such that the rectangles C,,, for n € A/, cover and intersect the set
S. Defining R = int S, the interior of S, we then observe that for each n € N, the
intersection set R N C), is a nonempty open rectangle; its endpoints are denoted
by (an1,---,an,q) and (by,1,...,bnq). For each i, we introduce a nondecreasing
rearrangement of the real numbers a,,; and b, ;, specifically,

a;=c1; <...< caq = by,

where ¢ denotes the cardinality of the index set A.
Then, for each integer point p = (p1,...,pq) in the set {1,...,2¢ — 1}%, let us
examine the open rectangle

d
H Cpul’cp7+1 i

When R, is nonempty, its midpoint lies in R, therefore belonging to some open
rectangle C,,, with n € N. However, the above rearrangement procedure guarantees
that the whole rectangle R, is actually contained in the intersection RN C,,. Thus,
any R, is fully contained in some RN C,,. Moreover, for the same reason, the value
assigned by the premeasure v to the set R N C,, coincides with the sum of those
assigned to the sets R, that it contains:

v(RNCy) = > u(Ry).
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These observations enable us to deduce that

ZU(Cn) > Z (RNCY) Z Z v(Rp)

n=1 neN neN pe{1,...,2q—1}4

d d

> Z H Cp;+1,i — Cp;, ) = H(CZq,i - Cl,i) = H(bz - ai)-

pe{l,....2q—1}d i=1 i=1 i=1

Taking the infimum over all coverings (C),)n>1 in the left-hand side, we deduce that

d
48) > H(bi —a;).

Finally, if R denotes a nonempty open rectangle determined by two points
(a1,...,aq) and (by,...,bq), it is clear that the closed rectangle S, delimited by
the points (a1 + 7,...,aq + 1) and (by — 7n,...,bg — 1) is contained in R, with
the proviso that the positive parameter n is sufficiently small. As £? is an outer
measure, we deduce from what precedes that

Ed(R)zﬁd Hb —a; —2n).

The right-hand side clearly tends to v(R) as n — 0, and the result follows. O

A simple consequence of Proposition is that if R is the closed rectangle
determined by the points (a1,...,aq) and (by,...,bs), then we have

d
R= H[ai, bl] and Ed(R) = H(bl — ai). (56)

In fact, on the one hand, R obviously contains its interior, denoted by int R, which
is the open rectangle delimited by the same endpoints. For any n > 0, on the other
hand, R is also included in the open rectangle R, that is delimited by the points
(a1—n,...,aq—mn) and (b1 +7n,...,ba+n). Consequently, in view of Proposition
and the fact that £¢ is an outer measure, we get
v(int R) = £%(int R) < LYR) < LYR,) = v(R,),
from which we straightforwardly deduce that
d d

[T = ai) < £4R) < JJ(bi — ai + 2n),

i=1 i=1
and the right-hand side coincides with the left-hand side when we take the limit as

7 goes to zero. Note that the same result also holds if R is, for instance, a half-open
rectangle of R,

2.6. Hausdorff measures

2.6.1. Definition and main properties. As shown by Proposition be-
low, the Lebesgue measure discussed in Section falls into the category of Haus-
dorff measures that we now present. To begin with, the Hausdorff measures are
obtained by applying Theorem to the premeasures that are defined in terms of
the class of gauge functions.

DEFINITION 2.7. A gauge function is a function g defined on [0, co] which is
nondecreasing in a neighborhood of zero and satisfies the conditions

lim g(r) = 9(0) =0 and  g(o0) = oo
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The convention that gauge functions take an infinite value at infinity has very
little importance and is only aimed at lightening some of the statements below. Note
in addition that we do not exclude a priori the possibility that a gauge function
assigns an infinite value to some positive real numbers.

DEFINITION 2.8. Let go|-| be a shorthand for the premeasure defined on P(R%)
by E — g(|E|). For any gauge function g, the Hausdorff g-measure HY is the outer
measure on P(R?) defined with the help of from the premeasure go|- |, namely,

HI=(gol ]

In view of this definition, the properties obtained in Section [2.4] are satisfied
by the Hausdorff measures. In particular, it readily follows from Theorem that
the Borel subsets of R? are measurable with respect to the Hausdorff measures. It
is also important and useful to remark that the Hausdorff measures are translation
invariant. Besides, for any real number ¢ > 0, we shall also use the outer measures

Hy=(go1]Ds

defined by in terms of the premeasure go|-|. Note that they are indeed outer
measures as a result of Theorem 2.2

2.6.2. Normalized gauge functions. We shall hardly be interested in the
precise value of the Hausdorff g-measure of a set, but only in its finiteness or its
positiveness. Thus, it will be useful to compare the Hausdorff g-measures with
simpler objects obtained for instance by making further assumptions on the gauge
function g or the form of the coverings. This is the purpose of the next two results.
The first statement calls upon the following notion of normalized gauge functions.

DEFINITION 2.9. For any gauge function g, we consider the function g4 defined
for all real numbers r > 0 by

ga(r) =r ot Z (57)
along with ¢g4(0) = 0 and g4(c0) = oo; the function g4 is then called the d-
normalization of g. Moreover, we say that a gauge function is d-normalized if
it coincides with its d-normalization in a neighborhood of zero.

The next result shows that the Hausdorff measure associated with some gauge
function is comparable with the measure associated with its d-normalization.

PROPOSITION 2.10. For any gauge function g, the function gq defined above is
a gauge function for which the mapping r v gq(r)/r¢ is nonincreasing on (0, 00).
Moreover, there exists a real number k > 1 such that for any gauge function g and
any subset E of R?,

H94(E) < HI(E) < k HI(E).

PROOF. First, it is obvious from that the mapping 7 — gq(r)/r? is non-
increasing on (0, 00), and that

Vr>0  0<gar) <g(r), (58)

which ensures the right-continuity at zero of g4. Let us show that g4 is nondecreas-
ing in a neighborhood of the origin. Recall that g is nondecreasing on the interval
[0,¢] for some £ > 0. Now, if 0 < r < ¢’/ < ¢, then we have gq(r) < gq(r’'), because

¢ 90

<p4 inf 22 < < i < M.
ga(r) < 7' inf i and ga(r) < g(r) < inf g(p) <+ inf i
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To show that the Hausdorff measures HY and HY¢ are comparable, let us con-
sider a real ¢ > 1 such that |z]o/c < |7| < ¢|x| for all z € R?\ {0}, and a subset
E of R%. We shall show that

HI(E) < HI(E) < (4c¢*)HI4(E).

The leftmost inequality clearly follows from the definition of the Hausdorff mea-

sures, along with . In order to show the rightmost inequality, let us consider

a sequence (Cp),>1 of sets in P(R?) with diameter at most some & € (0,¢] and

such that £ C J,, Cy. If the set C,, has positive diameter, then there exists a real
€ (0,|Cy]] such that

|cn|d9( n) < ga(Cal) + 527,

n

and there exists a point x,, € Cy,, so that C,, C Buo(2p,c|Cy|). Furthermore, the
latter ball is covered by m,, = [2¢2|C,|/pn]¢ closed cubes with sidelength p,, /c,
denoted by K, 1,..., Ky, m,. Hence,

s+ gl z X G > o S mag(on)
n=1 Pn

n>1 n>1
|[Cn|>0 |Cn >0

1 = HI(F)

> 9(|Cnl) + (| Knm|) | = 72,
|Cn|=0 |Cn\>0

and the desired inequality follows from taking the infimum over all the sequences
(Cpn)n>1, and finally letting 0 go to zero. O

2.6.3. Net measures. The second statement shows that we may restrict our
attention to coverings with dyadic cubes when estimating Hausdorff measures of
sets. The main advantage of working with coverings by dyadic cubes is that they
may easily be reduced to coverings by disjoint cubes; this is due to the fact that two
dyadic cubes are either disjoint or contained in one another. Recall that a dyadic
cube is a set of the form

A=279(k+[0,1)%),
with j € Z and k € Z%. We also adopt the convention that the empty set is a
dyadic cube. The collection of all dyadic cubes, including the empty set, is denoted
by A. Given a gauge function g, let us consider the premeasure that maps each set
Ain A to g(JA]), and which is denoted by g o |- | for brevity. Then, Theorem
enables us to introduce the outer measure

MI = (gol-[a)e (59)

and the results of Section [2.4{ show in particular that the Borel sets are measurable
with respect to MY; this outer measure is usually termed as a net measures. Fur-
thermore, for any real 6 > 0, let M stand for the outer measure (go |- |a)s that

is defined as in .

PROPOSITION 2.11. There exists a real &' > 1 such that for any gauge function
g and any subset E of R?,

HI(E) < MI(E) < v HI(E).

PROOF. The leftmost inequality is clear, because a cover by dyadic cubes is a
particular case of a cover by arbitrary sets. To prove the rightmost inequality, let us
consider a real ¢ > 1 such that |7 /c < |2] < ¢|z]o for all z € R?\ {0}, and a real
€ > 0 such that g is nondecreasing on [0, ], just as in the proof of Propositionm
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Then, let E denote a subset of R? and let (C},),>1 be a sequence of sets in P(R%)
with diameter at most some d € (0,¢] and such that £ C |, Cp.

If the set C), has positive diameter, then it contains a point z,, so that C,
is contained in the ball Boo(2y, ¢|Cy|). Furthermore, the latter ball is covered by
|4c?|4 dyadic cubes with sidelength 277, where j, is the only integer satisfying
27In < |Cy|/e < 2797 F1; the cubes are denoted by An 1, ..., Ay |4c2)a. Furthermore,
if the diameter of C,, vanishes, then this set is either empty or reduced to a singleton
{z,}. In the first case, we let \,, = 0. In the second case, we let \,, be an arbitrary
dyadic cube with sidelength at most ¢, that contains x,,, where ¢, is chosen small
enough to ensure that ce, < e and g(ce,) < 027™. As a consequence,

4c2)?
MYE)< Z Pl + Y g(An])
n>1 n>1
|Cn|>0 |Cn|=0
< @A)t > g+ D 827 < (4c?) Z (ICul) + 6
\c?nz\;o #2’21:1 n=1

and the result follows from taking the infimum over all the sequences (Cy,),>1, and
letting § tend to zero. O

Note that Proposition may be straightforwardly extended to coverings by
m-adic cubes. Such a generalization will be used in Section [3.4]

2.6.4. Further properties. In the same vein, we may derive from the relative
behavior at zero of two given gauge functions g and h a comparison between the
corresponding Hausdorff measures. This is the purpose of the next result.

PROPOSITION 2.12. For any gauge functions g and h and for any set E C R?,

(hg(l)lf %) H"(E) < HI(E) < (11313(1)11) m> HM(E),

except if the lower or upper bound is of the indeterminate form 0- oo, in which case
the corresponding inequality has no meaning.

PROOF. Let us consider a sequence (C),),>1 of subsets of R¢ with diameter at
most some § > 0, and let us assume that E C Un C,,. Then, it is clear that

(0<r<6h: )Zh |Cnl) Sgg(lcnl)ﬁ ( sup :)Zh [eX)

0<r< 6h

and we conclude by taking the infima over (C,,),>1 and letting 6 tend to zero. O

Let us now explain how the Hausdorff measures behave when taking the image
of the set of interest under a mapping that satisfies a form of Lipschitz condition.

PROPOSITION 2.13. Let V' be a nonempty open subset of R* and let f be a map-
ping defined on 'V with values in R® . Let us assume that there exists a continuous
increasing function ¢ defined on the interval [0, 00) such that ©(0) =0 and

Ve,ye Voo [f(@) = f()] < ellz —yl).

L may be extended to a gauge

Then, for any gauge function g, the function g o @~
function, and for any subset E of V,

1

I (f(E)) < H(E).
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PRrOOF. First, note that g o ¢! is nondecreasing on an interval of the form

[0,€]. As usual, let us consider a sequence (C),),>1 of subsets of R? with diameter
at most a given § > 0 for which ¢(é) < ¢, and such that £ C J,, Cy,. Thus, the
image set f(FE) is covered by the sets f(C, NV). In addition,
f(Can V)= sup [f(z)=f(y)l< sup  o(lz—yl) < o(|Cnl)
z,yeC, NV z,yeC, NV

for every integer n > 1, from which it follows that

oo

HEE (F(E) < gow  (f(C Zg Cal),

n=1
and we conclude again by taking the infimum on (Cn)n21 and the limit as the
parameter ¢ tends to zero. 0

Proposition [2.13]is typically applied to mappings f that are Lipischitz, or even
uniform Hélder, on an open set V'; the function ¢ is therefore of the form r — Cre.

2.6.5. Connection with Lebesgue measure. Finally, it is important to ob-
serve that the Lebesgue measure £%, already discussed in Section is a particular
example of Hausdorff measure.

PROPOSITION 2.14. There exists a real number ' > 0 such that for any set B
in the Borel o-field B,

H=m" (B) = k' LYB). (60)

PROOF. Letting ¢ denote a positive real such that |z|s/c < |2| < ¢|z|o for
all z € R, one easily checks that M= ([0,1)4) < ¢?. Using Proposition
we infer that ’HrHrd([O, 1)4) < 4. Conversely, let us consider a sequence (\,)n>1
of dyadic cubes with diameter at most a given § > 0 such that [0,1)¢ C [J, M.
Therefore, as holds for half-open rectangles, we have

1= %0, 1) <ch gcdiw\d;
n=1

taking the infimum over all sequences (>‘n)n21 and the limit as ¢ goes to zero, we
thus deduce that MrHrd([O, 1)4) > ¢=?. Using Proposition and the notations
therein, we now infer that HTHTd([O, 1)4) > ¢4/K'. Tt follows that

" =1 (10, 1)%) € (0, 00).

Given that the Lebesgue measure of the unit cube is equal to one, we deduce
that holds when the Borel set B is equal to the unit cube [0,1)%.

Let us now consider an integer j > 0. The unit cube is the disjoint union of
the dyadic cubes of the form 277 (k + [0,1)?) with k € {0,...,27 — 1}%. By virtue

of Theorem |2.4] these dyadic cubes are measurable with respect to HT’_’T so that

H o)) = > W Rk + [0,1)%),

ke{0,...,2i —1}4

Due to the translation invariance of the Hausdorff measure 'HTH’"d, the value of the
summand in the right-hand side does not depend on the value of k. We deduce
that for any dyadic cube A C [0,1)? with sidelength 277, we have

Hr»—wd ()\) _ /<;H2_dj — Rllﬁd()\).

The latter equality is due to the obvious fact that the dyadic cube A has Lebesgue
measure equal to 2% see the discussion at the end of Section The upshot is
that holds when the set B is an arbitrary dyadic subcube of [0, 1)4.
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Finally, in view of Theorem we obtain two finite measures on the unit
cube [0,1)¢ by restricting the outer measures £”£% and H™" to the Borel sets
therein. Moreover, the above discussion shows that these two measures coincide
on the dyadic subcubes of [0,1)¢, which form a 7-system that generate the Borel
sets. We deduce from the uniqueness of extension lemma that the measures x” £%
and H™"" agree on the Borel subsets of [0,1)%, see e.g. [61, Lemma 1.6(a)]. By
translation invariance and countable additivity on measurable sets, we conclude
that holds on all the Borel subsets of R<. O

If the space R? is endowed with the Euclidean norm, it can be shown that the
constant x” arising in the statement of Proposition [2.14]is given by

d
d/2 (2)! if d is even
g m if d is Odd,
2 )

where I" denotes the gamma function, see [51], pp. 56-58] for a detailed proof.
Furthermore, the ideas developed in the proof of Proposition also lead to
the following noteworthy result for general Hausdorff measures.

PROPOSITION 2.15. Let g denote a gauge function, and let £, be the parameter
defined in [0, 00] by the formula

{y = liminf @ (61)

r—0 rd
Then, depending on the value of £y, one of the three following situations occurs:
(1) if £, = oo, then for any Borel subset B of R,
£4B) >0 = HI(B) = o0;

(2) if by € (0,00), then there exists a real number kg > 0 such that for any
Borel subset B of R?,

HI(B) = kg LY(B);
(3) if L5 =0, then the outer measure H9 is equal to zero.

PROOF. Let g4 denote the d-normalization, defined by , of the gauge func-
tion g. Thanks to Proposition 2.10] we know that g4 is a gauge function for which
the mapping r — gq(r)/r¢ is nonincreasing on the interval (0,00), and that there
exists a real number x > 1 independent on g such that for any Borel set B € B,

H94(B) < HI(B) < kH%(B). (62)

On top of that, let us observe that g4(r)/r% tends to £, when 7 goes to zero. Hence,
Proposition [2.12] implies that we also have

Hgd(B) _ égf}_[?‘»—ﬂ'd (B),

except if the right-hand side is of the indeterminate form 0 - co. Letting «” denote
the positive real number appearing in , we deduce from Proposition that,
except in the aforementioned indeterminate case, we further have

H9(B) = r""4,LYB). (63)

This directly yields . As a matter of fact, if the parameter ¢, is infinite and
B denotes a set in the Borel o-field B, we then have

L£LYB) >0 —  HIY(B)>H%(B) = .
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In order to prove and 7 let us assume that the parameter ¢, is finite.
Then, the H9-mass of the unit cube [0,1)¢, denoted by kg, is finite as well. Indeed,
applying and to the unit cube, we get

g = HI([0,1)%) < kHI([0,1)%) = k"L, £LY([0,1)%) = kKL, < 0.

Moreover, if £, vanishes, then k4 vanishes as well. The countable subadditivity and
the translation invariance of the outer measure H9 imply that the whole space R¢
has zero HY9-mass. This means that holds. To establish , let us suppose that,
in addition to being finite, the parameter ¢4 is positive. Applying and to
the unit cube, we also get

kg = HI([0,1)%) > H9([0,1)%) = &L, £7([0,1)?) = K", > 0.

Hence, k4 is both positive and finite. We now proceed as in the proof of Proposi-
tion[2.14] The measurability of the dyadic cubes with respect to H¢ and the trans-
lation invariance of that outer measure imply that for any dyadic cube A C [0, 1)<,

HIN) = kg LIN).

Using the uniqueness of extension lemma just as in the proof of Proposition
we may conclude that the measures r,L£% and HY agree on the Borel subsets of
[0,1)¢, and finally that (2 holds. O

Note that, in the first case addressed by Proposition 2.15] the statement may
be applied to nonempty open sets. As a consequence, when ¢, is infinite, we have

VYU # @ open  HI(U) = oo.

This follows from the obvious fact that nonempty open sets are Borel and have
nonvanishing Lebesgue measure.

2.7. Hausdorff dimension

The Hausdorff measures associated with general gauge functions enable to give
a precise description of the size of a subset of R%. However, it is arguably more
intuitive, and often sufficient, to restrict to a specific class of gauge functions,
namely, the power functions r — r* for s > 0. This approach gives rise to the
notion of Hausdorff dimension.

For these particular gauge functions, we use the notation H* instead of H""",
for brevity, and we call this outer measure the s-dimensional Hausdorff measure.
It is clear that the gauge function r — r® is normalized if and only if s < d; when
s is larger than d, the corresponding d-normalization is the zero function and, on
account of Proposition [2.10] the s-dimensional Hausdorff measure is constant equal
to zero. Furthermore, it is convenient to define H° as the outer measure obtained
by applying Theorem to the premeasure that maps a given subset of R? to one
if the set is nonempty and to zero otherwise; it is then easy to see that H° coincides
with the counting measure # on R¢.

Specializing Proposition [2.12]to the power gauge functions, it is easy to observe
that for any nonempty subset E of R?, there exists a critical value sq € [0,d] such
that for all s > 0,

s < S = HP(F) = o0
s> 8o = H*(E) = 0.
Note however that one cannot conclude in general as regards the exact value of

Ho(E): it may well be zero, infinite, or both positive and finite. In the latter case,
E is called an sg-set. We may now define the notion of Hausdorff dimension.
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DEFINITION 2.10. The Hausdorff dimension of a nonempty subset F of R? is
defined by the formula

dimyg £ = sup{s € [0,d] | H*(E) = oo} = inf{s € [0,d] | H*(E) = 0},

with the convention that the supremum and the infimum are equal to zero and d,
respectively, if the inner sets are empty. Moreover, we adopt the convention that
the Hausdorff dimension of the empty set is equal to —oo.

We may in fact specialize to the power gauge functions the results of Section|2.6
thereby obtaining the following proposition.

PROPOSITION 2.16. Hausdorff dimension satisfies the following properties.
(1) Monotonicity: for any subsets Ey and E of R,

FE1 C E, — dimyg 7 < dimy Fs.

(2) Countable stability: for any sequence (E,)n>1 of subsets of RY,

dimy U FE, =supdimy F,.

n—1 n>1

(3) Countable sets: if a subset E of R? is both nonempty and countable, then
dimy £ = 0.

(4) Sets with positive Lebesgue measure: if a subset E of R? has positive
Lebesgue measure, then dimyg E = d.

(5) Action of uniform Holder mappings: let V' be an open subset of R? and
let f:V — RY be a mapping such that

de,a>0 Ve,yeV  |f(z) = f(y)| < clz—yl%;
then, for any subset E of V,

[e%

(6) Invariance under bi-Lipschitz mappings: let V be an open subset of R?
andlet f:V — R be a bi-Lipschitz mapping with constant cy > 1, i.e. a
mapping such that

[z —yl

Ve, yeV Tﬁlf(x)ff(y)lﬁcjf\w*y\; (64)

then, for any subset E of V,

(7) Differentiable manifolds: if M is a C*-submanifold of R with dimension
m, then dimg M = m.

ProoF. All these properties basically follow from the definition of Hausdorff
dimension, along with the properties of Hausdorff measures obtained in Section [2.6
Specifically, the monotonicity property follows from the monotonicity property
of the outer measures H*. The countable stability property is due to the mono-
tonicity and the countable additivity of the outer measures H?®. Then, results
from the countable stability of Hausdorff dimension, along with the obvious fact
that singletons have dimension zero. Now, Proposition [2.14] ensures that a sub-
set of R? with positive Lebesgue measure also has positive H%mass; this leads
to (4). Finally, follows from specializing Proposition to the power gauge
functions, @ is a plain consequence of , and is a corollary of and (@ O
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Using M? as a shorthand for the net measures M™"" introduced in Section
and obtained when restricting to coverings by dyadic cubes, we directly deduce from
Proposition that the Hausdorff dimension of a nonempty subset E of R? is also
characterized by the formula

dimyg E = sup{s € [0,d] | M*(F) = oo} = inf{s € [0,d] | M*(F) = 0}.

Finally, let us mention for completeness that MY is defined just as H°, and coincides
with the counting measure on R%.

2.8. Upper bounds on Hausdorff dimensions for limsup sets

Deriving upper bounds on Hausdorff dimensions or, more generally, obtaining
an upper bound on the Hausdorff measure of a set is usually elementary: it suffices
to make use a well chosen covering of the set. There is a situation that we shall
often encounter where the choice of the covering is natural: when the set under
study is a limsup of simpler sets, such as balls for instance.

LEMMA 2.1. Let (E,)n>1 be a sequence of subsets of R, and let

E =limsup F,.

n—oo

Then, for any gauge function g, the following implication holds:
> 9(IEn]) < o0 =  HIYE)=0.
n=1

In particular, the Hausdorff dimension of E satisfies

(o)
Z |En|® < oo} :
n=1

PROOF. Let us consider a real § > 0 and a gauge function g such that the series
>-n 9(|En|) converges. In particular, g(|E,|) tends to zero as n — oo; thus, unless
g is the zero function in a neighborhood of the origin, in which case the result is
trivial, we deduce that |E,| < § for all n larger than some integer ng > 1. We then
choose an integer m > ng and cover F by the sets E,, for n > m, thereby obtaining

dimyg F < inf {8 € [0,d]

oo
HI(E) < > g(|En)).
n=m
The series being convergent, the right-hand side tends to zero as m goes to infinity,
and the result follows from letting ¢ tend to zero. Finally, the upper bound on the
Hausdorff dimension is a plain consequence of specializing the above result to the
power gauge functions. O

A typical application of Lemma[2.1]is the derivation of an upper bound on the
Hausdorft dimension of the set Jg -, see Section Recall that this set is defined
by and consists of the points that are approximable at rate at least 7 by the
points with rational coordinates.

Lemma may also be used to compute an upper bound on the Hausdorff
dimension of a very classical fractal set: the middle-third Cantor set, denoted by
K. There are several ways of defining this set; the most condensed one is certainly
to write K as the image of the symbolic set {0, 1} under the mapping

oo
(ug)j>1 = Y 2u;377,

j=1
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which amounts to saying that a real number between zero and one belongs to K if
and only if the digits in its 3-adic expansion are all equal to zero or two. Another
way, which is probably more suitable for dimension estimates, is to write

K =

J

oo

] L (65)
=0 ue{0,1}s
Here, I,, denotes the closed interval with left endpoint 2ui/3 + ... + 2u;/37 and
length 377, if u is the word wu; .. .u; in {0,1}. For consistency, we adopt the
convention that the set {0,1}° contains only one element, the empty word @, and
that the set Iy is equal to the whole interval [0, 1].

The upper bound on the dimension of K that results from Lemma [2:1] is then

given by the following statement.

PROPOSITION 2.17. The middle-third Cantor set satisfies

log 2
dimg K < &

log3’

PrOOF. Note that every point of the Cantor set K belongs to one of the inter-
vals I,, with u € {0,1}, for every integer j > 0. In particular, K may be seen as
the limsup of the intervals I,,. Applying Lemma [2.1] we are reduced to inspecting
the convergence of the series Y, 27(377)*, and the result follows.

Note that this upper bound may be obtained more directly by covering the
Cantor set K by the intervals I,,, for u € {0,1}7, and then by letting j tend to
infinity. This method also yields an upper bound on the s-dimensional Hausdorff
measure of K at the critical value s = log 2/log 3. To be precise, the aforementioned
covering implies that for § > 0 and j > 0 such that 377 < §,

H(K) <2/(377)° =1.
Taking the limit as § — 0, we deduce that H*(K) < 1. O

‘We shall exhibit below a lower bound on the Hausdorff dimension of K that
matches the upper bound given by Proposition [2.1

2.9. Lower bounds on Hausdorff dimensions

2.9.1. The mass distribution principle. Whereas deriving upper bounds
on Hausdorff dimensions often amounts to finding appropriate coverings, a standard
way of establishing lower bounds is to build a clever outer measure on the set under
study. This remark is embodied by the next simple, but crucial, result.

LEMMA 2.2 (mass distribution principle). Let E be a subset of RY and let
be an outer measure on RY such that u(E) > 0. Let us assume that there exist a
gauge function g and two real numbers c,dy > 0 such that for any subset C' of R?
with diameter at most g,

1(C) < cg(|C]).
Then, the set E has positive Hausdorff g-mass, specifically,

HE)

HI(E) > > 0.

In particular, if g is the power function v — r® for some s € (0,d], then the
s-dimensional Hausdorff measure of E is positive, and dimyg F > s.
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PROOF. Let us consider a real ¢ € (0,do] and a sequence (Cy,),>1 of subsets of
the space R? with diameter at most § that satisfies E C U,, Cn. Then,

on> <3 u(C) < ¢S a(C

oo

n= =

u(E)Su(

and the result follows as usual from taking the infimum over all sequences (C,)n>1
and letting ¢ go to zero. O

Let us apply Lemma[2.2] to derive a lower bound on the Hausdorff dimension of
the Cantor set K; this will complement Proposition 2.17] above in an optimal way.

PropPOSITION 2.18. The middle-third Cantor set satisfies

log 2

dimy K > g3’

PROOF. Let C denote the collection formed by the empty set and all the in-
tervals I, for u € {0,1}7 and j > 0. We define a premeasure ¢ on C by letting
¢(0) = 0, and ((I,) = 277 if the word u has length j. Theorem [2.2] enables us to
extend via the formula the premeasure ¢ to an outer measure (* on all the
subsets of R. One then easily checks that the function g that maps a subset E of
R to the value *(E NK) is also an outer measure.

Given a subset C of R with diameter at most one, we now derive an appropriate
upper bound on p(C). We may clearly assume that CNK is nonempty, as otherwise
1(C) vanishes. Moreover, if C has positive diameter, there is a unique integer j > 0
such that 3-U+1) < |C| < 377. The intervals I, for u € {0,1}/, are separated by a
distance at least 377. Hence, the set C intersects only one of these intervals, which
is denoted by I(C). Therefore, C NK is included in I(C'), so that

u(C) = (CNK) <¢I(C) =277 = (377) < 3°|C|" = 2|C*,

where s is equal to log2/log 3. The same bound holds when C has diameter zero.
Actually, in that case, C' is reduced to a single point in K. For each integer j > 0,
there is a unique u € {0, 1}/ such that this point belongs to I,,, so that
w(C) = (CNK) < ¢(I,) =27 ——0.
_]-)OO

To conclude, it suffices to observe that p(K) is at least one. Indeed, thanks to
Lemma this implies that H*(K) > 1/2, which eventually leads to the result.

For completeness, let us briefly explain why p(K) is at least one. Let us consider
a sequence (Cp)p>1 in C such that K C J,, C,. Since the intervals I,, are either
disjoint or included in one another, there exists a subset A of N such that the sets
C,, for n € N, are disjoint intervals that still cover the set K. Moreover, if C,,
has length 377, let C/, denote the open interval formed by the points at a distance
less than 3=U*Y from C,,. One easily checks that the open intervals C’, are also
disjoint and cover K. By compactness of the latter set, we can extract from N a
finite subset A/ such that the intervals C/,, for n € N, cover K. However, for these
values of n, we have KNC/, = KNC,, by disjointness of the sets C/,. It follows that
K is covered by the finitely many intervals C,,, for n € N”. Among these intervals,
let us pick one that has minimal diameter and that is denoted by C,,,. Then, there
necessarily exists an index ny € N’ such that C,, is the “neighbor” of C,, in the
Cantor set construction: C,, and C,,, have same length, 377 say, and are separated
by a distance equal to 377. Thus, C,,, U C,, is included in a set D € C with length
equal to 3-U~1. Along with the set D, the sets C,,, for n € N’ \ {n1,n2}, cover
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K. Moreover, ¢(Ch,) + ((Cy,) and ¢(D) are both equal to 20~ so that
dUC) =D+ DY C(C).

neN”’ neN’\{ni,n2}

We can repeat this procedure until ending with the trivial covering of the Cantor
set K by the whole interval [0, 1], thereby deducing that

D Ca) = Y (Ca) =¢((0,1]) = 1.
n=1 neN’

Taking the infimum in the left-hand side, we conclude that ¢*(K) > 1. Besides, it

is clear that ¢*(K) < {([0,1]) = 1. Therefore, the p-mass of the Cantor set K is in

fact equal to one. O

Propositions and together imply that the Hausdorff dimension of the
middle-third Cantor set K is equal to s = log2/log3. Inspecting the proofs also
shows that 1/2 < H*(K) < 1. One can actually prove that the exact value matches
the upper bound, i.e. is equal to one.

2.9.2. The general Cantor construction. The above approach may be ex-
tended to a natural generalization of the middle-third Cantor set. It is convenient
to assume that the construction is indexed by a tree, that is, a subset T" of the set

(o)
U=JW~
7=0

such that the three following properties hold:

e The empty word @ belongs to T

o If the word u = u; ...u; is not empty and belongs to T, then the word
m(u) = u1...uj_1 also belongs to T'; this word is the parent of w.

e For every word u in T, there exists an integer k,(T) > 0 such that the
word uk belongs to T if and only if 1 < k < k,,(T); the number of children
of win T is then equal to k,(T').

Let us recall here that, in accordance with a convention adopted previously, the set
N° arising in the definition of U is reduced to the singleton {@}; the empty word
@ clearly corresponds to the root of the tree.

To each element u of the tree T, we may then associate a compact subset I, of
R?, and a possibly infinite nonnegative value ¢(I,,). Defining in addition ¢((}) = 0,
we thus obtain a premeasure ¢ on the collection C formed by the empty set together
with all the sets I,,. We assume these objects are compatible with the tree structure,
in the sense that for every u € T,

ku(T) ku(T)
L2 || e and (L)< D C(Tuk) (66)
k=1 k=1

In particular, nodes w € T such that k,(T) vanishes, i.e. childless nodes, are not
excluded a priori but the corresponding sets necessarily satisfy ((I,) = 0. More
generally, ((I,) surely vanishes when the subtree of T formed by the descendants
of u is finite; this is easily seen by induction on the height of this subtree.

Thanks to Theorem [2.2] we may then extend the premeasure ¢ to an outer
measure ¢* on all the subsets of R? through the formula . This finally enables
us to consider the limiting set

K= || & (67)
j=0

u€TNNI
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together with the outer measure y that maps a set £ C R to the value (*(ENK).
If the tree T is finite, it is clear that K is empty and p is the zero measure, and so
the construction is pointless. The next result discusses the basic properties of K
and p in the opposite situation.

LEMMA 2.3. Let us assume that the tree T is infinite. Then, K is a nonempty
compact subset of I. Moreover, the outer measure p has total mass p(K) = ((Ig).

PROOF. Let us assume that the tree T is infinite. Then, K is the intersection
of a nonincreasing nested sequence of nonempty compact sets, and is therefore itself
nonempty by virtue of Cantor’s intersection theorem.

Moreover, the set K is clearly included in the initial compact set I5. It follows
that the total mass of u satisfies

pRY) = p(K) = ¢*(K) < ((lo).

In order to establish the reverse inequality, let us consider a sequence (Ch,)n>1
in C such that K C (J,, C,,. We may now follow essentially the proof of Propo-
sition 2.18] Indeed, as the compact sets I,, are either disjoint or included in one
another, there exists a subset A/ of N such that the sets C,, indexed by n € N are

disjoint, have a nonempty intersection with K and still cover this set. Moreover, if
C,, is a compact indexed by a node in T NN’ with j > 1, let us define C/ as the

open set formed by the points at a distance less than min{es,...,e;}/3 from C,,
where
g;j = min d(l,,1I,) >0. (68)
w,v€TNNI
uFv

In the trivial case where C,, is merely equal to Iy, we choose C!, to be an arbitrary
open superset of C,,. We do the same thing if e; = ... = €; = oo, which means
that C), is a compact set indexed by the word 1...1 with length j, and that the
tree begins by a single spine connecting the root @ to the node encoded by the
above word. Now that the open sets C/,, for n € A/, are properly defined, one easily
checks that they are disjoint and cover K. The latter set being compact, we may
extract from A a finite subset A/ such that the sets C/,, for n € N, still cover K.
However, for these values of n, we have K N C/, = K N C,. It follows that K is
covered by the finitely many compacts C,,, for n € N”.

Among these sets, we choose one that is indexed by a node with maximal
generation in the tree T'; this node is denoted by u*. Then, the siblings of v* in
the tree T" are of the form 7(u*)k with 1 <k < ky«(T). If a set of the form I (-
intersects K, then it must intersect a unique set C,, with ng € A'. The generation
of Cy, cannot be larger than that of u*, i.e. that of m(u*)k, so that C,, contains
I (uyk- Moreover, the latter inclusion cannot be strict, as otherwise C',, would also
contain I+, which would contradict the disjointness of the sets C,,, for n € N. It
follows that the sets I« that exhibit a nonempty intersection with K may be
written in the form C,,,...,Cy,, with ny,...,n; € A”. In the opposite case where
I(wye N K = 0, then the subtree of T' formed by the descendants of m(u*)k is
necessarily finite and, as a result of a remark made right after 7 this demands
that ((Ir(yu+)x) = 0. Therefore, using , we end up with

ko (uey (T)
YUC) = Y )+ Y. <G
neN’ k=1

neN\{n1,....n:}
2(Un)) + DL (G,
nEN'\{n1,...,n;}

together with the fact that the sets C,, for n € N’ \ {ny,...,n;}, combined with
the set Ir(,~) cover K. We can finally replicate this procedure until obtaining the
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trivial covering of the set K by the initial compact Ix. This leads to

D CCH) = D CC) = C(Io).

neN’
Taking the infimum in the left-hand side, we conclude that {*(K) > ((Ig). O

Let us remark that the second condition in may easily be replaced by an
equality if necessary. Indeed, it suffices to replace { by the premeasure ¢ defined
on C by £(Iz) = ((Iz) and the recurrence relation

L) = (1),

l; C(Iul)

forueT and k € {1,...,k,(T)}. When the denominator vanishes, the numerator
vanishes as well, and we adopt the convention that the quotient is zero. Note that
the premeasure thus obtained bounds ¢ from below.

Under further conditions on the compact sets I,, we may use Lemma [2.2
i.e. the mass distribution principle, in order to derive a lower bound on the Haus-
dorff dimension of the limiting set K. This is the purpose of the next result. In its
statement, (¢;);>1 is the sequence given by and (m;);>1 is defined by

mj = ue%nmiﬁr]lji1 ko (T), (69)

thereby indicating the smallest number of children among the nodes of the tree at
a given generation.

LEMMA 2.4. Let us assume that the sequence (¢;);>1 is decreasing and that the
sequence (m;j);>1 is positive. Then,

1 e
dimy K > lim inf 28071+ M5-1)

j—o0 —log(m;/dsj)

PrOOF. We may assume that the right-hand side in the formula is positive.
Indeed, the integers m; being positive, the tree T is infinite, and Lemmaensures
that the set K is nonempty, thereby having dimension at least zero.

Moreover, note that the sequence (g;);>1 necessarily converges to zero and
thus, as the right-hand side in the formula is positive, that the sequence (m;);>1
has infinitely many terms larger than one. As a matter of fact, let us assume by
contradiction the existence of a real § > 0 such that ; > § for all j > 1. Since the
previous sequence is decreasing, for each j > 0, there exists a node v € T NN/ such
that k,(T) > 2 and the sets Iy1,..., [, (1) are separated by a distance at least
€j41. Hence, I, \ (Iya U ... U Lk, (1)) contains an open ball with diameter 6. We
thus obtain infinitely many disjoint balls with diameter § that are included in I,
which contradicts the boundedness of this set.

Let us now consider the premeasure ¢ defined recursively on the collection C
by ((Iz) =1 and
kﬂ(u) (T) .

It is clear that ( satisfies , and that in fact equality holds therein. We may
thus consider the outer measure p defined on K as above. By Lemma [2.3] again,
its total mass is equal to one.

Now, let C denote a subset of R? such that C N K # @ and 0 < |C] < &1/2.
Then, C is contained in a closed ball B with diameter twice that of C', namely,
|B| = 2|C| < 1. Let j denote the unique integer such that ¢; < |B| < ¢;_1. There
exists a node v* € TNN/ ! such that BN I,- # 0, and this node is unique because

VueT\{2}  ((lu)=
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the compact sets of the (j — 1)-th generation are separated by a distance at least
€j—1. Therefore, the set BN K is covered by the sets I,«; that intersect B, so that

WB) = BB S Y e = o0

1<k<k,x (T)
BN, x 70

#XBa

where xp denotes the set of k € {1,...,kyu(T)} such that B intersects I,«;. For
k in this set, let x; denote a point lying in B and I+ simultaneously. Thus, the

open balls with radius €;/2 centered at xy, for k € xp, are disjoint and all included
in the ball obtained by doubling B. This leads to

5 e ((rn3))= £ )

where x denotes the center of B. We deduce that, in addition to being bounded
above by k- (T), the cardinality of the set yp is also at most (2|B|/s;)%. Hence,
for any real number s € [0, d],

a\ s/d
) < . ey (1) <<2|EB> ) -1

In view of the relationship between the set C' and the ball B, and the definition of
the integers m;, we infer that

1(C) 40
1/d

|C|S - ml...mj_l(mj e’:‘j)s

If s is smaller than the lower bound given in the statement of the lemma, then the
right-hand side is bounded above by 4° for j large enough. Thus, letting x denote
the supremum over j > 1 of this right hand-side, we have k < co and therefore

p(C) < w[C]°

for all subsets C' of R? such that C N K # () and 0 < |C| < €1/2. Now, if C does
not intersect K, the latter bound still holds in an obvious manner since p(C') must
vanish. Finally, the bound also holds when C intersects K and has diameter zero,
because p(C') vanishes as well. Indeed, C' N K is then reduced to a singleton {z},
which is covered by a nested sequence of compact sets I,,, so that

1
nw(C)=¢({z}) < sup (L) € ——\
wETNNI v mip...m;
which goes to zero as j — oo, because m; must be at least two for infinitely many
values of j. We conclude using the mass distribution principle, see Lemma[2:2] O

2.10. Iterated function systems

We now turn our attention to a class of fractal sets that satisfy a kind of
selfsimilarity property, meaning that the sets locally look like the global object.
We shall eventually derive upper and lower bounds on the Hausdorff dimension of
these sets. Let F denote a closed subset of R?. A mapping f : F — F is called a
contraction if

dee(0,1) Ve,ye B [f(y) — f(2)| <cly —af. (70)

From its very definition, a contraction is clearly continuous. Furthermore, we call
an iterated function system any finite collection {fi,..., fm} of contractions with
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cardinality m > 2. As shown by the next statement, any such iterated function
system determines a unique attractor, that is, a nonempty compact K C F with

K = fu(K).
k=1

To establish this result, we endow the collection C(F') of all nonempty compact
subsets of ' with the Hausdorff metric defined by

(A, B) =inf{0 > 0| A C By and B C As},

where As denotes the d-neighborhood of the set A, that consists of the points z € F'
such that d(z, A) < . Let us mention that C(F') is a complete metric space.

PROPOSITION 2.19. Let us consider an iterated function system {fi,..., fm}
on o closed set ' C R%. Then, the system has a unique attractor, denoted by K.
More precisely, letting f be the mapping that sends a set A € C(F) to

m
FA) = | fu(4),
k=1
and choosing A to be stable under each contraction fy, we have

K=()1F(A),

j=0
where fI denotes the j-th iterate of the mapping f.

PRrROOF. Note that f maps C(F') to itself, and that a set in C(F) is an attractor
if and only if it is a fixed point of the mapping f. Then, if A and B are two
nonempty compact subsets of F', we have

S(F(A).1(B) < max 3(fulA). fu(B) <A, B) max cu (7]

1<k<m

where ¢ comes from for the contraction fi. Thus, f is a contraction on the
complete metric space C(F). The Banach fixed point theorem now ensures that
f admits a unique fixed point, i.e. the iterated function system admits a unique
attractor, denoted by K. Moreover, K may be obtained as the limit as j — oo of
the j-th iterate of an arbitrary set A € C(F'). In particular, if A is stable under
each fi, then it is stable under f, that is, f(4) C A. Hence, the sets f/(A) form
a nonincreasing sequence of compacts, and one easily checks that their intersection
coincides with K.

Note that we can always find a set A € C(F) that is A is stable under each fj.
If F itself is compact, then we can obviously pick A = F. Otherwise, letting xq
denote an arbitrary point in F, we can choose A = F N B(xg,r) for r sufficiently
large. Indeed, if 2 € F N B(xg,r), then

|fe(z) — @o| < [fr(x) — fu(wo)| + [ fr(z0) — wo| < ek + [fr(20) — 20| <7
if r is large enough to ensure that the latter inequality holds for all k. Again, the

sets f/(A) are nonincreasing, and their intersection is a fixed point of f. This gives

a more constructive proof of the existence of the attractor. The uniqueness may
then be recovered by means of . (I

The simplest example of attractor is certainly the middle-third Cantor set K,
already dealt with in Sections 2.8 and 2.9} As a matter of fact, it is easy to deduce
from that K is the attractor of the iterated function system {fi, fo} formed
by the two contracting similarity transformations from [0, 1] to itself defined by

T T+ 2

file) == and fa(x) = 3 (72)
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We refer for instance to [29, Chapter 9] for other classical examples of fractal sets
obtained through iterated function systems, like the Sierpinski triangle or the Koch
curve and its generalizations.

Our purpose is now to give some estimates on the Hausdorff dimension of an
attractor K. The next result gives an upper bound and holds in a general setting.

ProPOSITION 2.20. Let K denote the attractor of an iterated function system
{fi,..., fm} defined on a closed set F CRY, and let s be a positive real such that

doa=1, (73)
k=1

where ¢ comes from (@ for the contraction fr. Then, the Hausdorff s-dimensional
measure of the set K is finite, and in particular dimyg K < s.

PROOF. As usual for upper bounds, the proof reduces to finding an appropriate
covering of the attractor K. Thanks to Proposition[2.19] we know that K is covered
by the sets f7(K) for all j > 0. Moreover, f/(K) is the union over all integers
k1,...,k; between one and m of the sets fi, o...o fi,(K). These sets satisfy

|fk1 O"'ofkj(K)| <y "'ij|K|7
so that for all 6 > 0 and for all j large enough,

HyE) S S oo (P SIKE S0 (e eeen)® = K
1<ki,...,k;<m 1<ki,...,k; <m

Letting § go to zero, we deduce that H*(K) is bounded above by |K|?, which is

finite because K is compact. Therefore, K has Hausdorff dimension at most s. [

Obtaining a lower bound on the Hausdorff dimension of the attractor is less
straightforward and requires additional assumptions. The classical setting consists
in assuming that the contractions fj that form the iterated function system are
similarity transformations, i.e. satisfy the condition

Jep € (0,1) Vz,ye Fo |fi(y) — ful@)| = cr ly — 2]

instead of the mere , and then supposing that the open set condition holds,
namely, that there exists a nonempty bounded open subset V' of F' such that

m
V|| mOW).

k=1
It is known from Proposition that the attractor K is the union of its images
fx(K) under the contractions. The open set condition roughly means that these
components f;(K) do not overlap too much, and that the union is nearly disjoint.
Following this intuition and exploiting the fact that the contractions f; are simi-
larities, a nonrigorous heuristic approach then consists in writing that

Ho(K) =Y H(ful(K)) = H (K) ) cf,
k=1 k=1

so that the only plausible value for the Hausdorff dimension is the solution of .
It is actually possible to make this approach correct, and to prove that, under the
above assumptions, the Hausdorff s-dimensional measure of K is both positive and
finite, so that in particular dimy K = s, where s solves . We refer for example
to [29, Theorem 9.3] for a precise statement and a detailed proof.

In the number-theoretic applications that we shall discuss in Section [3.3] below,
the contractions that form the iterated function system are not similarity transfor-
mations, and the aforementioned classical setting is therefore irrelevant. Instead,
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we shall call upon the following result that applies to quite general contractions,
but relies on a stronger assumption than the open set condition.

PROPOSITION 2.21. Let us consider an iterated function system {fi,..., fm}
defined on a closed set F C R? and satisfying

Vke{l,...,m} 3T, € (0,1) Vr,yeF Ifx (W) — fe(@)| > b |y — |,

and let s be a positive real such that

k=1

Let us assume that the attractor, denoted by K, of the iterated function system

{fi,-. ., fm} verifies
K = [ | fu(F). (74)
k=1

Then, the Hausdorff s-dimensional measure of the set K is positive, and in partic-
wlar dimg K > s.

PROOF. We are in the setting of the general Cantor construction introduced
in Section Here, the construction is indexed by the m-ary tree T}, formed by
the words of finite length over the alphabet {1,...,m}, the compact sets are

Iu:fulo"'ofuj(K)

for any word v = u; ...u;, and the associated premeasure ¢ is defined by

C(Iy) = (buy -+ buy;)®s
in addition to ¢()) = 0. In accordance with the standard conventions, we have in
particular Iy = K and ((Iz) = 1, where @ denotes the empty word, which repre-
sents the root of the tree. The compatibility conditions are plainly satisfied.
Indeed, for any word v = u; ...u; and any integer k between one and m, we have

fur oo fu,(K) = | | fuy 0. 0 fu, 0 fr(EK);
k=1

the union is disjoint due to and the injectivity of the contractions. Thus,
every compact set I, is the disjoint union of the sets I, indexed by its children.
Moreover, the choice of s ensures that

m m

C(Lu) = (buy - buy)* =D (buy - buybi)® = > C(Lun)-

k=1 k=1
Now, thanks to Proposition the limiting compact set defined by coincides
with the attractor K. We then use Theorem to extend via the formula the
premeasure ¢ to an outer measure * on all the subsets of RZ. The function u that
maps a subset E of R? to the value ¢(*(E N K) is an outer measure as well, and
Lemma [2.3| implies that p has total mass equal to u(K) = ((Ig) = 1.

With a view to applying the mass distribution principle, let us estimate the
p-mass of sets in terms of their diameter. We begin by considering the closed balls
B(z,7) with € K and r € (0,¢), where

€= 1Skrg}€{1§md(fk(K)7fk/(K)) >0;
note that two distinct compact sets fi(K) are positively separated because they
are disjoint. According to , for every integer j > 0, there exists a unique word
u9) with length j such that 2 belongs to the set I, Necessarily, the parent of the
node uU*Y is the node u) ; in addition to the fact that 0 < by < 1 for all k, this
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ensures that the sequence (pj)j>0 defined by p; = Ebu(j) ...bu@-) is decreasing and
> ( {

converges to zero (again, due to the standard conventions, pg = ¢). In particular,
there exists a unique integer j > 1 such that p; <r < p;_;.

For this choice of the integer j, let us write u as a shorthand for u(?), and
let us consider another word v with length j. Let w denote the closest common
ancestor of u and v, and let [ denote the length of w. Let x and y belong to I,
and I, respectively. In particular, x belongs to Iy, ,, so there exists a unique
@’ € fu,., (K) such that = f,, o...0 fy,(2'). Likewise, y is in I, and there
is a unique ¥y’ € f,,,, (K) such that y = fy, o...0 fyu,(y"). Thus,

|2 =yl = |fu, 00 fur (@) = fuy 00 fu,(Y)] = by - by |2 — Y]

As uy1 and vy are distinct, the distance between 2’ and y is at least €. Taking
the infimum over x and y in the left-hand side, we finally deduce that

’U1+17

A(Luy 1) > €y, - buy > by« by, = pjo1.

The latter inequality holds because the word w is a prefix of uy ... u;—1 = wld—b),
and the reals by are again strictly between zero and one. The upshot is that the set
B(z,r) N K is contained in no other component of K of the j-th generation than
I,,. Indeed, should v be another word with length j such that B(x,r) NI, # 0, the
distance between I,, and I, would be at most r, while the above ensures that this
distance is at least p;_;; this would eventually lead to p;_; < r, in contradiction
with the choice of j with respect to r. We infer that

uB(z, 7)) = (K NB(x,7)) < (1) = (by, by) = (p?])s -

Now, let C be a subset of R¢ with diameter less than e. If C' does not intersect
the attractor K, then the p-mass of C' obviously vanishes. Otherwise, there exists
a point z € C' N K, and the set C' is plainly included in the closed ball centered at
x with diameter |C|. Therefore,

w(C) < u(B(a, 0]) < 1<

gs

Lemma [2.2] namely, the mass distribution principle finally ensures that the attrac-
tor K has positive Hausdorff s-dimensional measure. In particular, its Hausdorff
dimension is bounded below by s. O

Let us mention that the middle-third Cantor set K clearly falls into the above
setting. Indeed, as mentioned previously, K is the attractor of the system formed
by the two contractions f; and fs defined by (72)), and these contractions clearly
meet the requirements of Propositions and [2.21] with all the parameters by, and
¢k being equal to 1/3. Moreover, holds for the set K together with the two
contractions f; and f;. We deduce that the Hausdorff s-dimensional measure of
K is both positive and finite if s is a solution of the equation 2(1/3)° = 1, i.e. if
s =log2/log3. We conclude that this value of s is the Hausdorfl dimension of K,

thus recovering Propositions and

2.11. Connection with local density expressions

We end this chapter with a remarkable link between the Hausdorff dimension of
a set and the local density properties of the measures that it supports. To proceed,
we need the following classical covering lemma due to Vitali. In the statement, if
B denotes an open ball of R%, then 5B stands for the open ball concentric to B
with radius five times that of B.



68 2. HAUSDORFF MEASURES AND DIMENSION

LEMMA 2.5 (Vitali’s covering lemma). Let C denote an arbitrary collection of
open balls of R such that

d¢c = sup |B| < o0.
BeC

Then, there exists a countable subcollection C' of disjoint balls in C such that

UBc | 5B

BecC BecC!

PROOF. The proof makes a thorough use of the Hausdorff maximal principle.
For any integer j > 0, let C; denote the subcollection of C formed by the balls B
with diameter satisfying c2~0U*Y) < |B| < 6¢277. We now define recursively a
sequence of subcollections C;- of C; in the following manner. To begin with, Cj is
any maximal collection of disjoint balls in Cy. Then, for any j > 0, assuming that
Co, .- ,C;- have been defined, we decide that CJ/» 11 is any maximal disjoint collection
among the balls B € Cj41 such that BN B’ = ) for every ball B' in Cy U ... UC].
The union, denoted by C’, of the collections C; over j > 0 is therefore a countable
collection of disjoint balls in C.

It remains to prove the covering property. Let us consider a ball B € C. There
is an index j > 0 such that B € C;. The maximality of C; ensures that there
exists a ball B'in CjU...UC] that intersects B. The diameter of B’ is larger than
6¢2~ Ut while that of B is bounded above by 6¢277 ; we deduce that |B| < 2|B|.
Thus, the ball B is clearly contained in 5B’, and the result follows. O

Now, let us consider an outer measure p for which the Borel subsets of R? are
measurable, i.e. such that B C F,. For any real s > 0, we define the upper s-density
of the outer measure p at a given point € R? by

_ B
0°(u, z) = limsup M
r—0 rs
It is useful to observe that the function 2 — ©° (i, z) is Borel-measurable, see [46],
Remark 2.10] for details. The connection with Hausdorff measures is given by the
following result.

PROPOSITION 2.22. Let pu be an outer measure on R% for which the Borel sets
are measurable, let F' be a Borel subset of R?, and let ¢ be a positive real.
(1) ]f@ﬁ(u,m) <c forallx € F, then H*(F) > u(F)/c.
(2) If ©°(u,z) > ¢ for all z € F, then H*(F) < 10°u(R?)/c.
PROOF. In order to prove , let us consider a real number § > 0 and the
subset of F' defined by
Fs={z € F|u(B(z,7)) < cr® for all r € (0,4]}.

In view of [46], Remark 2.10], this is a Borel subset of F. Now, let (C,,),>1 denote
a sequence of sets in P(R?) with diameter at most §/2 and such that F C |J,, Ch.
In particular, the sets C,, cover the set Fs. If n is such that F5 N C),, contains a
point denoted by z, then it is clear that for any ¢ € (0,6/2], the open ball centered
at x with radius |C,,| + & contains the set C,,. Thus, by definition of Fy, we have

1(Cn) < u(B(a, |Cn| +€)) < ¢(|Cn| +€)°

Letting € go to zero, we deduce that pu(C),) is merely less than c¢|C,|°. As a
consequence, the p-mass of the set Fj satisfies

n(Fs) < Z 1(Cr) SC§:|Cn‘s'

FsNCrn#0 n=1
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Taking the infimum over all sequences (C,),>1 in the right-hand side, we deduce
that pu(Fs) < CH§/2(F). Since the outer measures Hg,, increase to H* as 0 goes
to zero, we have u(Fy5) < ¢H*(F). To conclude, it suffices to make use of Propo-
sition and to observe that (F}/p,)m>1 is a nondecreasing sequence of Borel
sets whose union is equal to the whole set F.

We now establish . To this purpose, let us consider a real § > 0 and the
collection C of open balls defined by

C ={B(z,r), € F and r € (0,] such that u(B(z,r)) > cr’}

Then, the set F' is covered by the balls in C. We may apply Lemma to obtain
a countable subcollection C’ of disjoint balls in C such that the enlarged balls 5B,
for B € C', still cover the set F. These balls have diameter at most 104, so

R R s . 10° 10°
T0s(F) < Z 5B|* =5 Z |B|* < e Z u(B') < e (RY),
Bec’ BecC’ Bec’
where the last inequality follows from the disjointness of the balls B in C’, and the
fact that these balls are p-measurable. U

Although Proposition [2:22 has many various applications, we shall not actually
use this result as is in what follows. More specifically, when studying frequencies of
digits in base m expansions, we shall use a variant of Proposition where open
balls are replaced by m-adic intervals, see Section [3.4






CHAPTER 3

First applications in metric number theory

3.1. The Jarnik-Besicovitch theorem

We shall apply the methods introduced in Sections and to determine
the Hausdorff dimension of the set J; , defined by and formed by the points
that are approximable at rate at least 7 by the points with rational coordinates.
Recall that this set is equal to the whole space R? when 7 < 1+ 1/d, so that we
may suppose that we are in the opposite case. The dimension of .J; » was obtained
by Jarnik in 1929 and, independently, Besicovitch in 1934, see [7), 36].

THEOREM 3.1 (Jarnik, Besicovitch). For any real number 7 > 1+ 1/d, the
Hausdorff dimension of the set Jq , is given by

d+1
dimH Jdﬂ— = i
T

The remainder of this section is devoted to the proof of Theorem [3.1} we shall
establish the upper and the lower bound separately. We refer to Section for
another proof of this theorem, and a refinement thereof, based on the general theory
of homogeneous ubiquitous systems.

3.1.1. Upper bound on the dimension of J; .. The upper bound may be
obtained by using Lemma Indeed, the set J;, may be written in the form

Jor=\Jk+J),)  with  Jp = ﬁ fj U B (p 1).

YT
kezd @=14=Q pe{0,....g}4 ¢4

The set Jj; . may be seen as the limsup of the balls B (p/q,q77), for p € {0, ..., q}?
and ¢ > 1. In view of Lemma for any gauge function g such that the series
>, (@+1)%g(2¢77) converges, the Hausdorff g-mass of J} . vanishes. The subaddi-
tivity of the outer measure HY then ensures that the same property holds for the
whole set J4 . Note that, owing to Proposition we can assume that the gauge
function g is normalized, in which case the criterion boils down to the convergence
of the slightly simpler series > p q%g(q~7). Specializing to the power gauge func-
tions, we end up with examining the convergence of the series ) q q*~ 7%, so that
the upper bound holds.

3.1.2. Lower bound on the dimension of J; .. It suffices to give, for any
o > 7, a lower bound on the Hausdorff dimension of the set J é’)a defined by

- 1
Jy,=lmswp ) BZ, with B =By <p, U) ,
4700 g1yd q q

because Jgﬁ is clearly a subset of Jy .. Instead of the open balls Boo (p/q,q™7), we
choose to work with the closed balls By , because we want to use some of them as
the compact sets arising in the Cantor construction detailed in Section [2.9.2] To
develop this construction here, we will call upon the next lemma.

71
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LEMMA 3.1. Let C be a closed subcube of [0,1]? with sidelength | and let n be
an integer such that 19T n > 2154 Let Q,, denote the set of all integers q satisfying
2764y < g < 2%n. Then, there exists a set SS(C) C Z% x Q,, with cardinality at

least 27189 [dnd+l guch that the balls By ., for (p,q) € §7(C), are included in C

and separated by a distance larger than n='=1/4,

ProOF. Throughout the proof, we endow the space R? with the supremum
norm. We shall work with two parameters «, 8 > 1 whose precise values will be
tuned up later. Let us consider the subset C’ of C' formed by the points that are
at a distance at least an™'='/¢ from R?\ C. It is easily seen that C’ is a cube with
sidelength | — 2an~1=1/4 with the proviso that this value is nonnegative. Hence,

L£YC") = (1 — 2an 1M 4)d

where () denotes the positive part function.

Furthermore, for each point x € C, let g(x) denote the minimal value of ¢ € N
such that [gz — ple < n=1/% for some p € Z%. Theorem namely, Dirichlet’s
theorem ensures that g(x) is less than [n'/4]¢, which is clearly bounded above
by 2%n. Let us now consider the set C* formed by the points 2 € C such that
q(z) < n/B. Then, C" is covered by the closed balls with curvature gn'/¢ centered
at the rational points p/q within distance 1/q of the cube C and with denominator
q < n/B. For any fixed choice of g, there are at most (gl + 3)¢ such points. Hence,

£l < Z(ql+3)d((m21/d>d=2: Z<l+3>d+ > <Z—|—2>d

g<n/B gy U decngs

2d [ 4d n 1 1
<2 (= d'\ _ qdyd [ .
_n(l+(4l) 6) SZ(ﬁ+zd+1n>

We now define Q,, as the set of all integers ¢ satisfying n/3 < ¢ < 29n,
and subsequently S7(C) as any set of pairs (p,q) € Z¢ x Q,, indexing a maximal
collection of rational points p/q with denominator in Q,, that are at a distance at
least (3/n)'T1/4 from the complement of C' and are separated from each other by a
distance at least 3(8/n)'*1/?. We readily see that for any pair (p,q) € S7(C), the
ball By is contained in C' because its radius ¢~ is at most (B/n) /4 which is a
lower bound on the distance between its center and R?\ C. Moreover, for another

pair (p',q') € S;,(C), the balls By , and By, , are clearly separated by a distance

at least (8/n)'T1/? because their radius are at most (3/n)'*/¢ and their center
are at a distance at least 3(8/n)'*1/4. Given that 8 > 1, the balls are therefore
separated by a distance larger than n=1=1/¢,

It remains us to derive the required lower bound on the cardinality of S7(C),
and to adjust the values of the parameters o and 8 accordingly. For any point
x € C'"\ C”, we have q(z) € Q,, so that there exists a rational point p/q with
denominator in @Q,, for which

1
qnt/d

p
r— =

.
In particular, since z is at a distance at least an—'=/¢ from the complement of C,
the rational point p/q is surely at a distance at least (o — 8)n~2~1/¢ from R%\ C.
If we assume in addition that o — 8 > #'*%/?, then p/q must be within distance
3(B/n)t*+1/4 from a point p’/q’ of the above collection, in view of the maximality
property. Hence, by virtue of the triangle inequality,

1+1/d
< ﬁn—l—l/d 43 <5) < 3an~1-1/4d,
n

< < Bn_l_l/d.

/

p
r— =

q/

/
<

oo

P
q ¢

q

p’ +’p P
o0

oo
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Thus, the set C”\ C” is covered by the closed balls with radius 3an =1~/ centered
at the rational points indexed by SZ(C'). In particular,

d
oo < s o)

In the meantime, the Lebesgue measure of C’\ C” is bounded below by

1 1 1
£4C") - £L4C") > (I — 2an~ 17V dd —gdjd (6 + M) :
from which we deduce a lower bound on the cardinality of SZ(C). It remains
to adjust the parameters v and S in such a way that this bound is of the order
of 194+ Tt actually suffices to choose any real 8 > 2%4+2 and then any real
a > B(1+ BY9), and finally to impose that [t'n > 4a to obtain that

11 1 2 % 1
d
® (6 " ld+1n> Sgmm ad o Iepr 2l 2y

and then that the cardinality of SZ(C) is bounded below by [9ndtl/((6a)42¢+1).
We get the bounds of the statement of the lemma by choosing specifically a = 213¢
and B = 264 imposing that 19+1n > 2154 and noting that (6)924+1 < 218¢° [

We may now proceed with the general Cantor construction leading to the lower
bound on the Hausdorff dimension of Jc’lf - Lemma will play a pivotal role
in the construction. We introduce several constants whose specific value, though
unimportant, will guarantee that this lemma may be applied throughout the proof.
First, let us define

9(o(d+1)+14)d—1 K = 2d7(18+a)d2'

K= and

The choice of the constants x and ' ensures that for any positive integers m and
n and for any integer q € Q,,

d+1
m > knod+l) == () m > 2194
2 > >

9\ ¢ (75)
0') md+1 > 1.

— 9—18d? (
q

Here, Q,, is the set of all integers ¢ satisfying 27%n < ¢ < 2%n, in accordance with
the statement of Lemma [3.1] We then fix an integer n; such that

ny > maX{215d7 218d2/(d+1)7 2(6da+1)d/(da—d—1)}. (76)
The choice of ny ensures in particular that for all integers n > n; and q € Q,,,

2 cptoia (77)

q
To begin with the construction, the unit cube [0, 1]¢ is chosen to be the compact
set Iy indexed by the root of the underlying tree. Thanks to , we may apply
Lemma to this cube and the integer ny, thus getting a set S (I) contained in
7% x Q,, with cardinality at least ¢; such that the balls Bf , for (p,q) € 83, (I),

D¢
are included in Iy and separated by a distance larger than d;, where

_ 2 —1-1/d
¢y =278 pdtl 5 and di =n, /4.

Accordingly, we choose the balls By , for (p,q) € S (), to be the compact sets

I, indexed by the children of the root. In particular, kg (7)) is equal to #S7 (Ig).
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Note that each set I}, is in fact a closed subcube of [0, 1]¢ with sidelength equal
to 2/q° for some ¢q € Q,,,. In view of , we may then apply Lemma to each
of these cubes and an arbitrary integer

od 1/(d+1)
ng > max {ﬁ;n‘f(dﬂ), <n/> }
K

This yields subsets S, (I1), . ..,83, (I, 1)) of Z* x Q,, with cardinality at least
cg such that for each k, the balls By , for (p,q) € Sy, (I1), are included in [}, and
separated by a distance larger than dsy, where

o =K 0% > 1 and  dy=ny V%

It is then natural to choose the balls By , for (p,q) € S, (1., ), to be the compact
sets I, ., indexed by the children of a node uy € {1,...,ka(T)}.

We may obviously repeat this procedure ad infinitum. We thus obtain a se-
quence (n;);>1 of integers and a family of closed cubes (I,,)uer indexed by a tree
T such that the following properties hold for any integer j > 1:

o(d+1) |
e we have nj; > K1 ;

e for each node v € T N N7, the cube I, is a closed ball of the form By,

with (p,q) € 87 (Irw));

/. d+1_—do

there are at least ¢; = 'nj" "n; %7 > 1 siblings at the j-th generation;

the distance between the cubes indexed by two distinct nodes of the j-th
generation is larger than d; = n;kl/d.
Note that we adopt here the convention that ng = 21/7~4 for the sake of consistency.
Moreover, we recall for completeness that the initial cube is merely I = [0, 1]¢.

It is clear that each point of the limiting compact set K belongs to infinitely

many balls B? , and therefore K is included in Jc’l: -~ Moreover, we are in the

P’
setting of Lemma [2.4] with
m; = min  k,(T)>c¢c; >1 and e;= min d([,,1I,) > d;.
J w€TNNI—1 U( )_ J J u,vei“mNJ' (u U) J

In particular, the sequence (¢;);>1 is decreasing, as a consequence of . Applying
Lemma [2:4] we end up with
1 T 1 c G
dimy K > liminf 280 M) gy logler - ~ )

7o —log(my/%e;) T 7 —log(cj/Ud;)

It remains to elucidate the lower limit appearing in the right-hand side. At each
step of the above construction, the integer n; may be chosen arbitrarily large: in
particular, we may assume that n;; > ni for all 5 > 0. The numerator in the
previous formula, namely,

j—1 j—2
(d+1) Zlognk - daZlognk +(j—1)logx
k=1 k=0

is therefore equivalent to (d + 1)logn;_1 as j goes to infinity. Furthermore, the
denominator is equal to

1
3 logr’ + olognj_;.

We conclude that the lower limit is equal to (d+ 1)/0, and the lower bound on the
dimension of Jg , follows from letting o tend to 7.

As shown above, the lower bound relies heavily on Lemma [3.1] which enables
one to perform the general Cantor construction. In dimension d = 1, it is possible
to use a variant form of this lemma that is slightly weaker but also much easier to
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establish. This method is used in Falconer’s book [29] and we reproduce it here
for the sake of completeness. In the next statement, II,, denotes the set of primes
numbers between n + 1 and 2n.

LEMMA 3.2. Let I be a closed subinterval of [0,1] with length | and let n be a
positive integer. Then, there exists a set SZ(I) C Z x II,, with cardinality at least
(In — 3)#1,, such that the intervals By ,, for (p,q) € S5 (I), are included in I and
separated by a distance larger than (2n)=2 —2n=7.

PRroOF. If the interval I has length [ € (0, 1], then it may be written in the
form z + [0,!] for some point € [0,1 —1]. A pair (p,q) € Z x 1I,, is such that
By, € I as soon as p is between gz + 1 and g(x +1) — 1, a condition that is verified
by at least lqg — 3 integers p. Thus, the total number of pairs (p,q) € Z x II,, such
that Bf . C I is at least (In — 3)#II,. To conclude, it suffices to observe that if
(p,q) and (p',¢’) are two distinct pairs in Z x II,,, then

/A
_ lpg pq|>iZ

p_v 1
' T q¢ ~ 4n¥’

q ¢

which gives the required lower bound on the distance between By ; and By, . U

We may then use the previous lemma instead of Lemma to develop the
general Cantor construction in the one-dimensional case. The appropriate estimates
on the minimal distance d; between the intervals of the construction follow from
the obvious fact that (2n)~2 — 2n=7 is larger than (3n)~2 for n large enough,
because o > 2. The estimates on the minimal number of siblings c; at the j-th
generation call upon the prime number theorem, according to which #I1,, is larger
than n/(2logn) for all n sufficiently large. Despite additional logarithmic terms,
this yields the same lower bound on the Hausdorft dimension of J; -, namely, 2/7.

3.2. Typical behavior of continued fraction expansions

3.2.1. The Gauss measure. We adopt the notations of Section [1.2.1.2] for
the set X of all irrational numbers between zero and one, and for the Gauss map
T thereon. The Gauss measure is then the probability measure g on X defined by

1 dz
A =
u(4) 10g2/Al-|—x

for any Borel subset A of X. The relationship between the Gauss measure and the
Gauss map is stated in the following lemma.

LEMMA 3.3 (Gauss, 1845). The Gauss map preserves the Gauss measure.

PROOF. The sets [0,s] N X, for s € (0,1), form a w-system that generates the
Borel subsets of X. By the uniqueness of extension lemma, it suffices to show that
the measure p and its pushforward under the mapping T, namely, po T—! agree
on that m-system, see e.g. [61, Lemma 1.6(a)]. Hence, let us show that for any

€ (0,1), the sets T71([0,s] N X) and [0, s] N X have the same measure. We have

T-1((0,s]N X) = {z € X | 0 < T(z) < s} :nljl([ 1 1) mX),

s+n’'n
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and the union in the right-hand side is disjoint. Therefore, the countable additivity
of the measure p implies that

oo

u( (o nx) = ooy [ e

=1Y s+n

_ ! il 14—l log | 1+ !
~ log?2 ©8 n & s+n

n=1

1 oo
- log 2 Z <1O

n=1

o
—
[
+
3|
~—~
\
o}
o
7N
[
+
3
+|®»
—_
N————
N———

- lgflg;) — u([0,5] N X),

and the result follows. O

3.2.2. Ergodicity of the Gauss map. With the help of the results of Sec-
tion [[:2.1.2] observe that the following diagram commutes:

NN ANN

L,

The Gauss map may thus be represented as the shift ¢ on the symbolic space NV.
Moreover, for any vector a = (ay,...,a,) € N™ let us consider the subset I(a) of
X defined by

I(a) = {[b1,b,...] | b1 =a1,....by =an}. (78)

If n is equal to zero, we adopt the convention that N is reduced to the singleton {@}
formed by the empty word, and that (@) is equal to the whole set X. Each set I(a)
can be seen as either a cylinder in the symbolic space NN or the intersection of the
set X with an interval. To be more precise, we have the following characterization
of the sets I(a).

LEMMA 3.4. For any integer n > 0, any vector a = (a1, ...,a,) € N” and any
irrational real x € X,
A +pn1T"(x)

Gn + Gn1T" () ’
where pp—1/Gn-1 and p,/qn are defined by (@ with ag = 0. Moreover, we adopt
the same conventions as in the statement of Lemma[1.1] when n = 0.

z € I(a) =

PROOF. Let p,(x)/qn(x) denote the convergents of the continued fraction ex-
pansion of z. Using and noting that the (n+1)-th tail of the continued fraction
expansion of x coincides with 1/7"(z), we have

_ pal@) s ()T ()
@n () + Gn-1(z)T"(x)
If the irrational number = belongs to the set I(a), we therefore have
= Pn +pn—1Tn(1')
qn + anlTn(x) '
Note that the right-hand side is a monotonic function of 7™ (z). Thus, if conversely
the latter equality holds, then = is between the rationals
p—n:[al,...,an] and Pt Pnot
qn Gn + Gn—1

=la1,...,ap-1,an + 1].
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Let us show by induction on n that this implies that = € I(a). First, note that the
result is a tautology if n = 0. Besides, if these bounds on « hold, then 1/z — ay
is between [az, ..., a,] and [ag, ..., an—1,a, + 1]. This means that a;(z) = a1 and
that T'(z) = 1/ — a1. Applying the induction hypothesis to T'(x), we deduce that
T(z) € I(ag,...,an), so that agt1(z) = ax(T(x)) = aps1 for all k € {2,...,n}. As
a result, x belongs to I(a). O

The above lemma will be called upon in the proof of the main result of this
section, namely, the ergodicity of the Gauss map.

THEOREM 3.2. The Gauss map T is ergodic on X with respect to the Gauss
measure [, that is, for any Borel subset A of X,

T A)=A = w(A) € {0,1}.

PROOF. The main part of the proof consists in establishing that for any integer

n > 0, any vector a = (aq,...,a,) € N® and any Borel subset A of X,
1 —-n
(A (@) log2 < p(T~(4) 1 1(a)) < 8u(A)p(I(a)) log2,  (79)

where I(a) is the subset of X defined by (78). Note that the Borel sets A for
which holds clearly form a monotone class; the monotone class theorem then
ensures that it suffices to prove for A=Ja,8]NX with 0 < a < 8 < 1, see for
instance [24], Appendix A].

Applying Lemma and observing that y — (pn + pn-1Y)/(qn + @n-1y) is
a continuous and monotonic mapping on the interval (0, 1), we infer that the set
T ([, BN X) N I(a) is an interval with endpoints

DPn +pn—1a DPn +pn—16
—_— and —_—.
In + qn—10¢ In + qn-18

As a consequence, its Lebesgue measure satisfies

_|Pn P pntpa—if

- Gn + gn—10 Gn + qn-108
b —a

(gn + gn-10)(qn + @n-18)

Furthermore, the Lebesgue measure of the set I(a) is obtained by choosing above «
and 3 to be equal to zero and one, respectively. Also, note that the ratio between
the Lebesgue measure of a subset of X and its Gauss measure is between log 2 and
2log 2. Therefore,

log 2 < w(T7" ([, B] N X) N (a)) G+ 4n-10)(gn + gn—15) < 4log?2.

2 7 o, BN X)u(I(a)) Gn(qn + qn—1)
However, given that 0 < a < 8 < 1 and ¢q,, > ¢n_1, it is easily seen that

1 < (qn + Qn—la)(Qn + Qn—lﬁ)

2~ Qn(QH + C]nfl)
We finally deduce that (79) holds for A = [o, ] N X, and the monotone class

LT (|, Bl N X) N I (a))

<2

argument ensures that (79)) still holds for an arbitrary Borel subset A of X.
Let us now suppose that A is invariant under the action of the Gauss map, that
is, T~1(A) = A. Then, reduces to

1

7UAuI(a))log2 < (AN I(a)) < 8u(A)u(l(a))log2, (80)
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for any vector a = (aq,...,a,) of positive integers. Note that the sets I(a), for
a € N”, form a partition of the set X and their diameter satisfies

I(a)] = £}(I(a) = ———

< 22—n
Qn(Qn + Qn—l) - ’

because ¢, is at least 2("~2)/2; these sets thus generate the Borel o-field on X. The
monotone class theorem then ensures that still holds when I(a) is replaced by
an arbitrary Borel subset B of X. In particular, choosing B to be the set X \ A, we
readily deduce that either u(A) or u(X \ A) vanishes. The ergodicity of the Gauss
map with respect to the Gauss measure follows. (]

3.2.3. Almost sure results. The ergodicity of the Gauss map, combined
with Birkhoff’s pointwise ergodic theorem, enables one to deduce well known prop-
erties on the distribution of the digits arising in the continued fraction expansion
of almost every irrational number. Let us begin by recalling the statement of the
ergodic theorem; we refer for instance to [24] Chapter 2] for details and a proof.

THEOREM 3.3 (Birkhoff). Let (X, F,u,T) be a measure-preserving dynamical
system, and assume that T is ergodic. Then, for any function f € L*(u),

n—1
%Zf(Tj(l”)) — deM;
=0

convergence holds p-almost everywhere and in L' (u).

Let us begin by a result on the frequencies of the partial quotients of a typical
irrational number.

PROPOSITION 3.1. For Lebesgue-almost every x = [a1,as,...] in X, a given
digit b > 1 appears with a frequency satisfying

2log(b+ 1) — logb — log(b + 2
lim #{]<n|a]7b}_ og(b+1) —logb —log(b+2)
n—oo N log 2

PROOF. For every irrational number z = [a1,as,...] in X, the digit b appears
in the first n digits with frequency equal to

n—1
1 1 :
g - o j
Rl =0 = DS )
=
Owing to Theorem this converges p-almost everywhere to

11 1 /i dy  2log(b+1) —logb — log(b + 2)
b+1'D 1og2 J1r1—|—y log 2 '

The result follows from the fact that the Gauss measure and the Lebesgue measure
are absolutely continuous with respect to one another. O

We now study the asymptotic behavior of the product of the partial quotients
of a typical irrational number.

PROPOSITION 3.2. For Lebesgue-almost every x = [ay,az,...] in X, we have

log b

b_|_1 log 2

li cean)m = :
nll;go(ala2 H( b+2>
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PrOOF. We begin by observing that loga; = f(T77!(z)) for any integer j > 1,
where f is the function defined on X by

F=> 1

=1

] log b. (81)

o=

b
One easily checks that f is in L*(u)

> 1 1 = logb 1
/deﬂ;u({bH,bDlogb;10g21og<1+b(b+2)><oo.

Theorem then ensures that for py-almost every « € X,

; as a matter of fact,

1 n 1 n—1
— o J
nZlogaJ an(T (@)m> de/i-
j=1 j=0
The result follows from composing with the exponential function in the above limit,
using the previous computation for the integral of f with respect to u, and observing
that the Gauss measure and the Lebesgue measure have the same null sets. O

The limiting value arising in the statement of Proposition [3.2] is called Khint-
chine’s constant, and is approximately equal to 2.685452001.

Let us now turn our attention to the asymptotic behavior of the sums of the
typical partial quotients. In the proof, it is tempting to apply Theorem to the
exponential of the function f defined by . However, this function fails to be
integrable, and the above approach has to be refined.

PROPOSITION 3.3. For Lebesgue-almost every x = [ay,az,...] in X, we have
1
lim —(a1 +as+...+a,) =cc.
n—oo N

PROOF. Let g denote the function exp of, where f denotes the function defined
by . Note that

1 n 1 n—1

— P J .

S0 =D 9T (@)
j=1 7=0

however, the function ¢ is not integrable, so that we cannot apply Theorem
directly. We first need to truncate the function g, namely, to fix an integer N > 1
and to consider the function gy = min{g, N}. The function gy clearly belongs to
L'(u), so Theorem implies that for p-almost every z € X,

n—1 n—1

N
.1 ; .1 , b (b+1)2
| f— T’ > lim — T’ = = ——log ———.
il > o @) 2 lig 23 aw(T ) Joovin =3 s,

The result follows from the fact that the right-hand side tends to infinity as N — oo,
and again that the Gauss and Lebesgue measures share the same null sets. O

We now study the typical behavior of the denominators of the convergents.
This is somewhat more difficult than the previous results that were straightforward
applications of Birkhoff’s ergodic theorem.

PROPOSITION 3.4. For Lebesgue-almost every x in X, the denominator of the

convergents satisfy

2

1
li —1 n = .
i 2108 an(7) = 157005
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PROOF. First, note that the convergents p,,(z)/gn () of the continued fraction
expansion [a1, ag, .. .| of = satisfy

pnlz) _ 1 1 _ 4n—1(T(2))

an(@) artlaz,.an] o pai(T(@) par(T(2)) + argn-a (T(2)”
H e (T(@)
since the numerator and the denominator of the convergents are coprime, the left-
hand side and the right-hand side are in their irreducible form, so that in particular
prn() = ¢n_1(T(x)). As a consequence, applying this with n — j instead of n and
T7(z) instead of x, we have

n—1
Zl Pocgt TJ( ))) ZlOan G (TP (@) = log gn—; (T (2))

= logqo(T"( ) = log gn(x) = — log gn ().
Thus, we may write —log ¢, (2) = Sp(z) — R,,(x), where

*n_lo J(z) an x*n_l o) jzfopin_j(Tj(x))
,jz:(:)lgT() d Rn()jz_:o(lgT() 1gqnj(Tj(x))>.

Since the logarithm is integrable with respect to the Gauss measure, Theorem
ensures that for p-almost every z in X,

S, 1 1 2
. (2) —— [ logzu(dz) = / 8L Jp=——T
n  n-ooo Jy log2 Jy 1+4+= 121og 2

As the Gauss and Lebesgue measures share the same null sets, the above conver-

gence result also holds Lebesgue-almost everywhere. For completeness, let us recall

that the above integral may be computed as follows:

1 o n—1 2

log x log (1+2x) / (-1) ™
— d = = _— =
./0 1+ ‘ /0 Z n+1 Z n? 12

To conclude, we shall show that (R, (33)),121 is a bounded sequence for every
x € X. To this purpose, observe that the convergents satisfy

x @) | () 1

pr(x)/qr(z) pr(2) ar(z) | = pr(@)qr1(z)

Recall that the numerator and the denominator of the n-th convergent are both at
least 2("=2)/2 for all n > 1. Thus, pp(2)qes1(z) > 2873/ for all k > 1. However,
this bound can easily be improved when k is equal to one or two: specifically,
p1(x)ga(x) > 2 and pa(x)gs(x) > 3. As a consequence, the right-hand side above
cannot be larger than 1/2. Given that the positive function u — logu/(u — 1) is
bounded above by 2log 2 on the interval [2,00), we deduce that

pr(x) x
x(x) pr(z)/qr(z)
for all x € X and all k¥ > 1. This readily implies that for every x in X,

log x — log — 1| < 25/2Fk log 2

‘ < 2log?2

n—1 ; n—1
nf'zv —(n—1i
IR, (z)| < Z log T7 () — logp](,(x))‘ < 225/2 (=3) Jog 2 < 2°/210g 2,
2 4 (T7(a)) | = 2
so that (R, (z)),>1 is a bounded sequence, as announced previously. O

The exponential of the limiting value obtained in Proposition is called Lévy’s
constant, and is approximately equal to 3.2758229187. It is therefore the almost
sure limit of g, (z)'/™ as n goes to infinity.
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The last result gives the asymptotic behavior of the error made when replacing

a typical irrational number by the convergents of its continued fraction expansion.
COROLLARY 3.1. For Lebesgue-almost every x in X, the convergents satisfy

_ Pn (x)] 72
qn ()

1
lim — log
n—oo N

x

T 6 log?2’
PRrROOF. This directly follows from Proposition along with the fact that

pn(z)
qn ()
as a consequence of (25). O

T —

log g, +10g gn4+1 < —log < log g, +10g gn42,

3.3. Prescribed continued fraction expansions

3.3.1. An emblematic example. The theory of iterated function systems
introduced in Section [2.10] allows us to study the Hausdorff dimension of certain
sets of positive real numbers that are defined through conditions on the contin-
ued fraction expansions. Rather than developing a systematic theory, we content
ourselves with discussing the following emblematic example.

Given an integer m > 2 and using the notation for the continued fraction
expansion of a positive irrational real number, we may consider the set

Km={z€[0,00)\Q|an(z) €{1,...,m} for all n >0} .

Equivalently, the set K, is formed by the positive irrational real numbers with all
partial quotients between one and m. The following result makes the connection
with the iterated function systems, which enables us to give a nontrivial lower
bound on the Hausdorfl dimension of the set K,,.

PROPOSITION 3.5. The set Ky, is the attractor of the iterated function system
{fi,---, fm} formed by the contractions defined by fo(x) = a + 1/x, for x in the
closed interval Fy, = [y, may,], where

1+ /1+1
Ay = — -+ —.
2 4 m

Moreover, the Hausdorff dimension of the attractor K,, satisfies

_loem iy K, < 1.
2log(may,)

PROOF. For every number z € K,,, the partial quotient ag(z) coincides with
the integer part |x] and is between one and m. This means that the set K, is
contained in the interval [1,m + 1]. We may actually be slightly more precise by
observing that the continued fraction [ag; a1, as,as, . ..] defined by is a nonde-
creasing function of the partial quotients as, and a nonincreasing function of the
partial quotients as,+1. Thus, the infimum and the supremum of the set K, are
respectively attained by the continued fractions

[Lm,L,m,...] =an and [m;1,m, 1,...] = man,.

As a consequence, the set K, is included in the closed interval Fy,, = [qm, man,],
which is clearly a proper subinterval of (1, m + 1).
Moreover, it is clear that the mappings f, are differentiable on F,,, and share

the same derivative at every point z, namely, f/(z) = —1/z%. Consequently, we
have
1 ) 1
VxGFm WSL]C&(JTH < QT
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The mean value theorem then ensures that the mappings f, fall into the setting of
Propositions [2:20] and with
1 1

ba = —5 5 and Cq =
meog,

o (82)
In particular, these mappings are contractive. Moreover, one easily checks that
the interval F,, contains the disjoint union of its images under the mappings f,.
As shown by Proposition there is a unique attractor to the iterated function
system {f1,..., fm}. Recall that the attractor is a compact subset of F,, that
coincides with the union of its images under the mappings f,; in view of the
previous remark, the union must be disjoint, and the attractor thus satisfies (74]).
This means that we may apply Propositions and in order to derive upper
and lower bounds on the Hausdorff dimension of the attractor.

The point is that the attractor of the iterated function system {fi,..., fm} is
precisely the set K, defined above, as we now explain. In view of Proposition [2.19
the attractor is the intersection over all integers j > 0 of the sets f7(F,), where
f is the mapping that sends a nonempty compact subset of F,, to the union of its
images under the contractions f,. Moreover, for every integer j > 1 and every point
z € fi(F,,), there exists a point ' € F,, and a j-tuple (ay,...,a;_1) of integers
between one and m such that

T = fan o... Ofajfl(xl) = [a03a17a27"'7aj71u‘rl}7

using a notation that naturally extends @ to the case where the last partial quo-
tient is replaced by a real number larger than one. We may now follow the lines
of the proof of Proposition to deduce that a,(z) = a, € {1,...,m} for all n
between zero and j — 1. Hence, every point in the attractor belongs to the set K,,.
Conversely, if an irrational number x belongs to K,,, then its partial quotients a,,
are all between one and m, so that for any integer j > 0,

T = [ao;al,ag, .. ] = fllo 0...0 fajfl([aj;aj_i_l,aﬂ_g, .. ]),

from which we deduce that x belongs to f7(F,,), and thus to the attractor of the
iterated function system formed by the contractions f,.

Now, applying Propositions [2.20] and we infer that the Hausdorff dimen-
sion of the attractor K,, is bounded by the positive real numbers 3,, and ~,, that
satisfy the equations bfm + ..+ b =1 and ™ + ...+ ¢lm = 1, respectively,
where the coefficients b, and ¢, are given by . Straightforward computations
then yield

logm logm

Brm
The lower bound given by [,, may not be accurate, but is at least nontrivial.
Unfortunately, the upper bound supplied by 7, is useless: as easily seen, v, is
larger than one for any integer m > 2. We can therefore just conclude with the
bounds given in the statement of the proposition. O

and Ym

- 2log(may,) " 2log o

The bounds on the Hausdorff dimension of K,, supplied by Proposition [3.5
are not very accurate, but there is a simple trick to improve them: it suffices to
remark that K, is also the attractor of the iterated function system formed by the
m? contractions f, o f,, for a and a’ between one and m. Using the mean value
theorem again, it is possible to prove that these contractions fall into the setting of
Propositions andwith replaced by the appropriate values of b, and c¢,.
It is even possible to use higher order iterates of the contractions f, so as to refine
the bounds on the Hausdorff dimension of the attractor K,,, see [29, Example 9.8]
for details. This way, it is possible to show that the Hausdorff dimension of K5 is
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approximately equal to 0.531280506, see [29, Example 10.2]. Finally, we also refer
to [31] Section 9.1] for possible generalizations of the above problem.

3.3.2. Link with badly approximable numbers. Using Proposition (3.5
one can easily obtain a lower bound on the Hausdorff dimension of the set Bad;
of badly approximable numbers introduced in Section [1.3] Indeed, recall from
Proposition that a positive irrational real number is badly approximable if
and only if the sequence of its partial quotients is bounded. This means that

J t K € Bad,.

m=1
The lower bound on the dimension of K, that is supplied by Proposition [3.5 clearly
tends to one half as m goes to infinity. This directly leads to the following result.

COROLLARY 3.2. The Hausdorff dimension of the set of badly approximable
numbers satisfies

1
5 < dimy Bady < 1.

We shall dramatically improve this result in Section and show that the
Hausdorff dimension of the set Bad; of badly approximable numbers is actually
equal to one, see Corollary for a precise statement. Let us recall in passing
that, as shown by Proposition and Corollary [[.2] the set Bad; has cardinality
equal to that of R but has Lebesgue measure zero.

3.4. Frequencies of digits

Let us consider an integer m > 2 and a real number x € [0,1). It is well known
that if z is not a m-adic number, i.e. a rational number with denominator of the
form m’ for some integer j > 0, then z may be written in a unique manner as

x = ijm*j, (83)
j=1

where (z;);>1 is a sequence of digits between zero and m — 1. The m-adic num-
bers have two representations: one that we choose to privilege, where the digits
eventually vanish, and another one where they are eventually equal to m — 1.

The frequency with which a given digit b appears among the first j digits of x
is then given by

fba) = i € (Lo ) L =),

A classical result due to Borel asserts that Lebesgue-almost every real number is
normal to the base m, that is, the asymptotic frequencies of the digits are all the
same. More rigorously, this means that the set

F,= {:I: €10,1)

lim f;(b,x) = py for all b€ {0,...,m — 1}}
j—oo

has full Lebesgue measure in the interval [0, 1) when the components of the vector
p = (po,...,Pm—1) are all equal to 1/m. This is a plain consequence of Borel’s
strong law of large numbers, but we will also recover this result from the analysis
below. Moreover, it follows that Lebesgue-almost every real number is normal to
all bases, i.e. is normal to the base m for all m > 2.

We shall determine the size of the set F, in terms of Hausdorff dimension for
every choice of the probability vector p. Recall that a probability vector is one for



84 3. FIRST APPLICATIONS IN NUMBER THEORY

which all the components are between zero and one, and have a sum equal to one.
Moreover, the Shannon entropy (based on natural logarithms) is defined by

m—1

H(p) = — > pylogpe, (84)
b=0

with the convention that 0log 0 vanishes. The next result shows that the Hausdorff
dimension of the set defined above is a simple function of the Shannon entropy.

PROPOSITION 3.6. For every integer m > 2 and every probability vector p with
m components,

H(p)
logm’

dimH Fp =

The rest of this section is devoted to the proof of Proposition Though a
standard and natural approach relies on probabilistic methods, see e.g. [29, Propo-
sition 10.1], we provide here a proof that is based solely on analytic and measure
theoretic tools, thus being more consistent with the viewpoint of these notes.

We begin by letting B, denote the set of all digits b in {0,...,m —1} such that
py > 0. We suppose that the set B, is not reduced to a singleton. The opposite
case is elementary and will be discussed briefly at the very end of the proof.

Now, on the one hand, let us consider the subintervals of [0,1) that may be
written in the form

Lo=um ™+ .. +um™ +[0,m™7),

where u = uy ... u; is a word of finite length over the alphabet {0,...,m —1}. We
endow the collection of all m-adic intervals, along with the empty set, with the
premeasure ¢, defined by

gp(Iu) = pulpug .. -puj-

In particular, recalling that @ denotes the empty word, Iy is the whole interval
[0,1) and its (,-mass is equal to one. Note that (,(I,) clearly vanishes as soon as
the word u has at least a letter that does not belong to the set B,. With the help of
Theorem we may extend the premeasure ¢, to an outer measure ¢, on all the
subsets of R through the formula . We may then consider the outer measure
pp that maps a subset E of R to the value (;(EN[0,1)).

On the other hand, for any b € B, let us consider the mapping X, defined on
the interval [0, 1) by

Xp.b(t) =Dpo + ...+ Do—1 + Dot

It is clear that the ranges of the mappings xp, form a partition of the whole interval
[0,1) by consecutive subintervals. Thus, any point £ in [0,1) belongs to a unique
interval of the form x,¢, ,([0,1)), where {, 1 is an integer in B,. Iterating this
procedure, we end up with a sequence (&, ;);>1 of integers in B, such that

§E€Xp gy O 0 Xpg,,; ([0,1)) (85)

for all 5 > 1, and this sequence is unique. It will be useful to remark that the
mapping & — (&,,;);>1 is nondecreasing when the sequence space is endowed with
the lexicographic order. Moreover, note that the intervals that appear in have
length pe, | ...pe, ;- Given that the set B, is not reduced to a singleton, all the
reals p, are less than one, so the previous length tends to zero as j goes to infinity.
Thus, for any given sequence (&, ;);>1, there is at most one possible value of &
satisfying . In other words, the mapping £ — (&,,;);>1 is injective. Finally, we



3.4. FREQUENCIES OF DIGITS 85

may define in terms of the sequence (&, ;);>1 the real number
hyp(§) = Z §p,jm_j- (86)
j=1

We thus obtain a mapping h,, from [0, 1) to [0, 1]. The next lemma gives a connection
between the outer measure fi,, the mapping h, and the Lebesgue measure £!.

LEMMA 3.5. For any m-adic interval I,
(L) = Gp(Lu) = L1 (hy (1))

PROOF. Let us consider a real £ € [0,1) such that hy(§) is an m-adic number.
The integers &, ; are eventually equal to zero or eventually equal to m — 1. There
is therefore only a countable number of possible values for the sequence (&, ;);>1,
and any such sequence corresponds to at most one value of £, because the mapping
&> (&p,j)j>1 1s injective. We deduce that there are at most countably many reals
€ in [0, 1) such that h, () is an m-adic number.

When computing the Lebesgue measure of the set of all reals £ € [0,1) such
that h,(§) € I,,, we may therefore assume that h,(£) is not an m-adic number. This
means that is the base m expansion of hy(§). As a result, in view of ,

hp(§)ely = u=%&1...5; <= E€Xpu ©---0Xpu,([0,1)).

This readily implies that
‘Cl(h;l(lu)) = L' (Xpus 0---© Xpu; ([0,1))) = PusPus - - - Pu; = Gp(Lu)-

This value is obviously an upper bound on p,(I,). To show that equality
holds, let us consider a sequence (Cy,),>1 of m-adic intervals such that I, € |J,, Cy.
Applying what precedes to these intervals, we have

3 G(C) = Y £ () = £ (hpl (fj c)) > £y (1),

n=1

Taking the infimum over all sequences (C),),>1 in the left-hand side, we deduce
that p,(1,) is at least £'(h,*(I,)), and the result follows. O

The next crucial lemma indicates that the range of the mapping h,, essentially
charges the set F, under study.

LEMMA 3.6. The set h,'(F}) has full Lebesgue measure in [0,1).

Proor. For any probability vector ¢ = (qo, - .., Gm-1), let us now consider the
mapping g, , defined on the interval [0,1) by

Ip.q(§) = lim 1 Xa,p1 © -+ Xa,6p,; (0),
‘]*)OO

where (§,,j);>1 is the sequence that is defined above in terms of the real number
&. Note that the limit always exists because the involved sequence is nondecreasing
and bounded; this is due to the obvious fact that every mapping x5 is increasing.
Furthermore, note that the mapping g, 4 is nondecreasing. It is therefore differen-
tiable at Lebesgue almost every point of [0, 1), see e.g. [32 p. 358]. As a result,
there exists a subset £, 4 of [0,1) with full Lebesgue measure on which the mapping
Op,q is differentiable. Let us consider a point £ in 5, ;. Then, the derivative of g, 4
at ¢ exists and is equal to the limiting rate of change of g, , on any sequence of
intervals that shrink to £, see [32] p. 345]. Now, for any integer j > 1, the point ¢ is
between xp¢, , 0. .. Xp,,,(0) and xpe, 0. .. Xp,, (1), and the value of the function
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gp,q at these two points is equal to Xg.¢,, © ... Xqe,,(0) and xge,, © ... Xqe,, (1),
respectively. The corresponding rate of change is therefore equal to

i (b,
|Xq,§p,1 O... Xq,fp,j ([0, 1))| _ Q§p’1 . qu,j _ H <qb)JfruJ( f)
|Xp7€p,1 ... vafp,j ([O’ 1))| pfp,l . 'pfp,j bEBp Py ’

and tends to g, ,(£) as j goes to infinity. Here, f, ;(b,§) is the frequency with which
b appears among the first j terms of the sequence (¢, ;);>1, that is,

i, (b,6) = %#{z‘ € (L7} &, = b},

Finally, taking logarithms and dividing by j, we deduce that

VEE€E,, limsup Y (0,6 log L <.
j—o00 beB, Do

We now fix an integer by € B, and a positive real A. Recall that all the reals py,
are less than one, so up to choosing A close enough to one, we obtain a probability
vector ¢ by letting g5, = 1 — M1 — pyp, ), along with g, = Apy if b # bg. Using the
notation EZO’A for the set =, 4, we then have

V¢ € EZ"’)‘ limsup fp,; (bo, §) log (1 + 1)\/\) < —log .
j—o0 bo
Remark that the logarithm in the left-hand side is positive when A is less than
one, and is negative when \ is larger than one. Moreover, the ratio of the two
logarithms tends to py, when X tends to one. Considering two sequences (Ay)r>1
and (A\g) x>1 that increase and decrease to one, respectively, and letting Ego denote

—_

the intersection of all the corresponding sets :f,”’ék and Ei’,ﬂ ’X’C, we deduce that
=bo ; . —
vé‘ € —p Jli}/lgo fp,] (bové-) pbo'

To conclude, let =, denote the intersection over by € B, of the sets Ego ; this
set has full Lebesgue measure in [0,1). Given { € =, the reals ¢, ; cannot be
eventually equal to zero or eventually equal to m — 1; indeed, otherwise, the set
B, would be reduced to the singleton {0} or the singleton {m — 1}. Thus, (86) is
the base m expansion of h,(£), so that in particular f;(b, hy(€)) = fp. (b, &) for all
j>1landallbe{0,...,m—1}. Consequently, h,(§) belongs to F),, and we finally
have 2, C b, (Fp). O

For any real z € [0, 1) and any integer j > 0, let I,;(x) denote the unique m-adic
interval with length m ™7 that contains x. The next result gives an estimate of the
scaling behavior of the outer measure p, on the set F},.

LEMMA 3.7. For any real x € F),

log pp (1)) _ H(p)
j—oo  log|I;(x)| logm’

PROOF. As B, is not reduced to a singleton, z is surely not an m-adic number.
Hence, the interval I;(z) is clearly equal to I, ...,, where (z;);>1 is the sequence
of m-ary digits of z that is defined by (83)). Lemma [3.5] now gives

log pp(Z(2)) _ ijlogp _ 1
log |I;(z)] jlogm e logm

> 1i(b,) log py,

bEB,

and the result readily follows. O
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We may now finish the proof with the help of Proposition [2.22| and a variant
thereof. To be specific, let us consider a point « € [0,1), an integer j > 1 and
a positive real s. The open interval centered at x with radius m ™/ contains the
m-adic interval I;(x), so that

pp((z —m™ z+m77)) _ pp(lj(x))
m=*J — @)
By virtue of Lemma this ratio tends to infinity as j goes to infinity when s
is larger than H(p)/logm and z belongs to F,,. We infer that the upper s-density
of the outer measure y, at any point = € F), satisfies @S(,u,a:) = oco. In view of
Proposition , we get H®(F,) < 10°u,(R)/c for all ¢ > 0. We finally deduce
that the Hausdorff dimension of F), is bounded above by H(p)/logm.
For the lower bound on the dimension, we use Lemma again to show that
o ()
i=oo |Ii(@)[°

when s is less than H(p)/logm and z belongs to F,. Moreover, recall that Propo-
sition [2.11] may easily be extended to coverings by m-adic cubes, specifically, the
Hausdorff s-dimensional measures are comparable with those obtained by means
of such coverings. Thus, using a variant of Proposition where coverings
by arbitrary sets are replaced by coverings by m-adic intervals, we may show that
H*(Fp) > pp(Fp)/c for all ¢ > 0. Meanwhile, it follows from Lemmas and
that i, (Fp) > L' (h, ' (F,)) = 1. We deduce that the set F, has Hausdorff dimen-
sion at least H(p)/logm.

It remains to deal with the degenerate situation where the set B, is reduced
to a singleton {b}, where b is an integer between zero and m — 1. In that case,
we assume that the (p-mass of every m-adic interval is equal to one. It is then
clear that the outer measure p, verifies the same property, and that Lemma
still holds. Proceeding as above, we deduce that the Hausdorff dimension of Fj, is
at most zero. Equality obviously holds because the set F}, is nonempty; indeed, it
contains for instance the real number Z]Oiz bm=7 =b/(m(m — 1)).






CHAPTER 4

Homogeneous ubiquity and dimensional results

The purpose of this chapter is to present an abstract setting into which the
Jarnik-Besicovitch theorem, that is, Theorem fits naturally. The first step is
to identify an appropriate notion of approximation system to generalize the com-
bination of the approximating points p/q with the approximating radii 1/¢%, or
more generally 1/¢7, that come into play in the homegeneous approximation prob-
lem. The second step is to introduce natural generalizations of the sets Jg , defined
by The third step is finally to provide optimal upper and lower bounds on the
Hausdorff dimension of these generalized sets. As explained hereunder, through the
remarkable notion of ubiquity, an a priori lower bound on the Hausdorff dimen-
sion can be derived from the sole knowledge that one of the sets has full Lebesgue
measure. Thanks to ubiquity, the difficult lower bound in the Jarnik-Besicovitch
theorem will in fact quite amazingly be a straightforward consequence of a simple
result, namely, Dirichlet’s theorem.

Let us mention here that we do not need to specify the norm | - | the space R?
is endowed with. In fact, Proposition [£:4] below implies that the notions considered
in this chapter do not depend on the chosen norm; let us recall in passing that this
is also the case of Hausdorff dimension.

DEFINITION 4.1. Let Z be a countably infinite index set. We say that a family
(w4,7;)ier of elements of RY x (0, 00) is an approzvimation system if

supr; < oo and Vm € N #{iEI

1
|z;| < m and r; > } < 00.
i€ m

The emblematic example of approximation system to have in mind, and which
indeed makes the connection with the Jarnik-Besicovitch theorem, consists of the
family formed by the pairs (p/q, 1/¢?), for p € Z? and q € N. We shall discuss many
other examples in Chapters[6]and [7] Replacing the system supplied by the rational
points by an arbitrary approximation system (z;,7;);ez, the set Jg » defined by
may thus be generalized into

Ft:{xeRd|\x—xi|<rf forim. i€}, (87)

where t > 1. Moreover, extending the Jarnik-Besicovitch theorem will then cor-
respond to determining the Hausdorff dimension of the set F; under appropriate
assumptions on (x;,7;)iez.

Note that if x belongs to the set F;, then there exists an injective sequence
(in)n>1 of indices in Z such that |z — x;,| < r{ for all integers n > 1. Let us
assume in addition that the family (z;,r;);cz is an approximation system. Then,
for any real number € > 0 and any integer n > 1 such that r;, > ¢, we have

|z, | < |x| + |z — 2, | < |z| +suprt.
i€T
Thus, letting m denote an integer larger than both 1/ and the right-hand side
above, we deduce that |z;,| < m and r;, > 1/m, which means that there are
only finitely many possible values of the integer n when ¢ is given. We readily

89
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deduce that, as n — oo, r;,, tends to zero and z;, tends to . The point z is thus
approximated by the sequence (z;,)n>1 at a rate given by the sequence (7} )p>1;
this justifies the terminology of the previous definition. Moreover, it is obvious and
useful to remark that, up to extracting, we may suppose that the latter sequence
is decreasing without losing the approximation property.

Our purpose is now to give an upper and a lower bound on the Hausdorff
dimension of the set F; defined by when (z;,7;)iez 1s a given approximation
system. We shall subsequently extend the upcoming results in the direction of
large intersection properties and Hausdorff measures associated with general gauge
functions, see Chapters and [9]

4.1. Upper bound on the Hausdorff dimension

As suggested by the preceding discussion, the set F; defined by may essen-
tially be seen as a limsup set, thereby falling in the setting deal with in Section [2.8
More precisely, for any bounded open subset U of R?, let

Iy ={ieZ|x €U} (88)
If a given point = belongs to F; N U, the above remark ensures that there exists a
sequence (i, (r))n>1 of indices in Z such that z;_(,) tends to x as n — oco. As the

set U is open, the indices i, (z) thus belong to Zy for n sufficiently large. On top
of that, for any real number € > 0, we have

#{ieIU|ri>s}§#{ieI

1
xi<mandri>}<oo
m

for m large enough. We may thus find an enumeration (i, ),>1 of the set Zyy such
that the sequence (7, )n>1 is nonincreasing and tends to zero at infinity. We finally
end up with an approximate local expression of the set F; as a limsup set, namely,
F,NU C limsupB(z;,,r! ) C F,NU, (89)
n—oo
where U stands for the closure of the open set U.

In view of Section [2.8] it is thus natural to examine the convergence of the
series Y [B(zi,, 7} )|®, where s is a real parameter in the interval [0,d]. To be
more specific, making a convenient change of variable, this amounts to considering
the infimum of all s such that the series >, ; 77 is convergent. Note that this
infimum is clearly a nondecreasing function of U. In order to cover the case where
U is unbounded, and maybe also obtain a better value in the bounded case, we
finally introduce the exponent

sy = inf supinf{s>0 er<oo ) (90)

U=U, Ue ¢>1 ety
£

where the infimum is taken over all sequences (Uy),>1 of bounded open sets whose
union is equal to U. Our approach thus leads to the following statement.

PROPOSITION 4.1. For any approzimation system (x;,7;)icz, any open subset

U of R? and any real number t > 1,
s

dimy (F, NU) < TU

PRrOOF. Let (Us)¢>1 denote a sequence of bounded open sets whose union is
equal to U. For any integer ¢ > 1, the open set Uy is bounded, so the inclusions
are valid. As a consequence, if s denotes a positive real number such that the sum
Ziezw r; is finite, we may apply Lemma H with the gauge function r — r*/t,
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thereby deducing that the set F;NU, has dimension at most s/t. We conclude thanks
to the countable stability of Hausdorff dimension, namely, Proposition [2.16{2). O

In most situations, the naive bound supplied by Proposition [I.1] gives the exact
value of the Hausdorff dimension, and moreover the parameter sy does not depend
on the choice of the open set U. This happens for instance when the approximation
system are derived from eutaxic sequences or optimal regular systems; these two
notions are discussed in Chapters [6] and [7] respectively.

4.2. Lower bound on the Hausdorff dimension

Our goal is now to establish a lower bound on the Hausdorff dimension of the
set F; defined by under the following simple assumption on the underlying
approximation system (z;,7;);cz.

DEFINITION 4.2. Let Z be a countably infinite index set, let (x;,7;);cz be an
approximation system in R? x (0,00) and let U be a nonempty open subset of
R4, We call (4,7:)icz & homogeneous ubiquitous system in U if the set Fy has full
Lebesgue measure in U, i.e.

for L%ae. x €U Jim.i€T |z — x| <7y

Note that we do not impose that all the points z; belong to the open set U. Ac-
tually, the approximation system is usually fixed at the beginning, and the open set
is then allowed to change so that one can examine local approximation properties.
Moreover, the fact that a given approximation system (x;,7;);cz is homogeneously
ubiquitous ensures that the approximating points z; are well spread, in accordance
with the corresponding approximation radii r;. The following remarkable result,
due to Jaffard [34], shows that this assumption suffices to establish an a priori
lower bound on the Hausdorff dimension of the sets Fj.

THEOREM 4.1. Let (x;,7i)icz be a homogeneous ubiquitous system in some
nonempty open subset U of R:. Then, for any real number t > 1,

d
More precisely, the set Fy NU has positive Hausdorff measure with respect to the
gauge function r — r4/*|logr|.

Combining Theoremwith Propositionabove, we remark that if (z;, r;)iez
is a homogeneous ubiquitous system in U, then the parameter sy defined by
is necessarily bounded below by d. We also readily deduce the following result.

COROLLARY 4.1. Let (z;,7;)icz be a homogeneous ubiquitous system in some
nonempty open subset U of R%. Let us assume that sy < d. Then, for any t > 1,
. d
dimg(F,NU) = n
Again, an emblematic situation where this holds is when the approximation
system are issued from eutaxic sequences or optimal regular systems, see Chapters|[0]
and [7] The remainder of this section is devoted to the proof of Theorem [f.I] We
thus fix a homogeneous ubiquitous system (z;,r;);ez and a nonempty open subset U
of RY. We may obviously assume that U has diameter at most one. Consequently,
the index set Zy defined by admits an enumeration (i,),>1 such that the
sequence (r;, )n>1 is nonincreasing and tends to zero at infinity.
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4.2.1. A covering lemma. The proof of Theorem calls upon a simple
result in the spirit of Vitali’s covering lemma, that is, Lemma but with an
additional measure theoretic flavor.

LEMMA 4.1. For any nonempty open subset V of U and any real number p > 0,
there exists a finite subset Z(V,p) of Iy such that r; < p for all i € Z(V, p), and

L4V)

|_| B(wz,r;)) CV and Z LYB(zi, 1)) > 551

i€Z(V,p) i€Z(V,p)

PROOF. Let us consider a real number p > 0. Then, there exists an integer
n, > 1 such that r;, < p for all integers n > n,. We observe that (z;,, rin)nan is
a homogeneous ubiquitous system in U. As a consequence, every nonempty open
set V' C U necessarily contains a closed ball of the form B(z;,,r;, ), for n > n,.
Indeed, any such open set V' contains an open ball of the form B(xg, 7o), and the
smaller ball B(xg,70/2) contains a point = that belongs to infinitely many open
balls of the form B(z;,,7;,) with n > n,; choosing n so large that r;, is smaller
than 7¢/4, we may use the point x to ensure that

B(xi,,7i,) € B(wo,m0) C V.
Therefore, if V' denotes a nonempty open subset of U, we can define
n1 = min {n >n, | B(zs,,mi,) C V} .

For any integer K > 1, the same argument allows us to define in a recursive manner

K
B(xi,,r:,) CV\ U E(x’nk ’ Ti”k)} )

NK+1 = min {n > Nni
k=1

We thus obtain a increasing sequence of positive integers (nx)x>1. Then, recalling
that the radii ;, monotonically tend to zero as n — oo, we infer that

(@

V Nnlimsup B(z;, ,7;,) C

n—oo

B(xink 23, ) (91)
k
Indeed, if = belongs to the set in the left-hand side of , we necessarily have
x € B(zy,,7;,) €V for some sufficiently large integer n > n;. Letting K denote
the unique integer such that nx < n < ngy1, we deduce from the mere definition
of ngy1 that the ball B(z;,,7;,) meets at least one of the balls E(xink,rink), for
ke {l1,...,K}, at some point denoted by y. Hence,

1

|z — @i, | < |z — w5, < iy + T, T, ST

> . P i'”k7

+ i, =yl +ly — 4,

where the latter bound results from the fact that n > nx > n; and that the radii
are nonincreasing. We deduce that x belongs to the right-hand side of
Finally, since (x;,,7i, )n>1 is @ homogeneous ubiquitous system in U, the left-
hand side of has Lebesgue measure equal to £4(V). Consequently, along
with , the subadditivity and dilation behavior of Lebesgue measure imply that

Ed(V) S Ed ( U E(Iink y 37'1'nk )) S 3d z Ed(E(IZWk ; Tink ))
k=1

k=1

For K large enough, the K-th partial sum of the series appearing in the right-hand
side thus exceeds £4(V)/(2 - 3%). To conclude, it remains to define Z(V, p) as the
set of all indices iy, , for k € {1,..., K}. O
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4.2.2. The ubiquity construction. After fixing a real number ¢ > 1, the
proof of Theorem now consists in applying Lemma repeatedly in order to
build a generalized Cantor set that is embedded in the set F; N U, together with an
appropriate outer measure thereon. We shall ultimately apply the mass distribution
principle, namely, Lemma to this outer measure. To this end, we shall need an
estimate on the mass of balls, i.e. on the scaling properties of the outer measure.

The construction is modeled on that presented in Section [2.9.2} recall that it
is indexed by a tree T and consists of a collection of compact sets (I,,)uer and a
companion premeasure ( such that the compatibility conditions hold. However,
we need to be more precise in the present construction, and we actually require the
following more specific conditions:

(0) every node in the indexing tree T has at least one child, that is,

mink, (T) > 1;

ueT

(1) the compact set Iy indexed by the root of the tree is a closed ball contained
in U with diameter in (0,1) and

((Ig) = || log (92)

o]
(2) for every node u € T\ {@}, there exists an index 4,, € Zy such that

(3) for every node u € T\ {@}, we have simultaneously

2- 64 d(1/t—=1)—1
|BU| < 2exp 7T|I7T(u)| ;

in addition to both

|_| BU - I‘n’(u) and Z ,Cd(BU) >

vES, vES,

‘Cd(lﬂ'(u)) .
2.34 7

(4) for every node u € T\ {@}, the premeasure ¢ satisfies

LY(B.)
L) = =7+ C(Urw))-
qem) S~ C4(By) CUr(wy)
VES,
In the above conditions, S, denotes the set formed by a given node u and its
siblings, namely, the nodes v € T such that 7(v) = 7(u). Moreover, the sets B,

and B! are the closed balls defined by

t
By, = B(w;,,74,) and B! =B (xiu, r;) . (93)
In addition, let us recall that 7(u) denotes the parent of a given node u, and k,(T)
is the size of its progeny. Also, note that the compatibility conditions easily
result from above; we even have equality in the compatibility condition that
concerns the premeasure (. Lastly, it is useful to remark that the ball B, involved
in the construction all have diameter at most one, since they are included in U.

The construction is performed inductively on the generation of the indexing
tree. In order to guarantee , we begin the construction by considering an arbi-
trary closed ball with diameter in (0, 1) that is contained in the nonempty open set
U ; this ball is the compact set I indexed by the root of the tree. We also define
((Iz) by , in addition to the compulsory condition ¢(f) = 0.

Furthermore, let us assume that the tree, the compact sets and the companion
premeasure have been defined up to a given generation j in such a way that the
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conditions (0H4)) above hold; we now build the tree, the compacts and the premea-
sure at the next generation j + 1 in the following manner. For each node u of the
j-th generation, we apply Lemma [.1] to the interior of I,, and the real number

d
pu = exp (_2-6 Iu|d(1/t—1)—1> .
t )

the resulting finite subset of Zy; is denoted by Z(int I,,, p,,). We then decide that
the progeny of the node u in the tree T has cardinality k,(7) equal to that of
Z(int I,, p,). Furthermore, we let iy, for k € {1,...,k,(T)}, denote the elements
of Z(int I,,, p,). Making use of the notation (93), we therefore have

Ky (T)
| | Bux CintI, €I,  and > £4(Buk) >
k=1

On top of that, the radii of the balls B, are bounded above by p,. Using the
notation again, we also define the compact sets I,; as being equal to the
closed balls B!, , for k € {1,...,k,(T)}. This way, the condition @ is satisfied
by the nodes of the j-th generation, and the conditions hold for those of the
(j 4+ 1)-th generation. Finally, for k € {1,...,k,(T)}, we define

B £d(Buk)
T ku(T)
> L4(Bu)
=1

C(Iuk) C(Iu)>

so that holds for the nodes of the (j + 1)-th generation. Finally, the above
procedure clearly implies that every node of the tree has at least one child, i.e. the
condition @ holds.

4.2.3. Scaling properties of the premeasure. The next result gives an
upper bound on the premeasure ¢ in terms of the diameters of sets.

LEMMA 4.2. For any node u € T,

1
(L) < 11l dog 7. (94)
PROOF. Let us prove by induction on the length of the word uw € T'. First,
equality holds when u is the empty word, due to the mere value of {(Iz) determined
by . Moreover, if we consider a node u € T \ {@} and if we assume that
holds for its parent node 7(u), then the conditions (2H4) yield

C(ITI'(’U.)) d d tC(Iﬂ'(u))
¢(1,) <2-34L4B,) =0 =261,
Ld(Iﬂ'(u)) ‘Ifr(u)|d
1
<2. 6d|Iu|d/t|Iﬂ-(u) ‘d(l/t—l) log

‘Lr(u)'

Finally, in view of the restriction on the diameter of the ball B, imposed by the
condition and the obvious fact that log(1/r) < 1/r for all » > 0, we have

t 1 2 1 1 1
o} = og —,
67 * 1B, 267 L]

_ 1 o
Ty | /17D log o < [Ty |10/ 17D 71 <

which leads to for the node u itself. O

2.
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4.2.4. The limiting outer measure and its scaling properties. With the
help of Theorem we may extend as usual the premeasure ¢ to an outer measure
¢* on all the subsets of R? through the formula . We may also consider the
limiting compact set K defined by , in addition to the outer measure p that
maps a set £ C R? to the value (*(E N K). The tree T considered here is infinite,
so Lemma [2.3| shows that K is a nonempty compact subset of Ig. Moreover, the
outer measure p has total mass u(K) = ((Iz). The next result shows that K is
included in F; N U as required.

PROPOSITION 4.2. The compact set K is contained in the intersection Fy N U.
As a consequence,

1
w(F,NU) = u(K) = ((Iz) = |I5|""log Tl
)%

PROOF. On the one hand, we already mentioned that K C I C U. On the
other hand, if a point = belongs to K, then there exists a sequence (§;);>1 of
positive integers such that = € Ie, g, for all 5 > 1. Hence, the point x belong
to the infinitely many nested balls Bél...g,- C B(migl.,.gj , Tgsl.».s,- ), and so ultimately
belongs to the set F;. O

Thanks to Lemma, we may now derive an upper bound on the py-mass of
sufficiently small closed balls R<.

PROPOSITION 4.3. For any closed ball B of R% with diameter less than e=%*,

1
w(B) <2-127|B|/? 1og®.

PROOF. We may obviously assume that the ball B intersects the compact set
K, as otherwise p(B) clearly vanishes. Besides, if the ball B intersects only one
compact set I,, at each generation, then there exists a sequence (§;);>1 of positive
integers such that BN K C Ie, ¢, for all 7 > 1, so that

M(B) = C*(B ﬂK) < C(Igl-ufj) < ‘IEI~~~£j|d/t log

— 0,

| fl~~-fj| j—roo

thanks to Lemma The upshot is that we may suppose in what follows that
there exists a node u € T such that the ball B intersects the compact set I, and
at least two compacts indexed by the children of u. We further assume that u has
minimal length, which in fact ensures its uniqueness.

The easy case is when the diameter of the ball B exceeds that of the compact
set I, ; indeed, as the intersection set BN K is covered by the sole I,,, we may then
deduce from Lemma £.2] that

1

1
u(B) = (BNK) < ((u) < IIu\d/tlogm < |B|"*log B

Note that the latter inequality holds because |B| is small enough to ensure that the
considered function of the diameter is nondecreasing.

Let us now deal with the opposite case in which |B| is smaller than |I,,|. Let K
denote the set of all integers k between one and k,(T') such that the compact set
I, intersects the ball B. The proof calls upon the next simple volume estimate.

LEMMA 4.3. For any integer k € IC,

Ed(Buk).

LYB N Bu) > T,
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PROOF. For any distinct k¥ and k' in K, the balls B, and B,/ are disjoint,
so the distance between their center is larger than the sum of their radii; indeed,
otherwise, we would have

T Tinge T Vi Ty

Pire T Tiyps

uk’

€ Byur N Byg-

Furthermore, let y, denote a point that belongs to both I, and B. The previous
fact and the triangle inequality yield

Tiwe T i < |Ti 0 — Tiyy |

uk’
t t
: =+ r;
ki 5 4y — Yl

from which we deduce a lower bound on the distance between ¥ and yxs, and in
fact a lower bound on the diameter of the ball B, namely,

< @iy — Yk | + [ @iny — el + e — yil <

t t t
Tiuk + rluk’ T,

2 Z Vi — D) .
Letting xy and ro denote the center and the radius of the ball B, respectively, and
letting s denote half the right-hand side above, we deduce that rg > sg.

Let us assume that the distance between z;,, and zo is smaller than ro — sj.
Thus, the closed ball B(x;,, , sk) is included in both B and By, so that

|B| > |yn — yr| > rigy + 74, —

Sk

)dcdwuk),

in view of the dilation behavior of Lebesgue measure. In the opposite case, thanks
to the triangle inequality, we have

LYB N Buk) > LYB(wi,,,51)) = <

ik

,,,t

ro — sk < [T, — To| < |Tiy, — Ykl + Yk — 20| < % + 1o =70+ 1i,, — 25k
We may thus consider the barycenter defined by
my = )\kxiuk + (1 — )\k)xo with A = 0TSk S [O, 1].
|xiuk - £C0|

It is clear that the distance between my and xg is equal to rg — si. Likewise, the
distance between my, and z;,, satisfies

[my — i, | = (1 = A)|2i,, — Tol = |7, — 20| — 70 + sk <74y, — Sk

We deduce that the closed ball B(my, s3) is contained in both B and B,y, which
gives as above

d
Ed(B N Buk) > Ed(g(mk,sk)) = ( Sk ) Ed(Buk).
The result follows from the fact that the radius of the ball B, is at most one. O

The previous lemma enables us to estimate the p-mass of the ball B. Indeed,
the ball intersects the compact set K inside the compact sets I, for k& € I, so the

conditions and yield
u(B) = ¢*(BN K)

d
<Y ) = Y P gy <20 fﬁfj)) S LU(Buy).

keKx keK Z »Cd(Bul) keK
=1
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Now, applying Lemma and making use of the disjointness of the balls By, we
infer that

q¢!
(1,

ZEdBﬂBuk)<2 12¢ Cd( )E(B).
) i £4(T)

Combining the condition , the definition of the balls B! and the bound on
the ¢-mass of I,, given by Lemma we deduce that

w(B) <2124

1 1
u(B) <2-124|B|4|1, |4 /t=D 1ogm <2-124B|¥log —:

1Bl
For the latter bound, we have the fact that ¢ > 1 and |I,,| > |B|. We conclude by
combining this bound with the one obtained in the previous easier case. O

To finish the proof of Theorem it remains to apply the mass distribution
principle, namely, Lemma In fact, any bounded subset C' of R? may be em-
bedded in a closed ball B with radius equal to |C|. If we assume in addition that
|C| < e=%/*/2, the ball B has diameter less than e~%/*, and Proposition gives

1 1
u(C) < u(B) < 2-12¢4B|#! log—l < 2-12%%4 0| og —-

|B e}

Letting g denote the gauge function r — 7%/ | log r|, the mass distribution principle

and Proposition [.2] finally ensure that

p(FNU)  g(lel)
T 2.1242d/t 2. 12d2d/t
from which we deduce that the set F; N U has Hausdorff dimension at least d/t.

HI(F,NU) > >0,

4.3. Application to the Jarnik-Besicovitch theorem

We already studied the Hausdorff dimension of the set Jg, formed by the
points that are approximable at rate at least 7 by the points with rational coordi-
nates, see for the exact definition of this set. Specifically, the Jarnik-Besicovitch
theorem discussed in Section asserts that for any real 7 > 14 1/d,

d+1
dlInH Jd,'r = i7
T

see Theorem for the precise statement. Also, let us recall that the set Jg ,
coincides with the whole space R? when 7 < 1+1/d, as a consequence of Dirichlet’s
theorem, see Corollary

The general theory discussed above enables us to give an alternative proof of the
Jarnik-Besicovitch theorem. Indeed, the set Jg141/4 coincides with the whole R¢,
so it obviously has full measure therein, namely, for Lebesgue-almost every = € R?,
there are infinitely many pairs (p,q) € Z% x N such that |z — p/qlec < ¢~ /4.
This means that the family (p/q,q_l_l/d)(p’q)ezde is a homogeneous ubiquitous
system in R?. Besides, for any integer M > 1 and any real number s > 0, note that

S (i = 3 g 070 B (0, g,

(p,q) €24 XN q=1
P/q€EBoo (0, M)

The cardinality appearing in the sum is of the order of (¢M)¢, up to numerical
constants. Hence, the critical value s for the convergence of the series is that for
which (1 +1/d)s — d is equal to one. We deduce that for any open subset U of R,
the parameter sy defined by is bounded above by d. We are now in position
to apply Corollary After fixing a real number 7 > 1 + 1/d and observing that
the approximation radii ¢~7 in the definition of Jg, may be written in the form
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(¢ =Yt with t = 7d/(d+1) > 1, we deduce from the aforementioned result that
for any nonempty open subset U of R?,
d d+1
iy (Jar NU) = 5 = Ry (95)

T

thereby obtaining a local version of the Jarnik-Besicovitch theorem.
We can relate this result with the notion of irrationality exponent, supplied by
Definition In fact, for any real number 7 > 1+ 1/d,

Jar\Q? C{z e RN\ Q*|7(z) 27} = () | Jarr \ Q%
T'<T
Due to and the fact that the set Q¢ has Hausdorff dimension zero, we deduce
that for any nonempty open subset U of R¢,

d+1
dimp{z € U\Q* | (@) 2 7} = L=,
.
Theorem gives actually a slightly more precise result, specifically, letting g,
denote the gauge function 7 — r(@+1/7|log 7|, we have

HI"({z e U\ Q| 7(x) > 1}) > HI (Ja, NU) > 0.

This allows us to determine the Hausdorff dimension of the set of points with
irrationality exponent exactly equal to 7. As a matter of fact, let us observe that

{z eRIN\Q|7(z) =7} ={r e R\ Q| r(z) > 7} U tJa.. (96)
T'>T
Moreover, thanks to Proposition we have for 7/ > 7 and € > 0 small enough
to ensure that (d + 1)/7 — ¢ is larger than (d + 1)/7,

: g-(r) (d+1)/7—
gr , € ) =
HI (Jar) < (hrfjélp ,r.(d+1)/7——€) H (Ja) =0
The mapping 7" +— Jy . is nonincreasing, so the union in may be written
as a countable one, and Proposition [2.4{|1)) implies that its Hausdorff g,-measure
vanishes. We deduce that

d+1

dimg{z € U\ Q¢ | 7(z) =7} = p

Indeed, the set in the left-hand side of has positive g--measure in U.

4.4. Behavior under uniform dilations

The next useful result shows that multiplying all the approximation radii by
a common positive factor does not alter the property of being a homogeneous
ubiquitous system. In particular, this implies that this property is independent on
the choice of the norm the space R¢ is endowed with.

PROPOSITION 4.4. Let (x;,7;);cz be a homogeneous ubiquitous system in some
nonempty open subset U of RY.  Then, for any real number ¢ > 0, the family
(z4,c7;)icz 1S also a homogeneous ubiquitous system in U.

PRrROOF. The family (x;,c7;)iez is clearly an approximation system, so it re-
mains to show that the set R, of all points x € R? such that |z — z;| < cr; for
infinitely many indices ¢ € Z has full Lebesgue measure in U. This is obvious if
¢ > 1, because R, contains R, which has full Lebesgue measure in U. We may
thus restrict our attention to the case in which ¢ < 1.

Let V be a nonempty bounded open subset of U and let j be a positive integer.
By Lemma there is a finite subset Z; = Z(V,277) of Z such that the balls
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B(z;, ;) are disjoint, contained in V', with radius at most 277, and a total Lebesgue
measure at least £4(V)/(2-3%). In particular,

R.NV D limsup |_| B(z;,cr;) = mi U |_| B(z;,cry).

J—roo i€Z; =ji€Ly

The open set V is bounded, thereby having finite Lebesgue measure. Hence, Propo-
sition 2.5 ensures that

d : d
LYR.NV) zjli)rgoiﬁ U |_| (zi,c1)
J'=j €Ly
c LUV)

> lim sup Z LYB(zi,cm3)) > 5. 3d

j—o0 i€,

Let us assume that £4(U \ R,) is positive. Then £4(U,, \ R.) is positive for m
large enough, where U,, denotes the set U N (—m, m)?. Furthermore, there exists
a compact subset K of R. N U,, such that
LY U, \ R)

2-3d ’

see for instance [46, Theorem 1.10]. Applying what precedes to the bounded open
set V =U,, \ K, we obtain

LY(R.NUp) \ K) <

LU\ K) ¢ LU\ Re)
2. 3d - 2. 3d ’
and we end up with a contradiction. Hence, R, has full Lebesgue measure in U. O

LYRN (U \ K)) 2







CHAPTER 5

Large intersection properties

5.1. The large intersection classes

The classes of sets with large intersection were introduced by Falconer [26), [28§].
They are composed of subsets of R? with Hausdorff dimension at least a given s
satisfying the remarkable counterintuitive property that countable intersections of
the sets also have Hausdorfl dimension at least s. This is in stark contrast with, for
instance, the case of two affine subspaces with dimension s; and so, respectively,
where the intersection is generically expected to have dimension s; + so — d. The
aforementioned classes are formally defined as follows. Recall that a Gs-set is one
that may be written as the intersection of a countable sequence of open sets.

DEFINITION 5.1. For any real number s € (0,d], the class G*(R%) of sets with

large intersection in R with dimension at least s is the collection of all Gs-subsets
F of R? such that

dimyg ﬂ Gu(F) > s
n=1

for any sequence (s, ),>1 of similarity transformations of R

As shown later in these notes, numerous examples of sets with large intersection
arise in metric number theory. Let us point out that the middle-third Cantor set
K gives a typical example of set that is not with large intersection. Indeed, letting
¢ denote the mapping that sends a real number x to (z + 1)/3, we readily observe
that K N ¢(K) is reduced to the points 1/3 and 2/3, thereby having Hausdorff
dimension zero, whereas the Cantor set K itself has dimension equal to log2/log 3,
see Propositions [2.17] and More generally, the attractors of iterated function
systems that are discussed in Section do not satisfy the large intersection
property.

As mentioned above, the main property of the large intersection classes G*(R%)
are their stability under countable intersections; remarkably, they are also stable
under bi-Lipischitz transformations, i.e. mappings satisfying . This is the pur-
pose of the next statement.

THEOREM 5.1. For any real number s € (0,d], the class G*(R?) is closed under
countable intersections and bi-Lipschitz transformations of R®.

The proof of Theorem being quite long, we postpone it to Section S0 as
not to interrupt the flow of the presentation. Combined with the definition of the
classes G*(R?) given above, Theorem directly yields the following maximality
property with respect to countable intersections and similarities.

COROLLARY 5.1. For any real number s € (0,d), the class G*(R?) is the maz-
imal class of Gs-subsets of R* with Hausdorff dimension at least s that is closed
under countable intersections and similarity transformations.

We now give several characterizations of the classes G*(R?). Some of them
are expressed in terms of outer net measures that are obtained by restricting to

101



102 5. LARGE INTERSECTION PROPERTIES

coverings by dyadic cubes. More precisely, let us recall from Section that a
dyadic cube is either the empty set or a set of the form A = 279 (k + [0,1)9), with
j €7Z and k € Z%, and that the collection of all dyadic cubes is denoted by A. For
any real number s € (0,d], let us consider the premeasure, denoted by | - |3, that
maps a given A € A to |A|*. Then, as in Section m Theorem allows us to
consider the net measure
M = (] [3)«

defined by . In view of Proposition this outer measure is comparable with
the s-dimensional Hausdorff measure, in the sense that

H(E) < M*(E) < 5 (B)
for any subset E of R? and for some real number x > 1. In addition, Theorem
enables us to introduce the outer measure
M =(]-13)" (97)

that is defined by (51]), and thus corresponds to coverings by dyadic cubes of arbi-
trary diameter. It is clear that the outer measures M7, bound the net measures
M? from below. Hence, for any subset E of R,

M (E) >0 = dimpg F > s. (98)

Moreover, it is useful to observe that the M?_-mass of the dyadic cubes may easily
be expressed in terms of their diameters. This is the purpose of the next lemma.

LEMMA 5.1. For any real number s € (0,d] and any dyadic cube \ € A,
ME(N) = M2 (int A) = |A]°.
ProoOF. Given that M?_ is an outer measure and that the considered dyadic
cube A may obviously be covered by itself, we directly infer that
M (int ) < M3(N) < AP

In order to show that equality holds, let us consider a dyadic covering (Ap)n>1 of
the interior of A. If A is contained in some cube A, then we clearly have

A< P ® <) 1Al
n=1

Otherwise, all the cubes \,, are either disjoint from, or included inside, the cube A.
Thus, we may consider the subset A of N formed by the integers n > 1 for which
An, is contained in . The cubes \,, for n € N/, still cover the interior of A and have
a smaller diameter, so that

STl = DT Pl = AP T L () = AP L e A) = A,
n=1 neN neN

where x/ is the diameter of the unit cube of R?, and only depends on the norm the
space R? is endowed with. We deduce the required inequality by finally taking the
infimum over all coverings (Ap)n>1- O

We can now enumerate the properties that characterize the large intersection
classes; note that the formulations given by Falconer [28] are slightly erroneous and
one has to consider the corrected versions below, where s denotes a real number in
the interval (0,d] and F is a subset of RY:
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(1) for any nonempty open subset U of R% and any sequence (f,),>1 of bi-
Lipschitz transformations from U to R?, we have

dimy ﬁ fal(F) = s

n=1

(2) for any sequence (s,),>1 of similarity transformations of R, we have
oo
n=1

(3) for any positive real number ¢ < s and any dyadic cube X € A,
M (FNA) =M (V)

(4) for any positive real number ¢ < s and any open subset V of R?,
ML(FNV) =M (V)

(5) for any positive real number ¢ < s, there exists a real number ¢ € (0, 1]
such that for any dyadic cube A € A,

ML (FAN) > e ML (N);

(6) for any positive real number ¢ < s, there exists a real number ¢ € (0, 1]
such that any open subset V of R,

M (FAV) > e ML (V).
Note that the property coincides with the definition of the large intersection
class G*(R?) under the assumption that F is a Gs-set. The next result details the

logical relationships between the previous properties, and in fact implies that they
give equivalent characterizations of the large intersection classes.

THEOREM 5.2. Let us consider a real number s € (0,d] and a subset F of R%,
o The following implications hold:

=0 =@ = @ = @ <= @.

o If F is a Gs-set, then the properties are all equivalent, and charac-
terize the class G*(RY).

Just as that of Theorem the proof of Theorem is quite long and thus
postponed to Section for the sake of clarity. Note that the characterizations
and @ still hold when changing the norm on R?; the large intersection classes
are thus independent on the choice of the norm the space R? is endowed with.
Hereunder are several other noteworthy properties of these classes.

PROPOSITION 5.1. The large intersection classes G*(R%), for s € (0,d), satisfy
all the following properties.

(1) Any Gs-subset of R? that contains a set in the class G*(R?) also belongs
to the class G*(R?).

(2) The mapping s — G*(R?) is nonincreasing.

(3) The class G*(RY) is the intersection over t < s of the classes G'(R).

(4) For any sets F € G*(RY) and F' € G (RY), the product set F x F' belongs
to the class G5+ (R,

PROOF. We only need to detail the proof of the last property, because the
others readily follow from Definition [5.1] To proceed, let us consider two sets
F e G*(RY) and F’ € G¥(R?), a real number ¢ > 0 and a dyadic cube of R4t4’
that is written in the form A x X/, where X is a dyadic cube of R? and X’ is a dyadic
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cube of RY. Tt is clear that (F x F') N (XA x X) is equal to (F N A) x (' N X).
Moreover, it follows from [27, Theorem 5.8] that

MEF =S ((F X)) x (F' N N)) > e M2 (F N A) MES2(F' 0 \),

for some real constant ¢ > 0. Using the property of Theorem together with
Lemma we deduce that

M (F < FY N (A x X)) > e[ A7/ X7 =/
=cd ]Ax N[PH e = Mo e (A x X)),

where ¢’ is a positive real number that depends on the norms the spaces R?, R
and R%4" are endowed with. We conclude that F' x F” belongs to G55 (R4+4"). [

Finally, note that a set with large intersection is necessarily dense in the whole
space R%. This is easily seen for instance by considering the characterization
of the large intersection classes given by Theorem and by making use of
Lemma [5.1] However, in some applications, the considered sets are thought of
satisfying a large intersection property in some nonempty open subset U of R
but fail to be dense in the whole space R? itself. We therefore need to introduce
localized versions of the large intersection classes. In that situation, the use of
similarity transformations is not suitable anymore; a convenient way of proceeding
is thus to adjust the characterization of the large intersection classes given by
Theorem [5.2] in the following manner.

DEFINITION 5.2. For any real number s € (0, d] and any nonempty open subset
U of R4, the class G*(U) of sets with large intersection in U with dimension at least
s is the collection of all Gg-subsets F' of R such that

ML(FNV) =M (V)
for any positive real number ¢ < s and any open subset V' of U.

Obviously, thanks to Theorem the class G*(U) defined above coincides with
the initial class G*(R?) introduced in Definition when the open set U is equal
to the whole space R?. We also directly obtain the following result; the second
statement therein follows from , whereas the first one is proven in Section

THEOREM 5.3. Let s € (0,d] and let U be a nonempty open subset of RY. Then:

(1) the class G*(U) is closed under countable intersections;
(2) for any set F € G*(U) and any nonempty open set V. C U,
dimg(FNV) > s.

In view of the previous result, the large intersection property is actually a
combination of a density property with a measure theoretic aspect. In that spirit,
Theorem may be thought of as a Hausdorff dimensional analog of the Baire
category theorem.

5.2. Other notions of dimension

The sets with large intersection also display a remarkable behavior with re-
spect to packing dimension. Let us explain how this notion of dimension, due to
Tricot [60], is defined. First, given a gauge function g, we define on the collection
of all subsets F' of R? the packing g-premeasure by

PI(F) = lim | PY(F)  with  P{(F)=sup» g(|Bnl),
n=1
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where the supremum is taken over all sequences (By,)n>1 of disjoint closed balls of
R? centered in the set F' and with diameter less than §. The premeasures P9 are
only finitely subadditive; it is thus more convenient to work with the corresponding
packing g-measure, defined by

P = (PI)*
as in the formula , which is an outer measure on R? as a consequence of
Theorem It is actually possible to show that the Borel subsets of R¢ are
P9-measurable, see [46, Chapter 5] for details.

The definition of packing dimension is then very similar to that of Hausdorff
dimension, namely, Definition Specifically, when the gauge function g is of
the form r — r® with s > 0, it is customary to use P* as a shorthand for P9, and
the packing dimension of a nonempty set F C R? is defined by

dimp F = sup{s € (0,d) | P*(F) = co} = inf{s € (0,d) | P*(F) = 0},  (99)

with the convention that sup® = 0 and inf() = d. When the set F' is empty, we
adopt the convention that the packing dimension is equal to —oo. Moreover, one
recovers the upper box-counting dimension dimg E by considering the premeasures
Ps instead of P? in the latter formula.

The packing dimension of sets with large intersection is discussed in the next
statement, which may be seen as an analog of Theorem , which deals with
Hausdorff dimension.

PROPOSITION 5.2. Let s € (0,d] and let U be a nonempty open subset of R?.
Then, for any set F € G*(U) and for any nonempty open set V C U,

In other words, a set with large intersection has maximal packing dimension
in any nonempty open set; the same property obviously holds for box-counting
dimensions as well, because sets with large intersection are dense. Again, for the
sake of clarity, the proof of Proposition [5.2]is postponed to Section [5.3

5.3. Proof of the main results

5.3.1. Ancillary lemmas. The proofs make use of several technical lemmas
concerning the outer measures M3, that we now state and establish.

LEMMA 5.2. Let us consider two real numbers s € (0,d] and ¢ € (0,1], a subset
F of R, and an open subset V' of R%. Suppose that there is a 6 > 0 such that

ME(F ) > e M3 (N)
for all dyadic cubes A € A with diameter at most § that are contained in V. Then,
M (FNV)>eM: (V).

PRrROOF. Let As(V') denote the collection of all dyadic cubes with diameter at
most J that are contained in V', and that are maximal for this property. Clearly,
these cubes are disjoint and their union is equal to the whole open set V. Let us
now consider a dyadic covering (A,)p>1 of the set F' NV. Two dyadic cubes are
either disjoint or included in one another, so there exists a subset N of N such that
the cubes \,, for n € N, are disjoint and still cover F NV

Moreover, for any cube A € As(V), let A'(A\) denote the set of all n € A such
that A, C A. If N(X) # 0, then the cubes A, for n € A/(A\), cover F'N A, so that

ST Pl = ME(FNX) = e M3 () = c|Al%,
neN ()
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where the last equality follows from Lemma In addition, the sets N ()\) are
disjoint. Hence, letting A" denote the complement of their union in N, we have

ZM P DY DT =D Il YD Al (100)

neN’ AEAs (V) neN () neN”’ AEAS (V)

N(N)#0
On top of that, let A denote a cube in As(V') for which the index set N (X) is
empty. The intersection F' N A\ cannot be empty and is covered by the sets \,, for
n € N. Thus, there is an integer ng € A such that the cubes A and A, intersect.
Necessarily, A is a proper subcube of \,,, and the index ngy belongs to N’. This
means that the cubes A, for n € N, together with the cubes A € As(V) such that
N(X) # (0 form a covering of the open set V. Hence, the right-hand side of is
bounded below by ¢ M2_(V), and the result follows. O

LEMMA 5.3. Let us consider two real numbers s € (0,d] and ¢ € (0,1], a subset
F of R, and an open subset V of R%. Let us suppose that

ME(F AN = e ME(N)
for all dyadic cubes A\ € A that are contained in V. Then,
ML (F ) = M (V)
for all dyadic cubes \ € A that are contained in V' and all real numbers t € (0, s).

PROOF. Let us consider a dyadic cube )\ contained in V with sidelength 277,
and a dyadic covering (A, )n>1 of the set F'NA. Again, two dyadic cubes are either
disjoint or included in one another, so there exists a subset A" of N such that the
cubes A\, for n € N, are disjoint, included in A, and still cover F' N X\. Moreover,
let j' denote an integer such that 2-(=03" < ¢2=(s—)j,

Note that j’ > j, so the cube A may be written as the union of 2" ~7 disjoint
subcubes with sidelength 277 ". Let M denote the collection of these subcubes. As
in the proof of Lemma for any cube p € M, let N (1) denote the set of all
indices n € N such that A\, C p. In that situation,

1

_ o s 1 _
Pualt 2 15 Al* = (82775l 2 = (6 279) 0 A = A A

where x/ is the diameter of the unit cube of R?, as in the proof of Lemma
Moreover, if N'(u) # 0, then the cubes A, for n € N (1), cover F N p, so that

S A S

neN (1) neN (u)

1 —s s —s s —s|,,|s
> AT ME(F ) = T ME () = Al

where the last equality follows again from Lemma Furthermore, let A/ denote
the complement of the union of the sets N'(u) in . If n belongs to N, then

Anl® = A5 A,

and A\, admits a proper subcube p € M. In fact, otherwise, all the cubes in M would
be disjoint from A, ; this is impossible because A,, is inside A, which is covered by
the cubes in M.

This means in particular that the cubes \,, for n € N, along with the cubes
w € M for which N(u) # (0 form a covering of the cube A\. Hence, using also the
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disjointness of the index sets (i), we infer that

Dol = Dl DY >
n=1 neN”’ HEM neN (u)

>IN Pl D0l | =AM () = A
neN’ N#ZS)I\;IM

Here again, the last equality follows from Lemma We conclude by taking the

infimum over all coverings in the left-hand side above. O

LEMMA 5.4. Let U be a nonempty open subset of R® and let f be a bi-Lipschitz
mapping from U to R% with constant cp > 1, see . Let us consider two real
numbers s € (0,d] and ¢ € (0,1] and a subset F of R*, and suppose that

ME(FAV) > e Ma (V)
for any open subset V of R%. Then, for any open subset V of U,
c
ME(fTHE)NV) > —= M (V).
LUTNY) 2 G M)
PROOF. The statement is clearly invariant under a change of norm, so we may
assume throughout the proof that the space R? is endowed with the supremum

norm | - |«. Let us begin by observing that a Lipschitz mapping g : U — R? with
constant k£ > 1 satisfies

M3 (9(A)) < (3k)IMS(A) (101)
for any subset A of U. Indeed, if (A,;)n>1 denotes a covering of the set A, then
g(A) is covered by the image sets g(\,,), and each of these sets is itself covered by
([k] + 1)? dyadic cubes with diameter equal to that of the initial cube \,,.

Consequently, if V' denotes an open subset of U, the set f(V') is an open subset
of R%, and we have

ME(V) < (Bep) M (F(V))

(3¢s)?

< B p p gy < BT

c
which gives the required estimate. O

M (fHF)N V),

LEMMA 5.5. Let U be a nonempty subset of R? and let s € (0,d]. Let us
consider a sequence (Fi)p>1 of Gs-subsets of RY such that
M (F V) = M2 (V)
for any k > 1 and any open subset V of U. Then, for any open subset V of U,

M, (ﬂ Fi.0) V) > 37 ME(V).
k=1
PRrROOF. Throughout the proof, when V is an open set and § is a positive real
number, V5 denotes the inner §-parallel body of V', namely, the open set
Vs ={zcV|dz,R"\V) >4} (102)

formed by the points in V' at a distance larger than § from its complement.

Let us first assume that the sets F}, are open and form a nonincreasing sequence.
Let V be a bounded open subset of U and let € > 0. We then define inductively
a sequence (Vi)g>o0 of open subsets of V' and a sequence (0y)>1 of positive real
numbers by letting Vo =V and

Vk>1 Vie = (Fr N Vik—1)s,.,



108 5. LARGE INTERSECTION PROPERTIES

where the real numbers d; are chosen in such a way that
Vk>1 ME (Vi) > M5 (V) —e.

The existence of d; is a consequence of the fact that Proposition holds for the
outer measure M?_ even if it need not be regular, see [5I, Theorem 52]. Indeed,
the sets (Fj N Vik_1)s are nonincreasing with respect to § and their union is equal
to the whole set F}, N Vi_1, so the previous remark ensures that

lim ME((Fr N Vi—1)5) = M (Fi N Vim1) = M2 (Vi—1).

The last equality follows from the hypothesis on the set Fj. As a consequence, it
is possible to choose §; appropriately if the set V;_; has been chosen so. Remark
that (Vi)r>1 is a nonincreasing sequence of compact subsets of V, and that each
compact set Vj, is contained in the corresponding set Fj.

Let (Ay)n>1 denote a covering of the intersection of the compact sets Vi by
dyadic cubes. We have

N evic Jrne Ui,
k=1 n=1 n=1

where 3\, denotes the union formed by A, and the adjacent dyadic cubes. By
compactness, there exists an integer k > 1 such that the set V}, is contained in the
right-hand side above. Hence, V}, is covered by the dyadic cubes that belong to
3An, for n > 1. We deduce that

ME(V) =& < ME(Vie) <D 3% A"
n=1
Taking the infimum over all dyadic coverings in the right-hand side, we end up with

o0 o0
ME (V) —e < 3TME, (ﬂ wk) < 3TM:, (ﬂ F oV> .
k=1 k=1
By letting the parameter € go to zero, we thus settle the case where the sets Fj, are
open and nonincreasing, and the open set V' is bounded.

In order to drop the boundedness assumption on V', one may use the analog
of Proposition for the outer measure M?_. To get rid of the assumption on
the sets Fy, it suffices to observe the intersection of any sequence of Gs-sets may
be written as the intersection of a nonincreasing sequence of open sets. O

5.3.2. Proof of Theorem We may now establish the various relation-
ships between the properties involved in the statement of Theorem [5.2

5.3.2.1. Proof that implies (@ This follows from the observation that the
inverse of a similarity transformation of R is a bi-Lipschitz mapping.

5.3.2.2. Proof that @) implies (@ Arguing by contradiction, we assume that
there are two reals t € (0,s) and ¢ € [0,1) and a dyadic cube A € A such that

ME(FNA) <eMi(N) =c|A\"

Here again, the last equality is due to Lemmal[5.1] As a result, there exists a dyadic
covering (\,)n>1 of the intersection set F' N A for which the total sum of |\,|* is
smaller than ¢|A|!. Furthermore, there is a subset N of N such that the cubes A,
for n € N, are disjoint and included in A, and still cover F' N A. For any integer
n € N, let ¢, denote the natural affine mapping that sends A onto A,. This is a
similarity transformation of R? and it is easy to check that for any set A C \,

M (6u(4)) < ('m M_(A). (103)
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Furthermore, let us consider a point x € A that belongs to all the image sets
Gny O - .. 0Gy,, for any choice nq, ..., ng of integers in N, and any integer k& > 0. In
particular, for £ = 0, this means that the point = is in F' N A, thereby belonging
to some dyadic cube \,,, with n; € N/. We can then write x in the form ¢,, (x1)
for some 7 € A. Applying the above hypothesis with &k = 1, we observe that x;
necessarily belongs to F' as well. Thus, z; belongs to some dyadic cube A,,, with
ng € N. Tterating these arguments, we deduce that there exists a sequence (ng)x>1
of integers in A and a sequence (xj)r>o of points in F' N A such that zo = = and
Tp—1 = Sn,, (zx) for all k£ > 1. As a consequence,

m ﬂ Sny O+ 06y, (F)NAC U m§n10.~-0§nk(FO>\).

k=1n1,....n€EN ("k‘)k21ENN k=1

On top of that, using the countable subadditivity of the outer measure M?
and applying (103) multiple times, we infer that for any integer k& > 1,

ML U Snp O 06, (FNA)| < Z ML (S0 06, (FNN))

ny,...,ngEN N1y, EN

t t

kt
N1y, EN |>\|

k
= <|j > w) ME(F A

neN
<ML (FNN,

from which we readily deduce that

ML ) smo-omE)NA gigfckMgo(Fm)zo.
k:lnl,...,nké./\/ k71

Finally, Theorem enables us to consider the outer measure H!_ = (] - [!)*
defined by and corresponding to coverings by sets of arbitrary diameter. How-
ever, it is clear that this outer measure bounds M?_ from below, so that

HE ﬁ m Sny ..o, (F)NX] =0.

k=1ny,...nx €N

Now, let (7,)p>1 denote a sequence of translations for which the image sets 7,()\),
for p > 1, form a partition of the whole space R?. We have for each p > 1,

Ho N () mowmo.owm(F)NnA) | =0,
k=1n1,....nx €N

which directly gives

Ht

D)

N ()] mosmo...om(F)]=0. (104)
k=1

1 N1y EN

p

Note that we can replace the outer measure H%_ by the Hausdorff ¢-dimensional
measure H' in . As a matter of fact, any subset A of R? may clearly be written
as a countable union over p > 1 of sets A, with diameter at most a given § > 0.
Let us assume in addition that H!_(A) vanishes. Then, for each integer p > 1, it
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is clear that H. (A,) vanishes as well, so that there exists a covering (C} ,,)n>1 of
the set A, with

oo
D Gl <277,
n=1

where € is a positive real number fixed in advance. Up to replacing the sets Cp »,
by their intersection with A,, we may assume that their diameter is at most 6.
Thus, considering the sets C,, ,, altogether, we obtain a covering of A with sets with
diameter at most §, thereby inferring that

o0

H5(A) < i D 1Conl" < isﬂ =c.
p=1n=1

p=1

Letting 4, and then e, go to zero, we deduce that the Hausdorff ¢-dimensional
measure of the set A is equal to zero.

We conclude that the set under study in has Hausdorff dimension bounded
above by t, and therefore smaller than s. As the mappings 7, 0¢,, 0...0¢,, form
a countable sequence of similarity transformations, this contradicts (2]).

5.3.2.3. Proof that (@ is equivalent to , which implies which itself is
equivalent to @ This follows straightforwardly from Lemma together with
the observation that the interior of a dyadic cube X is an open set with the same
M?_-mass than X itself, by virtue of Lemma

5.3.2.4. Proof that (@ implies for Gs-sets. Let us assume that F' is a G-
set satisfying @, and let (f,)n>1 denote a sequence of bi-Lipschitz transformations
defined on a nonempty open set U. For each n > 1, let ¢,, denote a constant such
that f,, satisfies . Let t denote a positive real number smaller than s. Lemma
ensures that for any t’ € (¢, s), there is a real number ¢ € (0,1] such that for any
open subset V of U,

M F) V) > S ME(V).

n = (3cn)2d

Applying this estimate to the interior of dyadic cubes and making use of Lemmal[5.1
we get for every dyadic cube A contained in U,

ME(FTHF)NA) > MY (f71(F) Nint A)

C ro.
> WMZO(IH’C )\) =

Then, it follows from Lemma [5.3] that for every dyadic cube X contained in U,
ME(fHEF)NA) = ME (V)

C '

and Lemma [5.2| now ensures that this also holds when A is replaced by an arbitrary
open subset of U in the above equality. Finally, Lemma [5.5| ensures that

M (ﬁ fYF)N U) >379M!(U) > 0.
n=1

To conclude, it remains to use (98]) to deduce that the intersection of the sets
[ (F) has Hausdorff dimension at least ¢, and to let ¢ tend to s.

5.3.3. Proof of Theorem This is a direct consequence of Theorem [5.2
We deal with the stability under countable intersections and that under bi-Lipschitz
mappings separately.
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5.3.3.1. Stability under countable intersections. Let (F},),>1 denote a sequence
of sets in the class G*(R?). When ¢ is a real number in (0, s), the characterization
of this class ensures that all the sets F,, have maximal M!_-mass in all the open
subsets of R?. Lemma implies that

M <ﬂ E, N V) > 37 ML (V)
n=1

for any open subset V of R%, and the characterization @ shows that the intersection
of the sets F), belongs to the class G*(R%).

5.3.3.2. Stability under bi-Lipschitz mappings. Let F be a set in the class
G*(R?) and let f denote a bi-Lipschitz mapping defined on R?. Again, when
t € (0,s), the characterization of this class ensures that the set F' has max-
imal M?_-mass in all the open subsets of R?. Lemma then shows that for any
open subset V of RY,
ML (V)
(3cp)?d”
where c¢ is a constant associated with f as in . We conclude that f~!(F) is in
G*(R?) thanks to the characterization @ of this class.

ML (fTHF)NV) >

5.3.4. Proof of Theorem . The proof is parallel to that of the stability
under countable intersections of the classes G*(R?) given in Section It
suffices to replace the characterization of the class G*(R?) by the definition of
the generalized classes G*(U), namely, Definition As above, we then apply
Lemma Finally, we obtain an analog of the characterization (@ of the large
intersection classes by applying Lemma [5.3

5.3.5. Proof of Proposition When the open set U is equal to the whole
space R?, the result was obtained by Falconer in [28], see Theorem D(b) therein.
We thus refer to that paper for the proof in the case where U = R?, and we content
ourselves here with extending Falconer’s result to arbitrary nonempty open sets U.

Let us consider a set F' € G*(U), a nonempty open set V C U, and an arbitrary
nonempty dyadic cube Ay contained in V. We write \g in the form 2770 (ky+[0, 1)9)
with jo € Z and ko € Z¢, and we define

F= || (k27 + (Fnint Ao)).
kezZd

The fact that F is a Gs-subset of R? implies that F is a Gs-set as well. Furthermore,
for any dyadic cube A with diameter at most that of Ag, there exists a unique integer
point k € Z¢ such that \ is contained in k2770 + \g, so that

FNXx= (k277 4+ (FNint A)) N A
With the help of (101)), we deduce that for any t € (0, s),
ME(FNA)>379M (Fintdg N (—k2770 + X))
> 37IM!(F nint(—k2790 + )))
= 37IML (int(—k2790 + X)) = 37IME ().

The last equality is due to Lemmal[5.1} The previous one holds because the interior
of —k279° + X is an open subset of U, and the set F'is in G*(U). Finally, Lemmas

and enable us to deduce that F' € G5(R%), from which it follows that
dimp (F NV) > dimp (F N Ag) > dimp(F Nint Ag) = dimp (F Nint Ag) = d.
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This results from applying [28], Theorem D(b)] to the set with large intersection

F and the open set int Ag, and from the packing counterpart of the monotonicity
property satisfied by Hausdorff dimension, see Proposition .

5.4. Connection with ubiquitous systems and
application to the Jarnik-Besicovitch theorem

We showed in Chapter [4] that if (x;,7;);cz denotes a homogeneous ubiquitous
system in some nonempty open subset U of R?, then for any real number ¢ > 1, the
set F; defined by has Hausdorff dimension at least d/t in the set U, that is,

d
dimH(Ft n U) 2 ;,
see Theorem The purpose of this section is to show that the set F; belongs to
the large intersection classes given by Definition

THEOREM 5.4. Let (x;,7;)icz be a homogeneous ubiquitous system in some
nonempty open subset U of RY. Then, for any real number t > 1,

F, € GY4U).

PROOF. As mentioned in Sections [£.4] and neither the notion of homoge-
neous ubiquitous system nor the large intersection classes depend on the choice of
the norm. For convenience, we assume throughout the proof that the space R? is
endowed with the supremum norm; the diameter of a set F is denoted by |F|s.

Let us consider two real numbers « € (0,1) and s € (0,d/t), and a nonempty
dyadic cube A C U with diameter at most one. Dilating the closure of A around
its center, we obtain a closed ball B with diameter a|\|,, that is contained in the
interior of A. We can reproduce the proof of Theorem [£.I] with U being the interior
of A and Iy being the ball B. We thus obtain an outer measure p supported in
F; Nint A with total mass given by and such that Proposition holds.

Moreover, let (A,),>1 denote a covering of the set Fy Nint A by dyadic cubes.
As already observed multiple times, there exists a subset AV of N such that the
cubes \,, for n € N, are disjoint and contained in A, and still cover int A. If we
assume in addition that the latter set has diameter less than e=%/*/2, we see that
every cube ), with n € A is included in a closed ball B, with radius equal to
[Anloo, and thus diameter smaller than e~ %t Applying Proposition we get

1
p(An) < p(Bn) <2127 B, |4 og ——— < 212924 |\, |4/ log :
[ Bnlso [ An]oo

Arguing as in the proof of the mass distribution principle, i.e. Lemma we get

Ao )1 = |[I4|%*1 = u(F, Nint A

(A ]oo) ogawm o |55 og|Ig|oo p(Fy Nint )
o0

< 21292703 "N, |9 log P

n:1 n|oo

We then use the fact that the function r ~ r%/*=%log(1/r) is nondecreasing near
zero. Specifically, if the diameter of A is less than e~*/(4=5%) e have

1 1
= 3|20 log ——— < [An[S [N &P log

for all n > 1. Combining this observation with the previous bound, and then taking
the infimum over all dyadic coverings, we obtain

a?/*log(a[A|)
M (FNA) > ME (FyNint A) > )
S (FrNA) =2 M (F Nin )—2-12d2d/tlogl>\|oo

|/\n|gét log

S
A%
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with the proviso that the diameter of A is smaller than J, ;, defined as the minimum
of e=%/t/2 and e~*/(?=5t) Now, thanks to Lemma we may replace A5, by
M3 (N). Hence, letting « tend to one, we end up with

. Mz (M)
M (BN 2 0 doar

for any dyadic cube A C U with diameter smaller than J, ;. The restriction on the
diameter may easily be removed. Indeed, if A is an arbitrary dyadic cube contained
in U, applying Lemma to its interior, and then Lemma [5.1| again, we get
5. (int A\ 5
M (FyNA) > M (Fy Nint \) > /;/‘.o&(dwt) _ 2/.\1(;(2 ).
for all real numbers s € (0,d/t) and all dyadic cubes A C U. Finally, Lemma
implies that for all such s and A\, we have in fact

ME(F, M) = M2 ().

The result follows from another utilization of Lemma [5.21 O

As an immediate application, let us show that the set Jg, defined by is
a set with large intersection. Recall that J;, is formed by the points that are
approximable at rate at least 7 by those with rational coordinates. Moreover, a
plain consequence of Dirichlet’s theorem implies that this set coincides with the
whole space R? when 7 < 1 + 1/d, see Corollary We also already established
that Jy , has Hausdorff dimension (d+1)/7 in the opposite case where 7 > 1+1/d;
this follows from the Jarnik-Besicovitch theorem discussed in Section 3.1

We even refined this theorem in Section [£.3] above, starting from the following
two observations: the family (p/q,q~ '~/ d)(p,q)ezde is a homogeneous ubiquitous
system in the whole space R?; for this system, the sets F; defined by coincide
with the sets Jg -, with the proviso that the parameters are such that ¢t = 7d/(d+1).
Thanks to Theorem the same observations lead to the following statement.

COROLLARY 5.2. For any real number 7 > 1+ 1/d, the set Jq . belongs to the
class GUTD/T(RY), i.e. is a set with large intersection in the whole space R® with
dimension at least (d+1)/7.

This result was already obtained by Falconer [28]. Combined with Proposi-
tion this shows in particular that the set Jg  has packing dimension equal to
d in every nonempty open subset of R?. For the sake of completeness, let us point
out that in the opposite case where 7 < 1+ 1/d, the set Jy , clearly belongs to the
class G4(R%) because it coincides with the whole space R? itself.






CHAPTER 6

Eutaxic sequences

The notion of eutaxic sequence was introduced by Lesca [43] and subsequently
studied by Reversat [49]. It provides a nice setting to the study of Diophantine
approximation properties, and we shall indeed use it in this chapter to analyze the
approximation by fractional parts of sequences and by random sequences of points.
With this notion, the emphasis is put on the sequence (z,)n>1 of approximating
points in R%, and one is ultimately interested in its uniform approximation behavior
with respect to all possible sequences (r,,)n>1 of approximation radii.

Let us assume that the series Y. rd converges. It is clear that the set of all
points 2 € R? for which

Jim.n>1 |z — x| <7y (105)

has Lebesgue measure zero; this may indeed be deduced from applying Lemma [2.1
with the gauge function r — %, which essentially yields the Lebesgue measure, in
view of Proposition Note that in that situation, we may rearrange the points
in such a way that the sequence (r,),>1 is nonincreasing and converges to zero.
Now, eutaxy comes into play when one assumes that the series > rd is divergent,
or equivalently that (r,),>1 belongs to the collection Py of real sequences that is
defined by the following condition:

Yn>1 7141 <1y

(rn)n>1 € Pa — =0 (106)
S rd = 0.
n=1

As detailed hereunder, eutaxy will occur when ((105]) is satisfied by Lebesgue-almost
every point of some open set of interest.

6.1. Definition and link with approximation

6.1.1. Sequencewise eutaxy. The simplest notion of eutaxy is obtained
when specifying a sequence (r,,),>1 in P4 and deciding on whether or not Lebesgue-
almost every point may be approximated within distance 7, by some sequence of
points z,, under consideration.

DEFINITION 6.1. Let U be a nonempty open subset of R, and let (r,,),>1 be
a sequence in P4. A sequence (xy,),>1 of points in R4 is called eutazic in U with
respect to (ry)n>1 if the following condition holds:

for Lhae. z €U Fim n>1 |z — 2p| <7y

The notion of eutaxic sequence is naturally connected with those of approxi-
mation system and homogeneous ubiquitous system introduced by Definitions
and [£.2] respectively. However, the idea here is to restrict to families indexed by the
positive integers, and to put a stress on the points x,, rather, to ultimately obtain
uniform properties with respect to the sequence of radii r,, see Section The
connection between the various notions is formalized by the next statement. We

115
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omit its proof because the result readily follows from the definitions of the various
involved notions, namely, Definitions [4:2 and

PROPOSITION 6.1. Let U be a nonempty open subset of RY, let (rp)n>1 be a
sequence in Pg, and let (z,)n>1 be a sequence of points in R?. Then,
(1) the family (zp,Tn)n>1 1S an approzimation system;
(2) the family (zn,7n)n>1 s @ homogeneous ubiquitous system in U if and
only if the sequence (Tp)n>1 is eutazic in U with respect to (rp)n>1-

Combining Proposition [6.1] with Proposition [£:4] we easily observe that a se-
quence (z,)n>1 is eutaxic with respect to (r,,)n>1 if and only if it is eutaxic with
respect to (¢7y)n>1, for any fixed real number ¢ > 0. Thus, the fact that a sequence
is eutaxic does not depend on the choice of the norm on the space R?.

Besides, Proposition [6.1|invites us to consider the problem of the approximation
within distances r, by the points x,. Accordingly, the sets F; defined by in
the general setting are now given by

F,={zeR ||z — @n| <7l forim.n>1}, (107)

and their size and large intersection properties may be studied by specializing the
results of Chapters [4] and [5] This results in the next statement.

THEOREM 6.1. Let (x,)n>1 be a sequence of points in R? that is eutazic in
some nonempty open subset U of R, with respect to some sequence (rn)n>1 in Pg.
We assume further that the series Y, rs is convergent for all s > d. Then, for any
real number t > 1,

dimy (F, NU) = % and  F, € GYHU).

PRrROOF. The convergence assumption on the series > r5 implies that the pa-
rameter sy defined by is bounded above by d regardless of the choice of the
open set U. Moreover, the family (z,,7,)n>1 is a homogeneous ubiquitous system
in U, by virtue of Proposition [6.1] Therefore, we may apply Corollary and de-
duce that the set Fy NU has Hausdorff dimension equal to d/t for any real number
t > 1. For the same reason, due to Theorem the set F}; belongs to the large
intersection class G% Y(U). Finally, the result clearly holds for ¢ = 1, because the
set F7 has full Lebesgue measure in U. O

6.1.2. Uniform eutaxy. Rather than the sequencewise, the notion of uni-
form eutaxy is the one that was introduced by Lesca [43] and subsequently studied
by Reversat [49]. Uniform eutaxy is obtained when sequencewise eutaxy holds
regardless of the choice of the sequence (r,,),>1 in the collection Pgy.

DEFINITION 6.2. Let U be a nonempty open subset of R%. A sequence (Tn)n>1
of points in R? is called uniformly eutazic in U if the following condition holds:
V(rn)n>1 € Pg  for Llae zeU Fimn>1 |z — xp| < 7y
As regards the aforementioned approximation problem, we may improve The-
orem when the eutaxy property of the underlying sequence (x,),>1 is uniform.
Specifically, as shown by the next result, we may slightly relax the condition on the

sequence (1p)n,>1 that comes into play in the definition (107) of the sets Fy, and
obtain the same size and large intersection properties.

THEOREM 6.2. Let (z,)n>1 be a sequence of points in RY that is uniformly
eutazic in some nonempty open subset U of R, and let (rn)n>1 be a nonincreasing
sequence of positive real numbers such that

{5<d = >, Th =00

(108)
s>d = ) 15 <oo.
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Then, for any real number t > 1,
d
dimp(F,NU) = and  F € G ).

PROOF. The proof is an adaptation of that of Theorem Again, due to the
convergence assumption on the series, the parameter sy defined by is bounded
above by d. The upper bound on the Hausdorff dimension then follows directly from
Proposition Furthermore, for any s € (0,d), the sequence (r;s/ d)n21 belongs
to P4, so Proposition implies that (mn,rf/ d)nzl is a homogeneous ubiquitous
system in U. Therefore, for any ¢ > 1, we may apply Theorems[I.1]and [5.4] with the
approximation radii raised to the power dt/s > 1 instead of ¢, thereby obtaining

dimH(FtﬂU)2§ and  F, € G'(U).

The required lower bound on the Hausdorff dimension clearly follows from letting
s tend to d. The large intersection property follows the fact that the class G4/*(U)
is the intersection over s € (0,d) of the classes G*/*(U), see Definition O

It is clear that Theorem may be extended to a wider range of sequences of
approximating radii than those satisfying (108]). More precisely, let us consider a
nonincreasing sequence r = (7,,),>1 of positive real numbers such that

{s<sr = >, 75 =00

(109)
s>8 = y 15 <00

for some positive real number s,. We may thus apply Theorem [6.2] with the sequence

(rff/ d)nzl, because it satisfies . Performing the appropriate change of variable,

we deduce a description of the size and large intersection properties of the sets F;

corresponding to the original sequence r = (r,,),>1 ; specifically,

dimy(F, NU) = 57 and  F, € G%/H(U)

for any real t > s,/d. Besides, note that all the sets Fy, for t < s, /d, have Hausdorff
dimension d and belong to the class gd(U), because they contain Fy ,q.

6.2. Criteria for uniform eutaxy

6.2.1. A sufficient condition for uniform eutaxy. We now establish a
criterion implying the uniform eutaxy of a sequence of points. This criterion is
expressed in terms of the dyadic cubes of R%. Let us recall from Section that
a dyadic cube is either the empty set or a set of the form

A=279(k+[0,1)%),

with j € Z and k € Z%, and that the collection of all dyadic cubes is denoted by
A. Moreover, the generation of such a dyadic cube ), i.e. the integer j, is denoted
by (\). Finally, for any point € R? and any integer j € Z, there exists a unique
dyadic cube with sidelength 277 that contains z; this cube is denoted by Aj(x).

Let us now fix a sequence (z,),>1 of points in R?. For any nonempty dyadic
cube A € A and any integer j > 0, let us define a collection M((xy)n>1; A, J) of
dyadic cubes by the following condition:

N CA
)‘/ € M((-Tn)nZN )‘7.]) — <)‘/> = <>‘> +j
x, € N for some n < 24N

It will be clear from the context what underlying sequence (x,),>1 is considered,
and there should be no confusion if we decide to write M(}, j) as a shorthand for
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M((zn)n>1; A, 7). It is obvious that the cardinality of the set M(J, j) is bounded
above by 2%. When it is bounded below by a fraction of 2%, the sequence (Tn)n>1
is uniformly eutaxic, as shown by the following criterion.

THEOREM 6.3. Let U be a nonempty open subset of R? and let (z,)n>1 be a
sequence of points in R, Let us assume that

for L%a.e. x €U liminf 27U H#M((2,)n>1; Njo (2),5) > 0. (110)

Jo,j—>o0

Then, the sequence (xp)n>1 s uniformly eutazic in U.

The remainder of this section is devoted to the proof of Theorem It relies
on the next useful measure-theoretic lemma that is excerpted from Sprindzuk’s
book [59] and that we establish first.

LEMMA 6.1. Let p be an outer measure on RY such that u(R?) is finite, and
let (En)n>1 be a sequence of p-measurable sets such that

> u(E,) = oo. (111)

Then, the set of points that belong to infinitely many sets E,, satisfies

N 2
(£ niew)
u | limsup E,, | > limsup n=1 .
n— 0o N—o00 NN
> > w(Em N Ey)

m=1n=1

PRrROOF. We begin by writing the limsup set under examination in the form

hmsupE m d U E,.

Letting F3Y denote the union of the sets E,, over all integers n € {M,..., N}, and
using Proposition we deduce that

/L(limsupEn) > hm 1 lim 1 u(F).

n—00 M—oo N—oo

The p-mass of the union set Fiy may be estimated thanks to the second-moment
method. To be specific, the Cauchy-Schwarz inequality gives

(/ Len(y ZlE >2<MFM/ (ZlE )2 (dy).

The left-hand side above is clearly equal to the square of the sum over all integers
n € {M,...,N} of the p-masses of the sets F,, and is therefore equivalent to

N 2
(e
n=1

as N goes to infinity and M remains fixed, due to (111)). Likewise, the integral in
the right-hand side coincides with the sum over all integers m,n € {M,..., N} of

the p-masses of the sets E,, N E,, which is equal to

ZZ“E NE,) +O<Zu )

m=1n=1

The result follows from combining all the previous estimates, and using (111]) again
in order to get rid of the remainder term above. (]
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We are now in position to detail the proof of Theorem The fact that a
sequence is uniformly eutaxic clearly does not depend on the choice of the norm; we
thus assume throughout the proof that R is equipped with the supremum norm.
Let us consider a nonempty open subset U of R? and a sequence (r)n>1 of points in
R? such that holds for Lebesgue-almost every x € U. Our goal is to establish
that for any sequence (r,)n>1 chosen in advance in Pg, the set F, i.e. the set Fy
obtained by choosing t = 1 in , has full Lebesgue measure in U. To proceed,
let U, denote the set of all points z in U such that holds and none of the
coordinates of x is a dyadic number. Then, U, has full Lebesgue measure in U.
Furthermore, for any x € U,, there exist a real number a(z) > 0 and an integer
j(x) > 0 such that

Vjo.d = (@) #M(N(),5) = az) 27,
The proof now reduces to showing that there is a real number x > 0 such that
Vio 2 j(x)  LUFL NN (7)) 2 ko)L (N, (2))- (112)

Indeed, implies that the density of the set F; at the point x is positive.
Therefore, if this holds for any z in U,, then the Lebesgue density theorem shows
that Lebesgue-almost every point of U, belongs to Fi, see [46], Corollary 2.14]. As
a result, F; has full Lebesgue measure in U.

It now remains to show that any point x in U, satisfies . For any fixed
integer jo > j(x), we begin by observing that for any integer j > j(z), there exists
a set Sj(z,jo) C {1,...,240+)} with:

o #8;(w,jo) > a(x) 21071 ;
o z, € \j,(z) for any n € S;(x,jo);
o |2, — Tp|oo > 2700H) for any distinct n,n’ € S;(z, jo).

Indeed, for each 8 € {0,1}%, let us consider the cubes in M()j, (x),7) of the form
2~ U0+9) (k4 [0,1)?%), where the coordinates of k are equal to those of 8 modulo two.
For a suitable 3, there are at least 27¢ #M(\, (z), j) such cubes. The result then
follows from the observation that these cubes are at a distance at least 2-Uo+7) of
each other and that each cube contains at least a point z,, with n < 2¢0o+7),

Then, let us define 7, = min{r,,1/(2n'/4)} for each n > 1. We thereby obtain
another sequence (7,,),>1 in Pg4. Indeed, otherwise, the sequence (7%),,>1 would be
nonincreasing and have a finite sum, so that nr¢ would tend to zero as n goes to
infinity. Thus, 7, would be equal to r, for n large enough and the series ) rd
would converge, contradicting the assumption that (r,),>1 belongs to P4. Now,
for any integer j > j(x), let us consider the set

‘/}(xvjo) = U Boo(mnvpjonLj)a

nes;(x,jo)

where p; is a shorthand for 754. Since the sequence (7,)n>1 is nonincreasing and
converges to zero, all the points in the limsup of these sets, except maybe those
forming the sequence (2,),>1, belong to both the closure of \;, () and the set F}
obtained by replacing 7, by 7, in the definition of F;. Therefore,

o (limsuij(m,jo)> <l (ﬁl N Aj, (m)) < LYF NN, (2)).
J—00

Hence, to obtain (112)), it suffices to provide an appropriate lower bound on the
Lebesgue measure of the limsup of the sets Vj(z, jo). This may be done with the
help of Lemma In fact, the sets Vj(x, jo) are all contained in the closure of the
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cube \j, (), so that we may apply this lemma with the restriction of the Lebesgue
measure to this closed cube. The resulting lower bound yields

(_Z Vi, Jo)))

S a0 NV (e.0)

Jj'=j(z

LYF, N\, (z)) > limsup

J—o00 | ZJ:
j=i(=

(113)

However, we need to make sure that Lemma may be applied, i.e. we need
to check the divergence condition

Z LYV;(z,j0)) = oo. (114)

Jj=j(z)

To this end, we observe that for any j > j(x) and any distinct n and n' in S;(z, jo),
the two open balls with common radius pj,+; and center x,, and -, respectively,
are disjoint. Otherwise, any point y in their intersection would satisfy

[T — Zn/|oo <Y = Znloo + ¥ — Tnrfoo < 205045 < 2_(j0+j)7

which would contradict the third property of the set S;(z, jo) given above. As a
result, the balls forming the set V;(z, jo) are disjoint, so that

LY Vi@, jo)) = (2pjo4+5)" #S;i (2, jo) > alx) 29 pf, . (115)

In order to derive ([114)), we finally use the fact that the sequence (7,)n>1 is nonin-
creasing, as this enables us to write that

0o 2d(+1) _1
TS SR S S S i
Jj=j(x) j=jo+j(z) n=24

To obtain (112)), and thus complete the proof, it suffices to combine the lower
bound (113)) with the following inequality that holds for any integer J sufficiently
large and that we now establish:

2

Z £ (Vy(wjo)) | - (17)

Jj=j(z)

9d(jo+4)

J J
> 2 Ed(Vj(xajo)ﬁVj'(a?,jo))SW

Let us consider two integers j and j’ such that j(z) < j < j'. With a view to giving
an upper bound on the Lebesgue measure of the intersection of the sets Vj(z, jo)
and Vj/(x, jo), let us observe that for any integer n € S;(z, jo),

Boo (@, pjori) VVir(mdo) = () (Boo(@ns joss) N Boo(@nrs pjoss) -
n’GSj/(z,jg)

The points x,/, with n" € Sj/(z, jo) such that this last intersection is nonempty, all
lie in the open ball with center x,, and radius 2p;,+;. Moreover, there are at most
(2j0+j/+2pjo+j +2)? cubes with generation jy + j’ that intersect this ball and each
of them contains at most one of the points z,,,. Thus,

LYBoo (@n, pjos) N Vir (o)) < (277 2pj 5 +2)(2pj0150)
3d—1 d d(jo+5'+1
<2 Pl (142 (Jo+i )pj0 j)
Along with the fact that there are at most 2% integers in S;(z, jo), this yields
£4(Vy(@, jo) Vi (@, jo)) < 2001 (1 4 gdliotd" 40ty
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As a consequence, for any integer J > j(x), the left-hand side of (117) is at most

J
d dj ,d 3d dj d 4d d(jo+i+i") ,d d
2 Z 2 ]'Oj0+j +2 ZQ ]pjoJrj’ +2 22 Votsts )pjo+jpjo+j"
j=j(z) 4.3 4.3’
where the second and third sums are both over the integers j and j' that satisfy
j(z) < j < j < J. Note that the second sum is equal to

J i =1 J

./ Y 1 -/
dj’ d d(j— dj’ d
2 2y 22T S > 2y

J'=j(@)+1 i=j(=) J'=j(@)+1

and the third sum is obviously smaller than half the sum bearing on all the integers
J and j’ between j(z) and J. Thus, the left-hand side of (117) is at most

2

93d R o , J o

d —d d d 4d—16—d d d

<2 BT 1) gl Y 20l aldmigTde |y T gt
Jj=j(x) i=j(z)

In view of (116]), the first sum tends to infinity as J — oo, thereby being larger

than one, and thus smaller than its square, for J large enough. The left-hand side

of (117) is therefore bounded above by

2
J

—d(jo— d(Go+j) d
9—d(jo—4) Z 2 (]o+])pj0+j ,
i=j(x)
for any integer J sufficiently large, and this bound leads to the right-hand side
of (117)) with the help of (115]). The proof of Theorem is complete.

6.2.2. A necessary condition for uniform eutaxy. It is not known whether
Theorem also yields a necessary condition for uniform eutaxy. However, note
that the sufficient condition (110) clearly holds if

. P —dj . .
Ae}gf{]m hjrgng #M((zn)n>13A,7) > 0. (118)

Moreover, it is plain that this stronger assumption fails when the liminf vanishes
for some nonempty dyadic cube A. The next result shows that, in this situation,
the sequence under consideration cannot be uniformly eutaxic.

THEOREM 6.4. Let U be a nonempty open subset of R? and let (z,)n>1 be a
sequence of points in R, Let us assume that
ACU
e {0} lim inf 2~ UM () 215 A, ) = 0.

J—00

Then, the sequence (zy)n>1 is not uniformly eutazic in U.

PROOF. As in the proof of Theorem we endow R? with the supremum
norm. Let us consider an integer j > 0 and, on the one hand, let us define the set

U= |J Boolan,2 (W) (119)
n<2d((A)+35)

Ty EX

If ) is a nonempty dyadic subcube of A, let X stand for the open cube concentric
with A" with triple sidelength. If moreover A\’ has generation (\) + j and contains
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some point x,,, then N\ contains the ball in 1) that is centered at this z,,. Hence,

vi= | U Bel@..22®hHc |J X,

MCA o cad(A) NeM(N,j5)
A=+ e

from which it directly follows that
£4U;) < 3927 HNTDUM(N, ).

On the other hand, let us consider the set U j’ obtained by replacing in the
condition z,, € A by the conjunction of the fact that x,, € A and that the open
ball with center x,, and radius 2~ ((M+7) meets the cube \. In that case, the ball
actually meets the boundary of the cube A. This means that each point of Uj’v is

within distance 2!~(N+J) from this boundary, and thus
derr! =N 2—((N)+9)yd _ (9—(A) _ 92=({(N\)+4)d
LU < (270 4 27y (=) _ 92=((4)
d—1
S 23—d<)\>—_] Z(l + 22—j)d—1—[(1 _ 22—])@ S 5d23—d<>\>—j
£=0

)

with the proviso that 7 > 2. As a consequence, summing the two above upper
bounds and letting j go to infinity, we deduce that
2d((A)+)

liminf £4 (AN ] Boo(wn, 27VF) | < 39274N lim inf 2-Y#M(1, j),
because the set in the left-hand side is contained in the union of U; and U ]' .

We now make use of the assumption bearing on the cube A, namely, that
the lower limit in the right-hand side vanishes. Thus, we may find an increasing
sequence (jm)m>1 of nonnegative integers such that j; = 0 and for all m > 1,

2d((N) +im1)

£4{an U Boo (2, 2~ (N Hime)y | < 27m,

n=2d((N)+im) 41

For simplicity, we define n,, = 29N +im) for all m > 1, and also ng = 0. We then
consider the unique sequence (r,),>1 such that

-1/d
Ym>0 VYne{n,+1,...,nm41} Tn:nm+/1~
Clearly, this sequence is nonincreasing and converges to zero. Moreover, for any

integer m > 0,
MNm+41

Yoordo1o Moy 9d

Nm+1

n=n,+1
so that the series ) rd is divergent. We may therefore conclude that the sequence
(rn)n>1 belongs to the collection Py.
On top of that, for any integer m > 1, we have

,Cd AN G BOO('rTMTTL) S i Ed ()\ﬁ Gl Boo(x"’n:nl-‘r/f)> :

n="nm,+1 n=nm,-+1

By definition of the integers n,,, the summand in the right-hand side is bounded
above by 2™, so that the whole sum is bounded by 272%! The left-hand side
thus converges to zero when m tends to infinity. We deduce that

d . . d —
L ()\ﬂhmsupBoc(x”,rn)> < nllrgllj <)\ﬂ U Boo(asn,rwl)) =0,

n— oo
n=m
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which implies that the sequence (z,,),>1 cannot be uniformly eutaxic in U. O

6.3. Fractional parts of linear sequences

We shall show in this section that the fractional parts of linear sequences yield
emblematic examples of eutaxic sequences. Recall that {z} stands for coordinate-
wise fractional part of the point x € R%, and belongs to the unit cube [0,1)%. The
sequences that we consider throughout are of the form ({nz}),>1 with z in R%.

6.3.1. Uniform distribution modulo one. We shall invoke below a well
known property satisfied by the sequences ({nz}),>1, specifically, they derive from
sequences (nx),>1 that are uniformly distributed in the sense of the next definition.

DEFINITION 6.3. A sequence (z,,),>1 of points in R? is uniformly distributed
modulo one if for any points (a1, ...,aq) and (by,...,bq) in [0,1)% such that a; < b;
for all ¢ € {1,...,d}, we have

d d
. 1
]\}Enoo N# {n e{l,...,N} | {zn} € H[ai,bi)} = H(bl —a;).
=1 =1
It is easy to remark that the notion is unchanged if the point (ay,...,aq) is

chosen to be equal to zero in the above definition. When trying to prove that
a sequence is uniformly distributed modulo one, we may call upon the following
criterion due to Weyl, see e.g. Theorems 1.4 and 1.19 in [17].

THEOREM 6.5 (Weyl's criterion). For any sequence ()n>1 of points in RY,
the following assertions are equivalent:
(1) the sequence (Tp)n>1 is uniformly distributed modulo one;

(2) for any nonnegative Z%-periodic Riemann-integrable function f defined on
R?, the following limit holds:

fin 0> ) = [ f@)de (120)

(3) for any complex-valued Z*-periodic continuous function f defined on R?,
the limit @ holds;
(4) for every vector q € Z\ {0},

N
. 1 .
lim — E 2T — (),
N—oco N

n=1

PROOF. We begin by proving that entails , and that itself implies .
By linearity, it follows directly from (1)) that (120) holds for f(z) = f({x}), where f
is step function defined on [0,1)%, i.e. a conical combination of indicator functions

of half-open rectangles contained in [0, 1)¢. Let us now suppose that f(x) = f({z}),
where f is a nonnegative Riemann-integrable function defined on~[0, 1~)d. Then, for
all € > 0, there are two step functions f; and f5 such that f; < f < fs and

/ (fa(z) — fi(2))dz < e.
[0,1)4

Observing that (120)) holds for ﬁ({x}), we infer that

_ LA o
/[071)(1 flz)dr —e < /[0,1)‘1 fi(z)de = Jim N ; fi{zn)) < 1}\1;[3;1; 5 ; Flan).
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Similarly, since (120) holds for fg({x}) as well, we also get

N
limsupiZf(mn) < / flz)dz +e.
Nooo N =~ [0,1)2

It is now clear that the function f satisfies too, i.e. that is valid. Further-
more, this result may straightforwardly be extended to complex-valued Z%periodic
functions, and subsequently follows from the simple observation that continuous
functions are Riemann-integrable.

Conversely, we observe that the indicator function of a subrectangle of [0,1)?
may be sandwiched between two continuous functions whose integrals are arbitrarily
close. Thus, the above approach may be adapted to establish that implies ([1)).

Finally, specializing to complex exponential functions, we readily obtain .
Conversely, implies by linearity that holds for all trigonometric polynomi-
als, and the Stone-Weierstrass theorem allows us to extend this property to general
complex-valued Z?periodic functions, thereby obtaining . O

Applying Theorem to the sequences (nx),>1 leads to the following state-
ment. The proof is elementary and left to the reader.

THEOREM 6.6. Let us consider a point x = (x1,...,24) in R Then, the
sequence (nx)n>1 is uniformly distributed modulo one if and only if the real numbers
1,x1,...,xq are linearly independent over Q.

It is clear from Definition that if a sequence (z,,),>1 of points in RY is
uniformly distributed modulo one, then the reduced sequence ({z,}),>1 is dense
in [0,1)%. Therefore, the above theorem enables us to recover a classical result due
to Kronecker concerning the density of the sequence ({nz}),>1. One thus may
regard Theorem as a measure theoretic analog of Kronecker’s result.

THEOREM 6.7 (Kronecker). Let us consider a point x = (x1,...,74) in R?.
Then, the sequence ({nx})n>1 is dense in the unit cube [0,1)? if and only if the real
numbers 1,x1,...,xq are linearly independent over Q.

PROOF. If the real numbers 1,xz1,..., x4 are linearly independent over Q, the
result is due to Theorem [6.6] and the observation that follows its statement. In the
opposite case, there exist mutually coprime integers r, s1, ..., sq with

S1X1 + ...+ Sqxrqg =1
Hence, for any integer n > 1, the coordinates of the point {nz} satisfy
si{nxi} + ...+ sq{nzq} =nr — sy nz1] — ... — sq|nzq] € Z.

This means in particular that the point {nz} lies in some hyperplane with normal
vector s = (s1,...,54) whose distance to the origin is an integer multiple of the
inverse of the Euclidean norm of s. Only finitely many such hyperplanes intersect
the cube [0,1)%, so the sequence ({nz}),>1 is clearly not dense in [0,1)%. O

The badly approximable points will play a particularly important réle when
studying uniform eutaxy properties in Section [6.3.3] below. Hence, it is worth
pointing out now a simple connection with linear independence over the rationals.
In accordance with Section where it is defined, the set of badly approximable
points is denoted by Badg in what follows.

LEMMA 6.2. Let us consider a point © = (x1,...,24) in Bady. Then, the real
numbers 1,x1,...,xq are linearly independent over Q.
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Combining this result with Theorems and we directly deduce that when
x is a badly approximable point, the sequence (nz),>1 is uniformly distributed
modulo one, and the reduced sequence ({nz}),>1 is dense in the unit cube [0, 1)<.
We shall establish hereafter that the latter sequence is in fact uniformly eutaxic in
the open cube (0,1)?: this is Kurzweil’s theorem, see Theorem

The proof of Lemma [6.2) makes use of several notations that we now introduce.
The distance to the nearest integer point is defined by

= inf |z — 121
2 = inf Iz = Ploc (121)

for every point z in R?. This enables us to extend the definition of the exponent
K to the higher-dimensional case. Specifically, if z is in R?, we define

#(x) = liminf ¢*/?||qz| . (122)
q—r0o0

If the point x has rational coordinates, then x(x) clearly vanishes. Otherwise, we
may use the corollary to Dirichlet’s theorem, that is, Corollaryto prove that k(z)
is bounded above by one. Finally, similarly to , the exponent « characterizes
the badly approximable points, namely,

x € Badg — k(z) > 0. (123)

Now that these notations are set, we may detail the proof of the lemma.

PROOF OF LEMMA [6.2] We argue by contradiction. Let us assume the exis-
tence of integers 7, s1, ..., sq that do not vanish simultaneously and satisfy

S1X1+ ...+ Sqxrg =1

Up to rearranging the coordinates of  and multiplying the above equation by minus
one, we may assume that sq > 1. Now, given ¢ in Nand p = (p1,...,p4_1) in Z971,
we define ¢ = sq4q, as well as p} = sgp; for i € {1,...,d — 1} and

p:j =rq—S1p1 — ... — Sd—1Pd—1-

If the index 4 is different from d, it is clear that ¢’z; — p} is equal to sq(qz; — p;).
Moreover, concerning the d-th coordinate, we have

q'vqa—py=s1(pr —qx1) + ...+ Sa-1(Pa—1 — qT4—1).

Letting | - |1 stand as usual for the taxicab norm and letting s denote the d-tuple
(s1,...,84), we infer that
! /
max Ti — Diloo < |8 max Ti — Diloo-
oax lg'i — piloo < Ish et lgzi — piloo

Taking the infimum over all (d — 1)-tuples p, we deduce that ||sqsqx| is bounded
above by |s|; times ||¢(x1,...,24—1)||, from which it follows that

1/d
1/d < |5|13d/ 1/(d—1)
(qu) Hqu:vll = ql/(d(d—l)) q Hq(xlv"'amd—l)‘l :

Since k(z1,...,2q4—1) is bounded above by one, there is an infinite set of integers
g on which the term in parentheses in the above right-hand side is bounded. As
this term is then divided by ¢!/(4@=1)  the latter upper bound implies that k(x)
vanishes, thereby contradicting the fact that x is badly approximable. O
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6.3.2. Sequencewise eutaxy. We now turn our attention to the eutaxy of
the fractional parts of linear sequences, and its consequences in terms of Diophan-
tine approximation. We start with the sequencewise version of that notion. The
main result is then the following.

THEOREM 6.8. Let (ry)n>1 be a sequence in Pyq. Then, for L%-almost every
point x € R%, the sequence ({nx})n>1 is eutazic in (0,1)? with respect to (1 )n>1-

PROOF. As mentioned above, changing the norm does not alter the notion
of eutaxy, so we assume for convenience that the space R? is endowed with the
supremum norm. For any integer n > 1 and any point p € Z%, we consider the set

Unp ={(z,y) ER* xR | |y = nx — ploc <7n} .

Such an integer n being fixed, the union over all points p € Z¢ of the sets U, , is
then denoted by V,,. We also consider the two sets defined by
S=100,1)%x[0,1) and L=1[0,1)%xR%

Now, it is elementary to observe that (x,y) belongs to U, , if and only if
(x,y —p) belongs to U, o. Moreover, the sequence (r,,),>1 converges to zero, so we
may assume that 7, < 1/2; up to choosing n sufficiently large. This guarantees the
disjointness of the sets U, ,, for p ranging in Z¢, and enables us to write that

LUV =D LY SN Uny) = Y L3S, N Uno) = L2(LNUnpy),
peZd pEZ

where S, stands for the product of the cubes [0,1)% and —p + [0,1)%. The last
equality is due to the observation that the set L is the disjoint union of the sets .S,.
Likewise, we have
LAV NVo) =Y L2 NV NUny)
p€eZd
=Y LS, NV NUny) = L2(L NV N Uny).

peZ4
Here, we used the additional observation that the set V,, is invariant under the
translations of the form (x,%y) + (z,y — p), where p is in the set Z9.

In order to compute the Lebesgue measure of the set LNU,, ¢, we consider two

points x = (x1,...,24) and y = (y1,...,yq) in RY, and we remark that
0<z; <1

(x,y) € LNUpp = Vie{l,...,d}
[yi — nai| <7y

For each index 14, the pairs (x;,y;) for which the latter condition holds form a set
with Lebesgue measure clearly equal to 2r,. Therefore,

LPXLNU, ) = (2rn)?
In a similar fashion, the Lebesgue measure of the set LNV;,,NU,, o may be determined
by observing that
0<x; <1
(x,y) e LNV, NU,o <= Vie{l,....,d}3Ip;eZ lyi — max; — pi| < rm
lys — na;| < rp.
We assume again that m is large enough to ensure that r,, < 1/2, and we also

assume that n > m. Then, for every index i, the set of pairs (z;,y;) for which the
latter condition holds is the disjoint union of n —m + 1 sets, each corresponding to
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a specific value of p; in {0,...,n —m}. If 0 < p; < n —m, the corresponding sets
are parallelograms that are defined by the vectors
2 2
To(m)  and (1),
n—m n—m

and that may be deduced from one another with the help of the translation by
vector (1,n)/(n —m). The area of each of these parallelograms is thus given by
the determinant of the above vectors, namely, 4r,,r,/(n —m). Besides, when p;
is equal to zero and to n — m, we obtain the two halves of a parallelogram of the
previous form. Finally, the total Lebesgue measure of the n —m + 1 disjoint sets is
equal to 4r,,r,. We deduce that

n>m — ,CQd(L NVy N Un,O) = (4rmrn)d~

The upshot is that for all integers m and n sufficiently large to ensure that r,,
and r,, are both bounded above by 1/2; we have

£2(sn Vo) = (27“n)d and /32‘1(5 NV N Vy) = (4r,m,)4.

Moreover, in the opposite case where r, > 1/2, it is clear that the set V,, coincides
with the whole space R? x R%. Therefore, we may drop the assumption on the
integers m and n, up to replacing r, by 7, = min{r,,1/2} in the above formula
and replacing r,, by a similar value 7,,,. In particular, we have

LSV, NV,) =L22SNV,,) L22(SNV,)

for all integers m,n > 1. Moreover, given that the sequence (r,),>1 belongs to the
collection Py, we also have

i L8NV, = i(m)d = 0.
n=1 n=1

The hypotheses of Lemma are thus satisfied by the restriction of the Lebesgue
measure to the set S, along with the sequence of sets (V;,),>1. Applying this lemma,
we conclude that

N 2
(Z L£24(Sn Vn)>
n=1
N— N

O Y £2A4(SNV,NV)

m=1n=1

r2d (S N lim sup Vn> > limsup =1=L2(3).

n—oo

As the sets V,, are invariant under the translations of the form (z,y) — (z+p,y+q),
where p and ¢ are in the set Z?, we deduce that

£ <R2d \ lim sup Vn> =0.
n—oo
This means in particular that for Lebesgue-almost every point = € R, the set
Y, ={y € (0,1)%|(x,y) €V, forim.n>1}

has full Lebesgue measure in (0,1)%. Now, given a real number ¢ € (0,1/2), let us
consider a point y belonging to both Y, and (g,1 — &)?. Then, for infinitely many
integers n > 1, there exists a point p,, € Z% such that (z,y) € Un,p,., that is,

ly — nx — pploo < Tn.

Letting | - | stand for the coordinate-wise floor function and letting h denote the
point in R? with all coordinates equal to 1/2, we have

[[n2] + puloo < |y — 1 — pufoo + [{n2} — hloo + [y — Ml

1 1
<rn+2+(2—5>=1—5+rn<1.
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The last inequality holds for n large enough, because the sequence (r,,),>1 converges
to zero. In that situation, the point p,, is necessarily equal to —|nz]. Hence,

Y,N(e,1—¢e)?C {y € (0,1)* | ly = {na}ee <7y forim.n>1}.

The set in the left-hand side has Lebesgue measure equal to (1 — 2¢)?. We may
then let € tend to zero, thereby concluding that the set in the right-hand side has
Lebesgue measure equal to one. O

We may now apply Theorem|[6.1]to the example supplied by Theorem|[6.8] Here,
the formula (107) for the sets F; gives rise to the sets

Fy(z) ={y eR| |y — {na}| <rl forim.n>1},

where z is chosen according to the Lebesgue measure. Due to the aforementioned
results, we then know that for any sequence (ry),>1 in P4 such that > rS con-
verges for all s > d, and for Lebesgue-almost every point 2 € R?, we have both
d

dimy(Fy(r)"\U) =+ and  Fy(x)€ Gyt (U) (124)
for any real number ¢ > 1 and for any nonempty open subset U of (0,1)¢. In
the context of metric Diophantine approximation, it is customary to recast such a
result with the help of the distance to the nearest integer point defined by (121]).
We may now easily deduce the next result from ((124)).

COROLLARY 6.1. Let (1,)n>1 be a sequence in Py such that )~ 5 converges
for all s > d. For any real number t > 1, let us define the set

Fl(z)={y eR?| |ly—nz| <rl forim. n>1}.

Then, for Lebesque-almost every point © € R?,
. / d
vVt > 1 dimyg F/(z) = "
PROOF. One easily checks that for all x € R? and ¢ > 1, the set F/(z) contains
the set Fy(z) N (0,1)¢. The lower bound on the dimension then readily follows
from (124). For the upper bound, we begin by observing that the sets F/(x) are

invariant under the translations by vectors in Z%. It thus suffices to consider their
intersection with the unit cube [0, 1)%. However, we clearly have

Fl(z)N[0,1)* C limsup U Boo ({nz} +p,rh),
n—oo
pe{-1,0,1}4

and we conclude with the help of Lemma |2.1 O
An emblematic particular case is obtained by letting the sequence of approxi-
mating radii be given by r, = n~1/¢. This sequence clearly satisfies the assump-

tions of Corollary [6.1 and, up to a simple change of parameter, we deduce that for
Lebesgue-almost every point z € R? and for every real number o > 1/d,

dimpyg {y e R?

1 1
ly — nz|| < — for im.n > 1} = —. (125)
ne o

In the one-dimensional setting, this result is well known, and even holds when z is
an arbitrary irrational real number, see [11].



6.3. FRACTIONAL PARTS OF LINEAR SEQUENCES 129

6.3.3. Uniform eutaxy: Kurzweil’s theorem. Regarding the uniform eu-
taxy of the sequences ({nz}),>1, the main result is Theorem [6.9| below, which was
first obtained by Kurzweil [42] and subsequently recovered by Lesca [43]. For the
sake of completeness, let us mention in addition that Kurzweil also obtained in [42]
an extension of Theorem [6.9 that deals with linear forms.

THEOREM 6.9 (Kurzweil). For any point x in R?, the sequence ({nxz}),>1 is
uniformly eutazic in (0,1)% if and only if x is badly approzimable.

In order to let the reader compare this result with Theorem it is worth
mentioning some metric properties of the set Bad, of badly approximable points
defined in Section [[.3] Specifically, Proposition [I.9] therein shows that Bad,; has
Lebesgue measure zero. Moreover, Corollary ensures that this set has Haus-
dorff dimension d in any nonempty open subset of R¢.

The proof of Theorem [6.9]is postponed to the end of this section, and will make
use of Propositions[6.2)and [6.3] below. These two propositions are more general than
Theorem in the sense that they concern fractional parts of the form {a,z},
where a,, is the general term of an increasing sequence of positive integers. Such a
sequence (an)n>1 being given, we define its lower asymptotic density by

0((an)n>1) = liminfi#{n >1|an, < N}. (126)
- N—oo N

Moreover, we shall also use the exponent x defined by 7 and we shall accord-
ingly endow the space R? with the supremum norm, which has no influence on the
notion of eutaxy, as already observed above. Finally, let us recall that the expo-
nent x characterizes the badly approximable points, see . We then have the
following result, established by Reversat [49].

PROPOSITION 6.2. Let us consider an increasing sequence (ap)n>1 of positive
integers with positive lower asymptotic density, and a point x = (x1,...,14) in RY
such that the real numbers 1,x1,...,xq are linearly independent over Q. Then, for
any nonempty dyadic subcube X of [0,1)4,

_ k() d/(d+1)
lim inf 2= Y H#M(({anz})n>1; A, 7) < 4807 () .
Jj—roo - é((an)nZI)

PrOOF. If § denotes a positive real number smaller than ¢((a,)n>1), then we
have a,, < n/d for any sufficiently large integer n. Moreover, given k > k(x), we
know that there exists an infinite set @ C N such that ||gz|| < x/¢"/? for all ¢ € Q.
We now fix a nonempty dyadic cube A contained in [0,1)¢, an integer ¢ € Q and
an integer j > 0 satisfying

A+ 9d((N+7) < g < 4/ (d+1) gd((N)+i+1) (127)

where c is a positive parameter that will be tuned up at the end of the proof.

Let us consider an integer m < 2%(\+7) such that {a,,z} € \. We decompose
the integer a,, in the form hq + r with h € Ny and r € {1,...,q}. If the integer ¢
is sufficiently large, the integer j is large as well and we may assume that

9d((\)+7) ok
hq < am < agacn+n < —5 and 2075 > e
(&
As a consequence,
h ,
Ire = aall = [hgel] < Aoz < - < 274 <o),
q c

Letting y» denote the center of the cube A, we deduce that for some point p in Z,

Hrz} —p —yrloo < Hrz} —{amz} — ploo + Hamr} — yaloo < 2=,
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We conclude that {rx} belongs to U(\), the set of points y in [0, 1)¢ that are within
distance 2= from yy + Z%. Therefore, the integer r is positive, bounded above
by ¢/ (@+1) 2d((N+5+1) “and verifies {rx} € U()); we define R(), j) as the set of all
integers that satisfy these three properties.

Furthermore, let X" be the dyadic subcube of A with generation (\) + j that
contains the point {a,,z}. We consider another integer m’ < 2¢(N+7) such that
a,,» may be written in the form h’q + r for some nonnegative integer h’. We have

max{hg, h'q} _ K o (n)4j)

amz — amex| = [|(h = B)qz|| < [h = B'||lgz|| < & qit+1/d = ¢

Thus, letting v, denote the center of the subcube )\, we observe that there exists
a point p in Z¢ such that

Hamz} —p = ynleo < Hamz} —{amz} — ploo + {amr} — yrleo

K 1 .
<[4 2 ) o=+,
- <5c + 2)

This means that {a,, 2} belongs to a closed ball centered at p+ y,, with radius the
right-hand side above, that is denoted by p. Note that the number of dyadic cubes
with generation () + j that are required to cover this ball is bounded above by
((2p)2MF7 4 2)9. In addition, it is easily seen that there are at most 5¢ possible
values for p, because the points {a,,yx} and yy both belong to the unit cube. We
conclude that the number of dyadic subcubes of A with generation (A) +j that may
contain {a,, x} is bounded above by

d
d N+ oyd —10d (3L F
5%((2p)2 +2)¢=10 <2 + 56) .

The upshot is that for every choice of r, the above value gives an upper bound
on the number of dyadic subcubes of A with generation (\) + j that contain at
least one point of the form {a,z}, where m < 2¢((N+7) and a,, = hq + r for some
nonnegative integer h. Recalling that r necessarily belongs to the set R(\, j) when
such an integer a,, exists, we deduce that

d
#MO) < 107 (545 ) RO

This inequality is valid for infinitely many values of j, namely, for every integer j
satisfying (127)) for some g € Q. It follows that

d
liminf 2= 9 #MO, j) <104 (S 4 ) lmsup2-9#R(N, ). (128)
j—oo 2 éc FENSS
Given that the real numbers 1, x4, ..., x4 are linearly independent over Q, we

may conclude with the help of Theorem Accordingly, the sequence (rx),>1 is
uniformly distributed modulo one, so that

#R(\, j) ~ [V @FD) gd(N+HD) | £d(17(\)) as  j — oo.

One easily check that the set U()\) has Lebesgue measure at most 692-4*. Hence,
the limsup in (128) is bounded above by 12%c% (1) We deduce that

d
liminf 2-4 #M(, j) < 120%2/ @+ (34 F
j—ro0 2 dc

We conclude by choosing ¢ = 2/, and then by letting § and x go to ((an)n>1)
and £(z), respectively. O
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The next result is a converse to Proposition above. While the statement of
Proposition involves the exponent x defined by (122), we rather consider here
the exponent x, defined by

Y gz

= 1 f
kiu(z) = inf g
for all x in R?. Clearly, x.(z) is bounded above by k(z). Moreover, k() and k. ()
are positive on the same set of values of x, namely, the set of badly approximable
points. This means that k., satisfies a property similar to (123]), specifically, this
exponent also characterizes the badly approximable points:

x € Bady — K«(x) > 0. (129)
In connection with distributions modulo one, the statement below also calls upon
the limiting ratios defined by
1
pl(xn)n>1;A) =liminf —#{n € {1,... N} |{z,} € A} (130)
- N—oco N

when (z,)n>1 denotes a sequence of points in R? and X is a nonempty dyadic
subcube of [0,1)%. As a direct consequence of Definition each of these limiting
ratios is equal to £4()\) if the sequence (x,),>; is uniformly distributed modulo
one. Again, the following result is due to Reversat [49].

PROPOSITION 6.3. Let (an)n>1 be an increasing sequence of positive integers
and let x be a point in R, Then, for any nonempty dyadic subcube \ of [0,1),

d

ey (e )

PROOF. We may obviously assume that x,(z) and d((an)n>1) are both positive.
If x is a positive real number smaller than x,(z), it is clear that ||qz|| > x/q¢/?
for all integers ¢ > 1. Furthermore, if § denotes a positive real number smaller
than d((an)n>1), we know that the inequality a,, < n/¢ holds for n large enough.
We now consider a nonempty dyadic subcube A of [0,1)¢, an integer j > 0, and a
dyadic cube ) in the collection M(J, 7). In particular, the cube X’ contains a point
of the form {a,,z} for some integer m < 24N+ If m/ denotes another integer
bounded above by 24(\+5) and for which {a,, 2} belongs to X’ as well, then

K KoL/
|@m — am/|1/d — 2N+5”

liminf 2~ Y H#M(({anz})n>1; N, 5) >
j—ro0 -

Hamz} —{am oo > [(am — am x| >

The last bound holds for j sufficiently large, because the positive integers a,, and
arm are then both bounded above by 2¢((A)+7) /0. We may naturally decompose the
cube ) as the disjoint union of [1/(xd'/%)]¢ half-open subcubes with sidelength
equal to 27N+ /[1/(k61/4)]. Moreover, if we consider any of these subcubes,
the above inequalities imply that at most one integer m < 2¢(\+7) can be such
that the point {a,,x} lies in the cube. So, there can be no more than [1/(x §'/¢)]?
integers m < 29N+ for which {a,,2} is in X'. As a consequence,

, 1 7

from which we readily deduce that

d
—dj . K0 —d({\)+j d((A)+j5
27YH#M(N, 5) > Wd()\)z (x J)#{m < 24N+ | {amz} € A}.
The result follows in a straightforward manner by letting j tend to infinity, and
then by letting x and § go to k. (z) and d((an)n>1), respectively. O
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We are now in position to explain how to deduce Theorem from the two
propositions above, together with the necessary and sufficient conditions for eutaxy
expressed by Theorems [6.3] and [6.4]

ProoF oF THEOREM [6.91 The idea is to apply Propositions[6.2] and [6.9] to the
sequence (n)n>1, which is increasing and has lower asymptotic density equal to one.
Let us first assume that the point x is not badly approximable, and let x1,..., x4
denote its coordinates. If the real numbers 1,21, ..., z4 are linearly dependent over
the rationals, it follows from Kronecker’s theorem, namely, Theorem [6.7] that the
sequence ({nz}),>1 is not dense in [0,1)?. This sequence is thus clearly not eutaxic
in (0,1)%. Now, if the above real numbers are linearly independent over Q, we may
apply Proposition thereby inferring that for any point z in R? and for any
nonempty dyadic subcube A of [0,1)9,

liminf 2~ Y#M(({na})n>1; A, §) < 480%k(z) %/ (+1),
j—00 =

Since x is not badly approximable, the exponent x(x) vanishes by virtue of .
The left-hand side above thus vanishes as well, and Theorem [6.4] ensures that the
sequence ({nz}),>1 is not uniformly eutaxic in (0, 1)%.

Conversely, let us assume that x is badly approximable. Lemmal6.2]ensures that
the real numbers 1, z1, ..., x4 are linearly independent over Q. We then deduce from
Theorem that the sequence (nz),>1 is uniformly distributed modulo one, so
that for any nonempty dyadic subcube X of [0,1)%, the limiting ratio p((nx),>1; \)
defined by is equal to £4()\). Applying Proposition we thus infer that

liminf 2T H#M(({nz})n>1; A, 7) > 27 %, (2)
j—o0 =

Finally, in view of (129)), the exponent k. (z) is positive, and we conclude with the
help of Theorem [6.3[that the sequence ({na}),>1 is uniformly eutaxic in (0,1)¢. O

In the vein of Corollary and the discussion that precedes its statement, an
interesting application is the study of the Diophantine approximation properties of
the sequence ({nx}),>1 when z is a badly approximable point. That sequence being
uniformly eutaxic, we end up with a much stronger result than Corollary and
actually a full and complete description of the size and large intersection properties
of the sets Fy(z) and F/(z) considered at the end of Section [6.3.2] We refer to
Section [I0.1.1] for precise statements.

6.4. Fractional parts of other sequences

6.4.1. Sequencewise eutaxy. Theorem may be extended to the case in
which the underlying sequence is driven by a nonconstant polynomial with integer
coefficients. In fact, Schmidt [62] established the following result.

THEOREM 6.10. Let P be a nonconstant polynomial with coefficients in Z and
let (1n)n>1 be a sequence in Py. Then, for Lebesgue-almost every point x € R?, the
sequence ({P(n)x})n>1 is eutaxic in (0,1) with respect to (1y)n>1-

Subsequently, Philipp [48] showed that, in dimension one, the above property
still holds when the polynomial is replaced by the exponential function to a given
integer base b > 2; this is related with the base b expansion of real numbers.

THEOREM 6.11. Let us consider an integer b > 2 and a sequence (ry)n>1 in Pq.
Then, for Lebesgue-almost every point x € R, the sequence ({b"x})n>1 is eutaxic
in (0, 1) with respect to (rp)n>1-
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Philipp showed that this property also holds for = in a Lebesgue-full subset of
the interval [0,1) when the multiplication by b™ is replaced by the n-th iterate of
either of the following mappings: the Gauss map for continued fractions defined
by ; the #-adic expansion map x — {6z}, where § > 1. We refer to [48] for
precise statements. In all those cases, we may reproduce the approach developed
in Section so as to obtain dimensional results analogous to Corollary

6.4.2. Uniform eutaxy. The uniform analogs of Theorems and
need not be valid, because the Lebesgue-null set of points x on which each of these
results may fail depends on the choice of the sequence (7,)n>1, and there are of
course uncountably many sequences in P4. In that direction, we have however the
following one-dimensional statement, obtained by Reversat [49].

THEOREM 6.12. Let (an)n>1 be a sequence of positive real numbers such that
the series ) . an/an41 converges. Then, for Lebesgue-almost every x in R, the
sequence ({anx})n>1 is uniformly eutazic in (0,1).

With a view to establishing Theorem [6.12] we begin by deriving a simple es-
timate on integrals of products of fractional parts. To be specific, for any r-tuple
a = (ay,...,a,) of positive real numbers and any r-tuple I = (I3, ..., I,.) of intervals
contained in the unit interval [0, 1), we define

Poi(e) = [ [ 11, ({asz}). (131)
s=1

We then integrate the function P, ; over bounded intervals of the real line. The
next lemma gives an upper bound on the resulting integrals, under the assumption
that the lengths of the r intervals forming I are bounded away from zero.

LEMMA 6.3. Let a = (ay,...,a,) denote an r-tuple of positive real numbers,
and let I = (I,...,I.) denote an r-tuple of subintervals of [0,1) satisfying

>0 Vse{l,...,r} |Ts| > 4.
Then, for any bounded subinterval Iy of R, we have

/10 Pay(z)de < <|10| + (121) : (H Is|> : (]:[1 <1+ 5za+1)> .

s=1 s=1

PRrROOF. Without loss of generality, we may assume that the interval I is of
the form [u,v], with u < v. Then, a simple change of variable implies that
1 aiv
/ P, (x)dz = —/ Pajay,1(w)dz.
Iy 1 Jaju

a

The interval onto which the integral in right-hand side is computed is obviously
covered by the intervals of the form [p, p+1), where p is an integer between [aju]—1
and |aq1v]. If = belongs to such an interval, we have

Pajun () = 11, () 1_1 1, ({2}) = s @rar).

where p + I; denotes the interval obtained by adding p to the elements of I;, and
where a’ and I’ stand for the (r — 1)-tuples (as/ai,...,a./a1) and (Is,...,I.),
respectively. As a consequence,

p+1
/ Pa/ahl(x)dxg/ Py p(z)dz < sup /Pa/’p(x)dx,
p p+I1 I1CR 1
11 1=111]
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where the supremum is taken over all subintervals I of R whose length is equal to
that of I;. Summing the above estimate over all integers p between [aju] — 1 and
laiv], we straightforwardly deduce that

2
/ P, (z)dz < <|Io| + ) sup / Py p(x)de. (132)
Io ay 1jCr !

11 1=111]

We may now conclude by induction on the integer r. Indeed, if the result holds
for all appropriate (r — 1)-tuples, then the integral in the right-hand side satisfies

/{ Pt pr() da < <11|+ ) (H I, > <Hl< 52‘:{‘/’;))
- <1+ ;j;) . (1:[11|> : (1:[: <1+ 5z“+1)> :

which yields the required upper bound because || is bounded below by §. It finally
remains to observe that when r is equal to one, (132)) reduces to

/ 17, ({arz}) dz < <|Io| + i) |11],

Io

so that the required upper bound also holds in that case. O

The above ancillary lemma being proven, we are now in position to detail the
proof of Theorem [6.12

PROOF OF THEOREM Given that the series Y, a,/an41 is convergent,
for any integer j > 0, we may find an integer n; > 0 satisfying

S, = In_ <gmi2, (133)

a
n:nj—i-l n+1

Now, let us consider a dyadic interval A C [0, 1), a real number a € (0,1) and an
integer j > 0. Let us assume that a real number = satisfies

#M(({ana})nz15 4, 7) < a2 (134)

This means that the first 2(*7 points {anz} all belong to either the comple-
ment in [0,1) of the interval ), or some union of |a 2’| dyadic subintervals of \
with generation equal to (\)+j. Letting Ay, ..., Ayn)_; denote the dyadic intervals
with the same generation as A, excluding X itself, and letting A, ..., /\/La 55| denote
such subintervals of A\, we have in particular

{an<)\>+11‘}, ey {a2<>\>+j1‘} eEMU.. Uy U /\/1 U...u A/LochJ’
where the index n,) is defined by (133)). This means that, from now on, we forget
the first n(y) points of the sequence and we assume that j is large enough to ensure
that 2M+7 is greater than nexy- The intervals Ag, ..., Agy_; and Mg, .. /\’La 2 |

form a collection that is denoted by M. Moreover, these intervals are diSJOlIlt and
their union is denoted by U. It will be useful to observe that, accordingly,

ly=>» 1, and LU)=)_|J|.
JeM JeM

Now, for any bounded interval Iy, adopting the notation (131)) and letting a
stand for the tuple formed by the real numbers ap ,,+1,. .., 0200+, we get

2<%)+7

/1 v({ane})dz = Z/ a1 (135)

0 n= n<>\>+1
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where the sum is over all choices of tuples of intervals Iy sy 415 -+ s Lp0n 45 within
the collection M. Observing that each of these intervals has length bounded below
by 2=V =7, we may then use Lemma to infer that the integral of the function
P, 1 over the interval Iy is bounded above by

5 oM +i_q (N +i
. a
<|Io|+ ) 11 (H?WH”) | IT s
Anxy+1 n=ngny 1 Un1 n=ng+1

Summing over all possible choices of I and then factorizing, we straightforwardly
deduce that the expression in (135]) is smaller than or equal to

9 oM +i_q )
<|]0| + ) . I1 <1 + 2<A>+j+1a”) N V(70) EARARRLICNS

an<)\>+1 n=nx+1 An+1

This upper bound consists of three factors. The third one may easily be estimated
after observing that

LHU) = Ml 44 Doy g |+ [N+ 4 A o)
= (2™ —1)27N 4 @ 27|27V < exp(—(1 — )2~M).

Here, we have used the obvious fact that 1 + 2z < e* for every real z. Combining
this inequality with (133]), we may also deal with the second factor, specifically,

oM +i_q

11 <1+2<A>+a‘+1an) < exp Zi o\ +i+1_9n_

n:n<>\>+1 Gn+1 n:n<>\>+1 n+1
< exp(@VHHIS, 1) < exp(2i7Y).
On top of that, note that the condition (134]) introduced in the first place implies
the choice of |27 | dyadic subintervals of A with generation equal to (\)+ j, among

a total of 27 possible intervals. We deduce that the set of all 2 € I, for which the
condition ([134)) holds has Lebesgue outer measure bounded above by

(LO?;”) . <|IO| + an<i+1> . eXp(ijl) .exp(—(l — a)(Qj _ n</\>27()\)))

By virtue of Stirling’s formula, the logarithm of the involved binomial coefficient
is equivalent to H(a) 2/ as j goes to infinity, where H(a) is a shorthand for the
Shannon entropy of the probability vector (a,1 — «), as defined by . As a
consequence, defining

my(\ Jo, @) = £1({a € I | #M(({an))az1: A d) < a27)),

we readily see that

1 1
limsup — logm; (A, Iy, @) < H(a) +a — =.
j—o0 27 2
Clearly, the right-hand side vanishes for a unique value of o € (0, 1), denoted
by ag, and it is negative when a < «ap. In that case, we may conclude with the
help of the Borel-Cantelli lemma. Indeed, for any jg sufficiently large, we have

oo
c (thUP{DJ € Io [ #M(({anz})n>13 A, 5) < a2j}> <> mi(\ o, ),
Jj—o0 J=jo
and the right-hand side tends to zero as jo goes to infinity, because the series is
convergent when o < . Making the interval Iy increase to the whole real line,
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and the real number « increase to the critical value ag along countable sequences,
we deduce that for Lebesgue-almost every = € R,

liminf 277 #M(({anz})n>1; A, §) > ao.
j—o00 -

As there are countably many dyadic intervals, it follows that for Lebesgue-almost
every = € R, the sequence ({anz}),>1 satisfies (118) with U = (0,1). Hence, the
weaker condition ((110)) is also verified and we conclude thanks to Theorem O

Note that Theorem does not apply to the case where a,, = b™, which corre-
sponds to the b-adic expansion of real numbers, simply because the corresponding
series Zn apn/an+1 does not converge. In fact, the hypothesis of Theorem is
satisfied if the sequence (a,),>1 grows superexponentially fast, such as for instance
when a,, = n(!*9)" for some £ > 0, or when a,, = " for some b > 1.

Furthermore, we may combine Theorem with the approach that we devel-
oped at the end of Section [6.3.2] above. This results in the following dimensional
statement, in the vein of Corollary

COROLLARY 6.2. Let (an)n>1 be a sequence of positive real numbers such that
the series ), ayn/an41 converges, and let (rp)n>1 be a sequence in Py such that the
series Yy 5 converges for all s > 1. For any real number t > 1, let us define

Fl(x)={y eR | |ly — anz| <71, forim.n>1},

Then, for Lebesque-almost every point x € R,
. / ]-
vt >1 dimy F}(z) = T

In particular, if the approximating radii are given by r, = 1/n, we end up with
the following result: for Lebesgue-almost every x € R and for every o > 1,

g

dimy {y eR

1 1
ly — anz|| < — for im. n > 1} _——
nO’

The tools introduced in the following chapters will enable us to substantially
refine Corollary In particular, Corollary will give a precise and complete
description of the size and large intersection properties of a family of sets that
includes the above sets F/(z). Let us also mention that a challenging problem is to
understand how the Hausdorff dimension of sets of the form Fj(x) behaves when
one considers their intersection with a given compact set. We do not address this
problem here, and we refer to [15] for precise statements and motivations.

6.5. Random eutaxic sequences

The ideas pertaining in the proof of Theorem above are in fact of a proba-
bilistic nature. First, the proof calls upon the Borel-Cantelli lemma. Moreover, the
ancillary lemma used therein, namely, Lemma may actually be recast in terms
of the correlations between the random variables {a, X }, where X is uniformly dis-
tributed in the unit interval [0, 1). This entices us to consider probabilistic models
of eutaxic sequences. The simplest model consists of a sequence of points that are
independently and uniformly distributed in some nonempty bounded open subset
of R%. We shall also consider a model that is related with Poisson point processes.
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6.5.1. Independent and uniform points. We consider a sequence (X,,)n>1
of points that are independently and uniformly distributed in a nonempty bounded
open set U C R%. Hence, the random points X,, are stochastically independent and
distributed according to the normalized Lebesgue measure £4(- NU)/L4(U). For
any sequence (y)n,>1 in Py and any point x in U, we have

d T, T d ,
Ble € B ) = S ) = S

for n sufficiently large. Hence, the Borel-Cantelli lemma ensures that the inequality
|z — X,,| < r, holds infinitely often with probability one. By virtue of Tonelli’s
theorem, this implies that the sequence (X,,)n>1 is almost surely eutaxic in U with
respect to (rp)n>1. Note that the almost sure event on which this property holds
may depend on the sequence (r,)p>1. In order to show that the sequence (X,)n>1
is uniformly eutaxic in U, we need to develop the following additional arguments
that are due to Reversat [49], and were already used in the proof of Theorem

THEOREM 6.13. Let (X,,)n>1 be a sequence of random points distributed inde-
pendently and uniformly in a nonempty bounded open subset U of R%. Then, with
probability one, the sequence (X,)n>1 is uniformly eutazic in U.

PROOF. Let us consider a dyadic cube A C U, a real number a € (0,1) and an
integer 7 > 0, and let us suppose that the condition

#M((Xn)nZM)‘v]) < a2dj (136)

holds. Then, the first 24\ +9) points X,, are contained in either the complement
in R? of the cube A, or the union of |a 2% | subcubes of A with generation (\) + j,
denoted by A},..., XLa 941" Each point X, is uniformly distributed in U, so that

4 , , 9—d(X) g 9—d((\)+3)
Moreover, combining the fact that the points X,, are independent with the obvious
bound 1+ z < e?, for z in R, we deduce that

l—a _4
d d
P(Xl, ooy Xoay+s) € (R \)\) (] /\/1 ...y )\/La?d’jj) < exp (_Ed(U) 2 J> .
As a consequence, taking into account all the possible choices for the subcubes
e, )\’La 24 | that result from the assumption l) we conclude that

PH#M((Xn)nz1; A, j) <€ 027) < (L;;Zj J) exp (—Eld_(U“) 2dﬂ‘) :

We now follow the lines of the proof of Theorem [6.12] The binomial coefficient
above may again be estimated with the help of Stirling’s formula: its logarithm
is equivalent to H(a)2%¥ as j goes to infinity, where H(a) denotes the Shannon
entropy of the probability vector (a, 1 — «), as defined by . Hence,

. 1 , di -«
hinj)lipﬁ log P(#M((Xn)n>15 A, j) < a2¥) < H(a) — 1Zi(i}

The right-hand side vanishes for a unique value of « € (0, 1), that is denoted
by ag. Furthermore, the right-hand side is negative when a < «g, and the Borel-
Cantelli lemma ensures that almost surely, the condition (136]) is satisfied for finitely
many values of j only. Hence, for every dyadic cube A C U and every « € (0, ag),

a.s. liminf 2~ Y#M((Xp ) ns1: A, 5) > o
j—00 =

We may let o tend to ag along a countable sequence, and the limiting value oy does
not depend on the choice of the dyadic cube A. In addition, there are countably
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many dyadic cubes contained in U. The upshot is that the sequence (X,,)n>1
verifies ((118)) with probability one. Therefore, the weaker condition (110)) is also
satisfied almost surely, and we may conclude with the help of Theorem [6.3] O

Blending Theorem with Theorem we get a first description of the size
and large intersection properties of the random sets F; defined for all ¢ > 1 by

F={zeR | |z — Xn| <7}, forim.n>1}, (137)

which is how (107)) becomes in the present situation. More precisely, Theorems
and directly lead to the following statement.

COROLLARY 6.3. With probability one, for any nonincreasing sequence of pos-
itive real numbers (ry,)n>1 satisfying

s<d = Y, rs=00
s>d = ) 75 <00,

the following properties hold for all t > 1:

d
dimp(FNU) =~ and  F € GYHU). (138)

Note that the almost sure event on which the previous statement holds does
not depend on the choice of the sequence (7,)n>1. This is due to the fact that
the almost sure eutaxy of the sequence (X,)n>1 in the open set U is of uniform
type. Furthermore, recall that we may easily extend Theorem to sequences
of approximating radii r = (r,),>1 satisfying for some positive real number
Sy, instead of the mere . The same remark clearly applies to Corollary
Finally, restricting to power functions for the approximating radii, we have

1
as. Ve>0 Vo> p dimpg {x € R?

|z — X,| < % for im. n > 1} = l
n o
This follows from with 7, = (c'/?/n)*/% and t = od. We thereby extend a
result due to Fan and Wu [30], who addressed the case where d =1 and U = (0, 1).
The above study is related with the famous problem regarding random coverings
of the circle raised in 1956 by Dvoretzky [23]. We now restrict our attention to
the one-dimensional case. As mentioned above, the fact that a sequence (r,)n>1
belongs to P; implies, through a simple application of the Borel-Cantelli lemma
and Tonelli’s theorem, that with probability one, Lebesgue-almost every point x of
(0,1) is covered by the open interval centered at X,, with radius r,, i.e. satisfies
|x — X,,| < rp, for infinitely many integers n > 1. Dvoretzky’s question can then
be recast as follows: find a necessary and sufficient condition on the sequence
(rn)n>1 to ensure that with probability one, every point of the open unit interval
(0,1) satisfies the previous property. The problem raised the interest of many
mathematicians such as Billard, Erdds, Kahane and Lévy, and was finally solved in
1972 by Shepp [56] who discovered that the condition is

— 1
Z o exp(2(r1 4+ ...+ 1)) = oc.
n=1

This criterion is very subtle in the sense that constants do matter: when r,, is of
the specific form ¢/n with ¢ > 0, the condition is satisfied if and only if ¢ > 1/2.
We refer to [21I] and the references therein for more information on this topic.

We shall come back to the above random covering problem in Section and
give therein further results on the size and large intersection properties of the sets
F;, thus improving on Corollary
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6.5.2. Poisson point measures. Comparable results may be obtained when
the approximating points and the approximation radii are distributed according to a
Poisson point measure. We begin by briefly recalling some basic facts about Poisson
measures; we refer to e.g. [40} [47] for additional details. The theory may be nicely
developed for instance in locally compact topological spaces with a countable base.
If S denotes such a topological space, we call a point measure on S any nonnegative
measure w on S that may be written as a sum of Dirac point masses, namely,

w= Z Js,, with Sp €5,
neN

and that assigns a finite mass to each compact subset of S. Note that the above
points s,, need not be distinct, but the index set N is necessarily countable. The set
of all point measures may be endowed with the o-field generated by the mappings
w +— w(F), where F ranges over the Borel subsets of S. Naturally, a random point
measure on S is then a measurable mapping II defined on some abstract probability
space and valued in the measurable space of point measures. One can show that
the probability distribution of such a random point measure II is characterized by
the distributions of all the random vectors of the form (II(E,),...,II(E,)), where
the sets F1,..., E, range over any fixed class of relatively compact Borel subsets
of S that is closed under finite intersections and generate the Borel o-field on S.
This enables us to now introduce our main definition.

DEFINITION 6.4. Let S be a locally compact topological space with a countable
base, and let 7w be a positive Radon measure thereon. There exists a random point
measure II on S such that the following two properties hold:

e for every Borel subset E of S, the random variable II(E) is Poisson dis-
tributed with parameter 7(E);

o for all Borel subsets E1, ..., E, of S that are pairwise disjoint, the random
variables II(E4),...,II(E,) are independent.

The random point measure II is called a Poisson point measure with intensity ,

and its law is uniquely determined by the above two properties.

Note that we adopt the usual convention that a Poisson random variable with
infinite parameter is almost surely equal to co. In addition to the aforementioned
characterization, the distribution of a random point measure II is also determined
by its Laplace functional, namely, the mapping defined by the formula

a(f) = E[ow (- [ ryma@0)]

where f is any nonnegative Borel measurable function defined on S. Thus, I is a
Poisson point measure with intensity 7 if and only if for any such f,

en(f) = o (- [ @ -eT)n(a9).

Throughout the remainder of this section, we shall restrict our attention to
Poisson point measures on the interval (0,1], the product space (0,1] x R%, or
subsets thereof. Let R be defined as the collection of all positive Radon measures
v on the interval (0, 1] such that v has infinite total mass and

Voe (0,1 @,(p) = ullp,1]) < . (139)

The function ®, is then clearly nonincreasing on (0, 1]. Moreover, at any given p,
it is left-continuous with a finite right-limit, namely,

@, (p+) = v(p, 1]).
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Extending this notation to the case where p vanishes, we get that ®,(0+) is infinite
because v has infinite total mass. On top of that, given some nonempty open subset
U of R?%, we may consider on the product space

U, = (0,1]x U

a Poisson point measure, denoted by II, with intensity v ® £%(- N U). When the
intensity measure has infinite total mass, the corresponding Poisson measure must
almost surely have infinite total mass as well. As a result, there exists a sequence
(Rn, Xn)n>1 of random pairs in U, such that with probability one,

0= dr,.x.-
n=1

Our aim is now to study the approximation problem that results from distributing
the approximating points and approximation radii according to the pairs (R, X,,).
To be specific, in accordance with (107) again, we consider the random sets

:{yeRd | ly — Xu| <Rl forim.n>1}, (140)

for t > 1. Note that the Poisson point measure II offers us an alternate way of
defining the above sets. Indeed, F; is also the set of points y in R? such that

/U L{jy—a|<rt} H(dr,dz) Zl{\y Xul<Ry} =

The main result of this section is the followmg analog of Corollary [6.3] for the
random sets F} that are now under investigation.

THEOREM 6.14. Let v be a measure in R, let U be a nonempty open subset of
R?, and let II be a Poisson point measure on Uy with intensity v @ L(- NU). For
any real number t > 1, let us define

/U L{jy—o|<rey H(dr, dz) = oo} : (141)

+

Ft:{yERd

Let us assume that the measure v satisfies the following integrability condition:

s<d = rPy(dr) =

(0.1 (142)

s>d = rPv(dr) < oo
(0,1]
Then, with probability one, for all t > 1,

dimy(F; NU) = % and  F, € GYHU).

One may easily extend Theorem to the more general case where d is re-
placed by some positive real number s, in the integrability condition . Indeed,
for any real number o« > 0, the image II, of the Poisson point measure II under
the mapping (r,z) — (r%,z) is a Poisson point measure on U, with intensity
Ve ® LY~ NU), where v, is the image of the measure v under the mapping 7 + 7.
Moreover, for each t > 0, the set Ft(a) obtained when replacing II by II, in
coincides with the original set F,; corresponding to the Poisson point measure II.
Choosing a = s, /d, we easily check that the measure v, belongs to R and satis-
fies (142). We may then apply Theorem to the corresponding Poisson point
measure II,, thereby deducing that with probability one, for all ¢ > 1,

o d o
dimy (F*) NU) = - and F* e g,
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Performing a simple change of variable, we may transfer this statement to the
original sets F;, and thus conclude that with probability one, for all ¢ > s, /d,

dimg(FyNU) = STV and Fy e g/NU).

On top of that, with probability one, all the sets F}, for ¢t < s, /d, have Hausdorff
dimension d and belong to the class G¢(U) ; this easily follows from the observation
that they all contain the set Fy ,q.

The remainder of this section is devoted to establishing Theorem [6.14 We shall
call upon a series of basic results that we now state and prove. The first lemma
discusses how the sets F; defined by become distributed when one takes their
intersection with an arbitrary nonempty bounded open subset of U.

LEMMA 6.4. Let v be a measure in R, let U be a nonempty open subset of
R?, and let T1 be a Poisson point measure on U, with intensity v @ LY(- N U).
Moreover, let V' be a nonempty bounded open subset of U. For any real number
t > 1, in addition to the set F; given by , we define the set

EY = {yERd

Then, the following properties hold:

/ 1{|y,I|<Tt} H(d?“, d.’l?) = OO} . (143)
Vi

(1) the restriction II(- NV, is a Poisson point measure on Vi with intensity
v LY-NV);
(2) with probability one, for any real number t > 1,
FENVCEY CENV.

PROOF. The proof of (|1)) is easily obtained by computing the Laplace functional
of the random point measure II(- N V4 ). In order to establish , we define V3
as the set of points x in U such that d(z,V) < 1, and we observe that for any
p € (0,1], the random variable TI([p, 1] x V1) is Poisson distributed with parameter
®,(p)L%(V1). This parameter is finite by virtue of and the boundedness of
V. Therefore, II([p, 1] x V1) is almost surely finite. However, this random variable
is a monotonic function of p. We deduce that the probability that all the values
II([p, 1] x V1), for p € (0, 1], are simultaneously finite is equal to one. From now on,
we assume that the corresponding almost sure event holds.

Let us consider a point y in F; N V. Given that the set V is open, it contains
the open ball B(y, §) for some § > 0. Let us consider a pair (r,z) in U, satisfying
ly—2| < r. Then, this pair actually belongs to V when r < §'/* and to [§'/%,1]xV;
otherwise. As a consequence,

o0 = /U 1{|y7w\<r*‘} II(dr,dz) < /V 1{|y7w|<rt} II(dr,dz) + H([(Sl/t, 1] x V7).
+ g

On the almost sure event that we considered, the second term in the right-hand
side of the above inequality is finite. It follows that the first term is infinite, i.e. the
point y belongs to the set F}’.

Conversely, let us consider a point y in . Given that V, is contained in U,
the point y is then automatically in F;. In order to show that y also belongs to the
closure of V, it suffices to consider an arbitrary real number § > 0 and to prove
that the ball B(y,d) meets V. If (r,x) denotes a pair V, with |y — z| < r?, we
remark that the point 2 belongs to the aforementioned ball if r < /¢ and simply
to the set V7 otherwise. Accordingly,

00 = /V 1iy—a|<rt} II(dr,dz) < TI((0,1] x (B(y,d)NV)) + H([él/t, 1] x V).
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Again, the second term in the right-hand side is finite, so the first term is infinite,
which means in particular that the sets B(y,d) and V intersect. O

Lemmal6.4above will enable us to reduce the proof of Theorem [6.14] to the case
of bounded open subsets of U. The advantage of working with bounded sets is that,
with the help of the next lemma, we will be able to use a convenient representation
of the Poisson point measure II.

LEMMA 6.5. Let v be a measure in the collection R, and let U be a nonempty
bounded open subset of the space RY.

(1) Let NY denote a Poisson point measure on the interval (0, 1] with intensity
W= LiU)v.

Then, there exists a nonincreasing sequence (Ry)n>1 of positive random
variables that converges to zero such that with probability one,

NU — Z 6Rn' (144)
n=1

(2) Let (X,)n>1 be a sequence of random variables that are independently and
uniformly distributed in U, and are also independent on NV . Then,

o]
NY =" 6r,.x.) (145)
n=1

is a Poisson point measure on U, with intensity v @ L4(- NU).

PROOF. In order to prove , we begin by observing that the Poisson point
measure NV must have infinite total mass with probability one, because its intensity
vY has infinite total mass too. Thus, there is a sequence (Ry)n>1 of positive random
variables such that holds. However, the assumption implies that

Vp>0  E[#{n>1|R,>p}]=EN([p,1])] = @,v(p) < co.

Thus, (Ry,)n>1 converges to zero with probability one. Now, up to rearranging the
terms, we can assume that this sequence is nonincreasing and still verifies .

The property may be established by computing the Laplace functional of the
random point measure NE{. Let f denote a nonnegative Borel measurable function
defined on Uy. Then, we have

Sxv(f) =E |exp (—g:lf(Ran)> =k ﬁ(/fﬂR”’” 53{2))

The right-hand side may be rewritten as the Laplace functional of the random point
measure NV evaluated at the nonnegative Borel measurable function

dx
r— —lo e fme) _—__
g/U £0)
Since NV is a Poisson point measure with intensity vV, we finally deduce that for
every nonnegative Borel measurable function f defined on the set Uy, we have

dx
Lny (f) = exp —/ 1—e /oY dr) @ —— |,
o (f) ( X W) g
from which we may determine the law of the random point measure NH. O

The representation supplied by Lemmal6.5|calls upon a sequence of independent
uniform random points. In view of Theorem [6.13] it thus establishes a connection
with eutaxy that we shall exploit in the upcoming proof of Theorem
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PRrROOF OF THEOREM [6.14l We begin by assuming that the open set U is
bounded, thereby finding ourselves into the convenient setting of Lemma The
random point measures II and NV, appearing in the statement of Theorem
and that of Lemma|6.5] respectively, share the same distribution: both are Poisson
point measures on U, with intensity v ® £¢(- NU). We may therefore assume that
II is replaced by NE{ in the definition of the random sets F; under investiga-
tion. Equivalently, we may define the sets F; through the formula , where the
points X,, and the radii R,, are those given by Lemma [6.5]

Now, we infer from Theorem that with probability one, the sequence
(Xn)n>1 is almost surely uniformly eutaxic in U. On top of that, evaluating the
Laplace functional of the Poisson point measure NY at the functions r — 67, for
all positive values of s and 6, we get

E lexp (—0%]%2) = exp (—Ld(U)/( ](1 —e ) y(dr)) .
n=1 0,1

Since v is in the collection R and satisfies the integrability condition , the
integral in the right-hand side is infinite if s < d. The expectation in the left-hand
side is thus equal to zero, which means that the series ), R? diverges almost surely.
Furthermore, using twice the obvious fact that 1 —e™* < z for all real numbers z,
we deduce from the above equality that

! (1 (-9 §R>)

where the right-hand side is finite if s > d. However, as 6 goes to zero, the random
variable in the expectation monotonically tends to the sum ) R?. We deduce from
the monotone convergence theorem that this sum has finite expectation if s > d,
thereby being finite almost surely. As a consequence, with probability one, (R, )n>1
is a nonincreasing sequence of positive real numbers satisfying , i.e. such that
the series > Rj is divergent for all s < d, and convergent for all s > d. Finally, it
follows from Theorem that with probability one, for any real number ¢t > 1,
d

dimy(F,NU) =~ and  F € GYHU).

The result is thus proven in the case where the open set U is bounded.
Let us drop the boundedness assumption on U. In order to recover the previous
case, we consider a sequence (U®)),>; of bounded open subsets of U such that

E

< Ed(U)/ r®v(dr),
(0,1]

U=Jtu®  with UO Uty
=1
For instance, we may define these sets through inner parallel bodies as in (102]) ;
specifically, the sets

UY ={zeUNB(0,¢)]d(z,R\ (UNB(0,0))) > 1/} (146)

are easily seen to verify the above properties. There is an integer ¢; > 1 such
that the set U%) is nonempty. Each subsequent set U®) is therefore a nonempty
bounded open set, and we may deduce from Lemma that the restriction
(- N UJ(FK)) is a Poisson point measure on UJ(FZ) with intensity v @ £4(- NU®). Tt
follows from the bounded case that the corresponding approximation sets, defined
as in (143), are such that with probability one, for any ¢ > 1 and any ¢ > £y,

d

dimp (FV nUu®) = > and  F/ @ egitu®).



144 6. EUTAXIC SEQUENCES

On top of that, combining Lemma [6.4)(2) with the properties of the sets U®), we
observe that for any real number ¢ > 1,

UtEnuc |JrEP c 1 EnTO) c |+ (EnUED), (147)
£=1tg L=t £=t, £=£g
where the leftmost and the rightmost sets are both equal to F; N U. In particular,
due to Proposition [2.16|(2), we deduce that

o0 d
dimy (F, NU) = dimy | | 1 FY = sup dimp(FY" nU®) = -
>0
=Ly =

In order to prove that each set F; belongs to the large intersection class G#/*(U),
Definition requires us to show that it is a Gs-subset of R? and that for any
positive real number s < d/t and any open subset U of U,

M (F,NT) = M3(D)
The first property follows straightforwardly from (140). Moreover, as regards the
second property, Lemma [5.2] implies that it suffices to establish the above equality
for all dyadic cubes contained in U rather than for all such open sets U. Specifically,

since there are countably many such cubes, it suffices to fix a nonempty dyadic cube
A C U and to prove that with probability one, for all ¢ > 1 and s € (0, d/?),

M (FrnA) = M2 (V).
This property follows from the bounded case. Indeed, since the interior of the cube A
is a nonempty bounded open subset of U, what precedes ensures that almost surely,
r

for every t > 1, the set Fi™** defined as in (143) belongs to the class G4/*(int \).
Hence, making also use of Lemmas and we deduce that for all s € (0,d/t),

ME(F N A) > ME(FPA nint \) = M2 (int A) = MS (M),
which gives the required result. [l

Much more precise results, actually a full and complete description of the size
and large intersection properties of Poisson random coverings, will be given in Sec-
tion[I1.2] Besides, in the spirit of Dvoretzky’s covering problem briefly discussed in
Section [6.5.1] one may ask for a necessarily and sufficient condition on the measure
v to ensure that with probability one, all the points of the open set U are covered
by the Poisson distributed balls, i.e. that the set F; obtained by choosing ¢t = 1
in contains the whole open set U almost surely. This problem was posed by
Mandelbrot [45] and solved by Shepp [67] in dimension d = 1 when the open set U
is equal to the whole real line. We refer to [8] and the references therein for further
results in that direction.



CHAPTER 7

Optimal regular systems

The notion of optimal regular system was introduced by Baker and Schmidt [I],
and subsequently refined by Beresnevich [3]. These systems result from the combi-
nation of a countably infinite subset A of R? with a height function H : A — (0, 00).
As we shall explain below, they encompass many relevant examples arising in the
metric theory of Diophantine approximation. On top of that, they naturally give
rise to uniformly eutaxic sequences; we shall thus be able to apply Theorem
to determine the basic size and large intersection properties of the set F; defined
by when the considered sequences result from an optimal regular system.

However, in the metric theory of Diophantine approximation, the notion of
optimal regular system is usually employed without a detour to eutaxic sequences.
In that spirit, considering such a system (A, H ), we shall replace the set F; obtained

by letting t = 1 in (107]) by the set

F,={zeR" ||z —a] < ¢(H(a)) forim.aec A} (148)
associated with some positive nonincreasing continuous function ¢ defined on the
interval [0, 00), and more generally the sets F} by the sets F,+ obtained by replacing

the function ¢ by its t-th power in (148]). The pair (A, H) has to be admissible, in
the sense that the following condition holds:

Ym e N #{ac€Alla] <mand H(a) < m} < cc. (149)

In order to justify this admissibility condition, we may point out that if ¢ also tends
to zero at infinity, then implies that the family (a, o(H(a)))qe4 of elements
of R x (0,00) is an approximation system in the sense of Definition

The relationship with Diophantine approximation is discussed more thoroughly
in Section[7.2] Examples of optimal regular systems include the points with ratio-
nal coordinates and the real algebraic numbers of bounded degree associated with
suitable height functions. They will be dealt with in Sections and [7.4] along
with their implications in the metric theory of Diophantine approximation.

7.1. Definition and connection with eutaxy

Our purpose now is to define the notion of optimal regular system, and to
discuss the link with eutaxic sequences.

DEFINITION 7.1. Let A be a countably infinite subset of R?, let H : A — (0, 00)
be a height function, and let U be a nonempty open subset of RY.

(1) The pair (A, H) is called a regular system in U if it is admissible and if
one may find a real number x > 0 such that for any open ball B C U,
there is a real number hg > 0 such that for all h > hp, there exists a
subset Ap j of AN B with

#-AB,h > H|B|dhd
Ya € Ath H(a) <h

Va,a' € A, a#d = |a—d|>1/h

145
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(2) The pair (A, H) is called an optimal system in U if it is admissible and
if for any open ball B, there exist two real numbers k5 > 0 and hly > 0
such that for all h > h/g,

#{ac ANUNB| H(a) < h} < kg h%. (150)

Throughout what follows, we shall freely employ the notations of Definition 7.1
without necessarily reintroducing them. It is elementary to remark that any regular
system in U is also regular in every nonempty open subset of U ; the same observa-
tion holds for the optimality property. Moreover, when the set U is bounded, the
next lemma shows that any regular system therein may be enumerated monoton-
ically with respect to the height function. The resulting enumerations will play a
key role in the connection between optimal regular systems and eutaxic sequences.

LEMMA 7.1. Let U be a nonempty bounded open subset of R, and let (A, H)
denote a regular system in U. Then, there exists an enumeration (an)n>1 of the
set ANU such that H(a,) monotonically tends to infinity as n — oo.

PROOF. On the one hand, the regularity property of the system (A, H) ensures
that the set ANU is countably infinite. On the other hand, as the set U is bounded,
it is contained in the open ball B(0, m), for m sufficiently large, and the admissibility
condition implies that for any h > 0, only finitely many points in AN U have
height bounded above by h. We deduce the existence of an increasing sequence
(hj)j>1 of nonnegative integers with initial term zero and such that all the sets

Aj={a€ ANU|h; < H(a) < hji1}

are both nonempty and finite. For each integer j > 1, we write the elements of the

set A; in the form agj), ce a;@‘j, in such a way that

H(a{") < ... < H(a})).

It is clear that for any integer n > 1, there is a unique pair of integers (j, k), with
j>1land ke {l,...,#A;}, such that

TL:#Al—F—f—#AJ,l-l-k
We then define a,, as being equal to ag ), and it is elementary to check that the
sequence (ap)n>1 fulfills the conditions of the lemma. O

Any sequence (a,)p>1 resulting from Lemma will be called a monotonic
enumeration of the regular system (A, H) in the set U. We now present the first
part of the connection between optimal regular systems and eutaxic sequences.

PROPOSITION 7.1. Let U be a nonempty bounded open subset of R, let (A, H)
be an optimal reqular system in U, and let (an)n>1 denote a monotonic enumeration
of (A, H) in U. Then, the sequence (an)n>1 s uniformly eutaxic in U. In fact,

. .. —dj . .
\Jnt ) im inf 27YH#M((an)nz15 4, 5) > 0. (151)
ACU

PROOF. The set U being bounded, it is contained in some open ball B. We

consider a real number v € (0, 1) such that xzy < |[0,1)?|%, and a nonempty dyadic

cube A contained in U. Observe that there exists an open ball B’ C \ satisfying
|B’| = |A|l. Then, let j be a nonnegative integer so large that

/a2

|>\| > IDELX{]?,/B7 h,B/}.

h=~
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The choice of h ensures that any dyadic subcube A’ of A with generation equal
to (A) + j cannot contain more than one point of the set Ap:j. Otherwise, we
would have two distinct points in Ap j, at a distance bounded above by

gy = 21
=2 =T <o
which would contradict the third property satisfied by Ap/ ;. Moreover, every point
contained in Ap/ j has height bounded above by h and belongs to the set AN U,
thereby being of the form a,, for some n > 1. The monotonicity of the enumeration
implies that n is actually bounded above by

27 27
#{ac ANUNB|H(a) < h} <rKgh?=rjp (Wd IM) < (|[o,1)d|w) ,
so that n < 24(N+7) Lastly, all the points of Ap: j, are contained in B’, and thus
belong to some dyadic subcube of A with generation (\) 4+ j. We deduce that

L d
‘ 9i A
H#M((an)n>15\7) > #App > w|B|4% =k (|)\|’Yl/d|)\|> = k2%,

and we end up with (151)) by letting j tend to infinity. Hence, the sequence (ay)n>1
satisfies the condition (118)), and so the weaker condition ((110) holds as well. The
uniform eutaxy of the sequence thus follows from Theorem [6.3] O

Further investigating the connection between optimal regular systems and eu-
taxic sequences, we now give a converse result to Proposition[7.1] We start from the
property that already appeared in the statement of this proposition and is in
fact stronger than uniform eutaxy. This means that we assume that the sequence
under consideration satisfies a condition of the form . As already observed,
this condition implies the sufficient condition that guarantees uniform eutaxy.

PROPOSITION 7.2. Let U be a nonempty open subset of R%, and let (an)n>1
denote a sequence of points contained in U. We assume that holds, so that in
particular (an)n>1 s uniformly eutazic in U. Moreover, let A denote the collection
of all values ay, forn > 1. We endow A with the height function H defined by

H(a) =inf{n >1|a = a,}'/%
Then, the pair (A, H) is an optimal regular system in the open set U.

PROOF. For any open ball B and any real number A > 0, it is clear that a
point @ € ANU N B satisfying H(a) < h is among the points ay,...,a ). This
proves that the pair (A, H) is admissible, and is in fact an optimal system in U.

Let us now establish that (A, H) is a also a regular system in U. Throughout,
c denotes a real number such that |z|s/c < |z| < c|z|s for all x in RY. Let B be
a nonempty open ball contained in U, and let A\g denote a nonempty dyadic cube
contained in B with minimal generation. One easily checks that |B| < 6¢278),
Moreover, there is an integer j(Ag) > 0 such that

Vi>j(Ap)  #M((an)nz15Ap.) = @29070,
where « denotes the left-hand side of (|151)). Thus, just as in the proof of Theo-
rem detailed in Section we infer that for any integer j > j(Ap), there
exists a set S;(A\g) C {1,...,24 A8)+7)} satisfying the following properties:
o #S;(A\p) > 2402,
e a, € A\g for any n € S;(Ap);
o |a, — an|o > 27ABIFI) for any distinct n,n’ € S;(AB).
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For any real number h larger than 02<AB>+1(’\B), letting 5 be equal to the integer
[logy(h/c)] —(AB), where log, is the base two logarithm, we have j > j(Ap). Hence,
we may define Apg j, as the collection of all points a,, for n in S;(Ag). It is then
straightforward to check that Ap , is a subset of AN B such that

#Apn = #S;(\p) > @207 > o|B|?h?/(48¢%)?
Va e Agp H(a) < (24B)+))1/d < h/c < h
Va,a' € Agy, a#ad = |a—d|>2"B)H)/c>1/h,
and we deduce that the pair (A, H) is a regular system in the set U. O

Combining Propositions [7.1] and [7.2] we may finally deduce that, rather than
being equivalent to uniform eutaxy, the notion of optimal regular system is essen-
tially comparable with the stronger condition (151).

7.2. Approximation by optimal regular systems

Proposition can be combined with Theorem to determine the basic size
and large intersection properties of the set F; defined by when the considered
sequences result from an optimal regular system. However, as mentioned at the be-
ginning of Section[7.1} we shall follow the common practice from metric Diophantine
approximation and state our results without a detour to eutaxic sequences. Thus,
given an optimal regular system (A, H), we replace the set F; obtained by letting
t=1in by the set F,, defined by , and more generally the sets F; by
the sets F,: obtained when replacing ¢ by its ¢-th power. The basic size and large
intersection properties of the sets Fi,: are given by the next result.

THEOREM 7.1. Let ¢ denote a positive nonincreasing continuous function de-
fined on the interval [0,00), and let I, be the integral defined by

Iw=/0 n* () dn. (152)

Moreover, let U denote a nonempty open subset of R?, and let (A, H) denote an
optimal reqular system in U.

(1) The set F, has full, or zero, Lebesque measure in the open set U according
to whether the integral I, diverges, or converges, respectively.

(2) Let us assume that the function ¢ tends to zero at infinity and that the
integral I, diverges. Then, the family (a, o(H(a)))acA is a homogeneous
ubiquitous system in U.

(3) Let us assume that the positive powers of the function ¢ are such that

i<l = I,=0
t>1 = I <oo

Then, for any real number t > 1,
d
dimp(Fpe NU) == and  Fpu € G ).

PROOF. The open set U may clearly be written as a countable union of open
balls B,,. For instance, we can consider the open balls contained in U, with center
in Q¢ and radius in QN (0,00). We deduce that

LYUN\F,) < i LYB,\F,) and LYF,NU)< i LYF,NBy,).
n=1 n=1

As a consequence, the proof of reduces to establishing the next property:
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(1’) For any open ball B contained in U, the set F, has full, or zero, Lebesgue
measure in B according to whether I, diverges, or converges, respectively.

We begin by proving in the divergence case. If B denotes a nonempty
open ball contained in U, the pair (A, H) is also an optimal regular system in B,
so Lemma enables us to consider a monotonic enumeration of (A, H) in B,
denoted by (an)n>1. Then, it is clear that Fi, contains the set Ff defined by

Ff:{ojERd | |z —an| <7, for i.m.nZl}, (153)

where r,, = ¢(H(ay)) for any n > 1. By virtue of Proposition the sequence
(@n)n>1 is uniformly eutaxic in B. Moreover, the sequence (r,,)p>1 is in P4 when
the integral I, diverges, see below. It follows that for Lebesgue-almost every z in
B, there are infinitely many integers n > 1 such that |z — a,| < r,,. Hence, the set
Ff has full Lebesgue measure in B, owing to . The same property thus holds
for the set F, as well, and we deduce in the divergence case.

The fact that (r,)n>1 is in Py when I, diverges may be proven as follows.
First, we may clearly assume that the function ¢ converges to zero at infinity; the
result is elementary otherwise. Let ( be the premeasure defined on the intervals of
the form (h,h'), with 0 < h < b’ < oo, by the formula (((h, k') = p(h)? — p(h')4,
and let (. be the outer measure defined by . It follows from Theorem that
the Borel sets contained in (0, 00) are (,-measurable. The resulting Borel measure
is called the Lebesgue-Stieltjes measure associated with the monotonic function ¢?,
and we may integrate locally bounded Borel-measurable functions with respect to
that measure. Adapting the proof of Proposition [2.8, we remark that the above
outer measure (, is also equal to the outer measure ¢* defined by . We may
also adapt the proof of Proposition 2.9 in order to prove that (. coincides with
the premeasure ¢ on the intervals where it is defined. Combining this observation
with Proposition and the fact that ¢ tends to zero at infinity, we deduce in
particular that . ([h,00)) = ¢(h)? for any real number h > 0. Accordingly, using
Tonelli’s theorem and the regularity of the system, we have

=3 / st (any<ny G (dR) = / #{n > 1) H(an) < h} C.(dh)

oo hp
> / wl BI ¢, (dh) + / (#{n > 1| H(ay) < h} — £B"h%) ¢.(dh)
0 0

R
[e%) h o'}
— x|B|f / / dn dn¢.(dh) + R = xd|B|f / ¢, 00)) dy + R
0 0 0
= wd|B|*I, + R,

which proves that (7,,),>1 belongs to Py when I, is divergent.

‘We now prove in the convergence case, using the above notations in addition
to those of Definition Note that the intersection F, N B is contained in the
set Ff defined by Indeed, let = denote a point in this intersection. The
ball B being open, it contains a ball B’ of the form B(x,r) for a sufficiently small
r > 0. Moreover, the function ¢ necessarily tends to zero at infinity, in view of the
convergence of the integral I,. This means that ¢(h) < r for any real number h
larger than some hy. Now, there exists an infinite subset A, of A formed by points
a satisfying |z — a| < ¢(H(a)). In particular, all these points belong to the open
ball centered at x with radius ¢(0), so that

{a€ Ay |H(a) < ho} C{ac Allal <l|z|+ ¢(0) and H(a) < ho} .
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The latter set is finite in view of the admissibility condition . It follows that
infinitely many points a in the set A, have height larger than hg, thereby satisfying
w(H(a)) < r. All these points thus belong to the ball B, and must then be of the
form a,, for some integer n > 1. We deduce that x belongs to the set Ff.
Furthermore, due to , the set Ff is covered by the open balls centered
at a, with radius r,, for n starting from any fixed ny > 1. Adapting the proof of

Proposition we get

£UF, (1 B) < LUFE) < 3 £1(B(ar) = LUB(0.1) Y i

The convergence part of now follows from letting ngy go to infinity and observing
that the series appearing in the above bound is convergent when the integral I,
is convergent. As a matter of fact, reproducing the above reasoning and using the
optimality of the system, we obtain

St [Ttz 1 () < 16 fan

n=1

oo h'g
< / Ko . (dh) + / (#{n > 1| H(an) < h} — wh) ¢.(dh)
0 0

R’

= kigdl, + R

Owing to the admissibility condition , there are finitely many points a,, with
height bounded above by h'g, so that the integral R’ is finite. Finally, the series
>, re converges when the integral I, does.

Let us turn our attention to . As mentioned at the beginning of Section
if ¢ tends to zero at infinity, the admissibility condition implies that the
family (a,p(H(a)))qac. is an approximation system in the sense of Definition
Now, if the integral I, diverges, it follows from that the set F, has full Lebesgue
measure in U. The definition of this set, and that of a homogeneous ubiquitous
system, i.e. Definition then straightforwardly lead to .

In order to establi, let us assume that the integral I+ diverges for ¢ < 1,
and converges for ¢t > 1. We consider a nonempty open ball B C U and we adopt
the same notations as in the proof of . The above arguments imply that

FoeNBCFA C Fy, (154)

where F g denotes the set obtained by raising r,, to the power ¢ in . Moreover,
in view of the hypotheses on the integrals I.¢, the sequence (ry),>1 satisfies ,
i.e. the series > 13 diverges when s < d, and converges when s > d. Recalling
that (a,)n>1 is uniformly eutaxic in B, we deduce from Theorem that

d
dimy(FZ N B) = - and Ff e g¥'(B).

To conclude, recall that U may be written as a countable union of open balls B,,.
Combining Proposition [2.16[2) with (154]), we get
d
dimy (F,: NU) = supdimp (F,¢ N By,) = supdimp(F5" N B,) = —.
n>1 n>1 ® t
Furthermore, according to Definition proving that Fi: belongs to the large

intersection class G%*(U) amounts to establishing that

M (Fpe NV) = M3(V) (155)
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for any positive real number s < d/t and any open subset V' of U. To this purpose,
let us consider a dyadic cube A € A contained in V. Thanks to (154]), we have

M (Fpr NA) > ME(FD Nint A) = M (int A) = ME (A).

where B denotes an arbitrary open ball sandwiched between A\ and V. Here, we
have combined Lemma together with the fact that F 5 belongs to G¥*(B). Tt

finally suffices to apply Lemma to obtain (155). O

7.3. Application to homogeneous and inhomogeneous approximation

A simple example of optimal regular system is supplied by the points with ra-
tional coordinates; this corresponds to the classical problem of homogeneous Dio-
phantine approximation. We now detail this example, as well as its inhomogeneous
counterpart. We shall then state the corresponding metric results obtained by fur-
ther applying Theorem namely, a famous theorem by Khintchine [38] and an
inhomogeneous analog of Theorem i.e. the Jarnik-Besicovitch theorem.

7.3.1. Homogeneous approximation. In order to study the regularity and
the optimality of the set Q% of all points with rational coordinates, we first endow
it with the appropriate height function, specifically,

Hy(a) = inf{g € N|ga € Z4}'T1/4, (156)

The regularity and optimality properties of the resulting pair are in fact reminiscent
of the statement of Lemma [3.I] which was crucial when establishing the lower
bound in the Jarnik-Besicovitch theorem, see Section Accordingly, an easy
adaptation of the proof of that lemma leads to the next statement.

THEOREM 7.2. The pair (Q%, Hy) is an optimal regular system in R%.

PROOF. When the open set U is equal to the whole space R? in Deﬁnition
one easily checks that the notion of optimal regular system does not depend on the
choice of the norm. We thus choose to work with the supremum norm.

Establishing the optimality of the system is rather elementary. Indeed, let B
denote the open ball with center  and radius 7, and let a be a point in Q¢ N B
with height at most h. We write a in the form p/q, with p € Z? and ¢ € N as small
as possible. As a result, the height Hy(a) is equal to ¢'TY/4 which means that ¢ is
bounded above by k% (4+1)  Moreover, the number of possible values for the point
p is not greater than (2rq + 1)¢. This follows from a volume comparison argument,
along with the observation that the open balls with radius 1/(2q) centered at the
points p'/q € B, with p’ € Z%, are disjoint and contained in the open ball with
center z and radius r 4+ 1/(2¢). Hence,

#{a € Q'NB|Hyla)<h}< Y (2rg+1)?

1<g<hd/(d+1)
< hd/(d+1)(2rhd/(d+1) + 1)d < (4T)dhd,

where the last bound holds for h > (2r)~1~1/4,

The proof of the regularity of the system is parallel to that of Lemma and
is in fact less technical. For any point y in R, let ¢(y) denote the minimal value
of the integer ¢ > 1 for which
1

d _ _
et ay =Pl <

Dirichlet’s theorem, namely, Theorem ensures that ¢(y) < R/ (d+1) = Actually,
this holds if & is large enough to guarantee that [h'/(¢+1)] is larger than one, i.e. if

h > 241, (157)
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a condition that we assume from now on. Moreover, the minimality of ¢(y) implies
that the integer ¢(y) and the coordinates of the corresponding integer point p are
mutually coprime. In particular,

I 1+1/d
Hgy <q(y)> q(y) < h. (158)

Now, some parameters v and 0 being fixed in (0,1), let B’ denote the open
ball concentric with B, with radius § times that of B, and let B” be the subset
of B’ formed by the points y such that q(y) < yh% (@1 The set B” is covered
by the closed balls with radius 2/(gh'/(4*1)) centered at the rational points p/q
within distance 1/q of the ball B’ and with denominator ¢ < yh#/(@+1) " For any
fixed choice of g, there are at most (2¢ér + 3)¢ such points. Hence, the Lebesgue
measure of the set B” is at most

4 4 d 44 3\
Z (2q0r + 3) <th/(d+1)> = Ra/arn) Z (257"—1—(]) .

1<g<yhd/(d+1) 1<g<yhd/(d+1)

In order to derive an upper bound on the sum in the right-hand side, we first
consider the case in which ¢ < 3/(2dr). In that situation, the summand is clearly
bounded by 6. In the opposite case, the summand is bounded by (467)?. Thus,

3. 244

d "
LUBY) < o5 pararny T

1657)%y.

We may now define Ap j, as any maximal collection of points in Q¥ N B with
height at most h and separated from each other by a distance at least 1/(yh), so in
particular at least 1/h. It remains us to establish a lower bound on the cardinality of
Ap 1, and to tune up the parameters v and ¢ appropriately. Any point y € B\ B”
is such that q(y) is between vh% (4+1) and h?/(4+1) 5o there exists an integer point
p in Z¢ such that the rational point p/q(y) satisfies

p 1 1 )
Wl = q(y) R/ (@+D) ] S IRy [A1/@D) | =

In particular, since y is in the ball B’, the rational point p/q(y) belongs to the ball
B if the following condition holds:

-

oo

2

oh +ér<r. (159)
In that situation, the point p/q(y) is in Q¥ N B and has height at most h, in view
of (158). Therefore, the collection Ap ; being maximal, it must contain a point
p'/q' located at a distance less than 1/(yh) from p/q(y). Hence,

P’ p p P 2 1 3
y- o Sl <o+ <
‘ ’ q(y) ! vh  yh T yh

/

<l|ly—

+ -
q o0 ’qw) q
It follows that the set B’ \ B” is covered by the open balls with radius 3/(vh)
centered at the points in Ap ;. As a consequence,

d 3247 d d(p! 1" 6 ¢
(247) —W—(165T) 7 < LYB"\B") < h #AB n,

from which we deduce that

#Apn _ (70\" J 3.12¢
|Bldhd Z 1% 1—8% - 2007 )+ 1pd/@+D) ) - (160)

o0 (oo}

To conclude, it remains to adjust the values of the parameters v and § ap-
propriately, and to specify how large h must be chosen in order to ensure that
all the conditions above hold, in particular that (160) holds with a constant in
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the right-hand side. In fact, we choose v smaller than 8¢, and § arbitrarily, and
we require that h is large enough to ensure that and both hold, and
that holds with a constant in the right-hand side. More specifically, we may
define v = 2739=1 and § = 1/2, and then assume that

93(d+1) /93d+23d+1 1+1/d
(&)

h > max {2d+1,
r

As required, this ensures that (157) and (159)) are both satisfied, and that (160)
holds with constant 2-34d+1)~=2.3=d iy the right-hand side. This finally proves the
regularity of the system (Q?, Hy) of points with rational coordinates. O

7.3.2. Inhomogeneous approximation. Theorem may be extended to
the inhomogeneous case presented in Section and obtained by shifting the ap-
proximating rational points p/q with the help of a chosen value a in R%. To be
specific, the approximation is realized by the points that belong to the collection

o +a
Qe = {]9(17 (p,q) € Z% x N}

Obviously, when « vanishes, we recover the set Q¢ of points with rational coordi-
nates. The collection Q% is endowed with the height function HS defined by

HS(a) = inf{qg € N|ga —a € 24} T1/4,

Again, when « is zero, we get the height function H; introduced in the above homo-
geneous case. We then have the following generalization of Theorem[7.2] The proof
is essentially due to Bugeaud [12] and relies on an inhomogeneous approximation
result derived in Section above, specifically, Proposition [1.11

THEOREM 7.3. For any point a in RY, the pair (Q%2, HY) is an optimal regular
system in RY.

PROOF. The proof is, to a certain extent, a generalization of that detailed in
the homogeneous case. In particular, the optimality of the system (Q4%, H$) may
straightforwardly be established by adapting the arguments developed in the proof
of Theorem so we shall only detail the proof of the regularity.

On a more technical note, it is convenient here again to endow R¢ with the
supremum norm. For any point y in R?, we slightly modify the definition of the
integer ¢(y) coming into play in the homogeneous case: this is now the minimal
value of the integer ¢ > 1 for which

1

d I S
ek lgy — ploo < |2-1/dp1/(d+1) |

Dirichlet’s theorem then shows that 2¢(y) is bounded above by h4/(@+1) " with the
proviso that the following condition holds:

h > 2 +D?/d (161)

We assume from now on that this condition is satisfied. We consider an open ball
B in R?, two parameters v and & in (0, 1), and then another ball B, exactly as in
the proof of Theorem We shall however slightly modify the definition of the
set B : this is now the set of points 5 in B’ such that 2q(y) < yA% (@1, Adapting
the arguments developed in the proof of Theorem [7.2] we observe that

3. 244

d d
L (B”) < W + (1657“) 5.
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Finally, we define Ap ; as any maximal collection of points belonging to the set
Q%> N B with height at most h and separated from each other by a distance at
least (2/7)'T1/4/h, thus in particular at least 1/h.

We now search for an appropriate lower bound on the cardinality of Ag . Note
that each point y in the set B’ \ B” satisfies

aly) > %hd/(dJrl) > 7L271/dh1/(d+1)Jd'

This suggests us to apply Proposition[L.11]to the integer [2~/4p1/(@+1) | the point
a, and each point y in the set B’ \ B”. We thereby infer the existence of two real
numbers 'y and H,, both larger than one and depending on v and d only, such
that the condition

h> H, (162)
implies that for each point y in the set B’ \ B”, there is a pair (p,q) in Z? x N with

I.
q(y) <q<2q(y and QY —p — oo < —77.
(y) (y) | | q(y)1/d

In that situation, we straightforwardly deduce that
_pta

§ r, <F* 9 1+1/d
7 |~ a7 b \y '

Given that the point y is in the ball B’, this means in particular that the point
(p+ @) /q belongs to the set Q4 N B if the following condition holds:

T, /o)
T (’Y) +dr <. (163)

v

On top of that, we observed previously that 2¢(y) is bounded above by R/ (d+1)
so we deduce that this point satisfies

HS <p+a> < g"tV < (2g(y)) TV < b,
q

Since the collection Ap j, is maximal, it contains a point (p’ + a)/¢’ located at a
distance smaller than (2/7)'*/4/h from (p + a)/q, so that
‘yp’+a _pta pta p+a

‘ 3 T, +1 (2>1+1/d
q 7 |s q /P h \v '

Hence, the set B’ \ B” is covered by the open balls centered at the points in Apg j,
with radius the right-hand side above. Adapting the arguments of the homogeneous
case, and making use of the fact that I, is larger than one, we obtain

3. 244 40,0\ 2\
d d d / " *
(25T) - 5T’hd/(d+1) - (16§T) Y S L (B \B ) S < h ) <’Y> #AB,ha

from which we deduce that

d d
#Ap.n J y\ 94+t d 3-12
|Bjthd ~ \ 4T, (5) L=87 = Goyariparam ) - (164)
To conclude, we choose v smaller than 8%, and § arbitrarily, and we require that h

is large enough to ensure that (161)), (162)) and (163) all hold, and that (164 holds

with a constant that depends on d in the right-hand side. O

oo

Combining Proposition[7.I]and Theorem[7.3] we directly get the following prop-
erty: for any nonempty bounded open subset U of R%, any monotonic enumeration
of the optimal regular system (Q%%, H$) in the set U is uniformly eutaxic. In
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particular, the arguably most natural enumeration of the rational numbers that are

strictly between zero and one, namely, the sequence
11213123415 123456
PR IAP S AR A AR AL AR Ak 28 2 R
is uniformly eutaxic in the open interval (0,1).

7.3.3. Metrical implications for general approximating functions. We
may use Theorem[7.3]in conjunction with Theorem [7.1]in order to describe the basic
size and large intersection properties of the set

Dg,w = {m S Rd

’ P+
T —

<(q) forim. (p,q) € Z x N} , (165)

oo

where 1) denotes a positive nonincreasing continuous function that is defined on the
interval [0,00). When (q) coincides with ¢~ for all ¢ > 1 and some 7 > 0, we
clearly recover the set Jg _ defined by 1' Moreover, in the homogeneous case,
1.e. when the point « is equal to the origin, we end up with the emblematic set Jg -
defined by and whose Hausdorff dimension is given by Theorem i.e. the
Jarnik-Besicovitch theorem. Among other results, we shall therefore extend this
theorem to the more general set Qg’w. This is the purpose of the next statement.

THEOREM 7.4. Let o be a point in R? and let ¢ denote a positive nonincreasing
continuous function defined on the interval [0, c0).

(1) The set QF , has full, or zero, Lebesgue measure in R? according to
whether the integral 144 diverges, or converges, respectively, where

oo
Toy = / q"(q)" dg.
0
(2) Let us assume that the integral 14, is convergent. Then, the parameter

. (d+1)logq
04,y = limsup —————~
YT e —logd(q)

is bounded above by d. Moreover, if the parameter 04, is positive, then
the set QF , satisfies

dimg Qf , =0ay  and  QF, € G (R?).

ProOF. To establish , we observe that the set Qg‘w coincides with the set

F, defined by when the function ¢ satisfies ¢(n) = ¥ (n% (@) for all n > 0,
and the underlying system (A, H) is equal to (Q%%, H$), which is optimal and
regular in the whole space R? by virtue of Theorem Applying Theorem |7.1/(1)
and making the obvious change of variable, we deduce that the set Dg‘,w has full, or
zero, Lebesgue measure in the whole space R? according to whether the following
integral diverges, or converges, respectively:

I, = /o n* () dn = (1 - Cll) /O q“(q)* dg = (1 + 2) Liy-

With a view to proving 7 we begin by using the monotonicity of the function
1 in order to remark that for all positive real numbers s and @,

o] Q d+1
[Tatvaranz [ dvaranzver ($)
0 Q/2

When s is equal to d, the integral in the left-hand side is finite because it coincides
with Iy .. This implies that the function ¢ converges to zero at infinity, and in fact
that the parameter 64, is bounded above by d.
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Let us suppose that s < 64,. One may find a real number € > 0 and a real
sequence (Q,)n>1 going to infinity such that ¥(Q,)**¢ is larger than 1/Q%*! for
all n > 1. The above inequalities then yield

foe) d+1
/ qdw(q)s dq > w(Qn)S (an) > 27(d+1)Q(d+1)5/(s+5).
=z ) 9 n
0

Letting n — oo, we deduce that the integral in the left-hand side diverges. This
means that the integral I, ,./a diverges, where 1%/ denotes the function v raised
to the power s/d. Conversely, if s > 64y, there is a real number ¢ > 0 such that
¥(Q)*~¢ is smaller than 1/Q9+! for all Q sufficiently large; this readily implies that
the integral I ,./a is convergent. The upshot is that

s < gdﬂl’ - Id7ws/d = 0
s > ed,w — Id,’(/)S/d < o0.

It remains to perform a simple change of function to exactly recover the setting of
Theorem |7.1{{3). To be specific, assuming that 64, > 0, we raise ¢ to the power
84.4/d, and we let 1, denote the resulting function. As in the proof of , the set
., then coincides with the set F,, obtained for ¢.(n) = Y. (n?(@+1) . Observing
that the integrals Iy ¢ and [,: share the same convergence properties, we get

t<1l = I, =
{ R (166)

t>1 — I¢1<oo.

We may now apply Theorem [7.1)(3), thereby deducing that for any ¢t > 1, the set
F,: has Hausdorff dimension d/t and belongs to the class G#/*(R?). Finally, when
t is equal to d/fg,y, the set Fi: is equal to the set ’33«;}’ and the result follows. [

Theorem is essentially due to Khintchine [38] in the homogeneous case,
and to Schmidt [52] in the general case. Note that the original proofs, however,
do not call upon the methods that we develop here. Moreover, Theorem [7.4)2)
follows from more general results from Jarnik [37] and Bugeaud [12] that address

the homogeneous, and the inhomogeneous case, respectively. These more general
results will be presented in Section below.

7.3.4. An inhomogeneous Jarnik-Besicovitch theorem. As an immedi-
ate consequence of Theorem [7.4] we deduce the basic size and large intersection
properties of the set Jg  defined by . This corresponds to the case where the
approximation function v is of the form ¢ — ¢~ on the interval [1,00), for some
positive real number 7. Observe that the integral 1, arising in the statement of
Theorem converges if and only if 7 > 1 + 1/d. Furthermore, the parameter
04, is clearly equal to (d 4+ 1)/7. Specializing Theorem to this situation, we
therefore end up with the next result.

COROLLARY 7.1. For any point o in R and any real parameter T, the set
Jas defined by has full, or zero, Lebesque measure in R? according to whether
T <14 1/d, or not, respectively. Moreover, in the latter situation, we have

d+1
dimy J, = % and  J3, € GUHV/T(RY),

Obviously, the set Jg.; is also a set with large intersection when 7 <1 +1 /d.
To be specific, Jg', belongs to the class G4(RY), just as any Lebesgue-full Gs-set.
Furthermore, in the homogeneous case where « vanishes, we obviously recover the
introductory set Jy . defined by . Recall that its Hausdorff dimension is equal
to (d+1)/7, due to the Jarnik-Besicovitch theorem, and that it even belongs to the
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large intersection class G(@+1)/ T(R?), see Theorem and Corollary We may
thus see Corollary as an extension of these results to the inhomogeneous case.

Remarkably, the large intersection property allows us to consider countably
many values of the parameter o and to study the size of the intersection of the
corresponding sets Jg'_, for possibly different values of the parameter 7. Indeed,
let (an)n>1 be a sequence of points in R4, and let (Tn)n>1 be a sequence of real
numbers. We begin by assuming that the supremum

Ty = SUP T,
n>1

is both finite and larger than 1+ 1/d. Thanks to Proposition [5.]] . ) and Corol-
lary we know that each Jdcf”' is a set with large intersection in R* with dimension
at least min{(d + 1)/7,,,d}, and thus belongs to the class G{¢TD/7(R9). In view
of Theorem the latter class is closed under countable intersections, thereby
containing the intersection of the sets J(’z;‘n. In particular, this intersection has
dimension at least (d + 1)/7.. The matching upper bound being a straightforward
consequence of Proposition , i.e. the monotonicity property of Hausdorff
dimension, we deduce that

dimgyg ﬂ i = d+1

When 7, is bounded above by 1+ 1/d, the above intersection has Hausdorff di-
mension equal to d. Indeed, Corollary ensures that all the sets JO‘” have full
Lebesgue measure in R%, and so has thelr intersection. In the remaining case where

T, is infinite, one may show that the intersection has Hausdorff dimension equal to
zero; this will follow from more precise results established in Section [10.2.2

7.3.5. Connection with fractional parts of linear sequences. Finally,
Theorem [7.4] also enables us to recover the fact that the fractional parts of almost
all linear sequences are eutaxic in the unit cube (0,1)¢, see Theorem Let us
consider a sequence (ry),>1 in the collection P4. The sequence (r,/n)p>1 is both
positive and nonincreasing, so we may find a positive nonincreasing continuous
function 1 defined on the interval [0, 00) that coincides with this sequence on the
positive integers. Hence, the integral I;, on which relies Theorem satisfies

e’} 0 o0
Id7¢:/ Zn—l d=27d27‘fb=
0 n=1 n=2

We deduce that the sets szw, defined as in 1' for all points y in R%, have full

Lebesgue measure in R?. In particular, if y belongs to the unit cube (0,1)?, then
L%-almost every point z in R satisfies

[z — (pn + Y)loo < n(n) =1y

with some integer point p,,, for infinitely many integers n > 1. For convenience, we
work here and below with the supremum norm; recall from Section that this
choice does not alter the notion of eutaxy. Letting h = (1/2,...,1/2), we have

1
[[nz] = pnloo <[0T — (Pn + Y)loo + {2} = hloo + [y — hloo <70 + ) + 1y — hleo

The right-hand side is smaller than one for n sufficiently large, because the sequence
(rn)n>1 converges to zero. The point p,, is then necessarily equal to |nz|. We
deduce that for all y € (0,1)¢ and for £%almost all x € R?, the inequality
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holds for infinitely many integers n > 1. This holds a fortiori for £%-almost every
point y. Tonelli’s theorem finally allows us to exchange the order of y and x, thus
concluding that for £%almost every x € R%, the sequence ({nz}),>1 is eutaxic in
the cube (0, 1)¢ with respect to the sequence (r,,),>1. This is exactly T heorem

7.4. Application to the approximation by algebraic numbers

We now turn our attention to the examples supplied by the real algebraic num-
bers and the real algebraic integers. Our treatment will be somewhat brief, as for
instance we shall not detail all the proofs; for further details, we refer to the seminal
paper by Baker and Schmidt [I], subsequent important works by Beresnevich [2]
and Bugeaud [9], and the references therein. We shall show that the algebraic num-
bers and integers lead to optimal regular systems, and we shall state the metrical
results obtained from subsequently applying Theorem [7.1

The collection of all real algebraic numbers is denoted by A. The naive height
of a number a in A, denoted by H(a), is the maximum of the absolute values of the
coefficients of its minimal defining polynomial over Z. Moreover, the set of all real
algebraic numbers with degree at most n is denoted by A,,. Baker and Schmidt [1]
proved that the set A,,, endowed with the height function

H(a)nJrl

(max{1,logH(a)})3"*’
forms a regular system. The trouble is that, due to the logarithmic term, this
height function does not lead to the best possible metrical statements. However,
Beresnevich proved that the height function

H(a)n+1
(1+ |a|)r(tD)?
where there is no logarithmic term, is actually convenient. We shall therefore
privilege the following statement when deriving metrical results underneath.

a —

Hi(a) = (167)

THEOREM 7.5 (Beresnevich). For any integer n > 1, the pair (A, H,) is an
optimal reqular system in R.

It is elementary to check that (A,, H,) is an optimal system. Establishing the
regularity is much more difficult and relies on a fine knowledge of the distribution of
real algebraic numbers; we refer to [2] for a detailed proof. Note that A; obviously
coincides with the set Q of rational numbers. Moreover, writing an element a in A
in the form p/q for two coprime integers p and ¢, the latter being positive, we have

H(@)?  max{lplg}®  (max{l]a}\? ,
(I +[a)? ~ (1+]a])? ‘( 1+ la] )q’

so that H;(a) is between ¢2/4 and ¢°. Hence, the height of a, viewed as an algebraic
number with degree one, is comparable with its height when regarded as a rational
point of the real line, see (|156)).

We shall now combine Theorem with Theorem in order to describe
the basic size and large intersection properties of sets that arise naturally when
studying the approximation of real numbers by real algebraic numbers. For any
positive nonincreasing continuous function ¢ defined on [0, 00), let us define

Any = {2 €R ||z —a| <¢(H(a)) forim.acA,}. (168)

H]_(CL) =

The elementary size and large intersection properties of the set 2, ,, are detailed
in the next statement, which should be thought of as an analog of Theorem to
the present situation.
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THEOREM 7.6. Let n be a positive integer and let i denote a positive nonin-
creasing continuous function defined on the interval [0, 00).
(1) The set Uy,  has full, or zero, Lebesgue measure in R according to whether
the integral 1,, 4 diverges, or converges, respectively, where

Ty = / B (h) dh.
0
(2) Let us assume that the integral 1, y is convergent. Then, the parameter

0 I (n+1)logh

w = limsup ———>—

Y hooo —logi(h)

is bounded above by one. Moreover, if the parameter 0, . is positive, then
the set Uy, 4 satisfies

dimy Ay = Oy and Ay € GO0 (R).

PROOF. In order to prove , we begin by observing that the set 2, ,, may be
approximated with the help of the sets F, defined by when the underlying
system (A, H) is equal to (A,, H,) and the function ¢ is chosen appropriately.
Indeed, for any integer k > 1, let ¢y denote the function defined for all n > 0 by
or(n) = Y(kn'/("FY). Note that, the larger k, the smaller F,, . We then have

n \LFL,O)C gmn,ngtpr (169)
k=1
Indeed, let = denote a point in the left-hand side and let k£ be chosen as any integer
larger than or equal to (14 |z|+(0))". Since the point = belongs to the set F,,,,
there are infinitely many points a in A,, such that

& — a| < pp(Hu(a)) = ¢(k Ha(a)/+)

However, the function ¢ is nonincreasing and the integer £ is bounded below by
(14 |z| +(0))™, and thus by (1 + |a|)”. Hence, we have

& —al <W((1+|a])" Ha(a)/ V) = (H(a))

for infinitely many points @ in A,, so that x is in 2, ;. Furthermore, in that
situation, since the inequality |« — a| < ¥(H(a)) holds for infinitely many points a
in A,,, we deduce that

o~ al < $H(a) = Y((1+ la])" Hy(a)/ ") < (H, () HY) = 1 (Ha(a)),

again because the function v is nonincreasing, so that the point z belongs to the
set Fy,, in the right-hand side of (169)).

We may now finish the proof of ‘ Thanks to (L69), it suffices to prove that
the set F,, has Lebesgue measure zero in R when the integral I, ,, converges, and
that all the sets Fi,, , for £ > 1, have full Lebesgue measure in R when the integral
diverges. However, a simple change of variable implies that

°° n+1 [ n+1
T = [ etman =" [T e =, an)

so we conclude with the help of Theorem [7.1{{1)) and the fact that (A,, H,) is an
optimal regular system in R by virtue of Theorem
Let us now turn our attention to the proof of . We suppose that the integral

I, is convergent. Then, adapting the proof of Theorem [7.4§|2), we easily establish
that 6,, ,, is bounded above by one, and that

s < an — Inﬂl}S =0
§>0ny = Iy <o0.
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As a consequence, if 8, 4 is positive, then holds here as well for ¢, = cpZ"‘“’,
where k denotes an arbitrary positive integer. Applying Theorem , we infer
that for any ¢ > 1, the set F,; has Hausdorff dimension 1/t and belongs to the
class GY/¢(R). Choosing t = 1/6,, ,, we deduce that all the sets F,, have Hausdorff
dimension 6, , and belongs to the class G+ (R). We conclude with the help
of . Indeed, on the one hand, the set 2, y is contained in the set F, , thereby
having Hausdorff dimension at most 6, ,. On the other hand, the set 2, ,; is a
Gs-set that contains the intersection over all k£ € N of the sets F,, , which all belong
to the class G+ (R). Hence, Theorem and Proposition imply that the
set 2, , also belongs to GO (R). In particular, its dimension is at least Ony. O

Theorem is due to Beresnevich [2] and the dimensional result in Theo-
rem was obtained by Baker and Schmidt [I]. We shall give a more precise de-
scription of the size and large intersection properties of the set 2, ,, in Section m
below. We shall also discuss therein the connection with Koksma’s classification of
real transcendental numbers.

Let us mention that Bugeaud [9] obtained an analog of Theorem for the
set of real algebraic integers, that is, the real algebraic numbers whose minimal
defining polynomial over Z is monic. In what follows, A’ denotes the subset of A
formed by the real algebraic integers, and A/, denotes the intersection A’ NA,,, that
is, the set of all real algebraic integers with degree at most n.

THEOREM 7.7 (Bugeaud). For any integer n > 2, the pair (A, H,_1) is an
optimal reqular system in R.

Combining Theorem [7.7] with the above methods, we may describe the elemen-
tary size and large intersection properties of the set Ql;mp defined as that obtained
when replacing A,, by A/ in (168), namely,

o ={r€R ||z —al <¢(H(a)) forim.acAl}.
To be precise, adapting the proof of Theorem [7.6) one easily checks that for any
integer n > 2 and any positive nonincreasing continuous function v defined on the

interval [0, c0), the set Ql;m/j has full, or zero, Lebesgue measure in R according to
whether the integral

In,w:/ h" () dh
0

diverges, or converges, respectively. Moreover, if the latter integral is convergent,
then the set Ql;w} has Hausdorff dimension equal to

0 I nlogh

—1y = limsup ———

T T L —logo(h)’

provided that this parameter is positive, and moreover it belongs to the large in-
tersection class G%»—1.+(R).



CHAPTER 8

Transference principles

8.1. Mass transference principle

We begin by recalling the main results of Chapter [d and shedding new light
thereon. Let Z be a countably infinite index set, let (z;,7;);cz be an approximation
system in the sense of Deﬁnition and let F}; be the sets defined by , namely,

Ft:{xERde—mi|<rf forim.i€T}.

Moreover, let U denote a nonempty open subset of R%. According to Definition
the family is a homogeneous ubiquitous system in U if the set Fj has full Lebesgue
measure in U. In that situation, Theorem [{.I]shows that for any real number ¢ > 1,

d

In fact, the set F; N U has positive Hausdorff measure with respect to the gauge
function r — r%*|logr|. Thus, the mere fact that the set F; has full Lebesgue
measure in U yields an a priori lower bound on the Hausdorff dimension of the sets
F;, which are smaller than F; when ¢ is larger than one.

We adopt a new perspective on this result by considering from now on that the
set defined by

(i, ri)iez) = {z € R? | |lo — 2| <r; forim.ie€Z} (171)

is that on which we seek an estimate on the size. In the above notations, this
set coincides with the set Fy. However, for any real number ¢ > 1, this set also
coincides with the set F; associated with the underlying family (x;, ril / t)iez, which
is an approximation system as well. In that new situation, Theorem ensures
that if the family (z;, ril/t)iez is a homogeneous ubiquitous system in U, that is, if
1/t

for L%a.e.2 €U Fim.ie€Z |z — x| <7, (172)

then the set §((x;,7;)icz) has positive Hausdorff measure in the open set U with
respect to the gauge function r — r%/ |logr|, so in particular

. d
dimp (F((z4,74)iez) NU) > T
A further way to recast this result is to let g denote the gauge function r — r/?,

to rewrite the assumption (172)) in the form

LUUN F((xi, 9(ri))iez)) = 0, (173)

where the involved set is defined as in , and to reinterpret the conclusion as the
fact that the set §((x;,7;)iez) has positive Hausdorff measure in U with respect to
the gauge function r — ¢(r)|logr|. Note that the gauge function g is d-normalized
in the sense of Definition because g coincides on the interval (0,00) with its
d-normalization g4, defined by . Thus, the condition still holds when ¢
is replaced by g4. In that situation, the approximation system (z;,7;);cz Will be
called g-ubiquitous, in accordance with the following definition.

161
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DEFINITION 8.1. Let Z be a countably infinite index set, let (z;,7;);cz be an
approximation system in R? x (0,00), let g be a gauge function and let U be a
nonempty open subset of R?. We say that (x;,7;)icz is a homogeneous g-ubiquitous
system in U if the following condition holds:

LYUNF (@i, 9alri) Dier)) = 0.

The latter condition means that for Lebesgue-almost every point z in the open
set U, the inequality |z — z;] < ga(r;)'/¢ holds for infinitely many indices i in Z.
Hence, the previous definition may be seen as an extension of that of a homogeneous
ubiquitous system. In fact, according to Definitions and respectively, an
approximation system is a homogeneous ubiquitous system in some nonempty open
set U if and only if it is homogeneously ubiquitous in U with respect to any gauge
function whose d-normalization is r — 7¢.

Remarkably, Beresnevich and Velani [5] managed to extend the above approach
to any gauge function g, and also improved the above conclusion. Specifically, they

established the following mass transference principle for the sets defined by (171)).

THEOREM 8.1 (Beresnevich and Velani). LetZ be a countably infinite index set,
let (z5,7:)icz be an approzimation system in R? x (0,00), let g be a gauge function
and let U be a nonempty open subset of R%. If (x;,7;)icz is a homogeneous g-
ubiquitous system in U, then for every nonempty open subset V of U,

Hg(%((l'z, Ti)iEI) n V) == Hg(V)

A FEW WORDS ON THE PROOF. Some of the ideas supporting Theorem [8:1]are
similar to those developed in the proof of Theorem[d.I]above. However, Theorem [4.1]
being essentially concerned with Hausdorff dimension only, its proof does not require
as high much accuracy as in the proof of Theorem [8:I} where Hausdorff measures
associated with arbitrary gauge functions are considered. The proof of Theorem
is therefore somewhat technically involved. Consequently, we omit it from these
notes, and we refer the reader to Beresnevich and Velani’s paper [5].

We just mention that Theorem is a straightforward consequence of The-
orem 2 in [5], except that Beresnevich and Velani only considered d-normalized
functions. However, this assumption may easily be removed with the help of
Propositions and Indeed, let us suppose that Theorem holds for
d-normalized gauge functions. Then, let g be an arbitrary gauge function such
that the approximation system (z;,7;);ez is homogeneously g-ubiquitous in U. Tt
is clear from Definition [8:I] that the system is also g4-ubiquitous, where g4 denotes
the d-normalization of g. Applying Theorem [81]to the d-normalized gauge function
ga, we infer that for every nonempty open subset V' of U,

Hgd (S((Il, Ti)iEI) n V) = Hgd (V)
Thanks to Proposition [2.10} we may then compare the Hausdorff measures H9% and
‘HY, thereby deducing that

HI(V

HO(§ (w0, i)ier) N V) 2 0,
where k is given by Proposition [2.10] There are now essentially three different
possible situations, depending on the value of the parameter ¢, defined by .
The case where £, vanishes is trivial: Proposition|2.15(|3) ensures that the Haudorff
measure HY vanishes, and the conclusion of Theorem clearly holds. Now, if £,
is infinite, then Proposition |2.15|(1]) ensures that H9(V') is infinite, and so that

HI(F(zi,73)icz) NV) =HI(V) = o0.

In the remaining case where ¢4 is both positive and finite, we have gq4(r) < 2€grd for
all r > 0, so that the approximation system (z;,7;);ez is homogeneously ubiquitous
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in U with respect to the gauge function r 2€grd. By virtue of Proposition
we may remove the constant 2¢, in that property, specifically, (z;,7;)iez is ho-
mogeneously ubiquitous in U with respect to » + r?. This means that the set
§((x;,7:)icz) has full Lebesgue measure in U. We conclude with the help of Propo-
sition [2.15{[2), which ensures that 9 is a multiple of the Lebesgue measure. [

Theorem is remarkable because of its universality. It can in fact be applied
to many approximation systems arising in metric number theory and probability;
we shall give several examples in Chapters [10|and However, our approach relies
on the notion of describability introduced in Chapter [0} and at heart on the large
intersection transference principle discussed in Section [8.2] Hence, the mass trans-
ference will never be used per se in what follows. The general philosophy behind
this result is that it enables one to automatically convert a property concerning
the Lebesgue measure of a limsup of balls to a property concerning the Hausdorff
measure of a similar set where the balls are dilated. This leads in particular to a
full description of the size properties of limsup of balls for which the description of
the Lebesgue measure is known.

8.2. Large intersection transference principle

The purpose of this section is to give an analog of the mass transference princi-
ple for large intersection properties. In the spirit of Theorem this result leads
to a very precise description of the large intersection properties of a limsup of balls
in terms of arbitrary gauge functions. Accordingly, we first need to introduce large
intersection classes that are associated with arbitrary gauge functions, thereby gen-
eralizing the original classes introduced by Falconer and presented in Section [5.1
We adopt the same viewpoint as in the definition of the localized classes G*(U),
namely, Definition In particular, the generalized classes are defined with the
help of outer net measures; these are built in terms of general gauge functions and
coverings by dyadic cubes.

8.2.1. Net measures revisited. We recall from Section that a dyadic
cube is either the empty set or a set of the form A = 277 (k+[0,1)9), with j € Z and
k € Z%, and that the collection of all dyadic cubes is denoted by A. We restrict our-
selves to gauge functions that are d-normalized in the sense of Definition[2:9] Under
this assumption, the resulting outer net measures satisfy additional properties that
are in fact necessary to an appropriate definition of the generalized classes.

If g denotes a d-normalized gauge function, the set of all real numbers € > 0
such that g is nondecreasing on [0,¢] and r + g(r)/r¢ is nonincreasing on (0, €]
is nonempty. We may thus define ¢, as the supremum of this set, and next A, as
the collection of all dyadic cubes with diameter less than €,. We then consider the
premeasure g o |- |5, that sends each set A in A, to g(|\[), and Theorem [2.2| allows
us to define similarly to the outer measure

M, =(gol-1a,)"
resulting from coverings by dyadic cubes with diameter less than ¢.

The outer measure MY_ provides a lower bound on the corresponding net mea-
sure MY, which is defined by and is comparable with the Hausdorff measure
HI, see Proposition As a consequence, there is a real number x > 1 indepen-
dent on g such that for any set E C R?,

kHI(E) > M (E). (174)

Recall that the outer net measures M?_, defined by for s € (0,d], played a
crucial role in the characterization of Falconer’s classes and the definition of their lo-
calized counterparts G*(U), see Theorem and Deﬁnition respectively. These
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outer measures are actually an instance of the above construction. Specifically, for
any s € (0,d], the gauge function r — r* is clearly d-normalized and the parameter
Emps 1s infinite. Hence, the collection A, .,s coincides with the whole A, from
which it follows that M7"" is merely equal to M2 . The outer measures MY,
thus extend naturally those used in Chapter [5]; this hints at why they will play a
key role in the definition of the generalized large intersection classes.

Finally, it is useful to point out that the value in each dyadic cube of the
M _-mass of Lebesgue-full sets has a very simple expression.

LEMMA 8.1. For any d-normalized gauge function g, any dyadic cube X in Ag,
and any subset F' of R?, the following implication holds:

LYIA\F)=0 = MI(FNA) = g(A]).

PROOF. The proof borrows some ideas from that of Lemma [5.1] First, the
intersection set F' N A is obviously covered by the sole cube A, so that

MIL(FNA) < g(AD-

In order to prove the reverse inequality, let us consider a covering (A,),>1 of the
intersection set F'N A by dyadic cubes with diameter less than 4. If A is contained
in some cube A,,, the fact that ¢ is nondecreasing on [0, &,) implies that

oo

g(A) < 9([Ano) <D g(Aal).

n=1
Otherwise, we observe that the cubes A\, C A suffice to cover the set F N A. Along
with the fact that the mapping r +— g(r)/r? is nonincreasing on (0,¢,), this yields

Sathz Y KD ez GBS e - S8 S 2,
n=1 n

n>1 n>1 n>1
AnCA An CA AnCA

> g|(A|Ad|) RILYE M) = g|(A||Ad) WL = 9N

Here, x' stands for the diameter of the unit cube of R?, which depends on the choice
of the norm. We conclude by taking the infimum over all coverings (A\p)n>1. O

The previous result may be used to express the MY -mass of dyadic cubes in
terms of their diameters. As a matter of fact, using the notations of Lemma 8.1} if
the set F' is chosen to be the cube A itself, or its interior, we get

ME(A) = M (int A) = g([A]), (175)

a formula which extends Lemma[5.1] to any d-normalized gauge function. Likewise,
all the ancillary lemmas from Section may be extended to such gauge functions;
we refer to [LI8] for precise statements, see in particular Lemmas 10 and 12 therein.

8.2.2. Generalized large intersection classes. We are now in position to
define the large intersection classes that are associated with general gauge functions.
We defined those classes in [18], and we refer to that paper for all the proofs and
details that are missing in the presentation below. As mentioned above, there is a
lineage with the definition of the localized classes G*(U), see Definition

We write h < g to indicate that two d-normalized gauge functions g and h are
such that the quotient h/g monotonically tends to infinity at zero, that is,

o, h(r)
h<g = lrlfong(r) =
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This means essentially that h increases faster than g near the origin. Note that g
may vanish in a neighborhood of zero; in that situation, we adopt the convention
that h < g for any choice of h, even if h also vanishes near zero.

DEFINITION 8.2. For any gauge function g and any nonempty open subset U
of R?, the class G9(U) of sets with large intersection in U with respect to g is the
collection of all Gs-subsets F of R¢ such that

ME(FAV) =MD (V) (176)

for any d-normalized gauge function h satisfying h < g4, where gy denotes the
d-normalization of g defined by , and for any open subset V of U.

Note that the class GI9(U) associated with a given gauge function ¢ coincides
with that associated with its d-normalization, namely, the class G%¢(U). One may
therefore restrict oneself to d-normalized gauge functions when studying large inter-
section properties. Moreover, if two gauge functions are such that their respective
d-normalizations match near the origin, the corresponding classes coincide.

With a view to detailing the connection with the localized classes G*(U), we
associate with any gauge function g the following dimensional parameter sg.

DEFINITION 8.3. Let g be a gauge function with d-normalization denoted by
ga- The dimension of the gauge function g is the parameter defined by

sq =sup{s € (0,d] | (r — r°) < ga},
with the convention that the supremum is equal to zero if the inner set is empty.

Obviously, we have s, = min{s, d} if the gauge function g is of the form r — r*,
with s > 0. The relationship between the generalized classes G9(U) and the original
classes G*(U) is now detailed in the next statement.

PRroprOSITION 8.1. For any gauge function g with dimension satisfying sq > 0
and for any nonempty open subset U of R%, the following inclusion holds:

gr(U) € G*(U).
In particular, for any set F in GI(U) and for any nonempty open set V. C U,
dimp(FNV) > s, and dimp(FNV) =d.
Moreover, the left-hand inequality above still holds if s, vanishes.

PROOF. Let us assume that s, is positive and let us consider a set I' in the
class G9(U). First, F is a Gs-subset of R%. Then, for any s € (0,s,), we have
(r — r°) < g4, and Definition implies that

M (FAV) = M5 (V)

for any open subset V of U. Recalling that the outer measure M7>>" is identical
to the outer measure M?_ defined by , we deduce from Definition that the
set F' belongs to the original localized class G% (U).

Moreover, applying Theorem and Proposition we deduce that the set
F' has Hausdorff dimension at least s, and packing dimension equal to d in every
nonempty open subset V' of U. Finally, in view of Definition [8:2] any set in the
class G9(U) has to be dense in U. Therefore, the Hausdorff dimension of F NV is
necessarily bounded below by zero, that is, by s, when this value vanishes. O

Choosing U equal to the whole space R, we clearly deduce from Proposition
a statement bearing on Falconer’s original classes G*(R). In addition, as easily seen
for instance musing on the examples discussed in Chapters[10|and the inclusion
appearing in the statement of Proposition [8.1]is strict.
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Let us now briefly discuss the case in which the gauge function g has a d-
normalization g4 that vanishes in a neighborhood of zero. The d-normalized gauge
function that is constant equal to zero is denoted by 0; let us mention in passing
that its dimension clearly satisfies sg = d.

PROPOSITION 8.2. For any nonempty open set U C R?, the large intersection
class GO(U) is formed by the Gs-subsets of R? with full Lebesque measure in U.

PROOF. Let us consider a Gs-subset F' of R? with full Lebesgue measure in U.
Lemma combined with , ensures that for any d-normalized gauge function
g and any dyadic cube X in A, that is contained in U,

MEFNA) =g(]A) = ML ).
We finally conclude that F belongs to the class GO(U) thanks to the extension of
Lemma to arbitrary d-normalized gauge functions, see [18, Lemma 10].

Conversely, let us consider a set F' in the class GO(U). First, F is necessarily
a Gg-set. Moreover, we know that holds in particular for the d-normalized
gauge function 7 +— ¢ and for all open balls B(z,r) contained in U. Using
and , and letting x” be the constant appearing in Proposition we get

ki LYF N B(z, 7)) = kHYF NB(z,7)) > ML (FNB(x,7)) = ML (B(z,7)).
We consider a nonempty dyadic cube A with minimal generation that is contained
in B(z,r), and we know from the proof of Proposition [7.2] that |A| > cr for some

¢ > 0 depending on the choice of the norm only. Lemma then yields

d

ML Bz, 1)) > ML) = [A? > drd = mﬁd(B(x,r)),

where the last equality follows from fact that the Lebesgue measure is translation
invariant and homogeneous with degree d with respect to dilations. Hence,
LYFNB(x,7)) < c?
LAB(z,7))  — w&"LHB(0,1))
for any open ball B(z,r) contained in U. It follows from the Lebesgue density
theorem that F' has full Lebesgue measure in U, see [46], Corollary 2.14]. O

>0

The various remarkable properties of the large intersection classes G9(U) nat-
urally extend those satisfied by Falconer’s classes, see Section [5.1] We begin by
stating the properties that follow immediately from the definition. The next result
may be seen as a partial analog of Proposition [5.1]; in its statement, & stands for
the collection of all gauge functions.

PROPOSITION 8.3. Let g be a gauge function with d-normalization denoted by
ga, and let U be a nonempty open subset of R?.
(1) Any Gs-subset of R? that contains a set in GI(U) also belongs to GI(U).
(2) The following equalities hold:

gU)= () ¢°(V) and G'U)= () G"(U).
0y ha<oa

A FEW WORDS ON THE PROOF. All the properties are essentially immediate
from the definition of the generalized large intersection classes, and the proof is
therefore omitted here. We just mention as a hint to the interested reader that if
g and h denote two d-normalized gauge functions such that h < g, then \/gh is a
d-normalized gauge function that satisfies h < v/gh < g. O

The next result extends Theorem to the large intersection classes GI9(U),
thereby showing that they enjoy the same stability properties as Falconer’s classes.
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THEOREM 8.2. Let g be a gauge function with d-normalization denoted by gq
and with dimension denoted by s,, and let U be a nonempty open subset of R%. The
following properties hold:

(1) the class G9(U) is closed under countable intersections;
(2) for any bi-Lipschitz transformation f : U — R? and any set F C R,

Fegi(f(u) = [H(F)eg'U);
(3) for any set F' in the class G9(U) and for every gauge function h,
ha < ga = H'(FNU)=H"(U).

A FEW WORDS ON THE PROOF. The result corresponds to Theorem 1 in [18],
so we refer to that paper for the whole proof. Let us just mention that the statement
in [18] only addresses the d-normalized gauge functions g for which the parameter
¢4 defined by is positive. In that situation, note that the Hausdorff h-measure
of the set FF NU that appears in is actually infinite, as a consequence of Propo-
sitions and Furthermore, the normalization assumption made in [18]
may easily be dropped with the help of Proposition [2.10} In addition, Theorem
clearly holds for ¢, = 0. Indeed, in that situation, the gauge function gy vanishes
near zero and Proposition ensures that the class G9(U) is formed by the Gs-sets
with full Lebesgue measure in U. All the properties are thus satisfied, even
which may be obtained with the help of Propositions 2.12] and O

A plain consequence of Theorem [8.2]is that if (F},),>1 is a sequence of sets in
GI(U) and if h is a gauge function, then

ha<gs =  H (ﬂ F.N U) = HMU). (177)
n=1

Thanks to Proposition the latter equality may be rewritten in various al-
ternate forms depending on the value of the parameter ¢, defined as in . In
addition, implies that the intersection of all the sets F;, has Hausdorff dimen-
sion bounded below by s4, and this bound is clearly attained if one of the sets has
Hausdorff dimension at most s,.

8.2.3. The transference principle. Now that the classes associated with
arbitrary gauge functions have been defined, we may state the large intersection
analog of Theorem[8-1] specifically, the mass transference principle dealt with in Sec-
tion While the latter result discusses the size properties of the set §((z;,r;)icz)
defined by , the next statement concerns its large intersection properties.

THEOREM 8.3. Let T be a countably infinite set, let (x;,7;);cz be an approxi-
mation system in R% x (0,00), let g be a gauge function and let U be a nonempty
open subset of R:. If (x,73)icz is a homogeneous g-ubiquitous system in U, then

S((xi,mi)iez) € GI(U).

A FEW WORDS ON THE PROOF. The result is a straightforward consequence of
Theorem 2 in [18]; we refer to that paper for a comprehensive proof. Similarly to
the mass transference principle, some ideas supporting Theorem are analogous
to those developed in the proof of Theorem above, and also that of Theorem
which is more specifically concerned with large intersection properties. O

Just as the mass transference principle extends Theorem [£.1] to arbitrary Haus-
dorff measures, the above large intersection transference principle may be seen as an
extension of Theorem As a matter of fact, let (z;,7;);ez denote a homogeneous
ubiquitous system in U in the sense of Definition Thus, for any real number
t > 1, the family (z;,7!);cz is homogeneously ubiquitous in U with respect to the
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gauge function r — r%*. Theorem then ensures that the set F; defined by
is a set with large intersection in U with respect to the same gauge function. This
gauge function clearly has dimension equal to d/t, so we deduce with the help of
Corollary u that the set F, belongs to Falconer’s class G t(U), which is exactly
the conclusion of Theorem [5.41

Furthermore, the large intersection transference principle nicely complements
the mass transference principle: under similar hypotheses, it shows that the size
properties of sets of the form are in fact stable under countable intersections
and bi-Lipschitz mappings. Also, due to Proposition and Theorem , it
implies that for any gauge function h and any nonempty open set V C U,

ha < g4 = H"(F((2i,73)iez) N V) = 00 = H"(V).

Note that the last equality follows from Proposition [2.15((1)), because h(r)/r? nec-
essarily tends to infinity as r goes to zero. Unfortunately, we may not apply this
with h being equal to g, thereby failing narrowly to recover the conclusion of the
mass transference principle, specifically,

HQ(S((@, Ti)ieI) n V) = Hg(V)
However, we may often in practice circumvent this problem and, through the no-
tion of describability introduced in Chapter [0] the large intersection transference
principle will be sufficient to describe both size and large intersection properties of

limsup of balls for which the description of the Lebesgue measure is known. We
shall apply this principle to the many examples studied in Chapters [I0] and [T1]



CHAPTER 9

Describable sets

Our purpose is to combine the mass and the large intersection principles dis-
cussed in Sections and respectively, and place them in a wider setting that
we now define. This framework aims at describing in a complete and precise manner
the size and large intersection properties of various subsets of R¢ that are derived
from eutaxic sequences and optimal regular systems, thereby being relevant to the
applications already discussed in Chapters [6] and

Note that the size and large intersection properties of Lebesgue-full sets are
easily described as follows. Let E be a Borel subset of R? and let U be a nonempty
open subset of R%. If E has full Lebesgue measure in U, then Proposition m
ensures that for any gauge function g and any nonempty open set V C U,

HI(ENV)=HI(V).
Furthermore, under the stronger assumption that F admits a Gs-subset with full
Lebesgue measure in U, Propositions and imply that for any gauge func-
tion g and any nonempty open set V C U,
JF e gI(V) FCE.

The above description of the size and large intersection properties of Lebesgue-full
sets being both precise and complete, we shall exclude such sets from our analysis.

Our framework will enable us to achieve a similar description for some Lebesgue-

null sets. The collection of all Borel subsets of R? that are Lebesgue-null in the
open set U is denoted by Z(U), specifically,

ZWU)={EcB|LYENU) =0},
where B is the Borel o-field, in accordance with the notation initiated in Section
The starting point is the notion of majorizing and minorizing collections of gauge
functions that we now introduce.

9.1. Majorizing and minorizing gauge functions

Let E be a set in Z(U). On the one hand, Proposition ensures that for
any gauge function g,

ly < o0 = HI(ENU) =0,

where ¢, is defined by . Studying what happens for the other gauge functions,
namely, those belonging to the set

8% = {ge 6|1, = o)
gives rise to the following notion of majorizing gauge function.

DEFINITION 9.1. Let U be a nonempty open subset of R and let E be a set
in Z(U). We say that a gauge function g € & is a majorizing for E in U if

HI(ENU)=0.
Such gauge functions form the majorizing collection of E in U, denoted by M(E, U).

169
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It is plain from Proposition that a gauge function g € &*° is majorizing
for E/ in U if and only if its d-normalization g, satisfies the same property. Also,
as a simple example, let us point out that

ENVU countable = M(E,U) = &, (178)

because a countable set has Hausdorff g-measure zero for any gauge function g.
On the other hand, Propositionshows that a Gs-subset of R? with Lebesgue
measure zero in U cannot belong to the large intersection class GO(U), and therefore
cannot belong to any of the classes G9(U) for which £, = 0. Similarly to the previous
definition, looking at the other gauge functions, specifically, those in the set

6" ={ge®|{, €(0,00]}
results in the following notion of minorizing gauge function.

DEFINITION 9.2. Let U be a nonempty open subset of R and let E be a set
in Z(U). We say that a gauge function g € &* is a minorizing for F in U if

IF € g9(U) FCE.
Such gauge functions form the minorizing collection of E in U, denoted by m(E, U).

Similarly to what happens for majorizing gauge functions, a gauge function
g € 6* is minorizing for F in U if and only if g4 is; this follows from Defini-
tion Moreover, if E is a G-set for which ¢ is minorizing in U, it follows from
Proposition that E belongs to the class G9(U). Finally, we now have

ENU countable = m(E,U) =0, (179)

because the existence of a minorizing gauge function requires that E is dense in U.

We now detail the basic properties of the majorizing and minorizing collections.
As shown by the next result, their structure is reminiscent of that of two intervals
of the real line whose intersection is at most a singleton.

PROPOSITION 9.1. Consider a nonempty open set U C RY, a set E in Z(U),
and two gauge functions g and h with d-normalizations such that gq < hgq. Then,

g€ M(E,U) — heM(E,U)\ m(E,U)
{ hem(E,U) s gem(E,U)\ M(E,U).

PROOF. Let us suppose that g is majorizing for £ in U. By virtue of Proposi-
tion[2.10] the same property holds for its d-normalization g4. Proposition [2.12] then
ensures that hg is also majorizing. We conclude by Proposition [2.10] again that h
is majorizing as well. Furthermore, if h were minorizing, hgq would be minorizing
too, and Theorem [8.2{(3)) would finally contradict the fact that g4 is majorizing.

Assume now that h is minorizing for £ in U. Proposition shows that g
is also minorizing. Finally, Theorem [8.2(|3)), combined with Proposition and
the fact that ¢, is infinite, implies that g cannot be majorizing. O

The next result enlightens the monotonicity properties of 9M(E, U) and m(E,U)
when regarded as two functions defined on the set of pairs (E,U) such that U is a
nonempty open subset of R? and F is a set in Z(U).

ProproOSITION 9.2. The majorizing and minorizing collections satisfy the fol-
lowing monotonicity properties:
(1) the mappings E — M(E,U) and U — M(E,U) are both nonincreasing;
(2) the mappings E — m(E,U) and U — m(E,U) are nondecreasing and
nonincreasing, respectively.
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PROOF. The properties on the majorizing collection hold because Hausdorff
measures are outer measure. Moreover, F — m(FE,U) is nondecreasing because of
Definition and U — m(F,U) is nonincreasing due to Proposition [8.3)(2). O

Let us now turn our attention to the behavior under countable unions and
intersections of the majorizing and minorizing collections.

PROPOSITION 9.3. Let us consider a nonempty open subset U of R4, Then, for
any sequence (Ey)n>1 in the collection Z(U),

sm([j En,U> = ﬁ M(E,,U) and m(ﬁ En,U> = ﬁ m(E,,U).

n=1 n=1 n=1

PROOF. The property satisfied by the majorizing collection results from the
fact that Hausdorff measures are outer measure. The property concerning the
minorizing collection is a consequence of the stability under countable intersections
of the generalized large intersection classes, see Theorem [8.2f(1)). O

9.2. Openness

With a view to pursuing our investigation of the majorizing and minorizing
collections, we need to introduce a definition concerning subsets of gauge functions;
the chosen terminology should not refer to any topological property but only comes
from the aforementioned analogy with intervals of the real line.

We begin by remarking that for any d-normalized gauge function g € &*, we
may build a d-normalized gauge function g € &* satisfying g < g by simply letting

g(r) = Vg(r).
Studying whether this property holds for given subsets of &* yields the notion of
left-openness. Here and below, & is the collection of d-normalized gauge functions.

DEFINITION 9.3. Let $ denote a subset of &*. We say that the collection §) is
left-open if the following property holds:

Vge®B;NH Jgedynd g=<g.

The whole collection &* is thus left-open. With a view to defining the symmet-
rical notion of right-openness, we begin by observing that if a d-normalized gauge
function g € &* satisfies ¢, < 0o, then no d-normalized gauge function g € * can
satisfy g < ¢g. To cope with this issue, we just exclude these gauge functions g, thus
restricting ourselves to the set . Indeed, if ¢ is a d-normalized gauge function
in >, we get a d-normalized gauge function g € > with g < g by defining

g(r) =r"2/g(r).
Proceeding as above and considering a similar property for various subsets of &>,
we end up with the notion of right-openness.

DEFINITION 9.4. Let $) denote a subset of °°. We say that the collection
is right-open if the following property holds:

Vge&sNH dgedsnH g=g.

Clearly, the above constructions ensure that the collection °° is both left-
open and right-open. The connexion with majorizing and minorizing collections
comes from the following observation that may easily be established by combining
Proposition[9.1]with the previous arguments: a majorizing collection is always right-
open and a minorizing collection is always left-open. The next result shows that
further properties arise when these collections are both left-open and right-open.
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PROPOSITION 9.4. Let us consider a nonempty open subset U of R* and a set
E belonging to the collection Z(U).
(1) If the collection M(E,U) is left-open, then for any gauge function g in
M(E,U) and for any nonempty open subset V of U,

VE € GI(V) F¢ZE,
and as a consequence,
M(E,U) C &* \m(E,U).

(2) If the collection m(E,U) N &> is right-open, then for any gauge function
g in m(E,U)N &> and for any nonempty open subset V of U,

HI(ENV) = oo,
and as a consequence,
m(E,U) C &* \ M(E,U).

PRrROOF. To establish the first property, let us consider a majorizing gauge
function g. Since g4 is also majorizing, the left-openness ensures that there is a
majorizing gauge function g € &, such that g < g4. Now, given a nonempty open
set V C U, let us assume that F contains a set F' € G9(V'). By Theorem and
Proposition [2.15] the set F' has infinite Hausdorff g-measure in V', which contradicts
the fact that g is majorizing. Hence, F cannot contain any set in G9(V'). Choosing
V equal to U, we deduce that g is not minorizing.

Similar arguments lead to the second property. Specifically, if g denotes a gauge
function in m(E, U)N&>°, its d-normalization g4 belongs to the same collection and
the right-openness yields a minorizing gauge function g € 4 N &> with g4 < g.
The class GZ(U) thus contains a set F' C E. Now, let V' be a nonempty open
subset of U. Proposition [8.3|(2)) shows that F is in the class GZ(V'). Theorem [8.2)(3)
and Proposition then imply that F' has infinite Hausdorff g4-measure in V.
Finally, the set E has infinite Hausdorff g-measure in V, owing to Proposition [2.10]
Choosing V = U, we conclude that g is not majorizing. O

As a consequence of Proposition if either of the collections M(F,U) and
m(E,U) N 6> is simultaneously left-open and right-open, then
ME,U)Nm(E,U) =0,

meaning that no gauge function can be majorizing and minorizing at the same time.
Under the stronger assumption that both collections are left-open and right-open
simultaneously, Propositions and directly yield the next statement.

COROLLARY 9.1. Consider a nonempty open set U C R? and a set E € Z(U),
and assume that M(E,U) and m(E,U) N &> are both left-open and right-open.
Then, for any gauge function g € &* and any nonempty open set V C U,

gEME,U)U(B*\ &) = HI(ENV)=0
gem(E,U)N &> — HIENV) =00
and
gEME,U) = VFegy(V) FCE
gem(E,U) = JFegi(V) FCE.

We shall thus be able to describe precisely the size and large intersection prop-
erties of a given set F, once we know which gauge functions are majorizing and
which are minorizing. Hence, an important question is to determine whether all
gauge functions are either majorizing or minorizing for E.
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9.3. Describability

In the ideal situation where we know that every gauge function is either ma-
jorizing or minorizing, the description of the size and large intersection properties
of a set will be both precise and complete; we shall then say that the set if fully
describable. A further question is to establish a criterion to determine whether
a given gauge function is majorizing or minorizing; this will lead to the notions
of n-describable and s-describable sets that are detailed afterward. As shown in
Sections [0.4] and [9.5] these notions are naturally connected with those of eutaxic
sequence and optimal regular system.

9.3.1. Fully describable set. To be more specific, we define the notion of
fully describable set in the following manner.

DEFINITION 9.5. Let U be a nonempty open subset U of R? and let E be a set
in Z(U). We say that the set E is fully describable in U if

6> C M(E,U) Um(E, ),

that is, if every gauge function g for which £, is infinite is either majorizing or
minorizing in U for the set E.

Obviously, the notion of fully describable set is only relevant to the setting of
sets with large intersection. For instance, the middle-third Cantor set K has pos-
itive Hausdorff measure in the dimension s = log2/log 3, see the proof of Propo-
sition m Thus, the gauge function r — r® cannot be majorizing for K in (0, 1).
Furthermore, as already observed in Section the set K cannot contain any
set with large intersection. In particular, the previous gauge function cannot be
minorizing either. Hence, the Cantor set K is not fully describable in (0, 1).

If U denotes again an arbitrary nonempty open subset of RY, we already dis-
cussed a trivial example of fully describable set in U, namely, the Borel subsets F
of R? for which the intersection £ N U is a countable set. We have indeed

B> =9M(E,U)Um(E,U),
as an immediate consequence of (178)) and (179). Another situation where full
describability arises is discussed in the next statement.

PROPOSITION 9.5. Let U be a nonempty open subset of R? and let E be a set
in Z(U). Then, the following implication holds:
M(E,U) =0
m(E,U) = 6*.
In particular, if there exists a minorizing gauge function g such that {4 is finite,

then the set E is fully describable in U.

PRroor. Let g denote a minorizing gauge function for which ¢, is finite. Since
g is minorizing, £, is also necessarily positive, so the d-normalization gq satisfies

ga(r) ~ g rd as r—0. (180)
Let us now consider a gauge function h such that h < (r = r?). We already
observed that the mapping h defined by
h(r) = v /A7)

is a gauge function satisfying the condition h < h < (r + 7¢). The quotient h/gq
tends to infinity at zero. Adapting the proof of Proposition it is straightfor-

ward to check that the function h defined by
= o h(p)
h(r) = f
(r) = galr) Oérﬂlﬁr 9a(p)

mEU)\S6® £0 = {
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for all 7 > 0, along with h(0) = 0 and h(co) = oo, is a d-normalized gauge function
that is bounded above by h and satisfies h =< ga- On top of that, as g is minorizing,
there exists a subset F' of E in the class G9(U). In view of Definition [8.2] and (75,
this implies that for any dyadic cube A in Aj; that is contained in U,

ME(FAN) > M (FAint\) = ME (int \) = h(|A]).

Furthermore, owing to (180)), we know that g4(r)/r? is between £,/2 and 2¢, when

r is small enough. In that situation, h(r) is clearly bounded below by h,(r)/4,
where h,; denotes the d-normalization of h. This coincides with h(r)/4 again if r is
sufficiently small, because the gauge function h is d-normalized. As a consequence,
for any dyadic cube A C U whose diameter is small enough, we have

1 1
ME(F ) 2 () = 7 ME (),

where the last equality follows from (175)). Thanks to the respective extensions
of Lemmas [5.2] and [5.3] to arbitrary gauge functions, namely, Lemmas 10 and 12
in [18], we deduce that for any open set V C U,

M(FOV) =M (V).

This means that F' is a set with large intersection in U with respect to the gauge
function r — r?, and more generally with respect to all gauge functions in &*.
Therefore, all these gauge functions are minorizing for £ in U.

Finally, m(E,U) N &> coincides with the whole &>, thereby being both left-
open and right-open. Proposition[9.4]then ensures the disjointness of the majorizing
and minorizing collections, which means that 9(F, U) must be empty. (]

9.3.2. n-describable sets. We now single out an important category of fully
describable sets; they are characterized by the existence of a simple criterion to
decide whether a given gauge function is majorizing or minorizing. This criterion
is expressed in terms of integrability properties with respect to a given measure n
that belongs to the collection R defined in Section [6.5.2

Let us recall that R is the collection of all positive Radon measures n on the
interval (0, 1] such that n has infinite total mass and holds, namely, the proper
subintervals of the form [r, 1] all have finite mass. It is worth pointing out here that
the d-normalization g4 of an arbitrary gauge function g is always Borel measurable
and bounded on (0,1]. Also, we shall use the notation

mngléﬂammw>

and we shall in fact restrict our attention to certain measures in R only, namely,
those belonging to the subcollection

Rg={neR|nr—rl) < oo} (181)

For any n in R, the gauge functions g ¢ &* clearly satisfy (n,gq) < oco. If
n is in Ry, this property actually holds for all gauge functions g ¢ &°°. Indeed,
the parameter ¢, is then finite, so that gq(r) < £,7? for all r € (0,1]. The finite-
ness of (n,gq) therefore remains undecided only if g is in $°; this motivates the
introduction of the set

&(n) = {g € 6 [ (n,9a4) = oo},

along with its complement in °°, which is denoted by Qﬁ(n)c.
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DEFINITION 9.6. Let U be a nonempty open subset of R%, let E be a set in
Z(U), and let n be a measure in Ry. We say that the set F is n-describable in U if

ME,U)=6n" and mwm(E,U)NG™ =6&(n),
or equivalently if for any gauge function g in &>°,
g€ ME,U) = (n,gq) < 00
{ gem(E,U) — (n, gq) = oo.

It is clear from the definition that if E denotes n-describable set in U, then E
is fully describable in U and the majorizing and minorizing collections are disjoint.
We know that this situation occurs when either of the collections 9(E,U) and
m(E,U) N 6> is simultaneously left-open and right-open. The following lemma
actually implies that both collections are left-open and right-open at the same
time, which will enable us to subsequently apply Corollary It also entails that
m(E,U) N &> is nonempty, meaning that E contains a set with large intersection.

LEMMA 9.1. For any measure n in Ry, the following properties hold:
(1) the set &* \ B(n) is left-open;
(2) the set &(n) is right-open and nonempty.
In particular, if a set E is n-describable in U, then both collections M(E,U) and
m(E,U) NS> are simultaneously left-open and right-open.

PrROOF. In order to prove , let us consider a d-normalized gauge function
g € &* such that (n, gq) < co. We may build a decreasing sequence (ry,),>1 of real
numbers in (0,¢,), with ¢4 being defined in Section such that for all n > 2,

1
) < g(rno1)e” /" d / n(dr) < ——.
9ra) < glrn-a)e e A A TE

Note that the sequence (ry,),>1 necessarily converges to zero. Indeed, g(r,) tends
to zero as m goes to infinity, and the function g is nonvanishing and continuous on
(0,e4). Then, for any n > 2 and any r € (r,,,7p—1], let us define

log g(r,,—1) — log g(r
() =+ g9(rn—1) —logg(r)
log g(rn—1) — log g(ry)
The function ¢ is nonincreasing and continuous on (0, 7], goes to infinity at zero,
and is such that &(r) € [n,n + 1] for all r € (r,, r,—1] et n > 2. We now define

g(r) = g(r)&(r)
for all 7 € (0,71]. Then, forn > 2 and r, <r <’ <r,_1, the difference g(r') —g(r)
vanishes if g(r') = g(r). Otherwise, it is equal to

g(rE(r") — g(r)&(r) = (€(r") = £(r)g(r) + £ (g(r') — g(r))

g(r’)

108 5 1
2 (g(rl) - g(’l")) n{l-— g(r’) 1 ’ 1 g(rn—1) 2 0.
g(m — 4 MO8 Tn

As a consequence, the function g is nondecreasing on each interval (7, r,—1]. Since
it is continuous on (0, 7], it is nondecreasing on that whole interval. Furthermore,

o0

/0 e, g(r)n(dr) = HZ::Q / e g(r)€(r) n(dr)

<> (n+ 1)/ glr)n(dr) <> ﬁ < 0.

n=2 0<r<rn—1 n=2
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In particular, g tends to zero at the origin. We thus extend it to a gauge function
such that (n,g,) is finite by defining for instance g(r) = g(r1) for all r > ry, as well
as g(oo) = co. Finally, §/g = £ monotonically tends to infinity at zero, so that g is
d-normalized and satisfies § < g.

To prove the right-openness in 7 let us suppose that g € &> and (n, g4) = 0.
Let us define 11 = €,/2, and also 6(r) = g(r)/r? for all r € (0,71]. The function @
is nonincreasing on (0, ;] and tends to infinity at zero. For any n > 2, there exists
an r, € (0,r,_1) with

O(ry) > 0(rp—1)e and / g(r)n(dr) > 1
P <r<r,_1

The sequence (r,)n>1 is decreasing and converges to zero, because 6(r,) tends to
infinity as n goes to infinity and because the function 6 is continuous on (0, r]. For
any n > 2 and any r € (ry,,7,—1], let us then define

€(r) = log 0(r) — log O(rn—1)
log O(ry,) —log 0(rp—1)"

We thus obtain a function £ which is nonincreasing, continuous and positive on
(0,71], tends to infinity at zero and satisfies £(r) < n+1 for all r € (ry,, r,—1]. Let
us define g(r) = g(r)/&(r) for all r € (0,r;] and extend g to a gauge function by
letting for instance g(r) = g(r1) for all r > 71, as well as Q(O) =0 and g(o0) = oo.
When n > 2 and 7, < r <1’ < r,_1, the difference g(r)/r? — g(r')/r'? vanishes if
0(r") = 6(r), and otherwise is equal to B B

0(r) _ 0(r'") _ (0(r) = 0(")E(r) + 00" (E(r) — £(r))

€r &) (e
0(r) — 0(r') gy 1
= E(r)&(r’ mt o) 1 nlog 6(rn) =0

o(r’) 0(rn_1)

Therefore, the mapping 7 + g(r)/r? is continuous at 7, and nonincreasing on
the interval (r,,r,_1] for all n > 2, which implies that g is a d-normalized gauge
function. Moreover, g/g coincides with & near zero, so that g < g. Finally,

oo

_ 90 o
/0<r§r1 Q(T) n(dT) B nz;/rn<r<rn_1 5(7’) n(d )

0o
_Zn+1 r<rn1 z_:n—i_l o

from which it follows that (n, g d> is infinite. To conclude, it remains to mention that

g belongs to &>; this easily follows from the observation that g(r,)/re is equal to
0(ry)/n, which is bounded below by €"~!/n for all n > 1.

The nonemptyness in may be established by formally replacing the gauge
function g above by 1, the indicator function of the interval (0,1]. Indeed, although
1 is not a gauge function in the strict sense, it still verifies the next two properties
that were crucial in the previous construction: the mapping 7 + 1(r)/r¢ monoton-
ically tends to infinity at zero; the integral of 1 with respect to the measure n is
infinite. Note that the latter holds because n belongs to the collection R. We may
therefore reproduce the above approach, and we end up with a gauge function g in
®°° such that (n,g ) is infinite. O

As mentioned above, Lemma enables us to apply Corollary to the n-
describable sets. This boils down to the next statement, which gives a complete
and precise description of the size and large intersection properties of those sets.
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THEOREM 9.1. Let U be a nonempty open subset of R%, let E be a set in Z(U),
and let n be a measure in Ry. Let us assume that E is n-describable in U. For any
nonempty open set V. C U, the following properties hold:

(1) for any gauge function g € &\ &(n),
HI(ENV)=0
{ VFegi(V) FZE
(2) for any gauge function g € &(n),
HI(ENV) =00
{ JFegy(V) FCE;

PROOF. The property results directly from combining of Lemma and
Corollary This is also the case of when the gauge function g is in &*°. It
remains us to prove (1) when g is not in &>°. Given that E € Z(U), Propositionm
leads to the first part of , and Proposition implies the second part in the
situation where £, vanishes. Finally, if g is in &*, Lemma ensures that there
is a d-normalized gauge function g < g4 for which (n,g) < oo. Necessarily, g is in
®°° thus verifying (1. Hence, ENV has Hausdorff g-measure zero, and we deduce
from Theorem 1) the second part of for the initial gauge function g. O

In the vein of ((142)), we may associate with every measure in the collection R, a
parameter that characterizes its integrability properties at the origin. Specifically,
for every measure n in Ry, let us define the exponent

sp =sup{s € (0,d] | (r —r°) € B(n)} =inf{s € (0,d] | (r — r°) € &(n)}. (182)

Note that the right-most set contains d, so that its infimum is well defined. The
left-most set may however be empty and, in that situation, we adopt the convention
that its supremum is equal to zero. By way of illustration, note that implies
that the above exponent s, is equal to d. Restricting Theorem to the gauge
functions r — r°, we directly obtain the following dimensional statement.

COROLLARY 9.2. Let U be a nonempty open subset of R?, let E be a set in
Z(U), and let n be a measure in Ry. Let us assume that E is n-describable in U.
Then, for any nonempty open set V C U,

dimg(ENV) = sp.

Let us assume that s, > 0. Then, for any nonempty open set V C U,
dimp(ENV) =d.

Moreover, if E is a Gs-set, it belongs to the large intersection class G**(U).

PROOF. Let us assume that s, < d. We deduce from Theorem that
E NV has Hausdorff s-dimensional measure zero, for any s € (sy,d]. Hence, this
set has Hausdorff dimension at most s,,. Obviously, this bound still holds if s, = d.

If the parameter s, is positive, Theorem implies that for any s € (0, sy),
there exists a subset F, of E that belongs to the generalized class G"~"" (V). Propo-
sitionthen ensures that each set F; belongs to the original class G*(V') and that
its intersection with the open set V has Hausdorff dimension at least s and packing
dimension equal to d. It follows that ENV has Hausdorff dimension at least s, and
packing dimension equal to d. Furthermore, if E is a Gs-set itself, we choose V = U
above and deduce from Proposition that the set F belongs to all the classes
G*(U), for s € (0, s,). In view of Definition [5.2] this implies that E € G**(U).

Finally, note that the lower bound on the Hausdorff dimension of E NV still
holds when s,, vanishes. Indeed, by Lemma , there is a gauge function in
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&(n). Applying Theorem [9.1{[2) with such a gauge function, we infer that ENV is
nonempty, thus having nonnegative Hausdorff dimension. O

9.3.3. s-describable sets. This section is parallel to previous one. We con-
sider another category of fully describable sets where we have at hand a criterion
to decide whether a gauge function is majorizing or minorizing. This criterion is
now expressed in terms of growth rates at the origin.

As a motivation, let us consider the measures n, defined for s € [0, d) by

dr

ns(d'f') = E

(183)
It is elementary to check that each measure ngs belongs to the collection Ry, and
that the associated exponent given by is equal to s. In particular, in view of
Corollary 9.2} every ns-describable set has Hausdorff dimension equal to s. More-
over, note that the mapping s — &(ny) is nondecreasing.

The new category of fully describable sets that we introduce hereafter may be
obtained by considering countable intersections of ns-describable set. Let U be a
nonempty open subset of R?, let (E,),>1 be a sequence of sets in Z(U), and let F
denote the intersection of the sets E,,. Propositions [9.2] and [0.3] show that

m(E,U) = ﬁ m(E,,U) and M(E,U) D D M(E,,U). (184)

Let us suppose the existence of a sequence (sy)p>1 of real numbers in [0, d) such
that each set E,, is n,, -describable in U. Definition [0.6] implies that

m(E,, U)N&>® =&(n,,) and M(E,,U) = 6(n,,)C. (185)

It follows that the minorizing collection of FE in U coincides on $>° with the inter-
section of the collections &(ny, ), and the majorizing collection of E in U contains
the complement in &° of the latter intersection.

This entails in particular that the set F is fully describable. This also prompts
the study of countable intersections of sets of the form &(n). Those sets being
monotonic with respect to the parameter s, we end up with an intersection set that
is either of the previous form &(ny), or of a new form &(s), where s is some real
number in [0,d). The latter sets are the subsets of &> defined by the condition

g € &(s) — Vs > s ga(r) #o(r®) as r—0,

and are linked with the former through the statement of Lemma below. Note
that gq(r) # o(r?) for any g € &>. So, in the previous condition, the only rel-
evant values of s are those in (s,d). Moreover, the mapping s — &(s) is clearly

nondecreasing. Finally, the complement in &> of &(s) is denoted by &(s)C.

LEMMA 9.2. For any real number s € [0,d), we have
6(s)= (] 1&(n,).
s€(s,d)

PROOF. Let g be a gauge function in &*°. If g is not in &(s), then we have
ga(r) < cr® for all r € (0,1], and some sy € (s,d) and some ¢ > 0. Thus,

(ns,94) = / ga(r)ng(dr) < C/ rfos—1 4y
(0,1] ©,1]

for every s € (s,d), and the latter integral is finite if s < sq. It follows that g does
not belong to any of the sets &(ng) with s € (s, sg).
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Conversely, let us assume that g is not in &(n;) for some s € (s,d). We deduce
from the monotonicity properties satisfied by g4 that for any real number r € (0, 1],

g 2 [ itz 90D [ gy 122 )
N r/2 - 7,_/2

pl rd d—s 7S
The finiteness of the left-hand side entails that g4(r) = O(r®) as r goes to zero. As
a consequence, the gauge function g cannot belong to &(s). d

As we now explain, the sets &(s) play a pivotal role in the definition of the new
category of fully describable sets.

DEFINITION 9.7. Let U be a nonempty open subset of R%, let E be a set in
Z(U), and let s be in [0,d). We say that the set E is s-describable in U if

ME,U) =6  and  m(E,U)NS™ = &(s).

Similarly to what happens for n-describable sets, it is clear that s-describable
sets are fully describable, with disjoint majorizing and minorizing collections. More-
over, we have the following analog of Lemma [9.1

LEMMA 9.3. For any real number s € [0,d), the following properties hold:
(1) the set &*\ &(s) is left-open;
(2) the set B(s) is right-open and nonempty.
In particular, if a set E is s-describable in U, then both collections M(E,U) and
m(E,U) N 6> are simultaneously left-open and right-open.

PROOF. The left-openness of the set &* \ &(s) is inherited from that of the
sets &*\ B(n), for n € Ry. Indeed, if g is d-normalized gauge function in &*\ &(s),
Lemma ensures that g ¢ ®(n,) for some s € (s,d). By Lemma [0.1|(I), there
is a d-normalized gauge function g in &* \ &(n,) such that g < ¢g. By Lemma
again, g does not belong to &(s), and we end up with .

Furthermore, let us recall that the mapping s — ®&(n) is nondecreasing.
Thanks to Lemma we deduce that &(s) contains ®(ns). Lemma shows
that the latter set is nonempty, so the former is nonempty as well.

Finally, the right-openness property in follows from the fact that, if ¢ is
a d-normalized gauge function in &(s), letting g(r) = g(r)/log(g(r)/r?) yields as
required a d-normalized gauge function in &(s) such that g < g. O

Owing to Lemma if a set E is s-describable in U, then m(E,U) N &> is
nonempty, so E necessarily contains a set with large intersection. Furthermore,
both M(E,U) and m(E,U) N &> are left-open and right-open at the same time.
We may thus apply Corollary and deduce the following complete and precise
description of the size and large intersection properties of the set E.

THEOREM 9.2. Let U be a nonempty open subset of RY, let E be a set in Z(U),
and let s be in [0,d). Let us assume that F is s-describable in U. For any nonempty
open set V. C U, the following properties hold:

(1) for any gauge function g € &\ B(s),
HI(ENV)=0
{ VFegi(V) FQE
(2) for any gauge function g € &(s),
HI(ENV) =00
{ IFegi(V) FCE;
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Theorem above may be regarded as an analog of Theorem and may
be established by easily adapting the proof of the latter result. The proof is there-
fore omitted here. We just mention that one needs to use Lemma [0.3] instead of
Lemma [9.1] whenever necessary, and that Corollary is crucial in that proof too.

For all s € (0,d] and s € [0, d), one easily checks that the gauge function r — r*
belongs to the set &(s) if and only if s < s. Therefore, restricting Theorem to
these specific gauge functions leads to the following dimensional statement which
is parallel to Corollary [0:2] Again, the proof is very similar to that of the latter
result; for that reason, it is left to the reader.

COROLLARY 9.3. Let U be a nonempty open subset of R?, let E be a set in
Z(U), and let s be in [0,d). Let us assume that E is s-describable in U. Then, for
any nonempty open set V C U,

dimg(ENV)=s with HI(ENV) = oco.
Let us assume that s > 0. Then, for any nonempty open set V C U,
dimp(E N V) =d.
Moreover, there exists a subset of E in the large intersection class G*(U). In par-

ticular, if E is a Gg-set itself, it belongs to the latter class.

We finish by going back to the motivational example supplied by the intersec-
tion of the ng -describable sets E,. As shown below, the set &(s) actually arises
under the assumption that the infimum of the real numbers s,, is not attained.

PROPOSITION 9.6. Let U be a nonempty open subset of R® and, for eachn > 1,
let B, be a set in Z(U) that is ng, -describable in U for some s, € [0,d). Letting

oo
E = ﬂ E, and s = inf s,
1 n>1
e

we then have the following dichotomy:
e if the infimum is attained at some no, then E is n,, -describable in U ;
o if the infimum is not attained, then E is s-describable in U.

PROOF. To begin with, we learn from (184)) and ((185]) that the minorizing and
majorizing collections of F in U satisfy

m(E,U)N6>* = () &(n,,) and MEV)26®\ (] 6(n,,). (186)
n=1 n=1
If the infimum is attained at a given integer ng, the intersection over all n > 1 of
the sets &(ns, ) coincides with the sole &(ns, ), so that

m(E,U)N&> =&(n,, ) and  ME,U) 2 S(n,, )°.
In particular, we deduce from Lemma that the collection m(E,U) N &> is
right-open. Proposition [9.4)(2)) then yields
G N\ME,U) 2m(E,U) NS> = &(ng, ).
It follows that the majorizing collection M (E,U) is equal to the whole Qﬁ(nsno)c.
As a consequence, the set E is ns, -describable in U.

The proof is very similar in the opposite situation where the infimum is not
attained. Indeed, using the monotonicity of the mapping s — &(n,) and combining

Lemma, with (186]), we now get
m(E,U)NG™ =6&(s) and  M(E,U) D &(s)C.
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We deduce from Lemma [9.3([2) that m(E,U) N & is right-open, and then from
Proposition [9.4((2) that the majorizing collection 9 (F,U) is equal to the whole
&(5)C. Hence, the set E is s-describable in U. O

Slightly modifying the above approach leads to another situation where s-
describable sets arise naturally. Given a real number s € [0,d) and a nonempty
open set U, we consider a sequence (Ej)sc(s,a) of sets in Z(U), and we assume
that the mapping s — FEj is increasing and that each set E; is ng-describable in U.
We then choose in the interval (s, d) an arbitrary decreasing sequence (s,,)p>1 that
converges to §. The monotonicity of the sets Fs with respect to s implies that their
intersection is equal to that of the sets E; . Moreover, the latter sets fall into the
above setting because the infimum of the real numbers s,, is not attained. Hence,
the intersection over all s € (s,d) of the sets E; is s-describable in U.

9.4. Link with eutaxic sequences

Eutaxic sequences were defined and thoroughly studied in Chapter [6f Our
purpose is now to show that the limsup sets that are naturally associated with such
sequences fall into the category of fully describable sets. The analysis below heavily
relies on the large intersection transference principle presented in Section [8.2

Let (x,)n>1 be a sequence of points in R? and let (rn)n>1 be a nonincreasing
sequence of positive real numbers that converges to zero. It is clear that the family
(%, ™ )n>1 1S an approximation system in the sense of Definition 4.1|; this naturally
prompts us to consider the associated limsup set defined as in , namely,

S((@n, mn)n>1) = {x e R? ‘ |z — x| <7, forim.n > 1}.

This set is unchanged if we remove a finite number of initial terms x,, and r,, so
there is no loss in generality in assuming that the real numbers r,, are in (0, 1].
Lemma shows that for any gauge function g such that the series ), ga(ry)
is convergent, the set §((xn, rn)n>1) has Hausdorft gq-measure equal to zero. Here,
ga denotes as usual the d-normalization of the gauge function g. Proposition [2.10
allows us to transfer the previous property to the Hausdorff g-measure itself. As a
consequence, for any gauge function g, the following implication holds:

> galrn) <o = HIF(@n,Tn)nz1)) = 0. (187)

Let us now recast this elementary result in terms of majorizing gauge functions. In
what follows, r is a shorthand for (r,),>1, and n, is the measure in R defined by

o0
nr = Z 67,”. (188)
n=1
We further assume that the series Y r¢ is convergent, or equivalently that n,
belongs to R4, so as to ensure that the above limsup set has Lebesgue measure
zero in R%. The previous result then yields the next statement.

PROPOSITION 9.7. Let (xn)n>1 be a sequence in RY and let (rn)n>1 be a non-

increasing sequence of real numbers in (0,1] such that )" rd converges. Then,

3((%’%)@1) € Z(Rd) and m(g((xnvrn)n21)7Rd) 2 6(nr)c-

Eutaxy will lead to a natural converse of that result. To be specific, when U
denotes a nonempty open subset of R?, we recall from Deﬁnitionthat a sequence
(@n)n>1 in R? is uniformly eutaxic in U if for any sequence (rn)n>1 in the set Py
defined by , the following condition holds:

for L%-a.e.2 €U Fim.n>1 |z — x| < 1y
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Transferring this property to the present setting, this means that the following
implication holds:

ng =00 = ‘Cd(U\'S«xnarn)nZl)) = 0. (189)

The trick is now to replace r,, by gq (rn)l/ & in , if g denotes the gauge function
under consideration. In fact, since the real numbers r,, are nonincreasing and tend
to zero, the real numbers g4(r,,)'/¢ tend to zero as well and, at least for n sufficiently
large, are also nonincreasing. The limsup set F((«x, ' )n>1) being unchanged when
removing initial terms, we end up with the implication

Y galra) =00 = LYUN\F(@n,9a(rn)")uz1)) = 0.

In other words, the divergence assumption bearing on g implies that the approx-
imation system (%, 7y)n>1 is homogeneously g-ubiquitous in U in the sense of
Definition We are now in position to apply the large intersection transference
principle, namely, Theorem Accordingly, we deduce that

ng(rn) =00 g 3((~”ﬂn»7‘n)n21) e Ggi(U).

Again, this result may be recast in terms of minorizing gauge functions. We have
indeed the following statement.

PROPOSITION 9.8. Let U be a nonempty open subset of RY, let (z,)n>1 be a
sequence in R that is uniformly eutazic in U, and let (1,)n>1 be a nonincreasing
sequence of real numbers in (0,1] such that Y, re converges. Then,

S((@n,mn)n>1) € Z2(U) and m(F(2n, Tn)n>1),U) 2 &(ny).

Combining Propositions and we infer that the set F((@n, rn)n>1) is fully
describable in U, under the assumptions that the sequence (z,,)n>1 is uniformly
eutaxic in U and the series >, 7% converges. The next lemma will actually help us
obtain a more precise statement.

LEMMA 9.4. Let U be a nonempty open subset of R, let E be a set in Z(U),
and let ) be a subset of B> with complement denoted by J’JC. Let us assume that:
e a gauge function g € 8> is in 9 if and only if its d-normalization gq4 is;
e the collections m(E,U) and IM(E,U) contain $ and L, respectively;
e the collection $ is right-open, or the collection HC is left-open.

Then, the following equalities hold:
MEU) =95  and mwmEU)NS® = 8§,

PROOF. To begin with, let us assume for instance that the collection ) is right-
open. Let us consider a gauge function g in M(E, U), and assume by contradiction
that g does not belong to $C. Then, gq belongs to £, and the right-openness
assumption ensures the existence of a d-normalized gauge function g € $ with
ga < g. Since $) is contained in m(E, U), the gauge function g is minorizing for E in
U, meaning that E admits a subset F' in the class GZ(U). Owing to Theorem [3.2{(3])
and Proposition the set F has infinite Hausdorff gg-measure in U. We deduce
with the help of Proposition [2.10] that £ has infinite Hausdorff g-measure in U,
thereby contradicting the fact that ¢ is majorizing for E in U.

The case where §C is left-open is treated similarly. To be specific, let us consider
a gauge function g in m(E, U)NB>, and suppose by contradiction that g ¢ $). Thus,
gd € j’JC, and there is a d-normalized gauge function g € $C such that g < gq- The
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gauge function g is then in MM(E,U). By Theorem [8.2(3)) and Proposition m
again, this contradicts the fact that g4 is minorizing for F in U. O

In view of Propositions [9.7 and and under the assumptions that the se-
quence (z,),>1 is uniformly eutaxic in U and the series Y, re converges, we may
apply Lemma to the set §F((zn,7n)n>1), along with the collection &(n,). We
end up with the next statement.

THEOREM 9.3. Let U be a nonempty open subset of RY, let (x,)n>1 be a se-
quence in R? that is uniformly eutaxic in U, and let (r,)n>1 be a monincreasing
sequence of real numbers in (0,1] such that the series Y., rd converges. Then, the
set F((Tn,Tn)n>1) is ny-describable in U.

This means that we may eventually apply Theoremto the set F((Tn, Tn)n>1)s
thereby obtaining a complete and precise description of its size and large intersec-
tion properties. We may also apply Corollary if only a dimensional result is
needed. This will enable us to revisit in Chapters [I0] and [TI] the examples of eu-
taxic sequences already presented in Chapter [6] and to shed light on the size and
large intersection properties of the associated limsup sets.

Let us finally recall from completeness that when the sequence (z,,),>1 is uni-
formly eutaxic in U and the series Y, rd diverges, the set F((zn,7n)n>1) has full
Lebesgue measure in U, see for instance . As explained at the beginning of
this chapter, its size and large intersection properties are then trivial. This remark
remains also valid when the sequence (7,),>1, while still being nonincreasing, does
not converge to zero. In fact, the sequence (ry,),>1 is not in P, anymore, which pre-
vents us from applying directly. However, as already observed in Section
the sequence defined by 7, = min{r,,1/(2n'/%)} for each n > 1 is necessarily in
P4. Applying to this sequence, we deduce that the smaller set §F((zn,7n)n>1)
has full Lebesgue measure in U, and thus §((zy, 7m)n>1) as well.

9.5. Link with optimal regular systems

The notion of optimal regular system is the purpose of Chapter|[7] and is closely
related with the notion of eutaxic sequence discussed in Section above. Hence,
we may anticipate that optimal regular systems also share interesting connections
with the material discussed in the present chapter.

We recall from Definition that an optimal regular system results from com-
bining a countably infinite set A C R? with a height function H : A — (0,00). In
the context of Diophantine approximation, the sets that are naturally associated
with such a system are of those the form , namely,

F,= {xERd ’ |z —a| < p(H(a)) forim.ac A},

where ¢ is a positive nonincreasing continuous function defined on [0,00). A first
description of the size and large intersection properties of those sets is given by
Theorem In particular, if U is a nonempty open subset of R?, and (A, H) is
an optimal regular system in U, then the set F, has full Lebesgue measure in U if
the integral defined by (152)), namely,

I“’:/o n? () dn

diverges. The size and large intersection properties of the set Fi, being trivial in
that situation, we may rule out this situation in what follows.

Accordingly, we assume from now on that the integral I, is convergent. Since
the function ¢ is nonincreasing, it necessarily tends to zero at infinity. Hence,
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the admissibility condition entails that the family (a, o(H(a)))qe is an ap-
proximation system in the sense of Definition Moreover, we necessarily have
p(h) <1 for h large enough, and arguing as in the proof of the convergence case of
Theorem, we see that F|, is left unchanged when replacing ¢ by its minimum
with the fonction that is constant equal to one on [0,00). As a result, there is no
loss in generality in assuming hereafter that the function ¢ is valued in (0, 1].

We then associate with the function ¢ the measure n, characterized by the
condition that for any nonnegative Borel measurable function f defined on (0, 1],

oo
()na(dr) = [ 0o dn (190)
(0,1] 0

It is clear that the measure n, belongs to the collection R. Moreover, the finiteness
assumption on the integral I, is equivalent to the fact that n, belongs to R4. Our
purpose is to establish an analog of Theorem for optimal regular systems; the
measure n, will in fact play the réle of n, in the present analysis.

We begin by studying the majorizing collection of F, in U. The next statement
may be seen as a natural counterpart of Proposition [0.7]in the present setting.

PROPOSITION 9.9. Let U be a nonempty open subset of R, let (A, H) be an op-
timal regular system in U, and let ¢ be a positive nonincreasing continuous function
defined on [0, 00), valued in (0,1] and such that I, converges. Then,

F,e Z(U) and  M(F,,U) D &(n,)°.

Proor. To begin with, the set Fi, has Lebesgue measure zero in U owing
to Theorem . Furthermore, learning from the proof of this theorem, let us
disclose and exploit the limsup structure of the set F,. In fact, for any nonempty
open ball B C U, the pair (A, H) is also an optimal regular system in B, and
Lemma yields a monotonic enumeration, denoted by (an)n>1, of (A, H) in B.
Then, F, N B is contained in the set Ff defined by , namely,

FvﬂBgFf:{xERd||x—an|<rn for im. n > 1},

where 7, = ¢(H(ay,)) for any n > 1. Combining Lemma [2.1] and Proposition [2.10]
we deduce that for any gauge function g,

> ga(ry) < o0 = HI(F,NB)=0.
n=1

Now, the gauge function gq4 is nondecreasing on the interval [0,¢,,), where ¢4,
is defined in Section [8.2.1] so we may consider a function g that is nondecreas-
ing on [0, 00) and coincides with gq on [0,&,,). Still reasoning as in the proof of

Theorem [7.1|(I)), we define a premeasure ¢ by ¢((h, h')) = g(o(h)) — g(¢(h’)) when
0 < h < I < oo, and then consider the outer measure (, given by . We end
up with a Borel measure on (0, 00) such that (. ([h,00)) = g(e(h)) for any h > 0.
Thanks to Tonelli’s theorem and the optimality of the underlying system, we have

S () = [ #0211 Hle) < h)G.(ah)

0o h's
< / W ¢, (dh) + / (#{n > 1| H(an) < h} — wlgh?) C.(dh)
0 0
R/

= Kyd / V) At = [ G (ar) + R
0 0,1
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where k’; and h'y are given by Deﬁnition Given that ¢ tends to zero at infnity,
we may replace the function g by the gauge function gg in the left-most and the
right-most sides without altering the convergent or divergent nature of the involved
series or integral. As a consequence,

/ ga(r) n,(dr) < oo = HI(F,NB)=0.
(0,1]

We may finally replace the ball B above by the whole open set U, because the
Hausdorff g-measure is an outer measure and every open set may be written as a
countable union of inside open balls. O

Let us now naturally turn our attention to the minorizing collection of F, in
U. The counterpart of Proposition is the following result.

PROPOSITION 9.10. Let U be a nonempty open subset of Re, let (A, H) be
an optimal regular system in U, and let ¢ be a positive nonincreasing continuous
function defined on [0, 00), valued in (0,1] and such that I, converges. Then,

F,e2(U) and m(F,,U)2 &(n,).

PRrROOF. Given g € ®(n,,), the idea is basically to apply Theorem with

the function h — ggq(@(h))*/?, denoted for short by g;/d o ¢, instead of ¢. This
new function might not be continuous and nonincreasing on the whole interval
[0,00), but surely satisfies these properties on the closed right-infinite interval
formed by the real numbers h > 0 such that ¢(h) < g4,/2. Therefore, letting
@(h) = ga(min{p(h),e,,/2})"/9, we obtain a function that is continuous and non-
increasing on the whole [0, 00) and matches the function of interest near infinity.
Since the gauge function g is in &(n,,), the integral I is divergent. We deduce
from Theorem [7.1|(I) that the set Fi3 has full Lebesgue measure in U, and thus that
the larger set Fg;/dw has full Lebesgue measure in U as well. As a consequence,

the approximation system (a, o(H (a)))aeca is homogeneously g-ubiquitous in U.
We conclude that the set F, belongs to the class G9(U) by means of the large
intersection transference principle, namely, Theorem [8.3 O

Finally, if the assumptions of Propositions[0.7]and [0.8|are satisfied, these results
ensure that we may apply Lemma to the set Fy, and the collection &(n,). This
readily gives the next statement.

THEOREM 9.4. Let U be a nonempty open subset of R?, let (A, H) be an optimal
regular system in U, and let ¢ be a positive nonincreasing continuous function
defined on [0,00), valued in (0,1] and such that the integral I, converges. Then,
the set I, is n,-describable in U.

Subsequently applying Theorem to the set F,, we may obtain a complete
and precise description of its size and large intersection properties. Also, if only
a dimensional result is needed, it is possible and sufficient to use Corollary [9.2}
We shall employ these ideas in Chapter [I0] so as to revisit the examples from
Diophantine approximation presented in Chapter






CHAPTER 10

Applications to metric Diophantine approximation

Our aim is to review most of the examples from metric Diophantine approxima-
tion studied hitherto, and to complete the analysis of their size and large intersection
properties in light of the theory of describable sets introduced in Chapter [9]

10.1. Approximation by fractional parts of sequences

10.1.1. Linear sequences. This section should be seen as a followup to Sec-
tions H and [6.3.3] Let us begin by recalling that Kurzweil’s theorem, namely,
Theorem [6.9| ensures that for any point x € R?, the sequence ({nx}),>1 of frac-
tional parts is uniformly eutaxic in the open cube (0, 1) if and only if z is a badly
approximable point.

Let us place ourselves in that situation and let us consider a nonincreasing
sequence r = (r,),>1 of positive real numbers. Our aim is to detail the size and
large intersection properties of the set

Fy(z) = {y e R? ||y = {na}| <r, forim.n>1}.

We may rule out the case in which the series ) rd diverges. Indeed, as observed
at the end of Section the eutaxy of the sequence ({nz})n>1 then implies that
this set has full Lebesgue measure in (0,1)?, so that its size and large intersection
properties are trivially described.

As a consequence, we assume throughout that the series > 7% converges. In
particular, (r,),>1 converges to zero and, as the set Fy(x) is unchanged when
removing a finite number of initial terms, there is no loss of generality in assuming
that the real numbers r,, are in (0,1]. We may then define a real number s, in the
interval [0, d] through the condition , namely,

§< s = y,.T5 =00
s> =y, rs <00,

If s, is positive, the discussion that follows the statement of Theorem implies
that the set F.(x) belongs to the class G ((0,1)?) and actually has Hausdorff di-
mension equal to s, in (0,1)¢. The ideas developed in Chapters and@ enable us to
optimally refine this result without even requiring that s, is positive. In particular,
Section suggests that we introduce the measure in R4 given by , that is,

00
ny = § (5rn7
n=1

and Theorem therein leads straightforwardly to the next statement.

THEOREM 10.1. For any point x in Badg and for any nonincreasing sequence
r = (rp)n>1 i (0,1] such that 3, rd is finite, Fy(z) is ny-describable in (0,1)%.

We may recast this result with the help of the distance to the nearest integer
point defined by (121)), thus considering instead of F;(z) the companion set

Flx)={yeR?||y—na| <r, forim n>1}.

187
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The resulting statement bearing on this set is the following one. Note that the
describability property is now valid on the whole space R? instead of the mere open
unit cube (0,1)%; this is because the companion set F!(x) may basically be seen as
the initial set F,(x), along with its images under all translations by vectors in Z<.

COROLLARY 10.1. For any point x in Bady and for any nonincreasing sequence
r = (rn)n>1 in (0,1] such that 3 rd is finite, F!(x) is ne-describable in RY.

n

PROOF. Let us consider a gauge function g in ®(n,), a d-normalized gauge
function h satisfying h < g4, and a nonempty dyadic cube A in the collection A,
introduced in Section B2l We also assume that A has diameter at most that of the
unit cube [0,1)?, which is equal to one because we work with the supremum norm
when considering the distance to the nearest integer point. Thus, A is included in
a dyadic cube of the form k + [0, 1)? for some integer point k € Z¢. Now, it is clear
that the companion set F/(x) contains the image of the initial set F;(z) under the
translation by vector k. Also, note that remain valid for such translations,
along with the net measures associated with general gauge functions. Hence,

ME(FH(z) XN > M (k+ (Fo(z) N (=k+ X)) > 37IME (F(z) N (=K + N)).

In addition, the interior of —k + ) is contained in the open unit cube (0,1)?, and
Theorem implies that F}(x) satisfies a large intersection property with respect
to g in the latter open cube. Hence,

M (Fu(x) nint(—k + X)) = M (int(—k + X)) = M (N),

where the last equality is due to (175). We deduce that the set F/(x) belongs to
the class G9(R?) by making make use of Lemmas 10 and 12 in [18], namely, the
natural extension of Lemmas [5.2] and [5.3] to general gauge functions. Therefore,

m(F(z),R?) 2 &(n,).

Conversely, we recall from the proof of Corollary that the set F)(z) is
invariant under the translations by vectors in Z¢, and that

Fl(x)n[0,1)* Climsup | )  Boo({na} +p,mm).
" pef-1,0,1}¢
Therefore, in the same vein as (187)), we deduce from Lemma and Proposi-

tion that the set F)(x) has Hausdorfl g-measure zero for any gauge function g
for which the series ) ga(rn) converges. This means that

M(F (), R!) 2 &(n,)".
To conclude, it suffices to apply Lemma [9.4 (]

A simple example is obtained by assuming that the sequence r is defined by
r, =n~% foralln > 1, and for a fixed 0 > 1/d. Indeed, one then easily checks that
the set &(n,) coincides with the set &(ny /U), where the measure n; /, is defined as
in . If the point x is badly approximable, we thus deduce from Corollary
that the set of all points y € R? such that

1
ly —nzl| < — for im. n>1
no'

is ny /o-describable in R?, thereby ending up with a major improvement on .

As a typical application, we may describe the size and large intersection prop-
erties of the intersection of countably many sets of the form F/(z). Specifically,
for each integer m > 1, let us consider a badly approximable point z,, and a
nonincreasing sequence I, = (rmn)n>1 in (0,1] such that Y rd,  is finite. This
enables us to define the intersection, denoted by F’ for simplicity, of all the sets
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F! (%), for m > 1. Then, similarly to (186]), we may combine Corollary with

T'm

Propositions [9.2] and [9.3] to infer that

m(F R)N&> = () &(n,,) and  MF,RY) D&\ [ 6(n,,,).
=1 m=1

In particular, the set F’ is fully describable in R?. Further assumptions on the
sequences Iy, can then enable us to make the intersection of the sets &(n, ) more
explicit, and then get more comprehensive results. For instance, if the measures n,
are all of the form , then Propositionimplies that F” is either n,-describable
for some s € [0,d), or s-describable for some s € [0, d). In the particular case where
Tm,n =n~ %" for all n > 1 and some o,,, > 1/d, we established above that each set
F! () isny,,, -describable in R%. According to Proposition we conclude that
the set I is either ny, -describable or (1/0.)-describable, depending respectively
on whether or not the supremum, denoted by o, of all parameters o, is attained.

10.1.2. Sequences with very fast growth. This section is a sequel to Sec-
tion[6.4.2] Since it is parallel to the previous one, some details will be omitted from
the presentation below. We consider throughout a sequence (a,)n>1 of positive real
numbers such that

oo
Qn

< 0,
n—1 Ap41
which is the case for instance when the sequence grows superexponentially fast.
We recall from Theorem that for Lebesgue-almost every x in R, the sequence
({anz})n>1 is uniformly eutaxic in (0,1).

Given a nonincreasing sequence r = (r,,)p,>1 of positive real numbers, the set

initially studied in Section now becomes
F(z)={yeR||y—{anz}| <7 forim.n>1}.

As above, our purpose is to describe the size and large intersection properties of
this set, and we may again assume throughout that the series ), r, converges and
that the real numbers r,, are all in (0,1]. We then introduce the measure in Ry
given by (188), and readily deduce the next statement from Theorem [9.3

THEOREM 10.2. For Lebesgue-almost every real number x and for any nonin-
creasing sequence v = (1 )p>1 in (0,1] such that ), ry, is finite, the set Fi(x) is
n,-describable in (0,1).

Note that this result is analogous to Theorem [10.1l We now rephrase it by
means of the distance to the nearest integer point defined by (121]), thereby dealing
with the companion set

Fl(z)={y eR | |ly — anz|| <7, forim.n>1}.
The statement bearing on this set is the following analog of Corollary

COROLLARY 10.2. For Lebesgue-almost every real number x and for any non-
increasing sequence v = (rp)p>1 in (0,1] such that Y, ry is finite, the set F)(x) is
n.-describable in R.

The above corollary may be deduced from Theorem by simply adapting
the arguments employed to deduce Corollary [I0.1] from Theorem The proof
is thus a simple modification of that of Corollary [I10.1] and is left to the reader.
Finally, note that Corollary is a substantial improvement on Corollary
which only addressed dimensional properties. Moreover, in the particular case
where r, = n~? for all n > 1 and some fixed ¢ > 1, we deduce from Corollary
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that for Lebesgue-almost every real number x and for every o > 1, the set of all
points y € R such that

1
ly — apz|| < —  forim.n>1
no'

is ny/,-describable in R?. We may then consider countable intersections of such
sets, in the same vein as at the end of Section [10.1.1

10.2. Homogeneous and inhomogeneous approximation

10.2.1. General describability statement. This section is a continuation
of Sections Let us recall that the inhomogeneous Diophantine approx-
imation problem consists in approximating the points in R% by the points that
belong to the collection

Qe = {pza, (p.q) € Z% x N},

where « is a point that is fixed in advance in R?. When « vanishes, Q% is obviously
equal to the set Q¢ of points with rational coordinates, and the problem reduces to
the homogeneous one. The collection Q% is endowed with the height function

H$(a) = inf{qg € N|ga — a € Z3}1+1/2,

Then, we know from Theorem that the pair (Qd’o‘, HY) is an optimal regular
system in R%. The material developed in Sectionwill then enable us to complete
the description of the size and large intersection properties of the set Qg‘,w that was
initiated by Theorem Let us recall that this set is defined by , namely,

ngd’ = {ZL' S ]Rd

‘ ptao
T —

<(q) forim. (p,q) € Z x N} ,

oo

where 1 is a positive nonincreasing continuous function defined on [0, 00). More-
over, Theorem {i shows that in has full Lebesgue measure in R? when

Lyy = / q“(q)" dg
0

is a divergent integral. As explained at the beginning of Chapter [J] the description
of the size and large intersection properties of the set ng is then elementary. We
therefore exclude this situation and assume throughout that I, is convergent. As
the function 1 is nonincreasing, it then necessarily tends to zero at infinity. The
set Dg’w is clearly left unchanged if we remove a finite number of possible values
for g, so there is no loss in generality in assuming that v is valued in (0, 1].

Furthermore, we learn from the proof of Theorem that the set in coincides
with the set defined by , namely,

F,={zeR||z—a| <p(H(a)) forim.ac A},

where ¢ is the function given by ¢(n) = (% (@+1) for all n > 0, and (A, H) is
equal to the optimal regular system (Q%“, H$). The convergence of I, is then
equivalent to that of the integral I, defined by converges. The approach
developed in Section then invites us to consider the measure n, defined in Rq
by . However, as we want to express our results in terms of ¢ rather than ¢,
we preferably introduce another measure ng  in Rq4, defined through the condition

(r) nap(dr) = / T (0(0) dg

(0,1]
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for any nonnegative Borel measurable function f defined on (0,1]. This yields
an equivalent formulation because the sets &(ng,,) and &(n,) coincide. Applying
Theorem [9.4] we end up with the next substantial improvement on Theorem [7-4]

THEOREM 10.3. Let o be a point in R? and let 1) denote a positive nonincreasing
continuous function defined on [0, 00), valued in (0,1] and such that the integral I,y
converges. Then, the set Qg , is ngy-describable in RY.

In the spirit of the end of Section [I0.1.1] a possible application is then to
consider a sequence (a;,)n>1 of points in R9, and to use Theoremin conjunction
with the appropriate formulation of in order to describe the size and large
intersection properties of the intersection over all n > 1 of the sets QZ‘%. The same
ideas may be put into practice by considering a sequence (¢, )n>1 of approximating
functions and analyzing the intersection over all n > 1 of the sets QF 4, 1t 1s even
possible to mix these two approaches by considering the intersection of a doubly
indexed sequence of sets of the form QO""

In view of Theorem [9.1] we may readlly deduce from Theorem a complete
description of the size and large intersection properties of the set Qg‘,w. In partic-

ular, we infer that for any gauge function g and any nonempty open set V' C R,
oo if 3, q%ga(¥(q)) = o
0 if 32, 4%a(¥(q)) < oc.

Note that we also used the elementary fact that a gauge function g belongs to
the set B(ng,y) if and only if its d-normalization gq4 is such that the above series
diverges; this follows from the monotonicity of 1 and that of g4 near the origin. We
thus recover the extension established by Bugeaud [12] of a classical statement due
to Jarnik [37]. Likewise, Theorems [0.1] and [L0.3] allow us to recover the description
of the large intersection properties of the set QF 4., that was obtained in [18].

Hg( 371/} N V) =

10.2.2. The inhomogeneous Jarnik-Besicovitch theorem revisited. As
in Section [7.3.4] let us focus on the particular case where the function v is of the
form g +— ¢~" on the interval [1, 00), for some positive real number 7. Then, QF ,
reduces to the set defined by (31] . namely,

Jir = {mERd

‘ P+«
T —
q

(oo}

1
< — forim. (p,q) € Z¢ x N}.
q'T

When a vanishes, the above set reduces to the introductory set .Jy . defined by
and corresponding to the homogeneous setting. We complete the definition of the
function ¢ by assuming that it is constant equal to one on the interval [0, 1]. One
easily checks that

{Id7¢<oo — T>1+41/d

B (ng,y) = EMay1)/r),

where the measure n(g1)/- is defined as in (183). Theorem [10.3] then leads to the
next major improvement on Corollary [7.1]

COROLLARY 10.3. For any point o € R? and any real parameter 7 > 1+ 1/d,
the set JC‘iT i8 N(g41)/r-describable in R4,

Going back to the application mentioned at the end of Section let us
consider a sequence (ay, )p>1 of points in R4 and a sequence (7, ), >1 of real numbers
with supremum denoted by 7.. Under the assumption that 7, is finite, we proved
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in Section [7.3.4] that

~ d+1
dimy Jor = min{ ,d} )
7@1 e T

This was a consequence of the large intersection property satisfied by the sets Jz;‘n
that was expressed by Corollary[7.1] We now derive a full description of the size and
large intersection properties of the intersection of the sets J O‘"n Our analysis also
covers the case in which 7, is infinite that was left open at the end of Section[7.3.4
Note that we rule out, as trivial, the case where 7, is bounded above by 1+ 1/d,
because the intersection of the sets J;’T‘n then has full Lebesgue measure in R?, as
a consequence of Corollary 7

COROLLARY 10.4. Given a sequence (a,)n>1 of points in R? and a sequence
(Tn)n>1 of real numbers, let us consider

Ji = ﬂ d and Te =sup7, > 1+ 1/d.
n>1
Then, the set Jq is either ni1)/r, -describable or ((d + 1)/7.)-describable in R?
depending on whether or not the supremum T, is attained, respectively.

PRrROOF. Let A be the set of all integers n > 1 such that 7, > 1+ 1/d. Our
assumption on 7, implies that A/ is nonempty. Moreover, 7, is also the supremum
of 7, over n € N'. Now, Proposition [0.2] yields on the one hand

M(Jg.., RY) DM < N Jz’;n,Rd> .

neN

On the other hand, let us consider a gauge function g that is minorizing in R? for
the intersection over n € N of the sets J:il,:n' Due to Corollary the intersection
over n € N\ VV of these sets has full Lebesgue measure in R?. By Propositions
and , any gauge function is minorizing in R? for this set, and so is ¢ in
particular. This shows with Theorem that g is minorizing for Jg .. Hence,

m(Jd7*,Rd)Qm< Jin R )
neN

Proposition and Corollary [10.3]enable us to appropriately express the right-
hand side of either of the two above inclusions in terms of either &(n(1y/-,) or
&((d+ 1)/7.), depending on whether or not the supremum 7, is attained, respec-
tively. To conclude, it suffices to invoke Lemma along with Lemma in
the first case, and Lemma in the second. O

Where 7, is infinite, we deduce from Corollary that the intersection of the
sets Jg*;n is 0-describable in R%. By Corollary its Hausdorff dimension is thus
equal to zero, as announced without proof at the end of Section [7.3.4

10.2.3. Inhomogeneous Liouville points. Note that the mapping 7 — Jg
is decreasing. In the spirit of the end of Section[0.3.3] this prompts us to introduce

Ly= (] LJ&.
T>141/d
The monotonicity property satisfied by the sets Jg., shows that Lg coincides for
instance with the intersection over all n > 1 of the sets Jan- Moreover each of

these sets is n(q41)/n-describable in R?, as a consequence of Corollary We
are in the setting of Proposition with the infimum being equal to zero and not
being attained. This yields the next statement.
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COROLLARY 10.5. For any point o € R%, the set L§ is 0-describable in R¢.

The complete description of the size and large intersection properties of the set
LY then follows from Theorem [9.2} Moreover, we deduce from Corollary [9.3] that
this set has Hausdorff dimension equal to zero and packing dimension equal to d in
every nonempty open subset of R¢.

Let us now establish a connection between the set Ly and a natural extension to
the inhomogeneous and multidimensional setting of the notion of Liouville number.

DEFINITION 10.1. Let a be a point in R%. A point 2 in R? is called a-Liouville
if 2 does not belong to Q** and if for any integer n > 1, there exists an integer
g > 1 and a point p € Z? such that

1

o "

-
.
q

For o = 0 and d = 1, we obviously recover the condition that defines Liouville
numbers. Excluding the points in Q% from this definition is analogous to excluding
the irrationals from the classical definition of Liouville numbers. In fact, this ensures
that for each integer n > 1, there are infinitely many pairs (p, ¢) such that the above
inequality holds. As a consequence, the set of a-Liouville points in R? is equal to
the set L \ Q%“. As shown by the next statement, removing the points in Q%
does not alter the describability properties of the set L§.

COROLLARY 10.6. For any point o in R?, the set Ly \ Q% of all a-Liouville
points in R? is 0-describable in R?.

PROOF. The set Rd @ is clearly a Lebesgue-full G- subset of R?. Owing to
Pr0p051t10ns and , it thus belongs to the class G°(R?), and in fact to all the
classes G9(R“ for g in Qi In conjunction with Proposition and Corollary
this implies that

m(LS\ Q4% RY) NG =m(LS,RY) N & = &(0).
In addition, the same results straightforwardly show that
(LS \ @1, RY) 2 (LG, RY) = (0)".
We conclude with the help of Lemmas m and [9 . O

Let us mention a noteworthy consequence of Corollary Let us consider
an arbitrary gauge function g in &(0). Then, Theorem shows that the set of all
a-Liouville points in R%, namely, L\ Q%> belongs to the large intersection class
G9(R?). Now, for any given point z in R, the mapping y — x — y is obviously
bi-Lipschitz. We deduce from Theorem that the set

(Lg\ Q") N (2 = (LG \ Q"))

also belongs to the class G9(R?). As a result, there are uncountably many ways of
writing a give point z in R? as the sum of two a-Liouville points. This substantially
improves on a result by Erdds [25] according to which any real number may be
written as a sum of two Liouville numbers. Of course, many variations are possible
as one may freely replace y — = — y above by any bi-Lipschitz mapping, or even a
countable number thereof.

Finally, let us also point out that the set of Liouville numbers, i.e. the set Lg
in the above notations, also comes into play in the theory of dynamical systems,
especially in the study of the homeomorphisms of the circle, see [19] for details.
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10.3. Approximation by algebraic numbers

10.3.1. General describability statement. The purpose of this section is
to continue the analysis initiated in Section[7.4] Let us recall that the collection of
all real algebraic numbers is denoted by A, the naive height of a number @ in A is
denoted by H(a), and the set of all real algebraic numbers with degree at most n
is denoted by A,,. Moreover, a result due to Beresnevich shows that for any n > 1,
the pair (A,, H,) is an optimal regular system in R, where the appropriate height
function is given by , that is,

H(a)n+1

Hy(a) = —FF7—,
(a) (1+ o)) +D)

see Theorem [7.5] This result already enabled us to describe the elementary size
and large intersection properties of the set defined by (168]), specifically,

Wny ={z R ||z —a| <¢(H(a)) forim.acA,},

where 1 is any positive nonincreasing continuous function defined on [0, 00), see
Theorem for a precise statement. In particular, we recovered a result due to
Beresnevich [2], according to which the set 2, has full Lebesgue measure in R
when the integral

IW:/O hip(h) dh

is divergent. The situation is now parallel to studied in Section To be spe-
cific, the description of the size and large intersection properties of the set 2, . is
trivial when I, ,, diverges, and so we rule out this situation. Assuming that I,
is convergent, we infer that 1) tends to zero at infinity. Finally, as the set 2, , is
unchanged when assuming that the height of the approximating algebraic numbers
exceeds a fixed threshold, we are further allowed to restrict our attention to the
case in which ¢ is valued in (0, 1].

Accordingly, we assume from now on that the integral I,, ,, is convergent and
that the function 4 is valued in the interval (0, 1]. The proof of Theoreminforms
us that 2, 4 is very close to sets of the form , namely,

F, = {xeRd ’ |z —a| < p(H(a)) forim.ac A},

when the underlying optimal regular system (A, H) is equal to (A,, H,) and the
function ¢ is well chosen. In fact, (169) shows that

oo
(4 Foo €My € By,
k=1

where ¢, (n) = 1(kn*/ (D) for any real number 7 > 0 and any integer k > 1. We
deduce from Propositions [0.2] and [9.3] that

m(F,,,RY).  (191)

DL

M(Ayy 0, RY) D M(E,,, RY) and m(2y, 4, RY) D

k=1

Our intent is now to apply Theorem [9.4]to all the sets F,, , so as to obtain a simple
expression for the majorizing and minorizing collections that come into play here.
We first need to mention that the integrals I,,, defined as in (152)), namely,

I, =/ or(n) dn
0

are all convergent; in view of (170)), this property is indeed equivalent to the con-
vergence of the integral I, ,,. Moreover, we are enticed to introduce in R; the
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measures n,, defined as in (190). However, similarly to Section our results
will be stated in terms of 7, so we rather introduce the measure n,, ,, satisfying

() o) = [ 1 ()
(0,1] 0
for any nonnegative Borel measurable function f defined on (0,1]. A change of
variable as in shows that all the sets &(n,,, ) coincide with &(n,, ). Applying
Theorem we deduce that for any k > 1, the set F,,, is n, y-describable in R%.
Then, making use of , we end up with

My, RY) D B(npp)®  and  m(App, RY) D B(ny0),

and it suffices to invoke Lemmas [9.3(|2)) and to secure the following major im-
provement on Theorem |7.6

THEOREM 10.4. Let n be a positive integer and let v denote a positive nonin-
creasing continuous function defined on [0,00), valued in (0,1] and such that the
integral I, 4 converges. Then, the set U, y s Wy, -describable in R.

Combined with Theorem the previous result yields a complete description
of the size and large intersection properties of the set 2, 4. In particular, we
recover the characterization of the Hausdorff g-measure of the set 2, ,, for any
gauge function g, that was obtained independently by Beresnevich, Dickinson and
Velani [4], and by Bugeaud [10]. To be specific, for any gauge function g and any
nonempty open set V C R,

oo if >, h"gi(v(h)) = o0
0 if >, h"g1(¢(h)) < co.

We also used here the obvious fact that g € &(n,, ) if and only if the above series
diverges, owing to the monotonicity of ¢ and that of g; near the origin. Similarly,
we recover in addition the complete description of the large intersection properties
of the set 2, , that was obtained in [18].

Hg(ﬁn,w N V) =

10.3.2. Koksma’s classification of real transcendental numbers. Let
us now concentrate on the case in which the function v is of the form h + h=%~1
on the interval [1, 00), for some real number w > —1. In order to stress on the role
of w and ensure some coherence with Koksma’s notations, the set 2,  is denoted
by K*  in what follows, namely,

K., = {x eR ’ |t —a] < H(a)™@" forim.ac An} )

Furthermore, to complete the definition of ¥, we suppose that it is constant equal
to one on the interval [0, 1]. We then clearly have

{In7¢<oo = w>n

(1) = 6(n(n+1)/(uz+1))a

where the measure n(,41)/(+1) is again defined as in (183). We then readily deduce
the next statement from Theorems and

COROLLARY 10.7. For any integer n > 1 and any real parameter w > —1, the
following properties hold:

(1) if w <mn, then the set K, ,, has full Lebesgue measure in R ;
(2) if w > n, then the set K, , is Nny1)/(wt1)-describable in R.



196 10. APPLICATIONS TO APPROXIMATION

This result will be used to comment on a classification of real transcendental
numbers that is due to Koksma [41] and that we now present. First, it is clear that
the mapping w — K, , is nonincreasing; for every real number z, we thus naturally
introduce the exponent

wi(z) =sup{w > -1z € K,*l’w}.

Note that when n = 1 and x is irrational, one essentially recovers the irra-
tionality exponent defined by . Indeed, as observed in Section the set Ay
coincides with @Q, and writing an element a € A; in the form p/q for two coprime
integers p and ¢, the latter being positive, we have H(a) = max{|p|,¢}. It is then
easy to check that for all w > 0,

Kiw - leerl \Q - ﬂ \L Kik,wfw
e>0

and therefore that for any irrational number z,
wi(z) =7(x) - 1.

Koksma introduced a classification of the real transcendental numbers x which
is based on the way the exponents w(x) evolve as n grows. This amounts to
studying how the quality with which a real number x is approximated by algebraic
numbers behaves when their degree is allowed to increase. Specifically, let us define

*
w'(z) = linljup W"T(m)
n o0

Koksma classifies the real transcendental numbers x according to whether or not
w*(x) is finite, see [13] Section 3.3]. In the first situation, that is, if w*(z) is finite,
he calls z an S*-number. Besides, let us mention that a result due to Wirsing [62]
shows that a real number z is transcendental if and only if w*(z) is positive, see [13].

As we now explain, Corollary[I0.7]entails that Lebesgue-almost every real num-
ber z is an S*-number satisfying w(z) = n for every n > 1. In fact, for any real
parameter w > 0, let IA{;’;w denote the set of all real numbers z for which the
exponent w;: () is bounded below by (n + 1)w — 1. Observing that

I?:;,w = ﬂ \L K:L,w/

w'<(n+1l)w—1

we deduce from Corollary that the set IA(:,W has full Lebesgue measure in R
when w < 1, and Lebesgue measure zero otherwise.

Our aim is now to describe the size and large intersection properties of the
set qu As usual, we may exclude the trivial case in which this set has full
Lebesgue measure, and therefore suppose that w > 1. Due to the monotonicity
of the mapping w’ — K ,, we may assume in the above intersection that w’
ranges over a sequence of real numbers strictly between n and (n + 1)w — 1 that
monotonically tends to the latter value. In view of Corollary we fall into the
setting of Proposition [0.0]in the case where the infimum is not attained. We end

up with the next result.

COROLLARY 10.8. For any integer n > 1 and any real parameter w > 1, the
set Ky, is (1/w)-describable in R.

In order to make the connection with Koksma’s classification, we need to con-
sider all the integers n simultaneously. Accordingly, let us introduce the set

oo
* *
K= () K.
n=1
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When w < 1, what precedes ensures that I?:, has full Lebesgue measure in R,
and its size and large intersection properties are trivially described. Let us assume
oppositely that w > 1. Combining Corollary [10.8 with Propositions[9.2] and [0-3] we
straightforwardly establish that

M(KE,R) DG(1/w)®  and  m(KZ,R) D &(1/w).
Applying Lemmas [9.3((2) and we eventually get the following result.
COROLLARY 10.9. For any w > 1, the set K7 is (1/w)-describable in R.

Again, combining this result with Theorem we obtain a complete and
precise description of the size and large intersection properties of the set K o+, thereby
recovering results previously established in [14)}, [18]. One may also use Corollary
if only dimensional results are desired. In particular, we observe that the set K
has Hausdorff dimension equal to 1/w. We thus recover a seminal result established
by Baker and Schmidt [1].

The connection with Koksma’s classification now consists in making the obvious
remark that for any real parameter w > 0, the set

O ={r eR|w"(z) > w}

contains K. ~- In particular, we recover the fact that Q2 has full Lebesgue measure
in R when w < 1. As regards size and large intersection properties, the opposite
case is richer and is covered by the next result.

THEOREM 10.5. For any real parameter w > 1, the set Q2 of all real numbers
x such that w*(x) > w is (1/w)-describable in R.

ProoOF. First, since the set 2 contains IA(Lj, we deduce from Proposition
and Corollary [10.9] that

(%, R) 2 m(K2,R) 2 6(1/w).

Furthermore, let us consider a sequence (w},)nm,>1 of real numbers strictly between
one and w that monotonically tends to the latter value. We clearly have

2 c () U K i1

m=1n=1

By virtue of Propositions [9.2] and and also Corollary this entails that

M, R) 2 | ) MES i1y, 1B = [ (1)
m=1

m=1n=1

Indeed, each set K*

n,(n+1)w?,
Lemma that the right-hand side is equal to &(1/w)C, and we conclude thanks
to Lemmas [9.3([2]) and O

It is possible to formally let w tend to infinity in Theorem This amounts
to considering the intersection of the sets €27, in conjunction with the observation

that the intersection of the sets &(1/w) reduces to the set &(0). Using the methods
developed up to now, the reader should easily prove the next result.

_1 18 nyy, -describable in R. We finally infer from

COROLLARY 10.10. The set Q% of all real numbers x such that w*(x) = oo is
0-describable in R.

Note that, referring to Koksma’s classification, the set 2% consists of the tran-
scendental numbers = that are not S*-numbers; they are call either T*-numbers
or U*-numbers, depending respectively on whether wy (x) is finite for all n > 1, or
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infinite for from some n onwards. Let us finally mention that Koksma’s classifica-
tion is very close to that previously introduced by Mahler [44] and for which large
intersection properties also come into play, see [13], 8] for details.

10.3.3. The case of algebraic integers. As explained at the end of Sec-
tion a result due to Bugeaud [9] shows that for any integer n > 2, the pair
(Al, H,_1) is an optimal regular system in R, where A/ denotes the set of all real
algebraic integers with degree at most n, and the height function H,,_; is defined
as in , see Theorem Combining this result with the above methods, we
may obtain an analog of Theorem for the set obtained when replacing A,, by

Al in ([68), namely,

ny={r€R ||z —al <¢(H(a)) forim.acAl}.
To be specific, we already observed in Sectionthat the set Ql;%w has full Lebesgue
measure in R when the integral I, , is divergent. This case being trivial as regards
size and large intersection properties, we rather assume that I,,_; , is convergent.

Then, adapting the methods leading to Theorem we end up with the fact that
the set Q(;w) is n,,—1 y-describable in R.



CHAPTER 11

Applications to random coverings problems

Similarly to Chapter the purpose of this chapter is to review some examples
introduced before and, using the machinery of describable sets introduced in Chap-
ter [0} to give a precise and complete description of the size and large intersection
properties of the involved sets. We focus here on the examples from probability
theory studied essentially in Section [6.5

11.1. Uniform random coverings

This section is a sequel to Section Throughout, U denotes a nonempty
bounded open subset of R¢ and (Xn)n>1 denotes a sequence of points that are
independently and uniformly distributed in U. Let us recall from Theorem [6.13]that
with probability one, the sequence (Xy),>1 is uniformly eutaxic in U. Moreover,
let us consider a nonincreasing sequence r = (ry,),>1 of positive real numbers. We
wish to detail the size and large intersection properties of the random set

Fr:{xERd|\fon\<rn fori.m.nzl}.

Note that this set is equal to that obtained when choosing t = 1 in . As
usual, we exclude the case in which the above set has full Lebesgue measure in U,
because the size and large intersection properties are then trivial. As mentioned
in Section m this case is obtained when the series ) rd diverges, as a simple
consequence of the Borel-Cantelli lemma and Tonelli’s theorem.

We therefore suppose from now on that the series )" rd converges. We see
that the sequence (r,,),>1 then converges to zero and that the set F} is unaltered
when removing a finite number of initial terms. Without loss of generality, we thus
also assume from now on that the real numbers r,, all belong to (0, 1]. The material
of Section prompts us to consider the measure in R4 given by , namely,

o0
n, = E Op,, -
n=1

In the present situation, Theorem [0.3] turns into the following result.

THEOREM 11.1. Almost surely, for any nonincreasing sequence r = (T )p>1 i1
the interval (0,1] such that >, 7% converges, the set Fy is ny-describable in U.

n

In combination with Theorem[9.1} the above result yields a precise and complete
description of the size and large intersection properties of the random set F; ; such
a description was first obtained in [2I]. Furthermore, as far as dimensional results
are concerned, Corollary is sufficient. By way of illustration, let us apply this
result here. Note that the exponent associated with the measure n, through
is nothing but the critical exponent s, for the convergence of the series > 7y that
is defined in the interval [0, d] through the condition (109), namely,

§< 8 = Y, .Th =00
§>85 = 1T <00,

199
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Corollary now implies that almost surely, for any nonempty open set V C U,
dimg(F, NV) = s;
dimp(F, NV)=d
F. e g (V),

where the last two properties are valid under the additional assumption that s, is
positive. We thus recover a property briefly mentioned after Corollary

11.2. Poisson random coverings

This section is a follow-up to Section Given a measure v € R and a
nonempty open set U C R? we consider on U, = (0,1] x U a Poisson point
measure IT with intensity v ® £¢(- N U), and furthermore the set

/U 1{\y7z|<r} H(d?“, dl‘) = OO} .

+

Fl,:{yeRd

Note that this set is equal to that obtained when letting ¢ = 1 in . We use
here the notation F), to stress the dependence on v. Of course, there is no loss in
generality in assuming that ¢t = 1, because replacing r* by r amounts to replacing
v by its pushforward under the mapping r — 7¢, and our analysis will be valid for
all measures v. Our main result is the following full and precise description of the
size and large intersection properties of the set F),. We recall from that the
measure v belongs to Ry if and only if

(v, = 1) = / rdv(dr) < oc.
(0,1]

THEOREM 11.2. For any measure v € R and a nonempty open set U C R?,
the following properties hold:
o if v & Ry, then the set F,, almost surely has full Lebesgue measure in U ;
o if v € Ry, then the set F, is almost surely v-describable in U.

Before establishing Theorem[T1.2] let us make some comments. The description
of the size and large intersection properties of the set F), follows indeed from the
combination of that result with Theorem As usual, if one is only interested
in dimensional results, Corollary is enough, and actually implies that with
probability one, for any nonempty open set V C U,

dimg(F, NV) =s,
dimp(F, NV)=d
E, € g (V),
where the last two properties hold if s, is positive. We thus recover a result shortly

mentioned after the statement of Theorem Here, the exponent s, is defined
by the following integrability condition:

s<s, = r’v(dr) = oo
(0,1]

5s>s, = ru(dr) < co.
(0,1]
Let us mention in passing that, as already observed in Section[6.5.2]and as suggested
by the last property, F,, is almost surely a Gs-subset of R,
With that level of generality, Theorem does not appear anywhere in the
literature. However, in dimension d = 1, results of the same flavor have been ob-
tained in [20] with a view to studying the singularity sets of Lévy processes. Similar
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results are also used in [22] to perform the multifractal analysis of multivariate ex-
tensions of Lévy processes; this also corresponds to the case where d = 1, but the
approximating points are replaced by Poisson distributed hyperplanes.

The remainder of this section is devoted to the proof of Theorem Since
it is quite long, we split it into several parts.

11.2.1. Reduction to the bounded case. We begin by reducing the study
to the case in which the ambient open set is bounded. To this end, we adopt a
strategy similar to that employed in the proof of Theorem Specifically, for
any bounded open subset of U, let us introduce the set

FY = {y e R? /v 1fy—o|<ry H(dr,dz) = oo}

A
defined by restriction from F, as in (143)), and let us recall from Lemma that
(- NV,) is a Poisson point measure on V; with intensity v® £4(- NV). Moreover,
for any integer ¢ > 1, the sets U) defined by (146)), namely,

UY = {2 cUNB(0,0)|d(z R\ (UNB(0,0))) > 1/¢}

form a nondecreasing sequence of bounded open sets with union equal to U, and

we get from (147) that

F,nU=JtE nu®). (192)
=1
In addition, there exists an integer £y > 1 such that U%°) is nonempty, and in fact
all the subsequent sets U are nonempty as well.

Let us assume that Theorem holds for bounded open sets, and let us begin
by supposing that the measure v is not in R4. Then, for any ¢ > ¢, with probability
one, the set £V is Lebesgue-full in U®). We readily deduce from and the
basic properties of Lebesgue measure that F,, is almost surely Lebesgue-full in U.

Let us now suppose that v is in Ry4. Then, for any ¢ > £y, with probability one,

any gauge function in Q5(V)C is majorizing for FY “inu®, Hence, with probability
one, for any such gauge function g, we have

(o)
HI(F,NU) < Y HIUES nU®) =0,
=ty
because of (192)) and the fact that the Hausdorff g-measure is an outer measure. In
other words, we have established that

as.  M(F,,U)D6w)E.
Furthermore, we also know that for any ¢ > fy, with probability one, any gauge
function in &(v) is minorizing for FY “ 0 UO, Thus, with probability one, for
any such gauge function g, each set Flf](e) with £ > £y belongs to the class GI(U®).

By Definition [8.2] this means that for any d-normalized gauge function h < g4 and
any open set U C U, we have

M(EYY nU®O AT = M (UO N D),

because U® N U is then an open subset of U®). The sets in the right-hand side
are nondecreasing with respect to £ and their union is equal to U. Owing to ,
the sets in the left-hand side satisfy the same monotonicity property, with an union
equal to F, N U. We now use the fact that Proposition holds for the outer
measure M" even if it need not be regular, see [51, Theorem 52]. We end up with

ME(F,nT) = ML(D).
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We have thus proved that with probability one, for any gauge function g in &(v),
the set F,, belongs to the large intersection class G9(U). As a result,

a.s. m(F,,U) D &(v).

To conclude that the set F), is almost surely v-describable in U, it suffices to apply
Lemmas [9.1(2)) and The upshot is that we may assume in what follows that
the open set U that comes into play in the statement of Theorem is bounded.

11.2.2. Integrability with respect to a Poisson measure. The proof will
make a crucial use of the following result on the integrability of gauge functions
with respect to Poisson random measures.

LEMMA 11.1. Let v be a measure in Ry, let U be a nonempty bounded open
subset of R?, and let NV denote a Poisson point measure on the interval (0,1] with
intensity equal to LY(U)v. Then, with probability one,

NVeRs and  B(NY)=068().

In order to establish Lemma let us begin by proving that NV is in Ry
with probability one. We observe that N¥ must have finite total mass almost surely,
because its intensity has infinite total mass, since v is in R4. Moreover, evaluating
the Laplace functional of NV at the functions r — @ 7¢, for all § > 0, we get

ex — r¢NY (dr =ex L feferd v(dr) | .
p< G/M NV (d >)] p< c <U>/(0’1]<1 Ju(d >>

We obviously have 1 —e™* < z for all z € R. Using this bound twice, we deduce
from the above equality that

1 —exp | — rdNY (dr
(oo )

Given that v belongs to Ry, the right-hand side is finite. In addition, as 6 goes to
zero, the random variable in the expectation monotonically tends to the integral of
r — r? with respect to NV. We deduce from the monotone convergence theorem
that this integral has finite expectation. Hence, with probability one,

E

E

< LYU r%u(dr).
< <>/(011] (dr)

/ rINY(dr) <oco and  Vpe (0,1] @yu(p) = NY([p,1]) < co. (193)
(0,1]

As a consequence, the Poisson point measure NV is almost surely in Ry. It remains
to prove that the two sets &(NY) and &(v) coincide with probability one. As we
now show, this follows from the next property:

as.  Oyu(p)~LYU)D,(p) as p—0, (194)

where @, (p) is equal to v([p,1]), as defined by (L39).

Let us suppose that holds and let us consider a gauge function g in &>°
with d-normalization denoted by g4 as usual. The function g4 is nondecreasing and
continuous near zero, but need not satisfy this property on the whole interval [0, 1].
However, g4 clearly coincides near zero with some function denoted by ¢ which is
both nondecreasing and continuous on the whole [0, 1]. Moreover, due to and
the observation that g4 is bounded on (0, 1], we have

g€ 6(v) = /(0 : g(r)yv(dr) = oo.

Also, on the almost sure event on which (193 holds, the above characterization
remains valid if v is replaced by the Poisson point measure NV.
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Now, similarly to the proof of Theorem let us introduce the Lebesgue-
Stieltjes measure associated with the monotonic function g. Specifically, let ¢ be
the premeasure satisfying ¢((r,7']) = g(r’) — g(r) when 0 < r <’ <1, and let (,
be the outer measure defined by . Theorem shows that the Borel sets con-
tained in (0, 1] are (,-measurable, and we may thus integrate locally bounded Borel-
measurable functions with respect to (.. Adapting the proof of Proposition [2.9|and
using Proposition , one may prove that (, coincides with the premeasure ¢
on the intervals where it is defined, and in particular that {.((0,r]) = g(r) for any
real number r € (0, 1]. Using Tonelli’s theorem, we deduce that

qg(r)v(dr) = D, «(dp),
&@ﬁu<> / (p) C.(dp)

(0,1]

and that the same property holds when v is replaced by NV. As a consequence,
the sets &(NY) and &(v) coincide with probability one if holds.

It remains us to establish (194). To proceed, let us introduce the countable set
Dy of all real numbers r € (0,1] such that v({r}) > 1, and also its complement in
(0, 1], denoted by D;. Then, for all £ € {0,1} and p € (0, 1], let

(I)V,E(p) =v(DeNp,1]) and (I)NU,Z(p) = NU(De N [p,1]).

Note that there necessarily exists an index £ such that v(Dy) is infinite. Moreover,
if v(Dy) is finite, @, ¢(p) tends to a finite limit as p goes to zero, and yv 4(p) as
well, with probability one. Hence, the proof reduces to showing that for any index
¢ € {0,1} such that v(Dy) is infinite, we have

a.s. Dyu(p) ~ LYU) Dy e(p) as p— 0. (195)

For any £ > 0 and any p > 0 small enough to ensure that ®, ¢(p) > 0, we assert
that the following bound holds:

_Oxvilp) o (3

This is indeed a consequence of Bernstein’s inequality for integrals with respect
to compensated Poisson point measures. To be specific, if S is a locally compact
topological space with a countable base, 7 is a positive Radon measure thereon,
and II is a Poisson point measure with intensity m, then for any real-valued Borel
measurable function f defined on S such that

M = sup|f] and VZ/deTf‘
s s

are both positive and finite, we have for all positive values of &,

3¢2

The above bound may be obtained for instance with the help of [33], Corollary 5.1]
or [50, Proposition 7].

Let us consider a decreasing enumeration (an)n>1 of Dy, and let us suppose
that v(Dy) is infinite. The sequence (a,),>1 then necessarily converges to zero. In
addition, implies that for all integers m,n > 1,

Dyu olay) 1 3L4U)n
Pl|l—72—"—-1>— ] <2 - 197
QNWWwW) 20 ) 22 Gmrom)
because P, 0(a,) = v({a1,...,a,}) > n. Summing these inequalities over n for

each fixed value of m, we infer from the Borel-Cantelli lemma that for any integer
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m > 1, with probability one, for all n large enough,

1 (I)NU O(an) 1

R g G LA LA g [ S 198
m — LUU) D, o(an) — m (198)
For any real number p € (0, 1], let n(p) stand for the number of integers n > 1 such
that a, > p. Note that ®,¢(p) coincides with @, (an(,)), and the same property
holds when v is replaced by NY. Hence, if p is sufficiently close to zero, we may
replace a,, by p is the above inequalities. As a result,

1—

. Pyv o(p)
as. VYm>1 limsup | —2———
p—0 | LUU) @u0(p)

and we obtain ([195)) for £ = 0 by letting m — oo.
Let us now assume that v(D;) is infinite. For each integer n > 1, let us define

pn=sup {p € (0,1] | @,,1(p) 2 n}.
We thus obtain a nonincreasing sequence in (0,1) that converges to zero. In ad-
dition, ®,1(pn) > n for all n > 1. Applying again, we infer that the
bounds (197) still hold when a,, is replaced by p,, and ®xv , and @, are re-
placed by ®xv ; and @, 1, respectively. Using the Borel-Cantelli lemma, we deduce
likewise that holds when the same substitutions are performed. On top of
that, by definition of D; and p,,, we have

n < (I)l/,l(pn) =v(Dy N {pn}) + him ) (I)l/,l(p) <l+n.
plon

_1§ ’

1
m

Making use of the monotonicity of ®yxv ; and ®,, 1, we conclude that with proba-
bility one, for all n large enough and all p € [pn11, pnl,

n 1 @NU 1(p) n—+ 2 1
1-— )< : < 14+ —
n+2 ( m) T LYU) D, a(p) T n + ’

m
and finally that (195]) holds for £ = 1. The proof of Lemma is complete.

11.2.3. Proofin the bounded case. It remains us to establish Theorem[I1.2]
in the case where the open set U is bounded. Given a measure v in R, let NV denote
a Poisson point measure on (0,1] with intensity £4(U)v. Lemma ensures
the existence of a nonincreasing sequence (R,,),>1 of positive random variables that
converges to zero such that holds with probability one, namely,

a.s. NY = i(SRn.
n=1

Moreover, let (X,,),>1 be a sequence of random variables that are independently
and uniformly distributed in U, and are also independent on NY. Lemma [6.5((2)
now implies that the random point measure defined on U, by (145)), specifically,

U
NY =" 6r, x.)
n=1

is Poisson distributed with intensity v ® £4(- N U). Hence, the random point
measures II and NH share the same law. The upshot is that we may assume that II
is replaced by NZ in the definition of the random set F,. This enables us to write
this set in the alternate form

FV:{yERd’|y—Xn|<Rn fori.m.nzl}.

On top of that, Theorem [6.13| ensures that with probability one, the sequence
(X1n)n>1 is almost surely uniformly eutaxic in U.
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Evaluating the Laplace functional of the Poisson point measure NV at the

function r — r?, we obtain
E lexp <— Z R’i) = exp (—Ld(U)/ (1- e_’”d) V(dT)) .
n=1 (0,1]

Therefore, if the measure v is not in R4, the integral in the right-hand side is
infinite, so that the expectation in the left-hand side vanishes. This means that the
series > R¢ diverges almost surely, and thus that the sequence (R,),>1 belongs
to the set P4 characterized by . By Definition the set F, almost surely
has full Lebesgue measure in U.

Lastly, let us deal with the case where v belongs to Ry. We infer from
Lemma that with probability one, the Poisson point measure NY belongs
to Rg, so that the series ) R? converges. Applying Theorem we then deduce
that with probability one, the set F,, is NY-describable in U. However, Lemma
ensures that the sets &(NY) and &(v) coincide almost surely. It follows that F, is
almost surely v-describable in U.







CHAPTER 12

Schmidt’s game and badly approximable points

12.1. Schmidt’s game

We shall study the following game introduced by Schmidt [55]. Let us consider
two real numbers «, 5 € (0,1) and a subset S of R?. Two players, called Alice and
Bob, successively choose nested closed balls of R?, namely,

Bi1D2A3 DBy DA D ...
with the condition that for any integer i > 1,
|A;| =a|B;]  and  |Biyi| = 8lAil.

Alice picks the balls A; and Bob chooses the balls B;. Within this setting, Cantor’s
intersection theorem ensures that intersections (7); A; and (), B; are both reduced
to the same nonempty compact set with diameter zero, a singleton denoted by {w}.
Alice wins the game if w belongs to S, and Bob wins the game otherwise. The
question now is to determine whether or not, depending on the choice of the initial
set S, there exists a strategy that Alice can follow in order to be surely the winner,
no matter how Bob plays.

More formally, for any closed ball D of R? and any real number p € (0,1),
let D,(D) denote the collection of all closed balls D’ C D such that |D'| = p|D].
For any integer ¢ > 1, let F,; be the set of all functions f defined on the i-tuples
(D1,...,D;) of closed balls of R? for which f(Dx,...,D;) € D,(D;). The strategies
that Alice can follow are defined in the next manner.

DEFINITION 12.1. Let o and £ be two real numbers in (0,1) and let S be a
subset of RY.

o We call an a-strategy any sequence of functions (f;);>1 such that f; € Fq ;
for any integer ¢ > 1.

o An a-strategy (f;)i>1 is called (o, 8;.5)-winning if for all sequences (4;);>1
and (B;);>1 of closed balls of RY,

Ai= fi(By,....B: o o
Biy1 € Dg(A;) i=1 i=1

e The set S is called («,)-winning if there exists an a-strategy that is
(o, B; S)-winning.
e The set S is called a-winning if it is (o, 8)-winning for all 5 € (0,1).

Within this formalism, a game then corresponds to the choice oftwo sequences
(A;)i>1 and (B;);>1 of closed balls of R? such that A; € Dy (B;) et Bit1 € Ds(A;)
for alli > 1. An a-strategy represents the way with which Alice will choose the balls
A; given the balls By, ..., B; previously chosen by Bob. If S is an («, 8)-winning
set, and if (f;);>1 denotes an a-strategy that is («, 8;.5)-winning, then Alice will
always win if she systematically picks the balls A4; in the form f;(By,..., B;).

The following notion of chain, which keeps track of the balls chosen by Bob,
will also play a useful réle in the sequel.

207
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DEFINITION 12.2. Let (B;);>1 denote a sequence of closed balls of R¢ with
positive diameter and let (f;);>1 be an a-strategy.
e For any integer j > 1, we say that (B,...,B;) is an (f1,..., f;)-chain if
forallie{1,...,5—1},

Biy1 € Dp(fi(Bu, ..., By)). (199)
o We say that (B;);>1 is an (f;)i>1-chain if (199)) holds for any j > 1.

It is clear from the above definitions that if the a-strategy (f;)i>1 is (o, 8;5)-
winning, then the intersection of any (f;);>1-chain is a singleton contained in S.
Moreover, if (B;);>1 denotes an (f;);>1-chain, then |B; 1| = af|B;| for all ¢ > 1.

In the case where a < 1/2, there exists a-winning sets that do not coincide
with the whole R, see for instance the important example of badly approximable
points discussed in Section[12.2| below. However, it is quite intuitive that a-winning
sets have to be somewhat large. This intuition is confirmed by the following result.

THEOREM 12.1. Let a be a real number in (0,1), and let S be an a-winning
subset of R%. Then, for any nonempty open subset U of RY,

dimp (S N U) = d.

PRrROOF. Let 8 € (0,1/2) and let m denote the maximal number of disjoint
closed balls with radius 2 that may be included in the closed unit ball of R¢. One
easily checks that x < (28)9m < 1 for some real x € (0,1) that depends on the
norm the space R is endowed with. Moreover, the set S is (, 8)-winning, so there
exists an a-strategy (fi);>1 that is («, §8; S)-winning.

The proof makes use of the setting of the general Cantor construction intro-
duced in Section The construction is indexed by the m-ary tree T, formed
by the words of finite length over the alphabet {1,...,m}. We define as follows a
collection (I,,)yer,, of closed balls of R? satisfying the following properties:

e for any w in T},, the balls I, ..., Iy, are disjoint and included in I, ;

e for any integer j > 1 and for any distinct u and v in {1,...,m}?, the
distance between I,, and I, is at least (a3)7|I5|;

e for any sequence (;);>1 of integers between one and m, the sequence
(I, ..¢.)i>1 is an (f;)i>1-chain.

We proceed by induction on the height of the tree. First, the ball Iy indexed
by the root is an arbitrary closed ball with positive diameter that is contained in
U. Second, the ball I contains m disjoint closed balls with diameter 2af|Ig|. The
balls concentric to them with half their radius are denoted by Iy, ..., I, ; they have
diameter af|Iz| and are separated by a distance at least af|Iy| as well. It is clear
that each of these balls forms an (f;)-chain; in fact, every closed ball of R? is an
(f1)-chain. Then, let us consider an integer j > 1 and let us assume that the balls
I, for u € T, with length at most j, have been defined appropriately. In particular,
the set A; = f;(Iy,,...,1,) is a closed ball of R? with diameter a|I,|. Therefore, it
contains m disjoint closed balls with diameter 23|I, |, so that we can find m balls,
denoted by Iyi, ..., Ium, in the collection Dg(A;) that are separated by a distance
at least af|I,|. For each k, the (j + 1)-tuple (Iy,,..., Iy, Luk) is an (f1,..., fj+1)-
chain. This implies in particular that a8|l,| = (aB8)|L.,| = (aB)?Tt|I4|. We thus
have built appropriately the balls indexed by the words with length j + 1.

Now, given that the a-strategy (fi)i>1 is (@, 8;S)-winning, the limiting com-
pact set K defined by is contained in S. Indeed, for any point z in K, there
exists a sequence (&;);>1 in {1,...,m} such that « belongs to the ball I, ¢, for
any ¢ > 1; since these balls form an (f;);>1-chain, their intersection is a singleton
contained in S, and this singleton is necessarily equal to {z}.
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Here, the sequence (¢;);>1 defined by is given by &; = (aB)?|I5] for all
j > 1, and the sequence (m;);>1 defined by is constant equal to m. In
particular, the sequence (¢;);>1 is decreasing and the sequence (m;);>1 is positive.
We may therefore apply Lemma this yields the lower bound

(m1 .. .m]‘_l)

1
dimg K > lim inf 2

700 —log(m/ ;)

Recalling that K is included in SNU and replacing €; and m; by the above values,
we deduce that

. . log(m/~") log m
d SNU)>1 f ; = ’
imp ) > m in —log(m'4(aB)i|l]) ~ [log(ap)]

We conclude by recalling that m > x(28)~%, and finally by letting the parameter
B go to zero. O

12.2. The set of badly approximable numbers

We consider in this section an emblematic example of winning set: the set,
denoted by Bad;, of badly approximable numbers that we defined in Section [1.3
The main result is the following, and is proven at the end of this section.

THEOREM 12.2. The set Bady is («, 8)-winning for any pair (o, ) of real
numbers in (0,1) satisfying 2a < 1+ af.

Combined with Theorem the above result directly enables us to determine
the value of the Hausdorff dimension of the set of badly approximable numbers,
thereby obtaining a definitive improvement on Corollary

COROLLARY 12.1. For any nonempty open subset U of R, the badly approz-
imable numbers that belong to U form a set with Hausdorff dimension satisfying

dimyg(Bad; NU) = 1.

PRrROOF. If « denotes a real number in the interval (0,1/2], then for any real
B in (0,1), we have 2a < 1 < 14 af, so that the set Bad; is (a, §)-winning, by
virtue of Theorem We deduce that the set Bad; is a-winning. Its Hausdorff
dimension is therefore equal to one, as a consequence of Theorem [121] O

Corollary may be extended to badly approximable points, that is, to the
d-dimensional setting. In fact, a result of Schmidt [54] shows that the Hausdorff
dimension of the set Bady is equal to d.

The remainder of this section is now devoted to the proof of Theorem Let
us consider two real numbers o and § in the interval (0,1), and let us assume that
v =14 aff — 2« is positive. For any real number ¢ > 0, let us define

5(6) = % min {e, (aﬁ)’z%} .
First reduction of the problem. The proof of Theorem reduces to that of
the following statement.

PROPOSITION 12.1. The exists an a-strategy (fi)i>1 such that for all sequences
(A;)i>1 and (B;)i>1 of nonempty closed intervals of R satisfying

A; = fi(B1,...,By)
Biy1 € Dg(4y),

|B1] < LE’Y and Vi > 1
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the intersections (; A; and (); B; are both reduced to the same singleton {w}, where
w 1is such that
o(|B
Y(p,q) € Z x N 'wp‘> ( 21|).
q q
In order to explain how Theorem derives from Proposition let us
consider an a-strategy (f;);>1 satisfying the property given in the latter statement.
We built another a-strategy (f;);>1 as follows. Let us fix an integer ¢ > 1 and an
i-tuple (I1,...,I;) of closed intervals of R. In the situation where the condition

(200)

i «
Ll = aBllia| = ... = (@B) ] < <1 (201)

holds, we let j denote the smallest positive integer such that |I;| < afv/4, so that
7 is necessarily less than or equal to 7, and we define

F o L) = fiin (I, L),

Otherwise, we decide that f*(I1,...,I;) is an arbitrary element of D, (I;), e.g. the
interval concentric to I; with length « times that of I;.

Let us show that the a-strategy (f;)i>1 is (o, 8; Bad; )-winning. Let us consider
two sequences (A;);>1 and (B;);>1 of closed intervals of R such that for all ¢ > 1,

A = fz* (Bl7 . ,Bi) and By € DB(AZ) (202)

We need to show that the intersection of the intervals A; or, equivalently, that of
the intervals B; is contained in the set Bad; of badly approximable numbers. To
proceed, we may obviously assume that the intervals A; and B; are nonempty; the
aforementioned intersection is thus reduced to a singleton {w}. We now observe
that (B;);>1 is an (fi);>1-chain. In particular, |B;| = (a8)'"!|By| for all i > 1.
Letting j denote the smallest positive integer such that |B;| < afvy/4, we deduce
that is satisfied by the intervals By, ..., B; as soon as i > j. As a consequence,
in view of , the intervals AZ =A;1;—1 and Bg = Bj4;—1 verify for all { > 1,

Az:fZ(BiaaBg) and Bf+1EDB(A3)’

in addition to |BJ| < afy/4. Applying Proposition 12.1] we deduce that w sat-
isfies (200) with §(|B]|), that is, 6(|B;|) instead of §(|By|) in the bound. How-
ever, these two values coincide. Clearly, this is the case if |B;| < afv/4, because
7 = 1 then. Moreover, in the opposite situation, the minimality of j ensures that
|Bj| > (af3)?v/4, so that

6(1B,) = T min {|B;1. (aB)* } = T min {|Bu, (aB)* ] } = (| B1):

As a consequence, w satisfies (200). As a consequence, w is badly approximable,
i.e. belongs to the set Bad;.
Since the a-strategy (f;)i>1 is («, 5;Bad;)-winning, the set Bad; is (o, 8)-

winning, and Theorem holds. We are thus reduced to establishing Proposi-
tion [[2.11

Second reduction of the problem. To proceed with the proof of Proposition [12.1
let us consider the unique integer ¢ > 1 such that

afy <
— <

A

2 b)

along with the unique positive real number R such that R? (aﬁ)t =1, and let us
introduce the following definition.

(ap)’ <
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DEFINITION 12.3. Let us consider an integer £ > 0 and a real number ¢ in
(0,aBv/4]. A nonempty closed interval I of R is called (k,£)-appropriate if its
length satisfies |I| = R~2*¢ and if the following holds:

Veel VY(pq) Py ¢< Rt = ‘xq>

It is elementary and useful to observe that any closed interval I with length in
(0, B~/4] is (0, |I|)-appropriate. The proof of Proposition now relies on the
following result.

PROPOSITION 12.2. For any integer k > 0 and any real ¢ € (0, af~/4], there are
some functions gﬁtﬂ, e ,gfkﬂ)t N Fol,...,Fazt, respectively, such that for any
nonempty closed intervals Agii1, ..., A1y and Brig1, ... Bag1)ye41 satisfying

AZ:gf(Bk 17"'7Bi)
Vie {kt+1,...,(k+1)t} . (203)
Biy1 € Dg(Ay),
the following implication holds:
Byiv1 is (k, €)-appropriate = B(it1)t+1 is (k+1,£)-appropriate.
As a matter of fact, Proposition yields functions gf which enables us to
define an a-strategy (f;)i>1 by
fi([l, PR 711) = gfk(‘lkt+1|)([kt+1, o e 711)

for any integer ¢ > 1 and any i-tuple (I1,...,I;) of closed intervals of R. Here, k is
the unique integer such that ¢ = kt + r for some r € {1,...,t}, and

ek (1) = min {R%l, OT} .

Note that the function gf"(u’““‘) belongs to F, ,, so that f; belongs to F,,; as
required. Let us now consider two sequences (4;);>1 and (B;);>1 of nonempty
closed intervals with

AZ = f’L(B17 ey B'L)
Bii1 € Dg(Ay),

|B1] < LTY and Vi>1 {
In particular, for any integer k¥ > 0, the interval Bj;y1 has length (af)** times
that of the interval B;. Thus, (| Bgi+1]) is constant equal to |By|. We deduce
that (203)) holds for all k£ > 0, with £ equal to |B;|. On top of that, the interval By is
(0,|B1])-appropriate. Applying Proposition with ¢ = |By|, we may thus prove
by induction on the integer k& > 0 that each interval Byy1 is (k,|Bi]|)-appropriate.
As a consequence, the intersection {w} of the intervals B; satisfies the following
property for every integer k > 0, every integer ¢ € {1,...,R* — 1} and every
integer p € Z,
p 0(|B1
ged(p,q) =1 = ’w‘> (‘QD
q q
This readily implies (200)), and we conclude that Proposition holds. We are
thus finally reduced to proving Proposition [12.2

End of the proof. In order to establish Proposition [[2.2] let us consider an inte-
ger k > 0, a real number ¢ € (0, aB7/4], some functions 9£t+1’ e ,gka)t belonging
to Fa,1,- - - Fant, respectively, and some nonempty closed intervals Agsi1,. .., Agq1)
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and By, - - ., Brg1)e41 satisfying (203)). Let us also assume that By is (k, £)-
appropriate. Furthermore, let us introduce the set

p_0(6) p ()
vi= [—,+ , (204)
(p,q)€Py q q2 q ?
RF<q<RF+1

and let us assume that the interval B(y41)4+1 does not meet the set Uf. Thus,
for every pair of coprime integers (p,q) such that RF < ¢ < R*! any point in
Blk+1)t+1 18 at a distance larger than 6(¢)/¢* from the rational number p/q. As the
interval Byt is (k,£)-appropriate and contains B(j41)¢+1, this actually holds for
every positive integer g less than R**1. Moreover, the length of B 41)t41 18 (aB)t
times that of Byt ; we deduce that this interval is (k + 1, £)-appropriate.

It thus suffices to find a strategy that forces the interval B(jy1)41 to fit into
Brit1\ U,f . To proceed, let us study the intersection set B+ NU ,f more precisely.
Recall that the set U,ﬁ is a union of intervals that are indexed by pairs of integers;
let us assume that there are two distinct pairs (p,q) and (p/,q’) such that the
corresponding intervals meet the set By;i11 at some point x and some point z’,
respectively. Then, on the one hand,

/

/ /

— 1

‘p _ ZLI _ Ipq /p g > — > R2(k+1) _ (aﬂ)tRf%’
q q qq aq

because the aforementioned pairs are formed by coprime integers. On the other

hand, the triangle inequality yields

’ / o(¢ ol
vt o800
2
<2 (04457> R—Qk + (Ozﬂ)ktf < OCTB’Y (Ogy +1> R—2k < aTﬂ’yR—Qk.

These bounds are due to the fact that §(¢) < (afvy/4)? and that v < 2. We
directly deduce that (af8)! < af~/2, which contradicts the choice of the integer t.
This means that, among the intervals that compose the set Uf, at most one can
meet the set Bys+1. As a consequence, the intersection set Bj11 N U,f is a (possibly
empty) closed interval with diameter at most 26(¢) R~2".

Let by¢y1 denote the center of the interval By¢qq. If we assume furthermore
that the interval Bjy¢q1 N Ulf is nonempty and centered at the left of by¢41, then its
right bound is at most

n | Bri+1 N UY|

_ o(¢
bri+1 < bppa1 +0(0)R™2F = bpypr + %|Bkt+1| <bgipr + %|Bkt+1|a

from which we directly deduce that
Biiy1 NUf C Bryyr N (—007 briy1 + %|Bkt+1|} .

Now, let AT be the function in F,; which maps every interval of the form
[c—p,c+p], with ¢ € R and p > 0, to the interval [c+ (1 —2a)p, ¢+ p]. We suppose
that A; = h*(B;) for all i € {kt+1,...,(k+1)t}. The interval Bji» is contained
in AT (Bgit1), so its left bound satisfies

| Bri+2| | Brtt1]

2
Moreover, the length of Bysio is a5 times that of By;11. As a consequence,

brito — > b1 + (1 — 2a)

B B
Buws| ,  o1Brens

b2 > brep1 + (1 — 2a) B 9

= bpty1 + %|Bkt+1|-
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The choice of the function At implies that the center of each interval B;y; is
necessarily on the right of that B;. In particular, b(11);41 is larger than or equal
to briy2, and the above lower bound on bysyo implies that the left bound of the
interval B(j41)¢41 satisfies

| Bkt1)t+1] afB)
bkt1)e+1 — % > brit1 + %|Bkt+1| - %|Bkt+l| > brip1 + %|Bkt+1|a

which finally yields

By1yt+1 € Brt+1 N (bkt+1 + %lBkt+1|7 00) .

Thanks to the previous analysis, we may now explain how to establish Propo-
sition m First, when I is a nonempty bounded interval, we let ¢(I) denote its
center. Concerning the empty set, we adopt the arbitrary convention that c(()
is equal to co. The situation detailed above thus corresponds to the case where
¢(Bgry1 N U,f) < ¢(Bgis1), and the relevant function is therefore ™. A similar
approach can be developed in the case where ¢(Bgi+1 N U,f) > ¢(Bgtt1), i.e. if the
interval By N U,f is either empty or centered on the right of bgs41. In that situa-
tion, the relevant function is the function h™ in F, ; which sends every interval of
the form [c — p, c+ p|, with ¢ € R and p > 0, to the interval [c — p,c— (1 —2a)p]. It
is now natural to define the functions gy, FETREN gfk +1ye 88 follows: for any integer
i €{1,...,t} and for any i-tuple of intervals (I3, ..., I;),

Greri(lny o 1) = Liennuty ey (1) + Liennutysenyyh ™ (1)-
It is clear that each function gﬁt 4; belongs to F, ;. Moreover, for any nonempty
closed intervals Ag¢y1,. .., Ags1ye and Brir1, ..., Big1)e41 such that (203) holds,
it results from the previous analysis that the interval By 1);41 cannot meet the set

U}, thereby being (k+ 1, ¢)-appropriate. This finishes the proof of Proposition
and in fact of Theorem [12.2
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