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Chapter 1

Markov Chains
This chapter gives an introduction to time-homogeneousMarkov chains on a countable state space.
Informally speaking, these are discrete time stochastic processes that enjoy the important property
that “the future of the process depends on its past only through its present state”. Together with
martingales, they form the two most important classes of stochastic processes and are ubiquitous
throughout Probability theory.
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1. Definition and first properties

In everything that follows, E will denote a finite or countably infinite set endowed with the dis-
crete topology. We denote byM(E) the set of finite measures on E and by P(E) the subset of
probability measures.

Definition 1.1: transition kernel

A function p : E × E → R, which we write (p(x, y), x, y ∈ E), is said to be a transition
kernel (also called a transition matrix) if

1. 0 ≤ p(x, y) ≤ 1 for all x, y ∈ E;

2.
∑
y∈E

p(x, y) = 1 for all x ∈ E.

We say that p(x, y) is the probability of going from state x to state y.

When the set E is finite, p is simply a stochastic matrix i.e. a square matrix with non-negative
entries such that each row sums up to 1. Just as for matrices, one can define the multiplication
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of a kernel by a left row vector (interpreted as a measure), a right column vector (interpreted as a
function) and multiplications of kernels together (composition).

Right multiplication. The definition above is equivalent to the assertion that for each x ∈ E,
the function y 7→ p(x, y) defines a probability density on (E,P(E)). Transition kernel acts on real-
valued function via integration: for any f : E → R+, we define p.f : E 7→ R+ by

(p.f)(x) :=
∑
y∈E

p(x, y)f(y) for all x ∈ E. (1.1)

We extend definition (1.1) to any f : E → R such that
∑

y p(x, y)|f(y)| <∞ for all x ∈ E.

Left multiplication. Given a measure µ = (µ(x), x ∈ E) ∈ M(E), we define the measure
µ.p ∈M(E) to be the image of µ via the transition kernel p:

(µ.p)(y) :=
∑
x∈E

µ(x)p(x, y) for all y ∈ E

where, for the sake of simplicity, we use the notation µ(y) in place of µ({y}). The total mass of the
measure is preserved:

(µ.p)(E) =
∑
y∈E

(µ.p)(y) =
∑
y

∑
x

µ(x)p(x, y) =
∑
x

µ(x)
∑
y

p(x, y) =
∑
x

µ(x) = µ(E).

In particular, this operation induces a mapping µ 7→ µ.p from P(E) onto itself.

Composition of kernels. Given two transition kernels p and q, we can define another kernel
denoted pq by

(pq)(x, y) :=
∑
z∈E

p(x, z)q(z, y) for all x, y ∈ E. (1.2)

To see that pq is indeed a kernel, we check that (pq)(x, y) ≥ 0 (trivial) and that∑
y∈E

(pq)(x, y) =
∑
y∈E

∑
z∈E

p(x, z)q(z, y) =
∑
z∈E

p(x, z)
∑
y∈E

q(z, y) =
∑
z∈E

p(x, z) = 1.

The identity transition kernel I is defined by I(x, y) = 1{x=y}. For n ∈ N, we define pn by induction:{
p0 := I,

pn+1 := pnp = ppn.

For anyn,m ≥ 0, we have pn+m = pnpm = pmpnwhich yields the so-calledChapman–Kolmogorov
equation for transition kernels:

pn+m(x, y) =
∑
z∈E

pn(x, z) pm(z, y).

Moreover, it follows by a trivial induction that

pn(x, y) =
∑

z1,...,zn−1∈E
p(x, z1) p(z1, z2) . . . p(zn−1, y). (1.3)
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Definition 1.2: Markov chain

Let p be a transition kernel on E. A sequence of random variables (Xn)n≥0 defined on some
probability space (Ω,F ,P) and taking values inE is said to be aMarkov chainwith transition
probability p if, for any integer n ≥ 0 and any y ∈ E, we have

P(Xn+1 = y |X0, . . . , Xn) = p(Xn, y), a.s. (1.4)

or equivalently,
P(Xn+1 = y |X0 = x0, . . . , Xn = xn) = p(xn, y), (1.5)

for all x0, x1, . . . , xn ∈ E such that P(X0 = x0, . . . , Xn = xn) > 0.

Remark 1.3

(a) Formula (1.5) involves conditional probability whereas the Formula (1.4) involves a con-
ditional expectation: P(A|X0, . . . , Xn) := E[1A|X0, . . . , Xn].

(b) The definition above is that of a time-homogeneousMarkov chain. One can also define
time-inhomogeneousMarkov chains by allowing the kernel to depend also on n but we
will not consider this case here.

(c) For a general process, the conditional law of Xn+1 with respect to X0, . . . , Xn depends,
a priori, on all these variables. But, when X is a Markov chain, this conditional law
depends, in fact, only on Xn. In particular, we can write

P(Xn+1 = y |Xn) = E[P(Xn+1 = y |X0, . . . , Xn) |Xn] (1.6)
= E[p(Xn, y) |Xn] (1.7)
= p(Xn, y) (1.8)
= P(Xn+1 = y |X0, . . . , Xn). (1.9)

This shows that the knowledge of the whole trajectory up to time n provides no useful
information over knowing only the current position in order to predict the next value of
the chain. This formalizes the idea that the future of the process depends only on its
past through its present position.

(d) Definition 1.2 makes no assumption on X0 which may be deterministic or random.

Proposition 1.4

A process (Xn)n≥0 taking values in E is a Markov chain with transition kernel p if and only if
for all n ≥ 0 and all x0, x1, · · · , xn ∈ E, we have

P(X0 = x0, X1 = x1, · · · , Xn = xn) = P(X0 = x0) p(x0, x1) p(x1, x2) · · · p(xn−1, xn). (1.10)

In particular, if P(X0 = x0) > 0, then

P(Xn = xn |X0 = x0) = pn(x0, xn).
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Proof. Assume that X is a Markov chain. We have

P(X0 = x0, · · · , Xn = xn, Xn+1 = xn+1)
= P(X0 = x0, · · · , Xn = xn) P(Xn+1 = xn+1 |X0 = x0, · · · , Xn = xn).

= P(X0 = x0, · · · , Xn = xn) p(xx, xn+1).

and formula (1.10) follows by induction from this recurrence relation. Conversely assume that
(1.10) holds and that P(X0 = x0, X1 = x1, · · · , Xn = xn) > 0. Then, for any y,

P(Xn+1 = y |X0 = x0, X1 = x1, · · · , Xn = xn)

= P(X0 = x0, X1 = x1, · · · , Xn = xn, Xn+1 = y)
P(X0 = x0, X1 = x1, · · · , Xn = xn)

= P(X0 = x0) p(x0, x1) p(x1, x2) · · · P (xn−1, xn) p(xn, y)
P(X0 = x0) p(x0, x1) p(x1, x2) · · · p(xn−1, xn)

= p(xn, y),

which proves that X is a Markov chain. The last assertion follows from (1.3) and (1.10) because

P(Xn = xn |X0 = x0) = P(X0 = x0, Xn = xn)
P(X0 = x0)

=
∑

x1,...,xn−1∈E

P(X0 = x0, X1 = x1, . . . , Xn = xn)
P(X0 = x0)

=
∑

x1,...,xn−1∈E
p(x0, x1) . . . p(xn−1, xn)

= pn(x0, xn).

Remark 1.5

The proposition shows that the law of the finite dimensional marginals of a Markov chain are
uniquely determined by the transition kernel p together with the law of its starting pointX0.
We will see later that, in fact, the whole trajectory of the Markov chain is characterized by p
and the law of X0.

Proposition 1.6

Let (Xn, n ≥ 0) be a Markov chain with transition kernel p.

(a) For any function f : E → R+, we have

E[f(Xn+1) |X0, . . . , Xn] = (p.f)(Xn).

(b) Let µn denote the law of Xn. We have, for all n,m ≥ 0

µn+m = µn.p
m.

4



(c) Let n ≥ 0 andm ≥ 1. For any y1, · · · , ym ∈ E,

P(Xn+1 = y1, . . . , Xn+m = ym |X0, . . . , Xn) = p(Xn, y1) p(y1, y2) . . . p(ym−1, ym).

In particular, if we write Yi := Xn+i, then (Yi, i ≥ 0) is again Markov chain with transi-
tion probability p.

Proof. Assertion (a) is straightforward since, by definition

E[f(Xn+1) |X0, . . . , Xn] =
∑
y∈E

f(x)P[Xn+1 = y |X0, . . . , Xn] =
∑
x∈E

f(x)p(Xn, y) = (p.f)(Xn).

To check Assertion (b), we write that, for any y ∈ E,

µn+1(y) = P(Xn+1 = y) = E[P(Xn+1 = y |X0, . . . , Xn)] = E[p(Xn, y)] =
∑
x∈E

µn(x)p(x, y) = (µn.p)(y)

which proves that µn+1 = µn.p so the formula holds for m = 1 hence for any m by a trivial in-
duction. In view of (1.10), we have

P(Xn+1 = y1, · · · Xn+m = ym |X0 = x0, · · · , Xn = xn) = p(xn, y1) p(y1, y2) · · · p(ym−1, ym),

which proves the first part of Assertion (c). Finally, to check that Y is aMarkov chainwith transition
kernel p, we observe that

P(Y0 = y0, Y1 = y1, · · · , Ym = ym) = P(Xn = y0) p(y0, y1) · · ·P (ym−1, ym),

and use the characterization of Markov chains of Proposition 1.4.

2. Examples of Markov chains

We now give some classical examples of Markov chains.

• Independent random variables. Let (Xn, n ≥ 0) be independent random variables taking
values in E, having the same distribution µ. It is easily checked that (Xn, n ≥ 0) is a Markov chain
with transition probability

p(x, y) := µ(y), ∀x, y ∈ E.

This is not the most interesting example...

• Randomwalks on Zd. Here E := Zd. Let (ξi)i≥0 denote a sequence of i.i.d. random variables
with distribution µ. Let also x0 ∈ Zd. We define the random walk X with step distribution µ by

Xn := x0 +
n∑
i=1

ξi

(with the convention that
∑0

1 = 0 which we shall enforce throughout these lecture notes). This is
a Markov chain with transition probability

p(x, y) := µ(y − x), ∀x, y ∈ Rd.
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Indeed, using that ξn+1 is independent of σ(ξ1, . . . , ξn) ⊃ σ(X0, . . . , Xn), we get

P(Xn+1 = y |X0 = x0, . . . , Xn = xn) = P(ξn+1 = y − xn |X0 = x0, . . . , Xn = xn)

= P(ξn+1 = y − xn)

= µ(y − xn).

Special case. Let e1, · · · , ed be unit vectors of Rd. In case µ(ei) = µ(−ei) = 1
2d for 1 ≤ i ≤ d, the

corresponding Markov chain is called the simple random walk on Zd. �

• Random walk on a graph/electrical network. We assume here that E is equipped with a
graph structure.1 This means that we have a set E of pairs of sites of E that describes the (un-
oriented) edges connecting pairs of points in E:

(x, y) ∈ E ⇐⇒ (y, x) ∈ E ⇐⇒ x and y are connected by an edge in the graph.

For x ∈ E, the degree deg(x) is the number of site adjacent to x i.e.

deg(x) := ]{y ∈ E, (x, y) ∈ E}.

We assume that deg(x) <∞ for all x ∈ E. We define the transition kernel p on E by

p(x, y) :=


1

deg(x)
if (x, y) ∈ E ,

0 otherwise.

A Markov chain with transition kernel p is called a simple random walk on the graph (E, E).

A slightly more general setting is obtained extending the graph structure to an electrical network.
Suppose that we are given weights (also called conductances) for every edge of the graph. This
means that we have a function c : E×E → R+ satisfying

(i) It is symmetric: c(x, y) = c(y, x) for all x, y ∈ E.

(ii) It is supported by the edges of the graph: c(x, y) > 0 if and only if (x, y) ∈ E .

We define π(x) =
∑

y/(x,y)∈E

c(x, y) the sum of the conductances of the edges around x ∈ E. Assu-

ming that 0 < π(x) <∞ for all x ∈ E, we can define a transition kernel

p(x, y) :=
{
c(x,y)
π(x) if (x, y) ∈ E ,

0 otherwise.

AMarkov chainwith transition kernel p is called a randomwalk on the electrical network (E, E , c).
When c is constant, we recover the simple random walk on the graph.

1In this definition, double edges are forbidden but loops are allowed: (x, x) mean that there is an edge joining site x
to itself.

6



Random walks on electrical networks form an important class of Markov chain. We will see
later that they are the Markov chains that are reversible (informally, this means that running time
backwards yields the same Markov chain when started from equilibrium).

• Branching processes. These processes model the evolution in time of a population where
each individual give birth to a certain number of offspring according to a given reproduction law.
Formally, we set E := N and let µ be a probability measure on E. We define a sequence of random
variables (Xn, n ≥ 0) with X0 = x0 ∈ N and by induction

Xn+1 :=
Xn∑
j=1

ξn,j ,

where (ξn,j , n ≥ 0, j ≥ 1) is a family of i.i.d. random variables having the distribution µ. Then
(Xn)n≥0 is a Markov chain on N with transition kernel

p(x, y) := µ∗x(y), ∀x, y ∈ N,

where µ∗x denotes the x-th fold convolution of µ, or, in the probabilistic language, the law of the
sum of x i.i.d. random variables having the law µ.

• The Ehrenfest chain.

Xn N −Xn

A B

Xn
N

N−Xn
N

This model is of historical relevance, it was proposed by Paul and Tatiana Ehrenfest to explain
the irreversibility stated in the second law of thermodynamics. It models the diffusion of a gaz
between two containers, say A and B. Here the state space is E = {0, . . . , N} where N represents
the total number of molecules in the gas. We consider a Markov chain (Xn)n≥0 taking value in E
with transition kernel

p(i, j) :=


N−i
N if j = i+ 1,
i
N if j = i− 1.
0 otherwise.

(2.1)

Then, we can interpretXn as the number of molecules in the box A at time n (henceN −Xn is the
number of molecule in the box B). At each unit of time, we pick a molecule at random uniformly
and put it in the opposite box.

• Pólya urn. We have an urn that contains balls of two colors: black or white. At each unit of
time, we pick a ball inside the urn, uniformly among all balls, we look at its color and then replace
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it inside the urn together with a new ball of the same color. Mathematically speaking, the state
space of the process is E = N∗2 and we consider a Markov chain (Bn,Wn) with transition kernel

p
(
(b, w), (b′, w′)

)
:=


b

b+w if b′ = b+ 1 and w′ = w,
w
b+w if w′ = w + 1 and b′ = b,
0 otherwise.

(2.2)

Exercice 2.1

Consider a Pólya urn decribed in the example above. Suppose that it starts at time n = 0 with
one ball of each color i.e. (B0,W0) = (1, 1). Show, by induction that, for each time n ≥ 0,
the number Bn of black balls is uniformly distributed in {1, . . . , n + 1}. What is the limit of
( Bn
n+1 ,

Wn
n+1) ?

Exercice 2.2

Let (ξi)i≥0 denote a sequence of i.i.d. Bernoulli random variables with parameter p ∈ (0, 1).

P(ξn = 1) = 1−P(ξn = 0) = p.

We consider the walk X on Z defined by

Xn =
n∑
i=1

ξi.

1. Show that the Markov chain X may be interpreted as a random walk on an electrical
network and compute the conductances.

2. Fix A ∈ N∗ and set Zn = Xn mod A for any n ≥ 0. Show that Z is again a Markov
chain and compute its transition kernel. For which values of p can Z be interpreted as a
random walk on some electrical network?

Exercice 2.3

Let (Xn)n≥0 be a Markov chain on E.

1. Show that, for any k ∈ N∗, the sub-sequence (Xkn)n≥0 is a Markov chain and determine
its transition kernel.

2. Let (Yi)i≥1 denote a sequence of i.i.d. randomvariables taking values inN∗. SetZ0 := X0
and Zn := XY1+...+Yn for n ≥ 1. Show that (Zn)n≥0 is a Markov chain and determine its
transition kernel.

Exercice 2.4

Let (Yn)n≥0 be a sequence of i.i.d. Bernoulli random variables with parameter p ∈ [0, 1].
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Define by induction {
X0 := 0,
Xn+1 := |Yn −Xn−Xn |.

1. Show that (Xn)n≥0 a Markov chain if and only if p = 0 or p = 1
2 .

2. Let Zn = (Xn, Xn+1). Show that Z = (Zn)n≥0 is a Markov chain for any value of p.

Exercice 2.5

Let (Yn)n≥0 be a sequence of i.i.d. Bernoulli random variables with parameter p ∈ [0, 1] i.e.

P(Yn = 1) = 1−P(Yn = 0) = p.

Define Xn := 1{Yn=Yn+1}. For which value of p is X a Markov chain ?

Exercice 2.6

1. Let (Xn)n≥0 be a Markov chain taking value in Z. Show that the sequence (Zn)n≥0 defi-
ned by Zn+1 = |Zn|may, or may not, be a Markov chain.

2. More generally. LetE,F denote two finite or countably infinite sets. Let also f : E → F .
Show the equivalence

For any Markov chain X = (Xn)n≥0 on E, the random
sequence (f(Xn))n≥0 is a Markov chain on F ⇐⇒ f is injective or constant.

Exercice 2.7

Let p ≥ 1. For each 1 ≤ i ≤ p, let (Xi
n)n≥0 denote a Markov chain taking value in some space

Ei (all these processes being defined on the same abstract probability space). Show that the
sequence (X1

n, . . . , X
p
n)n≥0 is a Markov chain on E1 × . . .× Ep and compute its kernel.

Exercice 2.8

Let (Yn)n≥0 denote a sequence of i.i.d. random variables taking values in some measurable
space (S,S). Let Φ : E×S → E be a measurable mapping. Let x ∈ E and define by induction{

X0 := x,

Xn+1 := Φ(Xn, Yn+1).

Prove that (Xn)n≥0 is a Markov chain and determine its transition kernel.

I Suggested additional exercises: Durrett [2], Exercises 6.22 - 6.29.
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3. Construction of a Markov chain

We now show that there exists a Markov chain for any transition kernel and any initial distribu-
tion. This is a direct consequence of Kolmogorov’s extension theorem but we will here give a
constructive proof instead.

Proposition 3.1

Let p be a transition kernel on E. There exists a probability space (Ω̃, F̃ , P̃) such that

1. For any x ∈ E, there exists a process (Xx
n , n ≥ 0) defined on Ω̃ which is a Markov chain

with transition kernel p starting from Xx
0 = x.

2. For any two x, y ∈ E, the following coupling property holds:

Xx
n = Xy

n =⇒ (Xx
m = Xy

m a.s. for allm ≥ n.)

The proof of the proposition is based on a general result asserting the existence of arbitrary
sequences of independent random variables. The proof of the lemma is given in the appendix.

Lemma 3.2

Let (νi)i∈N be a family of probability measure on E. Consider the probability space Ω̃ =
[0, 1] endowed with the Borel σ-field and the Lesbegue measure. There exists a sequence on
random variables ξi : Ω̃→ E such that:

1. The random variables (ξi)i∈N are independent.

2. The law of ξi is νi.

Proof of Proposition 3.1. Since E is countable, so is E × N. According to the lemma above, we can
construct a sequence (ξx,i)(x,i)∈E×N of independent random variables such that ξx,i is distributed
as p(x, ·) for any (x, i) ∈ E×N. For each x ∈ E, we define the sequenceXx = (Xx

n)n≥0 by induction{
Xx

0 := x
Xx
n+1 := ξXx

n,n.
(3.1)

In words, this means that, at time n, if the chain is at position x, then we use the random variable
ξx,n to choose the new position at time n+1. Thus, ifXx

n = Xy
n for some n, then both processes will

use the same ξ’s at all later times. This shows that the coupling property 2 holds. Let us check that
Xx is a Markov chain. Let x = x0, x1, . . . , xn ∈ E such that P̃(Xx

0 = x0, . . . , X
x
n = xn) > 0. Notice

that the random variables X0, . . . , Xn are σ(ξx,i, x ∈ E, i < n)-measurable. In particular, they are
independent of the sequence (ξx,n)x∈E hence

P̃(Xx
n+1 = y |Xx

0 = x0, . . . , X
x
n = xn) = P̃(ξxn,n = y |Xx

0 = x0, . . . , X
x
n = xn)

= P̃(ξxn,n = y)

= p(xn, y)
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which shows that Xx is indeed a Markov chain with transition kernel p starting, by construction,
from Xx

0 = x.

Corollary 3.3

For any probability distribution ν ∈ P(E), we can create a Markov chain Y with transition
kernel p and initial position Y0 distributed as ν.

Proof. We can construct another random variable ζ with distribution ν on the same probability
space (Ω̃, F̃ , P̃) as before which is independent of the Markov chains (Xx, x ∈ E). Then, we define
Yn := Xζ

n. The random variable Yn is measurable for any n and, by construction, Y0 is distributed
according to ν. Let y0, . . . , yn ∈ E. By independence of ζ and Xy0 and using the characterization
of Proposition 1.4, we find that

P̃(Y0 = y0, . . . , Yn = yn) = P̃(ζ = y0, X
y0
0 = y0, X

y0
1 = y1, . . . , X

y0
n = yn)

= P̃(ζ = y0)P̃(Xy0
0 = y0, X

y0
1 = y1, . . . , X

y0
n = yn)

= P̃(Y0 = y0)p(y0, y1) . . . p(yn−1, yn)

which proves that Y is indeed a Markov chain.

Exercice 3.4

Modify (3.1) in the proof of Proposition 3.1 in such way that the Markov chains constructed
from the ξ’s satisfy the following coupling property instead of 2.

• For any x, y ∈ E, we set T := inf{i ∈ N : Xx
i = y} with the convention inf ∅ = ∞. On

the event {T <∞}, we have

Xx
T+n = Xy

n a.s. for all n ≥ 0.

Hint: choose the index i of ξx,i according to the number of previous visits to the current
position x.

4. The canonical Markov chain

It is often useful to consider the whole path of a Markov chain i.e. consider (Xn)n≥0 as a single
random variableX taking values in the space of trajectories EN. This enables to study functionals
of the chain that depend on an unbounded number of steps. Two particularly important examples
are return times quantities of the form T (X) = inf{n, Xn ∈ A} and number of visits of a set such
as N(X) =

∑
n 1{Xn∈A}.
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In order to do this, we will apply the usual trick which states that, for any random variable
Z : Ω̃ → Ω, the identity function Id : Ω → Ω under the image measure P(·) := P̃(Z ∈ ·) has the
same law as Z under P̃. Our our setting, we are working with the space of trajectories EN so we
must specify the σ-field we will use.

Definition 4.1: canonical set-up

Set Ω := EN. An element ω ∈ Ω is written in the form ω = (ω0,ω1, . . .). The coordinate
projections Xn are defined by

Xn : Ω → E
ω 7→ ωn

Let F be the σ-field generated by the cylinder sets, i.e. the subsets C ⊂ Ω of the form

C = {ω ∈ Ω : ω0 = x0, . . . ,ωn = xn} =
n⋂
i=0

X−1
i (xi)

for some n ≥ 0 and x0, . . . , xn ∈ E. Thus, F it is the smallest σ-field that makes all the
coordinate projection measurable. We also define the canonical filtration (Fn)n≥0 of X by

Fn := σ(X0, . . . ,Xn).

Lemma 4.2

Let (G,G) denote a measurable space and consider a function F : G→ Ω. Then, F is measu-
rable if and only if Xn ◦ F is measurable for all n.

Proof. If F is measurable then Xn ◦F is also measurable as a composition of measurable functions.
Conversely, consider the sigma-field F̂ = {A ∈ F , F−1(A) ∈ G}. By hypothesis, it contains all the
sets of the form X−1

n (x) for all n and all x. Hence, it contains F and therefore F̂ = F .

Proposition 4.3: The canonical Markov Chain

Let p be a transition kernel onE. For any x ∈ E, there exists a unique probability measure Px

on (Ω,F) such that the canonical process X under Px is a Markov chain starting from x a.s.
and with transition kernel p.

Proof. According to Proposition 3.1, there exists a probability space (Ω̃, F̃ , P̃) on which we can
construct a Markov chain (Xx

n)n≥0 with transition kernel p starting fromXx
0 = x a.s. Consider the

mapping
Fx : Ω̃ → Ω

ω̃ 7→ ω = (Xx
n(ω̃))n≥0.

This application is measurable thanks to the previous lemma so we can define Px as the image of
the measure P̃ by Fx:

Px(A) := P̃(F−1
x (A)) = P̃(Xx ∈ A)

12



By construction, we have Px(X0 = x) = P̃(Xx
0 = x) = 1 and

Px(X0 = x0, . . . ,Xn = xn) = P̃(Xx
0 = x0, . . . , X

x
n = xn)

= P̃(Xx
0 = x0)p(x0, x1) . . . p(xn−1, xn)

= Px(X0 = x0)p(x0, x1) . . . p(xn−1, xn) (4.1)

hence X is indeed a Markov chain with transition kernel p. It remains to check that this measure
is unique. Notice that (4.1) fixes the value of Px on the all the cylinder sets. Those sets form a
π-system which generate the σ-field F . Thus, Dynkin’s π − λ theorem implies that Px is uniquely
determined by its value on these cylinder set, hence it is unique.

Corollary 4.4

Let p be a transition kernel on E and let ν ∈ P(E). There exists a unique probability measure
Pν on (Ω,F) such that the canonical process X under Pν is a Markov chain with transition
kernel p starting from X0 distributed as ν.

Proof. We simply set
Pν(·) :=

∑
x∈E

ν(x)Px(·) (4.2)

which defines a probability on (Ω,F). Then, under Pν , the process X has its initial position X0

distributed as ν and it is a Markov chain with kernel p since

Pν(X0 = x0, . . . ,Xn = xn) =
∑
x∈E

ν(x)Px(X0 = x0, . . . ,Xn = xn)

=
∑
x∈E

ν(x)Px(X0 = x0)p(x0, x1) . . . p(xn−1, xn)

= Pν(X0 = x0)p(x0, x1) . . . p(xn−1, xn).

The uniqueness of the measure follows from the exact same argument as in the previous proposi-
tion.

Let us remark that if (X̂n)n≥0 is another Markov chain defined on some other probability space
(Ω̂, F̂ , P̂ ), with transition kernel p and initial law ν, then for any measurable set A ∈ F , we have

P̂{(X̂n)n≥0 ∈ A} = Pν(A).

This follows from the uniqueness part of Proposition 4.3. Thus, from now on, we will only work
with the canonical Markov chain (Ω,F ,P,X) yet all the results stated below remain valid for
any Markov chain.
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5. The Markov property

One of the advantage of working with the canonical representation on the space of trajectories is
that we can consider the shift operator:

θ : Ω → Ω
(ω0,ω1, . . .) 7→ (ω1,ω2, . . .).

This operator is measurable thanks to Lemma 4.2. By composition, we define, the k-shift operators
by θ0 = IdΩ and, for k ≥ 1,

θk : Ω → Ω
(ω0,ω1, . . .) 7→ (ωk,ωk+1, . . .).

Making use of the shift operator enables to provide a concise statement of the Markov property.

Theorem 5.1: (weak) Markov property

Let F : Ω→ R+ be a measurable function. For any n ≥ 0 and any x ∈ E, we have a

Ex[F (θnX) |Fn] = EXn [F (X)] (5.1)

or equivalently, for any y ∈ E,

Ex[F (θnX)1{Xn=y} |Fn] = Ey[F (X)]1{Xn=y}.

In words: Conditionally on Xn = y, the process X after time n is independent of the events in Fn

and has the same law as the initial Markov chain starting from y.
aThe use of X in equation (5.1) is redundant and could simply be written Ex[F ◦ θn |Fn] = EXn [F ]. Yet we

use X here so that the formula still makes sense when X is not necessarily the canonical Markov chain.

Proof. By definition of the conditional expectation, we need to prove that, for any B ∈ Fn,

Ex

[
1BF (θnX)

]
= Ex

[
1BEXn [F (X)]

]
. (5.2)

Any set B ∈ Fn can be written as a (countable) disjoint union of elementary sets of the form
{X0 = x0, . . . ,Xn = xn} so we just need to prove the result for these elementary sets. Similarly, in
viewof themonotone convergence theorem,we only need to prove the resultwhenF is an indicator
function F = 1A and, by application Dynkin’s π − λ theorem, we can furthermore assume that A
takes the form A = {X0 = y0, . . . ,Xm = ym}. Thus, we first compute

Ex[1BF (θnX)] = Px(X0 = x0, . . . ,Xn = xn,Xn = y0, . . .Xn+m = ym)

= 1{xn=y0}Px(X0 = x0)p(x0, x1) . . . p(xn−1, xn)p(y0, y1) . . . p(ym−1, ym).

On the other hand, we have, for z ∈ E,

Ez[F (X)] = Pz(X0 = y0, . . . ,Xm = ym) = 1{z=y0}p(y0, y1) . . . p(ym−1, ym)
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therefore

Ex

[
1BEXn [F (X)]

]
= Ex[1X0=x0,...,Xn=xn1Xn=y0p(y0, y1) . . . p(ym−1, ym)]

= 1{xn=y0}Px(X0 = x0, . . . ,Xn = xn)p(y0, y1) . . . p(ym−1, ym)

= 1{xn=y0}Px(X0 = x0)p(x0, x1) . . . p(xn−1, xn)p(y0, y1) . . . p(ym−1, ym)

which establishes (5.2).

We can now build on this theorem to obtain a stronger statement which shows that the Markov
property holds, not only when the process is shifted by a deterministic time, but also when it is
shifted by a random stopping time.

Recall that a stopping time with respect to the canonical filtration (Fn)n≥0 is a random variable
T : Ω → N ∪ {∞} such that {T ≤ n} ∈ Fn (or equivalently {T = n} ∈ Fn) for all n ∈ N. The
σ-field of “past events” generated by T is defined by

FT := {A ⊂ F : A ∩ {T ≤ n} ∈ Fn, ∀n ∈ N}

Theorem 5.2: (strong) Markov property

Let T be a (Fn)-stopping time. Let F : Ω→ R+ be a measurable function. For any x ∈ E, we
have

Ex[1{T<∞}F (θTX) |FT ] = 1{T<∞}EXT [F (X)]

or equivalently, for any y ∈ E,

Ex[1{T<∞ and XT =y}F (θTX) |FT ] = 1{T<∞ and XT =y}Ey[F (X)].

In words: conditionally on XT = y, the process X after time T is independent of the past events in
FT and has the same law as the initial Markov chain starting from y.

Proof. We need to show that

Ex

[
1B1{T<∞}F (θTX)

]
= Ex

[
1B1{T<∞}EXT [F (X)]

]
.

for any B ∈ FT . Let n ∈ N, the event {T = n}∩B belong toFn by definition of a stopping time so
the weak Markov property states that

Ex

[
1B1{T=n}F (θnX)

]
= Ex

[
1B1{T=n}EXn [F (X)]

]
.

Summing over n gives the required equality.

Remark 5.3

The previousMarkov property (in both weak and strong form) remains valid if we replace Ex
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by Eν for any initial law ν ∈ P(E). This follows directly from equality (4.2).

Corollary 5.4

Let x, y ∈ E. Let T be a (Fn)-stopping time such thatXT = y Px-a.s. (in particular T is finite).
Then, under Px, the process θTX if independent of FT and has law Py.

Example 5.5: The reflection principle

Consider a random walk Xn = x0 + ξ1 + . . . + ξn where (ξn)n≥0 denotes a sequence of i.i.d.
random variables taking value in Z. Suppose that the law of the increments is symmetric i.e.
P(ξi = x) = P(ξi = −x), then for any a ≥ 0 and any n ≥ 1,

P0(sup
i≤n

Xi ≥ a) ≤ 2P0(Xn ≥ a).

Proof. Fix n ≥ 1 and define the stopping T = inf(i ≥ 0, Xi ≥ a). We have

P0(Xn ≥ a) = P0(T ≤ n, Xn ≥ a)

=
n∑
k=0

P0(T = k, XT+(n−k) ≥ a)

=
n∑
k=0

E0[1{T=k}PXT
(Xn−k ≥ a)]

where we applied the Markov property for the last equality. Noticing that Pb(Xm ≥ a) ≥ 1
2

for any b ≥ a and anym ≥ 0 because the walk is symmetric, we conclude that

P0(Xn ≥ a) ≥ 1
2

n∑
k=0

E0[1{T=k}] = 1
2P0(T ≤ n) = 1

2P0(sup
i≤n

Xn ≥ a).

Comment. The proof is the same for a random walk with increments in R. The symmetry
assumption can also be weakened, requiring instead that P0(Xm ≥ 0) is uniformly bounded
below in m by some constant α > 0. This happens, for instance, whenever the r.v. ξi’s are
centered and admit a finite second moment. In this case, the same argument now shows that,
for all n ≥ 0,

P0(sup
i≤n

Xi ≥ a) ≤ 1
α

P0(Xn ≥ a).

6. Classification of states: recurrence and transience

We now study the asymptotic behavior of a Markov chain. In particular, we want to understand
which states of the spaceE are visited infinitely often and which one are only visited finitely many
times. Two quantities are of particular interest: for any site x ∈ E, we define

N(x) :=
∞∑
n=0

1{Xn=x} (number of visits of site x),
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and
Tx := inf(n ≥ 1 : Xn = x) (first hitting time of site x)

Here and everywhere else, we enforce the convention inf ∅ =∞.

Proposition 6.1

Let x ∈ E. We have the dichotomy:

(a) either Px(Tx <∞) = 1, in which case

N(x) =∞, Px-a.s.,

(b) or Px(Tx <∞) < 1, in which case

N(x) <∞, Px-a.s.,

and N(x) has a geometric law with parameter Px(Tx =∞). In particular, we have

Ex[N(x)] = 1
Px(Tx =∞) <∞.

Definition 6.2: Recurrent and transient states

We say that a site x ∈ E is recurrent in case (a) and transient in case (b). The set of all recurrent
sites is denoted by R and the the set of transient sites is denoted by T . With this notations,
we get a partitioning of the state space:

E = Rt T .

Proof of Proposition 6.1. Let k ≥ 1. Applying the strong Markov property for the stopping time Tx,

Px(N(x) ≥ k + 1) = Ex

[
1{Tx<∞} (1{N(x)≥k} ◦ θTx)

]
= Ex

[
1{Tx<∞}EXTx

[1{N(x)≥k}]
]

(strong Markov property)

= Ex

[
1{Tx<∞}Px(N(x) ≥ k)

]
(XTx = x on the set {Tx <∞})

= Px(Tx <∞) Px(N(x) ≥ k).

Noticing that Px(N(x) ≥ 1) = 1, we get by induction that, for k ≥ 1,

Px(N(x) ≥ k) = Px(Tx <∞)k−1. (6.1)

If Px{Tx <∞} = 1, then Px{N(x) ≥ k} = 1 for all k ≥ 1, which means Px{N(x) =∞} = 1. This
proves (a). On the other hand, if Px{Tx <∞} < 1, then (6.1) shows thatN(x) has a geometric law
with parameter 1 − Px(Tx < ∞) = Px(Tx = ∞). In particular, it is finite and its expectation is

1
Px(Tx=∞) which proves (b).
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Definition 6.3: Green function

The Green function (also called potential kernel) of the Markov chain X is the function G :
E × E → [0, ∞] defined by

G(x, y) := Ex[N(y)].

Proposition 6.4

1. For any x, y ∈ E,

G(x, y) =
∞∑
n=0

pn(x, y).

In particular,
G(x, y) > 0 ⇐⇒ Px(Ty <∞) > 0.

2. For any x ∈ E, we have the equivalence

G(x, x) =∞ ⇐⇒ x is recurrent.

3. If x 6= y, then we have
G(x, y) = Px(Ty <∞)G(y, y).

In particular,
G(x, y) ≤ G(y, y).

Proof. By definition of N(y) and using the linearity of the expectation, we can write

G(x, y) = Ex

( ∞∑
n=0

1{Xn=y}

)
=
∞∑
n=0

Px(Xn = y) =
∞∑
n=0

pn(x, y)

which proves the first identity. To see why the equivalence is true, we notice that, Px(Ty <∞) > 0
if and only if pn(x, y) = Px(Xn = y) > 0 for at least one n, which is equivalent to the Green
function being non-zero since all the terms in the sum are non-negative. This proves 1. Assertion
2. is a direct consequence of Proposition 6.1. For assertion 3., we use the strong Markov property
at time Ty to conclude that

G(x, y) = Ex[N(y)] = Ex

[
1{Ty<∞} (N(y) ◦ θTy )

]
= Ex

[
1{Ty<∞}Ey[N(y)]

]
= Px(Ty <∞)G(y, y)

Example 6.5

Consider the Markov chain in Zd with transition kernel

p(x, y) = 1
2d

d∏
i=1

1{|yi−xi|=1}, x := (x1, · · · , xd), y := (y1, · · · , yd) ∈ Zd. (6.2)

This defines a random walk which is not the simple random walk on the graph Zd (but it is
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the simple random for some other graph obtained modifying locally the edges around each
vertex of Zd). We write Xn = (X1

n, . . . , X
d
n). Then, if follows directly from the definition (6.2)

written as of product along each dimension that the processes X1, · · · , Xd are independent
simple symmetric random walks on Z. In particular, we find that

pn(0, 0) = P(X1
n = 0, · · · , Xd

n = 0) = P(X1
n = 0)d.

The probability P(X1
n = 0) is the probability of having the same number of heads and tails in

the first n toss of an unbiased coins hence

P(X1
n = 0) =

0 if n is odd,
( n

n/2)
2n if n is even.

Therefore,

G(0, 0) =
∞∑
k=0

p2k(0, 0) =
∞∑
k=0

((2k
k

)
22k

)d
.

Making use of the Stirling formula, we have the asymptotics when k →∞:(2k
k

)
22k = (2k)!

22k(k!)2 ∼
√

4πk
(2k
e

)2k

22k
(√

2πk
(
k
e

)k)2 = 1√
πk

Thus, we conclude that

G(0, 0)
{

=∞ for d = 1, 2,
<∞ for d ≥ 3.

This means that, the origin (and by translation invariance any x ∈ Zd) is recurrent if d ≤ 2
and transient for d ≥ 3.

Remark 6.6

Let X denote the Markov chain in Z2 with transition kernel given by (6.2). Consider the
process Y defined by Yn = AXn where A is the linear transformation obtained by a rotation
of 45 degree followed by a scaling of factor 1/

√
2. It is easy to check that Y is a simple random

walk on Z2. Thus, it is recurrent sinceX is recurrent. Unfortunately, this argument cannot be
use study simple random walks in higher dimensions because the walk with kernel (6.2) has
2d neighbours in dimension dwhereas the simple random walk only has 2d neighours in Zd.

Lemma 6.7

Let x ∈ E be a recurrent state. Let y 6= x be such that G(x, y) > 0. Then y is also recurrent
and Py(Tx <∞) = 1, in particular G(y, x) > 0.
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Proof. Since x is recurrent, we have

0 = Px(N(x) <∞) ≥ Px(Ty <∞, Tx ◦ θTy =∞)

= Ex

[
1{Ty<∞} 1{Tx=∞} ◦ θTy

]
= Ex

[
1{Ty<∞}Py(Tx =∞)

]
(strong Markov property)

= Px(Ty <∞) Py(Tx =∞).

By assumption, G(x, y) > 0 hence Px(Ty < ∞) > 0 which implies that Py(Tx = ∞) = 0 therefore
Py(Tx <∞) = 1 as requested. It remains to prove that y is recurrent. We already knowG(x, y) > 0
and G(y, x) > 0. So there exist n,m ≥ 1 such that pn(x, y) > 0 and pm(y, x) > 0. For any i ≥ 0, we
have

pm+i+n(y, y) ≥ pm(y, x) pi(x, x) pn(x, y).

Thus, we get that

G(y, y) ≥
∞∑
i=0

pm+i+n(y, y) ≥ pm(y, x) pn(x, y)
∞∑
i=0

pi(x, x) = pm(y, x) pn(x, y)G(x, x).

By assumption,G(x, x) =∞ because x is recurrent, whereas pm(y, x) pn(x, y) > 0, soG(y, y) =∞
which means that y is recurrent.

Remark 6.8

The previous lemma states that if x is a recurrent state and y is a transient state, then neces-
sarily G(x, y) = 0. This means there is no path (that has positive probability) that connects a
recurrent state to a transient state (but the opposite may happen).

Theorem 6.9: Decomposition of a Markov chain

The relation x ∼ y defined by

x ∼ y ⇐⇒ G(x, y) > 0

is an equivalence relation on the set of recurrent sitesR. Thus, this set can be partitioned:

R =
⊔
i∈I
Ri

where (Ri, i ∈ I) denote the equivalent classes of ∼ onR called recurrence classes.

The following properties hold.

1. Let x ∈ Ri, then

N(y) =
{
∞ for all y ∈ Ri,
0 for all y ∈ E \ Ri,

Px-a.s.

2. Let x ∈ T and define τ = inf(n ≥ 1 : Xn ∈ R),
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• On the event {τ =∞}, we have N(y) <∞ for all y ∈ E, Px-a.s.
• On the event {τ < ∞}, there exists a (possibly random) index i ∈ I such that

Xn ∈ Ri for all n ≥ τ , Px-a.s.

Proof. By definition, G(x, x) ≥ 1 hence x ∼ x for all x ∈ R (reflexivity property). The previous
lemma shows that, if x ∼ y and x ∈ R, then y ∼ x (symmetry property). Finally, if x, y, z ∈ Rwith
x ∼ y and y ∼ z, then there exists n,m such that pn(x, y) > 0 and pm(y, z) > 0, therefore

pn+m(x, z) ≥ pn(x, y)pm(y, z) > 0.

This implies x ∼ z (transitivity property) so ∼ is indeed an equivalence relation on R (but not
necessarily on E).

Let x ∈ Ri for some i ∈ I . Let y ∈ E \ Ri. Either y ∈ T but then G(x, y) = 0 thanks to
the previous lemma or y ∈ Rj for some j 6= i but then again G(x, y) = 0 by definition of the
equivalence relation. Thus in any case G(x, y) = 0 which means that N(y) = 0 Px-a.s. On the
other hand, if y ∈ Ri, then, the previous lemma states that Px(Ty <∞) = 1 and, using (yet again)
the strong Markov property, we find that

Px(N(y) =∞) = Ex

[
1{Ty<∞} (1{N(y)=∞} ◦ θTy )] = Px(Ty <∞) Py(N(y) =∞). (6.3)

Since both probabilities on the right hand side are equal to 1, we get that Px(N(y) =∞) = 1 which
complete the proof of Assertion 1. Let now x ∈ T . Note that, according to (6.3),N(y) <∞Px -p.s.
whenever y ∈ T is transient. In particular, on the event {τ = ∞}, we have N(y) < +∞ for all
y ∈ E. Conversely, on {τ <∞}, there exists, by definition, some index j such that Xτ ∈ Rj . Using
the strong Markov property with the stopping time τ combined with Assertion 1., we see that X
remains insideRj for all times after τ which proves Assertion 2.

Example 6.10
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Consider the Markov chain with transition kernel described by the graph above.

1. The setR of recurrent sites is composed of two recurrence classes:

• {b}which is an absorbing state.
• {1, 2, 3, . . .} because the chain on this set is a (reflected) symmetric simple one di-
mensional random walk hence recurrent according to Example 6.5.

2. All other sites are transient

• {a} is transient because it can never be visited twice.
• {−1,−2,−3, . . .} are transient because a biased random walk drifts to∞ thanks to

the law of large numbers.
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Notice also that, starting from a transient site, the walk can ultimately end inside either of
two the recurrence classes with positive probability or, also with positive probability, remain
inside the transient set for all time.

Definition 6.11

AMarkov chain is said to be irreducible if G(x, y) > 0 for all x, y ∈ E.

Corollary 6.12

Assume that X is an irreducible Markov chain on E. Then

• either all states are recurrent. Then, there is only one recurrence class, and for any x ∈ E,

Px(N(y) =∞, ∀y ∈ E) = 1.

In this case, X is called an irreducible recurrent Markov chain.

• or all states are transient. Then, for any x ∈ E,

Px(N(y) <∞, ∀y ∈ E) = 1.

In this case, X is called an irreducible transient Markov chain.

When E is finite, only the first situation occurs.

Proof. Assume first there exists a recurrent state. Then, by irreducibility and according to Lemma
6.7, all states are recurrent and there exists a unique recurrence class. Thus, Assertion 1. of The-
orem 6.9 insures that all sites are visited infinitely often a.s. Conversely, suppose that all sites are
transient, then, of course τ = inf(n ≥ 1,Xn ∈ R) =∞ a.s. which means that we are in the second
case of Assertion 2. of Theorem 6.9 hence each site is visited only finitelymany times. Finally, when
E is finite, then at least one site must be visited infinitely often therefore the second case cannot
happen.

Remark 6.13

If X if a (non) irreducible Markov chain with recurrence classes (Ri)i∈I , then, for each i ∈ I ,
we can define the restriction of X onRi which it the Markov chain Xi with kernel

pi(x, y) = p(x, y) for all x, y ∈ Ri.

This equation defines a kernel since p(x, y) = 0 whenever x ∈ Ri and y /∈ Ri. Then, Xi is an
irreducible recurrent Markov chain.

We end this section by discussing the classification of states for the Markov chains examples pre-
sented in Section 2.
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• i.i.d. random variables with law µ. We have p(x, y) = µ(y). It is trivial that y is recurrent if and
only if µ(y) > 0, and that there is only one recurrence class. The chain is irreducible if and only if
µ(y) > 0 for all y ∈ E.

• Random walks on Z. In this example, E = Z, and the transition kernel is given by

p(x, y) = µ(y − x).

By translation invariance, the Green function G(x, y) depends only of y − x, so G(x, x) = G(y, y)
and all states are of same type: they are either all recurrent, or all transient. Let ξ denote a random
variable whose law is µ.

Theorem 6.14

Assume that E[|ξ|] <∞.

1. If E[ξ] 6= 0, then all states are transient.

2. If E[ξ] = 0, all states are recurrent. Moreover, the chain is irreducible if and only if the
sub-group generated by {y ∈ Z : µ(y) > 0} is Z itself.

Proof. If E(ξ) 6= 0, the law of large numbers shows us that |Xn| → ∞ a.s., so that all states are
transient. We now assume that E[ξ] = 0 and prove that 0 is recurrent. Suppose, by contradiction,
that 0 is transient hence G(0, 0) <∞. Then according to Proposition 6.4, for all x ∈ Z, we have

G(0, x) ≤ G(x, x) = G(0, 0).

Therefore, for any n ≥ 1, ∑
|x|≤n

G(0, x) ≤ (2n+ 1)G(0, 0) ≤ cn,

where c := 3G(0, 0) < ∞. On the other hand, by the weak law of large numbers, Xn
n → 0 in

probability, so that for any ε > 0, and all sufficiently large n (say, n > n0),

P(|Xn| ≤ εn) > 1
2 ,

which is equivalent to saying that ∑
|x|≤εn

pn(0, x) > 1
2 .

For n ≥ i > n0, we have ∑
|x|≤εn

pi(0, x) ≥
∑
|x|≤εi

pi(0, x) > 1
2 ,

so that for n ≥ n0, ∑
|x|≤εn

G(0, x) ≥
n∑

i=n0

∑
|x|≤εn

pi(0, x) > n− n0
2
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which contradicts the inequality ∑
|x|≤εn

G(0, x) ≤ cεn,

when ε < 1
2c and n is large enough. As a consequence, 0 is recurrent. It remains to characterize

irreducibility. Let G be the sub-group generated by {x ∈ Z : µ(x) > 0}. Clearly

P0(Xn ∈ G, ∀n ∈ N) = 1.

Thus, if G 6= Z, the chain is not irreducible. Conversely, assume now G = Z and define

G1 := {x ∈ Z : G(0, x) > 0}.

We claim that G1 is a sub-group of Z.

• If x, y ∈ G1, we can find n,m such that pn(0, x) > 0 and pm(0, y) > 0 and then

pn+m(0, x+ y) ≥ pn(0, x) pm(x, x+ y) = pn(0, x) pm(0, y) > 0,

shows that x+ y ∈ G1,

• If x ∈ G1, and since 0 is recurrent, G(0, x) > 0 implies G(x, 0) = G(0,−x) > 0 (Lemma 6.7),
which shows that −x ∈ G1.

Finally, since G1 ⊃ {x ∈ Z : µ(x) > 0}, it contains the sub-group generated by the latter which by
assumption is Z. This shows that the chain is irreducible.

Remark 6.15

If the walk is not irreducible, then the group generated by the increments of the walk is of the
form aZ for some a ≥ 2 and there are exactly a recurrence classes.

• Simple random walk on a graph and electrical network. We will discuss this model in greater
details later. For the time being, we only consider the case when E is finite.

Proposition 6.16

Consider a random walk on an electrical network (E, E , c). Assume that ]E < +∞. Then,
every site is recurrent and the recurrence classes are exactly the connected component of the
graph.

Proof. By definition of the electrical network, the weight on each edge is strictly positive. Thus, any
finite path inside the graph has positive probability. This implies that the equivalence relation "x
and y are connected in the graph" and "G(x, y)G(y, x) > 0" are identical and thus define the same
equivalence classes. Finally, the walk on each class is clearly irreducible and recurrent since the
graph is finite.
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• Branching processes. In this example, E = N and p(x, y) = µ∗x(y) (with µ0∗ := δ0). We observe
that state 0 is absorbing:

P0(Xn = 0, ∀n ∈ N) = 1.

A fortiori, 0 is also recurrent. In the following proposition, we exclude the trivial case µ = δ1,
where all states are absorbing.

Proposition 6.17

Assume that µ 6= δ1, then 0 is the only recurrent state for the branching process with repro-
duction law µ. As a consequence, we have, almost surely, for any starting point.

• either there exists τ <∞ such that Xn = 0, for all n ≥ τ ;

• or Xn →∞ as n→∞.

Remark 6.1. In the chapter on martingales, we have seen that the first situation occurs a.s. if
m :=

∑
k∈N kµ(k) ≤ 1 (critical or sub-critical case), whereas the second situation is produced

with positive probability ifm > 1 and the process starts from x 6= 0 (super-critical case).

Proof. We only need to check that 0 is the only recurrent state, the rest of the theorem is a conse-
quence of the decomposition theorem. Let x ≥ 1. Wewant to prove that x is transient. We consider
two possible situations.

• µ(0) > 0. Then G(x, 0) ≥ Px(X1 = 0) = µ(0)x > 0, whereas G(0, x) = 0. This is possible
only if x is transient (Lemma 6.7).

• µ(0) = 0. Since µ 6= δ1, there exists k ≥ 2 such that µ(k) > 0. Since Px(X1 > x) ≥ µ(k)x > 0,
there exists y > x such that p(x, y) > 0, and a fortiori, G(x, y) > 0. But G(y, x) = 0 (since
µ(0) = 0), which, again, is possible only if x is transient.

• Ehrenfest Urn. Recall that we consider Markov chain on the finite state space E = {0, . . . , N}
with transition kernel given by (2.1). Then, it is clear that the chain is irreducible since

p|i−j|(i, j) ≥ (1/N)|i−j| > 0

for any i, j ∈ E. Thus, according to Corollary 6.12, the chain is irreducible recurrent.

• Pólya Urn. Here the state space isE = N∗2 andwe consider aMarkov chain (Bn,Wn) with kernel
given by (2.2). Clearly, every state is transient since Bn +Wn →∞ as n→∞.
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7. Stationary measures

We have seen in the previous section that an irreducible Markov chain is either recurrent or tran-
sient i.e. either all states are visited infinitely often a.s. or they are visited only finitely many times
a.s. When we have a recurrent Markov chain, a natural question is to quantity "how often does the
chain return to a given state x" or "is a state x visited more often than some other state y" ? The
study of the invariant measures of the chain gives simple answers to these questions and provides
a powerful framework for studying its asymptotic behavior.

Definition 7.1: invariant measure

A measure µ on E is said to be invariant (or stationary) for a Markov chain with transition
kernel p if it is not identically 0, it is locally finite (µ(y) <∞ for all y ∈ E) and

µ.p = µ which means µ(y) =
∑
x∈E

µ(x)p(x, y) for all y ∈ E

i.e. µ is a left eigenvector for the eigenvalue 1 of p.

By definition, if µ is an invariant measure, then µ.pn = µ for any n ≥ 0. In particular, suppose
that µ is a probability measure i.e. µ(E) = 1. Then for any f : E → R+ and any n ∈ N, we have

Eµ[f(Xn)] = µ.pn.f = µ.f = Eµ[f(X0)].

This means that, starting from an invariant probability distribution µ, the law ofXn is equal to
µ at all times n. In particular, it does not depend on n.

Remark 7.2

1. If µ is an invariant probability distribution, then under Pµ, the chains (Xk)k≥0 and
(Xn+k)k≥0 have the same law for all n. This follows directly from the fact that X0 and
Xn have the same law combined with the weak Markov property.

2. If we have an invariant measure µ with finite weight µ(E) < ∞, then we can define an
invariant probability measure π via π(x) := µ(x)/µ(E).

3. When the measure µ has infinite weight µ(E) = ∞, there does not exist a probability
distribution proportional to µ anymore. However, we can still give a probabilistic inter-
pretation of stationarity. To do so, consider a family of independent random variable
(Ux, x ∈ E) such that Ux has a Poisson distribution with parameter µ(x). Then, from
each site x ∈ E, we start Ux Markov chains with transition kernel p. We assume that all
these chains are independent. Let Uxn denote the number of chains that are at position x
at time n. Then, for all n, the law of (Uxn , x ∈ E) is the same as (Ux, x ∈ E). In particular,
it does not depend on n.
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Definition 7.3

A measure µ on E is said to be reversible for a Markov chain with transition kernel p if it is
not identically 0, locally finite (µ(y) <∞ for all y ∈ E) and

µ(x)p(x, y) = µ(y)p(y, x) for all x, y ∈ E.

Proposition 7.4

A reversible measure is invariant.

Proof. Suppose that µ is reversible, then∑
x∈E

µ(x)p(x, y) =
∑
x∈E

µ(y)p(y, x) = µ(y).

which shows that µ is invariant.

Remark 7.5

1. There exist invariant measures that are not reversible: consider the markov chain on
{0, 1, 2} such that p(0, 1) = p(1, 2) = p(2, 0) = 1 and p(x, y) = 0 otherwise. Then, the
uniform measure on {0, 1, 2} is invariant but it is not reversible.

2. One advantage of reversiblemeasure over generic invariantmeasure is that they are usu-
ally much easier to find and compute. Advice: when looking for an invariant measure,
always search for a reversible one first!

Some examples

(a) i.i.d random variables. Suppose that (Xn)n≥1 is a family of i.i.d. random variables with law ν,
then the unique invariant measure for the chain is ν.

(b) Random walks. Consider a random walk on Zd,

Xn =
n∑
i=1

ξi

where the (ξi)i≥1 is a family of i.i.d. random variables with law ν. The kernel of the chain is given
by p(x, y) = ν(y − x) hence it is invariant by translation which implies that the counting measure
µ(x) = 1 for all x ∈ Zd is invariant. However, this measure is reversible if and only if the law of µ
is symmetric i.e. µ(x) = µ(−x) for all x ∈ Zd.

Consider the particular case of the biased random walk on Z. Let p ∈ (0, 1) and suppose that

P(ξi = 1) = p = 1−P(ξi = −1)
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so we have a Markov chain on Zwith transition kernel

p(i, i+ 1) = p, p(i, i− 1) = 1− p,

It is straightforward to check that the measure

µ(i) :=
( p

1− p

)i
for all i ∈ Z

is reversible (hence invariant) for the chain. We observe that µ is different from the counting mea-
sure (which is also invariant), except in the case p = 1

2 .

(c) Random walks on electrical networks. Consider an electrical network (E, E , c). Define π to be
the sum of the conductances around each edges of the graph:

π(x) :=
∑

y/{x,y}∈E

c(x, y) (7.1)

Assume that 0 < π(x) < ∞ for all x ∈ E. The random walk on the electrical network (E, E , c) is
given by the transition kernel

p(x, y) := c(x, y)
π(x) . (7.2)

The following proposition shows that random walks on electrical networks are exactly Markov
chains that admit a reversible measure (everywhere positive).

Proposition 7.6

1. The measure π is reversible for the random walk on the electrical network (E, E , c).

2. Conversely, if X is a Markov on some state space E that admits a reversible measure µ
such that µ(x) > 0 for all x ∈ E, then, we can construct an electrical network on E that
represents X .

Proof. 1. Recall that, by definition, the conductance are symmetric: c(x, y) = c(y, x) for all x, y ∈ E.
Therefore, according to (7.2),

π(x)p(x, y) = c(x, y) = c(y, x) = π(y)p(y, x)

which shows that π is indeed reversible for the random walk with kernel (7.2).
2. Conversely, suppose that we have a Markov chain with some transition kernel p on some state
space E that admits a reversible measure µ such that µ(x) > 0 for all x ∈ E. We remark that the
reversibility equation

µ(x)p(x, y) = µ(y)p(y, x)

shows that p(x, y) > 0 if and only if p(y, x) > 0. Thus, we can define a graph structure E on E by
setting

E := {(x, y) ∈ E × E : p(x, y) > 0}.
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We also set
c(x, y) := µ(x)p(x, y).

This defines a set of conductances on (E, E). Indeed, by construction, c(x, y) > 0 if and only if
(x, y) ∈ E and the symmetry properties follows from the reversibility of µ:

c(x, y) = µ(x)p(x, y) = µ(y)p(y, x) = c(y, x).

Again, we define π by (7.1). We observe that

π(x) =
∑

y/{x,y}∈E

c(x, y) = µ(x)
∑
y

p(x, y) = µ(x).

so we conclude that the Markov chain on the electrical network (E, E , c) has transition kernel q
given by

q(x, y) := c(x, y)
π(x) = µ(x)p(x, y)

µ(x) = p(x, y).

as required.

(c) Ehrenfest urn. Recall that, E := {0, 1, · · · , N} and

p(i, j) :=


N−i
N if j = i+ 1,
i
N if j = i− 1.
0 otherwise.

(7.3)

which corresponds to the Markov chain that random moves balls from one urn to the other and
counts the number of balls in the (say first) urn. Then, a measure µ is reversible for this chain if
and only if it satisfies

µ(i) N − i
N

= µ(i+ 1) i+ 1
N

for all 0 ≤ i ≤ N − 1.

It is easy to check that any solution is of the form

µ(i) = c

(
N

i

)
for some constant c > 0. In particular, the Binomial(N ,1/2) distribution is a reversible probability
measure for the chain.

Construction of invariant measures

The following result shows that there always exists an invariant measure supported on the set R
of recurrent sites. Moreover, it provides an explicit form for measure.

Theorem 7.7

Let X be a Markov chain on E and suppose that x ∈ E is a recurrent state. The formula

µx(y) := Ex

[ Tx−1∑
i=0

1{Xi=y}

]
, y ∈ E, (7.4)
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defines an invariant measure. Moreover, µx(y) > 0 if and only if y is in the same recurrence
class as x.

Remark 7.8

1. Part of the conclusion of the theorem is that µx(y) <∞, ∀y ∈ E.

2. In case there are several recurrence classes Ri, i ∈ I , we can choose, for each i ∈ I , a
state xi ∈ Ri, and then define

µxi(y) := Exi

( Txi−1∑
k=0

1{Xk=y}

)
, y ∈ E.

In this way, we obtain invariant measures supported in disjoint subsets.

Proof of Theorem 7.7. First, we observe that if y is not in the same recurrence class as x (for instance
if y is transient), then Ex[N(y)] = G(x, y) = 0 so that µx(y) = 0. We now compute µx. For any
y ∈ E, we write

µx(y) = Ex

[ Tx∑
i=1

1{Xi=y}

]
(because X0 = XTx Px-a.s.)

=
∑
z∈E

Ex

[ Tx∑
i=1

1{Xi−1=z, Xi=y}

]
=

∑
z∈E

∞∑
i=1

Ex

[
1{Tx≥i, Xi−1=z}1{Xi=y}

]
(Fubini)

=
∑
z∈E

∞∑
i=1

Ex

[
1{Tx≥i, Xi−1=z}

]
p(z, y) (Markov prop. using {Tx ≥ i} = {Tx ≤ i− 1}c ∈ Fi−1)

=
∑
z∈E

Ex

[ Tx∑
i=1

1{Xi−1=z}

]
p(z, y) (Fubini)

=
∑
z∈E

µx(z)p(z, y) (7.5)

with the convention 0×∞ = 0. Thus, µx satisfies the equation of invariant measures. Yet, we still
need to check that

(a) µx(y) > 0 and (b) µx(y) <∞.

whenever y is in the same recurrence class as x. By iterating (7.5), we find that, for any n ∈ N,

µx(y) =
∑
z∈E

µx(z)pn(z, y) for all y ∈ E. (7.6)

If y is in the same recurrence class as x, there exists n0 such that pn0(x, y) > 0. Noticing that, by
definition, µx(x) = 1, we find that µx(y) ≥ µx(x) pn0(x, y) > 0 which proves (a). On the other
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hand, there also exists n1 such that pn1(y, x) > 0. Using again (7.6), we find that

1 = µx(x) =
∑
z∈E

µx(z)pn1(z, x) ≥ µx(y)pn1(y, y)

which proves (b).

Remark 7.9

If E is finite, the kernel p is a stochastic matrix. In particular, it has non-negative entries and
the Perron-Frobenius Theorem tells us that there exists an eigenvector for the eigenvalue 1
(the spectral radius). Thus, we recover the existence of an invariant measure in that case.

Theorem 7.10

Assume that the chain is irreducible and recurrent. Then the invariant measure is unique, up
to a constant multiplication.

Proof. Fix x ∈ E and let µx be the invariantmeasure defined by (7.4). Let ν denote another invariant
measure. We first prove that

ν(y) ≥ ν(x)µx(y) for all y ∈ E. (7.7)

In view of the monotone convergence theorem, we just need to show that, for any n,

ν(y) ≥ ν(x) Ex

[ n∧(Tx−1)∑
i=0

1{Xi=y}

]
for all y ∈ E. (7.8)

Notice that, if x = y, then (7.8) holds trivially. Thus, let us assume y 6= x. We prove the result
by induction. For n = 0, the identity is true because the right hand side is 0. Suppose that the
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inequality holds for n. Then

ν(y) =
∑
z∈E

ν(z) p(z, y) (stationarity)

≥ ν(x)
∑
z∈E

Ex

[ n∧(Tx−1)∑
i=0

1{Xi=z}

]
p(z, y) (induction assumption)

= ν(x)
∑
z∈E

n∑
i=0

Ex

[
1{Xi=z, i≤Tx−1}

]
p(z, y) (Fubini)

= ν(x)
∑
z∈E

n∑
i=0

Ex

[
1{Xi=z, i≤Tx−1} 1{Xi+1=y}

]
(Markov property using {i ≤ Tx − 1} ∈ Fi)

= ν(x)
n∑
i=0

Ex

[
1{i≤Tx−1} 1{Xi+1=y}

]
. (Fubini)

= ν(x) Ex

[ n∧(Tx−1)∑
i=0

1{Xi+1=y}

]

= ν(x) Ex

[ (n+1)∧Tx∑
i=1

1{Xi=y}

]

= ν(x) Ex

[ (n+1)∧(Tx−1)∑
i=0

1{Xi=y}

]
, (y 6= x)

which prove the equality for n + 1. Thus, (7.7) holds. Using the invariance of ν, we can write, for
any n ∈ N,

ν(x) =
∑
z∈E

ν(z) pn(z, x) ≥
∑
z∈E

ν(x)µx(z) pn(z, x) = ν(x)µx(x) = ν(x),

where we used that µx(x) = 1 for the last equality. In particular, this means that the inequality in
the previous equation is, in fact, an equality and therefore ν(z) = ν(x)µx(z) holds for all z such that
pn(z, x) > 0. Irreducibility ensures that for any z ∈ E, there exists n ∈ N such that pn(z, x) > 0,
which allows us to conclude that ν = c µx, with c := ν(x) <∞. Finally c 6= 0 because otherwise ν
would be the null measure. This completes the proof of the theorem.

The theorem above tells us that all the invariant measures of a irreducible Markov chain are
proportional. Thus, either they all have infinite mass or they all have finite mass in which case
there exists a unique one with unit mass (i.e. a probability distribution). This dichotomy separa-
tes irreducible recurrent Markov chains into two disctinct sub-classes: null recurrent chains and
positive recurrent chains.

Corollary 7.11: definition of positive/null recurrence

Assume that the chain is irreducible and recurrent. Then

• either there exists an invariant probability measure π on E. In this case, we say that the
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chain is positive recurrent. Furthermore, we have

Ex[Tx] = 1
π(x) for all x ∈ E.

• or all the invariant measures have infinite mass. In this case, we say that the chain is
null recurrent. Furthermore, we have

Ex[Tx] =∞, for all x ∈ E.

When E is a finite, then only the first situation occurs so every recurrent chain is positive
recurrent.

Proof. Let x ∈ E. Let µx denote the invariant measure given by (7.4). Its total mass is

µx(E) =
∑
y∈E

Ex

[ Tx−1∑
i=0

1{Xi=y}

]
= Ex

[ Tx−1∑
i=0

∑
y∈E

1{Xi=y}

]
= Ex

[ Tx−1∑
i=0

1
]

= Ex[Tx].

This shows that in the null recurrent case the expectation of the return time to any point is infinite.
Suppose now that X is positive recurrent which means µx(E) = Ex[Tx] ∈]0,∞[. Let π denote the
(unique) invariant probability measure. By proportionality, we have

π(y) = µx(y)
µx(E) = µx(y)

Ex[Tx] for all y ∈ E.

Choosing y = x, we conclude that
π(x) = 1

Ex[Tx] .

Proposition 7.12

Assume that X is an irreducible Markov chain. We have the equivalence

X is positive recurrent ⇐⇒ there exists an invariant probability measure.

Proof. We have⇒ by definiton of positive recurrence. So, we just need to prove that, if an invariant
probability exists, then the chain is recurrent (hence positive recurrent). By irreductibility, it suffi-
ces to show that there is at least one recurrent state. Let π denote the invariant probability. Since
it is not identically 0, we can fix y ∈ E such that π(y) > 0. Recall that G denote the Green function
of the chain. According to 3. of Proposition 6.4, we have

∞∑
n=0

pn(x, y) = G(x, y) ≤ G(y, y),

Multiplying on both sides by π(x) and then summing over x ∈ E, we obtain
∞∑
n=0

(π.pn)(y) ≤ π(E)G(y, y) = G(y, y).
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Since π is invariant, we have πpn = π, ∀n ∈ N, so that

∞∑
n=0

π(y) ≤ G(y, y).

This shows that G(y, y) =∞ since π(y) > 0. Thus, y is a recurrent state.

Remark 7.13

1. The proposition above shows that an irreducible transient Markov Chain does not
have any invariant probability distribution. However, it can still admit invariant dis-
tributionwith infinitemass. In fact, itmay admitmore than one. Take for instance the bi-
ased randomwalk onZwith transitionsP(Xn+1 = Xn+1) = 1−P(Xn+1 = Xn−1) = p
with p 6= 1/2. We have already observed that both the counting measure and the mea-
sure µ(x) =

( p
1−p
)x are invariant and are not proportional to each other.

2. There exist irreducibleMarkov chains that do not admit any invariantmeasure (but they
are necessarily transient). Consider for instance the Markov chain on N with transition
kernel

p(i, j) =


αi if j = i+ 1,
1− αi if j = 0,
0 otherwise,

where (αi)i≥0 is a sequence of number in ]0, 1[ such that
∑

(1 − αi) < ∞. If ν is is a
invariant measure, then it must satisfy the balance equations:

ν(0) =
∞∑
i=0

(1− αi)ν(i) and ν(i+ 1) = ν(i)αi for all i ≥ 0.

Thus, we deduce that ν(i) = ν(0)
∏i−1
j=0 αj . Assuming that ν(0) 6= 0 (otherwise ν =

0) and replacing ν(i) by its expression inside the balance equation for ν(0) and then
simplifying by ν(0) on both sides, we find that

1 =
∞∑
i=0

(1− αi)
i−1∏
j=0

αj = 1−
∞∏
j=0

αj < 1

which leads to a contradiction. This shows that there is no invariant measure.

Exercice 7.14

Show that, for any any n ∈ N ∪ {+∞}, there exists an irreducible transient Markov chain on
some space E such that the vector space generated by the invariant measures has dimension
exactly n. [Hint: case n = 0 is treated in the remark above. For 1 ≤ n <∞, consider a biased
random walk on n copy of N joined at 0. For n = ∞, consider a biased random walk on a
binary tree.]

34



Corollary 7.15

Let X be a random walk on an electrical network (E, E , c). Suppose that the chain is irredu-
cible (equivalently that the graph is connected). Then

X is positive recurrent ⇐⇒
∑
x,y∈E

c(x, y) <∞.

Proof. We already noticed that π defined by (7.1) is an invariant measure. Its mass is
∑

x∈E π(x) =∑
x,y∈E c(x, y). Thus, if this quantity is finite, then the walk is positive recurrent thank to Propo-

sition 7.12. Otherwise, it is either transient or null recurrent but cannot be positive recurrence by
unicity of the invariant mesure up to a multiplicative factor.

Remark 7.16

The simple randomwalk on a graph (E, E) is a particular case of randomwalk on an electrical
network where the conductances are constant: c(x, y) = 1 for all pair of neighbors (x, y).
Thus, if the graph is infinite and connected, the walk is either transient or null recurrent but
it cannot be positive recurrent. In particular, the simple randomwalk on Zd is null recurrent
for d = 1,2 and transient for d ≥ 3.

Ehrenfest Urns. We conclude this section with a striking numerical application of the theory
to the Ehrenfest urn model. Recall that we have a box with two compartments that contains a
total number of N molecules and that, at each step, one molecule chosen uniformly switches its
compartment. Since the chain is irreducible and the state space is finite, it is necessarily positive
recurrent. We have already seen that its invariant probability distribution is the Binomial(N ,1/2)
distribution (which is reversible for the chain).

Suppose now that N = 1023 (about the Alvogadro number) and that 1010 molecules switch
places every second. Using Corollary 7.11, we can explicitly compute the expected time between
two observations when both compartments have exactly the same number of molecules:

EN/2[TN/2] = 1
P(Binom(N, 1/2) = N/2) = 2N(

N
N/2
) '√π

2N ' 40 seconds.

Similarly, we can compute the expected time between two observationswhen the first compartment
is empty:

E0[T0] = 1
P(Binom(N, 1/2) = 0) = 2N(

N
N

) = 21023 � lifetime of the universe !

These computation provide a convincing argument to explain why somemicroscopic reversible re-
current processes in thermodynamics/statistical mechanics seem irreversible: the recurrence time
is so huge that returns to low probability states are never observed in practice!
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Transience Recurrence

positive recurrencenull recurrence

each site is visited only
finitely many times a.s.

each site is visited infinitely often a.s.

There can be any number
of invariant measures.

Any invariant measure µ
must have infinite mass
i.e. µ(E) = ∞.

(possibly 0).

An invariant measure exist and is unique
up to a multiplicative constant

The invariant measures
have infinite mass
i.e. µ(E) = ∞.

The invariant measures
have finite mass
i.e. µ(E) <∞.

⇒ There exists a unique
invariant probability
distribution π.

Px(Tx <∞) < 1

Ex[Tx] = ∞

Px(Tx <∞) = 1

Ex[Tx] = ∞ Ex[Tx] = 1
π(x) <∞

Figure 1.1: Summary of the properties of an irreducible Markov chain depending on its type.
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8. Limit theorems

In the previous section, we have seen that, for an irreducible positive recurrent Markov chain, its
invariant probability measure quantify how often each state is visited. We will now complete this
picture by studying the asymptotic distribution of Xn for large n. We will see that it converges,
under reasonable assumptions, toward the invariant measure.

The first result states a convergence for the Cesàro sums.

Theorem 8.1

Suppose that the Markov chain X is irreducible and recurrent. Let ν be an arbitrary initial
distribution. Let µ be an invariant measure forX . For any functions f : E → R+ and g : E →
R+ such that 0 <

∑
E g(x)µ(x) <∞, we have∑n

i=0 f(Xi)∑n
i=0 g(Xi)

−→
n→∞

∑
E f(x)µ(x)∑
E g(x)µ(x) , Pν-a.s.

If the chain is positive recurrent, then the invariant measures have finite mass and so can choose
g = 1 which proves that:

Corollary 8.2

Assume that the chain is irreducible and positive recurrent. Let π be the unique invariant
probability. For any f : E → R+, we have

1
n

n∑
i=0

f(Xi) −→
n→∞

∑
E

f(x)π(x) , Pν-a.s.

Proof of Theorem 8.1. Fix x ∈ E. In view of equation (4.2), we just need to prove the result when the
chain starts from ν = δx. Define by induction the sequence of stopping times{

T (0) := 0,
T (n+1) := inf{i > T (n) : Xi = x}.

With this definition, we have T (1) = Tx. Notice that all these times are finite Px-a.s. since the chain
is assumed to be recurrent. Define also

ξn :=
T (n+1)−1∑
i=T (n)

f(Xi), for n ∈ N.

Using the strong Markov property. It is easily checked by induction that (ξn, n ≥ 0) is a sequence
of i.i.d. random variables. Let µx be the measure in Theorem 7.7:

µx(y) := Ex

[ Tx−1∑
i=0

1{Xi=y}

]
, for y ∈ E.
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Since the chain is irreducible and recurrent, we know that µx = cµ for some c > 0 (Theorem 7.10).
Thus, we get

Ex[ξ0] = Ex

[ Tx−1∑
i=0

f(Xi)
]

= Ex

[ Tx−1∑
i=0

∑
y∈E

f(y) 1{Xi=y}

]

=
∑
y∈E

f(y)Ex

[ Tx−1∑
i=0

1{Xi=y}

]
=
∑
y∈E

f(y)µx(y) = c
∑
y∈E

f(y)µ(y)

Applying the strong law of large numbers, we find that

1
n

n−1∑
i=0

ξi −→
n→∞

c
∑
y∈E

f(y)µ(y), Px-a.s.

Define now Nn(x) :=
∑n

i=1 1{Xi=x} for any n ≥ 0. This quantity represents the number of hits at
state x by the chain up to time n; as such, we have T (Nn(x)) ≤ n < T (Nn(x)+1) and therefore

n∑
i=0

f(Xi) ≤
T (Nn(x)+1)−1∑

i=0
f(Xi) =

Nn(x)∑
j=0

ξj ,

which implies (because Nn(x)→∞ as n→∞) that

lim sup
n→∞

∑n
i=0 f(Xi)
Nn(x) ≤ E[ξ0] = c

∑
y∈E

f(y)µ(y) Px-a.s.

Similarly, we have

n∑
i=0

f(Xi) ≥
T (Nn(x))∑
i=0

f(Xi) ≥
T (Nn(x))−1∑

i=0
f(Xi) =

Nn(x)−1∑
j=0

ξj ,

and therefore
lim inf
n→∞

∑n
i=0 f(Xi)
Nn(x) ≥ E[ξ0] = c

∑
y∈E

f(y)µ(y) Px-a.s.

We conclude that ∑n
i=0 f(Xi)
Nn(x) −→

n→∞
c
∑
y∈E

f(y)µ(y) Px-a.s.

The same result holds with g in place of f . Taking the ratio, the constant c and the term Nn(x)
cancel so we obtain the convergence stated in the theorem.

Remark 8.3

Let F,G ⊂ E such that µ(G) <∞. Applying Theorem 8.1 with f(z) = 1z∈F and g(z) = 1z∈G,
we observe that

number of visits of the set F before time n
number of visits of the set G before time n

−→
n→∞

µ(F )
µ(G) Pν-a.s. (8.1)

Choose F = {x} for x ∈ E. If the chain is positive recurrent, then µ(E) < ∞ so we can take
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G = E which yields

number of visits of x before time n
n

−→
n→∞

π(x) > 0 Pν-a.s. (8.2)

where π is the unique invariant probabilitymeasure. On the other hand, ifX is null recurrent,
then µ(E) =∞. By taking larger and larger (finite) subset G, we conclude that

number of visits of x before time n
n

−→
n→∞

0 Pν-a.s. (8.3)

(8.2) and (8.3) explain the terminology "positive recurrent" and "null recurrent": in the first
case, the walk spends a positive fraction of its time at each site of E whereas it spends a null
fraction in the second case.

Corollary 8.4

Suppose that the chain X is irreducible.

• If X positive recurrent, then

lim
n→∞

1
n

n∑
k=0

pk(x, y) = π(y) > 0 for all x, y ∈ E,

where π is the unique invariant probability measure.

• If X is null recurrent or transient

lim
n→∞

1
n

n∑
k=0

pk(x, y) = 0 for all x, y ∈ E.

Proof. We observe that number of visits of y before time n
n ≤ 1 for all n. Suppose that X is recur-

rent. In view of (8.2) and (8.3) and making use of the dominated convergence theorem we deduce
that

lim
n→∞

1
n

n∑
k=0

pk(x, y) = lim
n→∞

Ex

[number of visits of y before time n
n

]
=

{
π(y) if X is positive recurrent,
0 if X is null recurrent.

Finally, if the chain is transient, then the Green function G(x, y) is finite so the Cesàro sum also
converges to 0.

The convergence of theCesàro sum 1
n

∑n
k=0 p

k(x, y)does not guaranty the convergence of pn(x, y)
itself. Consider for instance the Markov chain on E = {0, 1} with transition kernel p(0, 1) =
p(1, 0) = 1 and p(0, 0) = p(1, 1) = 0 i.e. the chain jumps back and forth (deterministically) between
0 to 1. Clearly, we have

pn(0, 1) =
{

0 if n is even,
1 if n is odd.
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Hence it does not converge (but the Cesàro sum converges to 1/2). Wewill now see that this “cyclic"
phenomenon is the only thing that can prevent pn(x, y) from converging. To do so, we introduce
the notion of periodicity.

Definition 8.5

Let x ∈ E. We define the set

Dx := {n ≥ 0 : pn(x, x) > 0}.

The greatest common divisor of Dx, denoted by dx, is called the period of x.

Proposition 8.6

Assume that the chain is irreducible.

1. All states have the same period d.

2. Suppose that d = 1. For each x ∈ E, there exists n0 ∈ N such that,

pn(x, x) > 0 for all n ≥ n0

Proof. 1. Fix x, y ∈ E and denote by dx, dy their period. By irreducibility, there exist k, l such that
pk(x, y) > 0 and pl(y, x) > 0. For anym ∈ Dy, we have pm(y, y) > 0 so that

pm+k+l(x, x) ≥ pk(x, y)pm(y, y)pl(y, x) > 0.

This means thatm+ k+ l ∈ Dx i.e. dx dividesm+ k+ l. In particular, 0 ∈ Dy thus dx divides k+ l.
But then, dx divides any elementm ∈ Dy so it divides its gcd dy. By symmetry, dx = dy.

2. Fix x ∈ E. Let us first remark that, if u, v ∈ Dx, then

pu+v(x, x) ≥ pu(x, x)pv(x, x)

which means that u+ v ∈ Dx. Thus,Dx is stable by addition (it is a semigroup). Suppose now that
d = 1. By Bezout identity, there exist u1, . . . uk ∈ Dx and a1, . . . ak ∈ Z such that

k∑
i=1

aiui = 1.

(here, we apply Bezout identity to the infinite set but Dx is infinite but this is not a problem be-
cause gcd(Dx ∩ [0, N ]) = 1 for all N large enough since it is an integer-valued decreasing function
converging to 1). Let

q =
∑
i|ai≥0

aiui and q′ = −
∑
i|ai<0

aiui
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so that q − q′ = 1. Moreover, q, q′ ∈ Dx thanks to the semigroup property of Dx. We choose
n0 = q′2. Let n ≥ n0. The euclidian division of n by q′ gives n = bq′ + r for some b ≥ q′ and r < q′.
In particular, b > r. But then, using that 1 = q − q′, we can write

n = bq′ + r = bq′ + r(q − q′) = (b− r)q′ + rq.

Since (b − r) and r are both positive and q and q′ belong to Dx, we deduce from the semigroup
property that n ∈ Dx which means pn(x, x) > 0 as requested.

Definition 8.7

The common period d of all states of an irreducible Markov chain is called the period of the
chain. In the case d = 1. We say that the chain is aperiodic.

Remark 8.8

1. The simple random on Zd, d ≥ 1 has period 2.

2. Any irreducible chain for which there exists a state x such that p(x, x) > 0 is aperiodic.

Exercice 8.9

Let X be a Markov chain on some electrical network (E, E , c). The graph (E, E) is said to
be bipartite if its vertices can be colored with two colors in such way that no two adjacent
vertices share the same color. Show that, if (E, E) is bipartite, then the chain has period 2 and
otherwise it is aperiodic. In particular, since any irreducible reversible Markov chain admits
an electrical network representation, its period is either 1 or 2.

Theorem 8.10

Assume that the chain is irreducible, positive recurrent, and aperiodic. Then for all x ∈ E,∑
y∈E
|pn(x, y)− π(y)| → 0, n→∞,

where π is the unique invariant probability.

Remark 8.11

The convergence stated in the theorem above is called convergence in total variation norm.
This is a strong convergence which implies in particular the convergence in law of Xn to π.

41



Proof of Theorem 8.10. The formula

p̂(x, y) := p(x1, y1) p(x2, y2), x := (x1, x2) ∈ E2, y := (y1, y2) ∈ E2,

defines a transition probability onE×E. Let ((X1
n, X

2
n)n∈N, (P̂x)x∈E2) be the associated canonical

Markov chain. We remark that p̂ is irreducible. Indeed, if x = (x1, x2) and y = (y1, y2) are two
states of E × E, by the previous proposition, there exist n1 and n2 such that pn(x1, y1) > 0, for all
n ≥ n1 and pn(x2, y2) > 0, for all n ≥ n2. Settingm = max{n1, n2}, we conclude that p̂m(x, y) > 0
which shows the irreducibility. We also note that π ⊗ π is an invariant probability measure for p̂:∑

x∈E2

(π ⊗ π)(x) p̂(x, y) =
∑

x∈E2

π(x1)π(x2) p(x1, y1)p(x2, y2)

=
∑
x1∈E

π(x1) p(x1, y1)
∑
x2∈E

π(x2) p(x2, y2)

= π(y1)π(y2) = (π ⊗ π)(y).

The chain being irreducible with an invariant probability, it follows from Proposition 7.12 that it is
positive recurrent. In particular, the stopping time

N := inf{n ∈ N : X1
n = X2

n}.

is a.s. finite under an initial distribution (becauseN is smaller than the return time to any diagonal
state (z, z) which is finite). The reason for which we have introduced this bi-dimensional chain is
that we can write

pn(x, y)− π(y) = P̂π⊗δx

(
X2
n = y

)
− P̂π⊗δx

(
X1
n = y

)
= Êπ⊗δx

[
1{X2

n=y} − 1{X1
n=y}

]
.

Splitting this equality depending on whether N ≤ n or N ≥ n, we get that

pn(x, y)− π(y) = Êπ⊗δx

[
1{N>n}(1{X2

n=y} − 1{X1
n=y})

]
+

n∑
k=0

∑
z∈E

Êπ⊗δx

[
1{N=k,X1

k=X2
k=z}(1{X2

n=y} − 1{X1
n=y})

]
. (8.4)

Using the Markov property at time n− k, we find that, for k ∈ {0, 1, · · · , n} and z ∈ E,

Êπ⊗δx

[
1{N=k,X1

k=X2
k=z}1{X2

n=y}
]

= Êπ⊗δx

[
1{N=k,X1

k=X2
k=z}

]
pn−k(z, y)

= Êπ⊗δx

[
1{N=k,X1

k=X2
k=z}1{X1

n=y}
]
,

which means that the double sum on the right-hand side of (8.4) vanishes. Accordingly,∑
y∈E
|pn(x, y)− π(y)| =

∑
y∈E

∣∣Êπ⊗δx

[
1{N>n}(1{X2

n=y} − 1{X1
n=y})

]∣∣
≤

∑
y∈E

Êπ⊗δx

[
1{N>n}(1{X2

n=y} + 1{X1
n=y})

]
= 2 P̂π⊗δx(N > n),

which converges to 0 when n→∞, since N is finite P̂π⊗δx-a.s.
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