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Abstract

We consider the local limit of uniformly distributed directed animals with size n on the

square lattice viewed from the root. Two constructions of the resulting uniform infinite di-

rected animal are given: one as a heap of dominoes, constructed by letting gravity act on a

right-continuous random walk, and one as a Markov process, obtained by slicing the animal

horizontally. We look at geometric properties of this local limit and establish, in particular,

that it consists of a single vertex at infinitely many (random) levels. The proof relies on

martingales arguments and showcases the strength of this probabilistic approach.
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1 Introduction

This paper is concerned with the study of directed animals: given an oriented graph, a finite

subset A of its vertices is called a directed animal with source set S if we have S ⊂ A and every

vertex in A \ S has a neighbor in A with respect to the directed graph structure. Here, we focus

on the two-dimensional lattice Z2 where horizontal edges are oriented leftward and vertical edges

are oriented downward. Therefore, a directed animal A is just a set such that every non-source

vertex has a neighbor directly on its left or directly below it c.f. Figure (1) (a).

The study of two-dimensional directed animals began with the recognition by Dhar that these

sets can be counted by area (total number of vertices) [10, 12, 11], through a clever link with the

hard particle model from statistical physics.
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The combinatorics community quickly took on the subject [26, 14, 6], pushing forward bijective

proofs of Dhar’s findings. Among the methods employed, Viennot’s heap of dominoes [27] quickly

emerged as a powerful tool to investigate directed animals. The topic is elegantly reviewed in

Bousquet-Mélou’s ICM invited lecture [9] (section 3.4.2), see also Bétréma Penaud [7] or Flajolet

Sedgewick [13], example 1.18, for a concise and self-contained introduction. The overall message

is that while the joint distribution of area and width is fairly well understood, anything beyond

these two quantities is basically out of reach of current methods, with the notable exception of

some delicate computations on the joint distribution of area and perimeter by Bousquet-Mélou

[8] and then Bacher [4].

On another line of research, Le Borgne and Marckert [21] and Albenque [2] achieved a proba-

bilistic understanding of Dhar’s connection between directed animals and the hard particle model.

Reflecting on these difficulties, we opt here for a probabilistic viewpoint on the topic, starting

with a very basic question: what does a large directed animal chosen uniformly at random looks

like near the origin? In other words, inspired by Benjamini Schramm’s work [5], we investigate

the weak local limit of uniform directed animals viewed from the origin on the square lattice.

More specifically, we study the limit of uniformly sampled pyramids (i.e. animals with a

single source at the origin) and of half-pyramids (i.e. pyramids included in an octant) as their

size grows to infinity. In both cases, we establish that the limit exists and defines a non-trivial

infinite random set which can be interpreted as a “uniform infinite pyramid/half-pyramid”. Then,

we carry on by studying some probabilistic and geometric properties of these random objects.

We acknowledge that some results presented in this paper can be derived directly using the

powerful combinatorial framework of pyramids (heaps of dominoes). However, the core result

of this article concerns the “sausaging” of the local limit, for which we are not aware of any

combinatorial proof. Therefore, for the sake of clarity and coherence of this work, we have chosen

to adopt a unified probabilistic approach, even though some arguments could be streamlined using

pyramids. Lastly, we direct readers with an interest in algebraic computations to the appendix,

which includes some noteworthy identities.

1.1 Outline of the paper

We describe here the organization of the paper and give an overview of the main results.

We begin by revisiting the heap of dominoes technique in Section 2. We introduce a bijection1

(Proposition 1) between a class of integer-valued walks with increments in Z∗
− ∪ {1} and a class

of directed animals, coined simple animals (Definition 1), that includes, in particular, all directed

animals of finite size/area but it also includes other infinite directed animals. This one-to-one

mapping states that any simple animal can be constructed in a unique way by piling dominoes

on top of each other in a specific order, where the x-coordinates of the centers of the dominoes

are given by the successive values in a sequence whose increments are in Z∗
− ∪ {1}.

1As pointed out by a referee, a similar bijection was previously known in the case of the triangular lattice, see

[16], where is goes under the name of Mikado enumeration.
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0
1

2
3

4

5

6

7

8

(b) the same animal rotated by 45◦

Figure 1: Example of a directed animal with a single source at the origin i.e a pyramid (a). The

height levels are drawn in red with layer 5 highlighted in green in the rotated picture (b)

Next, we look at the push-forward image by this bijection of the uniform measure on the set

of pyramids (resp. half-pyramids) with size n. In that case, the random sequence constructed

via the bijection has a simple form: it has independent geometric increments given by Formula

(8) subject to an additional requirement that it never overshoots its current minimum by more

than 1 unit. This process can be constructed from a classical random walk (called here the

animal walk) via a “shaving” procedure described in Section 3.1. The correspondence between

uniformly sampled pyramids/half-pyramids and paths of the (shaved) animal walk is summarized

in Proposition 2.

The advantage of encoding directed animals into one-dimensional random walks appears

clearly when taking the limit as their size increases to infinity as we can now construct the

local limits directly from an infinite path of the animal walk (after checking that the weak condi-

tioning events in the finite size setting vanish in the limit). Using the animal walk, the uniform

infinite pyramid (UIP) is defined in Definition 3 and the uniform infinite non-positive pyramid

(UIP-) in Definition 5. Below is an informal version of the main convergence results proved in

Section 3, we refer to the quoted theorems for their precise statements.

Theorem (Theorems 1 and Theorem 2).

1. The law of the uniform pyramid with n vertices converges, as n → ∞, in the local limit

sense, towards the law of the UIP which is the infinite pyramid constructed from a sample

path of the shaved animal walk.

2. The law of the non-positive uniform pyramid with n vertices converges, as n → ∞, in the

local limit sense, towards the law of the UIP- which is the infinite non-positive pyramid

constructed from a sample path of the shaved animal walk conditioned to stay non-positive

at all time.

Because the animal walk is centered, the conditioning event mentioned in the item 2. above

has null probability, but we can make sense of this conditioning via a Doob h-transform. By
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symmetry, the local limit of uniformly sampled non-negative pyramids also exists and coincides

with the uniform infinite non-negative pyramid (UIP+) defined as the mirror image of the UIP-

(Definition 6 and Corollary 3). However, somewhat surprisingly, because our bijection breaks

the symmetry of the lattice, the UIP+ does not coincide with the random pyramid constructed

from the sample path of the shaved animal walk conditioned to stay non-negative as explained

in Remark 7.

The definition of the local limits in terms of the piling up of dominoes along a random sequence

is satisfactory from a conceptual viewpoint. Yet, it provides little quantitative insight into the

structure of these infinite random sets because the piling up operation is difficult to analyze

geometrically. In Section 4, we describe another construction of these objects seen as Markov

processes when sliced by height (i.e. sliced horizontally for the animal rotated by 45◦ counter-

clockwise, c.f. Figure 1 (b)). Again, we state below an informal version of the main results on

this topic.

Theorem (Theorem 3 and Corollary 5). The traces of the UIP and UIP+ inside a finite ball

around the origin have explicit distributions given by Formulas (32) and (33).

As a consequence, the processes associated with the UIP and UIP+ indexed by heights are Markov

processes with kernels given by (45) and (46) respectively.

The simple fact that the formulas (45) and (46) are indeed probability kernels (i.e. sum to 1)

yield non-trivial equalities such as (47). We provide alternative proofs of a more symbolic nature

of these identities in an appendix, Section 6, that is logically independent of the rest of the paper.

Section 5 is devoted to studying properties of the local limits. In Subsection 5.1, we leverage

the explicit expressions for the kernels of the Markov chains to compute the probability of various

events. In particular, we compute the joint probability of occupation of the two neighbors above

a vertex at a given height (c.f. Proposition 9).

In Subsection 5.2, we prove our main result about the geometry of the UIP which states that

this random set has regeneration times and can be constructed by joining, one after the other, an

i.i.d. sequence of finite directed animals. Visually, this says that the UIP is a chain of “sausages”.

Theorem (Theorem 4). The UIP has the sausaging property: almost surely, there exist infinitely

many heights where the UIP consists of a single vertex. However, the distance between two such

consecutive heights is non-integrable.

The proof of this result is purely probabilistic: it relies on martingale arguments derived from

the connection between the UIP and UIP+ through an h-transform.

Finally, in the last subsection, we turn our attention to the UIP+. We prove that it is transient

to +∞ and provide an explicit formula for the law of the future infimum of the rightmost vertex,

c.f. Proposition 11.

1.2 Additional comments

Our approach bears some striking similarity with the standard approach for studying uniform

rooted plane trees and their associated local limit from the root, also known as the Kesten tree

5



[18, 1]: in both cases, elements of the classes can be enumerated by their number of vertices,

and this can be done in different ways (analytic combinatorics or bijective proofs emphasizing

a special coding, e.g. the contour process or the Lukasiewicz path for plane trees, see [19] );

besides, some additional arguments are needed to get to the local limit; for instance, defining the

Kesten tree requires counting not only plane trees but also plane forests. In both settings, Doob

h-transform plays a critical role in relating the various objects under consideration. We comment

on this analogy throughout the paper, c.f. Remarks 5, 6, 7, 14 and 15.

On a related topic, numerical simulations seem to indicate that the local limits of directed

animals are “tree-like” i.e macroscopic loops are extremely unlikely (c.f. the picture on the front

page of this paper). Do directed animals converge to random trees, say for the Gromov-Hausdorff

topology, after suitable renormalization?

Another aspect of this work that we find of particular interest and differs from previous

approaches is the interplay between conditioning the random walk coding for the animal and

conditioning the animal itself. Specifically, the conditioning considered here is on the event that

the walk and the animal stay non-negative (meaning all vertices have non-negative x-coordinates).

A key observation is that the standard martingale change of measure for the walk upgrade in a

simple way in a change of measures at the level of the animals, unveiling various non-trivial

martingales for directed animals.

We point out that one-dimensional encodings of animals have been considered previously, see

Gouyou-Beauchamps and Viennot [14], Bétréma and Penaud [6, 7]; however, our encoding is

different and arguably simpler. It serves our purpose more efficiently than the original one which

relates directed animals to Motzkin paths with increments in {−1; 0; 1} and “guinguois” trees, see

[7] for details on these concepts.

We also mention that the fact that directed animals should exhibit Markovian properties

is not new: the first two papers on directed animals, [11, 24], both start with the so-called

transfer-matrix equation, see Equation (2) in [11] or Equation (15) in [24], that exploits a kind

of Markov property at the level of generating functions. Regarding the local limit, at the core

of our computations is the possibility to enumerate directed animals with a given source and a

large size; this very computation when the underlying graph is the torus is the focus of the two

papers [24, 15], the latter article confirming the conjectures elaborated in the former. Regarding

directed animals on Z, the generating function of directed animals with a given source may be

found in Proposition 3.6 of [21], see also Proposition 3.7. for the same computation where the

sources are allowed to lie at distinct levels, which directly echoes our spatial Markov property,

c.f. Remark 8.

In this paper, we only consider the local limit around the origin. Another standard approach

is to look at the local limit seen from a uniformly chosen vertex within a large animal but the

existence and description of such object is still an open question. Let us only mention that Bacher

computes in [4] the number of occurrences of certain motifs in a large uniform random animal,

which can be viewed as a first step in that direction. We link some of his computations with ours

in Remark 10.

The Markov kernels associated with the local limits have remarkable properties. In a paper
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(c) A non-negative pyramid

Figure 2: Directed animal (with 2 sources), pyramid and half-pyramid in Z ⋄ N

in preparation [17], we delve into the intertwining relation satisfied by the kernel of the UIP,

demonstrating in particular that the UIP is, in fact, the projection of a two-type branching-

annihilating particle system with local interaction.

Finally, although this paper focuses solely on the square lattice, some results obtained here can

be adapted to the triangular lattice, essentially because the representation of an animal using a

heap of dominoes still holds, see [27, 4]. However, this entails a much greater technical complexity.

We opted against this to maintain accessibility and control the paper’s length.

2 Encoding of an animal by a skip-free path

In this section, we describe a bijection between finite directed animals and finite paths with a

particular step set. We show that this correspondence extends to a one-to-one mapping between

infinite paths and a particular subset of infinite animals, dubbed simple. This result is instru-

mental to the rest of the paper as it will allow us to translate questions about random directed

animals into questions pertaining to a simpler one-dimensional random walk. This approach is

reminiscent of the usual encoding of a planar tree by an excursion of a random walk (c.f. [22, 19]).

2.1 Definitions and notations for directed animals

We gather here definitions and notations that will be used throughout the paper. As is customary

when working with directed animals on the square lattice, we consider the lattice rotated by 45◦

counter-clockwise and scale it by a factor
√
2 so we work with the graph:

Z ⋄ N := {(x, y) ∈ Z× N : x+ y is even}.

with directed edges going from (x, y + 1) to (x − 1, y) and (x + 1, y), c.f. Figure 2. Vertices of

Z ⋄ N will be written in bold: a,b . . . and subsets of Z ⋄ N denoted with capital letters A,B . . .

• Given a ∈ Z ⋄ N, we denote x(a) and y(a) the x-coordinate and y-coordinate of a (the

y-coordinate is also called the height of the vertex). The floor of Z ⋄N is the set of vertices

at height 0.
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• Given A ⊂ Z ⋄ N we define x(A) := {x(a), a ∈ A} the set of x-coordinates of the vertices

in A. We will often use the notation A = x(A) i.e. the same letter but not in bold.

• Any vertex a ∈ Z⋄N has two children: (x(a)−1, y(a)+1)) and (x(a)+1, y(a)+1). When a is

not located on the floor, it also has two parents (x(a)−1, y(a)−1)) and (x(a)+1, y(a)−1)).

• We say that a subset A ⊂ Z ⋄ N is a directed animal if it is non-empty and every vertex in

A that is not on the floor has at least one of its parent in A. Comparing with the definition

given at the very beginning of the paper, this means that we consider animals with source

sets located on the anti-diagonal line (drawn as a dashed line in Figure 1 (a)). We point

out that we allow A to be an infinite set. Notice also that, by definition of Z ⋄ N, the
x-coordinates of all vertices at the same height have the same parity (which alternates with

the height).

• We call pyramid an animal with a single vertex on the floor (i.e. a single source). Unless

stated otherwise, a pyramid will be assumed to start at the origin (0, 0) c.f. Figure 2 (b).

• We call non-negative (resp. non-positive) pyramid a pyramid started from (0, 0) such that

all its vertices have non-negative (resp. non-positive) x-coordinate c.f. Figure 2 (c).

2.2 Ordering of the vertices of a directed animal

Let A be a (finite or infinite) directed animal. As explained by Viennot [27], we can represent

A as a heap of dominoes. More precisely, we represent each vertex of A by a domino of height 1

and length slightly smaller than 2. Then, by definition, an animal is a set of dominoes such that

each domino is either resting on the floor or is supported by a domino directly under it.

With this representation we can define the operation of “pushing upward”: lifting up a domino

of the animal brings along other dominoes located over it as illustrated in Figure 3. To make this

definition precise, we define a binary relation � on the vertices of A. For any a,b ∈ A,

a� b ⇐⇒

{
there exist v0, . . . ,vn ∈ A with v0 = a,vn = b,

such that y(vi+1) > y(vi) and |x(vi+1)− x(vi)| ⩽ 1 for all i < n.
(1)

Clearly, this relation is a partial order. For any a ∈ A, the subset {b ∈ A : a� b} is exactly the

set of vertices that are carried away when “pushing upward” domino a.

Remark 1. 1. The condition |x(vi+1)− x(vi)| ⩽ 1 can be replaced by |x(vi+1)− x(vi)| = 1 in

equivalence (1) without altering the ordering relation �. We also point out that the chain

v0, . . . ,vn needs not be unique.

2. By definition of a directed animal, the sources of A are exactly the vertices which are

minimal for �, i.e. vertices a for which there does not exist b ∈ A such that b� a.

3. The subset {b ∈ A : a�b} contains the pyramid hovering vertex a but it may also contain

other vertices of A which are not direct descendants of a (see Figure 3 for an example).
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a

b

(a) Animal in Z ⋄ N

a

b

(b) Representation as a

heap of piece

a

b

(c) Pushing up vertex a

Figure 3: Representation of an animal as a heap of pieces and the “pushing up” operation at a vertex.

We have a� b even though b is not a direct descendant of a.

We can extend the partial order ◁ to a total order ≼ on A: for a,b ∈ A,

a ≼ b ⇐⇒ (a� b) or (a and b are not comparable for � and x(a) > x(b)). (2)

In other words, vertices of A that are not ordered for � are ordered relative to the decreasing

values of their x-coordinates. This completion of the partial order � is not canonical: we could

replace condition x(a) > x(b) in (2) by x(a) < x(b) instead to define the so-called mirror order

≼̃. The mirrored image of an animal A ordered according to ≼ reflected against the y-axis is an

animal Ã whose vertices are ordered according to ≼̃. In this paper, we will work with ≼ and we

shall mention explicitly when we consider the mirror order ≼̃.

Lemma 1. The binary relation ≼ defines a total order on the elements of A.

Proof. Definition (2) is unambiguous because any pair (a,b) of vertices which do not compare for

� must have distinct x-coordinates so that either x(a) < x(b) or x(b) > x(a). Furthermore, the

reflexivity and anti-symmetry properties of ≼ are directly inherited from those of �. It remains

to check the transitivity property. Fix a,b, c such that a ≼ b and b ≼ c. If both (a,b) and (b, c)

are comparable for �, then the result follows from the transitivity of �. If neither are comparable

for �, then we have x(a) > x(b) > x(c) and (a, c) cannot be comparable for � (because otherwise

b would be comparable with either a or c) and so the result follows. There remain two cases to

consider.

Case 1: (a,b) not comparable for � and b � c. If (a, c) is comparable for �, then necessarily

a� c (hence a ≼ c as wanted) because the reverse relation would yield b� c� a and contradict

the assumption a ≼ b. Let us now assume the neither (a,b) nor (a, c) are comparable for �.

We have x(a) > x(b). If x(c) ⩽ x(b), then x(c) < x(a) so that a ≼ c as expected. Otherwise,

we have x(c) > x(b) and we prove by contradiction that x(a) /∈ Jx(b), x(c)K. Thanks to the

assumption b � c, we can find a sequence b = v0,v1 . . . ,vk = c such that x(vi+1) = x(vi) + 1

and y(vi+1) > y(vi+1). Let j be an index such that x(vj) = x(a).

• If y(a) ⩽ y(vj) then the sequence a,vj+1, . . . ,vk witnesses that a� c which is absurd.
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Figure 4: An animal ordered with ≼ (a) and then with the mirror order ≼̃ (b). Notice that we have

a ≼ b in Figure (a) but the order of these two vertices becomes reversed if we add a vertex at position

c (and we then get b ≼ c ≼ a).

• If y(a) > y(vj) then the sequence v0, . . . ,vj−1,a witnesses that b�a which is again absurd.

Thus, we have x(a) /∈ Jx(b);x(c)K and x(a) > x(b) therefore x(a) > x(c) which shows that a ≼ c.

Case 2: a�b and (b, c) not comparable for �. The argument is similar to that of the previous case.

We first observe that if (a, c) are comparable for � then necessarily a�c hence a ≼ c. Otherwise,

x(c) cannot belong to the interval Jmin(x(a), x(b));max(x(a), x(b))K because we would have

either a�c or c�b but both cases are forbidden. Therefore we conclude that x(c) < x(a) which

shows that a ≼ c.

Let us stress out that the total order ≼ depends on the animal A considered and is not stable

by inclusion: if A ⊂ B then, in general, the restriction to A of the order ≼ defined on B does

not coincide with the order defined directly on A (see Figure 4 for a counter-example). However,

this compatibility property holds true when the animal is grown by “dropping dominoes”.

Lemma 2 (Compatibility of the ordering when dropping dominoes). Let A be a (finite or infinite)

animal and let v ∈ Z ⋄ N such that{
A ∪ {v} is an animal

A ∩ ({x(v);x(v) + 1} × Jy(v) + 1;∞J) = ∅

Then, the total order ≼ on A coincides with the total order ≼ on A ∪ {v} restricted to A. In

particular, this result holds true whenever v is a vertex added to A by dropping a domino from

an infinite height at a given x-coordinate x(v).

Proof. Obviously, adding vertex v does not change the x-coordinate of the vertices of A so the

addition of v can only change the ordering two vertices a,b ∈ A if they are not comparable for

� inside A but adding v allows to create a chain witnessing that a and b are now comparable

for � (i.e. v is one of the vk in the r.h.s of (1)). Suppose for instance that a�b once v is added.

Then, we must have x(b) < x(a) because v is inside a chain from a to b and {x(v);x(v) + 1} ×
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(e) 0 ≼ 1 ≼ . . . ≼ 0 ≼ 1 ≼ . . . 0 ≼ 1 ≼ . . .

Figure 5: Examples of infinite animal ordering. Animals (a) and (b) are simples while animals (c),

(d) and (e) are not. Notice that (c) is the mirror image of (b) w.r.t. the y-axis yet it is not simple

for ≼ (but it is simple for the mirrored order ≼̃).

Jy(v) + 1;∞J) = ∅. But then, this means that we already had a ≼ b for the order inside A

anyway so adding v did not modify the ordering. For the second statement, we simply observe

that if v is dropped onto A from an infinite height, because dominoes have width larger than 1,

the stronger condition A ∩ {x(v)− 1;x(v);x(v) + 1} × Jy(v);∞J) = ∅ is satisfied.

We can distinguish animals according to the isomorphic class of its order ≼. When A is finite,

then (A,≼) is necessarily isomorphic to (J0; |A|−1K,⩽). The situation is more complicated when

A is infinite, as depicted in Figure 5.

Definition 1 (Simplicity of a directed animal). Let A be a directed animal. We say that A is

simple if A is finite (in which case (A,≼) is isomorphic to (J0; |A| − 1K,⩽)) or if A is infinite

and (A,≼) is isomorphic to (N,⩽). We denote by As the set of all simple animals.

Remark 2. 1. If A is a simple animal, then its set of sources has upper bounded x-coordinates

and the minimal element for ≼ is the source vertex with maximal x-coordinate.

2. The property of being simple is not stable by reflection along the y-axis: an animal may

be simple while its symmetric is not (c.f. examples (b) and (c) in Figure 5). Equivalently,

this means that the set of infinite animals that are simple for order ≼ is not the same as

11



the set of infinite animals that are simple for the mirrored order ≼̃. This fact will become

important in Section 3.4 when we study the local limit of half-pyramids.

2.3 Mapping between simple animals and skip-free paths

The following proposition is the main result of this section. It shows that any simple animal is

encoded by a skip-free path with increments in Z∗
−∪{1}, subject to an additional condition on the

position of the undershoots of its running infimum. This result may be seen as a counterpart for

directed animals of the classical Lukasiewicz encoding for planar trees c.f. [19]. A correspondence

between finite directed animals and finite one-dimensional paths was previously described by

Gouyou-Beauchamps and Viennot [14] and also Bétréma Penaud [6, 7] but differs from the one

presented here as the paths considered previously had increments in {−1; 0;+1} (and thus akin

to Dyck’s encoding for planar trees [19] rather than Lukasiewicz’s encoding). The one-to-one

mapping we define here is simpler than the previous ones and has the advantage of readily

extending into a mapping between infinite paths and infinite simple animals.

Proposition 1 (Path encoding of a simple animal). Let A ∈ As be a simple (finite or infinite)

directed animal. We enumerate its vertices in increasing order:

a0 ≼ a1 ≼ . . . ≼ an ≼ . . .

and we let xk := x(ak) denote the x-coordinate of vertex ak. Then, the sequence (x0, x1, . . .)

satisfies, for all k,

(a) xk+1 − xk ∈ Z∗
− ∪ {1},

(b) x0 ∈ 2Z and xk+1 ∈ 2Z whenever xk+1 ⩽ mini⩽k xi − 2

Furthermore, the mapping

Ψ :
As → S(a),(b)

A 7→ (xk)

defines a bijection between the set As of simple animals and the set S(a),(b) of (finite or infinite)

sequences satisfying (a) and (b). The inverse mapping Ψ−1 can be constructed as follows. Given

a sequence (xk) ∈ S(a),(b), we recover the y-coordinates (yk) of the vertices of the animal A by

setting y0 := 0 and, by induction,

yk := 1 + max{yi : i < k and |xk − xi| = 1} with the convention max ∅ = −1. (3)

In other words, the animal A can be reconstructed from the sequence (xk) by dropping dominoes

from infinity along the sequence of x-coordinates (xk).

Figure 6 illustrates how the bijection Ψ works on an example.

Proof. Fix a simple animal A ∈ As. We first prove that (a) holds. Assume by contradiction that

xk+1 = xk for some index k. Since ak ≼ ak+1, we must have ak�ak+1 hence y(ak) ⩽ y(ak+1)−2.

In particular, if v denotes a direct parent of ak+1 (which exists because ak+1 is not a source),
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Figure 6: Example of encoding of an animal A by a path (xk) via the mapping Ψ. Given the path

(xk) on the left, we can reconstruct the animal A on the right by dropping dominoes from infinity

along the path: the first domino falls on the floor at x = 0, then the second domino falls on top of it

at x = 1, and then successively at x = 2, 3,−2,−1,−3, . . .

we have v ̸= ak and ak � v � ak+1 which contradicts the enumeration (ak) of A. Therefore

xk+1 − xk ̸= 0 for all k. Similarly, let us assume that xk+1 > xk +1 for some k. Since ak ≼ ak+1,

we must have ak � ak+1 but this means that there exists v ∈ A with x(v) = xk + 1 such that

ak � v� ak+1, again contradicting the enumeration (ak) of A. Therefore xk+1 − xk ⩽ 1 for all k

which completes the proof of (a).

To see why (b) holds, we observe that a0 and all the vertices ak such that xk+1 ⩽ mini⩽k xi−2

are exactly the sources of the animal A thus y(ak) = 0 and xk must be even. Indeed, any vertex

ak of A which is not a source has a parent ai ∈ A such that |xi − xk| = 1 and y(ai) = y(ak)− 1.

In particular, ai � ak which implies i < k. But when xk ⩽ mini<k xi − 2, no such index i can

exist which means that ak must be a source.

We have proved that Ψ is a well-defined mapping between simple animals and sequences

satisfying (a), (b). Next, we show that, for any k,

y(ak) = 1 +max{y(ai) : i < k and |x(ak)− x(ai)| = 1} (4)

(with the convention max ∅ = −1). Fix k and let i be an index such that |x(ai) − x(ak)| = 1.

Then, ai and ak must be comparable for �. Because the sequence (an) is increasing for ≼, we

deduce that ai � ak if i ⩽ k and ak � ai otherwise. In particular, this means that

y(ai) < y(ak) if i < k, (5)

y(ak) < y(ai) if k < i. (6)

On the one hand, (5) implies that y(ak) ⩾ 1 + max{y(ai) : i < k and |x(ak) − x(ai)| = 1}.
On the other hand, (6) combined with the fact that A is an animal implies that equality must

hold (because otherwise ak would have no parent in A). Thus, we have established (4) which

shows that Ψ is an injective mapping whose inverse mapping Ψ−1 is computed by recovering the

y-coordinates of the sites via Formula (3).
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It remains only to show that Ψ is surjective onto the set S(a),(b). Fix ℓ ∈ N∗ ∪ {+∞} and

a sequence (xk, k < ℓ) satisfying (a) and (b). Define (yk, k < ℓ) via (3) and set ak = (xk, yk)

for all k < ℓ. We must show that the ak’s are all distinct vertices of Z ⋄ N and that the set

A := {ak, k < ℓ} forms a simple animal.

We prove by induction that for each n < ℓ, the set A(n) := {a0, . . . ,an−1} defines an animal

with n distinct vertices of Z ⋄ N ordered as

a0 ≼n a1 ≼n . . . ≼n an−1 (7)

where ≼n denotes the total order inside A(n). The result is obvious for n = 1. To prove the

induction step, we observe that an = (xn, yn) satisfies:

• an ∈ Z ⋄ N thanks to (3) and Assumption (b).

• an ̸= a1, . . . ,an−1. By contradiction, assume that an = ai for some i < n. Necessarily

i < n − 1 because xn ̸= xn−1. Furthermore, in view of (3), we observe that ai cannot

have any son (i.e. (xi ± 1, yi + 1) /∈ A(n)) because it would yield yn > yi + 1 > yn. This

fact implies in particular that xi+1 < xi − 1 = xn − 1. But because the path x only

performs unit increments to the right, there must exist an index j ∈ Ji + 2;n − 1K such

that xj = xn − 1 but then yj = 1 + max{yk : k < j and |xj − xk| = 1} > yi and therefore

yn = 1 +max{yk : k ⩽ n and |xn − xk| = 1} > yj > yi = yn which is absurd.

Therefore, A(n+1) = {a0, . . . ,an} is an animal with n+1 vertices. In view of Lemma 2, we know

that ≼n+1 restricted to A(n) coincides with ≼n. Thus, we only need to show that an−1 ≼n+1 an.

Indeed, if xn = xn−1 +1, then an−1 �n+1 an hence an−1 ≼n+1 an. Otherwise, we have xn < xn−1

but, by definition of yn, vertex an cannot compare smaller than any vertex of A(n) for the partial

order �n+1. Therefore, either an−1 �n+1 an or an−1 and an are not comparable for �n+1 (and

we have xx+1 < xn). In any case, we conclude that an−1 ≼n+1 an which completes the proof of

the induction step.

The induction above shows that, whenever the sequence (xk) is finite (i.e. l < ∞), then A is

a well-defined (simple) animal. When the sequence is infinite (i.e. l = ∞), A is still an animal

because it is an increasing limit of animals: A = ∪nA
(n). To check that A is simple, we observe

that the relative ordering of two vertices ai and aj for ≼ inside A depends only on A ∩B where

B := Jmin(x(ai), x(aj));max(x(ai), x(aj))K × J0;max(y(ai), y(aj))K. Since B is a finite subset,

A(n) ∩ B = A ∩ B for all n large enough and we conclude from (7) that ai ≼ aj if and only if

ai ≼n aj . Therefore A is simple and the proof is complete.

Proposition 1 describes a general correspondence between simple animals and paths. In the

rest of the paper, we will mostly be concerned with pyramids and half-pyramids which are the

building blocks of general animals. Then, the mapping Ψ becomes a bijection onto paths which

are now subject to specific conditions on their running infimum.

Corollary 1. 1. The mapping Ψ : A → (xk) induces a bijection between simple pyramids rooted

at 0 and sequences satisfying (a) and
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Figure 7: Illustration of a path of the animal walk S (in red) and the associated shaved walk Š. Both

processes share the same descending ladder times (τ−k).

(c) x0 = 0 and xk+1 ⩾ mini⩽k xi − 1 for all k.

In words, (c) means that the path starts at 0 and never beats its current minimum by more

than 1.

2. The mapping Ψ : A → (xk) induces a bijection between simple non-negative pyramids rooted

at 0 and sequences satisfying (a) and

(d) xk ⩾ 0 for all k.

3. The mapping Ψ : A → (xk) maps a simple animal A to a sequence of length |A|. Thus,

every bijection mentioned previously induces restricted bijections between subsets of simple

animals/pyramids/half-pyramids with prescribed size n ∈ N ∪ {+∞} and sequences of the

same length n.

Proof. Part 1. follows from the observation established during the proof of Proposition 1 that the

source vertices of an animal are exactly those vertices added when the path x beats its current

infimum by 2 or more. Parts 2. and 3. are straightforward.

3 Local limits of directed animals

3.1 Push-forward measures and the animal walk S

We are interested in the push-forward measure of the uniform measure on pyramids with size

n via the bijection Ψ of Proposition 1. It turns out that, modulo a little twist, this probability

measure factorizes pleasantly as a product of i.i.d. random variables so that the random path
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associated with an animal chosen uniformly at random is closely related to a random walk with

a particularly simple step distribution.

Let µ = (µk) be the distribution of a random variable supported on Z∗
− ∪ {1} which is equal

to 1 with probability 2/3 and to the opposite of a Geom(1/2) random variable with probability

1/3, that is, we set:

µk :=
2k

3
1k∈Z∗

−∪{1}. (8)

From now on, we shall always denote by (Sn) a integer-valued random walk with S0 = 0 and

whose increments (Sn+1 − Sn) are i.i.d. and distributed according to µ. We call S the animal

walk. We construct the associated shaved walk Š with the same increments as S except at the

times when the walk beats its current infimum in which case we shift Š so that it only beats its

minimum by 1. Rigorously, we set Š0 := S0 = 0 and by induction,

Šn+1 − Šn :=

Sn+1 − Sn if Sn+1 ⩾ mini⩽n Si,

mini⩽n Ši − 1 if Sn+1 < mini⩽n Si.

Equivalently, defining the descending ladder times (τ−k)k⩾0 of S by{
τ0 := 0,

τ−k−1 := inf
{
n > τ−k : Sn < Sτ−k

}
,

(9)

we have the equality

τ−k = inf
{
n : Šn = −k

}
and Š is constructed by splitting the walk S at the ladder times τk, then “shaving” all the

undershoots of its ladder height and then subsequently reassembling the path to obtain Š c.f.

Figure 7 for an illustration of the procedure. Because the distribution µ is centered (E[S1] = 0)

all the ladder times are finite a.s. and the construction above is well-defined.

The exit problem for the animal walk S has a very simple expression. We will use the next

results several times throughout the paper.

Lemma 3 (Exit problem for S). Let −y < 0 ⩽ x. We have

P
(
S enters K −∞,−yK before reaching {x}

)
=

x

x+ y + 1
. (10)

As a consequence, h+(z) := (z + 2)1z⩾0 is harmonic for S killed when entering K −∞,−1K and

h−(z) := (|z|+ 1)1z⩽0 is harmonic for S killed when entering J1,+∞J.

Proof. This is just the usual Gambler’s ruin martingale argument. Define the hitting time of a

set θA := inf{n ⩾ 0 : Sn ∈ A}. The walk is centered so (Sn) is a martingale for the natural

filtration. Furthermore, S makes geometric negative jumps so the undershoot SθK−∞;−yK +y is also

a −Geom(1/2) r.v. and is independent of the past. Thus, (Sn∧θK−∞;m−1K∧θ{1} , n ⩾ 0) is uniformly

integrable and the optional sampling theorem gives

0 = E[SθK−∞;−yK∧θ{x} ] = (−y − 1)P(θK−∞;−yK < θ{1}) + 1− P(θK−∞;−yK < θ{1})

which gives the stated formula. The harmonicity of h+ and h− follows from standard arguments

making use of the Markov property of the walk.
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We point out that, unlike S, the shaved walk Š is not stricto sensu a random walk. It is not

even a Markov chain. Yet, because the negative jumps of S have geometric distribution, the law

of Š is easily related to that of S.

Lemma 4. Let x0, x1, . . . , xn be a path with x0 = 0 and xi+1 − xi ∈ Z∗
− ∪ {1} for all i < n. We

have

P(S0 = x0, . . . , Sn = xn) =
2xn

3n
· (11)

If we assume also that the path satisfies xi+1 ⩾ minj⩽i xj − 1 for all i < n, we then have

P(Š0 = x0, . . . , Šn = xn) = 2−minj⩽n xiP(S0 = x0, . . . , Sn = xn) =
2xn−minj⩽n xi

3n
· (12)

Proof. For the first equality, we directly compute the probability of the path using (8) :

P(S0 = x0, . . . , Sn = xn) =
n−1∏
i=0

µxi+1−xi =
n−1∏
i=0

2xi+1−xi

3
=

2xn

3n
·

The second equality follows from the definition of Š and the fact that, because S performs

geometric negative jumps, conditionally on an index i0 being a ladder epoch, the undershoot Si0−
minj<i0 Sj is independent of S0, . . . , Si0−1 and is distributed as a Geom(1/2) r.v. In particular,

the probability of the undershoot being equal to −1 is 1/2, which is the same as that of being

strictly smaller than −1. Thus, each descending ladder epoch contributes to a factor 2 in the

ratio of probabilities P(Š0=x0,...,Šn=xn)
P(S0=x0,...,Sn=xn)

. This yields (12) since there are exactly −minj⩽n xi ladder

epochs in the path x0, . . . , xn.

Proposition 2. Let n ∈ N∗ be fixed. Recall that Ψ is the mapping of Proposition 1.

1. The push-forward by Ψ of the uniform measure on the set An
⩾0 of non-negative pyra-

mids rooted at the origin with n vertices has the same distribution as the n first steps

(S0, S1, . . . , Sn−1) of the random walk S conditioned on entering K − ∞;−1J for the first

time at time n. In particular, we have

|An
⩾0| = 3n · P

(
Sj ⩾ 0 for j < n and Sn < 0

)
.

2. The push-forward by Ψ of the uniform measure on the set An
⩽0 of non-positive pyramids

rooted at the origin with n vertices has the same distribution as the n first steps (Š0, Š1, . . . , Šn−1)

of the shaved walk Š conditioned on hitting a strict minimum at time n and not hitting 1

before time n. In particular, we have

|An
⩽0| = 3n · P

(
Šn = min

j<n
Šj − 1 and max

j⩽n
Šj ⩽ 0).

3. The push-forward by Ψ of the uniform measure on the set An
0 of pyramids rooted at the

origin with n vertices has the same distribution as the n first steps (Š0, Š1, . . . , Šn−1) of the

shaved random walk Š conditioned on hitting a strict minimum at time n. In particular, we

have

|An
0 | = 3n · P

(
Šn = min

j<n
Šj − 1

)
= 3n · P

(
Sn < min

j<n
Sj

)
.
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Remark 3. • Counting of directed animals is a classical problem. The sequences (|An
⩾0|) and

(|An
0 |) are well known and related to Motzkin numbers. They correspond respectively to EIS

A005773 and EIS A001006. Using the identities above, we can recover the exact expressions

for the generating functions of these sequences from a direct study of the random walk S

(see for instance (20) in the proof of Lemma 5).

• The sets An
⩾0 and An

⩽0 are mirrors of each other by a reflexion against the y-axis. Interest-

ingly, this symmetry is broken by the bijection Ψ. In particular, the walk S does not have a

symmetric step distribution. This fact yields surprising identities between S and its shaved

version Š. For example, since the sets An
⩾0 and An

⩽0 have same size, we deduce from Items

1. and 2. of the proposition above that

P
(
Sj ⩾ 0 for j < n and Sn < 0

)
= P

(
Šn = min

j<n
Šj − 1 and max

j⩽n
Šj ⩽ 0)

yet a direct probabilistic proof is this statement seems challenging. A similar observation

plays a key role in the proof of Theorem 2 (c.f. Lemma 7).

Proof of Proposition 2. We prove 1. On the one hand, according to Corollary 1, the mapping Ψ is

one-to-one from the set An
⩾0 to the set {(x0, . . . , xn−1,−1) : x0 = 0, xi ⩾ 0, xi−xi−1 ∈ {1}∪Z∗

−}.
On the other hand, given (x0, . . . , xn = −1) in the set above, thanks to (11), the probability that

the animal walk S follows path x equals

P(S0 = x0, . . . , Sn = xn) =
1

2.3n

hence it does not depend on the path x. This shows that the push-forward of the uniform measure

on An
⩾0 by Ψ is distributed as n first steps (S0, S1, . . . , Sn−1) of the animal walk S conditioned

on entering K − ∞;−1J for the first time at time n and hitting −1 at that time. But because

the walk S makes Geom(1/2) negative jumps, the probability of hitting exactly −1 when it first

enters K −∞;−1J is equal to 1/2 and is independent of the past. Thus

P(S0 = x0, . . . , Sn−1 = xn−1, Sn < 0) = 2P(S0 = x0, . . . , Sn = xn = −1) =
1

3n
.

This completes the proof of 1. The arguments for 2. and 3. are similar. The only difference is

that we now set xn = min{xi : 0 ⩽ i ⩽ n − 1} − 1 so that, in view of (12), the probability that

the shaved walk Š follows path x depends only the number of steps of the path.

We conclude this subsection by giving an alternative proof of the celebrated result of Gouyou-

Beauchamps and Viennot [14] (see also Bétréma and Penaud [7]) which counts the number of

directed animals with compact source.

Proposition 3 (Corollary 3 of [14], Corollary 14 of [7]). Let An
c denote the set of directed animals

with n vertices and compact source ( i.e. with source set Sp := {0,−2, . . . ,−2p} for some p ∈ N).
We have

|An
c | = 3n−1.
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Proof. Fix p ∈ N. In view of Proposition 1, a directed animal with n vertices and source set Sp is

encoded by a n-step path starting from 0, with increments in Z−∪{+1}, whose p first descending

ladder times occur before time n and have undershoots equal to −2 and all subsequent ladder

times that occur before time n have undershoots equal to −1. By shaving such a path (i.e

replacing each overshoot of size −2 by an overshoot of size −1), we deduce that, for each fixed p,

there is a correspondence between directed animals with n vertices and source set Sp and n-step

shaved paths x0, . . . , xn−1 that satisfy minxk ⩽ −p. Just as in Proposition 2, adding a last step

xn = mink<n xk − 1, we can rewrite |An
c | in term of the shaved walk Š:

|An
c | =

n∑
p=1

3nP
(
Šn = min

k<n
Šk − 1 ⩽ −p

)
= 3nE

[
|Šn|1Šn=mink<n Šk−1

]
=

3n

2
E
[
|Sn|1Sn<mink<n Sk

]
where, for the last equality, we used that Š and S have the same descending ladder times and

that the corresponding undershoots for S are i.i.d. −Geom(1/2) and independent of the other

increments. Now, by time reversal of a random walk, (Sk, k ⩽ n) and (Sn − Sn−k, k ⩽ n) have

the same law hence

E
[
|Sn|1Sn<mink<n Sk

]
= E

[
|Sn|1{S1,...,Sn<0}

]
=

1

3

∞∑
k=1

1

2k
E−k

[
|Sn−1|1{S0,S1,...,Sn−1<0}

]
.

where, for the last equality, we conditioned on the first step S1 and where E−k denotes the

expectation with the walk S starting from −k. Finally, by translation invariance of the walk,

Lemma 3 states that h−(z+1) = |z|1z<0 is harmonic for the random walk S killed when it enters

J0;∞J. Therefore, |Sn−1|1{S0,S1,...,Sn−1<0} is a martingale and we conclude that

|An
c | =

3n

2.3

∞∑
k=1

1

2k
E−k

[
|Sn−1|1{S0,S1,...,Sn−1<0}

]
=

3n−1

2

∞∑
k=1

k

2k
= 3n−1.

3.2 The critical Boltzmann half-pyramid (BHP)

Since the mapping Ψ of Proposition 1 is a bijection, we can go the other way around and construct

random directed animals from random paths. Part 1. of Proposition 2 states that we can construct

a uniform non-negative pyramid with n vertices from a positive excursion of S of length n. Recall

that the random walk S is centered so the first descending ladder time

τ−1 := inf{n : Šn = −1} = inf{n : Sn < 0}

is finite a.s. This leads us to define a measure supported on the set of finite non-negative pyramids.

Definition 2 (The critical Boltzmann half-pyramid). We call (non-negative) critical Boltzmann

half-pyramid (BHP) the random non-negative pyramid A := Ψ−1(S0, . . . , Sτ−1−1) constructed

from a positive excursion of the random walk S.

See Figure 8 for an illustration of a critical Boltzmann half-pyramid.
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Figure 8: A critical Boltzmann half-pyramid with 200 vertices and its associated random walk ex-

cursion. The color of vertices from blue to red indicates their “arrival time” when constructing the

animal by dropping dominoes from infinity (and also correspond to their ordering for ≼).

Remark 4. • With the definition above, Part 1. of Proposition 2 may be restated as follow:

For any n, the law of the critical Boltzmann half-pyramid conditioned on having n vertices

is uniform among all non-negative half-pyramids with n vertices. Furthermore, if A denotes

a critical Boltzmann half-pyramid and C is a fixed finite non-negative pyramid, we have

P(A = C) =
1

3|C| . (13)

• By convention, we consider non-negative critical Boltzmann half-pyramid but of course, we

could have defined the non-positive critical Boltzmann half-pyramid by taking the symmetry

against the y-axis of a non-negative BHP or by working directly with the walk −S associated

with the mirrored order ≼̃. However, we stress out the non-positive critical Boltzmann half-

pyramid cannot be constructed directly from a negative excursion of S or Š.

• The quantity W := maxx(A) = maxk⩽τ−1 Sk represents the width of the BHP A. It has a

simple explicit distribution: using Lemma 3, we find that

P(W ⩾ k) = P(S enters Jk;∞J before entering K −∞;−1K) =
2

k + 2
(14)

In particular, W belongs to the domain of attraction of a stable law of index 1. By compar-

ison, the distribution of the height H := max y(A) has no simple expression and is much

more difficult to analyze. We conjecture that H is in the domain of attraction of a stable

law with index α ∈]12 , 1[. Numerical simulations suggest α ≈ 0.612, which is in accordance

with the numerical exponent 0.818 ≈ 1
2∗0.612 obtained in [24] for the height of a uniformly

distributed pyramid with size n).
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3.3 The local limit of pyramids with size n (UIP)

We now have all the necessary tools to construct the local limit seen from the root of the uniform

measure on pyramids as the number of vertices goes to infinity.

Definition 3 (The Uniform Infinite Pyramid). We call uniform infinite pyramid (UIP) the random

pyramid Ā := Ψ−1(Š0, Š1, . . .) constructed from the full path of the shaved walk Š.

For r > 0, we define B(r) := Z ⋄ N ∩ (J−r; rK × J0; rK) the ball of vertices around the origin

with radius r.

Theorem 1 (Local limit of pyramids with size n). For each n ∈ N∗, let An denote a random

uniform pyramid with n vertices and let Ā denote a uniform infinite pyramid. The sequence

(An) converges in law, for the local topology towards Ā. This means that An ∩B(r) converges in

law to Ā ∩B(r) for each fixed r.

Remark 5. • From its construction via the shaved walk Š, the UIP is by definition a simple

pyramid a.s. yet the fact that the limit of uniformly sampled pyramids with size n is a.s

simple is not obvious a priori. We will see later that the local limit of non-negative pyramids

is a.s. not a simple animal.

• The shaved walk Š is obtained by removing the undershoots at the successive descending

ladder point of the walk S. This means that Š can be seen as a concatenation of independent

(non-negative) excursions of the walk S, with the first one starting at 0, the second one

shifted to start at −1, the third one shifted to start at −2... But since Ψ−1 applied to an

excursion of S defines a critical Boltzman half-pyramid, this shows that the UIP can be

constructed directly by pilling up BHPs “on top” of each other. More precisely, we start

with a BHP rooted at 0, then we drop from infinity an independent BHP rooted at −1

on top of it, and then another one rooted at −2... see Figure 9 for an illustration of this

procedure.

This construction is reminiscent of the decomposition of Kesten’s infinite tree [18] defined

as the local limit of uniformly distributed rooted planar trees with size n when n goes to

infinity. In the tree setting, the limiting object consists of a tree with a single infinite spine

with critical geometric Galton-Watson trees grafted on it. In our setting, we now have a

deterministic spine 0,−1,−2, . . . and the critical Galton-Watson trees are replaced by BHPs

which should be interpreted as “critical half-pyramids”.

Unfortunately, contrarily to the rather simple“grafting”operation used to construct Kesten’s

tree, the “piling up” operation used here to build the UIP is not easily amenable to analysis

because it does not preserve distances. Thus, the description of the UIP as a pilling up

of independent BHPs still fails to capture several geometrical properties of the composite

object.

Proof of Theorem 1. We fix r > 0. The intersection of a pyramid rooted at 0 with B(r) is again

a pyramid. Let An denote a random uniform pyramid with n vertices. We must prove that, for
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BHP’s

(a) schematic

representation

(b) simulation (c) corresponding walk Š

Figure 9: A uniform infinite pyramid created from a sample path of Š. The pyramid is a “piling up”

of independent BHP’s as represented in (a). Here, each BHP is represented with a different color in

simulation (b) and corresponds to the descending ladder excursion with the same color in (c).

any fixed pyramid C ⊂ B(r), we have

lim
n→∞

P(An ∩B(r) = C) = P
(
Ψ−1(Šk, k ⩾ 0) ∩B(r) = C

)
. (15)

Recall the descending ladder times (τ−k) defined by (9). We consider the associated renewal

function

u(n) := P(∃k ∈ N∗ τ−k = n) =
∞∑
k=1

P(τ−k = n).

Because τi does not have a first moment, the usual renewal theorem does not apply and u(n) → 0

as n → ∞. However, we have the following technical estimates whose proof is postponed until

after the proof of the theorem.

Lemma 5. For each k, we have as n → ∞,

P(τ−k = n) ∼
√

3

4π

k√
n3

, (16)

u(n) ∼ 1√
3πn

· (17)

Let E(C) := {Ψ−1(Š0, . . . , Šn−1) ∩B(r) = C} denote the event that the animal generated by

the first n steps of Š and restricted to B(r) coincides with C. According to 3. of Proposition 2,

a uniform pyramid with n vertices can be constructed by dropping dominoes along the n− 1 first

steps (Š0, . . . , Šn−1) of the shaved random walk conditioned on the event that the walk reaches

a minimum at time n. Now, requiring that the walk hits its minimum at time n is equivalent to

asking that n is one of the ladder time τk for some k. Hence, we can write

P(An ∩B(r) = C) = P
(
E(C)| ∃k ∈ N∗ τ−k = n

)
(18)

= P
(
E(C) and τ−r−1 ⩾ n | ∃k ∈ N∗ τ−k = n

)
+ P

(
E(C) and τ−r−1 < n | ∃k ∈ N∗ τ−k = n

)
.
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On the one hand, Lemma 5 entails that the first term in the sum above converges to 0:

P
(
E(C) and τ−r−1 ⩾ n | ∃k ∈ N∗ τ−k = n

)
⩽ P

(
τ−r−1 ⩾ n | ∃k ∈ N∗ τ−k = n

)
⩽

1

u(n)

r+1∑
k=1

P(τ−k = n) ∼
3
∑r+1

k=1 k

2n
−→
n→∞

0.

On the other hand, we observe that, since the walk S (and thus also Š) is right continuous, all

vertices added to the animal by Š after time τ−r−1 must be at heights at least r + 1 so they do

not belong to B(r). Thus, it holds that Ψ−1(Š0, . . . , Šn−1)∩B(r) = Ψ−1(Š0, . . . , Šτr+1)∩B(r) on

the event {τ−r−1 < n}. Let us denote Ẽ(C) := {Ψ−1(Š0, . . . , Šτr+1)∩B(r) = C}, we deduce that

P
(
E(C) and τ−r−1 < n | ∃k ∈ N∗ τ−k = n

)
= P

(
Ẽ(C) and τ−r−1 < n | ∃k ∈ N∗ τ−k = n

)
=

1

u(n)
P
(
Ẽ(C) and τ−r−1 < n and ∃k ⩾ r + 2, τ−k = n

)
= E

[
1Ẽ(C)1τ−r−1<n

u(n− τ−r−1)

u(n)

]
,

where we used the strong Markov property at time τ−r−1 for the last equality. Now, because u(n)

is regularly varying and τ−r−1 is a.s. finite, the sequence of random variables 1τ−r−1<n
u(n−τ−r−1)

u(n)

converges almost surely to 1 as n tends to infinity. By Fatou’s Lemma

lim inf
n

P
(
E(C) and τ−r−1 < n | ∃k ∈ N∗ τ−k = n

)
⩾ P(Ẽ(C)).

We assume by contradiction that there exists a pyramid C0 ⊂ B(r) such

lim sup
n

P
(
E(C0) and τ−r−1 < n | ∃k ∈ N∗ τ−k = n

)
> P(Ẽ(C0)).

Then summing over the finite set of all pyramids included in B(r), we find that

1 ⩾ lim sup
n

P
(
τr+1 < n | ∃k ∈ N∗ τk = n

)
= lim sup

n

∑
C

P
(
E(C) and τ−r−1 < n | ∃k ∈ N∗ τ−k = n

)
>
∑
C

P(Ẽ(C)) = 1

which is absurd. Therefore, for any C,

lim
n→∞

P
(
E(C) and τ−r−1 < n | ∃k ∈ N∗ τ−k = n

)
= P(Ẽ(C))

which combined with (18) yields

lim
n→∞

P(An ∩B(r) = C) = P(Ẽ(C)).

Finally, we use again the fact that all vertices added by Š after time τr+1 do not belong to B(r)

to conclude that Ẽ(C) = {Ψ−1(Šk, k ⩾ 0) ∩ B(r) = C} so that (15) holds and the proof is

complete.
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Proof of Lemma 5. We first observe that the ladder epoch τ−1 of the random walk S satisfies the

equality in law:

τ−1
law
= 1 + τ̃−11ξ=1 + (τ̃−1 + τ̂−1)1ξ=2 (19)

where (τ̃−1, τ̂−1, ξ) are independent r.v. with τ̃−1 and τ̂−1 having the same distribution as τ−1 and

with ξ having distribution P(ξ = 0) = P(ξ = 1) = P(ξ = 2) = 1/3. Indeed, a positive excursion of

S is either composed of a single negative jump (which happens with probability 1/3) or it starts

with +1 step. In the second case, the walk (starting from 1) performs an excursion of length τ̃−1

before entering K −∞; 0K. Furthermore, because the walk makes negative steps with Geom(1/2)

distribution, the undershoot is independent of τ̃−1. If the undershoot ends strictly below 0 (which

happens with probability 1/2) then τ = 1 + τ−1. Otherwise, the walk starts another excursion

from 0 hence τ = 1 + τ̃−1 + τ̂−1 in that case. Putting these arguments together yields (19). Let

f(s) := E[sτ−1 ]. From Equality (19) we deduce that

f(s) =
s

3
(1 + f(s) + f(s)2)

and therefore

f(s) =
3− s−

√
3(1− s)(s+ 3)

2s
(20)

(the other root is discarded because it is larger than 1 for s < 1). As a consequence, for k ∈ N∗,

1− E[sτ−k ] = 1− f(s)k ∼
s→1

√
3k

√
1− s.

A direct singularity analysis (c.f. Corollary VI.1 p. 392 of [13]) yields

P(τ−k = n) ∼
n→∞

−k
√
3

Γ(−1
2)n

3/2
. (21)

This completes the proof of (16). Similarly, let I(s) =
∑∞

n=0 h(n)s
n. We have

I(s) =

∞∑
n=0

∞∑
k=1

P(τ−k = n)sk =

∞∑
k=1

E[sτ−k ] =

∞∑
k=1

f(s)k =
f(s)

1− f(s)
.

Using again a singularity analysis, the asymptotics I(s) ∼ 1√
3(1−s)

as s → 1 implies

u(n) ∼
n→∞

1

Γ(12)
√
3n

.

3.4 The local limit of half-pyramids with size n

We now examine the limit of uniformly sampled half-pyramids when their size tends to infinity.

Because of our particular choice of the ordering ≼ on animal vertices, non-positive pyramids are

simpler to study than non-negative ones. Therefore, we focus on the local limit of non-positive

pyramids first and then extend the result to non-negative pyramids using a symmetry argument.
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3.4.1 Conditioning the shaved walk Š to stay non-positive

According to Item 2 of Proposition 2, we can sample a uniform non-positive pyramid with n

vertices by dropping dominoes from infinity along the sequence (Š0, . . . , Šn−1) under the condi-

tioning that Š hits a strict minimum at time n and stays non-positive up to that time. Taking n to

infinity and recalling that the UIP is constructed by dropping dominoes along the full path of Š,

it is reasonable to expect that the local limit for non-positive pyramids should be obtained again

by dropping dominoes along the path Š but now with this path conditioned to stay non-positive

at all times.

In order to make the above statement precise, we must first formalize what we mean by

“conditioning Š to stay non-positive at all times”since this event has null probability. Fortunately,

thanks to the negative geometric jumps of the underlying walk S, this conditioning is unambiguous

and has a simple explicit description, both in terms of h-transform and path decomposition.

As remarked previously the shaved random walk (Šn) is not a Markov process itself but

jointly with its current running infimum M̌n := infk⩽n Šk, it defines a bi-dimensional Markov

chain (M̌n, Šn). We use the usual notation P(m,x) for a probability under which (M̌n, Šn) starts

from (m,x). We define the function

h(m,x) := (|x|+ 1)(|m|+ 2)1m⩽x⩽0. (22)

Lemma 6. Recall the notation τz = inf{n ∈ N : Šn = z}. For −N < m ⩽ x ⩽ 0, we have

P(m,x)(τ−N < τ1) =
h(m,x)

(N + 1)(N + 2)
. (23)

As a consequence, the function h is harmonic for the process (M̌n, Šn) killed when Š enters J1;∞J
in the sense that, for m ⩽ x ⩽ 0,

E(m,x)

[
h(M̌n, Šn)1τ1>n

]
= h(m,x), n ⩾ 0.

Proof. We first prove (23) in the case −N = m− 1. The key observation is that, when (M̌n, Šn)

starts from (m,x), then Š coincides with S until time τm−1 − 1 and Sτm−1 ⩽ Šτm−1 = m − 1.

Therefore, using Lemma 3, we have

P(m,x)(τm−1 < τ1) = Px(S enters K −∞;m− 1K before hitting {1}) = |x|+ 1

|m|+ 3

so (23) holds when −N = m− 1. We extend this result for −N < m− 1, by repeatedly applying

the strong Markov property combined with the formula above:

P(m,x)(τ−N < τ1) = P(m,x)(τ−m−1 < τ1)

N−1∏
j=m+1

P(−j,−j)(τ−j−1 < τ1)

=
|x|+ 1

|m|+ 3

N−1∏
j=|m|+1

j + 1

j + 3

=
(|x|+ 1)(|m|+ 2)

(N + 1)(N + 2)
.
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Finally, the fact that h is harmonic for (M̌n, Šn) killed when Š enters J1;∞J is a consequence of

the Markov property. Namely, for (m,x) such that −N < m ⩽ x ⩽ 0, it holds that P(m,x)(τ−N <

τ1) = E[P(M̌1,Š1)
(τ−N < τ1)] which implies our statement by definition of h.

Definition 4 (Shaved walk conditioned to stay non-positive). The shaved walk conditioned to stay

non-positive at all times is the process (M̌−, Š−) defined as Doob’s h-transform of (M̌, Š) with

harmonic function h. It is the Markov process that satisfies, for any starting points m ⩽ x ⩽ 0,

for any n ⩾ 1,

P(m,x)((M̌
−
k , Š−

k )k⩽n ∈ D) = E(m,x)

[
h(M̌n, Šn)

h(m,x)
1(M̌−

k ,Š−
k )k⩽n∈D1τ1>n

]
. (24)

Unless mentioned otherwise, we will tacitly assume that the process starts from (m,x) = (0, 0)

and we will simply write P and E for P(0,0) and E(0,0) respectively.

The definition above relates Š− to Š via a change of measure. The next proposition shows

that Š− also coincides with the intuitive conditioning obtained by enforcing independently each

excursion of Š between the descending ladder times τ−k and τ−k−1 not to reach 1, c.f. Figure 10

for an illustration.

Proposition 4 (Path decomposition of Š−). For k ∈ N, let τ−−k := inf{i ∈ N : Š−
i = −k} and

V k := (Š−
i )τ−−k⩽i<τ−−k−1

.

Under P, the random variables (V k) are independent and V k has the same distribution as (Si −
k)0⩽i<τ−1 conditioned on the event {supi⩽τ−1

Si ⩽ k} (which has positive probability).

Proof. Let W k := (Ši)τ−k⩽i<τ−k−1
and fix n ∈ N. Standard arguments concerning Doob h-

transforms ensure that we can replace the deterministic time n by the hitting time τ−n in (24).

Thus, for any sets of paths D0, . . . , Dn−1, we have

P(V 0 ∈ D0, . . . , V
n−1 ∈ Dn−1) = E

[
h(M̌τ−n , Šτ−n)

h(0, 0)
1W 0∈D0,...,Wn−1∈Dn−1

1τ1>τ−n

]

= E

[
h(−n,−n)

h(0, 0)

n−1∏
k=0

1Wk∈Dk, supτ−k⩽i<τ−k−1
Ši⩽0

]
.

By definition of the shaved random walk, the random variables (W k, supτ−k⩽i<τ−k−1
Ši) are in-

dependent and, for each k, distributed as ((Si − k)i<τ−1 , supi<τ−1
Si − k) under P. Therefore, we

conclude that

P(V 0 ∈ D0, . . . , V
n−1 ∈ Dn−1) =

n−1∏
k=0

h(−k − 1,−k − 1)

h(−k,−k)
P((Si − k)i<τ−1 ∈ Dk, sup

i⩽τ−1

Si − k ⩽ 0)

=

n−1∏
k=0

P((Si − k)i<τ−1 ∈ Dk | sup
i⩽τ−1

Si ⩽ k)

where we used Lemma 3 to check that P(supi⩽τ−1
Si ⩽ k) = k+1

k+3 = h(−k,−k)
h(−k−1,−k−1) .
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τ --1 τ --2 τ --3 τ --4

V 0 V 1 V 2 V 3 Š−

0

-1

-2

-3

-4

Figure 10: Decomposition of Š− into independent excursions (V k). For each k, V k is a (shifted by

k) positive excursion of the animal walk S conditioned on having maximum height at most k.

Corollary 2. The Markov chain (M̌, Š−) is transient:

Š−
n −→

n→∞
−∞ P-a.s.

Proof. It suffices to prove that, for any x ⩾ 0 there are only a finite number of excursions V k

defined in Proposition 4 that intersect J−x; 0K a.s. By the Borel-Cantelli lemma, for any fixed x,

this is a consequence of

∑
k⩾x

P(V k intersects J−x; 0K) =
∑
k⩾x

P(supi<τ−1
Si ∈ Jk − x; kK)

P(supi<τ−1
Si ⩽ k)

=
∑
k⩾x

k+1
k+3 − k−x

k−x+2
k+1
k+3

∼
∑
k⩾x

2x

k2
< ∞

where we used again Lemma 3 to compute the probabilities appearing above.

3.4.2 Limit of non-positive pyramids (UIP-).

We can now describe the local limit of uniformly sampled non-positive pyramids with size n as n

goes to infinity. The line of arguments is similar (but a little more technical) to that used to prove

Theorem 1, with Lemma 5 now being replaced by Lemma 7 below which relies on the (curious)

asymmetry of the shaved walk Š.

Definition 5 (The uniform infinite non-positive pyramid). We call uniform infinite non-positive

pyramid (UIP-) the random pyramid Ā− := Ψ−1(Š−
0 , Š

−
1 , . . .) constructed from the full path of

the shaved random walk conditioned to stay non-positive.

Theorem 2 (Local limit of non-positive pyramids with size n). For each n ∈ N∗, let An,− denote a

random uniformly distributed non-positive pyramid with n vertices rooted at 0 and let Ā− denote

a uniform infinite non-positive pyramid. Then, the sequence (An,−) converges in law, for the local

topology, towards Ā−.

This means that An,− ∩B(r) converges in law to Ā− ∩B(r) for each fixed r.

Remark 6. Combining this theorem with the decomposition of Š− described in Proposition 4,

we see that, just as in the case of pyramids, the infinite non-positive pyramid is a simple animal

which may again be constructed by pilling up independent critical Boltzmann half-pyramids,
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BHP’s ≤ 0

(a) schematic

representation

(b) simulation (c) Corresponding walk Š−

Figure 11: A uniform infinite non-positive pyramid created from a sample path of Š−. The pyramid

is a “piling up” of independent BHP’s conditioned never to become positive as represented in (a).

Here, each BHP is represented with a different color in (b) and corresponds to the descending ladder

excursion with the same color in (c).

rooted respectively at 0,−1,−2, . . . but now also subject to the additional condition that the k-th

BHP has diameter at most k (which is an event of positive probability for all k). See Figure 11

for an illustration.

Proof of Theorem 2. Fix r > 0. The intersection of a pyramid rooted at 0 and B(r) is again a

pyramid. Let An,− denote a random uniform non-positive pyramid with n vertices rooted at the

origin. We must prove that, for any fixed non-positive pyramid rooted at the origin C ⊂ B(r):

lim
n→∞

P(An,− ∩B(r) = C) = P
(
Ψ−1(Š−

k , k ⩾ 0) ∩B(r) = C
)
. (25)

Recall that P(x,x) denotes the probability under which the Markov chain (M̌n, Šn) starts from

(x, x). For the sake of brevity, we write Px = P(x,x) so that, in particular, P = P0 = P(0,0). We

define the renewal function:

ℓ(n, r) := P−r({∃i > r, τ−i = n} ∩ {τ1 > n}).

We will use the following estimates.

Lemma 7. Fix r ⩾ 0. We have, as n → ∞,

ℓ(n, r) = Pr(∃j ∈ {−1, . . . , r − 1}, τj = n), (26)

ℓ(n, r) ∼ (r + 1)(r + 2)

2
P0(τ−1 = n). (27)

Proof of Lemma 7. Similarly to the proof of Proposition 2, using the bijection Ψ, the fact its

push-forward measure is uniform over the set of same size animals, and the symmetry against the
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y-axis, we get,

ℓ(n, r) = P−r(∃j > r, τ−j = n and τ1 > n)

= 3−n |{non-positive pyramids of size n rooted at (−r, 0)}|

= 3−n |{non-negative pyramids of size n rooted at (r, 0)}|

= Pr(∃j ∈ {−1, . . . , r − 1}, τj = n),

=
r+1∑
j=1

P0(τ−j = n),

which establishes (26), while (27) follows from the last equality and estimate (16).

Let E(C) := {Ψ−1(Š0, . . . , Šn−1) ∩B(r) = C} denote the event that the animal generated by

the first n steps of Š and restricted to B(r) coincides with C. According to 2. of Proposition 2,

we have

P(An,− ∩B(r) = C) = P
(
E(C) | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
(28)

= P
(
E(C) and τ−r−1 ⩾ n | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
+ P

(
E(C) and τ−r−1 < n | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
.

We start by bounding the first term,

P
(
E(C) and τ−r−1 ⩾ n | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
⩽ P

(
τ−r−1 ⩾ n | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
⩽

P(τ−r−1 ∧ τ1 > n)

ℓ(n, 0)
.

Now we observe that, by the Markov property:

P(τ−r−1 ∧ τ1 > nj) ⩽

(
max

i∈{−r,...,0}
Pi(τ−r−1 ∧ τ1 > j)

)n

,

and that one may choose j large enough such that the max on the rhs is strictly smaller than 1,

which implies that P0(τ−r−1 ∧ τ1 > n) decays exponentially in n, while ℓ(n, 0) = P0(τ−1 = n) ∼√
3/Γ(−1/2)n−3/2 by (26) and (21). This proves that the first term in the last expression of (28)

of goes to 0.

For the second term now, we observe that, since the walk S (and thus also Š) is right continu-

ous, all vertices added to the animal by Š after time τ−r−1 must be at heights at least r+1 so they

do not belong to B(r). Thus, it holds that Ψ−1(Š0, . . . , Šn−1)∩B(r) = Ψ−1(Š0, . . . , Šτ−r−1)∩B(r)

on the event {τ−r−1 < n}. Let us denote Ẽ(C) := {Ψ−1(Š0, . . . , Šτ−r−1) ∩B(r) = C}, we deduce

that

P
(
E(C) and τ−r−1 < n | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
= P

(
Ẽ(C) and τ−r−1 < n | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
= E

[
1Ẽ(C)1τ−r−1<n

ℓ(n− τ−r−1, r + 1)

ℓ(n, 0)

]
,
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where we used the strong Markov property at time τ−r−1 for the last equality. Now, since τ−r−1

is a.s. finite, because ℓ(n, 0) is regularly varying and thanks to (27), it follows that the sequence

of random variables 1τ−r−1<n
ℓ(n−τr+1,r+1)

ℓ(n,0) converges almost surely to (r+2)(r+3)
2 = h(−r−1,−r−1)

h(0,0)

as n tends to infinity. By Fatou’s Lemma, setting Ẽ−(C) := {Ψ−1(Š−
0 , . . . , Š

−
τ−−r−1

) ∩B(r) = C},
we get:

lim inf
n

P
(
E(C) and τ−r−1 < n | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
⩾ E

[
1Ẽ(C)

h(−r − 1,−r − 1)

h(0, 0)

]
= P(Ẽ−(C)),

(the last equality follows from the observation that the indicator 1τ−r−1<τ1 is already contained

in 1Ẽ(C) because C is a non-positive pyramid). We now assume by contradiction that there exists

a pyramid C0 ⊂ B(r) such

lim sup
n

P
(
E(C0) and τ−r−1 < n | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
> P(Ẽ−(C0)).

Then summing over the finite set of all non-positive pyramids included in B(r), we find that

1 ⩾ lim sup
n

P
(
τ−r−1 < n | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
= lim sup

n

∑
C

P
(
E(C) and τ−r−1 < n | {∃k ∈ N∗ τ−k = n} ∩ {τ1 > n}

)
>
∑
C

P(Ẽ−(C)) = 1

which is absurd. Therefore, for any C,

lim
n→∞

P
(
E(C) and τ−r−1 < n | ∃k ∈ N∗ τ−k = n

)
= P(Ẽ−(C))

which combined with (28) yields

lim
n→∞

P(An,− ∩B(r) = C) = P(Ẽ−(C)).

Finally, we use again the fact that all vertices added after time τ−r−1 do not belong to B(r)

to conclude that Ẽ−(C) = {Ψ−1(Š−
k , k ⩾ 0) ∩ B(r) = C} so that (25) holds and the proof is

complete.

3.4.3 Limit of non-negative pyramids (UIP+)

We now turn our attention to the local limit of non-negative pyramids. Non-negative and non-

positive pyramids are related to each other via the symmetry against the y-axis. We can leverage

this correspondence to define the uniform infinite non-negative pyramid (UIP+) directly from the

UIP-.

Definition 6 (The uniform infinite non-negative pyramid). We call uniform infinite non-negative

pyramid (UIP+) the random pyramid Ā+ := Ψ−1(−Š−
0 ,−Š−

1 , . . .) constructed by dropping domi-

noes along the path of −Š−. It is also the random infinite pyramid obtained as the mirror image

of Ā− against the y-axis.
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With the definition above, the next result is a trivial consequence of the previous theorem.

Corollary 3 (Local limit of non-negative pyramids with size n). For each n ∈ N∗, let An,+ denote

a random uniformly distributed non-positive pyramid with n vertices rooted at 0 and let Ā+ denote

a uniform infinite non-positive pyramid. Then, the sequence (An,+) converges in law, for the local

topology towards Ā+.

Remark 7 (Decomposition of the UIP+). One may think at first sight that A+ could also be

defined directly as the infinite non-negative pyramid:

Ψ−1(S+
0 , S

+
1 , . . .) (29)

where S+ is the animal walk conditioned to stay non-negative at all times (rigorously defined via

a h-transform). However, this is not true because the bijection Ψ breaks the mirror symmetry

against the y-axis. Indeed, the pyramid defined by (29) is a simple animal almost surely since S+

has increments in Z+
− ∪ {+1} whereas Ā+ = Ψ−1(−Š−

0 ,−Š−
1 , . . .) is not a simple animal for the

≼ ordering (but it is simple for the mirror order ≼̃ defined in 2. of Remark 2).

More precisely, (Ā+,≼) is a.s. isomorphic to (N+Z−,⩽), similarly to Example (c) of Figure

5. To understand why this is so, we observe that Ā+ is the local limit of critical Boltzmann

half-pyramids as their size tends to infinity. By definition, the vertices of a BHP are constructed

by dropping dominoes along a positive excursion of S. As the size of the excursion increases to

infinity, it approaches a Brownian excursion hence, with high probability, vertices at fixed distance

from the origin will correspond to steps of the walk that are located either near the beginning or

near the end of the excursion. Graphically, this means that looking back at the simulation of a

BHP in Figure 8 where the vertices are colored from blue to red according to their index in the

excursion (i.e. according to ≼), we can expect, in the local limit, that every vertex becomes either

fully blue or fully red while all color-mixed vertices “escape” to infinity. Again, this behavior is

reminiscent of the construction of Kesten’s infinite tree via two independent walks conditioned to

stay non-negative which respectively encode the tree on the left side and right side of its infinite

spine. In the setting of directed animals, the following decomposition holds:
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independent BHP’s (dropped from right to left)

Pyramid obtained via S conditionned

to stay non-negative

(a) schematic representation (b) simulation

Figure 12: Decomposition of the uniform infinite non-negative pyramid Ā+. The blue vertices are

created first from a path S+ of the animal walk conditioned to stay non-negative. Subsequently,

the red vertices are created by dropping, for each x ∈ N, a BHP rooted at x independently with

probability 1/2. This procedure is performed in decreasing order for x.

1. Ā+ = Ā+
blue ⊔ Ā+

red.

2. Ā+
blue := Ψ−1(S+

0 , S
+
1 , . . .) is the simple infinite animal created by a path S+ of the random

walk S conditioned to stay non-negative at all times, defined as the Doob’s h-transform of

the random walk S with harmonic function h+(x) := (x+ 2)1x⩾0 (c.f. Lemma 3).

3. Ā+
red is constructed on top of Ā+

blue in the following manner. For each x ∈ N, independently
and with probability 1/2 we drop from infinity a BHP rooted at x (or we do nothing with

probability 1/2). This procedure is performed in decreasing values of x meaning that,

for x′ > x, the BHP rooted at x′ (if present) is dropped before that rooted at x. This

construction is well-defined because there are a.s. infinitely many x ∈ N such that there is

no red vertex with x-coordinate x. This fact follows from (14) which implies

P(there is no red vertex with x-coordinate equal to x) =

x∏
z=0

(
1− 1

2

2

(z + 2)

)
=

1

x+ 2

followed by a simple a second moment argument to show that these cut-points occur in-

finitely often a.s.

See Figure 12 for an illustration of this decomposition. We mention this result here for the sake of

completeness but we omit the (admittedly lengthy and somewhat technical) details of the proof

as we shall not need it in the rest of the paper.
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4 Markov property

4.1 Formulas for the marginals inside a ball

Given a finite non-empty set C = {c1, c2, . . . cℓ} of integers labeled increasingly c1 < c2 < . . . < cℓ,

we define

η(C) :=
ℓ−1∏
i=1

(ci+1 − ci − 1) (30)

with the convention
∏0

1 = 1 (equivalently η({c}) = 1). When C ⊂ Z ⋄ N is a non-empty finite

set of vertices, we denote x(C) the set of the x-coordinates of the vertices in C and abbreviate

η(C) = η(x(C)). We also use the notation Cr = C ∩ (Z × {r}) for the subset of vertices at

height r.

The next theorem characterizes the law of the limit random animals defined in the previous

section, providing simple formulas for the law of the trace of those random objects inside a finite

ball.

Theorem 3. Let r ∈ N∗. Recall the notation B(r) := (Z ⋄ N) ∩ (J−r; rK × J0; rK).

1. Marginal for the BHP. Let A denote a critical Boltzmann pyramid and let C be a fixed

finite non-negative pyramid with height exactly r ( i.e. such that C ⊂ B(r) and Cr ̸= ∅).
We have

P(A ∩B(r) = C) =
(minx(Cr) + 1)η(Cr)

3|C|−|Cr|
. (31)

2. Marginal for the UIP. Let Ā denote a uniform infinite pyramid and let C be a fixed

finite pyramid with height exactly r. We have

P(Ā ∩B(r) = C) =
η(Cr)

3|C|−|Cr|
. (32)

3. Marginal for the UIP+. Let Ā+ denote a uniform infinite non-negative pyramid and

let C be a fixed finite non-negative pyramid with height exactly r. We have

P(Ā+ ∩B(r) = C) =
(minx(Cr) + 1)(maxx(Cr) + 2)η(Cr)

2.3|C|−|Cr|
. (33)

Proof. We give a detailed proof of the theorem for the BHP and then explain how to adapt it in

the cases of the UIP and UIP+ since the proofs are very similar. The proof proceeds in several

steps:

Step 1. Decomposition of a path into excursions from exposed vertices.

Let C denote a non-negative pyramid of height r and size |C| = n. Its vertices C =

{c0, c1, . . . , cn} are labeled such that c0 ≼ c1 ≼ . . . ≼ cn for the total order on C. We write

ck = (xk, yk). Recall that, according to 2. of Corollary 1 the sequence (xk) is such that

xk+1−xk ∈ {1}∪Z∗
− for all k. Let m1 < m2 < . . . < mℓ denote the indices, ordered increasingly,

of the vertices at height exactly r i.e.

Cr = {cm1 , cm2 , . . . , cmℓ
}.
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Figure 13: Example of a non-negative pyramid C. The vertices exposed are colored differently, in

red for those at maximal height r (the mi’s) and in orange for interior ones (the mi,j ’s for j ⩾ 1).

Here, there is no exposed vertex between m2 and m3 i.e. d2 = 0. Notice also that, although being

exposed, vertex 13 is not one of the mi,j because it is created before vertex m1 = 14.

By assumption, this set is nonempty. We say that a vertex c = (x, y) ∈ C is exposed if

C ∩ ({x, x+ 1} × Jy + 1;+∞J) = ∅. (34)

This is the same condition as in Lemma 2. Clearly, any vertex of C at maximum height r is

exposed but there may be other vertices as well. For instance, vertex cn is necessarily exposed

whether or not it has maximum height.

For any i ∈ {1, . . . , ℓ}, we set mi,0 := mi and define mi,1 < mi,2 < . . . < mi,di to be

the indices, ordered increasingly, of the vertices exposed in the interval Jmi;mi+1J (with the

convention mℓ+1 = n+ 1). See Figure 13 for an illustration.

Because we can construct C by dropping vertices from infinity along the sequence (xk) and

because xk+1 − xk ∈ {1} ∪ Z∗
− for all k, it follows that, the x-coordinates of the vertices indexed

by the mi,j ’s are decreasing:

xm1,0 > xm1,1 > . . . > xm1,d1
> xm2,0 > xm2,1 > . . . . . . > xmℓ,dℓ

⩾ 0.

We want to compute P(A∩B(r) = C), where A = Ψ−1(S0, . . . , Sτ−1−1) is the critical Boltzmann

non-negative pyramid obtained by dropping vertices from infinity along a non-negative excursion

of the animal walk S. Now, if A ∩ B(r) = C, then A can be constructed by adding vertices on

top of C. This means, thanks to Lemma 2 that any sequence that constructs A must contain

(x0, . . . , xn) as a subsequence. In other words, any such sequence can be written in the form

x0, s
0, x1, s

1, . . . , xn, s
n (35)
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where the si’s denote (possibly empty) finite sequences.

We now observe that if vertex ck is not exposed, then necessarily sk = ∅. To see this, let us

assume by contradiction that sk is not empty and that ck is not exposed so that there exists k′ > k

with xk′ ∈ {xk;xk +1}. Let v denote the vertex created by the first step of the excursion sk. On

the one hand, we have v ≼ ck′ (for the order in the animal A) because v is constructed before

ck′ following sequence (35). On the other hand, because the animal walk has step distribution in

{1} ∪ Z∗
− and because v is not in C, hence not in B(r), we have

v ∈ K −∞;xk + 1K × Jr + 1;∞J

while

ck′ ∈ {xk;xk + 1} × J0; rK.

This spatial ordering of two vertices implies that ck′ ≼ v (whether or not these sites are compara-

ble for the partial order �). Thus v = ck′ which is absurd. Furthermore, all the excursions before

time m1 = m1,0 must also be empty because the first vertex created by a non-empty excursion

would have height ⩽ r which is forbidden. Thus, re-indexing the excursions, and recalling that

the last vertex cn is always exposed (i.e. mℓ,dℓ = n), any sequence that builds A takes the form

x0, . . . , xm1,0 , s
1,0, xm1,0+1, . . . , xm1,1 , s

1,1, . . . . . . , xmℓ,dℓ
, sℓ,dℓ . (36)

Recall that µ defined by (8) denotes the law of a step of the animal walk S. We keep the

same notation for the transition kernel:

µ(z1, . . . , zk) :=

k−1∏
i=1

µzi+1−zi .

Recalling that Sτ−1 and (S0, . . . , Sτ−1−1) are independent because S makes Geom(1/2) negative

jumps, we can decompose

P(A ∩B(r) = C) = P(Ψ−1(S0, . . . , Sτ−1−1) ∩B(r) = C)

= 4 P(Ψ−1(S0, . . . , Sτ−1−1) ∩B(r) = C and Sτ−1 = −2) (37)

= 4
∑

µ(x0, . . . , xm1,0 , s
1,0, xm1,0+1, . . . , xm1,1 , s

1,1, . . . . . . , xml,dl
, sℓ,dℓ ,−2)

where the sum above runs over all families of excursions (s1,0, . . . , sℓ,dℓ) such that A constructed

from (36) is a non-negative pyramid such that A∩B(r) = C. In particular, choosing s1,0 = . . . =

sℓ,dℓ = ∅ corresponds to A = C. In that case, we have, according to (11)

µ(x0, . . . , xmℓ,dℓ
,−2) =

1

4.3|C| .

From now on, we use the convention mi,di+1 := mi+1 and mℓ,dℓ+1 := mℓ+1 = n + 1. We also

define xn+1 := xmℓ,dℓ+1
= xmℓ,dℓ

+1 = −2. Introducing the notation ti,j := xmi,j , s
i,j , xmi,j+1, we

35



can finally write

P(A ∩B(r) = C) =
1

3|C|

∑ µ(x0, . . . , xm1,0 , s
1,0, xm1,0+1, . . . , xm1,1 , s

1,1, . . . . . . , xmℓ,dℓ
, sℓ,dℓ ,−2)

µ(x0, . . . , xmℓ,dℓ
,−2)

=
1

3|C|

∑ ℓ∏
i=1

di∏
j=0

µ(xmi,j , s
i,j , xmi,j+1)

µ(xmi,j , xmi,j+1)

=
1

3|C|

∑ ℓ∏
i=1

di∏
j=0

µ(ti,j)

µ(xmi,j , xmi,j+1)
. (38)

Step 2. Description of the valid excursions in terms of cliffs.

We now characterize the excursions t1,0, . . . , tℓ,dℓ (equivalently s1,0, . . . , sl,dl) that appear in the

sum in (38), i.e. the excursions such that (36) builds a non-negative pyramid A with A∩B(r) =

C. The basic observation is that, since each vertex added during such an excursion is at height

> r, it must be built on top of another vertex, either created previously during an excursion or

on top of a vertex of Cr. This motivates the following definition of a cliff.

Let z = (z0, . . . , zk) denote a sequence with increments in {1} ∪ Z∗
−. We say that z is a cliff

up to position b if

b = min
i⩽k

zi and zi ⩾ min
j<i

zj − 1 for all i ⩽ k.

In other words, the sequence z builds a pyramid whose left-most vertex has x-coordinate equal

to b.

Fix i ∈ {1, . . . , ℓ} and let us first consider ti,0. Clearly, this excursion must be a cliff up to

some b followed by a jump to xmi,0+1. Furthermore, we must have b ⩾ xmi,1 +2 otherwise vertex

cmi,1 could not be constructed afterward. We say that this excursion is maximal if its cliff is

located exactly at b = xm1,1 + 2. Next, we consider the excursion ti,1 (assuming it exists). We

observe that:

• If ti,0 is not maximal, then ti,1 is necessarily trivial (i.e. si,1 = ∅). Indeed, because ti,0

is not maximal, when the excursion ti,1 begins, all vertices already constructed that have

height ⩾ r must have x-coordinate ⩾ xmi,1 + 3. Therefore, if ti,1 was not empty, it first

vertex would have height ⩽ r which is forbidden.

• If ti,0 is maximal, then ti,1 can use the previous excursion“to built itself on top of it”. Thus,

ti,1 is either trivial or it must start with a +1 steps followed by a cliff up to some b and then

end with a jump to xmi,1+1. Just as before, we must have b ⩾ xmi,2 + 2 because otherwise

vertex cmi,2 could not be constructed afterward.

See Figure 14 for an illustration. Repeating this argument, we conclude that the excursions

(t1,0, . . . , tℓ,dℓ) that build a non-negative pyramid A such that A ∩ B(r) = C are exactly those

such that, for each i ∈ {1, . . . , ℓ},

(i) The sequence ti,0 is a cliff up to b ∈ Jxmi,1 + 2;xmi,0K followed by a jump to xmi,0+1.
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∅∅
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∅
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Figure 14: Schematic representation of excursion piling up. In Figure (a), ti,0 is not maximal hence

ti,1 and ti,2 are trivial (i.e. si,1 = si,2 = ∅). In Figure (b), ti,0 is maximal hence ti,1 can build itself

on top of it by starting with a +1 step but since it is itself not maximal, the subsequent excursion

ti,2 is necessarily trivial.

(ii) For j ∈ {1, . . . , di}, the excursion ti,j is either trivial or starts with a +1 step followed by a

cliff up to b ∈ Jxmi,j+1 + 2;xmi,j + 1K and then ends with a jump to xmi,j+1. Furthermore,

the previous excursion ti,j−1 is not maximal, then ti,j , ti,j+1 . . . , ti,di must all be trivial.

Let us note that an excursion ti,0 can be simultaneously trivial and maximal (provided xmi,0 =

xmi,1 − 2) because the single vertex xmi,0 defines a cliff by itself. This is not possible for ti,j

when j ⩾ 1. We also point out that our previous (seemingly arbitrary) choice of conditioning

the excursion of the animal walk S to end at −2 in Equation (37) now comes in handy because

it allows us to treat the last excursion tℓ,dℓ just like the other ones: it still satisfies (ii) although

the reason why b ⩾ xmℓ,dℓ
+1 + 2 = 0 now follows from the requirement that A is a non-negative

pyramid.

The analysis above shows that the set

T := {(t1,0, . . . , tℓ,dℓ) : A is a non-negative pyramid and A ∩B(r) = C}

is a product

T = T1 × T2 × . . .× Tℓ

with

Ti := {(ti,0, . . . , ti,di) : (i) and (ii) hold true}.

Therefore, we find that:

P(A ∩B(r) = C) =
1

3|C|

∑
T

ℓ∏
i=1

di∏
j=0

µ(ti,j)

µ(xmi,j , xmi,j+1)

=
1

3|C|

ℓ∏
i=1

∑
Ti

di∏
j=0

µ(ti,j)

µ(xmi,j , xmi,j+1)

 . (39)
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It remains to compute the quantity inside the big parenthesis. Let us fix i ∈ {1, . . . , ℓ} and define

the sets

Ai,0 := {ti,0 is a cliff up to b ∈ Jxmi,1 + 3;xmi,0K followed by a jump to xmi,0+1},

Âi,0 := {ti,0 is a cliff up to b = xmi,1 + 2 followed by a jump to xmi,0+1},

and for j ∈ {1, . . . di},

Bi,j :=
{ ti,j is either trivial or starts with a +1 step followed by a cliff

up to b ∈ Jxmi,j+1 + 3;xmi,j + 1K followed by a jump to xmi,j+1

}
,

B̂i,j :=
{ ti,j starts with a +1 step followed by a cliff up to b = xmi,j + 2

followed by a jump to xmi,j+1

}
,

Vi,j := {ti,j is trivial }.

With this notation, translating statements (i) and (ii) means that the set Ti can be written as

the disjoint union

Ti = Ti,0 ⊔ Ti,1 ⊔ . . . ⊔ Ti,di

with

Ti,0 := Ai,0 ×
( di∏

k=1

Vi,k

)
,

Ti,j := Âi,0 ×
( j−1∏

k=1

B̂i,k

)
× Bi,j ×

( di∏
k=j+1

Vi,k

)
for 1 ⩽ j ⩽ di − 1,

Ti,di := Âi,0 ×
( di−1∏

k=1

B̂i,k

)
× (Bi,di ⊔ B̂i,di).

Therefore, since µ(Vi,j) = µ(xmi,j , xmi,j+1), we get

∑
Ti

di∏
j=0

µ(ti,j)

µ(xmi,j , xmi,j+1)
=

µ(Ai,0)

µ(xmi,0 , xmi,0+1)
+

µ(Âi,0)

µ(xmi,0 , xmi,0+1)

di∑
j=1

(
j−1∏
k=1

µ(B̂i,k)

µ(xmi,k
, xmi,k+1)

)
µ(Bi,j) + 1j=diµ(B̂i,j)

µ(xmi,j , xmi,j+1)
. (40)

Step 3. Probabilities of cliffs events.

In view of (39) and (40), the proof will be complete once we compute the probabilities asso-

ciated with the events Ai,0, Âi,0, Bi,j and B̂i,j .

Let θa := inf{n ⩾ 0, Sn ⩽ a} denote the hitting time of J−∞; aK for the animal walk S.

Because S performs Geom(1/2) negative jumps, the events ({Sθa = a})a⩽0 are independent and
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have probability 1/2. Therefore, given a+ 2 ⩽ b ⩽ 0, we have

P{Sθa = a and (S0, . . . , Sθa−1) is a cliff up to b}

= P{Sθx = x for x ∈ {a} ∪ Jb;−1K and Sθx ̸= x for x ∈ Ja+ 1; b− 1K}

=
∏

x∈{a}∪Jb;−1K

P(Sθx = x)
∏

x∈Ja+1;b−1K

P(Sθx ̸= x)

= 2a.

(41)

From this equality, we deduce immediately, by translation invariance of the walk that

µ(Âi,0) = 2xmi,0−xmi,0+1 = 3µ(xmi,0 , xmi,0+1),

µ(Ai,0) = (xmi,0 − xmi,1 − 2)2xmi,0−xmi,0+1 = 3(xmi,0 − xmi,1 − 2)µ(xmi,0 , xmi,0+1),

µ(B̂i,j) = 2
xmi,j−xmi,j+1

3 = µ(xmi,j , xmi,j+1),

µ(Bi,j) =
(xmi,j−xmi,j+1 )2

xmi,j−xmi,j+1

3 = (xmi,j − xmi,j+1)µ(xmi,j , xmi,j+1).

Substituting these values in (40), we get, recalling that mi,0 = mi and mi,di+1 = mi+1,

∑
Ti

di∏
j=0

µ(ti,j)

µ(xmi,j , xmi,j+1)
= 3(xmi,0 − xmi,1 − 2) + 3

di∑
j=1

(xmi,j − xmi,j+1 + 1j=di)

= 3(xmi − xmi+1 − 1).

Finally, substituting this equality in (39) and recalling that |Cr| = ℓ and xmℓ
= min(Cr) and

xmℓ+1
= −2, we conclude that

P(A ∩B(r) = C) =
1

3|C|

ℓ∏
i=1

(3(xmi − xmi+1 − 1))

=
1

3|C|−ℓ
(xmℓ

− xmℓ+1
− 1)

ℓ−1∏
i=1

(xmi − xmi+1 − 1)

=
1

3|C|−|Cr|
(minx(Cr) + 1)η(Cr)

which completes the proof in the Boltzmann case.

Adaptation of the proof in the case of the UIP and the UIP+.

The proof of the formula for the UIP is similar except that the last excursion sℓ,dℓ is now

infinite. For this to be possible without this excursion adding any vertex at an height ⩽ r, all

the excursions tℓ,0, . . . , tℓ,dℓ−1 must be maximal (so that the last infinite excursion can “climbs”

on it). This additional requirement effectively makes the last term previously equal to 3(xmℓ
−

xmℓ+1
−1) in the Boltzmann case to become simply 3 (because now, we have a single choice for the

configuration of the cliffs whereas before we had xmℓ
− xmℓ+1

− 1 distinct choices). This explains

the disappearance of the (minx(Cr) + 1) factor in the formula for the UIP.

Finally, we derive the formula for the uniform infinite non-negative pyramid (UIP+) by study-

ing the uniform infinite non-positive pyramid (UIP-) instead since it has a simpler representation
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in term of the shaved animal walk conditioned to stay non-positive Š−. By symmetry against

the y-axis, we need to prove that, when Ā− is a UIP-, we have

P(Ā− ∩B(r) = C) =
(|minx(Cr)|+ 2)(|maxx(Cr)|+ 1)η(Cr)

2.3|C|−|Cr|
(42)

for any fixed non-positive pyramid C with height exactly r. The analysis of all the paths that

build Ā− and coincide with C up to height r is exactly the same as that done for the UIP. The

only difference occurs at the end of the proof when computing the probabilities of the events

Âi,0,Ai,0, B̂i,j ,Bi,j . These events are now relative to Š− instead of Š. However, the conditioned

random walk Š− is the Doob h-transform of Š with transform h given by (22) hence we can again

carry the computation of the probabilities of these events in the same fashion, but now with the

added ratios of h, to find that

P(Ā− ∩B(r) = C) =
h(minx(Cr),maxx(Cr))

h(0, 0)

η(Cr)

3|C|−|Cr|

which is exactly Formula (42).

Remark 8 (Extension of Theorem 3 to more general domains). The proof above is robust in the

sense that the exact same arguments can be used to obtain an explicit formula for the law of A∩B
for domains other than B = B(r). We mention the result below for the sake of completeness but

we will not make use of it in the paper. Given a vertex v = (x, y) ∈ Z ⋄ N, we denote

V (v) := {(x+ a, y + b) ∈ Z ⋄ N : b > 0, |a| ⩽ b}

the cone of all vertices strictly over v (but not including it). Given a set of vertices D, we set

V (D) := ∪v∈DV (v) and its complement B(D) := (Z ⋄N) \ V (D). We define the inner boundary

∂B(D) as the set of vertices of B(D) which are adjacent to V (D) i.e.

∂B(D) := {(x, y) ∈ B(D) : (x−1, y+1) ∈ V (D) or (x+1, y+1) ∈ V (D)}.

Given D ⊂ C, we say that D is a proper boundary subset of C if

∂B(D) ∩C = D.

Following exactly the same line of arguments as in the proof of Theorem 3 (only with slightly

more cumbersome notations), we find that, if Ā denotes a uniform infinite pyramid and C is a

fixed finite pyramid and D is a proper boundary subset of C,

P(Ā ∩B(D) = C) =
η(D)

3|C|−|D| (43)

(because D is a proper boundary set, all its vertices must have distinct x-coordinates hence η(D)

is unambiguous). See Figure 15 for illustration of this result. In the case D = Cr, we recover

from the formula for P(Ā∩B(r)) of Theorem 3. Similar extensions are also valid for the BHP A

as well as for the UIP+ Ā+.

Another byproduct of Theorem 3 is a spatial Markov property valid for arbitrary domains.
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(a) P(Ā ∩B(D) = C) = 4.2.3
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317

Figure 15: Examples of the generalized formula (43) for a given finite pyramid C but two different

proper boundary sets D. The vertices of D are in red and the cones V (v) for v ∈ D are represented

by the grayed regions which is where Ā is allowed to grow.

Corollary 4 (Spatial Markov property). Let Ā denote a UIP. Given a finite set F ⊂ Z ⋄ N, we
denote its complement Fc := (Z ⋄ N) \ F and its inner boundary

∂F := {v ∈ F : v has a child or a parent in Fc}.

Then, conditionally on Ā ∩ ∂F, the random sets Ā ∩ Fc and Ā ∩ F are independent. The same

result also holds with the UIP+ Ā+ in place of the UIP Ā.

Proof. We choose r such that F ⊂ B(r − 1). We also pick G ⊂ F \ ∂F and H ⊂ ∂F and

K ⊂ B(r) ∩ Fc such that G ∪ H ∪ K is an animal of height exactly r. We can express the

conditions to insure that G ∪H ∪K is indeed an animal of height r separately for G and K:

(a) Every vertex in G is either on the floor or has a parent in G or in H.

(b) Every vertex in K is either on the floor or has a parent in K or in H and at least one vertex

of K is of height r.

Now, Theorem 3 allows us to compute:

P(Ā ∩ F \ ∂F = G, Ā ∩ ∂F = H, Ā ∩ Fc ∩B(r) = K) = η(Kr)3
|Kr|−|G|−|H|−|K|.

The product structure of the formula and the fact that the conditions (a) and (b) are disjoint

when H is fixed implies the conditional independence of Ā ∩ F \ ∂F and Ā ∩ Fc ∩ B(r) given

Ā ∩ ∂F. A classical application of Dynkin’s π − λ Theorem allows us to remove B(r) to get the

full result. The proof for Ā+ in place of Ā is identical.

4.2 Directed animals interpreted as systems of particles

We say that a set of integers A ⊂ Z is an admissible set if A is non-empty, finite, and either

A ⊂ 2Z or A ⊂ 2Z+ 1. Given an admissible set A, we define

[A] := (A+1) ∪ (A−1)
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which is again an admissible set. The next result describes the Markovian structure of the BHP,

the UIP, and the UIP+ when considered as processes indexed by height.

Corollary 5.

1. Let A be a BHP and let An = x(An) the set of x-coordinates of the vertices at height n.

The process (An, n ∈ N) is a Markov chain absorbed at ∅ with transition kernel Q defined

by

Q(A,B) := P(An+1 = B |A0, . . . , An = A) =


1

(minA+1)η(A)3|A| if B = ∅,
(minB+1)η(B)

(minA+1)η(A)3|A| otherwise
(44)

for every non-negative admissible set A ⊂ N and every B ⊂ [A] ∩ N.

2. Let Ā be a UIP and let Ān = x(Ān). The process (Ān, n ∈ N) is an irreducible Markov

chain with transition kernel Q̄ defined by

Q̄(A,B) := P(Ān+1 = B | Ā0, . . . , Ān = A) =
η(B)

η(A)3|A| (45)

for every admissible set A and every B ⊂ [A], B ̸= ∅.

3. Let Ā+ be a UIP+ and let Ā+
n = x(Ā+

n ). The process (Ā+
n , n ∈ N) is an irreducible Markov

chain with transition kernel Q̄+ defined by

Q̄+(A,B) := P(Ā+
n+1 = B | Ā+

0 , . . . , Ā
+
n = A) =

(minB + 1)(maxB + 2)η(B)

(minA+ 1)(maxA+ 2)η(A)3|A| (46)

for every non-negative admissible set A ⊂ N and every B ⊂ [A] ∩ N, B ̸= ∅.

Remark 9. Let us point out that, in [21], Marckert and Le Borgne while investigating the power

series enumerating animals by their volume obtain an expression which also involves product of

function of the distance between elements of the layer. Indeed they consider

GA(z) =
∑

A:A0=A

z|A|

and get an explicit expression in their Proposition 3.6 for this series. The radius of convergence is

1/3 and one can recover our expression, indeed taking the limit z → 1
3 , an operation that should

make all small animals negligible one can check that:

GA(
1

3
− z) ∼0

−1

3z
1
2

η(A)

From there, applying a tauberian Theorem should permit to recover kernel Q̄.
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Proof. We prove 1. Let A be a critical Boltzmann half-pyramid and fix a non-negative finite

pyramid C with height exactly n+ 1. Using 1. of Theorem 3, we compute

P(An+1 = x(Cn+1) |A0 = x(C0), . . . , An = x(Cn))

=
P(A ∩B(n+ 1) = C)

P(A ∩B(n) = C ∩B(n))

=
(minx(Cn+1) + 1)η(Cn+1)

3|C|−|Cn+1|
3|C|−|Cn+1|−|Cn|

(minx(Cn) + 1)η(Cn)

=
(minx(Cn+1) + 1)η(Cn+1)

(minx(Cn) + 1)η(Cn)3|Cn|

which is exactly (44) for B ̸= ∅. The formula for the transition of the chain toward state ∅ is

computed similarly but using instead that P(A ∩ B(n + 1) = C) = 1
3|C| when Cn+1 = ∅, in

accordance with (13). The proofs of 2. and 3. are similar using now 2. and 3. of Theorem 3.

The fact that (44), (45) and (46) are Markov kernels (i.e. the r.h.s. in these formulas sums

to 1) is not obvious. We provide an algebraic proof of this fact in the appendix. These formulas

yield remarkable identities. For example, considering (45) with the set A = {0, 2, 4, . . . , 2n} and

making a change of variable in the summation, we obtain the eye-catching equality valid for every

n ∈ N (using the convention
∏0

1 = 1),

∑
k∈N∗

0⩽x1<...<xk⩽n

k−1∏
i=1

(2(xi+1 − xi)− 1) = 3n. (47)

Corollary 5 tells us that the animals defined here can be interpreted as systems of particles

evolving with time. For instance, consider the uniform infinite pyramid Ā and its associated

Markov process (Ān). Then, Ān is a set of particles alive at time n which, at time n+1, die after

giving birth to new particles located on their immediate left and right. The new configuration

Ān+1 is selected among all non-empty subsets of [Ān] with a probability proportional to the

“energy” η(Ān). The particular product form of η(·) means particles interact only with their

direct left and right neighbors, not with particles further away (see Proposition 6 for a rigorous

statement). Moreover, the strength of each interaction is related to the distance between the

corresponding neighbor particles.

In the case of the critical Boltzmann pyramid A, the energy associated with a configuration

An is equal to (minAn+1)η(An) = η(An∪{−2}). This means that the system evolves in a similar

way as the uniform infinite pyramid Ā when adding an immortal and unmovable phantom particle

at position −2. We already tacitly exploited this analogy during the proof of Theorem 3 when

we chose to condition the walk S on the seemingly arbitrary event {Sτ−1 = −2}.
In the case of the infinite non-negative pyramid Ā+, the energy of a configuration Ā+

n is

equal to η(Ā+
n ∪ {−2})(max Ā+

n + 2). The additional factor max Ā+
n + 2 may be interpreted

as a conditioning of the BHP never to die out (recall that h+(x) := (x + 2)1x⩾0 defined in

Lemma 3 is the h-transform associated with conditioning the walk S to stay non-negative, as
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already mentioned in Remark 7). This factor acts as a repulsive force that pushes the right-most

particle away from the origin.

Finally, we point out that the interactions in these particle systems are “long range” since the

energy depends on the distance between neighbor particles, even when they are arbitrarily far

away. However, in the case of the BHP and the UIP, there is a way to add invisible“anti-particles”

to the model that mediate the force between the original particles in such a way that all interac-

tions become purely local. This property is the manifestation of an intertwining relationship at

the level of the kernels that we study in detail in a forthcoming paper [17].

4.3 Local limit of directed animals with a given source

Up to now, we only considered the local limit of uniformly sampled pyramids and half-pyramids.

In view of the Markov property of the UIP and UIP+ discussed above, it is also natural to

construct the local limit of uniformly sampled directed animals starting from an arbitrary source

set. This turns out to be a by-product of our analysis.

Corollary 6. Let D0 ⊂ Z ⋄ N be a finite set of vertices on the floor.

1. For each n, let Bn denote a directed animal chosen uniformly at random among all directed

animals with n vertices and with source Bn
0 = D0. The sequence (Bn) converges in law,

in the local limit sense, towards the infinite random animal with Markov kernel Q̄ given by

(45) starting from the initial configuration D0.

2. Assume that all vertices of D0 have non-negative x-coordinates. For each n, let Bn,+

denote a directed animal chosen uniformly at random among all non-negative animals with

n vertices and with source Bn,+
0 = D0. The sequence (Bn,+) converges in law, in the local

limit sense, towards the infinite random non-negative animal with Markov kernel Q̄+ given

by (46) starting from the initial configuration D0.

Proof. We use a coupling argument. Fix a directed animal D of height h ∈ N. There exist r ∈ N
and a finite pyramid C of height r such that x(Cr) = x(D0) i.e. the vertices on the last layer

of C are at the same position as the source of D. We denote by D
C the pyramid obtained by

stacking D on top of C (merging layers Cr and D0 together so that the resulting pyramid has

height r + h− 1 and has |C|+ |D| − |Cr| vertices in total).

For each n, let An denote a uniform random pyramid with n vertices and let Bn denote a

uniform random directed animal with n vertices and source set D0. Since the restriction of the

uniform measure on a subset remains uniform, we find that, thanks to 2. of Theorem 3,

P(Bn ∩B(h) = D)

=
P(An+|D|−|D0| ∩B(r + h− 1) = D

C )

P(An ∩B(r) = C)
−→
n→∞

η(Dh)3
|Dh|−|D

C
|

η(Cr)3|Cr|−|C| =
η(Dh)3

|Dh|−|D|

η(D0)
.

This proves Item 1. The proof of 2. is similar.
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5 Some properties of the local limits

5.1 Computation of some marginals for the UIP

Recall the notation Ā for the UIP and Ān := x(Ān) for the set of positions (i.e. x-coordinates) of

the particles at the n-th layer. Recall also the definition of an admissible set A and the notation

[A] := (A− 1) ∪ (A+ 1) defined at the top of Section 4.2.

Proposition 5. Let B ⊂ A be an admissible set. It holds:

P(Ān+1 ⊂ [B] | Ān = A) =
η(B)

η(A)
3|B|−|A|. (48)

Proof. By definition of the Markov kernel of the UIP, eq. (45), the sum obtained by expanding

the probability under consideration has a closed form:

P(Ān+1 ⊂ [B] | Ān = A) =
∑

∅≠B′⊂[B]

η(B′)

3|A|η(A)
=

η(B)

η(A)
3|B|−|A|.

An important property of the UIP is that the distribution of particles on two (sufficiently)

disjoint intervals at a given layer are independent conditionally on the existence of a particle that

separates these intervals at the previous layer.

Proposition 6 (Independence Property). Let A be an admissible set and let a ∈ Z be such that a or

a+1 is in A. Then, conditionally on the event {An = A}, the two random sets Ān+1∩K−∞; a−1K
and Ān+1 ∩ Ja+ 2;∞J are independent. Furthermore:

P(Ān+1∩K −∞; a− 1K ∈ • | An = A) = P(Ān+1∩K −∞; a− 1K ∈ • | An = A∩K −∞; a+ 1K),

P(Ān+1 ∩ Ja+ 2;∞J∈ • | An = A) = P(Ān+1 ∩ Ja+ 2;∞J∈ • | An = A ∩ Ja;∞J).

This remarkable property should also hold for the BHP (due to its close connection to the

UIP) but should not be expected for the UIP+.

Proof. Recall that Q denotes the kernel of the UIP defined in (44). Let us assume for example

that a + 1 ∈ A (hence a /∈ A because A is admissible), then for any B′ ⊂ A∩K − ∞; a − 1K,
B′′ ⊂ A ∩ Ja+ 2;∞J,

Q̄(A, {B : B∩K −∞; a− 1K = B′, B ∩ Ja+ 2;∞J= B′′})

=
η(B′ ∪B′′) + η(B′ ∪ {a} ∪B′′)

3|A|η(A)

=
η(B′)η(B′′)((min(B′′)−max(B′)− 1) + (min(B′′)− a− 1)(a−max(B′)− 1))

3|A|η(A)

= 3
η(B′)(a−max(B′))

3|A∩K−∞;a+1K|η(A∩K −∞; a+ 1K)
η(B′′)(min(B′′)− a)

3|A∩Ja;∞J|η(A ∩ Ja;∞J)
.

By symmetry, the case a ∈ A is identical.
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As a direct consequence, we can compute the probabilities that the extremal particles at a

given layer move further away at the next layer.

Proposition 7. It holds that

P(max Ān+1 −max Ān = +1 | Ān) = P(min Ān+1 −min Ān = −1 | Ān) =
2

3
·

Furthermore, if Ān has a least 2 elements, then the events {max Ān+1 − max Ān = +1} and

{min Ān+1 −min Ān = −1} are independent conditionally on Ān.

Proof. We simply apply Proposition 6, splitting at a+ 1 := maxAn:

P(max Ān+1−max Ān = +1|Ān,max(Ān)=a+1) = P(Ān+1∩Ja+2;∞J= {a+2}|Ān={a+1}) = 2

3
.

The proof for the min is the same and the independence is also a direct consequence of the

previous proposition.

Proposition 6 can be expressed as a restriction property for the Markov kernel of the UIP:

given an integer interval I with particles present on both sides of I, the configuration of particles

outside I has no influence on the configuration of particle strictly inside I at the next generation.

Proposition 8. Let a < b be two elements of an admissible subset A. Then, for any subset

B ⊂ [A] ∩ Ja+ 1; b− 1K, we have

P(Ān+1 ∩ Ja+ 1; b− 1K = B | Ān = A) = P(Ān+1 ∩ Ja+ 1; b− 1K = B | Ān = A ∩ Ja; bK).

Proof. We just apply Proposition 6 twice: splitting at {a− 1; a} and {b; b+ 1}.

This restriction property makes it possible to compute local events by enumerating all possible

configurations. For instance, we can compute the distribution of the progeny of a given vertex in

the UIP.

Proposition 9. Assume A = {. . . < a < b < c < . . . } is an admissible set with at least 3 elements,

and set j := max {b− a; 4} and k := max {c− b; 4}. Then:

P(b− 1 ∈ Ān+1, b+ 1 ∈ Ān+1|Ān = A) =
1

3

(j − 2)(k − 2)

(j − 1)(k − 1)

P(b− 1 /∈ Ān+1, b+ 1 ∈ Ān+1 |Ān = A) =
1

3

j(k − 2)

(j − 1)(k − 1)

P(b− 1 ∈ Ān+1, b+ 1 /∈ Ān+1| Ān = A) =
1

3

(j − 2)k

(j − 1)(k − 1)

P(b− 1 /∈ Ān+1, b+ 1 /∈ Ān+1 | Ān = A) =
1

3

(j + k)− 1

(j − 1)(k − 1)
·

In particular,

P(b+ 1 ∈ Ān+1 | Ān = A) =
2

3

k − 2

k − 1
,

and the events {b− 1 ∈ Ān+1} and {b+ 1 ∈ Ān+1} are not independent conditionally on Ān.
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Remark 10. In the case that Ān has at least two consecutive vertices, we deduce:

P(a ∈ Ān+1 | Ān = {. . . , a− 1, a+ 1, . . .}) = 4

9
·

This estimate has to be compared with the following result of Bacher [4]: the expected density of

pairs of neighbors in a large random pyramid (pairs of vertices of the type (x, y), (x + 2, y) that

both belong to the animal) has limit 1/4, while that of “cherries” (triple of vertices of the type

(x, y), (x+ 1, y + 1), (x+ 2, y) that all belong to the animal) has limit 1/9.

Proof of Proposition 9. Thanks to Proposition 8, we may assume wlog that A = {a < b < c}
(and not only A = {. . . < a < b < c < . . .}). Now, the combinatorics of the model when

A = {a < b < c} has 3 vertices is easy, so we can simply compute the probabilities of every

configurations of Ān+1 agreeing with the event under consideration; for instance in the case j ⩾ 4

and k ⩾ 4, we have that:

1. The event {b− 1 ∈ Ān+1, b+1 ∈ Ān+1} corresponds to Ān+1 being one of the 16 subsets of

{a− 1, a+1, b− 1, b+1, c− 1, c+1} containing b− 1 and b+1, and the sum of the weights

η of each of these 16 configurations subsets is then easily seen to evaluate to:

(j − 1 + j − 3 + j − 3 + 1) · 1 · (k − 1 + k − 3 + k − 3 + 1) = 3(j − 2) · 3(k − 2).

2. Similarly, the event {b− 1 ∈ Ān+1, b+ 1 /∈ Ān+1} corresponds to Ān+1 being one of the 16

subsets of {a − 1, a+ 1, b− 1, c− 1, c+ 1} containing b − 1, whose sum of the weights is 3

(j − 2) · 3k.

3. Exchanging the roles of j and k, the event {b−1 /∈ Ān+1, b+1 ∈ Ān+1} has weight 3j·3(k−2).

4. Last, the event {b− 1 /∈ Ān+1, b+ 1 /∈ Ān+1} has weight 32 · (j + k − 1) (using for instance

the summation property of the kernel (45)).

The sum of the four weights above is 33(j−1)(k−1), which concludes the proof in this case. The

other cases are treated similarly.

Perhaps the reader may feel (as the authors of this paper do) that the manipulations on the

Markov kernel used above lack the explanatory power of a direct probabilistic interpretation.

This is why we also provide below a proof based on the random walk description of the UIP with

a given source which, while a bit longer, shows how the exploration enhanced in this work can be

used to understand the restriction property and its corollaries.

Proof of Propositions 7, 8 and 9 using the random walk exploration. Our argument relies on the

decomposition of the path of the animal walk exactly as in the proof of Theorem 3. Fix an

admissible set C = (zℓ < zℓ−1 < . . . < z1). We want to study Q̄(C, •) = P(Ār+1 ∈ • | Ār = C).

By translation invariance, we assume wlog that zℓ = 0. Because of the Markov property of the

UIP, the pyramid C below that constructs C does not matter (as long as Cr = C) and can be

chosen freely. We take advantage of this fact. Recall the definition of an exposed vertex given
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Figure 16: A pyramid C with Cr = (z5 = 0, z4 = 4, z3 = 6, z2 = 8, z1 = 12) and no interior exposed

vertices (compare with Figure 13). Notice also how the vertex with index mi + 1 is exactly below

vertex mi+1 (possibly being equal).

in (34) during the proof of Theorem 3. The key observation is that we can always find r and a

finite pyramid C = (c0 ≼ . . . ≼ cn) of height exactly r such that Cr = C and the only exposed

vertices are those at maximum height r, c.f. Figure 16 for an illustration.

In line with the notations introduced during the proof of Theorem 3, we denote xk = x(ck)

and define the indices m1, . . . ,mℓ such that Cr = {cmℓ
< . . . < cm1} (hence xmk

= zk for all

1 ⩽ k ⩽ ℓ). Consider an infinite animal path that constructs a pyramid that coincides with C up

to level r, the requirement that C has no interior exposed vertex implies that the decomposition

of the path given in (36) now takes the simpler form:

x0, . . . , xm1 , s
1, xm1+1, . . . xm2 , s

2, xm2+1, . . . . . . , xmℓ
, sℓ.

Furthermore, because there is no interior exposed vertex, for each k < ℓ, we have xmk+1 = zk+1

(see again Figure 16). Therefore, the analysis carried in proof of Theorem 3 exactly tells us, in

this case, that:

(i) For k < ℓ, the excursion tk = (xmk
, sk, xmk+1) is a cliff of the animal walk S from zk to

up to some fk ∈ Jzk+1 + 2; zkK followed by a jump to zk+1. Furthermore, fk has uniform

distribution according to (41).

(ii) The last excursion tℓ = (xmℓ
, sℓ) has no requirement: it is just an infinite path of the shaved

animal walk Š.

(iii) All these excursions are independent.

For k < ℓ, the excursion tk is a cliff so, by definition, it splits in a unique way as a concatenation

of smaller excursions

tk = (xmk
, sk, xmk+1) = (tk,0, tk,1, . . . , tk,zk−fk , xmk+1)
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where each tk,i = (tk,i(s), 0 ⩽ s ⩽ sk,i) describes the portion of the exploration path (xk) from

the hitting time of zk− i to the first time it goes below it, namely: tk,i(s) ⩾ zk− i for 0 ⩽ s ⩽ sk,i,

with equality for s = 0. Similarly, the last excursion is a path of the shaved walk so it splits in an

infinite number of excursions, tℓ = (tℓ,0, tℓ,1, . . .) satisfying the same requirements. Furthermore,

given (i), (ii), and (iii), conditionally on (f1, . . . , fℓ−1, fℓ := −∞), the array

(tk,i − zk + i, 1 ⩽ k ⩽ ℓ, 0 ⩽ i ⩽ zk − fk)

is composed of i.i.d. excursions of the animal walk started at 0 and killed when entering K−∞;−1K.
A few simple observations about these excursions conclude this preparation. Let us say that

tk,i is trivial if its length sk,i is null, that is, if it consists of a single element, zk− i, and non-trivial

otherwise. Then, the random excursion tk,i is non-trivial with probability 2/3; it is non-trivial

and visits 0 at time 0 only with probability 1/3; it visits 0 at time 0 only with probability 2/3.

The three propositions are now direct consequences of the decomposition in excursions. First,

consider the event that zk − 1 belongs to Ār+1, it corresponds:

• in case zk−zk+1 ⩾ 4, to the fact that the excursion tk,0 visits zk at time 0 only (probability

2/3) and fk < zk (an independent event with probability
zk−zk+1−2
zk−zk+1−1).

• in case zk − zk+1 = 2, to the fact that the excursion tk+1,0 is non-trivial (probability 2/3)

and tk,0 visits zk at time 0 only (an independent event with probability 2/3).

Also, the event that zk + 1 belongs to Ār+1 corresponds:

• in case zk−1 − zk ⩾ 4, to the fact the excursion tk,0 is non-trivial (probability 2/3) and

fk−1 > zk + 2 (an independent event with probability
zk−1−zk−2
zk−1−zk−1).

• in case zk−1− zk = 2, to the fact that the excursion tk,0 is non-trivial (probability 2/3) and

tk−1,0 visits zk−1 at time 0 only (an independent event with probability 2/3).

The probabilities of each of the four events in the system generated by {zk − 1 ∈ Ār+1} and

{zk +1 ∈ Ār+1} can be computed straightaway from the above description: this is the content of

Proposition 9, which comes now with little computations. To give just one example, consider for

instance the event {zk − 1 ∈ Ār+1, zk + 1 ∈ Ār+1} in the case zk−1 − zk ⩾ 4 and zk − zk+1 ⩾ 4:

it corresponds to tk,0 being non-trivial and visiting zk at time 0 only, with furthermore fk < zk

and fk−1 > zk + 2; the probability of the intersection of these three independent events is:

1

3

(zk − zk+1 − 2)(zk−1 − zk − 2)

(zk − zk+1 − 1)(zk−1 − zk − 1)
.

Also, observe that we may couple the UIP with source A with the one with source A ∩
{zk+1; zk; zk−1} by using the same excursions tk−1,0, . . . , tk+1,0 with the same fk−1 and fk, so

that each of the four events in the system generated by {zk − 1 ∈ Ār+1} and {zk + 1 ∈ Ār+1} is

unchanged. In particular, their probabilities are the same: this is a special case of the restriction

property, Proposition 8. The general case is not more difficult: a coupling of the UIP with source
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A with another one with source A ∩ Jzm; zkK, k < m, is achieved by taking the same excursions

tk,0, . . . , tm,0 with the same fk, . . . , fm−1 and then the events in the system generated by

{zm + 1 ∈ Ār+1}, {zm−1 − 1 ∈ Ār+1}, , . . . , {zk+1 + 1 ∈ Ār+1}, {zk − 1 ∈ Ār+1}

are unchanged.

Proposition 7 on the extremal particles is also direct: the event {max Ār+1 −max Ār = +1}
is the event that t1,0 is non-trivial (probability 2/3); the event {min Ār+1 −min Ār = −1} is the

event that tℓ,0 visits zℓ at time 0 only (probability 2/3, as it should be). The two events are

independent as soon as ℓ > 0.

5.2 Sausaging of the UIP

We study here a geometrical property of the UIP. Again, we denote by Ā a UIP with associated

Markov layer process (Ān). We define the width of the layer at height n by

∆n := max(Ān)−min(Ān).

We say that n ⩾ 0 is a pinching layer if ∆n = 0 which is equivalent to |Ān| = 1. We denote by

T the height of the first pinching layer (apart from the origin):

T := inf{n > 0 : ∆n = 0}.

The following is the main result of this section:

Theorem 4 (Sausaging property of the UIP). Let Ā be a uniform infinite pyramid. Then

P(T < ∞) = 1.

However, neither the pinching height nor the maximum width up to the first pinching layer are

integrable:

E[T ] = E[max{∆n : n < T}] = ∞.

Remark 11. We stress out that the sausaging property of the UIP has no simple translation in

terms of the shaved animal walk Š that encodes the UIP nor in terms of the spine decomposition

of the UIP (in terms of BHPs) given in Remark 5.

Remark 12 (Sausaging conjecture for the UIP+). We conjecture Theorem 4 still holds after

replacing the UIP by the UIP+, but we have been unable to prove it so far.

Remark 13 (Transience conjecture for the UIP). Theorem 4 proves that (Ān − min(Ān))n⩾0,

which is again a Markov chain by translation invariance of the kernel of the UIP, is recurrent: it

visits every admissible subset of N infinitely often a.s. In particular, there exist infinitely many

pinching layers a.s. and we can define by induction T0 := 0 and Tk+1 := min{n > Tk : ∆n = 0},
so that T1 = T . Now, the Markov property of the UIP implies that the successive locations of the

pinching layers Xk := ĀTk
(slightly abusing notation) define a symmetric random walk with i.i.d.
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non-degenerate increments, and such a walk is necessarily oscillating because of Kolmogorov’s

0− 1 law i.e. lim supk Xk = − lim infk Xk = ∞ almost surely. This implies, by the intermediate

value theorem and because the increments of max Ān and −min Ān are bounded from above by

1, that, for any x ∈ Z,

P(x ∈ Ān for infinitely many n) = P(x /∈ Jmin(Ān);max(Ān)K for infinitely many n) = 1.

However, this statement does not answer the question of whether the process (Ān)n⩾0 is recurrent.

We believe the alternative holds true: we conjecture that the process of layers of the UIP (Ān)n⩾0

is transient: every admissible subset of Z is visited only finitely many times a.s.

Remark 14. We commented on several occasions on the analogy between the UIP and Kesten’s

tree (defined as the local limit of uniformly distributed planar rooted trees). However, Theorem 4

now shows a very different behavior between directed animals and trees as it is well-known ([3],

pp. 56-59) that the sequence of generation sizes in Kesten’s tree grows to infinity a.s. (hence the

tree has only finitely many pinching points a.s.).

The main tool in the proof of Theorem 4 is the identification of martingales in the process of

layers.

Proposition 10 (UIP martingales). Let Ā be the UIP. Define the filtration Fn := σ(Ā0, Ā1, . . . , Ān).

Then, with respect to this filtration:

1. (max(Ān))n∈N is a submartingale and more precisely:

E[max(Ān+1)|Fn] = max(Ān) +
1

3|Ān|η(Ān)
.

2. (max(Ān) + min(Ān))n∈N is a martingale.

3. (min(Ān)max(Ān))n∈N is a submartingale and more precisely:

E[min(Ān+1)max(Ān+1)|Fn] = min(Ān)max(Ān) +
1

3|Ān|η(Ān)
.

4. (∆n)n∈N is a submartingale:

E[∆n+1|Fn] = ∆n +
2

3|Ān|η(Ān)
.

Remark 15. We obtain these (sub)martingales by considering the Radon-Nikodym derivatives of

the BHP and the UIP+ w.r.t. the UIP. They are in turn useful to prove the sausaging property

of the UIP. This is somehow reminiscent of [23] where the martingale change of measure between

the Galton-Watson tree and its version conditioned on non-extinction is used to give a conceptual

proof of the Kesten-Stigum theorem for Galton–Watson processes under the original measure.

Another purely algebraic route to the same result is given in Corollary 7 of the Appendix.
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Proof. Looking at Corollary 5 we see that, for any admissible set A ⊂ N∗ and B ⊂ [A], B ̸= ∅:

Q(A,B) =
minB + 1

minA+ 1
Q̄(A,B).

Therefore, we have

E[min(Ān+1) + 1|Fn, Ān = A] =
∑

∅≠B⊂[A]

(min(B) + 1)Q̄(A,B)

= (min(A) + 1)
∑

∅≠B⊂[A]

Q(A,B)

= (min(A) + 1)(1−Q(A, ∅))

= min(A) + 1− 1

3|A|η(A)
.

Thus, we proved that for any admissible set A ⊂ N∗,

E[min Ān+1|Fn, Ān = A] = min(A)− 1

3|A|η(A)
.

But, since the kernel Q̄ and η are invariant by translation, this remains true for any admissible

A. This gives us the first result of the proposition by symmetry:

E[max Ān+1|Fn, Ān = A] = max(A) +
1

3|A|η(A)
.

Summing these two equalities, we also deduce that max(Ān) + min(Ān) is a martingale.

We proceed in a similar fashion for the last property. Observe that for any admissible set

A ⊂ N∗ and B ⊂ [A], B ̸= ∅:

Q̄+(A,B) =
(min(B) + 1)(max(B) + 2)

(min(A) + 1)(max(A) + 2)
Q̄(A,B). (49)

Therefore, we have

E[(min(Ān+1) + 1)(max(Ān+1) + 2)|Fn, Ān = A] =
∑

∅≠B⊂[A]

(min(B) + 1)(max(B) + 2)Q̄(A,B)

= (min(A) + 1)(max(A) + 2)
∑

∅≠B⊂[A]

Q̄+(A,B)

= (min(A) + 1)(max(A) + 2).

Using again the invariance by translation, the positivity assumption on A may be removed. This

proves that (min(Ān) + 1)(max(Ān) + 2) is a martingale and finally the identity

min(Ān)max(Ān) = (min(Ān) + 1)(max(Ān) + 2)−max(Ān)− 2min(Ān)− 2

allows us to derive the formula for min(Ān)max(Ān) from the other ones.
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Proof Theorem 4. We first prove that T < ∞ as. We start with the following upper bound on

the compensator of the non-negative submartingale (∆n)n⩾0:

E[∆n+1|Fn] = ∆n +
2

3|Ān|η(Ān)
⩽ ∆n +

2

32(∆n − 1)
1∆n>0 +

2

3
1∆n=0.

To wit, observe that, given ∆n > 0, the minimal value 3|Ān|η(Ān) is obtained when Ān consists

of two particles at distance ∆n. The upper bound is reminiscent of a discrete Bessel process and

the recurrence property should depend on the comparison between the variance of a step and the

strength of the drift. Following Lamperti [20] (but whose result cannot be directly applied here),

we first lower bound the variance. Observe that, by Proposition 7, when |Ān| ⩾ 2,

P(∆n+1 = ∆n + 2|Fn) = P(max(Ān+1) = max(Ān) + 1,min(Ān+1) = min(Ān)− 1) =
4

9

and therefore

E[(∆n+1 −∆n)
2|Fn] ⩾ 4P(∆n+1 = ∆n + 2|Fn) =

16

9
.

Then, we consider the Lyapunov function ln(1 + x) and define Yn = ln(1 + ∆n). Recall the

inequality ln(1 + x) ⩽ x− 1
4x

2 valid for −1 < x < 1. On the event ∆n > 0, we have

E[Yn+1|Fn] = Yn + E[ln(1 +
∆n+1 −∆n

1 + ∆n
)|Fn]

⩽ Yn +
E[∆n+1 −∆n|Fn]

1 + ∆n
− 1

4

E[(∆n+1 −∆n)
2|Fn]

(1 + ∆n)2

⩽ Yn +
2

9(1 + ∆n)(∆n − 1)
− 4

9(1 + ∆n)2

⩽ Yn +
6− 2∆n

9(1 + ∆n)(∆2
n − 1)

and the second term in the last sum is negative as soon as ∆n ⩾ 4. One may assume wlog that

Ā0 is such that ∆0 ⩾ 4. Then setting T̃ = inf{n > 0 : ∆n < 4}, we get that the stopped process

Yn∧T̃ = ln(1 +∆n∧T̃ ) is a positive super-martingale, hence converges almost surely. This implies

that ∆n∧T̃ is constant for n large enough almost surely. But since P(∆n+1 = ∆n+2|Fn) =
4
9 this

is only possible if T̃ < ∞ almost surely. Therefore the irreducible Markov chain Ān −min(Ān)

(see Remark 13) almost surely comes back to one of the two states {0}, {0; 2}. Therefore it is

recurrent and T < ∞ a.s.

It remains to prove the statements on the non-integrability of T and max{∆n : n < T}. We

start with the second statement. Assume by contradiction that max{∆n : n < T} is integrable

and that Ā0 = {0, 2}. Then the submartingale (∆n)n⩾0 would be uniformly integrable, hence:

2 = E[∆0] ⩽ E[∆n∧T ] ⩽ lim
n

E[∆n∧T ] = E[∆T ] = 0,

using L1 convergence at the last but one equality: this is a contradiction. The maximal width

max{∆n : n < T} is therefore not integrable starting from Ā0 = {0; 2}, and the same holds true

for any initial configuration by irreducibility.

Finally, using that the increments of ∆n are bounded from above by 2, we get the bound:

max{∆n : n < T} ⩽ ∆0 + 2T from which the non-integrability of T follows.
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Remark 16. Several similar non-integrability statements for quantities related to the first“sausage”

of the UIP may be devised: here is one for the maximum x-coordinate of a vertex under the first

pinching layer, based on the symmetry of the distribution of the UIP,

∞ = E[max{∆n : n < T}] ⩽ E[max{max(Ān) : n < T}]− E[min{min(Ān) : n < T}]

= 2E[max{max(Ān) : n < T}].

5.3 Transience of the UIP+

We conclude this section by looking at the asymptotic behavior of the UIP+. Even though we

do not answer whether the process sausages, we can show that it is transient and describe the

trajectory of the x-coordinate of the future left-most vertex.

Proposition 11. The non-negative infinite pyramid Ā+ = (Ā+
n , n ⩾ 0) is transient to +∞:

min Ā+
n −→

n→∞
+∞ a.s.

Furthermore, for any starting admissible set C ⊂ N and any integer b ⩽ minC, we have

PC

(
min Ā+

n ⩾ b for all n ∈ N
)
=

(minC + 1− b)(maxC + 2− b)

(minC + 1)(maxC + 2)
(50)

where PC denotes a probability under which the Markov process (Ā+
n , n ⩾ 0) starts from Ā+

0 = C.

Remark 17. In case the set C is reduced to a single particle at location x, letting x → ∞, the

position of the future infimum rescaled by x converges towards a Beta(1,2) random variable, with

density 2(1−t)1[0,1](t); this should be compared with the well-known fact that the future infimum

of a three-dimensional Bessel process started at x is the uniform distribution over [0, x], see e.g

[25], Chapter VI Corollary (3.4).

Proof. The transience of Ā+ to +∞ (equivalently of Ā− to −∞) is a direct consequence of the

transience of the shaved walk Š− conditioned to stay non-positive stated in Corollary 2. Indeed,

by construction, Ā− = Ψ−1(Š−
0 , Š

−
1 , . . .) so that the number of vertices of Ā− with x-coordinates

equal to x is the number of visits to x by Š−
i = x which is finite a.s.

We now prove (50). We use the notation h(C) = (minC + 1)(maxC + 2). Fix an admissible

set C ⊂ N and an integer b ⩽ minC and let C0 = C − b. Then, C0 is a non-negative admissible

set and according to 3. of Corollary 5, we have

PC0(Ā
+
1 = C1, . . . , Ā

+
n = Cn) =

n∏
i=1

PCi−1(Ā
+
1 = Ci) =

h(Cn)η(Cn)

h(C0)η(C0)3|C0|+...+|Cn−1|

and similarly, using that η(Ci + b) = η(Ci) and |Ci + b| = |Ci|,

PC0+b(Ā
+
1 = C1 + b, . . . , Ā+

n = Cn + b) =
h(Cn + b)η(Cn)

h(C0 + b)η(C0)3|C0|+...+|Cn−1|
.

Therefore, we have the Radon-Nikodym derivative

PC(Ā
+ − b ∈ •) =

h(Ā+
n + b)h(C0)

h(Ā+
n )h(C)

PC0(Ā
+ ∈ •).
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Now, let Ā = (Ān, n ⩾ 0) denote a UIP. According the (49), the UIP+ Ā+ is the h-transform of

the UIP Ā with h-function h, hence

PC(Ā
+
1 , . . . , Ā

+
n ⩾ b) = EC0

[
h(Ā+

n + b)h(C0)

h(Ā+
n )h(C)

1Ā+
1 ,...,Ā+

n⩾0

]
=

1

h(C)
EC0 [h(Ān + b)1Ā1,...,Ān⩾0].

We can write, by expanding the product

h(Ān + b) = h(Ān) + b2 + b(max Ān + 2) + b(min Ān + 1)

= h(Ān) + b2
h(Ān)

(max Ān + 2)(min Ān + 1)
+ b

h(Ān)

(min Ān + 1)
+ b

h(Ān)

(max Ān + 2)
.

Therefore, using again that Ā+ is the h-transform of Ā (but in the other direction)

1

h(C0)
EC0

[
h(Ān + b)1Ā1,...,Ān⩾0

]
= 1 + b2EC0

[
1

(max Ā+
n + 2)(min Ā+

n + 1)

]
+ bEC0

[
1

(min Ā+
n + 1)

]
+ bEC0

[
1

(max Ā+
n + 2)

]
.

All the expectations on the r.h.s tend to 0 by dominated convergence because the quantities inside

the expectations are in [0, 1] and go to 0 a.s. because we established that the infinite non-negative

pyramid is transient. Putting everything together, we conclude that

PC

(
min Ā+

n ⩾ b for all n
)
= lim

n→∞
PC(Ā

+
1 , . . . , Ā

+
n ⩾ b)

= lim
n→∞

h(C0)

h(C)

1

h(C0)
EC0 [h(Ān + b)1Ā1,...,Ān⩾0] =

h(C0)

h(C)

which is exactly (50).
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6 Appendix

We show in this last section how formulas derived from the probabilistic nature of the objects

under study can be recovered independently using algebraic manipulations. This section is com-

pletely self-contained.

Our starting point is a collection of abstract polynomial identities.

Lemma 8. Let n ⩾ 1 and let F = {f1, . . . , fn} be distinct elements in a unital commutative ring.

Given a subset B = {fi1 , . . . , fik} ⊂ F enumerated in the same order as F ( i.e. i1 < . . . < ik),

we define

minB := fi1 and maxB := fik .

We also define

η(B) :=
k−1∏
i=1

(fij+1 − fij − 1) and η+(B) :=
k−1∏
i=1

(fij+1 − fij + 1),

with the usual convention that an empty product equals 1 i.e. η(B) = η+(B) = 1 when |B| = 1.

We have the equalities∑
∅≠B⊂F

η(B) = η+(F ), (51)

∑
∅≠B⊂F

η(B)max(B) = 1 + (max(F )− 1)η+(F ), (52)

∑
∅≠B⊂F

η(B)min(B)max(B) = 1 + (max(F )− 1)(min(F ) + 1)η+(F ). (53)

Furthermore, if n = |F | ⩾ 2, then

∑
B⊂F

max(B)=fn

η(B) = (fn − fn−1)

n−1∏
j=2

(fj − fj−1 + 1), (54)

and if n = |F | ⩾ 3,

∑
B⊂F

min(B)=f1
max(B)=fn

η(B) = (f2 − f1)(fn − fn−1)
n−1∏
j=3

(fj − fj−1 + 1). (55)

Proof. Define

α(F ) :=
∑
B⊂F

max(B)=max(F )

η(B).

We first prove (54) which can be restated as:

α(F ) = (fn − fn−1)

n−1∏
j=2

(fj − fj−1 + 1). (56)
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If n = |F | = 1, then α({f}) = η({f}) = 1. If n = |F | = 2, then

α({f1; f2}) = η({f1; f2}) + η({f2}) = (f2 − f1 − 1) + 1 = f2 − f1,

and if F has at least three elements we can work by induction, considering separately the sets B

that do not contain fn−1 and those that do contain fn−1. We have

α(F ) = α(F\{fn−1}) + (fn − fn−1 − 1)α(F\{fn}).

Proceeding by induction, for n = |F | ⩾ 3:

α(F ) = α(F\{fn−1}) + (fn − fn−1 − 1)α(F\{fn})

= (fn − fn−2)
n−2∏
j=2

(fj − fj−1 + 1) + (fn − fn−1 − 1)(fn−1 − fn−2)
n−2∏
j=2

(fj − fj−1 + 1)

= (fn − fn−1)(fn−1 − fn−2 + 1)

n−2∏
j=2

(fj − fj−1 + 1)

which proves equation (56) (hence (54)). Observe as a consequence that

α(F ) = η+(F )− η+(F\{fn}).

Therefore,

∑
∅≠B⊂F

η(B) =
n∑

i=1

α({f1, . . . , fi}) = η+(F )− η+({f1}) + α({f1}) = η+(F )

which proves (51). Similarly, we can write∑
B⊂F

min(B)=f1
max(B)=fn

η(B) = α(F )− α(F\{f1})

which gives (55). Obtaining Formula (52) is slightly more involved:

∑
∅≠B⊂F

η(B)max(B) =
n∑

i=1

fiα({f1, . . . , fi})

=
n∑

i=1

fi(η
+({f1, . . . , fi})− η+({f1, . . . , fi−1}))

= fnη
+(F )−

n−1∑
i=1

η+({f1, . . . , fi})(fi+1 − fi)

= fnη
+(F )−

n−1∑
i=1

α({f1, . . . , fi+1})

= fnη
+(F )− (η+(F )− 1).
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A similar reasoning also gives a formula for the min instead of the max:∑
∅̸=B⊂F

η(B)min(B) = −1 + (min(F ) + 1)η+(F ). (57)

Now, from (52) we deduce∑
B⊂F

min(B)=f1

η(B)max(B) =
∑

∅≠B⊂F

η(B)max(B)−
∑

∅≠B⊂F\({f1})

η(B)max(B)

= (max(F )− 1)(f2 − f1)
n∏

j=3

(fj − fj−1 + 1). (58)

Finally, we have∑
∅≠B⊂F

η(B)min(B)max(B) = f2
n +

∑
h<n

fh
∑
B⊂F

min(B)=fh

η(B)max(B)

= f2
n +

∑
h<n

fh(fn − 1)(fh+1 − fh)
n∏

j=h+2

(fj − fj−1 + 1)

= f2
n + (fn − 1)

∑
B⊂F

min(B) ̸=fn

η(B)min(B)

= f2
n + (fn − 1)(−1 + (f1 + 1)η+(F )− fn)

= (fn − 1)(f1 + 1)η+(F ) + 1

where we used (58) for the second equality and (57) for the fourth one. This proves (53).

We stated Lemma 8 in an abstract setting because we feel it is of independent interest,

regardless of its connection with directed animals. However, we will only make use of it here

when F = {f1, . . . , fn} is a subset of Z and we will now assume that the elements of F are

enumerated according to the usual order f1 < f2 < . . . < fn. Doing so ensures that the definition

of η(·) given in Lemma 8 coincides with the previous definition given in (30) and also that the

notations maxB and minB of Lemma 8 match their usual definition on an ordered set.

Recall that a set A is admissible if it is finite, non-empty, and A ⊂ 2Z or A ⊂ 2Z + 1.

Furthermore, if A is an admissible set, we can define another admissible set [A] := (A−1)∪(A+1).

The next result explains the appearance of η+ in the context of directed animals on Z2.

Lemma 9. Let A be an admissible set. We have

3|A|η(A) = η+([A]).

Proof. We say, that h is a small hole in A if h− 2 and h+2 are in A but h /∈ A. If h1 < · · · < hk

are the small holes in A we define its completion A∗ := A∪{h1, . . . , hk}. It is clear that [A∗] = [A]

and |A∗| = |A|+ k. Besides, we have

η(A)

η(A∗)
=
∏
i

hi + 2− (hi − 2)− 1

(hi + 2− hi − 1)(hi − (hi − 2)− 1)
= 3k
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hence

3|A|η(A) = 3|A
∗|η(A∗).

By construction, A∗ has no small hole so we only need to prove the result for sets without small

holes. Now, if A has no small hole, then, on the one hand, A can be written as a disjoint union

A =
⋃m

i=1{ai, ai + 2, . . . , ai + 2ℓi} with ai + 2ℓi + 6 ⩽ ai+1 and therefore

3|A|η(A) = 3
∑m

i=1(ℓi+1)
m−1∏
i=1

(ai+1 − (ai + 2ℓi)− 1).

On the other hand, because ai + 2ℓi + 6 ⩽ ai+1, we can also decompose [A] as the disjoint union

[A] =
⋃m

i=1{ai − 1, ai + 1, . . . , ai + 2ℓi + 1} and therefore

η+([A]) =

m∏
i=1

η+
(
{ai − 1, ai + 1, . . . , ai + 2ℓi + 1}

)m−1∏
i=1

((ai+1 − 1)− (ai + 2ℓi + 1) + 1)

=
m∏
i=1

3ℓi+1
m−1∏
i=1

(ai+1 − (ai + 2ℓi)− 1)

= 3|A|η(A).

Recall that expression for the Markov kernel of the UIP defined in (45):

Q̄(A,B) =
η(B)1∅≠B⊂[A]

3|A|η(A)
.

Combining Lemma 8 and Lemma 9 and using that max([A]) − 1 = max(A) and min([A]) + 1 =

min(A), we immediately recover an equivalent version of Proposition 10 concerning martingales

associated with the UIP.

Corollary 7 (Kernels identities and UIP martingales). For any admissible A:∑
B ̸=∅,B⊂[A]

Q̄(A,B) = 1,

∑
B ̸=∅,B⊂[A]

Q̄(A,B)max(B) = max(A) +
1

3|A|η(A)
,

∑
B ̸=∅,B⊂[A]

Q̄(A,B)min(B)max(B) = min(A)max(A) +
1

3|A|η(A)
.

Remark 18. The first formula exactly says that Q̄ is a Markov kernel (i.e. sums to 1). Similarly

the next two formulas can be used to recover that the kernel Q of the BHP defined in (44) and the

kernel Q̄+ of the UIP+ defined in (46) both sum to 1: we just reverse the chain of arguments given

in the proof of Proposition 10 where we started from the kernel property to find the martingales.
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