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January 9, 2022

Abstract

We define a general class of random systems of horizontal and vertical weighted broken lines
on the quarter plane whose distribution are proved to be translation invariant. This invariance
stems from a reversibility property of the model. This class of systems generalizes several
classical processes of the same kind, such as Hammersley’s broken line processes involved
in Last Passage Percolation theory or such as the six-vertex model for some special sets
of parameters. The novelty comes here from the introduction of a weight associated with
each line. The lines are initially generated by spatially homogeneous weighted Poisson Point
Process and their evolution (turn, split, crossing) are ruled by a Markovian dynamics which
preserves Kirchhoff’s node law for the line weights at each intersection. Among others, we
derive some new explicit invariant measures for some bullet models as well as new reversible
properties for some six-vertex models with an external electromagnetic field.
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Figure 1: A realisation of Hammersley’s broken line process in the rectangle [0, a]× [0, b]. The traces of particles
with charge +1 are represented in red and those of the antiparticles with charge −1 are represented in blue.

1 Introduction

In his seminal work [Ham72], Hammersley introduced its now famous broken line process as a
mean to study the length of the longest increasing sequence in a random permutation. This
model of Last Passage Percolation (LPP) enjoys many remarkable properties and has since been
thoroughly scrutinized [Ros81, Sep09]. One possible construction of Hammersley’s process on
the quarter plane [0,∞)2 goes as follow: consider a unit intensity Poisson Point Process (PPP)
on [0,∞)2. Each atom of the point process “emits” a pair of particle/anti-particle with the
particle of charge +1 moving horizontally to the right and the antiparticle with charge −1 moving
upward. When the traces of two particles of opposite charge meet, they both disappear. Then,
the collection of all traces obtained with this procedure is exactly the Hammersley’s broken line
process on the quarter plane (see Figure 1 for an illustration of the construction). Let us note
that, in view of this construction, the system may be called “conservative” in the sense that the
total charge of the system remains null since particles and antiparticles appear and disappear
simultaneously.

In this paper, we introduce a new class of random processes which we call Poisson-Kirchhoff
Systems (PKS) that generalize the construction described above. Those processes consist again
of random collections of weighted horizontal and vertical broken lines living on the quarter plane
[0,∞)2. As for the Hammersley’s broken line process, one may think of these lines as being
the traces of “charged” particles moving either horizontally (i.e. increasing their x-coordinate) or
vertically (i.e. increasing their y-coordinate). However, in this new class of processes, particles may
hold arbitrary charges and may randomly turn, split or coalesce according to a special Markovian
dynamics which is still conservative in the sense that the total charge remains constant. We show
in this paper that, when the parameters of the dynamics take a particular form, the PKS process
is spatially reversible. Then, it is possible to construct a translation invariant PKS process on
the whole plane whose marginal distribution along vertical and horizontal lines are (weighted)
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PPPs.

The paper is organized as follows. In Section 2 we define the PKS process in a general setting
and prove its existence under a uniform boundedness assumption on the parameters.

In Section 3, we introduce a notion of reversibility for PKS processes which essentially says
that the distribution of a PKS restricted to any rectangular box is invariant by a rotation of 180
degrees. Then we present, in our main results, suitable conditions that guarantee the reversibility
and therefore the invariance of PKS processes. We do it in three different frameworks according
to whether the distribution of the line weights is absolutely continuous with respect to Lebesgue
measure, discrete or arbitrary.

The proof of this reversibility property is carried out in Section 4. The state space of PKS
processes is quite complicated, and in order to deal with it, we introduce a family of parametriza-
tions. It turns out that two different parametrizations of this family define the same volume form.
We apply this result to two specific parametrizations: a first one associated to the dynamics of
the PKS and the second one associated to its reverse dynamics. Once we have done it, a careful
analysis shows that the densities associated to the dynamics and to the reversed one in their
respective parametrizations coincide under the above-mentioned conditions. Interestingly, one
can exploit this invariance result in order to extend the proof of the existence of the PKS to
unbounded parameters.

In Section 5, we first show how Kirchhoff’s node law makes it possible to define a notion of
potential function associated with the faces of the tessellation defined by a PKS. This potential
function corresponds to the last passage times in LPP. We then collect several LPP models which
can be mapped to PKS processes. In the sequel, we provide a (non-exhaustive) list of PKS
processes obtained for specific distributions of the line weights. From this list, we recover several
other classical models of statistical physics like bullet models [KRL95, BM20, HST18] or six-vertex
models [Pau35, Bax72]. In particular, we exhibit some new explicit invariant measures for some
bullet models as well as new reversible properties for some six-vertex models with an external
electromagnetic field. Furthermore, the special cases of Gaussian or Poisson distributions for the
line weights provide new models with explicit dynamics which might be worthy of further study.

Finally, in Section 6, we look at basic geometric properties of the random tessellation of the
quarter plane induced by a PKS, such as the mean number of connected components inside a
rectangle, and the mean number of nodes of a typical connected component.

2 Poisson-Kirchhoff systems

The definition of a generic Poisson-Kirchhoff process relies on 9 parameters. First, let λ0 be a
non-negative number which will be referred to as the spontaneous creation rate. Let λV and λH
be two functions from R to R+, called vertical and horizontal split rate functions. Let τV and τH
be two functions from R to R+, called vertical and horizontal turn rate functions. Let p0 ∈ [0, 1]
called the annihilation probability, let also pV and pH be two functions from R to [0, 1], called
respectively vertical and horizontal coalescence probability functions that satisfy, for any s ∈ R,

pV (s) + pH(s) + p01s=0 ≤ 1. (1)
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Figure 2: Kirchhoff’s node law at a crossing: two lines are coming from the south and the west directions with
respective weights sS and sW . Lines exiting the intersection to the north and west direction have respective weights
sN and sE . The sum of weights entering and exiting the intersection is conserved: sS + sW = sN + sE .

Finally, let F = (F (s, ·) : s ∈ R) be a probability transition kernel on R, called the division
kernel, which satisfies:

� The map s 7→ F (s,B) is B(R)-measurable for any Borel set B ∈ B(R).

� B 7→ F (s,B) is a probability measure on (R,B(R)) for any s ∈ R.

The collection (λ0, λV , λH , p0, pV , pH , τV , τH , F ) represents the parameters of the model. The
three parameters (λ0, λV , λH) can be seen as splitting rates whereas (p0, pV , pH) can be seen as
merging probabilities. We will see that these two sets of parameters play a dual role. The two
parameters (τV , τH) have a symmetric role and describe how often vertical and horizontal lines
turn. Finally, the kernel F describes the distribution of the weights when a line splits or when
two lines meet and split again.

We now define a random system of horizontal and vertical algebraic weighted lines inside
the quarter plane [0,∞)2 which preserves Kirchhoff’s node law at every intersection (w.r.t. their
weights), as prescribed in Figure 2. As in the description of Hammersley’s process in Section 1,
one can think of those lines as the traces of charged particle moving either to the right or upwards.
Let us emphasize that, in our setting, the weight (i.e. charge) of a line may be positive, negative
or even null.

We define the initial condition of our process by specifying the positions and weights of the
vertical (resp. horizontal) lines that start from the x-axis (resp. y-axis). To this end, we fix two
sets of weighted points: CX on the positive x-axis and CY on the positive y-axis. More precisely,
an element of CX is of the form ((x, 0), s) ∈ (R+ × {0}) × R. Similarly, an element CY is of the
form ((0, y), s) ∈ ({0} × R+) × R. The two sets CX and CY can be taken randomly. In order to
avoid degeneracy, we will always assume that

the sets of points in CX and CY are locally finite a.s., (LF)

i.e. there is no accumulation point on either axis.
We also take a PPP Ξ0 on (0,∞)2 ×R with intensity λ0 dx dy F (0, ds). From the initial con-

ditions CX and CY , and the parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ), we construct a system
of lines with the following rules:
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(a) A realization of a PKS. (b) Simulation of a PKS on [0, 50] × [0, 50] ac-
cording to Model 16 of Table 3 (see Section 5)
with pV (s) = pH(s) = 0.4 and τV (s) = τH(s) =
0.1 whose initial condition (CX , CY ) are given by
two independent PPPs.

Figure 3: Example of dynamics. Lines with positive weights are in red and those with negative weights in blue.
The thickness of a line is proportional to the absolute value of its weight.

1V . From each element ((x, 0), s) ∈ CX , we start a vertical line from the point (x, 0) going up
with weight s.

1H . From each element ((0, y), s) ∈ CY , we start an horizontal line from the point (0, y) going
right with weight s.

10. From each element ((x, y), s) ∈ Ξ0, we start an horizontal line from the point (x, y) going
right with weight s and a vertical line going up with weight −s.

There are two kinds of events that occur during the dynamics. The first kind concerns what
happens to a single line which may turn or split into two lines.

2V . Along a vertical line of weight s:

(a) A split occurs at rate λV (s). When such an event happens, we pick a random variable
T ∼ F (s, ·), independent of everything else. As a result of this split, the vertical line
continues going up with new weight s− T , and a horizontal line with weight T starts
going right from the point where the split occurs.

(b) The line turns to its right (i.e. to the east) at rate τV (s) keeping the same weight and
becoming a horizontal line.

2H . Along a horizontal line of weight s:
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(a) A split occurs at rate λH(s). When such an event happens, we pick a random variable
T ∼ F (s, ·), independent of everything else. As a result of this split, the horizontal
line continues going right with new weight T , and a vertical line with weight s − T
starts going up from the point where the split occurs.

(b) The line turns to its left (i.e. to the north) at rate τH(s) keeping the same weight and
becoming a vertical line.

The second kind of event corresponds to intersections of lines (which we shall refer to as
crossing events) when a horizontal line going right (i.e. coming from the west) with weight sW
meets a vertical line going up (i.e. coming from the south) with weight sS . We apply the following
rules:

3. (a) with probability pV (sS + sW ), the horizontal line stops and the vertical line continues
with weight sN := sS + sW ;

(b) with probability pH(sS + sW ), the vertical line stops and the horizontal line continues
with weight sE := sS + sW ;

(c) with probability p01sS+sW=0, both lines disappear;

(d) on the complementary event, which happens with probability 1 − pV (sS + sW ) −
pH(sS +sW )−p01sS+sW=0, we pick a random variable T ∼ F (sS +sW , ·), independent
of everything else. Then, after meeting each other, the weight of the horizontal line
becomes sE := T and the weight of the vertical one becomes sN := sS + sW − T .

Rules 1, 2 and 3 together with the initial set of weighted starting points CX and CY define a
random system of algebraic weighted lines which we call Poisson-Kirchhoff System (PKS) with
parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ) under the initial condition (CX , CY ). Let us note
that, according to the rules of the dynamics, the system is conservative: it satisfies Kirchhoff’s
node law (as in Figure 2) at every intersection, be it a split, a turn or a crossing. An illustration
of a PKS process is given in Figure 3.

Are PKS well defined? Without further assumptions, the process constructed with the above
procedure could be not well defined on the whole quarter plane. Indeed, the previous construction
can fail (i.e. blow up) if an accumulation of lines appears and prevents us from defining the process
any further. From now on, we will say that the PKS is well defined if, a.s., the construction above
has no accumulation points on the whole quarter plane (or equivalently, there is only a finite
number of lines intersecting any bounded region a.s.). The following trivial example illustrates
the problem.

Example. Set λ0 = λV (s) = τV (s) = τH(s) = p0 = pV (s) = pH(s) = 0. Set λH(s) = s2

and F (s, ·) = δs+1. Fix CX = ∅ and CY = {((0, 1), 1)}. Then, the PKS starts from of a single
horizontal line beginning at point (0, 1) on the y-axis and with initial weight 1. This horizontal
line never disappears and splits infinitely many times, creating at each split a new vertical line
with weight −1 while its own weight increases by 1. Thus, the splitting rate of the horizontal line
is equal to (n+ 1)2 after the nth split. This means that the x coordinate of the n-th split is equal
to
∑n

i=1
ξi
i2

where the (ξi) are i.i.d. exponantaial random variables with mean 1. The previous
sum converges a.s. which shows that the PKS blows up almost surely.

6



Deciding whether a generic PKS is well defined seems tricky. However, the following elemen-
tary result ensures that the PKS is well defined a.s. whenever its jump rates are bounded. Later
on, the main results in Section 3 will provide examples of well-defined PKS with unbounded jump
rates.

Proposition 1. Assume that CX and CY satisfy assumption (LF), and that

sup
s∈R

(λV (s), λH(s), τV (s), τH(s)) <∞. (2)

Then, the PKS is well defined on the whole quarter plane [0,∞)2 a.s..

Proof. Let us first note that

{the PKS is well defined on the whole quarter plane}
=
⋂
a,b∈N

{the PKS is well defined inside the rectangle [0, a]× [0, b]}

Thus, we just need to prove that the PKS does not blow up inside any box [0, a]× [0, b] a.s..
Let us fix such a box [0, a]× [0, b]. Let y1 < y2 < . . . < yN0 denote the y-coordinates of the points
in CY located on the segment {0}× [0, b]. We just need to prove that the PKS is well defined a.s.
inside [0, a]× [0, y1] and then we can repeat the same argument, starting now from height y1, and
conclude, after N0 steps that the process is a.s. well defined on the whole box.

Let r := sups∈R(λV (s), λH(s), τV (s), τH(s)) < ∞ and M0 denote the number of weighted
points of CX located on the segment [0, a] × {0}. We follow the dynamics starting from the
bottom side of the box and moving upward.

Initially, we start with M0 vertical lines going upward. The first split/turn event occurs at
some random height H1 which is stochastically larger than an exponential random variable with
mean 1/(2M0r) (since all rates are bounded by r). At height H1, a new horizontal line is created.
This line creates U1 new vertical lines (by splitting and at most one by turning) that will grow
upward, and stops V1 ≥ 0 vertical lines coming from the bottom (including itself in case of a
turn event), see Figure 4. Hence, after height H1, the process continues to grow upward with
M1 = M0 + U1 − V1 vertical lines. Similarly, after the nth split/turn event that occurs at height
Hn, the process grows up with Mn = Mn−1 + Un − Vn vertical lines.

Now, the height Hn of the nth split/turn event is stochastically larger than

n−1∑
i=0

ξi
Mi

, (3)

where (ξi) are i.i.d. exponential random variables with mean 1/(2r) which are independent of
(Mi). But, remark that since the width of the box is equal to a, and that the split and turn
rate functions are bounded by r, the sequence (Ui)i≥1 is stochastically dominated by a sequence
(Wi)i≥1 of independent Poisson random variables with parameter 2ar. This implies that the
sequence of variables Mn, which are individually bounded by M0 +

∑n
i=1Wi, grows at most

linearly with n, and so the sum given in (3) goes a.s. to infinity. Hence, the PKS process cannot
blow up before reaching height y1, as requested.
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Mi−1 = 4
Ui = 4, Vi = 1

Mi = 7

Ui+1 = 0, Vi+1 = 2
Mi+1 = 5

Hi

Hi+1
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Figure 4: In this example, the ith event (green circle) occurs at height Hi and is a split. The (i+1)th event (also
green circle) occurs at height Hi+1 and is a turn. On the ith event, the horizontal line creates Ui = 4 new lines
(blue dots) and stops Vi = 1 line (red dot). The (i+1)th event stops 1 line additionally to the one that turns (the
two red dots) and creates no line. The time between the ith event and the (i+1)th event is greater than ξi/Mi

that is an exponential random variable with mean 1/(2Mir).

3 Reversible Poisson-Kirchhoff systems

Although the PKS is defined on the whole quarter plane, it is convenient to consider its restriction
to a box of the form [0, a] × [0, b] for a, b ∈ R∗+. We denote by Da,b the image space of the PKS
process restricted to the box [0, a] × [0, b]. An element D ∈ Da,b is called a drawing in the box
[0, a] × [0, b]. It consists of a finite collection of weighted vertical and horizontal segments inside
this rectangle and which furthermore satisfy the Kirchhoff node law at every intersection (in the
sense of Figure 2).

Given a drawing D ∈ Da,b, we define its reverse drawing D̂ ∈ Da,b, obtained by rotating D
by 180 degrees around the center point (a/2, b/2). Let us note that this rotation yields a valid
drawing. An example of a drawing D and its reverse D̂ is given in Figure 5. From now on, we
shall denote by Da,b (or simply D when the box considered is obvious) a random drawing which
has the law of the PKS process defined in Section 2.

Definition 1 (Reversibility). A PKS is said to be reversible if there exists a random initial

condition (CX , CY ) such that for any a, b, Da,b
(d)
= D̂a,b.

Another related notion is that of stationarity of the PKS, which will be implied by the
reversibility property in all the cases we shall consider.

Definition 2 (Stationarity). A PKS is said to be stationary if there exists a random initial
condition (CX , CY ) such that it is translation invariant. Equivalently, this means that the law of a
drawing does not depend on the position of the box inside the quarter plane but only on its size.
In that case, the law of the initial condition (CX , CY ) is called an invariant probability measure
for the PKS.

We now give sufficient conditions on the parameters of a PKS to be reversible under initial
conditions (CX , CY ) taken as independent weighted PPPs. Thus, from now on, we consider two
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Figure 5: An example of a drawing and, on its right, its reverse

non-zero finite measures νV and νH on R and we will always assume that{
CX is a PPP on (R+ × {0})× R with intensity dx dνV (s).

CY is a PPP on ({0} × R+)× R, independent of CX , and with intensity dy dνH(s).
(4)

We call these measures the vertical (resp. horizontal) line weight measures. For technical reasons,
we distinguish the following three cases depending on their properties:

� when νV and νH are both absolutely continuous w.r.t. the Lebesgue measure (Section 3.1);

� when νV and νH are discrete measures with support included in Z (Section 3.2);

� finally, we discuss the extension of the previous results to arbitrary measures (Section 3.3).

3.1 Lebesgue case

We assume here that the line weight measures νV and νH are two non-zero finite measures on R
with Lebesgue densities gV and gH . Thus, the initial conditions (4) now take the form:{
CX is a PPP on (R+ × {0})× R with intensity dx gV (s)ds.

CY is a PPP on ({0} × R+)× R, independent of CX , and with intensity dy gH(s)ds.
(5)

Consider a PKS with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ). The following assumptions
insure the existence of a reversible measure for the PKS process:
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(L1) The spontaneous creation rate is zero, i.e.

λ0 = 0. (6)

Indeed, since we are here in a continuous setting, case 3(c) of the dynamics (in Section 2)
never occurs so lines never annihilate. Therefore, in order for the system to be reversible,
there must be no spontaneous creation of lines. Consequently, the annihilation probability
p0 also does not matter here (and can be taken to be zero).

(L2) The coalescence probability functions pV and pH satisfy the two following conditions with
respect to the support of the measures νV and νH : for any s ∈ R, we have

gV (s) = 0 ⇒ pV (s) = 0 and gH(s) = 0 ⇒ pH(s) = 0. (7)

(L3) The two turn rate functions τV and τH satisfy, for any s ∈ R,

τV (s)gV (s) = τH(s)gH(s). (8)

(L4) The two splitting rate functions λV and λH satisfy, for any s ∈ R,

λV (s) = pV (s)
h(s)

gV (s)
and λH(s) = pH(s)

h(s)

gH(s)
, (9)

where h is defined by

h(s) := (gV ∗ gH)(s) =

∫
R
gV (s− t)gH(t) dt.

(L5) The division kernel F satisfies that, for any s ∈ R, the measure F (s, ·) is absolutely con-
tinuous with respect to the Lebesgue measure and its density f(s, ·) is such that, for any
t ∈ R,

f(s, t) =
gV (s− t)gH(t)

h(s)
(10)

provided that h(s) > 0. If h(s) = 0, then f(s, ·) can be any probability density* on R.
Notice that this density has a simple probabilistic interpretation: let XV and XH be two
independent random variables with density proportional to gV and gH respectively, then
f(s, ·) is the density of the variable XH conditionally on the event {XV +XH = s}.

We can now state our main result.

Theorem 1 (Reversibility in Lebesgue case). Consider a PKS with parameters (λ0, λV , λH ,
p0, pV , pH , τV , τH , F ). If there exist two non-zero finite measures νV and νH on R with densities
(according to Lebesgue measure) gV and gH such that the previous conditions (L1), (L2), (L3),
(L4) and (L5) hold, then this PKS under the initial condition (CX , CY ) as defined in equation (5)
is well defined and reversible in the sense of Definition 1.

*The distribution of f(s, ·) when h(s) = 0 do not matter. This is just to insure that f is well defined for all
s ∈ R.
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Remark. A PKS satisfying the conditions of Theorem 1 may have several reversible measures.
Indeed, suppose that there exists a positive constant r such that g̃V (s) = rsgV (s) and g̃H(s) =
rsgH(s) are still the densities of finite measures. Then Theorem 1 still applies by replacing gV
and gH by g̃V and g̃H . Consequently, the PKS admits another reversible distribution, given by
the law of two independent PPPs: one with intensity Leb⊗ ν̃V and the other one with intensity
Leb⊗ ν̃H . In that case, the PKS admits a family of reversible measures parameterised by r in an
open subinterval of R+.

This theorem is proved in Section 4.1. As stated in the next corollary, the reversibility in this
case implies the stationarity. Moreover, it permits also to characterize the law of the restriction
of the process along a fixed decreasing curve.

Corollary 1. The PKS is stationary as defined in Definition 2. In particular, the following
properties hold:

(i) One of its invariant distribution is the law of two independent PPPs: one with intensity
Leb ⊗ νV and the other one with intensity Leb ⊗ νH . Hence, the restriction of D to the
segment [0, a]× {b} is a Leb⊗ νV -PPP and the restriction of D to the segment {a} × [0, b]
is a Leb⊗ νH-PPP. Moreover, these two PPPs are independent.

(ii) Let L be any broken line of [0, a] × [0, b] consisting only of eastern and southern steps.
Then, D restricted to L on its eastern steps is a Leb⊗ νV -PPP, and D restricted to L on
its southern steps is a Leb⊗ νH-PPP. These two PPPs are independent.

(iii) Let L be any straight segment of R2: y = −αx + β with x ∈ [c, d] and α ∈ (0,+∞).
The restriction of D to its vertical (resp. horizontal) lines is a Leb⊗ 1√

1+α2
νV -PPP (resp.

Leb⊗ α√
1+α2

νH-PPP). Moreover, these two PPPs are independent.

Remark. The last result (iii) can still be generalised to any rectifiable curve γ(t) = (x(t), y(t))
from [0, 1] to [0, a] × [0, b] which is “decreasing” in the sense that x′ ≥ 0 and y′ ≤ 0. Then,
again, the restrictions of the horizontal and vertical lines of the random drawing to this curve
form independent inhomogeneous PPPs whose respective intensities with respect to dλ⊗ νV and
dλ ⊗ νH , where dλ denotes the length measure on the curve, at the point of parameter t, are

given by the formulas of Corollary 1 (iii) taking α = −y
′(t)
x′(t)

.

Proof of Corollary 1. We prove that the restriction of the process to any box [x, x+a]× [y, y+ b]
has the same distribution as the one to the box [0, a]× [0, b], by showing that they are similarly
distributed on their left and down boundaries. For this purpose, we first apply Theorem 1 to the
box [0, x+ a]× [0, y] and then to the box [0, x]× [y, y + b] as illustrated below.

0 x x+ a

y

y + b

11

22
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Indeed, the first application implies that the restriction of the process to the segment [0, x+
a] × {y} is distributed as a Leb ⊗ νV -PPP. Moreover, it is independent of the restriction of the
process to the segment {0} × [y, y + b].

Consequently, the second application applies and permits to prove that the restriction of the
process to the segment {x}× [y, y+b] is distributed as a Leb⊗νH -PPP. Moreover, this restriction
is independent of the one to the segment [x, x+ a]×{y} since it only depends on the restrictions
to the segments {0} × [y, y + b] and [0, x]× {y} as well as on the dynamics of the process above
y.

3.2 Discrete case

We call discrete case the case where all the line weights are integers. Let us start by noticing that,
contrary to the Lebesgue case, the case 3(c) of the dynamics can occur since two lines with opposite
weights can exist and encounter. This phenomenon is reminiscent of Hammersley’s broken line
process schematized in Figure 1, see [Ham72, AD95, Gro02, CG05, CG06] for additional details
on this process. Hence, in this section, p0 matters and λ0 could be non-zero.

As in Section 3.1, before giving the theorem we detail some sufficient conditions.
Let νV and νH be two non-zero finite measures taking values in Z.{
CX is a PPP on (R+ × {0})× Z with intensity dx νV (ds).

CY is a PPP on ({0} × R+)× Z, independent of CX , and with intensity dy νH(ds).
(11)

Consider a PKS with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ). As, in Section 3.1, we
present some sufficient conditions for reversibility:

(D1) The spontaneous creation rate λ0 is related to the annihilation probability p0 as follows:

λ0 = p0
∑
s∈Z

νV (−s)νH(s). (12)

(D2) The coalescence probability functions pV and pH satisfy two conditions with respect to νV
and νH : for any s ∈ Z,

νV (s) = 0⇒ pV (s) = 0 and νH(s) = 0⇒ pH(s) = 0. (13)

(D3) The two turn rate functions τV and τH satisfy, for any s ∈ Z,

τV (s)νV (s) = τH(s)νH(s) (14)

(D4) The two splitting rate functions λV and λH satisfy, for any s ∈ Z,

λV (s) := pV (s)
h(s)

νV (s)
and λH(s) := pH(s)

h(s)

νH(s)
, (15)

where
h(s) = (νV ∗ νH)(s) =

∑
t∈Z

νV (s− t)νH(t).

12
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1

(a) Typical lines of a discrete reversible
PKS: pairs lines can spontaneously ap-
pear and can also annihilate. Particles
of weight 0 may also exist.

(b) Simulation of a discrete PKS. In this particular
model, we impose that vertical lines are non-positive
and horizontal lines are non-negative. Hence, only lines
of weight 0 can turn.

Figure 6: Examples of a discrete reversible PKS. Lines with positive weight are drawn in red and those with
negative weight in blue. Line with weight 0 are drawn in black.

(D5) The division kernel F satisfies, for any s ∈ Z, for any t ∈ Z,

F (s, t) =
νV (s− t)νH(t)

h(s)
(16)

provided that h(s) > 0. If h(s) = 0, then F (s, ·) can be chosen to be any probability
measure on Z (even on R).

Now we can state the Theorem in the discrete case.

Theorem 2 (Reversibility in the discrete case). Consider a PKS with parameters (λ0, λV , λH ,
p0, pV , pH , τV , τH , F ). If there exist two non-zero finite measures νV and νH on Z such that the
previous conditions (D1), (D2), (D3), (D4) and (D5) hold, then this PKS under the initial
condition (CX , CY ) as defined in equation (11) is well defined and reversible.

Corollary 1 also holds in this case.

Remark. Let us note that Theorems 1 and 2 insure that a reversible PKS is well defined when
the initial condition is given by one of its invariant measures. It follows that the PKS is also
well defined starting from any initial condition that is absolutely continuous w.r.t. this invariant
measure. In the discrete case, one may check the stronger result that the reversible PKS is, in
fact, well defined for any deterministic initial conditions (CX , CY ). This may not necessarily be
true in the Lebesgue case as it is possible to construct forbidden “pathological” initial conditions,
for example with lines having opposite weights.
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3.3 General case

We have treated the two usual and major cases. Now, we give some sufficient conditions to obtain
the reversibility in the most general framework.

First, we denote by AV (resp. AH) the set of atoms of νV (resp. νH), and we set

A := AH ∩ (−AV ) =
{
s ∈ R : νH({s})νV ({−s}) 6= 0

}
.

Secondly, in the absence of a common measure against which both measures νV and νH are
absolutely continuous, we make use of the Radon–Nikodym derivatives with respect to νV and
to νH in order to define the appropriate rate functions that guarantee reversibility.

We recall the Radon–Nikodym theorem for two arbitrary finite measures µ and m: there
exists a unique decomposition of µ = µ// + µ⊥ such that µ// is abs. continuous w.r.t. m and
µ⊥ is singular w.r.t. m. Henceforth, we define the Radon–Nikodym derivative of the measure µ

according to the measure m as
dµ//
dm and denote it as dµ

dm .
Consider a PKS with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ). We present some suffi-

cient conditions for reversibility.

(G1) The spontaneous creation rate λ0 satisfies

λ0 = p0
∑
s∈A

νV ({−s})νH({s}). (17)

(G2) The coalescence probability functions pV and pH satisfy

pV ∈ L∞(R,B(R), νV ) and pH ∈ L∞(R,B(R), νH). (18)

(G3) The two turn rate functions τV and τH satisfy, for any s ∈ R,

τV (s) = τH(s)
dνH
dνV

(s), or equivalently τH(s) = τV (s)
dνV
dνH

(s). (19)

(G4) The two splitting rate functions λV and λH satisfy, for any s ∈ R,

λV (s) = pV (s)
dη

dνV
(s) and λH(s) = pH(s)

dη

dνH
(s), (20)

where η = νV ∗ νH is the convolution product of νV and νH , i.e. for any A ∈ B(R),

η(A) =

∫
R2

1t+s∈A dνV (t) dνH(s).

(G5) The division kernel F satisfies, for any s ∈ R, for any t ∈ R,

F (s,A) =

∫
A

dν
(t)
V

dη
(s) dνH(t) (21)
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where ν
(t)
V the t-translated measure* of νV . The probability kernel F can be also seen as

the regular conditional probability of X ∼ νH with respect to σ(X +Y ) where Y ∼ νV and
Y is independent of X as defined in [Dur19, Section 4.1.3].

As in Theorems 1 and 2, a PKS with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ) such that
there exist two non-zero finite measures νV and νH on R that satisfy the conditions (G1), (G2),
(G3), (G4) and (G5) is well defined and reversible under the initial condition (CX , CY ) defined
in equation (4).

The proof of the reversibility in that case is much more technical than the ones in the Lebesgue
and discrete cases. Indeed, we do not have access anymore to a translation invariant measure
against which the weight measures νV and νH are absolutely continuous. The proof of this
statement is omitted in the paper.

4 Proof of reversibility

In this section, we prove the main Theorems 1 and 2 of this article. In the first two following
sections, we prove them further assuming that the rates are uniformly bounded. This condition
is relaxed in the last section.

4.1 Proof of Theorem 1 with uniformly bounded rates

Consider a PKS in the Lebesgue case with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ), such
that there exist two non-zero finite measures on R with densities gV and gH such that the
conditions (6), (7), (8), (9) and (10) hold. We start this PKS process with the initial condition
(CX , CY ) as defined in equation (5).

In this section, we assume that the rates of the PKS are uniformly bounded, that is to say they
satisfy condition (2), which implies that the PKS is well defined a.s. by Proposition 1. Hence, we
just need to show the reversibility of the PKS. The uniformly bounded rates assumption will be
relaxed in Section 4.3.

Recalling the definition of a drawing and of reversibility in Section 3, we want to prove that,
for any non-negative measurable function Φ : Da,b → R+,

E[Φ(D)] = E
[
Φ(D̂)

]
(22)

which exactly states that D and D̂ have the same law. However, the set of all drawings which
is infinite dimensional is not a very convenient space to work with. To overcome this difficulty,
we partition the set of drawings according to their combinatorial nature which will enable us to
rewrite the expectation above as a sum of expectations over finite dimensional spaces. Before
to do that, we introduce some notations and definitions that will be helpful to understand the
combinatorial structure of a drawing.

*The t-translated measure ν
(t)
V of νV is the measure defined by, for any A ∈ B(R), ν

(t)
V (A) = νV ({x − t ∈ R :

x ∈ A})
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It will be convenient to represent a weighted vertical (resp. horizontal) segment σ as a triplet
(σ−, σ+, s) where the endpoints are σ− = (x, y−) (resp. (x−, y)) and σ+ = (x, y+) (resp. (x+, y))
with y− < y+ (resp. x− < x+) and the weight is s ∈ R.

Types of nodes. We can define eleven types of nodes that correspond to events in the dynamics
occurring inside the box as well as events on the boundary of the domain. For each type of node,
we introduce a notation as a pictogram for the set of all nodes of this type.

� Vertical entry: a vertical entry is a boundary point (x, 0) on the bottom side of the box
which has an outgoing segment σ ∈ D, σ = ((x, 0), (x, .), .). We denote this set by .
Remark that = {(x, 0) : ∃s ∈ R, ((x, 0), s) ∈ CX}.

� Vertical exit: a vertical exit is a boundary point (x, b) on the top side of the box which
has an outgoing segment σ ∈ D, σ = ((x, .), (x, b), .). We denote this set by .

� Vertical split: a vertical split of D is a point (x, y) where 3 segments are meeting from
the south, north and east, i.e. there exist σS , σN , σE ∈ D such that σS = ((x, , ), (x, y), .),
σN = ((x, y), (x, .), .) and σE = ((x, y), (., y), .). This corresponds to case 2V (a) in the
dynamics defined in Section 2. We denote this set by .

� Vertical turn: a vertical turn of D is a point (x, y) where 2 segments are meeting from
the south and east, i.e. there exist σS , σE ∈ D such that σS = ((x, .), (x, y), .) and σE =
((x, y), (., y), .). This corresponds to case 2V (b) in the dynamics. We denote this set by .

� Vertical coalescence: a vertical coalescence is a point (x, y) where 3 segments are meet-
ing from the west, south and north, i.e. there exist σW , σS , σN ∈ D such that σW =
((., y), (x, y), .), σS = ((x, .), (x, y), .) and σN = ((x, y), (x, .), .). This corresponds to case
3(a) in the dynamics. We denote this set by .

For all these kinds of nodes, we also define their obvious horizontal counterpart: horizon-
tal entry , horizontal exit , horizontal split , horizontal turn and horizontal
coalescence . Finally, we define a last kind of nodes:

� Crossing: a crossing is a point (x, y) where 4 segments are meeting. This corresponds
to case 3(d) of the dynamics. Alternatively, this event can be interpreted as a coalescence
immediately followed by a split. We denote this set by .

Skeleton and parametrization of a drawing. We introduce the notion of skeleton of a draw-
ing which will be instrumental in the rest of the proof. We say that two drawings D,D′ ∈ D have
the same skeleton, and denote it by D ∼ D′, if there exist two increasing functions ψX from [0, a]
to [0, a] and ψY from [0, b] to [0, b] such that for any weighted segment σ = ((x−, y−), (x+, y+), s) ∈
D, there exists a unique s′ ∈ R such that ψ(σ) :=

(
(ψX(x−), ψY (y−)), (ψX(x+), ψY (y+)), s′

)
∈ D′.

In other words, the skeleton represents the “combinatorial” structure of a drawing where
we forget about the exact positions and weights of segments, so that two drawings with the
same skeleton can be mapped from one to the other by changes of space and weight. Thus, two
drawings with the same skeleton S have the same numbers of segments ` = `(S) as well as the
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Figure 7: An example of a drawing and, on its right, its skeleton. In this example, ` = 26.

same number of nodes of each type. Furthermore, a skeleton induces a graph whose edges will be
denoted (e1, . . . , e`) (for some arbitrary ordering) in the following. An illustration of a drawing
and its skeleton is given on Figure 7.

Let us note that a drawing D, given its skeleton S, is uniquely determined once we specify
the spatial positions of its segments together with their weights. Thus, we shall now identify the
set of all drawings D with skeleton S as a subset of Rm+n+` and we shall represent a drawing D
by a vector

(x1, . . . , xm, y1, . . . , yn, s1, . . . , s`) ∈ (0, a)m × (0, b)n × R` (23)

where the (xi)’s are the m := | |+ | |+ | | horizontal coordinates of the points in ∪ ∪
ordered increasingly, the (yi)’s are the n := | |+ | |+ | | vertical coordinates of the points in
∪ ∪ ordered increasingly and the (si)’s are the weights of the segments corresponding to

the edges (ei) of the skeleton S.
However, not all such vectors represent a valid drawing since the Kirchhoff’s node law induces

relations between segment weights, so the dimension of the space generated by all valid vectors
is smaller than m+ n+ `. More precisely, its dimension is m+ n+ d where

d = d(S) = `− (| |+ | |+ | |+ | |+ | |+ | |+ | |). (24)

Indeed, we notice that each internal node (i.e. a node belonging to ∪ ∪ ∪ ∪ ∪ ∪ )
adds an independent linear constraint, coming from Kirchhoff’s node law, which decreases the
space dimension by 1. We can now derive the following lemma:

Lemma 1. For any skeleton S, the dimension of the set of admissible weights of a drawing D
with a given skeleton S is equal to:

d(S) = | |+ | |+ | |+ | |+ | |.
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Proof. By counting the number of half-edges of S, which is equal to 2`(S), we get:

2`(S) = (| |+ | |+ | |+ | |) + 2(| |+ | |) + 3(| |+ | |+ | |+ | |) + 4| |.

Indeed, each node in ∪ ∪ ∪ contributes for 1 half-edge, each node of ∪ for 2
half-edges, each node in ∪ ∪ ∪ for 3 half-edges and each node in for 4 half-edges.

Moreover, remark that{
| |+ | |+ | | = | |+ | |+ | | (because both are equal to m),

| |+ | |+ | | = | |+ | |+ | | (because both are equal to n).

Consequently,

2`(S) = 2(| |+ | |+ | |+ | |+ 2| |+ | |+ 2| |+ | |+ 2| |).

Then, by using equation (24),

d(S) = (| |+ | |+ | |+ | |+ 2| |+ | |+ 2| |+ | |+ 2| |)
− (| |+ | |+ | |+ | |+ | |+ | |+ | |)

= | |+ | |+ | |+ | |+ | |.

Define a parametrization of a skeleton S by selecting d edges (eρ(1), . . . , eρ(d)) where ρ is an
injective mapping from {1, . . . , d} to {1, . . . , `} such that the knowledge of the weights on the edges
eρ(1), . . . , eρ(d) together with Kirchhoff’s node law entirely defines the weights of all edges in the

skeleton. In particular, a parametrization defines an injective linear mapping DS,ρ : Rd(S) → R`(S)
whose image is the vector space generated by valid drawing vectors (i.e. satisfying Kirchhoff’s law
at each node), and where the jth coordinate corresponds to the weight sρ(j) on the edge eρ(j), i.e.

DS,ρ((cj)j=1..d) = (si)i=1..` (25)

with sρ(j) = cj for any j.

A parametrization related to the dynamics. A particular parametrization ρS related to
the dynamics of the PKS defined in Section 2 is obtained by selecting only the vertical (resp.
horizontal) edges whose starting point belongs to (resp. ∪ ∪ ∪ ). In term of the
dynamics, this means that we keep track of the weights of the entry points and of the weights of
the eastern edges when split or crossing events occur.

It is clear that this subset of edges yields a valid parametrization of a drawing since this family
has the correct cardinal d(S) and since all weights in the drawing can be reconstructed iteratively
by following the dynamics of the process. See Figure 8 for an illustration.

Using the parametrization ρS , we can decompose the expectation E[Φ(D)] in equation (22)
with the following formula:

E[Φ(D)] =
∑

S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,DS,ρS (c))

)
αS
(
(x, y,DS,ρS (c))

)
, (26)
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Figure 8: On the left, a drawing D with all its coordinates in Rm+n+` and, on the right, the same drawing with
its free m+ n+ d coordinates chosen as in Section 4.1. In this example, ` = 26, m = 5, n = 7 and d = 11.

where αS is to be thought of as the “density” of the drawing D on the event that its skeleton is
S (and when using the parametrization ρS described previously).

Before expressing αS , we introduce the function q : R→ R+, we will refer as the turn function
defined, for any s ∈ R, by

q(s) := τV (s)

√
gV (s)

gH(s)
= τH(s)

√
gH(s)

gV (s)
by equation (8),

with the convention 0/0 = 0 in the formula above. Beyond simplifying the expression of αS , the
introduction of the additional function q will be of great help in the proof of the invariance of αS
by the reverse operation ·̂ (further Lemma 4), since it will turn out to be itself invariant by this
operation.

Lemma 2. For any skeleton S, and any drawing D whose skeleton is S and identified to

(x1, . . . , xm, y1, . . . , yn, s1, . . . , s`),
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see equation (23), we have

αS(D) = (10<x1<x2<···<xm<a)e
−(
∫
R gV (s)ds)a (10<y1<y2<···<yn<b)e

−(
∫
R gH(s)ds)b( ∏

σ=((x−,y−),(x+,y+),s)∈D

[
1x−=x+ gV (s)

(
1(x−,y−)∈ ∪ ∪ ∪ −1(x+,y+)∈ ∪

)

√
q(s)gV (s)

1(x−,y−)∈ +1(x+,y+)∈
pV (s)

(
1(x−,y−)∈ +1(x+,y+)∈

)
e−(τV (s)+λV (t))(y+−y−)

+ 1y−=y+ gH(s)

(
1(x−,y−)∈ ∪ ∪ ∪ −1(x+,y+)∈ ∪

)

√
q(s)gH(s)

1(x−,y−)∈ +1(x+,y+)∈
pH(s)

(
1(x−,y−)∈ +1(x+,y+)∈

)
e−(τH(s)+λH(t))(x+−x−)

])
 ∏

(x,y)∈

1− pV (sW + sS)− pH(sW + sS)

h(sW + sS)
1((x,.),(x,y),sS)∈D 1((.,y),(x,y),sW )∈D

.
Proof. The formula above is nothing more than a rearrangement of a product of terms where
each one represents the probability of a local event which, put together, ensures that D is indeed
a drawing with skeleton S chosen according to the Poisson-Kirchhoff dynamics. Let us analyse
each term separately.

First, the indicator functions 10<x1<···<x| |+| |+| |<a and 10<y1<···<y| |+| |+| |<b ensure that
the (xi)i’s and (yj)j ’s are correctly ordered.

Secondly, the terms e−(
∫
R gV (s)ds)a and e−(

∫
R gH(s)ds)b are respectively equal to the probabilities

that there is no other entry on the bottom and left boundaries [0, a]× {0} and {0} × [0, b].
Thirdly, each segment σ = ((x−, y−), (x+, y+), s) ∈ D contributes to the product through the

terms
e−(τV (s)+λV (t))(y+−y−) or e−(τH(s)+λH(t))(x+−x−),

which represents the probability of non-splitting and non-turning along the segment σ depending
on whether it is vertical or horizontal.

Finally, we look at the contribution to the density of each node (x, y) and show how it can
be decomposed into factors associated to each segment adjacent to the node, and to the node
itself when it is a crossing, i.e. when (x, y) belongs to . We distinguish the following cases with
respect to the node type, using the notations sN , sE , sS and sW for the sizes of the northern,
eastern, southern and western segments which are adjacent to (x, y):

� if (x, y) ∈ , its northern segment σN , which is its only adjacent segment, gets the contri-
bution gV (sN ) = gV (sN )

1(σN )−∈ coming from the vertical entry of the boundary PPP.

� if (x, y) ∈ , no contribution is assigned to the southern segment, which is its only adjacent
segment, since it is an exit point.

� if (x, y) ∈ , the term λV (sS)f(sS , sE) = pV (sS)
gH(sE)gV (sS − sE)

gV (sS)
splits into three terms

which are distributed on the three adjacent segments to (x, y) as follows:
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– the term gH(sE) = gH(sE)
1(σE)−∈ on the eastern segment σE ,

– the term gV (sS − sE) = gV (sN ) = gV (sN )
1(σN )−∈ on the northern segment σN ,

– the term pV (sS)/gV (sS) = pV (sS)
1(σS)+∈ gV (sS)

−1(σS)+∈ on the western segment σS .

� if (x, y) ∈ , the term

τV (sS) = q(sS)

√
gH(sS)

gV (sS)
=
√
q(sE)gH(sE)

√
q(sS)gV (sS)

gV (sS)

splits into two terms which are distributed on the two segments adjacent to (x, y) as follows:

– the term
√
q(sE)gH(sE) =

√
q(sE)gH(sE)

1(σE)−∈ on the eastern segment σE ,

– the term
√
q(sS)gV (sS)/gV (sS) =

√
q(sS)gV (sS)

1(σS)+∈ gV (sS)
−1(σS)+∈ on the south-

ern segment σS ;

� if (x, y) ∈ , the term pH(sS +sW ) = pH(sN ) = pH(sN )
1(σN )−∈ is assigned to its northern

segment σN . Its southern and western adjacent segments get no contribution.

� The contributions of nodes of horizontal type , , , and are decomposed analo-
gously as the nodes of vertical type above.

� if (x, y) ∈ , the term (1 − pV (sS + sW ) − pH(sS + sW ))
gV (sN )gH(sE)

h(sS + sW )
splits into three

terms which are distributed as follows:

– the term gV (sN ) = gV (sN )
1(σN )−∈ on the northern segment σN ,

– the term gH(sE) = gH(sE)
1(σE)−∈ on the eastern segment σE ,

– the term
1− pH(sS + sW )− pH(sS + sW )

h(sS + sW )
is attached to the node itself,

– its southern and western adjacent segments get no contribution.

Change of parametrization. Formula (26) presents a decomposition of the expectation of
Φ(D) in terms of the special parametrization ρS defined above. However, this formula is in fact
valid for any parametrization ρ thanks to the following lemma:

Lemma 3. Let ρ and ρ′ denote two parametrizations of a skeleton S with respective linear map-
pings DS,ρ and DS,ρ′ from Rd to R`. We have∣∣∣det

(
D−1S,ρ ◦DS,ρ′

)∣∣∣ = 1.

Proof. Notice that if ρ and ρ′ have the same image, then the application D−1S,ρ ◦ DS,ρ′ is just
a permutation and the result is trivial. We will prove the lemma in the case where ρ and ρ′

differ only by one coordinate. Then, the general case will follow by choosing a finite sequence of
parametrizations where two consecutive parametrizations differ by exactly one coordinate.
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Take now ρ and ρ′ such that they differ only by one coordinate. Without loss of generality,
we can assume that for all i ≤ d − 1, ρ(i) = ρ′(i). Consider the set of edges e in S such that
(eρ(1), . . . , eρ(d−1), e) is a parametrization of S. This set is necessarily connected. Indeed, if this
was not the case then we could pick an edge in each connected component and add it to the
parametrization since, according to the Kirchhoff’s node law, setting the weight of an edge can
only constrain the weight of edges in the same connected component. But this would yield a
parametrization with more than d edges, which is absurd.

Consequently, there exists a path (e(1) = ρ(d), . . . , e(k) = ρ′(d)) such that, for any i, e(i) and
e(i+1) are adjacent in S. Now, for any i, let D(i) = (eρ(1), . . . , eρ(d−1), e(i)). Finally, we just need to

check that
∣∣det

(
(D(i))−1 ◦D(i+1)

)∣∣ = 1. This is clearly the case because, according to Kirchhoff’s

law around the node shared by e(i) and e(i+1), we have s(e(i)) = ±s(e(i+1)) +
∑d−1

i=1 λis(eρ(i)) for
some fixed (λi).

Corollary 2. The formula (26) still holds true when replacing ρS by any parametrization ρ.

Proof. Let ρ be any parametrization of S. Doing the change of variable c′ = D−1S,ρ ◦DS,ρS (c) in
equation (26) and applying Lemma 3, we get

E[Φ(D)] =
∑

S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,DS,ρS (c))

)
αS
(
(x, y,DS,ρS (c))

)
=

∑
S∈D/∼

∫
Rm+n+d

dx dy dc′ Φ
(
(x, y,DS,ρ(c

′))
)
αS
(
(x, y,DS,ρ(c

′))
)
.

Reversibility. The last ingredient we need to prove the reversibility of the model is the invari-
ance of the density αS by the rotation of 180 degrees.

Lemma 4. For any skeleton S, for any drawing D with skeleton S, we have α
Ŝ

(D̂) = αS(D).

Proof. The function αS(D) only depends on the length and weight of the segments and on the
crossings of the drawing D. To any segment σ = ((x−, y−), (x+, y+), s) ∈ D, we associate its
reverse segment σ̂ = ((x̂−, ŷ−), (x̂+, ŷ+), ŝ) ∈ D̂ where x̂− = a − x+, x̂+ = a − x−, ŷ− = b − y+,
ŷ+ = b− y−, and ŝ = s (obviously, the weight of a segment does not change by a rotation of 180
degrees).

In particular, for any i, x̂i = a − xm+1−i and ŷi = b − yn+1−i. Hence, the terms in the first
line of the expression of αS(D) in Lemma 2 and its α

Ŝ
(D̂)-counterpart coincide.

Consider now a vertical segment σ. Its contribution in αS(D) equals

gV (s)

(
1(x−,y−)∈ ∪ ∪ ∪ −1(x+,y+)∈ ∪

)√
q(s)gV (s)

1(x−,y−)∈ +1(x+,y+)∈

pV (s)

(
1(x−,y−)∈ +1(x+,y+)∈

)
e−(τV (s)+λV (s))(y+−y−).

The contribution of the reverse segment σ̂ to α
Ŝ

(D̂) is equal to

gV (ŝ)

(
1
(x̂−,ŷ−)∈̂∪̂∪̂∪̂−1(x̂+,ŷ+)∈̂∪̂ )√q(ŝ)gV (ŝ)

1
(x̂−,ŷ−)∈̂+1

(x̂+,ŷ+)∈̂

pV (ŝ)

(
1
(x̂−,ŷ−)∈̂+1

(x̂+,ŷ+)∈̂ ) e−(τV (ŝ)+λV (ŝ))(ŷ+−ŷ−).
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(x, y) ∈ D
(a− x, b− y) = (x̂, ŷ) ∈ D̂ ̂ ̂ ̂ ̂ ̂ ̂

Table 1: Correspondence between each type of vertical node, and of crossing nodes as viewed in D or in D̂.
Similar correspondences hold for horizontal nodes.

Let us show that both contributions are equal. Indeed, their fourth terms are equal because s = ŝ
and ŷ+ − ŷ− = y+ − y−. Their third terms are also equal since, by Table 1,

pV (ŝ)

(
1
(x̂−,ŷ−)∈̂+1

(x̂+,ŷ+)∈̂ ) = pV (s)

(
1(x+,y+)∈ +1(x−,y−)∈

)
.

Similarly, their second terms are equal since√
q(ŝ)gV (ŝ)

1
(x̂−,ŷ−)∈̂+1

(x̂+,ŷ+)∈̂
=
√
q(s)gV (s)

1(x+,y+)∈ +1(x−,y−)∈

Finally, their first terms are equal since

1(x̂−,ŷ−)∈̂∪̂∪̂∪̂ − 1(x̂+,ŷ+)∈̂∪̂ = 1(x+,y+)∈ ∪ ∪ ∪ − 1(x−,y−)∈ ∪ (27)

= 1(x−,y−)∈ ∪ ∪ ∪ − 1(x+,y+)∈ ∪ + 1(x+,y+)∈ ∪ ∪ ∪ ∪ ∪︸ ︷︷ ︸
=1

−1(x−,y−)∈ ∪ ∪ ∪ ∪ ∪︸ ︷︷ ︸
=1

where we used that the set ∪ ∪ ∪ ∪ ∪ collects all the nodes ending a vertical segment
and, similarly, the set ∪ ∪ ∪ ∪ ∪ collects all the nodes beginning a vertical segment.
The same considerations holds for horizontal segments.

Finally, the last terms contributing to αS are those that concern crossings in . Let us
consider a crossing (x, y) ∈ whose weights of its adjacent edges are denoted by sS , sW , sN , sE .
Its contribution to αS(D) equals

1− pV (sW + sS)− pH(sW + sS)

h(sW + sS)
.

Similarly, the contribution of (x̂, ŷ) ∈ ̂ to α
Ŝ

(D̂), is equal to

1− pV (ŝW + ŝS)− pH(ŝW + ŝS)

h(ŝW + ŝS)
.

But, ŝS = sN and ŝW = sE and, by Kirchhoff’s node law, sE + sN = sW + sS . Hence, both
contributions coincide again.

We can now deduce Theorem 1 when λV , λH , τV and τH are uniformly bounded.

Proof of Theorem 1 (uniformly bounded rates). Let Φ : Da,b → R+ be a non-negative measurable
function. For any skeleton S, let (eρ(1), . . . , eρ(d)) be a parametrization of S. Choose any order

on the set of edges of Ŝ. Now, for any i, the edge eρ(i) ∈ S has a reverse edge in Ŝ whose index
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in Ŝ is denoted by ρ̂(i). The set (eρ̂(1), . . . , eρ̂(d)) is a parametrization of Ŝ. In the next formula,

for a drawing D, we write indifferently ∧(D) or D̂.

E
[
Φ(D̂)

]
=

∑
S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
∧ (x, y,DS,ρ(c))

)
αS
(
(x, y,DS,ρ(c))

)
=

∑
S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x̂, ŷ,D

Ŝ,ρ̂
(c))

)
αS
(
(x, y,DS,ρ(c))

)
.

Now, we apply the change of variable from (x, y) to (x̂, ŷ). Recalling that x̂i = a − xm+1−i and
ŷi = b− yn+1−i, it follows that the absolute value of the Jacobian is equal to 1, hence

E
[
Φ(D̂)

]
=

∑
S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,D

Ŝ,ρ̂
(c))

)
αS
(
(x̂, ŷ,DS,ρ(c))

)
(28)

(by Lemma 4)

=
∑

S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,D

Ŝ,ρ̂
(c))

)
α
Ŝ

(
(x, y,D

Ŝ,ρ̂
(c))

)
(29)

(by Corollary 2)

=
∑

S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,D

Ŝ,ρ
Ŝ
(c))

)
α
Ŝ

(
(x, y,D

Ŝ,ρ
Ŝ
(c))

)
(30)

(by re-indexation of Ŝ into S)

=
∑

S∈D/∼

∫
Rm+n+d

dx dy dc Φ
(
(x, y,DS,ρS (c))

)
αS
(
(x, y,DS,ρS (c))

)
(31)

= E[Φ(D)]

4.2 Proof of Theorem 2 with uniformly bounded rates

As above, we prove the theorem under the assumption that the rates of the PKS are uniformly
bounded. The proof is mostly identical to the one of Theorem 1 (the Lebesgue case), so we
shall only point out the changes needed to deal with the rules 10 and 3(c) of the dynamics. In
particular, two new types of nodes need to be considered:

� Spontaneous split: a spontaneous split is a point where 2 segments are meeting coming
from the north and east i.e. there exist σN , σE ∈ D such that σN = ((x, y), (x, .), .) and
σE = ((x, y), (., y), .). This corresponds to case 10 of the dynamics. We denote this set by

. We remark that = {(x, y) : ∃s ∈ Z, ((x, y), s) ∈ C0}.

� Double coalescence: a double coalescence is a point (x, y) where 2 segments are meeting,
coming from the west and south i.e. there exist σW , σS ∈ D such that σW = ((., y), (x, y), .)
and σS = ((x, .), (x, y), .). This corresponds to case 3(c) of the dynamics. We denote this
set by .
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The notion of skeleton is the same as the one defined in the previous Section 4.1. But, now,
the number of free horizontal coordinates is m = | |+ | |+ | |+ | |, the number of free vertical
coordinates is n = | |+ | |+ | |+ | |, and the number of free weight coordinates is

d := `− (| |+ | |+ | |+ | |+ | |+ | |+ | |+ | |+ | |)

We can now derive the following lemma instead of Lemma 1:

Lemma 5. For any skeleton S, the dimension of the set of admissible weights of a drawing D
with a given skeleton S is equal to:

d(S) = | |+ | |+ | |+ | |+ | |+ | | − | |.

Proof. The proof is the same as the one of Lemma 1, except that now the number of half-edges
of S is

2`(S) = (| |+ | |+ | |+ | |) + 2(| |+ | |+ | |+ | |)
+ 3(| |+ | |+ | |+ | |) + 4| |,

and the spatial dimensions expressions give{
| |+ | |+ | |+ | | = | |+ | |+ | |+ | | (because both are equal to m),

| |+ | |+ | |+ | | = | |+ | |+ | |+ | | (because both are equal to n).

As before, the set of all drawings D with skeleton S is identified as a subset of Rm+n+`, and
a drawing D is represented by a vector as in equation (23). A parametrization ρ of a skeleton S
is the selection of d edges (eρ(1), . . . , eρ(d)) that permits to define the weights of all edges.

As before, we define αS as the density of the drawing D on the event that is skeleton is S,
and the turn function q : Z→ R+ by the following formula: for any s ∈ Z,

q(s) := τV (s)

√
νV (s)

νH(s)
= τH(s)

√
νH(s)

νV (s)
,

with the convention 0/0 = 0. As in Corollary 2, for any parametrization ρ,

E[Φ(D)] =
∑

S∈D/∼

∫
Rm+n

dx dy
∑
c∈Zd

Φ
(
(x, y,DS,ρ(c))

)
αS
(
(x, y,DS,ρ(c))

)
where αS is given by the following lemma (instead of Lemma 2):

Lemma 6. For any skeleton S, and any drawing D whose skeleton is S and identified to

(x1, . . . , xm, y1, . . . , yn, s1, . . . , s`),
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see equation (23), we have αS(D) =

(10<x1<x2<···<xm<a)e
−(
∑
s∈Z νV (s)ds)a (10<y1<y2<···<yn<b)e

−(
∑
s∈Z νH(s))b e−p0h(0)ab p| |+| |0( ∏

σ=((x−,y−),(x+,y+),s)∈D

[
1x−=x+ νV (s)

(
1(x−,y−)∈ ∪ ∪ ∪ ∪ −1(x+,y+)∈ ∪

)

√
q(s)νV (s)

1(x−,y−)∈ +1(x+,y+)∈
pV (s)

(
1(x−,y−)∈ +1(x+,y+)∈

)
e−(τV (s)+λV (s))(y+−y−)

+ 1y−=y+ νH(s)

(
1(x−,y−)∈ ∪ ∪ ∪ ∪ −1(x+,y+)∈ ∪

)

√
q(s)νH(s)

1(x−,y−)∈ +1(x+,y+)∈
pH(s)

(
1(x−,y−)∈ +1(x+,y+)∈

)
e−(τH(s)+λH(s))(x+−x−)

])
 ∏

(x,y)∈

1− pV (sW + sS)− pH(sW + sS)− p01sW+sS=0

h(sW + sS)
1((x,.),(x,y),sS)∈D 1((.,y),(x,y),sW )∈D

.
Proof. This argument is the same as the one of Lemma 2, with some additional terms. First, the
term e−p0h(0)ab is equal to the probability that there is no other spontaneous split in the rectangle
[0, a]× [0, b]. As before, we look at the contribution of each node and distribute it to its adjacent
edges or to the node itself. We detail what happens for the three new kinds of node:

� if (x, y) ∈ , the term p0νV (−s)νH(s) splits into three terms:

– the term νV (−s) = νV (−s)1(σN )−∈ is assigned to the northern segment σN ,

– the term νH(s) = νH(s)
1(σE)−∈ is assigned to the eastern segment σE ,

– the term p0 is attached to the node itself. All of these contributions are found in the

term p
| |
0 in αS .

� if (x, y) ∈ , the term p0 is assigned to the node itself. All these contributions are found

in the term p
| |
0 in αS(D). Its adjacent segments get no contribution.

� if (x, y) ∈ such that sS = −sW , the term (1 − pH(0) − pV (0) − p0)
νV (−s)νH(s)

h(0)
splits

into three terms:

– the term νV (−s) = νV (−s)1(σN )−∈ is assigned to the northern segment σN

– the term νH(s) = νH(s)
1(σE)−∈ is assigned to the eastern segment σE ,

– the term
1− pV (0)− pH(0)− p0

h(0)
is attached to the node itself. All of these contri-

butions are found in the terms
1− pV (sW + sS)− pH(sW + sS)− p01sW+sS=0

h(sW + sS)
where

sS = −sW in αS .

Finally, to end the proof of the invariance by rotation of 180 degrees, we need to prove that
a lemma similar to Lemma 4 holds in our new case.
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Lemma 7. For any skeleton S, for any drawing D with skeleton S, we have α
Ŝ

(D̂) = αS(D).

Proof. This proof is the same as the one of Lemma 4, with some new terms to check. First, notice
that = ̂ and = ̂ .

Hence, the contribution of the following factor in αS(D)

e−p0h(0)ab p| |+| |0

∏
(x,y)∈

1− pV (sW + sS)− pH(sW + sS)− p01sW+sS=0

h(sW + sS)

coincides with the same in α
Ŝ

(D̂)

e−p0h(0)ab p|
̂ |+|̂ |
0

∏
(x̂,ŷ)∈̂

1− pV (ŝW + ŝS)− pH(ŝW + ŝS)− p01ŝW+ŝS=0

h(ŝW + ŝS)
.

The first two terms are obviously equal, the last one is equal for the same reason as in the
proof of Lemma 4 remarking that if sS + sW = 0, then ŝS + ŝW = sN + sE = 0.

The last point to see is that the following indicator function has changed

1(x−,y−)∈ ∪ ∪ ∪ ∪ ∪ .

Nevertheless, that does not change the proof of the equation (27) because, now, the set that
collects all the ending nodes of a vertical segments is ∪ ∪ ∪ ∪ ∪ ∪ , and the one
that collects all the beginning nodes of a vertical segments is ∪ ∪ ∪ ∪ ∪ ∪ .

Finally, the end of the proof of Theorem 2 with uniformly bounded rates is the same as the
one of Theorem 1 with uniformly bounded rates, since equations (28), (29), (30) and (31) are
unchanged.

4.3 From the uniformly bounded rate case to the unbounded case

The framework of this section is the general case which contains Lebesgue and discrete cases. We
assume that the reversibility stated in the main theorems holds true under uniformly bounded
rates assumption (proved in Lebesgue and discrete cases in Sections 4.1 and 4.2, and whose proof
is omitted in the general case). The purpose of this section is to show how to extend the previous
proofs to the case where the rate functions are unbounded. The idea is to see a PKS as a limit
of reversible PKSs with uniformly bounded rates.

Let L be a PKS with parameters (λ0, λV , λH , p0, pV , pH , τV , τH , F ) which satisfies the assump-
tions of the main theorems, under the initial condition (CX , CY ) as defined in equation (4).

For any n ≥ 1, we define the set

S(n) := {s ∈ R, sup(λV (s), λH(s), τV (s), τH(s)) > n}.

In words, the set S(n) is the set of weights for which the split and turn rates are larger than n.
Remark that

lim
n→∞

↓ S(n) =
⋂
n≥1
S(n) = ∅.
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This is due to the fact that the rate functions λV , λH , τV and τH are never equal to +∞ by the
hypotheses given by equations (18), (19) and (20). Now, we define the following notation: for
any f : R→ R+,

f (n)(s) := f(s)1s/∈Sn ,

We denote by L(n) the PKS with parameters (λ0, λ
(n)
V , λ

(n)
H , p0, p

(n)
V , p

(n)
H , τ

(n)
V , τ

(n)
H , F ) with

initial condition (CX , CY ). The PKS L(n) has rates uniformly bounded by n and satisfies the
hypotheses of the theorem for the same measures νV and νH .

Hence, by the version of Theorem 1 we have proved, which assumes the boundedness of the
rate functions, the PKS L(n) is well defined a.s. and reversible for the line weight measures νV
and νH .

Now, we consider the process L(n) in the box [0, a]× [0, b]. We want to estimate the number
of lines of L(n) with weight s ∈ S(n) in this box, i.e. the number of lines that, without truncation,
would have split or turn rates greater than n. For that, we will count the mean number of nodes
in the box which have at least one edge with a weight in S(n).

As the pair of independent PPPs with intensities Leb ⊗ ν̃V and Leb ⊗ ν̃H is a stationary
probability measure of L(n), for any small element of size dx× dy, the probability to see a node
such that the weight of its south edge or its west edge is an element of S(n) is(

νV (S(n))νH(R) + νV (S(n))νH(R)− νV (S(n))νH(S(n))
)

dx dy.

By integration on the box [0, a]× [0, b], we find that the mean number of lines with weight in
S(n) and which are a south or west edge of a node is(

νV (S(n)) νH(R) + νH(S(n)) νV (R)
)
ab.

Moreover, because L(n) is reversible, this quantity is also equal to the mean number of lines
with weight in S(n) and which are a north or east edge of a node. By summing these two means
and adding the mean number of lines that are entering in the box, we deduce the following upper
bound

E
[
number of segments of L(n) inside [0, a]× [0, b] whose weight s ∈ S(n)

]
≤ ε(n) := 2

(
νV (S(n))νH(R) + νH(S(n))νV (R)

)
ab+

(
aνV (S(n)) + bνH(S(n))

)
In particular, because it is an integer-valued random variable:

P
(

there exists a segment in L(n) of weight s ∈ S(n)
)
≤ ε(n).

As S(n) → ∅ when n → ∞, we have that ε(n) → 0. But, if L(n) does not contain any line
whose weight is in S(n), then L(n) and L coincide for the trivial coupling. Then we deduce that

P(the PKS L is well defined, i.e. it does not explode, inside the box [0, a]× [0, b])

≥ P
(

the PKS L(n) does not have any segment of weight s ∈ S(n)
)
≥ 1− ε(n)

This is true for all n, so the PKS L is well defined a.s.. Moreover, the process L is reversible
with line weight measures νV and νH since it coincides with probability converging to 1 with the
reversible process L(n).
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Figure 9: An example of the potential on each connected component of a drawing.

5 Examples

5.1 Potential function of a PKS

By construction, a PKS induces a random tessellation of the quarter plane into polygonal regions
(which are the connected components obtained after removing the lines of the process). We call
these connected components the faces of the tessellation. The fact that a PKS satisfies Kirchhoff’s
node law at every intersection is equivalent to the existence of a potential function associated
with the faces of the random tessellation. More precisely, we can associate to each face F a scalar
value v(F ) in such way that the following holds true:

� Let σ denote a horizontal segment in the PKS with weight s(σ). This segment separates
two faces of the tessellation. Let F denote the face below σ and let F ′ denote the face above
σ. Then, it holds that

v(F ′)− v(F ) = s(σ). (32)

� Let σ denote a vertical segment in the PKS with weight s(σ). This segment separates two
faces of the tessellation. Let us F denote the face on the left of σ and let F ′ denote the
face on the right of σ. Then, it holds that

v(F ′)− v(F ) = −s(σ). (33)

In other words, equation (32) states that crossing a horizontal segment by moving upward
increases the potential by the value of the weight of the segment. On the other hand, equation (33)
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(a) 2D visualisation (b) 3D visualisation

Figure 10: Simulation of a reversible PKS on [0, 80]× [0, 80] with parameters pV (s) = 0.5, pH(s) = 0.5, τV (s) =
τH(s) = 0 and with line weight measures νV = νH = N (0, 1) (Model 16 in Table 3). Colors represent potential
values: blue for negative ones and red for positive ones.

states that crossing a horizontal segment while moving to the right decreases the potential by the
value of the weight of this segment. See Figure 9 for an illustration.

The consistency of equations (32) and (33) for any segment is straightforward thanks to
Kirchhoff’s node law: looking at Figure 2, we simply check that the sum of the potential differences
when going (say clockwise) around a node is sW − sN − sE + sS = 0. Furthermore, it is clear
that the potential function v is unique up to an additive constant. By convention, we choose it
to be 0 for the bottom left face containing the origin. Figure 10 shows 2D and 3D representation
of the potential function for a PKS process obtained by simulation with Gaussian line weights.

5.2 List of examples

As explained above, a PKS can be seen either as a weighted line process or as a potential function
on faces of a random tessellation. These dual points of view make it possible to recover several
well-known models appearing in the statistical physics literature, in particular classical models
related to Last Passage Percolation (LPP) as explained in Section 5.3.

In the rest of the section, we compute the parameter of the reversible PKS with line weight
measures νV and νH for many usual continuous and discrete distribution. A list of examples of
reversible PKS is presented in Table 3. Subsequently, we discuss further some of the models in
this list that enjoy special properties and that are connected to well-known models.

The usual distributions and their parametrization considered here are summarized in Table 2.
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Name Parameters Notation Support Density

Dirac a ∈ R δa {a} 1x=a
Discrete
Uniform

A ⊂ Z Unif(A) A
1

|A|1x∈A
Bernoulli p ∈ [0, 1] Ber(p) {0, 1} (1− p)1x=0 + p1x=1

Binomial (n, p) ∈ N× [0, 1] Bin(n, p) J0, nK
(
n

x

)
px(1− p)n−x

Geometric p ∈ [0, 1] Geom(p) N p(1− p)x

Poisson λ ∈ R∗+ Poi(λ) N e−λ
λx

x!

Uniform [a, b] ⊂ R Unif([a, b]) [a, b]
1

b− a1a≤x≤b

Exponential λ ∈ R Exp(λ) R+ λe−λx1x≥0

Gamma (k, θ) ∈ R2 Gamma(k, θ) R+
1

Γ(k)θk
xk−1e−x/θ1x≥0

Normal (or
Gaussian)

(µ, σ2) ∈ R× R+ N (α, β) R
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
Beta (α, β) ∈ (R∗+)2 Beta(α, β) [0, 1]

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

The opposite
of the measure

µ, a real measure −µ −Support(µ) dµ(−x)

Table 2: Parametrization of the usual distributions. Here, N denotes the set {0, 1, . . . }.
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Model νV /νV (R) νH/νH(R) λV (s)/(νH(R)pV (s)) λH(s)/(νV (R)pH(s)) F (s, ·)
1 δ0 δ0 1 1 δ0
2 δa with a 6= 0 δb with b 6= 0 0 0 δb
3 δa with a 6= 0 δ0 1 0 δ0

4 Ber(qV ) Ber(qH) (1− qH)1s=0 (1− qV )1s=0 Ber
(

qH(1−qV )
qV +qH−2qV qH

)
1s=1

+ (1 + qH(q−1V − 2))1s=1 + (1 + qV (q−1H − 2))1s=1 + δ01s=0 + δ11s=2

5 −Ber(qV ) Ber(qH) (1− qH)1s=−1 (1− qV )1s=1 Ber
(

qV qH
1−qV −qH+2qV qH

)
1s=0

+ (1 + qH
2qV −1
1−qV )1s=0 + (1 + qV

2qH−1
1−qH )1s=0 + δ01s=−1 + δ11s=1

6 Unif([0, a]) Unif([0, b]) min
(s
b
, 1
)

min
(s
a
, 1
)

Unif([max(0, s− a),min(b, s)])

7 −Unif([0, a]) Unif([0, b]) min

(
a+ s

b
, 1

)
min

(
b− s
a

, 1

)
Unif([max(0, s),min(b, s+ a)])

8 Geom(q) Geom(q) (s+ 1) q (s+ 1) q Unif({0, . . . , s})
9 Exp(γ) Exp(γ) γs γs Unif([0, s])

10 Exp(γ) Geom(q) q

bsc∑
t=0

((1− q)eγ)t 0 ∝
bsc∑
t=0

((1− q)eγ)tδt

11 Gamma(kV , θ) Gamma(kH , θ)
Γ(kV )

Γ(kV + kH)

(s
θ

)kH Γ(kH)

Γ(kV + kH)

(s
θ

)kV
sBeta(kV , kH)

12 −Ber(qV ) Geom(qH)
qH(1− qV qH)

(1− qV )
1s=0 + qH1s=−1 (1− qV qH) s+ Ber

(
qV (1− qH)

1− qV qH

)
1s≥0 + δ11s=−1

13 −Geom(qV ) Geom(qH)
qH

qV + qH − qV qH
qV

qV + qH − qV qH
max(0, s) + Geom(qV + qH − qV qH)

14 −Exp(γV ) Exp(γH)
γH

γV + γH

γV
γV + γH

max(0, s) + Exp(γV + γH)

15 −Exp(γ) Geom(q)
q

1− (1− q)e−γ 0 max(0, dse) + Geom(1− (1− q)e−γ)

16 N (0, 1) N (0, 1)
1√
2

exp

(
s2

4

)
1√
2

exp

(
s2

4

)
N
(
s

2
,
1

2

)
17 Poi(γV ) Poi(γH) e−γH

(
1 +

γH
γV

)s
e−γV

(
1 +

γV
γH

)s
Bin

(
s,

γH
γV + γH

)
Table 3: Some remarkable PKS.



5.3 Models with monotone potential (LPP)

For a PKS which satisfies the hypotheses of the main theorems, the weights of the vertical lines
(resp. horizontal lines) take their values in the support of νV (resp. νH) a.s.. It follows that the
potential function v is monotone in its both coordinates when the measures νV and νH have their
support included in R+ and R− respectively, or the opposite. For instance, if Support(νV ) ⊂ R−
and Support(νH) ⊂ R+, then the potential v is non-decreasing along both x and y coordinates.
This is the case for Model 13 in Table 3 simulated in Figure 6b. Another example is that of
Model 14 whose associated potential is represented in the simulation on the front page of this
paper.

As it turns out, such PKS with monotone potentials can often be mapped to LPP models.

Standard Hammersley’s model. The standard Hammersley’s broken line process described
in the introduction of the paper and illustrated in Figure 1 (and studied for instance in [Ham72,
AD95, Gro02, CG05, CG06]) is clearly a PKS whose dynamics is the one of Model 2 with a = −1,
b = 1 and p0 = 1.

We can also recover, within the framework of PKS, other LPP systems defined on the discrete
grid N2 by embedding these models on R2

+. In order to do so, we impose the functions pV , pH as
well as the constant p0 to be all identically 0. This assumption ensures that splits, annihilations
and creation events can never happen during the dynamics. Thus, each line on the initial PPPs
on the x- and y-axis survives forever and the trace of all those lines define a 2-dimensional discrete
grid (embedded in R2

+ with exponential spacing).

Exponential Last Passage Percolation. Model 14 where −νV and νH are proportional to
exponential distributions corresponds to the Exponential LPP studied by [Ros81].

Geometric Last Passage Percolation. There are two cases of Geometric LPP depending
on whether the geometric distributions start from 0 or 1. Both cases have been studied [CPE96,
Mar06, Sep09] and both can be seen as special PKS models. In the Table 3, we have only detailed
the case of the geometric starting from 0, see Model 13.

Discrete Hammersley’s processes. In [BEGG16], two models are defined. Their second
model corresponds to Model 12, mixing a discrete Bernoulli distribution with a Geometric dis-
tribution. In that case, with the notation of [BEGG16], the probability that a site contains a

“cross” is equal to p =
qV (1− qH)

1− qV qH
. Let us note that their first model however cannot be mapped

to a PKS. Indeed, the model is still conservative (i.e. it obeys Kirchhoff law), but the transition
kernel at a crossing of lines depends not only on the total incoming weights but also on the
horizontal/vertical division of the global weight. Thus, in order to encompass this first model,
one would need to significantly generalize the definition of a PKS process. This is doable but it
lies outside the scope of this paper.
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Generalised Last Passage Percolation. Let µ0 be a probability measure on N∗ (resp. on
R+ with density f0). Taking, for any A ∈ B(R+), νV (−A) = νH(A) =

√
µ0(A)/Z where Z =∑

i∈N∗
√
µ0(i) (resp. Z =

∫
R∗
√
f0(s)ds), we recover the generalised LPP as defined in [Cas19].

5.4 Bullet models

We call bullet models the family of models where the weight of the lines plays no role. These
models can be obtained by taking νV and νH proportional to δ0 (see Model 1 of the Table 3),
and the turn rate functions τV = τH = 0. Some of them have been lingering in the scientific
community for a few years and are notoriously difficult to study out of equilibrium, see for
instance [BM20, HST18] and references therein. In [BCG+15], some bullet models are proved to
be stationary. Some of them correspond to PKS processes with specific parameters. For instance,
setting νV and νH to be proportional to δ0 and assuming that p0 = 0, the dynamics of the bullets
can be formulated as follows. When an horizontal and a vertical bullets meet:

� with probability pV (0), the horizontal bullet is destroyed and the vertically one continues
its course.

� with probability pH(0), the vertical bullet is destroyed and the horizontal one continues its
course.

� with probability 1−pV (0)−pH(0), both bullets continue their course (passing through each
other).

Of course, taking the Dirac at 0 for the weight measure may appear as cheating a somewhat
since the potential associated with the PKS is then constant to 0. However, it is also possible to
define bullet models by choosing −νV and νH to be Geometric or Exponential measures instead
of a Dirac at 0. Indeed, for all these measures, it follows from Models 13, 14 and 15, that the
splitting rate of lines remains constant (i.e. does not depend on the weight of the line). Thus,
interestingly enough, this shows that some bullet model can be interpreted as the trace of more
complex, non-trivial, potential models.

5.5 Six-vertex model

The six-vertex model is a standard model in statistical physics introduced first by Pauling in
1935 [Pau35] to study the ice in two dimensions. From a mathematical point of view, it is a family
of probability measures on the set of orientations of the grid N ×N , such that there are only two
incoming edges around each node. Hence, there are only six possible local configurations allowed.
To each type i of a local configuration, we associate a weight (an “energy”) wi, see Table 4. From
these weights, we can define a probability measure on the set of orientations of the grid N2 via
the following formula: for any orientation O,

P(O) =
1

Z

∏
(x,y)∈[0,N ]2

wtypeO(x,y)

where Z =
∑

O

∏
(x,y)∈[0,N ]2 wtypeO(x,y) and where typeO(x, y) ∈ {1, . . . , 6} denote the type of the

local configuration seen around the point (x, y) in the orientation O, see Figure 11.
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Figure 11: A configuration of the six-vertex model in the grid 4 × 4. Its probability associated is
1
Z
w2

1 w
3
2 w

1
3 w

5
4 w

3
5 w

2
6.

Usually, the model is studied with the assumption that there does not exist an external elec-
tromagnetic field that implies that w1 = w2 = a, w3 = w4 = b and w5 = w6 = c. Such models of
six and also eight-vertex models have been deeply studied, and we refer the interested reader to
[FW70, Sut70, Bax72, Bax82, KDN90, BCG16, Cas18, DCGH+18, Mel21] and references therein.

Some six-vertex models with an external electromagnetic field turn out to be special cases of
PKS from Models 4 and 5 where pV = pH = τV = τH = 0 (to get only crossings). Namely, we
can construct a six-vertex model from PKSs of type 4 and 5, in the following way:

� In the case of Model 4, to any horizontal segment with weight 0 (resp. 1) of the PKS, we
associate an oriented segment to the west (resp. to the east) in the six-vertex configuration;
and similarly, to any vertical segment with weight 0 (resp. 1) of the PKS, we associate an
oriented segment to the south (resp. to the north) in the six-vertex model.

� In the case of Model 5, to any horizontal segment with weight 0 (resp. −1) of the PKS, we
associate an oriented segment to the east (resp. to the west) in the six-vertex configuration;
and similarly, to any vertical segment with weight 0 (resp. 1) of the PKS, we associate an
oriented segment to the south (resp. to the north) in the six-vertex model.

See Figure 4 to get an illustration of these correspondences.

5.6 Gaussian and Poisson models

Models 16 and 17 correspond to models with Gaussian and Poisson marginals respectively. Both
models have a particularly nice explicit dynamics. These models are new to the best of our
knowledge and look interesting to study further. The explicit formulas hint that a finer analysis
might be possible. For instance, is it possible to check whether these models, as the classical LPP
models do, admit fluctuations of their potential related to the KPZ theory and the Tracy-Widom
distribution?
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Type 1 2 3 4 5 6

Six-vertex
model

“Energy” w1 w2 w3 w4 w5 w6

PKS
Model 4

“Energy”
Model 4

qV + qH −
2qV qH

qV + qH −
2qV qH

qH(1− qV ) qV (1− qH) qV (1− qH) qH(1− qV )

PKS
Model 5

“Energy” 1− qH − qV 1− qH − qV qV qH (1− qV ) · (1− qV ) · qV qH
Model 5 + 2qV qH + 2qV qH (1− qH) (1− qH)

Table 4: On the first line, the six local configurations allowed. On the second line, their local “energy”. On the
third line, their correspondence with a configuration of Model 4: a plain line stands for a line with weight 1 and a
dotted line for a line with weight 0. On the fourth line, their correspondence with a configuration of Model 5: a
plain line stands for a line with weight 1 or −1 and a dotted line for a line with weight 0.

6 Statistical properties of the tessellation

In this section, we look at the basic geometric properties of the system of lines generated by a
reversible PKS satisfying the assumptions of Theorem 1 or 2. We focus here our attention on
the case where p0 = 0. Indeed, if p0 6= 0, the number of faces could be sub-quadratic according
to the length a of a square [0, a]× [0, a] as it is the case for the Hammersley broken line process
(presented in the Introduction) where the number of faces is linear in a.

Number of faces and nodes. Let D ∈ Da,b be a drawing, we can associate to this drawing
a tessellation as the set of segments of D without notifying their weight. We call a face of a
tessellation T a connected component of ([0, a]× [0, b]) \ T .

Proposition 2. Consider a reversible PKS such that its initial condition (CX , CY ) is distributed
according to two independent PPPs respectively on (R+×{0})×R with intensity dx dνV (s) and on
({0}×R+)×R with intensity dy dνH(s) where νV and νH are two non-zero finite measures on R
satisfying conditions (17), (18), (19), (20) and (21). Then, the law of the tessellation associated
to this PKS is translation-invariant and satisfies:

(i) The mean number of faces that do not touch the northern or eastern sides of [0, a]× [0, b],
is ab νV (R)νH(R).

(ii) The mean number of nodes of each type is summarized in the table below:
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Type Mean number

a νV (R)

ab
∫
R pV (s) (νV ∗ νH)(ds)

ab
∫
R τV (s) dνV (s) = ab

∫
R τH(s) dνH(s)

ab
∫
R(1− pV (s)− pH(s))(νV ∗ νH)(ds)

The mean number of horizontal nodes can be found by swapping H and V , and a and b.

(iii) When a or b goes to infinity, the number of each type of node is almost surely asymptotically
equal to their rescaled mean.

Proof. We will first determine the mean number of each node, and we will deduce the mean
number of faces, so that we will first prove (ii) and then (i) and (iii).

(ii) � Nodes of type or : by definition, the nodes are distributed according to a PPP
of intensity νV (R) on the x-axis. Thus, the mean number of such nodes on the segment
(0, a)× {0} is a νV (R). By Theorem 1, the same holds for the mean number of nodes of
type on the segment (0, a)× {b}.

� Nodes of type or : we do the proof for . For any (x, y), the probability to see in
the box [x, x+ dx]× [y + dy], a vertical line, a horizontal line and a vertical coalescence
is

dx dy

∫
R

∫
R
pV (s+ t) dνV (s) dνH(t) = dx dy

∫
R

∫
R
pV (u) dνV (s) dνH(u− s)

= dx dy

∫
R
pV (u) (νV ∗ νH)(du)

Hence, the mean number of nodes on type in [0, a]× [0, b] is∫
[0,a]

dx

∫
[0,b]

dy

∫
R
pV (s) (νV ∗ νH)(ds) = ab

∫
R
pV (s) (νV ∗ νH)(ds).

By Theorem 1, the same holds for the mean number of nodes of type .

� Nodes of type : similarly, the probability to see in the box [x, x + dx] × [y, y + dy] a
vertical line of size [s, s+ ds] and a vertical turn (that happens at rate τV (s)) is

dx dy τV (s) dνV (s) = dx dy τH(s) dνH(s).

We conclude by integration on R for s, [0, a] for x and [0, b] for y.

� Nodes of type : similar to the case of where we multiply by 1−pV (s+ t)−pH(s+ t)
instead of pV (s+ t) since we are in the case 3(d) of the dynamics of Section 2.
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Figure 12: A connected component with 11 nodes (in blue and red) and 8 corners (in red).

(i) Now, we have two ways to prove the mean number of connected components that do not
touch the northern or eastern sides of the rectangle, which is the same as the one which
do not touch the southern or western sides of the rectangle by Theorem 1. Just remark
that any connected component has only one north-east corner and one south-west corner.
Hence, the mean number of connected components is both equal to the mean number of
nodes of types ∪ ∪ , and to the mean number of nodes of types ∪ ∪ .

(iii) We treat the case where a is fixed and b → ∞. By monotonicity, we can assume that b
is integer-valued. Let D be a random drawing on [0, a] × R+. For any integer n ≥ 0, we
denote by Mn, the restriction of D to the segment [0, a] × {n}. The process (Mn) is a
Markov chain and, according to Corollary 1 (i), it admits an invariant measure. Moreover,
this chain is irreducible since the empty set (no line going up) can be reached with positive
probability from any starting configuration. Thus, according to classical results on Markov
chains having an accessible atom (see [MT93, Section 15.1] and [AG11, Theorem 1]), this
chain is Harris recurrent and the law of large numbers applies.

Mean number of nodes and corners around a face. For any positive a, b, let D be a
random drawing of Da,b. Denote by F(D) the set of faces of the tessellation of D. For a given
face F we denote by sF and cF the number of nodes and of corners (that are the nodes on the
boundary of F whose angle is π/2 or 3π/2) around the face F . This is illustrated on Figure 12.
Here, we are interested in sa,b (resp. ca,b) the mean number of nodes (resp. corners) of F(D),
namely

sa,b =

∑
F∈F(D) sF

|F(D)|

(
resp. ca,b =

∑
F∈F(D) cF

|F(D)|

)
. (34)

Corollary 3. The following almost sure limits hold:

(i) lim
b→∞

lim
a→∞

sa,b = lim
a→∞

lim
b→∞

sa,b = 4 + 2

∫
R(pV (u) + pH(u))(νV ∗ νH)(du) + 2

∫
R τV (u)dνV (u)

νV (R)νH(R)
.

(ii) lim
b→∞

lim
a→∞

ca,b = lim
a→∞

lim
b→∞

ca,b = 4 + 4

∫
R τV (u)dνV (u)

νV (R)νH(R)
.

38



Remark. When pV + pH = 1 and τV = τH = 0, all the nodes are of degree 3 and all faces are
rectangles. Hence, our result recover the well-known fact that the mean number of nodes per
faces is equal to 6 and the number of corners is obviously 4.

Proof. First, we use point (iii) of Proposition 2 to go back and forth between a.s. convergence
and convergence of mean. Notice that since a and b go to infinity, we do not care about counting
the faces that touch the boundary of a finite rectangle [0, a] × [0, b] or the nodes on it, because
their proportion, compared to the total number of node in the box, goes to zero as the box gets
larger.

(i) By definition:

sa,b =

∑
F∈F(D) sF

|F(D)| =

∑
F∈F(D) sF /a

|F(D)|/a .

And so by (iii) of Proposition 2,

lim
a→∞

sa,b =
lim
a→∞

E
[∑

F∈F(D) sF

]
/a

lim
a→∞

E[|F(D)|]/a .

But, by (ii) of Proposition 2, E[|F(D)|] = ab νV (R)νH(R) and

E

 ∑
F∈F(D)

sF

 = E[number of nodes with multiplicity]

= E[2(| |+ | |+ | |+ | |) + 3(| |+ | |+ | |+ | |) + 4| |]

= 2a νV (R) + 2b νH(R) + 6ab

∫
R

(pV (u) + pH(u)) (νV ∗ νH)(du)

+ 4ab

∫
R

(1− pV (u)− pH(u)) (νV ∗ νH)(du) + 4ab

∫
R
τV dνV (u)

= 4ab

∫
R

(νV ∗ νH)(du) + 2ab

∫
R

(pV (u) + pH(u))(νV ∗ νH)(du)

+ 2a νV (R) + 2b νH(R) + 4ab

∫
R
τV (u)dνV (u).

Consequently,

lim
a→∞

sa,b = lim
a→∞

[
2

(∫
R(pV (u) + pH(u))(νV ∗ νH)(du) + 2

∫
R τV (u)dνV (u)

νV (R)νH(R)

)

+ 4

∫
R(νV ∗ νH)(du)

νV (R)νH(R)︸ ︷︷ ︸
=1

+2(b νH(R))−1 + 2(a νV (R))−1
]
.

Now, taking the limit when b→∞ leads to the wanted results for lim
b→∞

lim
a→∞

sa,b. The same

holds for lim
a→∞

lim
b→∞

sa,b.
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(ii) Similarly for lim
b→∞

lim
a→∞

ca,b and lim
a→∞

lim
b→∞

ca,b. The difference is the term in the numerator

that becomes

E[2(| |+ | |+ | |+ | |+ | |+ | |+ | |+ | |) + 4| |].

The presence of double limits in this corollary is difficult to avoid. One could wish to get results
about averages taken on boxes [0, a] × [0, b] with a and b having the same order of magnitude.
But this type of results is related to decorrelation properties of the process which are more and
more difficult to prove as lines get closer to the diagonal, as we can see on Figure 10.

7 Perspectives

In this paper we defined the Poisson-Kirchhoff model as a system of vertical and horizontal broken
weighted lines with a Markovian reversible dynamic that preserves Kirchhoff’s node law. In doing
so, we made several assumptions, some of which could be relaxed, yet might still lead to tractable
(and still reversible) dynamics. For instance one could look at:

� Models where the distribution of weights on crossing events depends on the value of the
two entries and not only through their sums. By relaxing this condition, we would recover
the first model of [BEGG16] as explained in Section 5.3.

� Models where the measures νV and νH may have infinite mass. Relaxing the finite mass
assumption should make it be possible to construct systems which are self similar, i.e.
invariant by re-scaling of both space and weights simultaneously. Such models will be
obtained by choosing gV and gH of the form s 7→ s−α.

� More generally, one could consider models whose lines are not vertical and horizontal any-
more, but can instead make an angle with the axis. A trivial example, with deterministic
dynamics, is the Crofton model also called Poisson Line Process [Cro68].
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