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2 B. MALLEIN, S. RAMASSAMY & A. SINGH

Résumé. — Le modèle infini d’urnes est un système de particules sur Z introduit par Foss et
Konstantopoulos, lié à la percolation de dernier passage sur le graphe complet dirigé acyclique.
Dans ce modèle, à chaque temps entier, une particule est choisie au hasard en fonction de
son rang, et produit un enfant à la posistion immédiatement à droite de la sienne. Dans cet
article, on considère la distribution limite des particules après qu’une infinité d’évènements
de reproduction aient eu lieu. Sous certaines conditions, on monore que l’événement (appelé
bloquage) qu’une position contienne un nombre fini de boules satisfait à une loi du 0 − 1 et
nous introduisons plusieurs critères permettant de déterminer si le bloquage a lieu.

1. Introduction

The infinite-bin model (IBM) is a discrete-time particle system on Z introduced
by Foss and Konstantopoulos [FK03]. In this process, at each integer time, a particle
chosen according to its rank reproduces by creating a newborn particle one step to
its right. Informally, it is constructed as a balls and bins scheme, by placing a bin
at each site of z ∈ Z with a certain number of balls, corresponding to the particles
at initial time. We assume that all the bins at location z large enough are initially
empty, so it is possible to number all the balls in the system starting from the
rightmost one. We define the dynamics of the infinite-bin model as follows. Let µ be
a probability distribution on N := {1, 2, . . .}. At each integer time, the kth rightmost
ball is selected with probability µ(k) and a ball is added to the bin immediately on
its right. See Figure 2.1 for an illustration of the evolution of the IBM.

The special case when µ is the uniform measure on {1, . . . , N} for some integer
N ⩾ 1 first appeared in [AP83]. It corresponds to a continuous-time branching
random walk with selection. The case of general µ can be seen as a ranked-biased
branching random walk with selection (see Remark 2.2). The case when µ is a
geometric distribution was studied by [FK03], as it is coupled to a model of last-
passage percolation on the complete directed acyclic graph where the edge weights
may take values 1 or −∞. Considering more general laws for edge weights in the last-
passage percolation model leads to the definition of max-growth systems [FKMR23],
generalizing the IBM with geometric distribution. All these particle systems fall into
the class of processes with long memory, see e.g. [CFF02], or [FKMR24] for a review
on infinite-bin models.

We introduce some notation needed to define the infinite-bin model formally. The
state space of the IBM is defined as

§ := {X : Z → Z+ ∪ {∞} such that sup{j ∈ Z : X(j) ̸= 0} ∈ (−∞, ∞)} .

An element X ∈ § represents a configuration of balls where, for each k ∈ Z, the bin
at position k contains X(k) balls.

Let us point out that the total number of balls in a configuration X ∈ § may be
finite or infinite (but cannot be zero). We even allow the number of balls in a given
bin k to be infinite i.e. X(k) = ∞. For the dynamics of the infinite bin model, such
a bin will represent an impassable barrier (the configuration on the left of this bin
will not matter and remain unchanged forever). A configuration X ∈ § is said to be
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Freezing in the Infinite-Bin Model 3

• locally finite if X(k) < ∞ for all k ∈ Z,
• bounded if supk∈Z X(k) < ∞.

Given µ a probability distribution on N and X0 ∈ § an initial configuration, an
infinite-bin model X with reproduction law µ starting from X0 is constructed as an
§-valued Markov process in the following fashion. Given (ξn, n ∈ N) i.i.d. random
variables with law µ, at each integer time n, Xn is constructed from Xn−1 by adding a
new ball to the bin immediately to the right of the bin containing the ξnth rightmost
ball. In other words, writing Jn−1 for the index of the bin containing the ξnth
rightmost ball at time n − 1, defined by

∞∑
j=Jn−1

Xn−1(j) ⩾ ξn >
∞∑

j=Jn−1+1
Xn−1(j),

we set(1) Xn(·) = Xn−1(·) + 1{·=Jn−1+1}.
In recent years, all the articles studying infinite-bin models, such as [FK03, FZ13,

CR17, MR19, MR21, Ter25], focused on studying the displacement of the front at
time n, i.e. the position of the rightmost occupied bin in Xn, as well as the asymptotic
behavior of this quantity as n → ∞. In these articles, it is therefore natural to study
the infinite-bin model “seen from the front”, and to describe the statistical properties
of the largest non-empty bins.

In contrast, we focus here on a different question and study instead how the number
of balls in a given bin grows as time passes. Obviously, for all k ∈ Z, the number
Xn(k) of balls in the bin at position k at time n is non-decreasing in n (since balls
are never removed from bins). Hence we can define the random variables

X∞(k) = lim
n→∞

↑ Xn(k) ∈ Z+ ∪ {∞} a.s.

We call the event {X∞(k) < ∞} the freezing of bin k, as it means that, on this event,
there is some finite (random) time after which no ball is ever added to bin k. This
paper aims to describe conditions on the distribution µ and the initial configuration
X0 for which freezing occurs.

As an appetizer, let us first note that the question above is readily answered when
µ has a first moment:

Proposition 1.1. — Suppose that the distribution µ satisfies ∑
nµ(n) < ∞.

Then for any initial configuration X0 ∈ § and any k ∈ Z such that X0(k) < ∞, we
have X∞(k) < ∞ a.s.

This result is an easy consequence of the Borel-Cantelli lemma. It also follows
directly from the existence of renovation events for the IBM first introduced by Foss
and Konstantopoulos in [FK03] and extended in [CR17, FZ13].

Taking a different direction, instead of making assumptions on µ, we can rather
make assumptions on the initial configuration X0 which will ensure freezing for any
distribution µ.

(1) If such an index does not exist, which is the case if the configuration Xn−1 contains fewer than
ξn balls, we just set Xn = Xn−1.
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4 B. MALLEIN, S. RAMASSAMY & A. SINGH

Theorem 1.2. — Let X0 ∈ § be a bounded configuration. For any distribution
µ, we have X∞(k) < ∞ a.s. for all k ∈ Z.

One may wish to replace the “bounded” assumption in the above theorem by
“locally finite”. Unfortunately, this is not possible as freezing is not always guaranteed
in that case. In fact, even the definition of freezing itself may be ambiguous because
the event {X∞(k) < ∞} need not be an a.s. deterministic event. The apparently
simple question of whether a 0 − 1 law holds for the freezing of a bin turns out
to be surprisingly tricky. We give a partial answer, that requires a monotonicity
assumption on µ.

Theorem 1.3. — Assume that the probability distribution µ satisfies
(1.1) (µ(n), n ⩾ 1) is non-increasing.
Then, for any initial configuration X0 ∈ §, we have

P(X∞(k) < ∞) ∈ {0, 1} for all k ∈ Z.

Remark 1.4. — Assumption (1.1) could be replaced by (µ(n), n ⩾ 1) ultimately
non-increasing up to simple modifications in the proof. However, we do not know
whether the assumption can be completely dropped.

One of the main ways in which bins can have a growing number of balls as n → ∞
stems from the “cascade effect”: when a bin becomes large, it has a greater chance
to be hit by the (ξn) and therefore it increases the rate of growth of the bin to it
right (while decreasing its own growth rate). This reinforcement scheme can lead to
non-freezing of bins for particular initial configurations. As we will see below, it can
even be the case that some bins grow to infinity while others freeze a.s. To study
the different freezing scenarii in detail, it is useful to consider first the extremal
configuration X̂0 consisting of a single infinite bin (i.e. a barrier) at 0 while all the
other bins are empty:

(1.2) X̂0(k) :=

∞ if k = 0,

0 otherwise.

We will denote by (X̂n, n ⩾ 0) the IBM process starting from X̂0.

Definition 1.5. — For d ∈ N ∪ {∞}, we say that the probability distribution µ
is of type d if

d = inf{k ⩾ 1 : X̂∞(k) < +∞} a.s.
We say that µ is of finite type (resp. of infinite type) if d < +∞ (resp. d = +∞).

In view of Proposition 1.1, it is easy to check that µ is of type 1 if and only if it
has a first moment.(2)

Let us point out that the type of a distribution may not necessarily be well-defined
without a 0 − 1 law on the freezing of bins. Yet, it will be proved in Corollary 2.4
(2) Proposition 1.1 shows that when µ has a first moment, it is of type 1. To prove the converse
result, we simply notice that, when µ does not have a first moment, the Borel-Cantelli lemma for
independent events ensures that ξn ⩾ n i.o. and therefore X̂∞(1) = ∞ hence µ is not of type 1.
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that the inclusion {X̂∞(k) = ∞} ⊂ {X̂∞(k − 1) = ∞} holds a.s for any distribution
µ and any k ⩾ 1. Combining this result with Theorem 1.3, we conclude that

Corollary 1.6. — If (µ(n), n ⩾ 1) is non-increasing, then µ has a well-defined
deterministic type d ∈ N ∪ {∞} and the set of non-freezing bins is the interval:{

k ∈ Z, X̂∞(k) = ∞
}

= J0, d − 1K a.s.

Finding the exact type of a general distribution µ seems a delicate question.
However, with the additional assumption that the distribution has regular variation,
one can provide an explicit integral criterion to characterize the type of µ. Recall
that a function γ : Z+ → (0, ∞) is said to have regular variation with index α (at
infinity) if

lim
n→∞

γ(⌊un⌋)
γ(n) = uα for all u > 0.

When α = 0, the function is said to be slowly varying. The next result shows, in
particular, that there exist distributions for any type d ∈ N ∪ {+∞}.

Theorem 1.7. — Assume that (µ(n), n ⩾ 1) is regularly varying at infinity with
index −α for some α ⩾ 1. Let µ̄(j) = µ(Jj, +∞J) denote its tail. Then µ has a
well-defined type d given by

d = inf
{

h ∈ N :
∑

j

µ̄(j)h < ∞
}

.

In particular, µ is of finite type if α > 1 and of infinite type if α = 1.

Remark 1.8. — (1) The criterion above for type d = 1 corresponds to the
first moment condition on µ, which we know to be a necessary and sufficient
condition, regardless of the regular variations of µ at ∞.

(2) If (µ(n), n ⩾ 1) is regularly varying with index −α, then by Karamata’s
theorem (c.f. for instance [Fel71, Chapter VIII.9]), its tail is also regularly
varying at infinity with index −α + 1. Thus, there exists a slowly varying
function L such that µ̄(n) = n−α+1L(n). The type d of µ is then given by the
formula:

d =


+∞ if α = 1,

⌈ 1
α−1⌉ + 1 if 1

α−1 is an integer and ∑
j

L(j)
1

α−1

j
= ∞,

⌈ 1
α−1⌉ otherwise.

(3) The proof of Theorem 1.7 gives extra information on the asymptotic rate at
which each bin grows. For a distribution µ as in Theorem 1.7 with finite type
d, we find that, for any k ∈ J1, dJ,

X̂n(k) ∼
n→∞

Ck,α

∑
j⩽n

µ̄(j)k a.s.

where Ck,α are explicit positive constants depending only on k and α.

By definition, the type of a distribution µ is the number of bins (plus 1) that do
not freeze when starting from the barrier configuration X̂0. If µ has finite type, this

TOME 1 (-1)



6 B. MALLEIN, S. RAMASSAMY & A. SINGH

roughly tells us that the number of consecutive bins in a “cascade” must be finite.
But then, this means that such cascades should not be able to propagate from −∞
so we should expect almost sure freezing of all bins for every locally finite initial
configuration. Our last result extends Theorem 1.2 to locally finite configurations and
relates the finiteness of the type with the existence of non-freezing configurations.

Theorem 1.9. —
(1) If µ is of finite type and (µ(n), n ⩾ 1) is non-increasing, then, for any initial

locally finite configuration X0 ∈ §, freezing occurs a.s.:
X∞(k) < ∞ a.s. for all k ∈ Z.

(2) If µ is of infinite type, then there exists a locally finite configuration X0 ∈ §
such that no bin freezes:

X∞(k) = ∞ a.s. for all k ∈ Z.

The rest of the article is organized as follows. In the next section, we study the
genealogical structure of the IBM, showing in particular that each ball has a finite
progeny a.s. From this fact, we deduce Theorem 1.2, and carry on proving Item 2.
of Theorem 1.9.

In Section 3, we describe a particular coupling of the IBM starting from different
initial configurations under Assumption (1.1). This coupling implies the negative
correlation for the events of adding a ball in the same bin at two different times and
it enables us to prove Theorem 1.3 as well as Item 1. of Theorem 1.9.

Finally, the last section is devoted to the study of the type of µ under the regu-
larly varying assumption. We provide here the proof of Theorem 1.7, by a simple
concentration result for sums of independent Bernoulli variables.

2. General properties of infinite-bin models

Before studying properties of the infinite-bin model dynamics, we introduce a few
extra notations that will allow us to describe in greater details the local dynamic of
the model.

Given an infinite-bin model configuration X ∈ §, we define its rightmost barrier as
(2.1) δ(X) := sup{j ∈ Z : X(j) = +∞} ∈ Z ∪ {−∞}
with the convention δ(X) = sup ∅ = −∞ when X is locally finite. The front of X is
the location of its rightmost non-empty bin (which is well-defined by definition of a
configuration), i.e.

F (X) := max{j ∈ Z : X(j) ̸= 0} ∈ Z.

For all k ∈ N, we also define B(X, k) as the location of the kth rightmost ball in X,
i.e.

B(X, k) := sup{j ∈ Z :
∞∑

i=j

X(i) ⩾ k},

again with sup ∅ = −∞. We observe that F (X) = B(X, 1) and δ(X) = limk→∞ B(X, k).
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(b) Configuration Φξ(X) with ξ = 12.

Figure 2.1. Illustration of the dynamics of the IBM: here, we have a configuration
X of balls with F (X) = 4. The result of sampling ξ = 12 creates a new ball at
location −1, height 2, and rank 10. All the balls with previous rank ⩾ 10 in X
have their rank increased by one in Φξ(X).

Remark 2.1. — For all X ∈ § and k ∈ N, the quantity B(X, k) is well-defined
irrespectively of the relative ordering of the balls inside each bin. In other words,
the dynamic of the infinite-bin model does not require to fix an ordering of the balls.
However, it will be convenient to specify an ordering for the balls in each bin, in
order to introduce a genealogical structure to the particle system.

To give a formal definition of the infinite-bin model dynamics, we introduce the
operator Φξ : § → § that maps a configuration to the new configuration obtained by
adding a single new ball immediately to the bin on the right of the kth rightmost
ball:

(2.2) Φξ(X) :=

(X(j) + 1{j=B(X,ξ)+1}, j ∈ Z) if B(X, ξ) > −∞,

X otherwise.

Given a probability distribution µ and an initial configuration X0 ∈ §, the infinite-
bin model (Xn, n ⩾ 0) with distribution µ starting from X0 ∈ § can be constructed
through the following recursion equation, for n ⩾ 0
(2.3) Xn+1 := Φξn+1(Xn),
where (ξn, n ⩾ 1) is an i.i.d. sequence of random variables with law µ.

In the rest of this article, we always picture balls as stacked vertically in their bin,
and ranked from bottom to top. When a new ball is added, it is placed on the top
of the previous balls in the bin. With this ordering, for each ball in X, we can speak
about

• its rank which corresponds to its index when all balls are ordered starting
from the front, from right to left, and then from bottom to top inside each
bin.
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8 B. MALLEIN, S. RAMASSAMY & A. SINGH

• its location which is the index/position of the bin it belongs to.
• its height which corresponds to its index inside the bin with the balls ordered

from bottom to top.
Let us note that, by definition, for each ξ ∈ N the location and heights of the balls
already present in X are unchanged in the new configuration Φξ(X). However, the
ranks of the balls in Φξ(X) are either unchanged or increased by one. See Figure 2.1
for an illustration of the procedure.

2.1. Genealogical structure

The ranking introduced above on all the balls in the infinite-bin model allows us to
define a genealogical structure for the particle system. Given the infinite-bin model
defined by (2.3), for all n ∈ N, we state that the ball added at time n is a child of
the ball ranked ξnth in the configuration Xn−1.

Remark 2.2. — Adding this genealogical structure to the infinite-bin model turns
this process into a rank-based branching particle system. In particular, given (Nt, t ⩾
0) an independent Poisson process with parameter 1, the evolution of the continuous-
time particle system (XNt , t ⩾ 0) can be described as follows. At all time t, every
particle in the system is ranked from right to left. For all k ∈ N, the kth rightmost
ball gives birth to a child at distance 1 from its current position, independently of
any other particle, at rate µ(k). This family of branching processes has been the
subject of a large literature, in particular in its interpretation as a branching process
with selection [BD97, BG10, Mai16, Tou24].

With the genealogical structure defined above, we observe that the total number of
children made by a given ball in the infinite-bin model is on average finite, without
requiring any assumption on µ.

Lemma 2.3. — Fix a configuration X0 ∈ § and k ∈ N such that k ⩽
∑

j∈Z X0(j)
(i.e. the kth ranked ball exists). Then, writing Rk the total number of children at all
times of the kth rightmost ball in X0, we have

E(Rk) ⩽
∞∑

ℓ=k

µ(ℓ)
µ(J1, ℓK) < ∞

with the convention 0/0 = 0 when µ(J1, ℓK) = 0.

Proof. — Without loss of generality, we assume that the kth rightmost ball, writ-
ten ∂, is in the bin of index 0. For all n ∈ N, we denote by Mn := ∑

j⩾1 Xn(j) the
total number of balls to the right of bin 0 at time n and by Nn the total number
of balls in bin 0 at time n. We also denote by h := k − M0 the height at time 0
(and at all times) of the ball ∂ inside bin 0. Observe that at time n, the ball ∂ is the
(Mn + h)th rightmost ball.

At each time n ∈ N, one of two things might happen:
- With probability µ(J1, Mn + NnK), a new ball is added in a bin of positive

index, and thus Mn+1 = Mn + 1. In that case, the probability that this new
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ball is an offspring of the ball ∂ is given by

(2.4) µ(Mn + h)
µ(J1, Mn + NnK) ⩽

µ(Mn + h)
µ(J1, Mn + hK) .

- With probability 1 − µ(J1, Mn + NnK), a new ball is added in a bin of non-
positive index (or is not added if ξn+1 is too large). In this case, Nn might
increase, or not, by 1.

We now observe that the total number of children of ∂ is given by the sum

Rk =
∑
n⩾0

1{Mn+1=Mn+1}1{the new ball is a child of ∂}

We partition this sum according to the value m taken by Mn at each time n, com-
bining with (2.4) and the Fubini theorem to obtain that

E(Rk) =
∑
n⩾0

P(Mn+1 = Mn + 1, the new ball is a child of ∂)

=
∑
n⩾0

∑
m⩾M0

P(Mn = m)P(Mn+1 = Mn + 1, the new ball is a child of ∂|Mn = m)

⩽
∞∑

m=M0

µ(m + h)
µ(J1, m + hK) =

∞∑
ℓ=k

µ(ℓ)
µ(J1, ℓK) .

Finally, since ∑∞
j=1 µ(j) = 1, we have

µ(ℓ)
µ(J1,ℓK) ∼

ℓ→∞
µ(ℓ),

hence
∞∑

ℓ=k

µ(ℓ)
µ(J1, ℓK) < ∞

which completes the proof. □

A direct consequence of this result is that the set of non-frozen bins forms an
interval.

Corollary 2.4. — Let k ∈ Z and X0 ∈ § such that X0(k) < ∞. We have

{X∞(k) = ∞} ⊂ {X∞(k − 1) = ∞} a.s.

Proof. — We observe that on the event {X∞(k − 1) < ∞} ∩ {X∞(k) = ∞} at
least one of the balls in the bin k − 1 has had an infinite number of offspring, which
is a.s. impossible given the bound obtained in Lemma 2.3, and as there is only a
countable number of balls involved in the process. □

2.2. Freezing for bounded configuration

We prove here Theorem 1.2 which states that for any probability distribution µ, if
the initial configuration X0 of the infinite-bin model is bounded, then freezing occurs
almost surely for all bins. It is a consequence of the following slightly stronger result.
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10 B. MALLEIN, S. RAMASSAMY & A. SINGH

Proposition 2.5. — For any A ∈ N, there exists a constant CA < ∞ depending
only on A and the distribution (µ(n), n ⩾ 0) such that, for any initial configuration
X0 ∈ § satisfying

sup
k∈Z

X0(k) ⩽ A,

it holds that
(2.5) sup

k∈Z
E(X∞(k)) < CA.

In particular, if X0 ∈ § is a bounded configuration, then X∞(k) < ∞ a.s. for all
k ∈ Z so every bin freezes.

Proof. — Fix a configuration X0 ∈ § such that supk∈Z X0(k) ⩽ A and fix k ∈ Z.
We define ((Tn, rn), n ⩾ 0) as the sequence of times at which a new ball is added
to a bin strictly to the right of the bin k − 1, together with the rank of its parent.
Fixing T0 := 0, we set

Tn+1 := inf
{
m > Tn : ξm ⩽

∞∑
i=k−1

Xm−1(i)
}

and rn := ξTn .

Denoting Mn the total number of balls in the bins strictly to the right of k−1 at time
Tn, we have that Mn := ∑∞

i=k XTn(i) = M0 + n, and that rn has law µ conditioned
on being at most equal to Mn + XTn(k − 1).

For any n0 ∈ N, we have the upper bound

(2.6) X∞(k) = X0(k) +
+∞∑
n=0

1{rn>Mn} ⩽ A + n0 +
+∞∑

n=n0

1{rn>Mn}.

We recall the notation µ̄(n) = µ(Jn, ∞J) for the tail of µ. We fix n0 large enough
such that

α := µ̄(n0)
µ(J1, n0K)

< 1.

Taking the expectation in (2.6) conditionally on H = σ(XTn(k − 1), n ⩾ 0), we find
that

E(X∞(k) | H) ⩽ A + n0 +
+∞∑

n=n0

P(rn > Mn | H)

= A + n0 +
+∞∑

n=n0

µ(JMn + 1, Mn + XTn(k − 1)K)
µ(J1, Mn + XTn(k − 1)K)

⩽ A + n0 +
∑∞

n=n0 µ(JM0 + n + 1, M0 + n + X∞(k − 1)K)
µ(J1, n0K)

⩽ A + n0 + µ̄(M0 + n0 + 1)X∞(k − 1)
µ(J1, n0K)

⩽ A + n0 + αX∞(k − 1).
Taking the expectation on both sides of the inequality above, we obtain a recursion
inequality valid for all k ∈ Z,
(2.7) E(X∞(k)) ⩽ A + n0 + α E(X∞(k − 1)).
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Let ℓ ⩽ 0 and consider now the truncated configuration X
(ℓ)
0 = X01{.⩾ℓ} where all

the balls in the bins on the left of bin ℓ have been removed. We take ℓ to be small
enough so that X

(ℓ)
0 is non-empty. We denote by X(ℓ) the IBM process starting

from X
(ℓ)
0 , using the same sequence (ξn) to construct X(ℓ)

n recursively by (2.3). By
definition of the dynamics, no ball can ever be added to bin ℓ so

E(X(ℓ)
∞ (ℓ)) = X

(ℓ)
0 (ℓ) ⩽ A.

In view of (2.7), it follows by induction that, for all k ⩾ ℓ, we have

E(X(ℓ)
∞ (k)) ⩽ CA := A + n0

1 − α
.

Finally, for each fixed k and n, we have limℓ→−∞ X(ℓ)
n (k) = Xn(k) a.s. Indeed, we have

either ∑
k∈Z X0(k) < ∞, then X0 = Xℓ

0 for ℓ large enough, or ∑
k∈Z X0(k) = ∞, then

a.s., for −ℓ large enough we have maxj⩽n ξj ⩽
∑∞

k=ℓ X0(k), therefore X(ℓ)
n (k) = Xn(k).

As a result, by Fatou’s Lemma, for any k ∈ Z,
E(Xn(k)) ⩽ lim inf

l→−∞
E(X(ℓ)

n (k)) ⩽ CA.

By monotone convergence, we conclude that, for any k ∈ Z,
E(X∞(k)) = lim

n→+∞
E(Xn(k)) ⩽ CA.

This completes the proof of (2.5) and also of Theorem 1.2 since a random variable
with finite expectation is finite a.s. □

2.3. Proof of Item 2. of Theorem 1.9

We assume here that µ is of infinite type and we explain how to construct an
initial configuration X∗

0 ∈ § such that
(2.8) X∗

0 (k) < ∞ and X∗
∞(k) = ∞ a.s. for all k ∈ Z.

Proof of Item 2. of Theorem 1.9. — Some technicalities in the argument below
appear because the support Tµ ⊂ N of the distribution µ is not necessarily equal
to N. However, because µ is of infinite type, its support Tµ must be infinite. Recall
that we write F (X) for the position of the front of the configuration X ∈ §, we then
denote by §µ the set of all configurations X ∈ § satisfying the following conditions:

(1) X(0) = ∞,
(2) for all k ∈ J1, F (X)K we have X(k) ∈ Tµ and X(k) ⩾ X(k + 1).

Recall that X̂0 defined by (1.2) denotes the configuration with a single infinite barrier
at 0. It is not hard to see that any configuration X ∈ §µ is a reachable state for the
IBM(µ) starting from X̂0. Thus, by definition of a distribution of infinite type, for
any initial condition X0 ∈ Sµ, the process will eventually yield X∞(k) = ∞ a.s. for
all k ⩾ 1. Additionally, if we define, for h ∈ N,

X
(h)
0 (k) :=

X0(k) if k ̸= 0,

h otherwise,
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then it is straightforward from the definition of the IBM that, for all fixed n, k ∈ N
one has

lim
h→∞

X(h)
n (k) = Xn(k) a.s.

As a result, using the monotonicity of the process we conclude that, for all k ⩾ 1,

lim
h→∞

X(h)
∞ (k) = X∞(k) = ∞ a.s.

Thanks to the above observation, we now construct a locally finite initial config-
uration X∗

0 satisfying (2.8). We start by setting X∗
0 (k) := 0 for all k ⩾ 0, and we

define recursively X∗
0 (−k) for k > 0 as follows. For all k ∈ N, there exists nk ⩾ 1

such that the infinite-bin model with the starting configuration Y0 defined by

Y0(j) :=


r if j = −k,
X∗

0 (j) if j ∈ J−k + 1, −1K,
0 otherwise,

satisfies P(minj∈J−k,kK Y∞(j) ⩽ k) ⩽ 2−k when r ⩾ nk. We assign to X∗
0 (−k) any

value in Tµ that is greater than max(nk, X∗
0 (−k + 1)).

Using again the monotonicity of the process, it is a direct consequence of this
construction that X∗

∞(k) = ∞ a.s. for all k ∈ Z. □

3. Coupling of IBMs for different initial configurations

In this section, we prove Theorem 1.3 and Item 1. of Theorem 1.9. Both results
make repetitive use of couplings of IBMs starting from different initial configurations.
We start with the following easy lemma which relates the evolution of two IBMs
under the usual coupling.

Lemma 3.1. — Let X0, X̃0 ∈ § denote two initial configurations with the same
position δ for their rightmost infinite barrier (if it exists):

δ := δ(X0) = δ(X̃0) ∈ Z ∪ {−∞}.

Fix j0 > δ and assume that the following condition holds true at time n = 0

(H1) for all j ∈Kδ, j0K, X̃n(j) = Xn(j) and
∞∑

k=j

Xn(k) =
∞∑

k=j

X̃n(k).

Let (Xn) and (X̃n) be defined by the recursion equation (2.3) using the same sequence
(ξn). Then (H1) holds true for all times n. Furthermore, we have, for all n ⩾ 0 and
all j ∈Kδ, j0 + 1K,

(3.1) X̃n+1(j) = X̃n(j) + 1 ⇐⇒ Xn+1(j) = Xn(j) + 1. a.s.

Proof. — We prove the result by induction on n. It is true for n = 0 by assumption.
Suppose now that (H1) holds for a given n ⩾ 0 and consider ξn+1. There are two
cases:
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• If ξn+1 ⩽
∑∞

k=j0 Xn(k) = ∑∞
k=j0 X̃n(k), then we add a ball to Xn and a ball

in X̃n, possibly at different locations, but always in a bin strictly on the right
of j0 in both cases. Therefore, (H1) holds for n + 1 (as well as (3.1) because
no ball is added to bin k).

• If ξn+1 >
∑∞

k=j0 Xn(k) = ∑∞
k=j0 X̃n(k), then thanks to (H1), the ball ranked

ξn+1 in Xn is at the same location and same height as the ball ranked ξn+1 in
X̃n. Thus, the ball added at time n + 1 is at the same location in Xn+1 and
X̃n+1 hence (H1) and (3.1) still hold.

□

We can improve on the previous lemma by coupling in a larger class of initial
configurations if we assume that the distribution µ is monotonic.

Lemma 3.2. — Assume that (µ(n), n ⩾ 1) is non-increasing. Let X0, X̃0 ∈ §
denote two initial configurations with the same position δ for their rightmost infinite
barrier (if it exists):

δ := δ(X0) = δ(X̃0) ∈ Z ∪ {−∞}.

Fix j0 > δ and assume that the following condition holds true at time n = 0

(H2) for all j ∈Kδ, j0K, X̃n(j) ⩽ Xn(j) and
∞∑

k=j

Xn(k) ⩽
∞∑

k=j

X̃n(k).

then, there exists a coupling of two infinite-bin models (Xn) and (X̃n) with distri-
bution µ, starting respectively from X0 and X̃0 such that (H2) holds for all times n.
Furthermore, this coupling also satisfies that, for n ⩾ 0 and all j ∈Kδ, j0 + 1K,

(3.2) X̃n+1(j) = X̃n(j) + 1 =⇒ Xn+1(j) = Xn(j) + 1. a.s.

See Figure 3.1 for an illustration of two configurations X and X̃ that satisfy
assumption (H2).

Remark 3.3. — If X0 and X̃0 satisfy (H2), then the same holds true after applying
either of the following two elementary operations: (1) We add a ball in X̃0 at a location
j > j0. (2) We move a ball of X̃0 from a location j ⩽ j0 to a new location j′ > j0.

Proof. — We just need to construct the coupling for the first step and then we
can proceed by induction afterward thanks to the Markov property. Let

N :=
∑
j>δ

X0(j) and Ñ :=
∑
j>δ

X̃0(j)

denote the total number of balls in configuration X̃ and X̃0 respectively. We have
N ⩽ Ñ ⩽ ∞ according to (H2) –with quantities being possibly infinite when
δ(X) = −∞. We also define the number of balls strictly on the right of bin j0:

K :=
∞∑

j=j0+1
X0(j) and K̃ :=

∞∑
j=j0+1

X̃0(j).

We also have K ⩽ K̃ < ∞ thanks to (H2). Furthermore, if K = K̃ then, we must
have X̃0(j) = X0(j) for all j ∈Kδ, j0K. This exactly means that (H1) is satisfied so
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j0

K

Z
6 K̃X0(j)X̃0(j) 6 for j 6 j0

N 6 Ñ

configuration X0

configuration X̃0

Figure 3.1. Two configurations X0 (in blue) and X̃0 (in red) that satisfy (H2).
There are more red balls than blue balls located in Jj0+1, +∞J (K = 5 ⩽ 9 = K̃)
and also more red balls than blue balls in total (N = 13 ⩽ 14 = Ñ) but there
are at least as many blue balls than red balls in every bin located at j < j0.

we are back in the setting of the previous lemma and we can use the trivial coupling
to prove the result at the next step. Thus, we now assume that K < K̃.

We also assume without loss of generality that µ(J1, KK) < 1 otherwise the result is
again trivial. Because µ is non-increasing, this assumption is equivalent to requiring
µ(K + 1) > 0.

Let ξ, χ and U denote three independent random variables such that
• ξ is distributed according to µ.
• χ is distributed according to the conditional law µ(· | KK, K̃K).
• U is uniform in [0, 1].

We construct a random variable ξ̃ depending on ξ in the following way:
(a) If ξ ⩽ K, we set ξ̃ := ξ.
(b) If ξ > Ñ , we set ξ̃ := ξ.
(c) If ξ ∈KN, ÑK, we set ξ̃ := χ.
(d) If ξ = k ∈KK, NK, then k is the rank of a ball in X0. If a ball with the same

location and same height also exists in configuration X̃0, then we denote k̃
its rank in X̃0. We set

ξ̃ :=

k̃ if k̃ exists and U < µ(k̃)
µ(k) ,

χ otherwise.

We have K ⩽ N ⩽ Ñ so the four cases (a), (b), (c) and (d) are disjoint and ξ̃ is
well-defined. We now define the coupling:

X1 := Φξ(X0) and X̃1 := Φξ̃(X̃0).

where Φ is the operator defined in (2.2). We check that (H2) holds for n = 1. Indeed,
we observe that

• In case (a), configurations X1 and X̃1 are obtained by adding a ball into a
bin, not necessarily the same, but located in Jj0 + 2, +∞J in both cases.
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• In case (b), we have X1 = X0 and X̃1 = X̃0 if δ = −∞. Otherwise, the new
ball is added in both cases to the bin δ + 1.

• In case (c), we have X1 = X0 (if δ = −∞) or X1(δ + 1) = X0(δ + 1) + 1 (if
δ > −∞), while X̃1 is obtained by adding a ball to X̃0 into a bin located
somewhere in Jj0 + 2, +∞J⊂Kδ, ∞J.

• In case (d), if k̃ exists and U < µ(k̃)/µ(k) then X1 and X̃1 are obtained by
adding a ball in the same bin for both configuration. Otherwise, a ball is
added in a bin located somewhere in Kδ, j0 + 1K for configuration X0 whereas
a ball is added in a bin located somewhere in Jj0 + 2, +∞J for configuration
X̃0.

In all cases, hypothesis (H2) is preserved. It is also clear that (3.2) holds because
a ball is added in X̃ at some location ⩽ j0 + 1 when ξ̃ ∈KK̃, ÑK but this can only
occur in case (d) and a ball is always added at the same location in X when this
happens.

It remains to prove that ξ̃ has distribution µ.
• Let i ⩽ K or i > Ñ , we have by construction

P(ξ̃ = i) = P(ξ = i) = µ(i).
• Let i ∈KK̃, ÑK. We observe that the ball with rank i in X̃0 is in a bin at some

location Kδ, j0K. Because of Assumption (H2), a ball with the same location
and same height also exists in X0 and its corresponding rank k in X0 satisfies
k ⩽ i. Therefore, we get

P(ξ̃ = i) = P
(

ξ = k, U <
µ(i)
µ(k)

)
= µ(k)P

(
U <

µ(i)
µ(k)

)
= µ(i),

where we used the fact 0 ⩽ µ(i)/µ(k) ⩽ 1 because (µ(n)) is non-increasing.
• Let i ∈KK, K̃K. We can only have ξ̃ = i in cases (c) or (d) when ξ̃ = χ.

But by construction, the event {ξ̃ = χ} depends only on ξ and U which are
independent of χ. Therefore,

P(ξ̃ = i) = P(ξ̃ = χ, χ = i) = P(ξ̃ = χ)P(χ = i) = α
µ(i)

µ(KK, K̃K)
for some constant α ∈ [0, 1]. Finally, since ξ̃ is a non-defective random variable,
we have ∑ P(ξ̃ = i) = 1 which implies that α = µ(KK, K̃K) and the proof of
the lemma is complete. □

3.1. 0 − 1 law for the freezing of a bin

We assume here that (µ(n), n ⩾ 1) is non-increasing and we show that, for any
initial configuration X0 ∈ § and any k ∈ Z, we have

P(X∞(k) = ∞) ∈ {0, 1}.

Proof of Theorem 1.3. — Let k ∈ N, for all n ∈ N, we set
Bn := {Xn(k) > Xn−1(k)},
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the event when the nth ball added in the process goes into bin k. We prove that the
events (Bn, n ⩾ 1) are negatively correlated, which is enough to complete the proof
of the 0 − 1 law. Indeed, observe that if∑

n⩾1
P(Bn) < ∞,

then by Borel-Cantelli lemma, we have Xn(k) = Xn−1(k) a.s. for all n large enough
therefore P(X∞(k) = ∞) = 0. Alternatively, if∑

n⩾1
P(Bn) = ∞,

because the events are negatively correlated, we have that Bn holds for infinitely
many n a.s. (c.f. [KS64]), which shows that P(X∞(k) = ∞) = 1. Therefore, we just
need to prove that, for all n < m, we have

P(Bn ∩ Bm) ⩽ P(Bn)P(Bm).
Note that up to a shift in the initial condition, we can assume without loss of
generality that k = 0. Additionally, using the Markov property, we have
P(Bn ∩ Bm|X1, . . . , Xn−1) = PXn−1(Bm−n+1 ∩ B1) = PXn−1(B1)PXn−1(Bm−n+1|B1)
with the usual notation PX to denote a probability under which the IBM starts from
configuration X. Therefore, it is enough to show that for any initial configuration,
and all m ⩾ 1, we have
(3.3) PX(Bm+1|B1) ⩽ PX(Bm+1).
We write A, B = B1, C the events where the first ball is added to a bin of negative,
null, or positive index respectively. We first check that
(3.4) PX(Bm+1|B1) = PX(Bm+1|C).
This equality follows from Lemma 3.1 with j0 := −1, X0 the configuration obtained
from X by adding a ball in a bin at a positive index and X̃0 the configuration
obtained from X by adding a ball in bin 0. With this setting, (3.4) is a direct
consequence of equivalence (3.1) applied at j = j0 + 1 = 0.

We also claim that
(3.5) PX(Bm+1|A) ⩾ PX(Bm+1|B1).
This inequality now follows from Lemma 3.2, with j0 := −1, X0 the configuration
obtained from X by adding a ball in a bin of negative index and X̃0 the configuration
obtained from X by adding a ball in bin 0. With this setting, (3.5) is now a direct
consequence of implication (3.2) applied again at j = j0 + 1 = 0.

Finally, combining (3.4) and (3.5) we find that
PX(Bm+1) = PX(Bm+1|A)PX(A) + PX(Bm+1|B)PX(B) + PX(Bm+1|C)PX(C)

⩾ PX(Bm+1|B)
(
PX(A) + PX(B) + PX(C)

)
= PX(Bm+1|B)

which establishes (3.3) hence completes the proof of the theorem. □
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3.2. Freezing for finite type distribution and locally bounded
configurations

We prove in this subsection Item 1. of Theorem 1.9. We need the following lemma.

Lemma 3.4. — Assume that (µ(n), n ⩾ 1) is non-increasing and has finite type
d < ∞. Let X0 be a locally finite configuration with its front at position 0. Let X

(δ)
0

be the configuration constructed from X0 by placing an infinite barrier at position
δ < 0:

(3.6) X
(δ)
0 (j) :=

X0(j) if j ̸= δ,
+∞ if j = δ.

Then, for any δ, k ∈ Z such that δ + d < k ⩽ 0, we have

P(X(δ)
∞ (k) = X

(δ)
0 (k)) > 0

i.e. with positive probability, no ball is ever added to bin k starting from configuration
X

(δ)
0 .

Proof. — The result is trivial when µ has bounded support Tµ ⊂ J0, KK for some
K ∈ N because there is probability at least µ(1)K > 0 that the front of the IBM
moves to the right at the first K steps (and then no ball can ever be added at
locations ⩽ 0 afterward). We now assume that µ has unbounded support. Because
(µ(n), n ⩾ 1) is non-increasing, this implies that µ(n) > 0 for all n ∈ N.

Fix k, δ such that δ + d < k ⩽ 0. Let X̂
(δ)
0 denote the configuration with an infinite

bin located at δ and all other bins empty. Because X
(δ)
0 and X̂

(δ)
0 differ only by a

finite number of balls, we can construct a configuration Y0 such that the IBM(µ)
can transition from X̂

(δ)
0 to Y0 and also from X

(δ)
0 to Y0, in both cases with positive

probability in a finite number of steps. By definition of µ being of type d and because
δ + d < k, we have P(X̂(δ)

∞ (k) < ∞) = 1 and therefore, P(Y∞(k) < ∞) = 1. By
monotone convergence, this means that, for n0 large enough, we have P(Y∞(k) =
Yn0(k)) > 0. Observe now that there is only a finite number of configurations that
can be reached at time n0 when starting from Y0 (because Y0 has only a finite number
of balls on the right of its infinite barrier at δ). Therefore, there exists a configuration
Z0 with P(Yn0 = Z0) > 0 such that

P(Z∞(k) = Z0(k)) > 0.

By construction, this configuration Z0 can be reached by the IBM(µ) starting from
X

(δ)
0 with positive probability in a finite (say n) number of steps. This means that

there exists v1, v2, . . . , vn ∈ N such that {X(δ)
n = Z0} ⊃ {ξ1 = v1, . . . , ξn = vn} with

the IBM constructed via (2.3). Consider now the configuration Z̃0 obtained when
{ξ1 = ṽ1, . . . , ξn = ṽn} with

ṽi :=

1 if vi ⩽
∑∞

i=k−1 X
(δ)
0 (j),

vi otherwise.
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Because µ(1) > 0, we have P(X(δ)
n = Z̃0) > 0. By construction, we have Z̃0(k) =

X
(δ)
0 (k) and

for all j ∈Kδ, k − 1K. Z̃0(j) = Z0(j) and
∑
i⩾j

Z̃0(i) =
∑
i⩾j

Z0(i)

Thus, we can invoke Lemma 3.1 with j0 = k − 1, Z0 and Z̃0, to deduce from (3.1)
with j = j0 + 1 = k that

P(Z̃∞(k) = Z̃0(k)) = P(Z∞(k) = Z0(k)) > 0.

Finally, by the Markov property, we conclude that

P(X(δ)
∞ (k) = X

(δ)
0 (k)) ⩾ P(X(δ)

n = Z̃0)P(Z̃∞(k) = Z̃0(k)) > 0.

□

We can now prove Item 1. of Theorem 1.9: we assume again that (µ(n), n ⩾ 0)
is non-increasing with finite type d < ∞ and show that, for any locally finite
configuration X0, we have

X∞(k) < ∞ a.s. for all k ∈ Z.
Proof of Theorem 1.9. — By translation invariance, we can assume without loss of

generality that the front of X0 is at location 0. Furthermore, thanks to Corollary 2.4,
if bin k freezes, then all bins on its right also freeze so we only need to prove the
result for bins at location k ⩽ 0.

Fix k ⩽ 0 and let X
(δ)
0 denote again the configuration (3.6). We fix δ such that

δ + d < k. We consider the usual coupling between X(δ) and X where we use the
same ξi’s for both processes. We define E := {X

(δ)
0 (k) = X(δ)

∞ (k)} the event that no
ball is ever added to bin k by the IBM starting from X

(δ)
0 . Lemma 3.4 ensures that

P(E) > 0.

We claim that, on E, a.s., it holds that, for all n,
(3.7)

X(δ)
n (j) = Xn(j) for j ⩾ k and

∞∑
i=j

X(δ)
n (i) ⩾

∞∑
i=j

Xn(i) for δ < j < k.

The proof is similar to that of Lemma 3.1 and we proceed by induction. The result
is clear for n = 0. Assume it holds true for some n and consider ξn+1. Because we
are on the event E, we cannot have ∑∞

i=k X(δ)
n (i) < ξn+1 ⩽

∑∞
i=k−1 X(δ)

n (i) as this
would add a ball in bin k at time n + 1 for the process X(δ). Therefore,

• Either ξn+1 ⩽
∑∞

i=k Xn(i) = ∑∞
i=k X(δ)

n (i) and we add the same ball at the
same location j > k for both processes X and X(δ).

• Or ξn+1 >
∑∞

i=k−1 X(δ)
n (i) in which case X(δ) adds a ball at some location

j < k and X adds a ball at some location j′ ⩽ j because of the induction
hypothesis.

Therefore (3.7) holds at time n + 1 hence at all times. As a consequence of (3.7), we
find that E ⊂ {X∞(k) = X0(k)} a.s. and therefore,

P(X∞(k) < ∞) ⩾ P(X∞(k) = X0(k)) ⩾ P(E) > 0.
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By the 0 − 1 law of Theorem 1.3, we conclude that P(X∞(k) < ∞) = 1 so bin k
freezes a.s. and the proof is complete. □

4. IBM starting with an infinite barrier at 0

We work in this section under the assumption that (µ(n), n ⩾ 1) is a regularly
varying sequence, i.e. that there exists α ⩾ 1 such that for all u > 0, we have

(4.1) lim
n→∞

µ(⌊nu⌋)
µ(n) = u−α.

We call −α the index of the regularly varying sequence (µ(n), n ⩾ 1). Under this
condition, we recall that the function
(4.2) L(n) := nαµ(n)
is a slowly varying function, i.e. it satisfies limn→∞

L(⌊nu⌋)
L(n) = 1 for all u > 0.

We consider (X̂n, n ⩾ 0), the IBM(µ) starting from the initial condition X̂0 defined
by (1.2) as the configuration with an infinite number of balls in the bin of index 0
all other bins empty. We show here that under these conditions, for all k ∈ N, the
asymptotic growth rate of X̂n(k) as n → ∞ is deterministic. This, with a chaining
argument, allows us to determine the type of an infinite-bin model. The main result
of the section is the following, which is a refinement of Theorem 1.7.

Proposition 4.1. — Assume that (µ(n), n ⩾ 1) is regularly varying with index
−α. Recall the notation µ̄(n) := µ(Jn, +∞J) for the tail of µ. For all k ∈ N, we have

P
(

X̂∞(k) < +∞
)

=

0 if ∑∞
j=1 µ̄(j)k = ∞,

1 if ∑∞
j=1 µ̄(j)k < ∞.

Moreover,
(1) If α > 1, then for all k ⩾ 1 such that ∑∞

j=1 µ̄(j)k = ∞, we have

lim
n→∞

X̂n(k)∑n
j=1 µ̄(j)k

=
Γ

(
1 + 1

α−1

)
Γ

(
k + 1

α−1

) a.s.

(2) If α = 1, then for all k ∈ N,
X̂n(k) ∼

n→∞
nL(k)(n) a.s

with L(k) a deterministic slowly varying function.

We will make use of the following Borel-Cantelli lemma/law of large numbers for
sums of Bernoulli random variables.

Lemma 4.2. — Let (Zn, n ⩾ 1) be a sequence of Bernoulli r.v. adapted to some
filtration (Fn). Suppose that there exists a deterministic sequence (pn, n ⩾ 1) of
positive numbers such that

lim
n→∞

P(Zn = 1 | Fn−1)
pn

= 1 a.s.
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Then, we have

(4.3) P
( ∞∑

k=n

Zk < +∞
)

=

1 if ∑∞
n=1 pn < ∞,

0 if ∑∞
n=1 pn = ∞.

Furthermore, in the case that ∑∞
n=1 pn = ∞, we have

(4.4) lim
n→∞

∑n
k=1 Zk∑n
k=1 pk

= 1 a.s.

This result can be found in Freedman [Fre73], with the equivalence (4.3) being
proved in the main theorem, while (4.4), which is referred to as an extension of Lévy’s
strong law [Lév37, Chapter 6], is proved in [Fre73, (40)]. We present here a short
self-contained proof, based on an explicit construction that might have independent
interest.

Proof. — Equivalence (4.3) is also a special case of the Borel-Cantelli Theorem of
[Che78], using that Zn is Fn-adapted and

sup
n⩾1

Zn

1 + Z1 + · · · + Zn

⩽ 1 a.s.

We now assume ∑
k pk = +∞ and prove (4.4). By considering a possibly enlarged

probability space, we can assume that we are also given a sequence (Un, n ⩾ 1) of
i.i.d. variables with uniform distribution on [0, 1] independent of everything else.
We define the filtration G = (Gn, n ⩾ 0) by G0 = σ(∅) the trivial σ-algebra and
Gn = σ(Fn, (Uk)k⩽n). For n ⩾ 1, we set

Z̃n := 1{Un⩽P(Zn=1 | Gn−1)}.

Both processes Z and Z̃ are adapted to the filtration (Gn) and we have, almost
surely,

P(Z̃n = 1 | Gn−1) = P(Un ⩽ P(Zn = 1 | Gn−1) | Gn−1) = P(Zn = 1 | Gn−1)

Therefore, the processes Z and Z̃ have the same law so we just need to prove (4.4)
for Z̃. By hypothesis, we have P(Zn = 1 | Gn−1) = P(Zn = 1 | Fn−1) ∼ pn almost
surely as n → ∞. Thus, if we fix ε > 0, we have that Z̃n = 1{Un⩽P(Zn=1 | Gn−1)} ⩽
1{Un⩽(1+ε)pn} for all n large enough, almost surely. Hence, we deduce that, because∑

k pk diverges,

lim sup
n→∞

∑n
k=1 Z̃k∑n
k=1 pk

⩽ lim sup
n→∞

∑n
k=1 1{Uk⩽(1+ε)pk}∑n

k=1 pk

= 1 + ε. a.s.

where we used Theorem 2.3.8 of [Dur10] to compute the limit on the r.h.s. above
since the variables 1{Uk⩽(1+ε)pk} are independent Bernoulli variables. The proof for
the liminf is identical and we conclude that (4.4) holds. □

We now turn to the proof of Proposition 4.1, splitting it into two parts. We first
treat the case when µ is regularly varying with index −α < −1, before turning to
the case −α = −1. We recall the statement of the result in that case:
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Lemma 4.3. — Assume that (µ(n), n ⩾ 1) is regularly varying with index −α <
−1. For all k ⩾ 1 such that ∑∞

j=1 µ̄(j)k = ∞, we have

(4.5) lim
n→∞

X̂n(k)∑n
j=1 µ̄(j)k

=
Γ

(
1 + 1

α−1

)
Γ

(
k + 1

α−1

) a.s.

whereas X̂∞(k) < ∞ a.s. whenever ∑∞
j=1 µ̄(j)k < ∞.

Proof. — As a preliminary, we observe that by Karamata’s theorem (see Feller
[Fel71, Chapter VIII.9, Theorem 1]), the sequence (µ̄(j), j ∈ N) is regularly varying
with index 1 − α < 0, and more precisely

(4.6) µ̄(n) ∼ n−(α−1)

α − 1 L(n) as n → ∞,

with L the slowly varying function defined in (4.2). More generally, if k is an integer
such that k(α − 1) < 1, using again Karamata’s theorem, we have

(4.7)
n∑

j=1
µ̄(j)k ∼ L(n)kn1+k(1−α)

(α − 1)k(1 + k(1 − α)) as n → ∞

while the sum converges for k(α − 1) > 1. In the corner case k(α − 1) = 1, we have

(4.8)
n∑

j=1
µ̄(j)k ∼ L̃(n) as n → ∞

for some slowly varying function L̃ and the sum may diverge or converge depending
L̃.

We now prove Lemma 4.3 by iteratively computing the growth rate of bin k until
we reach the first index k satisfying

∞∑
j=1

µ̄(j)k < ∞.

Recall that X̂ is constructed from the sequence (ξn, n ⩾ 1) of i.i.d. variables with
law µ via (2.3). We define the filtration Fn = σ(ξ1, . . . , ξn). Now, if ∑∞

j=1 µ̄(j) = ∞,
applying Lemma 4.2 (here in the simple case of independent r.v.) we obtain

(4.9) X̂n(1)∑n
j=1 µ̄(j) =

∑n
j=1 1{ξj⩾j}∑n

j=1 µ̄(j) −→
n→∞

1 a.s.,

proving that X̂∞(1) = ∞ a.s. and obtaining the growth rate of X̂n(1) stated in (4.5).
Note that this result holds irrespectively of any regularity assumption on (µ(n)).
Conversely, if ∑∞

j=1 µ̄(j) < ∞, then Lemma 4.2 states that X̂∞(1) < ∞ a.s. Thus,
we recovered the fact, mentioned in the introduction, that µ is of type 1 if and only
if it has a first moment.

Next, let k ⩾ 2 such (k − 1)(α − 1) < 1 and assume by induction that (4.5) holds
for all h ∈ J1, k − 1K, i.e.

(4.10) lim
n→∞

X̂n(h)∑n
j=1 µ̄(j)h

=
Γ(1 + 1

α−1)
Γ(h + 1

α−1) a.s.
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We deduce from (4.7) that, for all h ∈ J1, k − 1K,

(4.11) X̂n(h) ∼
Γ(1 + 1

α−1)
Γ(h + 1

α−1)
L(n)hn1+h(1−α)

(α − 1)h(1 + h(1 − α)) a.s. as n → ∞.

In particular, X̂n(h) is negligible compared to X̂n(h − 1) as n → ∞ and we obtain
that

Rn :=
k−1∑
h=1

X̂n(h) ∼ X̂n(1) a.s. as n → ∞.

Now, we observe that

P(X̂n+1(k) = X̂n(k) + 1|Fn) = µ
(
Jn − Rn + 1, n − Rn + X̂n(k − 1)K

)
as, at time n, there are exactly n − Rn balls to the right of bin k − 1, thus the balls
in that bin are ranked between n − Rn + 1 and n − Rn + X̂n(k − 1). We have the
equivalences

n − Rn + X̂n(k − 1) ∼ n − Rn + 1 ∼ n a.s. as n → ∞.

Because µ is regularly varying, for all ϵ > 0, there exists δ > 0 such that

(1 − δ) ⩽ lim inf
n→∞

inf
m∈[n(1−ϵ),n(1+ϵ)]

µ(m)
µ(n) ⩽ lim sup

n→∞
sup

m∈[n(1−ϵ),n(1+ϵ)]

µ(m)
µ(n) ⩽ (1 + δ).

Hence, we deduce that µ
(
Jn − Rn + 1, n − Rn + X̂n(k − 1)K

)
∼ µ(n)X̂n(k − 1) a.s.

which means that

lim
n→∞

P(X̂n+1(k) = X̂n(k) + 1|Fn)
µ(n)X̂n(k − 1)

= 1 a.s.

We note that, by (4.2), (4.6) and (4.11), we have, almost surely, as n → ∞,

µ(n)X̂n(k − 1) ∼ n−αL(n)
Γ(1 + 1

α−1)
Γ(k − 1 + 1

α−1)
n1+(k−1)(1−α)L(n)k−1

(α − 1)k−1(1 + (k − 1)(1 − α))

∼
Γ(1 + 1

α−1)
Γ(k + 1

α−1) µ̄(n)k.

As a result,

lim
n→∞

P(X̂n+1(k) = X̂n(k) + 1|Fn)
µ̄(n)k

=
Γ(1 + 1

α−1)
Γ(k + 1

α−1) a.s.

Invoking Lemma 4.2 with the sequence Zn := X̂n+1(k) − X̂n(k), we find that, almost
surely

X̂∞(k) =
∞∑

n=0
(X̂n+1(k) − X̂n(k)) =

+∞ if ∑∞
n=1 µ̄(n)k = ∞,

< ∞ if ∑∞
n=1 µ̄(n)k < ∞.

Furthermore, when ∑∞
n=1 µ̄(n)k = ∞, we obtain the asymptotic

lim
n→∞

X̂n(k)∑n
j=1 µ̄(j)k

=
Γ(1 + 1

α−1)
Γ(k + 1

α−1) a.s.
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hence (4.10) holds for h = k. This completes the proof of the induction step.
It remains only to treat the special case k(α − 1) = 1. We have proved above that,

in this case, either ∑∞
j=1 µ̄(j)k < ∞ and then X̂∞(k) < ∞ a.s. or ∑∞

j=1 µ̄(j)k = ∞
and, in view of (4.8),

X̂n(k) ∼
n∑

j=1
µ̄(j)k ∼ L̃(n) a.s. as n → ∞.

which diverges to infinity. In that second case, we repeat the induction step one
last time to find now that P(X̂n+1(k + 1) = X̂n(k + 1) + 1|Fn) ∼ µ(n)L̃(n). Finally,
because µ(n) is regularly varying with index −α < −1, we have ∑∞

j=1 µ(j)L̃(j) < ∞
from which we conclude, using Lemma 4.2 one last time, that X̂∞(k + 1) < ∞ a.s.
and the proof is now complete. □

Finally, its remains to prove Proposition 4.1 when α = −1. We recall the statement
of the result in the lemma below.

Lemma 4.4. — Assume that (µ(n), n ⩾ 1) is regularly varying of index −1. For
all k ∈ N, we have X̂∞(k) = ∞ a.s. and furthermore

X̂n(k) ∼
n→∞

nL(k)(n) a.s

with L(k) : n 7→ (nµ(n))k−1µ̄(n) a slowly varying function.

Proof. — The proof is based on an identical method as in Lemma 4.3. We show
by induction that for all k ∈ N, X̂n(k) is diverging at an almost sure rate which is
regularly varying with index 1. Note that as µ(n) is regularly varying of index −1,
the function µ̄(n) is now slowly varying.

We first recall that we proved (4.9) without any assumption on the regularity of
µ, i.e.

X̂n(1) ∼
n∑

j=1
µ̄(j) a.s. as n → ∞,

therefore by Karamata’s theorem, we now have X̂n(1) ∼ nµ̄(n) as expected, with
L(1)(n) = µ̄(n).

Let k ⩾ 2, we assume by induction that X̂n(k − 1) ∼ nL(k−1)(n) a.s. as n → ∞.
Then with similar computations as in the proof of Lemma 4.3, we obtain

P(X̂n+1(k) = X̂n(k) + 1|Fn) ∼ X̂n(k − 1)µ(n) a.s.
Note that X̂n(k−1)µ(n) ∼ (nµ(n))L(k−1)(n) = L(k)(n) is slowly varying as a product
of slowly varying function. Therefore, using Lemma 4.2 and Karamata’s theorem,
we deduce that X̂n(k) ∼ nL(k)(n) as n → ∞, which proves the induction hypothesis
as the next step. Remark that in particular X̂n(k) diverges to ∞ almost surely. □
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