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Abstract

We study the minimum number of heaps required to sort a random sequence using
a generalization of Istrate and Bonchis’s algorithm (2015). In a previous paper, the
authors proved that the expected number of heaps grows logarithmically. In this note,
we improve on the previous result by establishing the almost-sure and L1 convergence.
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1 Introduction

The so-called Ulam’s problem consists in estimating the length of the longest de-
creasing subsequence in a uniform random permutation σ of {1, . . . , n}. By duality, this
question is equivalent to computing the minimal number of disjoint increasing sub-
sequences of σ required to partition {1, . . . , n}. In [2], Byers et al proposed variations on
this problem where the question of finding increasing subsequences in a permutation is
replaced by that of finding heapable subsequences. Subsequently, Istrate and Bonchis
[3] introduced a modification of the classical patience sorting algorithm called heap
sorting algorithm which now computes the minimal number of binary heaps required to
partition {1, . . . , n}.

In [1], we study a generalization of the algorithm which also allows for the heaps
to be random. More precisely, let µ be a fixed offspring distribution on {1, 2, . . . , }. Let
(Ui, νi) be an i.i.d. sequence where Ui and νi are independent, Ui is uniform on [0, 1] and
νi is distributed as µ. We use the following streaming algorithm to sort this sequence
into Galton-Watson heaps i.e. labeled Galton-Watson trees with the condition that the
label of each vertex is larger than that its ancestors.

Heap sorting algorithm for (Ui, νi).

• We start at time 1 with a single tree containing a unique vertex (U1, ν1) and set
R(1) = 1.
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Figure 1: Example of heap sorting algorithm for the sequence (.1, 1), (.7, 2), (.2, 2),
(.4, 3), (.8, 1), (.3, 1), . . .

• At time n, we have R(n) trees. To each vertex of these trees is associated a pair
(U, ν). The variable U represents the label of the vertex whereas ν prescribes the
maximum number of offsprings that the vertex may have. A vertex (U, ν) is said to
be alive if it has strictly less than ν children.

• At time n+ 1, we add (Un+1, νn+1) as the children of the vertex which is still alive
and which has the largest label smaller than Un+1. If no such vertex exists, we
create a new tree with root (Un+1, νn+1).

This algorithm sorts the sequence (Ui, νi), in their order of arrival, and in such way
that

1. All the trees have the heap property.

2. The trees are asymptotically Galton-Watson distributed with offspring distribution
µ and, at all time, the vertex with label Ui has at most νi children.

See Figure 1 for an illustration of the procedure. It turns out that, remarkably, this greedy
algorithm is optimal in minimizing the number of trees at all time. In [1], we proved that,
for any offspring distribution µ which is not the Dirac mass in 1 (i.e. we exclude Ulam’s
problem), then the expectation of the number of trees grows logarithmically as it was
predicted in [3]:

there exists cµ ∈ (1,∞) s.t. lim
n→∞

E[R(n)]

log n
= cµ. (1.1)

The aim of this note is to bootstrap the result above, proving that the limit of R(n)/ log n

also holds almost surely and in L1.

Theorem 1.1. For any offspring distribution µ 6= δ1, there exists cµ ∈ (1,∞) such that

lim
n→∞

R(n)

log n
= cµ a.s. and in L1.

As explained in [1] (and briefly recalled in the next section), we can associate to the
heap sorting algorithm a particle system which plays the same role as Hammersley’s
line particle system for Ulam’s problem. One of the main results of [1] states that this
particle system, while initially defined on compact intervals, can be extended to an
infinite particle system on the whole line. Thus, the strategy to prove Theorem 1.1 is to
first establish the almost sure convergence for an analog of R(n) associated with this
infinite system on R and then transfer the result back to the discrete case. In this study,
the key ingredients are the remarkable scaling properties of the infinite volume system
together with monotonicity arguments.

2 Almost-sure convergence for the process on the half-plane

We start by recalling the construction of the Hammersley’s tree process associated
with the heap sorting algorithm introduced in [1]. Let H denote the upper half-plane
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Figure 2: An example of the graphical representation G0,1 (which is, in fact, an embed-
ding of the sequence of Figure 1). Crosses represent the atoms of Ξ. At time t, H(t)

has four particles located at position 0.3, 0.4, 0.7, 0.8 with respective number of lives
1, 3, 1, 1.

R× (0,∞). Consider a Poisson point process (PPP)

Ξ = (Ui, Ti, νi)

on H ×N with intensity du × dt × µ. For any a < b, we consider the following particle
system H on (a, b)×N constructed from the atoms of Ξ inside the strip (a, b)× (0,∞).

• There is no particle at time t = 0.

• Given H(t−), an atom (u, t, ν) of Ξ with u ∈ (a, b) creates in H(t) a new particle at
position u with ν lives. Furthermore, the particle in H(t−) with the largest label
smaller than u loses one life (if such a particle exists) and is removed from the
system if it was its last life.

We can represent the genealogy of the particles using a set of vertical and horizontal
lines. Here, vertical lines denote the positions of particles through time and horizontal
lines connect particles to their father on their left (or to the vertical axis if they have no
father). We denote Ga,b this graphical representation of the process. See Figure 2 for an
illustration.

For a = 0 and b = 1, this particle system may be seen as a continuous time embedding
of the heap sorting algorithm where new labels now arrive with Poissonian rate instead of
integer time. Therefore, the heaps created by the algorithm are exactly the trees “drawn”
by the graphical representation. In particular, the number of trees (equiv. heaps) created
between time s and t is equal to the number of horizontal lines in G0,1 intersecting the
vertical segment {0} × [s, t].

Since incoming particles do not affect particles already present on their right, the
graphical representations Ga,b are compatible for different values of the left boundary
i.e.

for a′ < a the restriction of Ga′,b to (a, b)× (0,∞) coincides with Ga,b.
Thus, there is no problem to define G−∞,b. Clearly, this compatibility relation does not
hold anymore when it is the right boundary that extends since new particle may “kill”
their left neighbour. However, Theorem 4.4 of [1] states that the graphical representation
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Figure 3: Simulation of the full half plane representation G∞ in the case of binary heaps
(µ = δ2). The box displayed is [0, 40] × (0, 15]. There is an accumulation of horizontal
lines at y = 0 and of vertical lines at y = +∞ (zoom in the electronic version to see all
the lines).

G−∞,b still converges locally, almost surely, as b tends to infinity, to a random graphical
representation G∞ on H. This limiting graphical representation is such that there is only
finitely many horizontal and vertical lines crossing any compact set inside H. On the
other hand, there is an accumulation of horizontal lines at the bottom of the half plane
i.e. near the x-axis. See Figure 3 for a picture showing how this graphical representation
G∞ looks like.

The following result is the counterpart of Theorem 1.1 for the infinite volume system.

Proposition 2.1. Let µ 6= δ1. Let G∞ denote the graphical representation of H on the
half plane H. For 0 < s < t, let R∞[s, t] be the number of horizontal lines that intersect
the segment {0} × [s, t]. We have

lim
t→∞

R∞[1, t]

log t
= E(R∞[1, e]) a.s. and in expectation.

Let us point out that this result does not assert the finitness of E(R∞[1, e]) (otherwise,
the limit above is simply infinite). However, E(R∞[1, e]) is indeed always finite as we
shall see later.

Proof. We decompose the number of horizontal lines crossing the vertical axis during
the time interval [1, en] in the following way:

R∞[1, en] =

n−1∑
i=0

R∞[ei, ei+1].

For any i > 0, the invariance of the Poisson measure under the mapping

H → H

(u, t) 7→ (eiu, tei )

implies that the law of G∞ is also invariant under this transformation. Thus, it follows
that the sequence (R∞[ei, ei+1], i ≥ 0) is stationary. In particular, for any i ≥ 0, the r.v.
R∞[ei, ei+1] has the same law as R∞[1, e]. This already proves that

E[R∞[1, en]]

n
= E(R∞[1, e]).
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The sequence (R∞[ei, ei+1], i ≥ 0) is clearly not i.i.d. Yet, we will show that it is ergodic
since it is mixing. Thus, the ergodic theorem will implies that

lim
n→∞

R∞[1, en]

n
= E(R∞[1, e]) a.s. (2.1)

Finally, from (2.1) and using the monotony of R∞[1, t] with respect to t, we will conclude
that

lim
t→∞

R∞[1, t]

log t
= E(R∞[1, e]) a.s.

Thus, it remains to prove that the sequence (Xi := R∞[ei, ei+1], i ≥ 0) is mixing i.e.
that for any n,m and any bounded functions f : Rn+1 7→ R and g : Rm+1 7→ R,

lim
k→∞

E [f(X0, . . . , Xn)g(Xk, . . . , Xk+m)] = E [f(X0, . . . , Xn)]E [g(X0, . . . , Xm)] . (2.2)

Fix n,m ≥ 0 and k > n + 1. Let X̄k denote the number of horizontal lines crossing
the segment {0} × [ek, ek+1] when we remove all the atoms of Ξ below height en+1.
By construction, G∞ ∩ (R × (0, t)) is determined by the atoms of Ξ below height t. In
particular, this implies that (X0, . . . , Xn) is independent of (X̄k, . . . , X̄k+m). Moreover,
up to a translation, the graphical representation obtained by removing all atoms below
a given height as the same law as G∞. Thus, the vector (X̄k, . . . , X̄k+m) has the same
distribution as the vector (R∞[ek − en+1, ek+1 − en+1], . . . , R∞[ek+m − en+1, ek+m+1 −
en+1]), which is also equal, using the scaling property, to the law of (R∞[1− en+1−k, e−
en+1−k], . . . , R∞[em − en+1−k, em+1 − en+1−k]). Therefore, we obtain the limit in law

lim
k→∞

(X̄k, . . . , X̄k+m)
L
= (X0, . . . , Xm). (2.3)

On the other hand, adding atoms below a given height s can only decrease the number
of horizontal lines crossing the segment {0} × [s, t] (see for instance Equation (12) of [1]
for more details). This monotonicity result implies that, for any k > n+ 1,

Xk ≤ X̄k. (2.4)

We can now write

E [f(X0, . . . , Xn)g(Xk, . . . , Xk+m)]

= E
[
f(X0, . . . , Xn)g(X̄k, . . . , X̄k+m)

]
+ E

[
f(X0, . . . , Xn)(g(X̄k, . . . , X̄k+m)− g(Xk, . . . , Xk+m))

]
= E [f(X0, . . . , Xn)]E

[
g(X̄k, . . . , X̄k+m)

]
+ E

[
f(X0, . . . , Xn)(g(X̄k, . . . , X̄k+m)− g(Xk, . . . , Xk+m))

]
.

The first term of the r.h.s. of the last equality tends to E [f(X0, . . . , Xn)]E [g(X0, . . . , Xm)]

according to (2.3). Concerning the second term, we write

E
[
f(X0, . . . , Xn)(g(X̄k, . . . , X̄k+m)− g(Xk, . . . , Xk+m))

]
≤ 2||f ||∞||g||∞P{∃i ≤ m, X̄k+i 6= Xk+i}
≤ 2(m+ 1)||f ||∞||g||∞ sup

i≥k
P{X̄i 6= Xi}.

Finally, the following easy lemma ascertains that supi≥k P{X̄i 6= Xi} tends to 0 which
concludes the proof of (2.2).
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Lemma 2.2. Let (Uk) and (Vk) be two sequences of integer-valued random variables
such that

(i) Uk ≤ Vk for all k.
(ii) The sequence (Uk) is tight.

(iii) limk→∞P{Uk = a} − P{Vk = a} = 0 for every a.

Then,

lim
k→∞

P{Uk 6= Vk} = 0.

Proof. We first show by induction on i that

lim
k→∞

P{Vk 6= i, Uk = i} = 0.

Indeed, we find, using (i), that

P{Vk 6= 0, Uk = 0} = P{Uk = 0} − P{Vk = 0, Uk = 0} (2.5)

= P{Uk = 0} − P{Vk = 0}, (2.6)

which, according to (iii), tends to 0 as k tends to infinity. Now, for i ≥ 1, we write

P{Vk 6= i, Uk = i} = P{Uk = i} − P{Vk = i, Uk = i}
= P{Uk = i} − P{Vk = i}+ P{Vk = i, Uk < i}
≤ P{Uk = i} − P{Vk = i}+

∑
j<i

P{Vk 6= j, Uk = j}.

The induction hypothesis combined with (iii) implies that the r.h.s. of the last equation
tends to 0 as k tends to infinity. Hence, (2.5) holds for all i. Finally, writing that, for any
A > 0,

P{Vk 6= Uk} ≤ P{Uk ≥ A}+
∑
i<A

P{Vk 6= i, Uk = i},

and using the tightness of the sequence (Uk), we deduce that P(Vk 6= Uk) tends to 0 as k
tends to infinity.

3 Almost-sure convergence for the process on [0, 1]

We now translate Proposition 2.1 for the Hammersley process defined on the finite
interval [0, 1]. We use the notation R[a,b][s, t] for the number of horizontal lines crossing
the segment {0} × [s, t] in the graphical representation Ga,b obtained by using only the
atoms of Ξ in the strip [a, b]× (0,∞).

Proposition 3.1. Assume that µ 6= δ1. We have

lim
t→∞

R[0,1][0, t]

log t
= E

[
R∞[1, e]

]
a.s. and in L1.

Proof. As we already noticed, G0,1 coincides with G−∞,1 restricted to the strip [0, 1] ×
(0,∞). Furthermore, taking into account the atoms inside (1,+∞)× (0,∞) can create
new horizontal lines inside [0, 1]× (0,∞) but cannot remove those already present (see
Section 2.3.1 of [1] for details). Thus, the horizontal lines of G0,1 are a subset of the
horizontal lines of G∞. This domination implies in particular that

R[0,1][s, t] ≤ R∞[s, t].
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In particular, we get
R[0,1][0, t] ≤ R[0,1][0, 1] +R∞[1, t]

(we need this splitting since R∞[0, 1] is infinite). The quantity R[0,1][0, 1] is bounded by
the number of atoms in the box [0, 1]2. Thus, in view of Proposition 2.1, we find that

lim sup
t→∞

R[0,1][0, t]

log t
≤ E(R∞[1, e]) a.s. and in expectation.

Let us now prove the matching lower bound. Fix some N ≥ 0. For n ≥ N , we decompose
R[0,1][0, e

n] in the following way

R[0,1][0, e
n] = R[0,1][0, e

N ] +

n−1∑
i=N

R[0,1][e
i, ei+1].

For i ≥ N , let XN
i := R[0,eN−i][e

i, ei+1] be the number of horizontal lines attached to the
y-axis between heights ei and ei+1 when we consider only the atoms of Ξ with absciss in
the interval [0, eN−i]. Using the same monotonicity argument as above, we have, for any
i ≥ N ,

R[0,1][e
i, ei+1] ≥ XN

i .

Thus, for n ≥ N , we get

R[0,1][0, e
n] ≥ R[0,1][0, e

N ] +

n−1∑
i=N

XN
i .

Using again the invariance of the law of Ξ under the mappings

H → H

(u, t) 7→ (eiu, tei )

we deduce that the sequence (XN
i , i ≥ N) is stationary. In particular, for any i ≥ N , XN

i

has the same law as R[0,eN ][1, e]. Again, we prove that the sequence is mixing i.e. for any
n,m and any bounded functions f : Rn+1 7→ R and g : Rm+1 7→ R,

lim
k→∞

E
[
f(XN

N ,. . ., X
N
N+n)g(XN

k , . . . , X
N
k+m)

]
= E

[
f(XN

N ,. . ., X
N
N+n)

]
E
[
g(XN

N ,. . ., X
N
N+m)

]
.

The argument is the same as in the previous section. Indeed, consider, for k > N +n, the
number X̄N

k of horizontal lines crossing the y-axis between height ek and ek+1 when we
only take into account the atoms of Ξ in the domain [0, eN−k]× [eN+n+1,∞). It is easily
checked that the following holds

1. XN
k ≤ X̄N

k .
2. (X̄N

k , . . . , X̄
N
k+m) is independent of (XN

N , . . . , X
N
N+n).

3. limk→∞(X̄N
k , . . . , X̄

N
k+m)

L
= (XN

N , . . . , X
N
N+m).

These three properties imply, just as for Proposition 2.1, that the sequence is mixing.
Thus, the ergodic theorem implies the almost sure limit

lim inf
n→∞

R[0,1][0, e
n]

n
≥ lim
n→∞

∑n−1
i=N X

N
i

n
= E

[
XN
N

]
= E

[
R[0,eN ][1, e]

]
.

On the other hand, the sequence (R[0,eN ][1, e], N ≥ 0) increases to R∞[1, e] as N tends to
infinity. Thus, the monotone convergence theorem yields

lim
N→∞

E[XN
N ] = E

[
R∞[1, e]

]
which proves the convergence of R[0,1][0, t]/ log t towards E

[
R∞[1, e]

]
almost surely and

in expectation. Using Scheffé’s lemma, we also obtain the L1 convergence.
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Remark 3.2. In a previous paper [1], it was shown that the infinite graphical repre-
sentation exists, which is the same as saying that R∞(s, t) is finite for any 0 < s < t.
However, it was not proved that the expectation of R∞(s, t) is also finite. This is now a
consequence of the previous proposition combined with the main result of [1] stating
that cµ is always finite. Still, we point out that the arguments presented here do not
allow, by themselves, to recover that cµ is finite.

We now have all the tools needed to prove Theorem 1.1.

Proof of Theorem 1.1. Recall that the processes R and R[0,1] are time changed of each
other:

R(n) = R[0,1][0, t(n)],

where
t(n) := {t ≥ 0, card(Ξ ∩ [0, 1]× [0, t]×N) = n}

counts the number of atoms of Ξ inside the box [0, 1]× [0, t]. Since t(n)/n tends a.s. to 1

as n tends to infinity, we get from Proposition 3.1 that

lim
n→∞

R(n)

log n
= lim
n→∞

R[0,1][0, t(n)]

log t(n)

log t(n)

log n
= E [R∞[1, e]] = cµ a.s.

Furthermore, using the convergence in expectation of R(n)
logn towards the same limit (see

Theorem 2.1 of [1]), we also deduce the L1 convergence.
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