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Abstract

We consider the uniform infinite pyramid (UIP) defined in a previous article (Hénard,

Maurel-Segala, Singh 2024) as the local limit of uniformly sampled directed animals on the

square lattice, when their size grows to infinity. We interpret this random object as an

interacting particle system and show that it satisfies a remarkable intertwining property:

the particle system representing the UIP, which has long-range interactions, is the trace

of a simple branching/annihilating system with only local interactions. We prove similar

statements for the uniform infinite non-negative pyramid (IHP+) and the critical Boltzmann

half-pyramid (BHP).
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†LMO, Université Paris-Saclay. Email: edouard.maurel-segala@universite-paris-saclay.fr
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Figure 1: (a) A finite directed animal. Arrows between vertices are used to represent the adjacency

relation. (b). The same animal after rotation and scaling of the lattice. The animal is seen as a

particle system: here, the particles alive at time 3 are highlighted in yellow.

1 Introduction

This paper is concerned with the study of a particle system appearing as the local limit of

(uniformly sampled) directed animals on the square lattice. Let us briefly recall the definition

of these sets. We call directed animal (on the square lattice) a finite subset A ⊂ {(x, y) ∈ Z2 :

x + y ⩾ 0} such that every vertex v ∈ A which is not on the boundary line {(x, y) ∈ Z2 :

x+y = 0} has at least one neighbour either immediately on its left or immediately below it (cf.

Figure 1 (a)). The set of vertices on the boundary line are called the sources of the animal.

The study of directed animals began with Dhar [6, 8, 7], who discovered that, contrary to

their (much more complicated) undirected counterparts, it is possible to count them and obtain

explicit formulas for the number of directed animals with a given size and a given source set.

This model subsequently attracted much attention from the combinatorics and probabilistic

communities. We refer the reader to Flajolet and Sedgewick’s book [10], Bousquet-Mélou’s

ICM invited lecture [5], as well as [17, 11, 2, 18, 3, 4, 13, 1] and the references therein for

additional details.

In this paper, we are more specifically interested in looking at infinite random directed

animals. These random sets are obtained as the limit of uniformly sampled finite directed

animals when their size grows to infinity. These limits exist and are described in a previous

paper by the authors [12]. Let us quickly recall the construction of the main objects of our

study.

First, as is customary when working with directed animals, we rotate the lattice by 45◦

counter-clockwise and then scale it by a factor of
√
2 (see Figure 1 (b)). Therefore, the sources

of an animal A are now the vertices of A with y-coordinate equal to 0. More generally, we can

talk about the layer n of A, denoted An, defined as the subset of vertices with y-coordinate

equal to n, and we write An for the set of x-coordinates of these vertices. We observe that,

necessarily, An ⊂ 2Z if n is even and An ⊂ 2Z+ 1 if n is odd.
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Given a subset C ⊂ Z, we say that C is admissible if it is finite and either C ⊂ 2Z or

C ⊂ 2Z+1. If it also holds that C ⊂ N, then we say that C is positive admissible. Furthermore,

we define

[C] := (C + 1) ∪ (C − 1).

We observe that, if C is admissible, then any subset of [C] is also admissible. It also follows

from the definition of a directed animal that An+1 ⊂ [An] for all n.

With these notations, we can interpret an animal A as a particle system (An, n ⩾ 0) on Z
where A0 is the initial position of the particles and, more generally, An is the set of positions of

the particles alive at time n in the system.1 Furthermore, by the defining property of animals,

given An, the set of possible positions for the particles at time n+ 1 is [An]. One of the main

results of [12] (cf. Theorem 1 and Corollary 5) states that the particle system representing the

uniform infinite animal (UIP), defined as the limit of uniformly sampled finite directed animals,

is a Markov process with a remarkably explicit transition kernel.

Given a finite set C = {c1 < c2 < . . . < cℓ}, we write |C| := ℓ for the size of this set and,

provided that it is non-empty, we define its energy η(C) by

η(C) :=

ℓ−1∏
i=1

(ci+1 − ci − 1),

with the usual convention
∏0

1 = 1.

Definition 1 (UIP). The uniform infinite pyramid (UIP 2) is the Markov particle system Ā =

(Ān, n ⩾ 0) starting from a non-empty admissible set Ā0 and with transition kernel

Q̄(C,D) := P(Ān+1 = D | Ā0, . . . , Ān = C) =
η(D)

3|C|η(C)
(1)

for all D ⊂ [C] with D ̸= ∅.

Together with the UIP, there are two other Markov particle systems of special interest.

The first one corresponds to a finite, non-negative3 directed animal sampled according to the

critical Boltzmann law:

Definition 2 (BHP). The critical Boltzmann pyramid (BHP) is the Markov particle system

A = (An, n ⩾ 0) stating from a positive admissible set A0 and with transition kernel

Q(C,D) := P(An+1 = D |A0, . . . , An = C) =


1

(minC+1)η(C)3|C| for D = ∅,
(minD+1)η(D)

(minC+1)η(C)3|C| for D ̸= ∅ and D ⊂ [C] ∩ N,
(2)

which is absorbed when becoming empty ( i.e., if An = ∅, then An+1 = ∅).
1There is at most one particle per site. When the animal A is finite, the particle system ultimately becomes

extinct, i.e., An = ∅ for n large enough. For infinite animals, there is always at least one particle present at all

times.
2The ‘P’ in UIP refers to pyramid, which is the name given to an animal starting with a single source. We

keep it here for consistency with [12] and do likewise for the BHP and the UIP+. The Markov viewpoint we

adopt here allows for general starting configurations, though.
3We say that an animal is non-negative if the x-coordinates of its vertices are all non-negative.
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(a) UIP (b) BHP (c) UIP+

Figure 2: Simulations of the particle system of the UIP, BHP and UIP+. Here, we start with a

single source at 0 (i.e we construct pyramids).

The third Markov system is obtained in the same way as the UIP, but now taking the local

limit of uniformly sampled non-negative directed animals.

Definition 3 (UIP+). The uniform infinite non-negative pyramid (UIP+) is the Markov particle

system Ā+ = (Ā+
n , n ⩾ 0) starting from a non-empty, positive, admissible set Ā+

0 and with

transition kernel

Q̄+(C,D) := P(Ā+
n+1 = D | Ā+

0 , . . . , Ā
+
n = C) =

(minD+1)(maxD+2)η(D)

(minC+1)(maxC+2)η(C)3|C| (3)

for all D ⊂ [C] ∩ N with D ̸= ∅.

See Figure 2 for a simulation of these processes. Some comments are in order. First, by

definition, the UIP is simply the particle system where, given Ān, the configuration Ān+1 at the

next step is chosen with a probability proportional to its energy η(Ān+1) among all admissible

configurations (which are the non-empty subsets of [Ān]). Notice that the partition function

appearing in the denominator of (1) takes a remarkably simple form
∑

D⊂[Ān],D ̸=∅ η(D) =

3|Ān|η(Ān).

The formula for the BHP is similar to that for the UIP, with the addition of a minD + 1

multiplicative factor. Noticing that (minD + 1)η(D) = η(D ∪ {−2}), we can interpret the

BHP dynamics as selecting a configuration at random, proportional to its energy computed

after adding an immortal invisible particle at position −2 (which does not reproduce). We

also point out that, even though it is not immediate from the definition of its Markov kernel,

the BHP always goes extinct a.s. This follows immediately from the fact that the BHP is a

finite animal whose size N is chosen according to the critical Boltzmann weights, and then

sampled uniformly at random among all non-negative animals with N vertices; see again [12]

for additional details.
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(a) UIP (b) BHP (c) UIP+

Figure 3: Simulations of the branching-annihilating particle systems for the UIP, BHP, and UIP+.

The particles are colored in blue. The anti-particles are shown in red (and the muon for the UIP+

is represented as a green square). By keeping only the blue particles, we recover exactly the UIP

(a), BHP (b), and UIP+ (c) simulated in Figure 3.

The UIP+ arises as the local limit of directed animals conditioned to stay non-negative.

This conditioning translates, for the kernels of the particle systems, as a conditioning obtained

via Doob’s h-transform with h(D) := (minD+1)(maxD+2), which is harmonic for the UIP;

see equation (49) of [12].

Thus, because the energy function η is defined as a product of the distance (minus 1)

between particles, it follows that each particle x interacts only with its left ℓ and right r

neighbors through the term (x − ℓ − 1)(r − x − 1). Consequently, the interaction between

particles has infinite range. The aim of this paper is to show that, in fact, this interaction may

be understood as being created/mediated by invisible “anti-particles”. In the case of the UIP,

we will prove that we can construct a new system composed of particles and anti-particles,

where two particles of opposite types annihilate when they collide, and such that the trace

of this system, after erasing all the anti-particles (keeping only the particles), is exactly the

original UIP. The defining feature of this new model is that all particles and anti-particles

evolve independently, following nearest-neighbor displacement rules. Similar results hold for

the BHP and for the UIP+ 4. The exact statement of our main result is provided in Theorem

1. See Figure 3 for an illustration of these branching/annihilating particle systems.

The fact that particle systems associated with directed animals appear as traces of larger

Markov systems is a manifestation of intertwining properties enjoyed by the kernels of our

processes. This is reminiscent of the intertwining property for Dyson’s interacting Brownian

motion [19], as well as of the intertwining property of Bessel processes together with their

future infimum [14]. We provide additional comments on this analogy throughout the paper.

However, it is noteworthy to keep in mind that we are not working with a“conservative”system,

4For the UIP+, we will also introduce a new (single and eternal) particle called the “muon”.
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in the sense that the number of particles fluctuates over time. We are not aware of any other

branching/annihilating processes having this intertwining property.

Concerning the genealogy of the notion, the word “intertwining” for Markov kernels first

appeared in a technical report by Yor [20], then was quickly adopted by Diaconis and Fill [9],

who first studied the notion per se in an abstract setting. Long before, though, the notion had

been used without being named, as in the seminal paper of Rogers and Pitman on Markov

functions [15], where it is used to prove the infamous 2M-X Pitman theorem. In our discrete-

time setup, a convenient and very readable reference is the set of lecture notes by Swart [16].

2 Branching-Annihilating Particle System

2.1 States of the Particle System

Definition 4 (Simple and Critical Configurations). A configuration κ of our system consists

of a finite arrangement of a set A = {a1, . . . , ak} of particles • and a set B = {b1, . . . , bp} of

anti-particles ◦ on Z, satisfying the following properties:

• A and B are disjoint.

• All the particles • share the same parity: they are all located on either even sites or odd

sites.

• There is strict alternation between particles and anti-particles:

– At most one particle or anti-particle occupies any given site.

– No two consecutive particles are allowed without exactly one antiparticle between

them, and vice versa.

If |A| = |B|+ 1 (i.e., the alternation of particles • and antiparticles ◦ starts and ends with

a particle •), the configuration κ = (A,B) is called simple admissible, and the set of all such

configurations is denoted by S̄.
If |A| = |B| and −1 ⩽ min(B) < min(A), the configuration κ is called critical admissible,

and the set of all such configurations is denoted by S.

Remark 1. By construction, there can never be more than one particle or anti-particle on a

single site. Additionally, due to the alternation between particles and antiparticles, we have

|B| ∈ {|A|−1, |A|, |A|+1}. In fact, the difference |A|− |B| remains constant for a given model.

For the UIP, we are in the so-called simple case where |A| = |B| + 1. In contrast, the critical

case |A| = |B| arises when studying the BHP.

Definition 5 (Positive configuration). If (A,B) is critical admissible, we sometimes consider an

additional type of particle: the muon
→
Υ ∈ Z, which is unique in a configuration. The muon

satisfies the condition that there exists a particle a ∈ A and an anti-particle b ∈ B such that

the interval (b, a) contains no particles or antiparticles, and b <
→
Υ ⩽ a.
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0 1 2 3 4 5 6 7-1-2-3

(a) Simple configura-

tion

0 1 2 3 4 5 6 7-1-2-3

(b) Critical configu-

ration

0 1 2 3 4 5 6 7-1-2-3

(c) Positive configu-

ration

Figure 4: Examples of configurations. Particles are represented in blue, anti-particles in red, and

the muon is shown as a green box. Notice that the muon may overlap with a particle (but not

with an anti-particle).

Such a configuration κ = (A,B,
→
Υ) is called positive admissible, and we denote the set of

all such configurations by S̄+.

Definition 6. We call κ a configuration if it is either a simple or critical admissible configuration

(A,B), or a positive admissible configuration (A,B,
→
Υ). In all cases, we denote by π(κ) = A

the set of particles.

Remark 2. The distinction between simple, critical, and positive configurations arises from the

fact that each of these sets will be invariant under the branching/annihilating dynamics that

we will define in the next section. Consequently, a model starting, for example, with A = {0}
and B = ∅ will remain simple admissible at all times.

Proposition 1. Let A = {a1 < · · · < ak} be a non-empty admissible set.

(a) If A ⊂ N, we have

(min(A) + 1)η(A) = |{B : (A,B) is critical admissible }| = |{κ ∈ S : π(κ) = A}|.

(b) η(A) = |{B : (A,B) is simple admissible }| = |{κ ∈ S̄ : π(κ) = A}|.

(c) if A ⊂ N, we have

(min(A) + 1)(max(A) + 2)

2
η(A) = |{(B,

→
Υ) : (A,B,

→
Υ) is positive admissible }|

= |{κ ∈ S̄+ : π(κ) = A}|.

Proof. Statements (a) and (b) are straighforward. We just need to prove (c). We must place

an anti-particle between each consecutive particles. With the convention a0 = −2, it comes
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that

|{(B,
→
Υ) : (A,B,

→
Υ) is positive-admissible }|,

=

k∑
p=1

∏
1⩽i⩽k:q ̸=p

(ai − ai−1 − 1)|{(b,
→
Υ) : ap−1 < b <

→
Υ ⩽ ap}|,

=
k∑

p=1

∏
1⩽i⩽k:q ̸=p

(ai − ai−1 − 1)
(ap − ap−1 − 1)(ap − ap−1)

2
,

= η(A ∪ {−2})
k∑

p=1

ap − ap−1

2
,

= (min(A) + 1)η(A)(max(A) + 2)
1

2
.

2.2 Transitions of the particle system

We now define a dynamics for the particles and anti-particles that preserves the stability of

simple (resp. critical, resp. positive) configurations. We begin with the simple and critical

cases, which are easier to handle as they do not involve the muon.

Definition 7 (Dynamics for Simple and Critical Configurations). Let κ = (A,B) be a simple or

critical configuration, and suppose that for each a ∈ A, we are given a choice ξa ∈ {−1, 0, 1}.
We will define a new configuration κξ. To handle the case where several particles/anti-particles

may temporarily occupy the same site, we introduce two counting functions, µξ
A and µξ

B, which

map Z to N and count the new particles and antiparticles, respectively:

• µξ
A =

∑
a∈A:ξa∈{−1,0} δa−1 +

∑
a∈A:ξa∈{0,1} δa+1,

• µξ
B =

∑
b∈B δb +

∑
a∈A:ξa=0 δa.

This setup corresponds to keeping the previous anti-particles (the first term in µξ
B) and for each

a ∈ A:

• If ξa = 1, place a particle at a+ 1,

• If ξa = −1, place a particle at a− 1,

• If ξa = 0, place a particle at both a+ 1 and a− 1, and an antiparticle at a.

Finally, for each site with an antiparticle, if there are particles on the same site, remove

the antiparticle and one of the particles. More compactly, we define the new configuration as

follows:

Aξ = {x : (µξ
A − µξ

B)(x) = 1},

Bξ = {x : (µξ
A − µξ

B)(x) = −1}.
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The positive case is similar, but with a twist to deal with the muon.

Definition 8 (Dynamic for Positive Configuration). The process for the positive configuration

follows the same general structure as the simple and critical cases, with a modification to account

for the muon. We proceed as follows: we first define the functions µξ
A and µξ

B as before, and

then we introduce the following adjustments:

•
→
Υ

ξ

=
→
Υ+ 1→

Υ∈A, ξ→
Υ
∈{−1,0}

,

• µξ
→
Υ
= 1→

Υ∈A, ξ→
Υ
=−1

(δ→
Υ+1

− δ→
Υ−1

),

• νξA = µξ
A + µξ

→
Υ
.

The key modifications are as follows:

• The muon,
→
Υ, remains in the same position unless it occupies the same site as a particle

that jumps to the left or reproduces. In that case, the muon jumps to the right.

• µξ
→
Υ

acts as a correction to µξ
A. Specifically, if a particle on the site

→
Υ attempts to jump

to the left, the muon prevents this behavior and forces the particle to jump to the right

instead.

Finally, we apply the same rules for the configuration after the adjustments:

Aξ = {x : (νξA − µξ
B)(x) = 1},

Bξ = {x : (νξA − µξ
B)(x) = −1}.

The next proposition is key to proving our main result.

Proposition 2.

(a) If the configuration κ is in S (resp. S̄, resp. S̄+), then for any ξ ∈ {−1, 0, 1}|A| the same

is true for κξ.

(b) If A,κ′ are such that A′ := π(κ′) ⊂ [A] and κ′ is in S (resp. S̄, resp. S̄+), then there

exists at most one κ in S (resp. S̄, resp. S̄+) and at most one ξ ∈ {−1, 0, 1}|A| such that

π(κ) = A and κξ = κ′.

Remark 3. We will see later that in fact, for (b), there is also always existence of the couple

κ, ξ, but we don’t need it right now, and a direct proof would be trickier at this point.

Proof. Statement (a) is straightforward. We now prove (b). We first prove the result in the

case of simple/critical configurations. By construction, we have

µ := µξ
A − µξ

B =
∑
a∈A′

δa −
∑
b∈B′

δb.
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Furthermore, there is an antiparticle on layer A′ directly above a particle on layer A if and

only if that particle has reproduced:

{a : ξa = 0} = A ∩B′.

For all other particles, there is nothing directly above them (remember that other particles are

at least distance 2 apart), and they either jumped to the right or to the left without anyone

crossing them. If they jumped to the right, there will be one more particle than antiparticles

to the right of them on the next layer; otherwise, the number will be the same:

{a : ξa = 1} = {a ∈ A \B′ :
∑
x>a

µ(x) = 1},

{a : ξa = −1} = {a ∈ A \B′ :
∑
x>a

µ(x) = 0}.

Hence, we have completely recovered ξ. From there, we deduce µξ
A, which is a function of A

and ξ, and µξ
B = µξ

A − µ. Finally, we get that

B = {x /∈ A : µξ
B(x) = 1}.

We now turn our attention to the case of positive configurations. Here we need to tweak

the previous construction slightly to account for the muon
→
Υ. If we know

→
Υ

′
, we know that

→
Υ ∈ {

→
Υ

′
,
→
Υ

′
− 1}. If it was in

→
Υ

′
− 1, it must have jumped, but this was only possible if there

was a particle in
→
Υ

′
− 1. Conversely, if there was a particle in

→
Υ

′
− 1, it was not possible for

→
Υ to be in

→
Υ

′
since to the left of

→
Υ, there is always an antiparticle before any particles. So we

can recover the position of the muon:

→
Υ =

→
Υ

′
− 1→

Υ
′
−1∈A

.

With this in mind, we reconstruct the rest:

µ :=
∑
a∈A′

δa −
∑
b∈B′

δb

{a : ξa = 0} = A ∩B′

{a : ξa = 1, a ̸=
→
Υ} = {a ∈ A \B′ :

∑
x>a

µ(x) = 1}

{a : ξa = −1, a ̸=
→
Υ} = {a ∈ A \B′ :

∑
x>a

µ(x) = 0}

and if
→
Υ ∈ A:

ξ→
Υ
= (1→

Υ
′
=

→
Υ
− 1→

Υ
′
=

→
Υ+1

)1→
Υ /∈B′

.

Thus, we have completely recovered ξ. Finally, we know µξ
→
Υ
, and from there, we deduce µξ

B,

and then B.
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2.3 Random dynamics of the particle systems

From the previous results, we can now define a random dynamic for the system. Given a

configuration κn, we choose independently, from the past, a sequence ξn uniformly distributed

in {−1, 0, 1}|An|, where An = π(κn) is the set of particles in configuration κn. We then update

the configuration as follows:

κn+1 = κξn
n .

By Proposition 2 (a), the sets S, S̄, and S̄+ remain stable under this dynamic. Thus, this

procedure defines three Markov kernels: P , P̄ , and P̄+, evolving on simple, critical, and positive

configurations, respectively.

Theorem 1.

1. Suppose that Ā0 ⊂ Z is a non-empty admissible set and B̄0 has uniform distribution in

{B̄ : (Ā0, B̄) ∈ S̄}, then the Markov chain (Ān, B̄n)n⩾0 with kernel P̄ on S̄ started from

(Ā0, B̄0) is such that:

(a) (Ān, n ⩾ 0} has the law of the UIP started from the source set Ā0 i.e. it is a Markov

chain with kernel Q̄ defined by (1).

(b) For all n, given (Ā0, . . . , Ān) the law of B̄n is uniform on {B̄ : (Ān, B̄) ∈ S̄}.

2. Suppose that A0 ⊂ N is a non-empty admissible set and that B0 has uniform distribution

in {B : (A0, B) ∈ S}, then the Markov chain (An, Bn)n⩾0 with kernel P on S started

from (A0, B0) is such that:

(a) (An, n ⩾ 0) has the law of the BHP started from the source set A0 i.e. it is a Markov

chain with kernel Q defined by (2).

(b) for all n, given (A0, . . . , An) the law of Bn is uniform on {B : (An, B) ∈ S}.

3. Suppose that Ā+
0 ⊂ N is a non-empty admissible set and that (B̄+

0 ,
→
Υ0) has uniform

distribution in {(B̄+,
→
Υ) : (Ā+

0 , B̄
+,

→
Υ) ∈ S̄+}, then the Markov chain (Ā+

n , B̄
+
n ,

→
Υ)n⩾0

with kernel P̄+ on S̄+ started from (Ā+
0 , B̄

+
0 ,

→
Υ) is such that:

(a) (Ā+
n , n ⩾ 0) has the law of the UIP+ started from the source set Ā+

0 i.e. it is a

Markov chain with kernel Q̄+ defined by (3).

(b) for all n, given (Ā+
0 , . . . , Ā

+
n ) the law of (B̄+

n ,
→
Υ) is uniform on the set {(B̄+,

→
Υ) :

(Ā+
n , B̄

+,
→
Υ) ∈ S̄+}.

(c) Furthermore, the process (Ā+
n ,

→
Υ)n∈N is also, y itself, a Markov chain living on the

state space

{(A = {a1 < · · · < ak},
→
Υ ∈ N) :

→
Υ ∈ ⊔k

i=2Jai−1 + 2; aiK}
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with transition kernel Q∗ defined by:

Q⋆((A,
→
Υ), (A′,

→
Υ

′
))

=
η(A′,

→
Υ

′
)(min(A′) + 1)

3|A|η(A,
→
Υ)(min(A) + 1)

1
(
→
Υ=

→
Υ

′
or

→
Υ

′
−1=

→
Υ∈A)

1(A′⊂[A] and A ̸=∅) (4)

where, denoting by i the index such that
→
Υ ∈ Jai−1 + 2; aiK, we have set

η(A,
→
Υ) :=

→
Υ− ai−1 − 1

ai − ai−1 − 1
η(A).

Proof. The three cases have almost identical proofs. Let us prove the first assertion for the

UIP. Following Swart [16], it is enough to prove the property for n = 1 and then conclude by

induction. So, given Ā0, we choose B̄0 uniformly such that κ0 = (Ā0, B̄0) is in S̄. Then we

choose ξ1 uniformly in {−1; 0; 1} and we define (Ā1, B̄1) = κ1 := κξ1
0 . We now compute the

law of (Ā1, B̄1). By construction Ā1 ⊂ [Ā0] and

P((Ā1, B̄1) = (a1, b1))

=
∑

B̄0:(Ā0,B̄0)∈S̄

1

|{B̄ : (Ā0, B̄) ∈ S̄}|
∑

ξ∈{−1;0;1}|Ā0|

1

|{−1; 0; 1}|Ā0||
1(Ā0,B̄0)ξ=(a1,b1). (5)

But now, according to the (b) of Proposition 2 there is at most one couple (B̄0, ξ) such that

(Ā0, B̄0)
ξ = (a1, b1) so that

P((Ā1, B̄1) = (a1, b1)) ⩽
1

η(Ā0)3|Ā0|
1a1⊂[Ā0]

where we used Proposition 1 which tells us that |{B̄0 : (Ā0, B̄0) ∈ S̄}| = η(Ā0).

Now we sum over all possible values of b1 such that (a1, b1) ∈ S̄, since we know from

Proposition 1 that there are η(a1) = |{b1 : (a1, b1) ∈ S̄}| possibilities, we find that

P(Ā1 = a1) ⩽
η(Ā1)

η(Ā0)3|Ā0|
1a1⊂[Ā0] = Q̄(Ā0, a1).

But since Q is a kernel, summing on a1 gives 1 and since the left hand side is a probability

measure it must also gives 1. This means that all the inequality above is, in fact, an equality

and therefore:

P((Ā1, B̄1) = (a1, b1)) = Q̄(Ā0, a1)
1

|{b1 : (a1, b1) ∈ S̄}|
i.e. starting from B uniformly distributed and applying the dynamic, we conlude that Ā evolves

according to kernel Q̄ and B̄ remains uniformly distributed at all times.

The proof of the second and third statements for the BHP and the UIP+ respectively are

similar. We leave out the details for the reader.

Let us observe that, as a byproduct of the proof, we have established the existence of a

solution for statement (b) of Proposition 2:
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Corollary 1. If A,κ′ is such that A′ := π(κ′) ⊂ [A] and κ′ is in S (resp. S̄ resp S̄+) then there

exists unique κ in S (resp. S̄ resp S̄+) and a unique ξ ∈ {−1; 0; 1}|A| such that π(κ) = A and

κξ = κ′.

Remark 4. We have constructed a simple dynamic on sets of particles and anti-particles, where

the projection obtained by deleting the anti-particles maps to the UIP, BHP, or UIP+ models.

The inclusion of the anti-particles B arises naturally from the computations in Proposition 1.

However, the choice of dynamic for the anti-particles is only one of several possible options.

We have opted for what is arguably the simplest dynamic: the anti-particles remain stationary.

Nonetheless, we could have chosen a different dynamic for the anti-particles. For instance,

we could allow the anti-particles to move according to independent lazy simple random walks.

More formally, consider a simple configuration

κ = (A = {a1 < · · · < ak}, B = {b1 < · · · < bk−1}),

where ai < bi < ai+1 for each i, and define a new dynamic as follows. As before, we choose ξ

uniformly at random in {−1, 0, 1}|A| and, independently, we pick V1, . . . , Vk−1 i.i.d., such that

P(Vi = 1) = P(Vi = −1) = u, P(Vi = 0) = 1− 2u,

for some parameter 0 ⩽ u ⩽ 1
2 . We then define the new positions of the anti-particles as

b̂i =


bi + Vi if ai < bi + Vi < ai+1,

ai + 1 if bi + Vi < ai + 1,

ai+1 − 1 if ai+1 − 1 < bi + Vi.

Thus, the new configuration for the anti-particles is B̂ = b̂1 < · · · < b̂k−1, and the updated

configuration is

κ′ = (A, B̂)ξ.

This dynamic, where the anti-particles evolve according to lazy random walks, also preserves

the intertwining property with the UIP. In fact, looking back at the proof of Theorem 1, the

only essential property for the dynamic of the anti-particles B is that each anti-particle bi

remains uniformly distributed in the interval Jai+1; ai+1−1K. Even more exotic behaviors can

be considered for the anti-particles, yet, as long as this condition is satisfied, the results will

hold.
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