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Abstract

We prove that any vertex-reinforced random walk on the integer lattice with non-
decreasing reinforcement sequence w satisfying w(k) = o(kα) for some α < 1/2 is
recurrent. This improves on previous results of Volkov [9] and Schapira [6].
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1 Introduction

In this paper, we consider a one-dimensional vertex-reinforced random walk (VRRW)
with non-decreasing weight sequence w : N → (0,∞), that is a stochastic process
X = (Xn)n≥0 on Z, starting from X0 = 0, with transition probabilities:

P{Xn+1 = Xn ± 1 | Fn} =
w(Zn(Xn ± 1))

w(Zn(Xn + 1)) + w(Zn(Xn − 1))

where Fn
def
= σ(X1, . . . , Xn) is the natural filtration of the process and Zn(x)

def
= #{0 ≤

k ≤ n,Xk = x} is the local time of X on site x at time n. This process was first
introduced by Pemantle in [3] and then studied in the linear case w(k) = k + 1 by
Pemantle and Volkov in [5]. They proved the surprising fact that the walk visits only
finitely many sites. This result was subsequently improved by Tarrès [7, 8] who showed
that the walk eventually gets stuck on exactly 5 consecutive sites almost surely. When
the reinforcement sequence grows faster than linearly, the walk still gets stuck on a
finite set but whose cardinality may be smaller than 5, see [1, 9] for details. On the
other hand, Volkov [9] proved that for sub-linearly growing weight sequences of order
nα with α < 1, the walk necessarily visits infinitely many sites almost-surely. Later,
Schapira [6] improved this result showing that, when α < 1/2, the VRRW is either
transient or recurrent. The main result of this paper is to show that the walk is, indeed,
recurrent.

Theorem 1.1. Assume that the weight sequence is non-decreasing and satisfies w(k) =

o(kα) for some α < 1/2. Then X is recurrent i.e. it visits every site infinitely often
almost-surely.
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Recurrence for VRRW with weak reinforcements

Let us mention that, simultaneously with the writing of this paper, a similar result
was independently obtained by Chen and Kozma [2] who proved recurrence for the
VRRW with weights of order nα, α < 1/2, using a clever martingale argument combined
with previous local time estimates from Schapira [6]. The argument in this paper, while
also making use of a martingale, is self-contained and does not rely upon previous
results of Volkov [9] or Schapira [6]. In particular, we do not require any assumption on
the regular variation of the weight function w.

2 A martingale

Obviously, multiplying the weight function by a positive constant does not change
the process X. Thus, we now assume without loss of generality that w(0) = 1. We
define the two-sided sequence (ax)x∈Z by

ax
def
=

{
1− 1

(x+2)1+ε for x ≥ 0
1
2 for x < 0

where ε > 0 will be chosen later during the proof of the theorem. Define also

Ak
def
=

∞∏
x=−k

ax ∈ (0, 1).

We construct from X two processes (Mn)n≥0 and (∆n(z), z < Xn)n≥0 in the following
way:

1. Initially set M0
def
= 0 and ∆0(z)

def
= 1 for all z < 0 = X0.

2. By induction, Mn and (∆n(z), z < Xn) having been constructed,

• if Xn = x and Xn+1 = x− 1, then

Mn+1
def
= Mn − ax∆n(x− 1)

∆n+1(z)
def
= ∆n(z) for z < x− 1,

• if Xn = x and Xn+1 = x+ 1, then

Mn+1
def
= Mn + ax∆n(x− 1)w(Zn(x−1))

w(Zn(x+1))

∆n+1(z)
def
=

{
∆n(z) for z < x,

ax∆n(x− 1)w(Zn(x−1))
w(Zn(x+1)) for z = x.

Note that the quantities ∆ have a simple interpretation: for any n and z < Xn, the value
∆n(z) is positive and corresponds to the increments of Mn the last time before n that
the walk X jumped from site z to site z + 1 (with the convention ∆n(z) = 1 for negative
z if no such jumps occurred yet). By extension, we also define ∆n

def
= ∆n(Xn) at the

current position as the "would be" increment of Mn if X makes its next jumps to the
right (at time n+ 1) i.e.

∆n
def
= aXn∆n(Xn − 1)

w(Zn(Xn − 1))

w(Zn(Xn + 1))
.

We will also use the notation τy to denote the hitting time of site y,

τy
def
= inf{n ≥ 0, Xn = y} ∈ [0,∞].
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Proposition 2.1. The process M is an Fn-martingale and, for n ≥ 0, we have

Mn =

n−1∑
i=0

1{Xi+1=Xi+1}
(
1− aXi+1

1{∃j∈(i,n], Xj=Xi}
)

∆i +
1

2
inf
i≤n

Xi (2.1)

In particular, for y = 1, 2, . . . , the process Mn∧τ−y is bounded below by −y/2, hence it
converges a.s.

Proof. Since ∆n(·) and Zn(·) are Fn-measurable, by definition of M ,

E[Mn+1 | Fn]

= E

[
Mn + aXn∆n(Xn−1)

(
w(Zn(Xn − 1))

w(Zn(Xn + 1))
1{Xn+1=Xn+1} − 1{Xn+1=Xn−1}

) ∣∣∣Fn]
=Mn+aXn∆n(Xn−1)

(
w(Zn(Xn−1))

w(Zn(Xn+1))
P{Xn+1 =Xn+1 | Fn} −P{Xn+1 =Xn−1 | Fn}

)
= Mn

thus M is indeed a martingale. Furthermore, by construction, at each time i when the
process X crosses an edge {x, x + 1} from left to right, the process M increases by
∆i = ∆i+1(x) > 0. If at some later time, say j > i, X crosses this edge again (and thus
in the other direction), the martingale decreases by ax+1∆j(x) = ax+1∆i. Moreover, by
convention ∆0(z) = 1 and az = 1

2 for z < 0 so that M decreases by 1
2 each time it crosses

a new edge of the negative half line for the first time. Putting these facts together, we
get exactly (2.1). Finally, since az < 1 for any z ∈ Z, each term in the sum (2.1) is
positive, hence Mn∧τ−y is bounded below by 1

2 infi≤n∧τ−y Xi ≥ −y/2.

Proposition 2.2. Let y > 0. For n ≤ τ−y, we have

∆n(z) ≥ Ay
w(Zn(z))w(Zn(z + 1))

for any −y ≤ z ≤ Xn. (2.2)

Proof. We prove by induction on n that for n ≤ τ−y,

∆n(z) ≥
∏z
i=−y ai

w(Zn(z))w(Zn(z + 1))
for any −y ≤ z ≤ Xn. (2.3)

Recalling that w(k) ≥ 1 and ak ≤ 1 for any k, it is straightforward that (2.3) holds for
n = 0. Now, assume the result for n and consider the two cases:

• If Xn+1 = Xn−1. Then for any −y ≤ z ≤ Xn+1, we have ∆n+1(z) = ∆n(z) whereas
w(Zn+1(z)) ≥ w(Zn(z)). Thus (2.3) holds for n+ 1.

• If Xn+1 = Xn + 1. Again, we have ∆n+1(z) = ∆n(z) for any −y ≤ z ≤ Xn. It
remains to check that ∆n+1(Xn+1) satisfies the inequality:

∆n+1(Xn+1) = ∆n+1 = aXn+1∆n+1(Xn)
w(Zn+1(Xn))

w(Zn+1(Xn+1 + 1))

≥ aXn+1

∏Xn
i=−y ai

w(Zn(Xn))w(Zn(Xn + 1))

w(Zn+1(Xn))

w(Zn+1(Xn+1 + 1))

≥
∏Xn+1

i=−y ai

w(Zn+1(Xn+1))w(Zn+1(Xn+1 + 1))
.
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We can now recover, with our assumptions on w, Volkov’s result [9] stating that the
walk does not get stuck on any finite interval.

Proposition 2.3. For any y > 0, we have

lim sup
n

Xn = +∞ on the event {τ−y =∞}.

Proof. On {τ−y =∞}, the combination of (2.1) and Proposition 2.2 give

Mn ≥
n−1∑
i=0

1{Xi+1=Xi+1}
(
1− aXi+11{∃j>i,Xj=Xi}

) Ay
w(Zi(Xi))w(Zi(Xi + 1))

− y − 1

2
. (2.4)

Denoting by en = (sn, sn+1) the edge which has been most visited at time n, we deduce
that on the event {τ−y =∞},

Mn ≥ Zn(en) (1− asn+1)
Ay

w(Zn(sn))w(Zn(sn + 1))
− y − 1

2
,

where Zn(en) denotes the number of times the edge en has been crossed from left to
right before time n. Using that max(Zn(sn), Zn(sn+1)) ≤ 2Zn(en) and that w(k) = o(

√
k)

and that Mn∧τ−y converges, we conclude that on {τ−y = ∞}, either Zn(en) remains
bounded or asn+1 takes values arbitrarily close to 1. In any case, this means that X
goes arbitrarily far to the right hence lim supnXn = +∞.

3 Proof of theorem 1.1

Fix y > 0 and consider the event Ey = {infnXn = −y + 1}. Pick v > 0 and define Nz
to be the number of jumps of X from site z to site z + 1 before time τv (according to
the previous proposition τv is finite on Ey so all the Nz are finite). From (2.4), grouping
together the contributions to M of each edge (z, z + 1), we get, on Ey,

Mτv ≥ Ay

v−1∑
z=−y+1

1 + (Nz − 1)(1− av)
w(Zτv (z))w(Zτv (z + 1))

− y − 1

2

≥ Ay

v−1∑
z=−y+1

1 + (Nz − 1)(1− av)
w(Nz−1 +Nz)w(Nz +Nz+1)

− y − 1

2

≥ Ay

v−1∑
z=−y+1

1
2 +Nz(1− av)

w(Nz−1 +Nz)w(Nz +Nz+1)
− y − 1

2

≥ CAy

v−1∑
z=−y+1

1
2 + Nz

(v+2)1+ε

(Nz−1 +Nz)α(Nz +Nz+1)α
− y − 1

2

where C > 0 and α < 1/2 only depend on the weight function w. Finally, lemma 4.1
below states that if we choose ε > 0 small enough, the sum above becomes arbitrarily
large almost surely as v tends to infinity. On the other hand, we also know that M
converges on this event so necessarily P{Ey} = 0. Since this result holds for any y > 0,
we get inf Xn = −∞ a.s. By symmetry, supXn = +∞ a.s. which implies that the walk
visits every site of the integer lattice infinitely often almost surely.

4 An analytic lemma

Lemma 4.1. For any 0 < α < 1
2 , there exists ε > 0 such that

lim sup
K→∞

inf
(b0,...,bK)∈[1,∞)K+1

K∑
i=0

1
2 + bi

(K+2)1+ε

(bi−1 + bi)α(bi + bi+1)α
=∞ (4.1)

ECP 0 (2012), paper 0.
Page 4/6

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.vVOL-PID
http://ecp.ejpecp.org/


Recurrence for VRRW with weak reinforcements

(with the convention b−1 = bK+1 = 0).

Proof. The idea is to group the bi’s into packets with respect to their value. Consider a
reordering of the bi’s:

b̃0 ≥ b̃2 ≥ . . . ≥ b̃K .
Fix a positive integer l and group these numbers into l + 1 packets

b̃0, . . . , b̃K1︸ ︷︷ ︸
packetP1

, b̃K1+1, . . . , b̃K2︸ ︷︷ ︸
packetP2

, . . . , b̃Kl−1
, . . . , b̃Kl︸ ︷︷ ︸

packetPl

, b̃Kl+1, . . . , b̃K︸ ︷︷ ︸
packetPl+1

.

We can choose the Ki’s growing geometrically such that the sizes of the packets satisfy

#P1 ≥
K

4l
and #Pi ≥ 3(#P1 + . . .+ #Pi−1). (4.2)

We now regroup each term of the sum (4.1) according to which packet the central bi
(the one appearing in the numerator) belongs. Assume by contradiction that the sum
(4.1) is bounded, say by A.

We first consider only the terms corresponding to packet P1. Since there are at least
K
4l

terms, we obtain the inequality

A ≥ K

4l

1
2 +

b̃K1

(K+2)1+ε

(2b̃0)α(2b̃0)α
≥ C b̃K1

Kεb̃2α0

where the constant C (which may change from one line to the next) does not depend on
K or on the sequence (bi). We now deal with packets k = 2, . . . , l. Thanks to (4.2) and
since every denominator in (4.1) involves only two bj other than the one appearing in
the numerator, there are least one third of the terms belonging to packet Pk that do not
contain any bj from a packet with smaller index (i.e. with larger value). So, there is at
least K

4l
such terms for which we can get a lower bound the same way we did for packet

P1. We deduce that, summing over the terms corresponding to packet Pk,

b̃Kk ≤ CKεb̃2αKk−1
for i = 1, . . . , l, (4.3)

with the convention K0 = 0 and where C again does not depend on K or (bi). Finally,
we obtain a lower bound for the sum of the terms belonging to the last packet Pl+1

by taking 1
2 as the lower bound for the numerator, and considering only the terms for

which no bi’s from any other packet appear in the denominator (again, there are at least
K
4l

such terms). This give the inequality

K ≤ Cb̃2αKl . (4.4)

Combining (4.3) and (4.4), we get by induction that for some constant C depending on
l,

K ≤ CKε(2α+(2α)2+...+(2α)l)b̃
(2α)l+1

0 ≤ CK
ε

1−2α b̃
(2α)l+1

0 .

For ε small enough such that ε
1−2α ≤

1
2 we obtain

b̃0 ≥
1

C
K

1

2(2α)l+1 .

Recalling that the sum (4.1) contains the term corresponding to b̃0 but is also, by as-
sumption, bounded above by A, we find

A ≥
1
2 + b̃0

(K+2)1+ε

(2b̃0)α(2b̃0)α
≥ CK

1−2α

2(2α)l+1−1−ε.

Finally, we choose l large enough such that 1−2α
2(2α)l+1−1−ε > 0 and we get a contradiction

by letting K tends to infinity.
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