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Figure 1: Simulation of the coloring process on a binary tree of height 15.

Abstract
We study a random sequential coloring process on finite regular trees, where the root is initially

colored in blue and the leaves in red. Then, the remaining vertices are selected uniformly at random
and colored sequentially, each vertex inheriting the color of its closest previously colored vertex. We
prove that, as the height of the tree tends to infinity, blue vertices appear arbitrarily close to the
leaves with high probability, while red vertices persist at bounded distance from the root. We also
show that this procedure yields a non-degenerate infinite-volume limit on the infinite regular tree, in
contrast with the Euclidean Poissonian coloring.

Introduction
We study a random coloring procedure on regular trees, in which all vertices are colored sequentially at
random, each vertex taking, at the time it is picked, the color of one of its closest already colored vertices.
This model can be interpreted as a growth process driven by local competition between different species
(i.e. colors). Alternatively, it may also be interpreted as a variant of the classical voter model where
new settlers take the political opinion of one of their neighbors already settled.

A similar coloring procedure was previously defined and studied in the Euclidean setting in [6, 1, 3].
In these works, the authors consider the unit cube [−1, 1]d. Initially, the origin is colored in blue and
the boundary of the cube in red. Subsequently, independent, uniformly sampled random points fall in
[−1, 1]d and, upon arrival, each point takes the color of the nearest point that has appeared so far. This
procedure ultimately creates a random coloring of the unit cube1.

∗LPSM, Sorbonne Université, France, anne.laure.basdevant@normalesup.org
†CNRS and LMO, Université Paris-Saclay, France arvind.singh@universite-paris-saclay.fr
1This construction produces only a countable set of colored sample points but can be subsequently extended to a coloring

of the whole cube by assigning to each location the color of the points in its infinitesimal neighborhood (with an additional
‘gray’ interface corresponding to accumulation points from both colors).
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One of the main results in [6, 3] is that there exists a.s. an open region containing the origin that
is fully blue i.e. all red vertices remain at a positive distance from the initial blue vertex. On the
other hand, the converse question of whether there may exist blue vertices arbitrarily close to the red
boundary with positive probability is more delicate and still remains open, see open Question 1.4 in [3]
and the discussion preceding Corollary 1 in [6] for more details. Numerical simulations indicate that,
in dimension d = 2, the red boundary is “protected” so that, a.s., blue vertices do not reach the red
boundary. However, this behaviour may depend finely on the dimension d and may be false when d
become large enough as, informally, there are more space and more “directions of attack” for the blue
vertices to reach the red boundary.

With this question in mind, we investigate here an analogous problem on trees which, heuristically,
may be seen as letting the dimension d → ∞. While our framework is here discrete rather than continu-
ous, the coloring rule remains the same with a mechanism inducing long-range dependencies and complex
spatial correlations, even though the underlying graph has a simple hierarchical structure. More pre-
cisely, we consider a finite rooted K-ary tree with height ℓ whose root is initially colored in blue and
whose leaves are colored in red. The remaining vertices are colored one by one, in a random order, by
adopting the color of the closest previously colored vertex; ties are broken uniformly at random. The
main contribution of the paper is to show that the final red and blue regions exhibit substantial mixing
with, as the height ℓ of the tree increases to infinity, some blue vertices reaching maximum height ℓ − 1
(just below a red leaf) while some red vertices remain at a bounded distance from the origin.

Main results
We now introduce some notation, make a formal definition of the model and state our main results.

Let Tℓ be a finite tree, rooted at o and with K ≥ 2 children per vertex and with height ℓ. For
u, v ∈ Tℓ, we let d(u, v) denote the usual graph distance in Tℓ and |v| := d(o, v) is the height of the vertex
v in the tree. The coloring procedure proceeds as follows:

• Initially, at time k = 0, we color the root o ∈ Tℓ in blue and each of the Kℓ leaves in red. We will
denote by B

(ℓ)
k the set of blue vertices and by R

(ℓ)
k the set of red vertices at time k. Hence, B

(ℓ)
0

consists only of the root of Tℓ and R
(ℓ)
0 is the set of leaves.

• At time k ≥ 0, we pick uniformly at random an uncolored vertex v of Tℓ and consider the set
of vertices u ∈ B

(ℓ)
k ∪ R

(ℓ)
k such that d(v, u) = d(v, B

(ℓ)
k ∪ R

(ℓ)
k ) i.e. the vertices that are already

colored and closest to v. We then pick u uniformly at random from this set and color v with the
same color as u. We then set R

(ℓ)
k+1 = R

(ℓ)
k and B

(ℓ)
k+1 = B

(ℓ)
k ∪ {v} if v has been colored in blue and

B
(ℓ)
k+1 = B

(ℓ)
k and R

(ℓ)
k+1 = R

(ℓ)
k ∪ {v} if v has been colored in red.

• We continue this procedure until all vertices have been colored and we denote by B(ℓ) (resp R(ℓ))
the final set of blue (resp. red) vertices.

See Figure 1 for an illustration of the coloring procedure. We point out that, as can be seen on this
simulation, the blue set B(ℓ) (and obviously also the red set R(ℓ)) need not be connected. We are
particularly interested in the following quantities:

Mℓ := max{|v| : v ∈ B(ℓ)}, mℓ := min{|v| : v ∈ R(ℓ)},

i.e. the maximal height reached by the blue region and the minimal height reached by the red region.

Theorem 1. We have
lim

ℓ→∞
P(Mℓ = ℓ − 1) = 1. (1)

inf
ℓ≥1

P(mℓ = 1) > 0. (2)

Equation (1) shows, as stated in the introduction, that even though blue vertices all originate from
a single seed at the origin, some blue vertex will eventually reach maximal height as the tree’s height
increases. This result contrasts with the behavior of the coloring process on Euclidean space where it is
known that, at least with some non-zero probability, the blue vertices do not reach the boundary2.

2The open question mentioned previously is to determine whether this occurs with probability 1.
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Let us fix ℓ < ℓ′. There is a natural coupling for the coloring processes on Tℓ and Tℓ′ obtained by
considering the same ordering of the vertices and simply ignoring vertices v with height |v| > ℓ when
coloring Tℓ. With this coupling, it is clear that

B(ℓ) ⊂ B(ℓ′) a.s. for all ℓ < ℓ′.

Therefore, we can define a random coloring (B(∞), R(∞)) of the infinite rooted K-ary tree T∞ by setting
the blue set as B(∞) := ∪ℓ≥1B(ℓ) and the red set as the complement R(∞) := T∞ \ B(∞).

Statement (2) of Theorem 1 shows that, even though the number of red leaves increases with the
height of the tree, the coloring remains non-trivial on the limiting infinite tree T∞. In fact, we can say
a little more.

Proposition 2. The sequence (mℓ)ℓ≥1 converges (almost surely under the natural coupling, and hence
in distribution) to a finite random variable m∞ such that P(m∞ = 1) > 0. In particular, the limiting
coloring process on the infinite rooted K-ary tree T∞ is non-degenerate, and we have

P
(
at least one child of the root is colored red

)
> 0.

We emphasize that this result contrasts with the Euclidean setting: if one considers the Poissonian
coloring in a ball with a red boundary condition and a blue seed at the origin, then letting the radius
go to infinity (and using scaling) leads to a trivial limit in which the coloring becomes entirely blue. On
the infinite tree T∞, the limit remains non-trivial because the red seeds do not disappear but are now
pushed to infinity i.e. to the ideal boundary of the tree. This is reminiscent of phenomena in hyperbolic
geometry, where infinite-volume limits of random structures may naturally live on the ideal boundary of
the space. A related example is the recently introduced model of ideal Poisson–Voronoi tessellations [5].
In fact, our approach on trees can be adapted to Poissonian coloring in hyperbolic space as detailed in
the forthcoming work [4].

Outline of the paper
The proof of (1) is carried out in Section 1 and relies on a recursive renormalization argument. Roughly
speaking, we show that with high probability one can find, at intermediate heights, pairs of disjoint sub-
trees whose roots are colored blue and whose boundary conditions resemble those of the original tree.
This allows us to compare the growth of the blue region with a supercritical Galton–Watson process,
yielding a quantitative lower bound on the number of blue vertices.

Proposition 2 together with (2) are proved in Section 2. This is done by defining the coloring process
directly on the infinite tree T∞. In this setting, the color of a given vertex can be determined by an
infinite sequence of local comparisons, which naturally leads to the notion of an ancestral path associated
with each vertex. We introduce an alternative construction of this path based on record times of an i.i.d.
sequence, and we define a random subset of vertices encoding the information required to determine the
final color of a given vertex. This construction allows us to characterize the event that a vertex ends up
red in terms of the absence of the root from this random subset. Finally, using quantitative estimates
on record processes together with geometric properties of regular trees, we prove that every vertex has
a strictly positive probability of ending up red from which Proposition 2 and (2) follow.

1 The blue vertices reach the leaves
In this section, we establish (1) of Theorem 1. We begin with some convention:

• From now on, to avoid cumbersome notations, we shall simply denote T instead of Tℓ the K-ary
tree of height ℓ (and, when needed, use the notation |T |! = ℓ for the height of T ). Likewise, we
will write (Bk, Rk)k≥1 in place of (B(ℓ)

k , R
(ℓ)
k )k≥1.

• We write o for the root of T and ∂T for its set of leaves. For v a vertex of T , we denote Tv the
sub-tree of T rooted at v, consisting of all its descendants.
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To establish (1), we will need to consider the same coloring process as above except that we allow
a more arbitrary initial configuration (B0, R0). To obtain more independence in our coloring process,
we now consider a continuous-time version of the process in which a vertex v is selected and colored
after a random waiting time τv with (τv, v ∈ T \ (B0 ∪ R0)) are i.i.d. exponential random variables with
parameter 1. So this defines two increasing processes (Bt)t≥0 and (Rt)t≥0 which are the set of blue and
red vertices at time t.

Note that for any vertex v, the coloring process after time τv restricted to the sub-tree Tv, namely
(Bt ∩ Tv, Rt ∩ Tv)t≥τv

, is measurable with respect to its initial state (Bτv
∩ Tv, Rτv

∩ Tv) and the random
variables (τw, w ∈ Tv).

Let V T
1 , V T

2 , . . . , be the vertices of T selected by the procedure, whose heights are strictly smaller
than |T |/2 ordered according to their coloring times. For C, H ≥ 0 and i ≥ 1 consider the event
Ai := Ai(T , C, H, B0, R0) defined by

Ai := {|T |/2 − H < |V T
i | < |T |/2, V T

i is colored in blue, and, at time (τV T
i

)−, TV T
i

contains at most C

colored vertices that are not leaves, and each of them is at a distance at most 2H from the leaves.}
(3)

1.1 Coupling with a super-critical Galton-Watson process
The purpose of the next proposition is to show that, if we initially start with the root colored blue, the
leaves colored red, and a bounded number of vertices close to the leaves also colored red, then, with
probability close to one, we can find two vertices whose heights are roughly equal to |T |/2 that are
colored blue and such that, at their coloring times, the sub-trees rooted at these vertices have roughly
the same initial configuration: the root of each sub-tree is blue, the leaves are red, and a bounded number
of vertices near the leaves may also be red. This will allow us to lower bound the number of blue vertices
at distance roughly equal to (|T |/2k)k≤kn

of the leaves by a supercritical Galton-Watson process.

Proposition 3. Recall the definition of the events Ai given by (3). Let η > 0. Then, there exist
H, C, n0 ≥ 0 such that if |T | ≥ n0, for any choices of vertices w1, . . . wC of height larger or equal to
|T | − 2H, if B0 = {o} and R0 = ∂T ∪ {w1, . . . , wC}, we have

P(∃i < j, TV T
i

∩ TV T
j

= ∅ and Ai ∩ Aj) ≥ 1 − η. (4)

Let us first explain why Proposition 3 implies (1) of Theorem 1.

Proof of (1) using Proposition 3. Set

Ci,j := Ci,j(T , C, H, B0, R0) := {TV T
i

∩ TV T
j

= ∅ and Ai ∩ Aj}.

Hence, Proposition 3 asserts that, for good choices (T , C, H, B0, R0), with large probability, at least on
event Ci,j occurs.

Fix η > 0 and H, C, n0 ≥ 0 such that (4) holds. By maybe choosing a larger n0, we can assume that
C < Kn0−2H−1 and n0/2 − 2H > 2H.

Consider the following process (Vl)l≥0 taking value in the subsets of T :

• V0 = {o}. If there exist i < j such that Ci,j(T , C, H, o, ∂T ) occurs, then set V1 := {V T
i , V T

j }
and call V T

i , V T
j the children of o. Otherwise, set V1 = ∅. In particular, by definition of the

event Ai, we observe that for any vertex v ∈ V1, at time (τv)−, the sub-tree Tv contains at
most C colored vertices of height larger than |Tv| − 2H which are not leaves. Note that these
vertices are necessarily red since they are at distance at most 2H of the leaves and at distance
at least |T |/2 − 2H ≥ n0 − 2H > 2H of a blue vertex. Thus Bτv

∩ Tv = {v}. Moreover, for
v1 ̸= v2 in V1, we have Tv1 ∩ Tv2 = ∅. Thus, conditionally on (Bτv

, Rτv
, v ∈ V1), the processes

((Bt ∩ Tv)t≥τv
, (Rt ∩ Tv)t≥τv

), v ∈ V1 are independent.

• Assume that Vl = {U
(l)
1 , . . . , U

(l)
Zl

}. For each v ∈ Vl, consider the coloring process on Tv for t ≥ τv.
By induction, they are independent for v ∈ Vl. Each of them starts with an initial configuration
where only the root v is blue and the red vertices are the leaves and at most C other vertices, each
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of them at distance at most 2H of the leaves. If there exists i < j such that Ci,j(Tv, C, H, Rτv
∩ Tv)

occurs, then call {V Tv
i , V Tv

j } the children of v. Then define Vl+1 as the union of the children of v
for v ∈ Vl.

By induction, we have that if v ∈ Vl,

|T |
2l

≤ |Tv| ≤ |T |
2l

+ 2H.

Let L ∈ N such that |T |
2L ≥ n0 > |T |

2L+1 i.e.

L := ⌊ log(|T |/n0)
log 2 ⌋.

Thus, for v ∈ VL, we have
n0 ≤ |Tv| ≤ 2n0 + 2H.

Using Proposition 3, we see that (|Vl|, l ≤ L) is larger than a Galton-Watson process (Zl, l ≤ L) starting
at 1 and with reproduction law

µ(0) = η µ(2) = 1 − η.

Such process (Zl, l ≥ 0) survives with probability (1 − 2η)/(1 − η) and we have, for l large enough

P(Zl > (2(1 − 2η))l|Zl > 0) ≥ 1 − η.

Hence, if |T | is large enough, we get

P(|VL| ≥ (2(1 − 2η))L) ≥ P(ZL > (2(1 − 2η))L) ≥ 1 − 2η.

Set β := log(2(1 − 2η))/ log 2 such that

(2(1 − 2η))L = 2βL ≥
(

2( log(|T |/n0)
log 2 −1)

)β

=
(

|T |
2n0

)β

.

Hence we get

P

(
|VL| ≥

(
|T |
2n0

)β
)

≥ 1 − 2η.

This shows that, with probability at least 1 − 2η, there exist at least (|T |/2n0)β disjoint sub-trees
of height between n0 and 2n0 + 2H such that the coloring process colors their root v blue and, at the
time when its root becomes blue, the sub-tree contains at most C red vertices of height larger than
|Tv| − 2H that are not leaves. Each of these sub-trees then evolves independently. Using the facts that
C < Kn0−2H−1 and that |Tv| ≥ n0, we obtain that the number of vertices in Tv of height equal to
|Tv| − 2H is strictly larger than C. Therefore, at time τv, there necessarily exists a connected path from
the root v to a leaf consisting of uncolored vertices (except, of course, for the root and the leaf). Hence,
the probability that no blue particle reaches distance one from the leaves is strictly less than one. Since
the sizes of these (|T |/2n0)β trees are uniformly bounded, we in fact obtain a uniform upper bound
α(n0, H, C) < 1 for each of them to have no blue vertex at distance one from the leaves. Thus, we get

P(M|T | < |T | − 1) ≤ 2η + α(n0, H, C)(|T |/2n0)β

which can be arbitrary close to 0 as |T | tends to infinity if η is chosen sufficiently small.

1.2 Existence of one blue vertex at height |T |/2
To prove Proposition 3, we first establish a weaker version of it by proving that we can find N such that,
with high probability, one of the N first colored vertices of height smaller than |T |/2 will be colored
in blue with an almost uncolored tree in front of it. This section is devoted to prove such proposition,
namely Proposition 4. In the next section, we will reinforced this proposition showing that, in fact, we
can find two such vertices instead of one.
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Proposition 4. Let η > 0. Then, there exist H, C, N, n0 ≥ 0 such that if |T | ≥ n0, for any choices of
vertices w1, . . . wC of height larger or equal to |T | − 2H if B0 = {o} and R0 = ∂T ∪ {w1, . . . , wC}, we
have

P(∀i ≤ [1, N ], Ac
i ) ≤ η.

Proof Proposition 4. For v ∈ T and r, h ≥ 0, we denote

B(v, r) := {w ∈ T , d(v, w) ≤ r} and B(v, r, h) := {w ∈ T , d(v, w) ≤ r and |h| ≥ h}

the ball of center v and radius r and the vertices at height larger that h in this ball. For v1, v2 ∈ T , we
denote v1 ∧ v2 their common ancestor of maximal height. Recall that R0 = ∂T ∪ {w1, . . . , wC} denotes
the set of initial red vertices and V T

1 , V T
2 , . . . , are the vertices of T of height strictly smaller than |T |/2

ranked by their coloring time. Since in this section, T is fixed, to lighten the notation, we will just write
V1, V2, . . . , instead of V T

1 , V T
2 , . . . , We introduce the following events

E1 = E1(T , N, H, C, R0) := {∃i ̸= j ≤ N, Vi ∧ Vj ≥ |T |/8}
E2 = E2(T , N, H, C, R0) := {∃i ≤ N, |Vi| ≤ |T |/2 − H}
E3 = E3(T , N, H, C, R0) := {∃i ≤ N, ∃k ≤ C, Vi ∈ B(wk, |T |/2 + H)}
E4 = E4(T , N, H, C, R0) := {∀i ≤ N, Ac

i } ∩ Ec
1 ∩ Ec

2 ∩ Ec
3 .

Of course
P(∀i ≤ [1, N ], Ac

i ) ≤ P(E1) + P(E2) + P(E3) + P(E4).

The three first terms of the right hand side are easy to bound.
Indeed, to bound P(E1), observe that Vi and Vj are distributed as two distinct vertices chosen uni-

formly at random from the complete K-ary of height ⌈T /2 − 1⌉, excluding the root. It is easy to see
that the height of the most recent common ancestor of such vertices is stochastically dominated by a
geometric random variable with parameter (K − 1)/K. Hence, we get

P(E1) ≤ N2P(V1 ∧ V2 ≥ |T |/8) ≤ N2 1
K |T |/8 . (5)

Concerning P(E2), still using that Vi is uniform on the complete K-ary of height ⌈T /2 − 1⌉ excluding
the root and counting the number of vertices of height smaller than |T |/2 − H, we get

P(E2) ≤ N
1

KH
. (6)

For P(E3), recall that by hypothesis, for any k ≤ C, |wk| ≥ |T | − 2H whereas, for any i ≥ 1, we have
|Vi| ≤ ⌈T /2 − 1⌉. So, if zk denotes the ancestor of wk at height ⌈T /2 − 1⌉, we have

Vi ∈ B(wk, |T |/2 + H) =⇒ Vi ∈ B(zk, 3H).

Thus, we get

P(E3) ≤ CN P(V1 ∈ B(z1, 3H)) ≤ CN
K3H

K |T |/2−2 , (7)

still using that V1 is uniform on the complete K-ary of height ⌈T /2 − 1⌉ excluding the root.
It remains to get an upper bound of P(E4), which requires more work. In the following, for a vertex

v and a time t > 0, we will say that the clock of v has rung before time t if τv < t. We introduce the
two following events:

(i) Fi := {At time (τVi)−, strictly more than C clocks have rung in TVi}

(ii) Gi := {A clock has rung in B(Vi, |Vi|, |T |/2) before time (τVi
)−}.

Lemma 5. Assume that H < |T |/4. Then we have

E4 ⊂ {∀i ≤ N, Gi ∪ Fi} ∩ Ec
1 ∩ Ec

2 .
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Proof. Recalling the definition of Ai given in (3), we have Ai := Xi ∩ Yi ∩ Zi where

Xi := {|Vi| > |T |/2 − H}
Yi := {Vi is colored in blue}
Zi := {At time (τVi

)−, TVi
contains at most C colored vertices that are not leaves, and each of them

is at a distance at most 2H from the leaves.}

Of course, Ec
2 ⊂ Xi. Assume now that Gc

i ∩ Ec
2 ∩ Ec

3 occurs. Let us note that for i ̸= j ≤ N ,

d(Vi, Vj) = |Vi| + |Vj | − 2|Vi ∧ Vj | > |Vi| + |T |
2 − H − |T |

4 > |Vi|.

Thus, for any j ≤ N , we have Vj /∈ B(Vi, |Vi|). Hence, by definition of the sequence (Vj)j≤N , at time
(τVi

)−, no clock of B(Vi, |Vi|) at height smaller than |T |/2 has rung. Moreover, since Gc
i holds, no clock

in B(Vi, |Vi|) at height larger than |T |/2 have rung either. Therefore, no clock in B(Vi, |Vi|) has rung.
Using now that Ec

3 holds and that |Vi| < |T |/2, we also deduce that B(Vi, |Vi|) cannot contain any point
of R0. Thus, the ball B(Vi, |Vi|) contains no red point at time (τVi)− but it does contain the root (which
is blue). Consequently, Vi becomes blue. Hence we obtain

Gc
i ∩ Ec

3 ∩ Ec
2 ⊂ Yi.

Moreover, if Gc
i ∩ Ec

2 occurs, this implies that |Vi| > |T |/2 − H and no clock have rung in B(Vi, |Vi|)
before τVi

, so in particular, any clock which rang in TVi
before τVi

must have height larger than |T |−2H.
So by definition of Fi, we get that on Ec

2 ∩ Gc
i ∩ Fc

i , at most C vertices have rung in TVi before τVi and
all at distance at most 2H of the leaves. Using again that if Ec

3 holds, we get that the initial red points
of TVi

are only the leaves, and so
Ec

2 ∩ Ec
3 ∩ Gc

i ∩ Fc
i ⊂ Zi.

Combining all these remarks, we deduce that

Ec
2 ∩ Gc

i ∩ Ec
3 ∩ Fc

i ⊂ Ai

which yields
Ac

i ⊂ E2 ∪ Gi ∪ E3 ∪ Fi and so Ac
i ∩ Ec

2 ∩ Ec
3 ⊂ Gi ∪ Fi.

Hence, we get
E4 ⊂ {∀i ≤ N, Gi ∪ Fi} ∩ Ec

1 ∩ Ec
2 .

Let us now find an upper bound on the probability of {∀i ≤ N, Gi ∪ Fi} ∩ Ec
1 ∩ Ec

2 . Recall that τv

denotes the coloring time of the vertex v. Let define H the sigma field given by the coloring time of the
vertex at height strictly smaller than |T |/2 namely

H := σ ({τv, |v| < |T |/2})

so that E1, E2, E3 ∈ H. Let also denote, for i ≤ N , τi the coloring time of Vi, i.e. τi = τVi
. Note that τi

is H-measurable. Let us note that for any i ≤ N , if u ∈ B(Vi, |Vi|, |T |/2),

2|u ∧ Vi| = |u| + |Vi| − d(u, Vi) ≥ |u| ≥ |T |
2

and of course, if u ∈ TVi
, then |u ∧ Vi| = |Vi|. Thus, if we still assume that H < |T |/4, on the event Ec

2 ,
we get for all u ∈ B(Vi, |Vi|, |T |/2) ∪ TVi

|u ∧ Vi| >
|T |
8 .

In particular, this implies that if Ec
1 ∩Ec

2 holds, for any i ̸= j ≤ N , the set of vertices B(Vi, |Vi|, |T |/2)∪TVi

and B(Vj , |Vj |, |T |/2) ∪ TVj are disjoint. Therefore, conditionally on H, on the event Ec
1 ∩ Ec

2 , the events
Fi ∪ Gi, i ≤ N are independent. Besides, we have

|B(Vi, |Vi|, |T |/2)| ≤ (K + 1)K |Vi| and |TVi
| ≤ K |T |/2+H+1.
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Hence, conditionally on H, on the event Ec
1 ∩ Ec

2 , the time when the first clock rings in B(Vi, |Vi|, |T |/2),
namely min{τv, v ∈ B(Vi, |Vi|, |T |/2)} is stochastically larger than an exponential random variable with
parameter (K + 1)K |Vi| and the number of clocks that have rung before time τi in |TVi

| is bounded by a
binomial random variable with parameter (K |T |/2+H+1, 1 − e−τi). Let σh denote an exponential random
variable with parameter (K +1)Kh and Zt a binomial random variable with parameter (K |T |/2+H+1, 1−
e−t). We get

P(E4|H) ≤ 1Ec
1 ∩Ec

2

N∏
i=1

P(σ|Vi| ≤ τi or Zτi
≥ C |H)

= 1Ec
1 ∩Ec

2

N∏
i=1

(
1 − P(σ|Vi| > τi |τi)P(Zτi

< C |τi)
)

.

We write, for a fixed A > 0,

P(Zτi < C |τi) ≥ 1τi≤A.K−|T |/2P(ZA.K−|T |/2 < C).

We set qA,C,|T | := P(ZA.K−|T |/2 < C) so that

P(E4|H) ≤ 1Ec
1 ∩Ec

2

N∏
i=1

(
1 − exp(−(K + 1)K |Vi|τi)qA,C,|T |1τi≤A.K−|T |/2

)
.

Let denote m the largest integer strictly smaller than |T |/2. Note that (τi)i≤N and (Vi)i≤N are indepen-
dent. Moreover, V1, . . . , VN are N distinct vertices of T uniformly chosen with height smaller or equal to
m not equal to the root and the random variables (τi − τi−1)i≤N are independent and with exponential
law of parameter Vol(T≤m) − i.

Since, Vol(T≤m) := K(Km − 1)/(K − 1), we get, for any i ≥ 1 and h < m

P(|Vi| = m − h) = Km−h

Vol(T≤m) = (K − 1)Km−h

K(Km − 1) ≥ 1
2Kh

.

Moreover, for any hi ≥ 1, we have

P((|V1|, . . . , |VN |) = (h1, . . . , hN )) ≤
(

Vol(T≤m)
Vol(T≤m) − N

)N N∏
i=1

P((|Vi| = hi)

≤
(

1 − N

Km

)−N N∏
i=1

P((|Vi| = hi)

≤
(

1 − N

K |T |/2−1

)−N N∏
i=1

P((|Vi| = hi).

Thus, we get

P(E4|(τi)i≤N ) ≤
∑

h1,...,hN ≥1
P((|V1|, . . . , |VN |) = (h1, . . . , hN ))

N∏
i=1

(
1 − e−τi(K+1)Khi

qA,C,|T |1τi≤A.K−|T |/2

)

≤
(

1 − N

K |T |/2−1

)−N ∑
h1,...,hN ≥0

N∏
i=1

(
P(|Vi| = hi)(1 − e−τi(K+1)Khi

qA,C,|T |1τi≤A.K−|T |/2)
)

≤
(

1 − N

K |T |/2−1

)−N N∏
i=1

E
(

1 − e−τi(K+1)K|Vi|
qA,C,|T |1τi≤A.K−|T |/2 |(τi)i≤N

)
=

(
1 − N

K |T |/2−1

)−N N∏
i=1

(
1 − E

(
e−τi(K+1)K|Vi|

|(τi)i≤N

)
qA,C,|T |1τi≤A.K−|T |/2

)
≤

(
1 − N

K |T |/2−1

)−N N∏
i=1

(
1 −

(
L∑

h=0

1
2Kh

e−τi(K+1)Km−h

)
qA,C,|T |1τi≤A.K−|T |/2

)
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valid for any L < m (recall that m is the largest integer strictly smaller than |T |/2).
We now use that the random variables (τi − τi−1)i≤N are independent and with exponential law of

parameter Vol(T≤m) − i. If i ≤ Vol(T≤m)/2, we have

Vol(T≤m) − i ≥ Vol(T≤m)/2 ≥ Km−1 ≥ K |T |/2−2

Thus, if N ≤ Km/2, the sequence (K|T |/2−2(τi − τi−1))i≤N is stochastically larger than a sequence
(εi)i≤N of i.i.d. exponential random variables with parameter 1. Let σi =

∑i
k=1 εk. We get

P(E4) ≤
(

1 − N

K |T |/2−1

)−N

E

(
N∏

i=1

(
1 −

(
L∑

h=0

1
Kh

e−τi(K+1)K|T |/2−h

)
qA,C,|T |1τi≤A.K−|T |/2

))

≤
(

1 − N

K |T |/2−1

)−N

E

(
N∏

i=1

(
1 −

(
L∑

h=0

1
Kh

e−σi(K+1)K2−h

)
qA,C,|T |1σi≤A.K−2

))
.

We then use the following lemma, whose proof is postponed until the end of this section.

Lemma 6. Let η > 0. Then, there exists N, L > 0, such that is (εi)i≤N of i.i.d. exponential random
variable with parameter 1 and σi =

∑i
k=1 εk, we have

E

(
N∏

i=1

(
1 −

L∑
h=0

1
Kh

e−σi(K+1)K2−h

))
≤ η/5. (8)

We now finish the proof of Proposition 4 assuming that Lemma 6 holds. Fix η > 0 and N, L such
that (8) holds. Since for each i ≤ N , 1σi≤A.K−2 tends a.s. to 1 as A tends to infinity, by dominated
convergence Theorem, there exists A large enough such that

E

(
N∏

i=1

(
1 − 1σi≤A.K−2

L∑
h=0

1
Kh

e−σi(K+1)K2−h

))
≤ η/4.

Using (6), fix now H such that
P(E2) ≤ N

1
KH

≤ η/3.

Recall that

qA,C,|T | := P(ZA.K−|T |/2 < C) where ZA.K−|T |/2 ∼ Bin(K|T |/2+H+1, 1 − e−A.K−|T |/2
).

Thus
1 − qA,C,|T | = P(ZA.K−|T |/2 ≥ C) ≤ E(ZA.K−|T |/2)

C
≤ AKH+1

C
.

Thus, for fixed A and H, we can find C large enough such that qA,C,|T | is close to 1. Using again
dominated convergence Theorem, we deduce the existence of a C, such that

E

(
N∏

i=1

(
1 −

(
L∑

h=0

1
Kh

e−σi(K+1)K2−h

)
qA,C,|T |1σi≤A.K−2

))
≤ η/3

and so, for this choice of N, H, C, we get that P(E4) ≤ η/2 if |T | is large enough. Combining this with
(5) and (7), we get that for this choice of H, C, N and for |T | large enough,

P(∀i ≤ [1, N ], Ac
i ) ≤ η.

Proof of Lemma 6. Let us note that σi is the sum of i i.i.d. exponential random variables, thus σi/i
tends a.s. to 1 as i tends to infinity. Hence, we can find D > 0 such that

P(∃i ≥ 1, K2(K + 1)σi ≥ Di) ≤ η/10.

9



With this choice for D, we get

E

(
N∏

i=1

(
1 −

L∑
h=0

1
Kh

e−σi(K+1)K2−h

))
≤ η/10 +

N∏
i=1

(
1 −

L∑
h=0

1
Kh

e−DiK−h

)
.

Let define

ML,N :=
N∏

i=1

(
1 −

L∑
h=0

1
Kh

e−DiK−h

)
and

M∞ :=
∞∏

i=1

(
1 −

∞∑
h=0

1
Kh

e−DiK−h

)
.

Since ML,N tends to M∞ when L, N tend to infinity, it only remains to show that M∞ = 0 as it will
imply that for L and N large enough, ML,N ≤ η/10 as required. Indeed, we have

log M∞ =
∞∑

i=1
log
(

1 −
∞∑

h=0

1
Kh

e−DiK−h

)
≤ −

∞∑
i=1

∞∑
h=0

1
Kh

e−DiK−h

and
∞∑

h=0

∞∑
i=1

1
Kh

e−DiK−h

=
∞∑

h=0

1
Kh

e−DK−h

1 − e−DK−h = ∞

since

lim
h→∞

1
Kh

e−DK−h

1 − e−DK−h = 1
D

.

This yields that M∞ = 0 and so that ML,N tends to 0 as N and L tends to infinity.

1.3 Proof of Proposition 3
Hence, we have established Proposition 4 which shows that, with high probability, one of the N -first
colored vertices of height smaller than |T |/2 will be colored in blue with an almost uncolored tree in front
of it. In fact, Proposition 3 asserts that, with high probability, two such vertices exist. So we reinforce
Proposition 4 proving the following proposition.

Proposition 7. Let η > 0. Then, there exist H, C, N, N ′, n0 ≥ 0 such that if |T | ≥ n0, for any choices
of vertices w1, . . . wC of height larger or equal to |T | − 2H if B0 = {o} and R0 = ∂T ∪ {w1, . . . , wC}, we
have

P(∀i ≤ [1, N ], Ac
i ) ≤ η. (9)

P(∀i ∈ [N + 1, N ′], Ac
i ) ≤ η. (10)

Proof. For N < N ′, we introduce the following events

E ′
1 = E1(T , N ′, H, C, R0) := {∃i ̸= j ≤ N ′, Vi ∧ Vj ≥ |T |/8},

E ′
2 = E2(T , N ′, H, C, R0) := {∃i ≤ N ′, |Vi| ≤ |T |/2 − H},

E ′
3 = E3(T , N ′, H, C, R0) := {∃i ≤ N ′, ∃k ≤ C, Vi ∈ B(wk, |T |/2 + H)},

E ′
4 = E ′

4(T , N, N ′, H, C, R0) := {∀i ≤ N, Ac
i } ∩ E ′

1
c ∩ E ′

2
c ∩ E ′

3
c
,

E ′
5 = E ′

5(T , N, N ′, H, C, R0) := {∀N < i ≤ N ′, Ac
i } ∩ E ′

1
c ∩ E ′

2
c ∩ E ′

3
c
.

Note that P(E ′
4) ≤ P(E4) and using the same arguments as in the proof of Proposition 4, we can show

that

P(E ′
5) ≤

(
1 − N ′

K |T |/2−1

)−N ′

E

 N ′∏
i=N+1

(
1 −

(
L∑

h=0

1
Kh

e−σi(K+1)K2−h

)
qA,C,|T |1σi≤A.K−2

)
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where σi =
∑i

k=1 εk with (εi)i≤N ′ i.i.d. exponential random variables with parameter 1. Let η > 0 and
let N, N ′, L > 0 with N ′ > N such that is (εi)i≤N ′ of i.i.d. exponential random variable with parameter
1 and σi =

∑i
k=1 εk, we have

E

(
N∏

i=1

(
1 −

L∑
h=0

1
Kh

e−σi(K+1)K2−h

))
≤ η/5,

E

 N ′∏
i=N+1

(
1 −

L∑
h=0

1
Kh

e−σi(K+1)K2−h

) ≤ η/5.

Fixing A, H, and C large enough in the same way as in the proof of Proposition 4, we get that, for this
choice of (N, N ′, H, C), if |T | is large enough, (9) and (10) hold simultaneously.

Proof of Proposition 3. We can now conclude the proof of Proposition 3. Let H, C, N, N ′, n0 such that
Proposition 7 holds. This shows that, if |T | ≥ n0, with probability larger than 1 − 2η, there exist
i < N < j such that Ai and Aj hold. Moreover, recall that V1, V2, . . . are the vertices of height smaller
than |T |/2 ranked by their coloring time. Thus, we have

P(∃i < j ≤ N ′, TVi ∩ TVj ̸= ∅) ≤ N ′2P(TV1 ∩ TV1 ̸= ∅) ≤ |T |N ′2

K |T |/2−1 .

Hence, when |T | tends to infinity, the probability that the sub-trees rooted at the N ′ first colored vertices
of height smaller than |T |/2 are all disjoint tends to 1. Hence, we get, for |T | large enough

P(∃i < j, TVi
∩ TVj

= ∅ and Ai ∩ Aj) ≥ 1 − 3η.

2 The red vertices have a positive probability to reach the root
The aim of this section is to prove (2) of Theorem 1 i.e. to show that a child of the root ends up red with
a probability bounded from below independently of the size of the tree. As explained in the introduction,
we establish this result by considering the coloring process on the infinite K-ary tree and by proving
Proposition 2.

The proof is independent of the results obtained in Section 1, and the only common notation between
the two sections is the following:

• Tℓ denotes the finite regular tree with K children per vertex and height ℓ and T∞ the infinite
regular tree with K children per vertex.

• o denotes the root of the tree.

• For v ∈ T∞, Tv denotes the sub-tree rooted at v, consisting of all its descendants.

Moreover, we still consider the coloring process in continuous time and for v a vertex, we denote τv its
coloring time.

2.1 The path of ancestors
Let us consider the coloring process on Tℓ the finite regular tree with K children per vertex and
height ℓ. For a vertex v1 in Tℓ, the coloring process naturally defines a path of ancestors Γℓ(v1) :=
(vℓ

1, vℓ
2, vℓ

3 . . . , vℓ
Lℓ

) such that, for each i, the vertex vℓ
i has inherited the color of vℓ

i+1. Note that, by
definition of the model, vℓ

i+1 satisfies the following two properties:

• vℓ
i+1 is a vertex of Tℓ that has been colored before vℓ

i .

• At time when vℓ
i is colored, no vertex in the ball {u ∈ Tℓ, d(vℓ

i , u) < d(vℓ
i , vℓ

i+1)} has already been
colored.
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• The vertex vℓ
i+1 is chosen uniformly at random among the vertices satisfying the two properties

above.

By construction, the last step vℓ
Lℓ

of this path is a vertex with no ancestor, so vℓ
Lℓ

is either a leaf of Tℓ

or the root. Note that v1 ends up red if the path Γℓ(v1) ends at a leaf of Tℓ and blue if the path ends at
the root. Hence, if mℓ denotes the minimal height of a red vertex as defined in Theorem 1, we get

mℓ = inf{|v|, Γℓ(v) does not end up at the root}.

Moreover, note that for ℓ < ℓ′, Γℓ(v1) and Γℓ′(v1) coincide until Γℓ(v1) reaches a leaf of Tℓ. This
remark allows us to define the path of ancestors of v1 on the infinite K-ary tree Γ(v1) = (v1, v2 . . . , vL)
by

L := lim
ℓ→∞

Lℓ ∈ [1, ∞],

vi := vℓ
i for i < L for ℓ such that i < Lℓ ,

vL := o if L < ∞,

(if L = ∞, then Γ(v1) is the sequence (vi)i≥1). We get that v1 ∈ B(∞), the final blue set on the infinite
tree if L < ∞ and v1 ∈ R(∞) otherwise. Note also that (mℓ)ℓ≥1 converges a.s. to

m∞ = inf{|v|, Γ(v) does not end up at the root}.

So Proposition 2 is equivalent to

lim
|v|→∞

P(Γ(v) does not end up at the root) = 1 (11)

and if v is a child of the root,

P(Γ(v) does not end up at the root) > 0. (12)

We begin by proving that for any v ̸= o, (12) holds. In Section 2.3, then we explain how to adapt
our argument to show that the probability that Γ(v) does not end up at the root in fact tends to 1 as
the height of v increases.

2.2 A slightly different construction
For a vertex v1 ∈ T∞, we present a construction of a random set of vertices W∞ := W∞(v1) associated
with v1. If v1 ends up red, this random set coincides with the set of vertices whose coloring time must be
known in order to determine the path of ancestors of v1. In particular, we will see that the probability
that v1 ends up red is equal to the probability that this random set does not contain the root. We begin
with a definition.

Definition 8. Let v ∈ T∞ and let S be an infinite subset of T∞. We say that (uj)j≥1 is a uniform
increasing indexing of the vertices of S centered at v if it is chosen uniformly at random among all
sequences (uj)j≥1 such that

• (indexing of S) {uj : j ≥ 1} = S and uj ̸= ui for j ̸= i;

• (increasing) j < i =⇒ d(v, uj) ≤ d(v, ui).

Fix v1 ∈ T∞ and set V1 := v1, W1 := {v1}. Let (τi)i≥1 be an i.i.d. sequence with exponential law,
and let (Tn)n≥1 denote its lower record process, that is,

T1 = 1 and for n ≥ 1, Tn+1 := inf{k > Tn, τk < τTn
}.

Finally, let I1 = 1 and In := Tn − Tn−1 the time between two successive records.
Let (u1

j , j ≥ 1) be a uniform increasing indexing of the vertices of T∞ \ W1 centered at v1. Set

V2 = u1
I2

W2 := W1 ∪ {u1
j , j ≤ I2}.

12



By induction, assume that Vn and Wn have been constructed. Let (un
j , j ≥ 1) be a uniform increasing

indexing of the vertices of T∞ \ Wn centered at Vn. Set

Vn+1 = un
In+1

Wn+1 := Wn ∪ {un
j , j ≤ In+1}.

Finally, set
W∞ := W∞(v1) :=

⋃
n≥1

Wn.

We claim the following proposition.

Proposition 9. We have

P(v1 ends red in the infinite model) = P(o /∈ W∞).

Proof. Recall that v1 ends red in the infinite model if its path of ancestors does not end at the root.
To determine the first vertex v2 in the path of ancestors of v1, it is sufficient to look at the sequence
of vertices (u1

j , j ≥ 1) in increasing order and to stop as soon as we found a vertex with coloring time
smaller than the coloring time of v1

3. Let j0 the unique integer such that u1
j0

is the root. Let Y be the
set of vertices whose time we need to reveal to find v2 and J the cardinal of this set. Note that J ≤ j0
and v2 = o i.f.f. J = j0. Moreover, v2 ∈ Y . Since the sequence of coloring times of the vertices are
i.i.d. with exponential distribution except for the root, we can consider that τv1 = τ1 and τu1

j
= τj+1 for

j < j0 so that J = I2 ∧ j0 and Y ⊂ W2. In particular

o /∈ W2 =⇒ o /∈ Y =⇒ v2 ̸= o.

On the other hand,
o ∈ W2 =⇒ I2 ≥ j0 =⇒ J = j0 =⇒ v2 = o.

Thus, we get
o /∈ W2 ⇐⇒ v2 ̸= o.

Using can easily repeat these arguments to prove by induction that

o /∈ Wn ⇐⇒ vn ̸= o (with the convention vn = o if n > L)

and so
o /∈ W∞ ⇐⇒ ∀n ≥ 1 vn ̸= o.

To establish (12) we need now to prove that with positive probability W∞ does not contain the root.
For n ≥ 1, let define Rn as the graph distance between Vn and Vn−1:

Rn := d(Vn, Vn−1). (13)

Note that Rn is the unique integer such that

♯{u ∈ T∞ \ Wn−1, d(Vn−1, u) ≤ Rn} ≥ In,

♯{u ∈ T∞ \ Wn−1, d(Vn−1, u) < Rn} < In.

Using these equations, we can give a precise estimate of Rn in terms of In.

Lemma 10. For any n ≥ 1, we have the following properties

• Vn ∈ Wn.

• Wn is a connected subset of T∞.

• There exists at least a child u of Vn such that Tu ∩ Wn = ∅.
3since ties are broken uniformly at random and the increasing indexing (u1

j , j ≥ 1) is also uniform among the increasing
indexing.
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Moreover, we have, for any n ≥ 1
In

K + 1 ≤ KRn ≤ K2In. (14)

Proof. Let us first note that by construction Vn ∈ Wn for all n ≥ 1. Let us now prove by induction on
n that Wn is connected and there exists at least a child u of Vn such that Tu ∩ Wn = ∅. It holds for W1.
Assume it holds for n − 1. Let

Zl := Wn−1 ∪ {un−1
j , j ≤ l}

so that Z0 = Wn−1 and ZIn
= Wn. Since Vn−1 ∈ Wn−1 and un−1

j is an increasing indexing centered at
Vn−1, we see by induction on l that Zl is a connected subset for all 0 ≤ l ≤ In and so Wn is connected.
Moreover, Wn = Vn ∪ ZIn−1 and ZIn−1 is a connected subset which does not contain Vn. So necessarily
at most one sub-tree Tu, for u child of Vn intersects Wn. Since all vertices of T have at least two children,
this yields the result.

Let us now prove (14). On one hand, we have

In ≤ ♯{u ∈ T∞ \ Wn−1, d(Vn−1, u) ≤ Rn}
≤ ♯{u ∈ T∞ \ {Vn−1}, d(Vn−1, u) ≤ Rn}

≤
Rn−1∑

i=0
(K + 1) · Ki ≤ (K + 1)KRn .

On the other hand, denoting w a child of Vn−1 such that Tw does not intersect Wn−1, we write

In > ♯{u ∈ T∞ \ Wn−1, d(Vn−1, u) < Rn}
≥ ♯{u ∈ Tw, d(Vn−1, u) < Rn}

=
Rn−2∑

i=0
Ki ≥ KRn−2.

Let v is a fixed vertex of T∞ not equal to the root. To give a lower bound of the probability of
{o /∈ W∞(v)}, we use the following proposition.

Proposition 11. Let (Vi)i≥1 and (Wi)i≥1 the vertices and the set of vertices associated to v. For
1 ≤ i ≤ 5, let wi be a vertex of T∞ such that w1 = v, |wi| = 2|wi−1| and wi ∈ Twi−1 . Let

A := {For 1 ≤ i ≤ 5, Vi = wi and Wi = Wi−1 ∪ B(Vi−1, |Vi−1| − 1} ∪ {wi}},

B := {∀n > 5,
n

2 ≤ log(K)Rn ≤ 2n and |Vn| ≥ |Vn−1| + Rn

2 }.

Then, we have
A ∩ B ⊂ {o /∈ W∞}.

Proof. The event A insures that W5 does not contain the root and that |V5| ≥ 25. Assume now that B
also holds and let us prove by induction that {o /∈ Wn}. For n > 5, we have

|Vn| ≥ |Vn−1| + n

4 log K

which yields

|Vn| ≥ |V5| +
n∑

i=6

i

4 log K
≥ 25 + (n(n + 1) − 30) 1

8 log K
.

Thus, using that Rn log K ≤ 2n, we get

|Vn| − Rn+1 ≥ 32 + (n(n + 1) − 30 − 16(n + 1)) 1
8 log K

.
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The right part of the previous equation attains its minimum for n = 7, thus we get

|Vn| − Rn+1 ≥ 32 − 95
8 log K

≥ 32 − 95
8 log 2 > 0.

Since Rn+1 = d(Vn, Vn+1), this implies in particular that o /∈ Wn+1 \ Wn and so, by induction that
o /∈ W∞.

It remains now to prove that P(A ∩ B) > 0. To this aim, We introduce the filtration (Fn)n≥1 given
by

Fn := σ((Ik)k≥1, (ui
j)j≥1, i < n) (15)

where we recall that (Ik)k≥1 are the inter-arrivals of the record process such that Ik is equal to the
number of vertices we must examine to determine the ancestor of Vk−1 and (uk

j )j≥1 is the increasing
indexing centered at Vk which determines the ordering for the discovery of the vertices around Vk.

Lemma 12. For any n ≥ 1 Vn, Wn and Rn+1 are Fn-measurable. In particular, A ∈ F5. Moreover the
law of Vn+1 knowing Fn is the uniform law on the set of vertices u ∈ T∞ \Wn such that d(Vn, u) = Rn+1.

Proof. The measurability with respect to Fn of Vn, Wn and Rn+1 is a direct consequence of the construc-
tion. Since A ∈ σ(Vi, Wi, i ≤ 5), this yields that A ∈ F5. The fact that Vn+1 knowing Fn is uniform
on the set of vertices u ∈ T∞ \ Wn such that d(Vn, u) = Rn+1 is due to the fact that (un

j ) is chosen
uniformly among increasing indexing of the vertices of T∞ \ Wn centered at Vn and the rule we chose to
break the ties when two colored vertices are at the same distance of Vn.

Proposition 13. For any n ≥ 1

P(|Vn+1| ≥ |Vn| + Rn+1

2 | Fn) ≥ 1 − K− Rn+1
4 +1.

Proof. Conditionally on Fn, Vn+1 is uniform on the set of vertices u ∈ T∞\Wn such that d(Vn, u) = Rn+1.
Hence,

P(|Vn+1| < |Vn| + Rn+1

2 | Fn) =
♯{u ∈ T∞ \ Wn, d(Vn, u) = Rn+1, |u| < |Vn| + Rn+1

2 }
♯{u ∈ T∞ \ Wn, d(Vn, u) = Rn+1}

. (16)

First, recalling that there exists a child w of Vn such that Tw does not intersect Wn, we get

♯{u ∈ T∞ \ Wn, d(Vn, u) = Rn+1} ≥ ♯{u ∈ Tw, Wn, d(Vn, u) = Rn+1} ≥ KRn+1−1.

Let now u such that d(u, Vn) = Rn+1 and |u| < |Vn| + Rn+1
2 . Given two vertices u, w, we denote w ∧ u

its first common ancestor. Using that d(u, w) = |u| + |w| − 2|w ∧ u|, we get

d(u, Vn) − |Vn| + 2|Vn ∧ u| ≤ |Vn| + Rn+1

2 .

Using that Rn+1 = d(u, Vn), we also get

2|Vn ∧ u| ≤ 2|Vn| − Rn+1

2 and so |Vn ∧ u| ≤ |Vn| − Rn+1

4 .

Thus, denoting w the ancestor of |Vn| such that |w| = |Vn| − Rn+1
4 , we obtain d(w, u) ≤ 3Rn+1

4 . Thus,

♯{u ∈ T∞ \ Wn, d(Vn, u) = Rn+1, |u| < |Vn| + Rn+1

2 } ≤ ♯{u ∈ T∞Wn, d(w, u) <
3Rn+1

4 } ≤ K
3Rn+1

4 .

Plugging this in (16), we conclude that

P(|Vn+1| < |Vn| + Rn+1

2 | Fn) = K
3Rn+1

4

KRn+1−1 = K− Rn+1
4 +1.

15



Recall now that (In)n≥1 is simply the inter-arrival times of a record process. Such processes have
been well studied and we will use, in particular, the following result:

Proposition 14 ([2], p.28). Let (In)n≥1 be the inter-arrival time of a record process of an i.i.d. sequence
with diffuse distribution. Then, we have

lim
n→∞

log In/n = 1 a.s.

Moreover, for any n ≥ 1 and i2, . . . , in ≥ 1

P(I2 = i2, . . . In = in, 2k ≤ Ik ≤ 3k forall k > n) > 0.

The first part of the proposition is a classical result and the second one follows from the fact that for
k > 1, Ik has positive probability to take any integer value and 2 < e < 3. We now have all the tools
required to prove the following lemma.

Lemma 15. Recall the definition of the events A and B given in Proposition 11. We have

P(A ∩ B) > 0.

Proof of Lemma 15. Let first note that A is F5-measurable and has positive probability. For N > 5,
define

BN := {∀ 6 ≤ n ≤ N,
n

2 ≤ log(K)Rn ≤ 2n and |Vn| ≥ |Vn−1| + Rn

2 }.

By monotone convergence, P(B | F5) = limN→∞ P(BN | F5). Moreover, using Lemma 10, we see that

(K + 1)e n
2 ≤ In ≤ 1

K2 e2n =⇒ e
n
2 ≤ KRn ≤ e2n =⇒ n

2 ≤ log(K)Rn ≤ 2n.

Then, using that BN−1 and RN are FN−1-measurable, we write

P(BN | F5) = E(1BN−11 N
2 ≤log(K)RN ≤2NE(1|VN |≥|VN−1|+ RN

2
| FN−1) | F5)

≥ E(1BN−11 N
2 ≤log(K)RN ≤2N (1 − K− RN

4 +1) | F5)

≥ E(1BN−11 N
2 ≤log(K)RN ≤2N (1 − K− N

8 log K +1) | F5)

≥ (1 − K− N
8 log K +1)E(1BN−11

(K+1)e
N
2 ≤IN ≤ 1

K2 e2N
| F5)

= (1 − K− N
8 log K +1)1

(K+1)e
N
2 ≤IN ≤ 1

K2 e2N
P(BN−1 | F5).

Hence, we get

P(B | F5) ≥

∏
n≥6

(1 − K− n
8 log K +1)

 1∀n≥6,(K+1)e
n
2 ≤In≤ 1

K2 e2n := c1∀n≥6,(K+1)e
n
2 ≤In≤ 1

K2 e2n

for some c > 0. Finally, we write

P(A ∩ B) = E((1AP(B | F5)) ≥ cE(1A1∀n≥6,(K+1)e
n
2 ≤In≤ 1

K2 e2n).

Since the event A only depends on the value of Ik and on the indexing (uk
j )j≥1 for k ≤ 5, using Proposition

14, we conclude that P(A ∩ B) > 0.

2.3 Proof of (11)
We now explain how to adapt the previous argument to show that for a vertex v with large height, the
probability that o /∈ W∞ gets close to 1.
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Lemma 16. Let v a vertex of height n with n > 1024. Define the events Ãn and B̃n by
Ãn := {∀k ≤

√
n/2, Rk ≤

√
n},

B̃n := {∀k >
√

n/2,
k

2 ≤ log(K)Rk ≤ 2k and |Vk| ≥ |Vk−1| + Rk

2 }.

Then, we have
Ãn ∩ B̃n ⊂ {o ∈ W∞}.

Proof. Lemma 16 is very similar to Proposition 11. Assume that Ãn holds. Using that |V1| = n and
|Vi| − |Vi−1| ≤ Ri, we get for k ≤

√
n/2,

|Vk| ≥ n −
√

n

2
√

n ≥ n

2
and W√

n/2 does not contain the root. Now, if B̃n also holds, we get, for k >
√

n/2,

|Vk| ≥ |V√
n/2|+

k∑
i=⌊

√
n/2⌋+1

Ri

2 ≥ n

2 +
k∑

i=⌊
√

n/2⌋+1

i

4 log(K) >
2k

log(K) ≥ n

2 −

√
n

2 (
√

n
2 + 1)

8 log(K) + k(k + 1)
8 log(K) >

2(k + 1)
log(K)

for k >
√

n/2 if
√

n/2 > 16. Thus, we get |Vk| > Rk+1 and we conclude as in the proof of Proposition
11 that o /∈ Wk.

Let us explain briefly how to prove that
lim

n→∞
P(Ãn ∩ B̃n) = 1,

which, in view of Lemma 16 and Proposition 9, implies (11). Recall that (log(K)Rk/k)k≥1 converges
a.s. to 1. So we get

lim
n→∞

P(Ãn) = 1.

Using similar arguments as in the proof of Lemma 15, we get

P(B̃n | F√
n/2) ≥

 ∏
k>

√
n/2

(1 − K− k
8 log K +1)

 1
∀k>

√
n/2,(K+1)e

k
2 ≤Ik≤ 1

K2 e2k
:= cn1

∀k>
√

n/2,(K+1)e
k
2 ≤Ik≤ 1

K2 e2k

for some cn which tends to 1 as n tends to infinity. Since (log Ik)/k tends to 1 a.s., then we deduce that
lim

n→∞
P(B̃n) = 1

and so
lim

n→∞
P(Ãn ∩ B̃n) = 1.
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