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1. Introduction number of some special graphs are obtained. The same
paper also gives various bounds of double afdple

In a graphG, a vertex is said tdominateitselfand ~ domination in terms of other parameters.
all of its neighbors. Adominating set of G = (V, E) A main application to network purposes/ofuple
is a subsetD of V such that every vertex itV is domination is forfault tolerance or mobility in the
dominated by at least one vertexiin Domination and following situations. Each vertex of the graph models
its variations have many applications, and have been @ node of the network and edges are links. Nade
extensively studied in the literature, see [4,8,9]. can use a service (any read-only database for example)

Among the variations of domination, tHetuple only if it is replicated oru or on a neighbor ofi. To
domination problem was introduced in [7,8]. For a ensure a certain degree of fault tolerance or to tolerate
fixed positive integek, a k-tuple dominating set of mobility of nodes, one can imagine that any nade
G = (V,E) is a subsetD; of V such that every has in its (closed) neighborhood at le&stopies of
vertex ir’1 v is dominated by at leagt vertices ofD. this service available. As each copy can cost a lot, the
The special case when= 1 is the usual domination. number of duplicated copies has to be minimized. This
The case wherk = 2 is called double domination is the problem we study.

in [7] where exact values of the double domination . The purpose of thi_s paper s to St“‘?'y the complex-
ity of the k-tuple domination problem in graphs. The

complexity of the (single) domination problem has
Y Work supported by the European projects APPOL, RTN been well-studied in the literature, see [4]. The hard-
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1 This work was done while the first author was visiting tz| domination problemin graphs, a linear-time algorithm
at the Université d’Evry. for the 2-tuple domination problem in trees is given
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in [11]. A linear-time algorithm for the&-tuple domi- 2. Definitions
nation problem in strongly chordal graphs is presented
in [12], where it is also proved thdt-tuple domina- Let G = (V,E) be any undirected graph. We
tion is NP-complete for split graphs and for bipartite denote byuv an edge ofE betweenu in v. The
graphs. neighborhood of u in G is:

In this paper, we extend these studies by investi-
gating the approximation hardness lotuple domi- ~ V6() = {v: uv € E}.
nation in graphs. We also propose several approxima- The closed neighborhood of « in G is:
tion algorithms. Note that an approximation algorithm
is apolynomial time algorithm that outputs a solution ~ Nclul = N (u) U {u}.
whose cost (here, the size of the dominating set) can The degree of any vertexu is |Ng(u)| and the
be compared to the optimal one. The ratio (more pre- minimum degree of G is denoted byig. If S € V then
cisely, the worst-case ratio over all inputinstances) be- 5 _ ¢ genotes the graph induced by verticed/of S.
tween these two costs is called tiygoroximation ratio
(not necessarily a constant). General references on aPPefinition 1. Let G — (V, E) be any undirected graph.

proximation algorithms can be found in [3,10]. _ Vertexu is dominated by vertexv if u € Ng[v]. Vertex
To our knowledge, this aspect has not been consid- ,; is r-dominated if it is dominated by at least

derive the following results: of vertices such that each vertex V is k-dominated
_ o by vertices ofS. A minimum (or optimal) k-tuple
(1) We describe a(ln|V| + 1)-approximation al-  domination set of G is a k-tuple domination set of

gorithm for the k-tuple domination problem in  minimum size.
general graphs, and show thattuple domi-

nation cannot be approximated within a ratio problem 1 (k-tuple domination). Given a graptG and

of (1 —¢)In|V| for any ¢ > 0 unless NPC a constank, construct a minimunk-tuple domination
DTIME |V |OUeglogiVD)y, set of G.

(2) We prove that the-tuple domination problem
can be approximated within a constant ratio if Definition 2. S is an independent set of a graph
the degree of the graph is bounded by a constant, G = (v, E) if S V anduv ¢ E for all u,veS.
but that it is APX-hard to approximate for graphs A maximal independent set (MIS) S of G is an

of maximum degreé + 2. Note that a graple; independent set maximal for inclusion.
possesses k-tuple dominating set if and only if
the degree of each vertex @ is at leask — 1. It is easy to see that any MIS (Maximal Indepen-

(3) We show that thé-tuple domination problem can  dent Set) of a grapt is a 1-tuple dominating set (also
be approximated within a constant ratiogrclaw calleddominating set of G). Moreover, constructing a
free graphs, but thatitis APX-hard to approximate MIS can be done by a greedy (linear) algorithm.
for 5-claw free graphsp-claw free graphs are
graphs which do not havé&; , (a star withp Definition 3. A graph G is p-claw free if for any
leaves) as an induced subgraph. vertexu, the graph induced by (1) does not contain

an independent set gf vertices.
The paper is organized as follows. Section 2 is

devoted to the definitions. The following sections Equivalently,G is a p-claw free graph ifG does

present the results on the complexity of theuple not have aK1,, as an induced subgraph.

domination problem in general graphs (Section 3), It is easy to see thak contains a-tuple dominat-
bounded degree graphs (Section 4) andlaw free ing set if and only if§g > k — 1. In the rest of the
graphs (Section 5). paperk is a constant.
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3. k-tuple dominating setsfor general graphs

Let D be any dominating set i;. Then Dy :=
DU {v1,v2, ..., v¥1} is ak-tuple dominating set in

In this section we study Problem 1 in the general G, of size |Dy| < |D| +k — 1< (1 + k/|D)|D|.
case. In Section 3.1 we give a lower bound on the ratio On the other hand, leD, be ak-tuple dominating

of any approximation algorithm for this problem. In

set in G¢. Then D := Dy — {v1,42,...,v* 1} is a

Section 3.2 we propose an approximation algorithm dominating set irG of size|D| < | Dy|.

and we prove its approximation ratio.
3.1. Lower bounds on approximation ratio

To formulate our result, we formalize the consid-
ered problems as follows.

MIN DOM SET.

Instance: GraphG = (V, E).

Solution: A dominating set ofG, i.e., a subseV’ C
V suchthatforalk € V — V' thereis a € V' for
whichuv € E.

Measure: Cardinality of the dominating set, i.¢}’|.

MIN k-TUPLE DOM SET.

Instance: GraphG = (V, E). Constank > 2.

Solution: A k-tuple dominating set ofG, i.e., a
subsetV’ C V such that each vertaxe V is k-
dominated by vertices df’.

Measure: Cardinality of thek-tuple dominating set,
i.e.,|V’].

Theorem 1. If there is some ¢ > 0 such that a
polynomial time algorithm can approximate MIN k-
TUPLE DOM SETwithin (1 — &)In|V| then NP C
DTIME (|v|OlogloglVD)

Proof. We will define an approximation preserv-
ing reduction from MIN DOM SET to MINk-
TUPLE DOM SET. This together with the non-
approximability bound of MIN DOM SET from [6]
(obtained by an explicit transformation of the covering
problem studied in [6]) will yield the desired result.
We now describe the reduction from MIN DOM
SET to MINk-TUPLE DOM SET. Given a grapty =
(V, E) construct a graplG, = (Vi, Ex) as follows.
We addk — 1 verticesvt, v?,...,v*"1 to G. We
connect each vertex € V to each of the vertices
vl 02, ..., v*~1, and each vertex’ is connected to
each vertex/, fori # j ({v1, v%, ..., v*1} induces a
complete graph).

Assume that MINA-TUPLE DOM SET can be
approximated within ratiay by using an algorithm
Ay. Letl be a positive integer. Consider the following
algorithm:

Algorithm Ay ;.
Input: A graphG = (V, E).

1. If a minimum dominating seb of G of size</
exists construct it Else:

2. ComputeGy.
3. Compute &-tuple dominating seDy in Gy
using AlgorithmAy.

4. ComputeD := Dy — {v1,v2, ... vF1}.
5. OutputD.

This algorithm runs in polynomial time sincg; is
polynomial and Step 1 is also polynomial (becalise
a constant). Note that iD is constructed in line 1 then
itis optimal. In the following, we will analyze the case
whereD is constructed in the next lines.

Let D be an optimak-tuple dominating set il
Let D* be an optimal (1-tuple) dominating set &.
Note that in our current analysis we hay®*| > [.
Given graphG = (V, E), Algorithm A, ; computes a
dominating setD of G of size

|D| < | Dy| < o | D]

k
o)

k

Hence, AlgorithmAy; approximates MIN DOM
SET within ratioa (1 + k/1). Assume that there is
some (fixed)e > 0 such that MINk-TUPLE DOM
SET can be approximated within ratigy = (1 —
¢)In(]V|) by using an algorithm . Let! be a positive
integer such thatk/! < ¢/2. Then Algorithm Ay ;
approximates MIN DOM SET within ratio

Sak<1+
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I
=(1-¢)In(|V])

for ¢ = ¢/2 + £2/2. As if MIN DOM SET can
be approximated within a ratio ofl — £)In|V|
then NPC DTIME(|v|CUogloglVDy [6], it follows
that if MIN k-TUPLE DOM SET can be approx-
imated within a ratio of(1 — ¢)In|V| then NPC
DTIME(|v|CloglogiVDy

u <1+ 5) <A-e)A+e/2)In(|V))

3.2. Upper bounds on approximation ratio

To solve Problem 1, we introduce another problem

and we make the final correspondence in Theorem 3 at

the end of this section.

Definition 4. Let X be any set and be any family of
subsets ofX.

e An elementx € X is k-covered in a setC C F of
subsets o if x is in at leask sets ofC.

e A k-cover of (X, F) is a subsef of F such that
forall x € X, x is k-coveredirC.

Note that wherk = 1, this problem is theninimal
set cover problem. A well-known approximation algo-
rithm for this problem can be found in [5]. We gener-
alize itin a sense.

Problem 2 (Minimal k-cover set). Let X be any
set. LetF be any family of subsets ok and k be
any integerk > 1. Construct &-cover of (X, F) of
minimum cardinality, calledninimal k-cover set of
(X, F).

Algorithm GEN-SET-COVER

Input: A setX, a family F of subsets ofX such that
F is ak-cover of (X, F).

1.C:=0;

2.1:=0;

3. WhileX —S;U---US]#@do

4. i+ +;

5. ChooseS € F — C such that
(S — S U---US!_;)|is maximized;

6. S;:=3S;

7. S := set of elements ok k-covered inC U {S;}
but notinC;
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8. C:=CU{S;};
9. OutputC.

Lemma 1. Algorithm GEN-SET-COVERoutputs a k-
cover C of (X, F) in polynomial time.

Proof. At each step, mew element ofF is added to
the current solutior€. As F is ak-cover of (X, F),

the algorithm will eventually terminate with/acover

of (X, F). Hence, the number of steps is bounded by
|F| that is polynomial. Each step is also polynomial
with appropriate data structurest

Lemma 2. Each x € X isin exactly k sets (S; — S7 U
"'USz{—l)'

Proof. By Lemma 1, each € X isk-coveredirC. So
there existst least k subsetss; such thatc € (S; — 5]

U---UsS;_,). Moreover, wherx € X is k-covered for
the first time, say at stepit is included inS; and then
cannot be in any subsequést — S; U---US!_;) with

i>1. O

Notation 1. Based on notations used in the description
of the algorithm we define the following sequences:
o Foralli=1,...,|C],

1
TS = Spu-- Ul

Ui

e Forallx € X, let s1(x) < --- < si(x) be thek

indices such that € (Sy;(x) = S{U---US, () )
Let
A5 — 1 ,
! 1(Ssi00) — S/l U---uy S;,»(x)—l)|
i Y4

i€{s1(x),....5k (x)}

o= max d.
i€{s1(x),....5k (x)}

Lemma 3. Let x be any element of X.

d;m) << d;k(x) =cy,

/
¢, <key.
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Proof. Let us first prove that the sequeneg,(i = 1,
., |C]) is increasing. Suppose that for ohet; 11 <
u;. This means that

|(Si —S1U---US_D| < [(Sigza—S{U---US)|.
But,
|(Si2 =81 U USH| < [(Siz1 = Sy U---US[_p)].

In this case, at stejpthe algorithm would have chosen
S;+1 instead ofS;. This is a contradiction.

Hence, we have proved that for alle X, the se-
quenceds™,i =1,..., k)increases and by notation,
ey = d*™ andc), < kcx. O

Lemma4.

mgkz}p

xeX

Proof. For any setY # @, we havey" ., = = 1.
Hence, for anys; € C we have:
1

Z I(Si—S'U---US )|=l'
xe(S=s;u-us_p L i-1
Thus,

IC] 1
=2 X / /

— ; C S =Spu-uS DI

i=1xe(8§;—8;U---US]_,)
As anyx € X is in exactlyk sets(S; — -US!_))

(Lemma 2), we can rearrange the sum to get

_2 : /
= Cy-

xeX

1

ZZKSs,(x)—S/lU'“U

xeX i=1

S;,- (x)—l)|

Hence we proved thalC| =), .y c.. The rest of
the proof is evident from the obtained result combined
with Lemma 3. O

Lemmab.

IC] < chx-

SeC* xe§

Proof. Let us first prove that:

Sa<iy e

SeC* xeS

79

For each element € X, ¢, is counted exactly once
in Y .cxcx. However, asC* is a k-cover, c, is
counted at least times (in the (at least} sets ofC*
containingx).

The end of the proof is direct with Lemma 40

Let p be any positive integer theH(p) is the
harmonic number of rank p: H(p) = Y 7_; 2. It is
well known (see [5]) thatd (p) < In(p) + 1

Lemma6. For any S € F,

ECX\

xeS

(IS1).-

Proof. Letz; =|(S — S; U---U S))| be a sequence,
i=1,...,|C|]. zo =|S]. Let be the smallest index
such that;; = 0 (suchi exists because every element
of S will be k-covered at the end of the algorithm).
Clearly z;_1 > z;. At each stepi of the algorithm
zi—1 — z; elements of arek-covered for the first time
(note that we can hawg_1 = z;). The final cost that an
elementr gets (in stepy (x)) is @ (see Lemma 3).
Hence,

Zcx = Z(zz Zi)

xes

—SjU---US I

Because of the maximum choice of the algorithm
at each step, we have:

|(S; —S1U---US_y|
> (S —S{U---US_)| =zi-1.
It follows:
Zcx Z(Zl Zl
x€eS -

Itis proved in [5] that for all integet < b we have:

MM—H@>®—M£

Using this inequality, we obtain:

I
D e <) (HGio1) — Hz))
i=1

xeS

=(HGo)—H@)=H(Sl). O
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Theorem 2. Let X be any set and F any family
of subsets of X. Let Sy, be one set of F with the
maximum cardinality. Then the size of the output of
Algorithm GEN-SET-COVERwith input (X, F) isat
most In(|Sr]) + 1 timesthe size of the optimal k-cover
set of (X, F).

Proof. From Lemma 5, combined with Lemma 6, we
obtain:

C1< Y Y ex< Y H(ISI)

SeC* xeS SeC*
< Y H(1Sul)=IC*IH(1Sml)
SeC*

<IC(In(ISml)+1). O

Theorem 3. The minimum k-tuple domination prob-
lemin any graph G = (V, E) with maximum degree
A can be approximated with an approximation ratio
ofIn(A+1) +1.

Proof. Itis easy to see that contains a minimuna-
tuple domination set ifé; > k — 1. If itis the case, let:
(X, F) with X =V andF = {Ng[u]: u € V}. Apply
the algorithm GEN-SET-COVER of¥X, F) to obtain
C. Finally, outputD = {u € V: Nglu] € C} that is a
k-tuple dominating set of;. Now, with the notations
of Theorem 2.5, corresponds to the maximum size
closed neighborhood, that contains at mast+ 1
vertices. The result follows. O

4. k-tuple domination in bounded-degree graphs

In this section, we show that-tuple domination

4.2. APX-completeness

We first recall the notion of L-reduction (see
e.g. [3)]).

Definition 5 (L-reduction). Given two NP optimiza-
tion problemsF andG and a polynomial transforma-
tion f from instances of to instances ot;, we say
that f is anL-reduction if there are positive constants
«a andp such that for every instanaeof F

(1) opls(f(x)) < aoptp(x),

(2) for every feasible solutiom of f(x) with objec-
tive valuemg(f(x), y) = c2 we can in polyno-
mial time find a solution’ of x with m ¢ (f (x), y")
= c1 such thatopt, (x) — c1| < Blopt; (f (x)) —
c2|.

To show the APX-completeness of a problétre
APX, it is enough to show that there is an L-reduction
from some APX-complete problem 1 (see e.g. [3]).
To formulate our result, we formalize the considered
problems as follows.

MIN DOM SET-B.

Instance: GraphG = (V, E) of degree bounded hy.

Solution: A dominating set ofG, i.e., a subseV’ C
V such thatforalk € V — V' thereisa € V' for
whichuv € E.

Measure: Cardinality of the dominating set, i.¢y’|.

MIN k-TUPLE DOM SET-B.

can be approximated within a constant ratio if the |nqance: GraphG = (V, E) of degree bounded by

degree of the graph is bounded by a constant. On the

other hand, we show thattuple domination is APX-

complete (and therefore there is no PTAS) even if the

degree of the graph is bounded by 2. Note that

this result is almost tight (in terms of the degree of the

graph) as a graply possesses &-tuple dominating
setif and only if6g > k — 1.

4.1. Membership in APX

Theorem 3 shows that when the graph is degree

B. Constank > 2.

Solution: A k-tuple dominating set af7, i.e., a subset
V/ C V such that each vertex € V is k-dom-
inated by vertices o¥’.

Measure: Cardinality of thek-tuple dominating set,
i.e.,|V’].

Now, we are ready to state the main result of this
section.

bounded by a constant, the approximation ratio is Theorem 4. MIN k-TUPLE DOM SETF(k + 2) is

constant.

APX-complete for any k > 2.
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Proof. MIN DOM SET-3 is known to be APX-
complete [1]. We describe an L-reductigfp from
MIN DOM SET-3 to MIN k-TUPLE DOM SET{k +
2). Given a graphG = (V, E) of bounded degree 3
construct a graplG; = (Vi, Ex) of bounded degree
k + 2 as follows. For each vertaxe V, we add one
complete graph ok verticesG(v) and connecb to
k — 1 of the vertices inG(v). Note that the maximum
degree ofGy isk + 2.

It is easy to see that anytuple dominating set in
Gy is composed of a dominating setn plus all the
vertices inG (v) foranyv e V.

As a result, any-tuple dominating seD; C Vi
of G = f1x(G) can be transformed into a dominating
setD C V of size|D| = |Dy| — kn wheren = |V/|.
Then, for any optimat-tuple dominating seD;’ C V;
and any optimal dominating sé&t* C V the following
relation holds]D*| = | D;| — kn. Hence,

DI —|D*| = | De| — | DE|.

On the other hand, given a dominating detC V,
we can construct &-tuple dominating seD; C V.
of G = fx(G) such that|Dy| = |D| + kn. SinceG
has bounded degree 3, we ha¥¥® > n/4 (see [7]).
Thereforel Dy | = | D| + kn < (4k + 1)| D|. Thus,

|Dff| < (4k + 1)| D*|

and we have shown thaf; is an L-reduction with
a=4k+landg=1. O

5. k-tupledomination in p-claw free graphs

In this section we study the-tuple domination in

p-claw free graphs. We show that the problemis APX ues

a subclass, we directly obtain the APX completeness
from Theorem 4. Indeed, the graphs used in the proof
are 5-claw free graphs by construction and have degree
bounded by + 2. We show in Section 5.2 that MIN
k-TUPLE DOM SET is APX when restricted to all
5-claw free graphs, forany>2. O

5.2. Upper bounds on approximation ratio

Lemma?7. Let G = (V, E) be any p-claw free graph
and & be any constant such that ¢ > k — 1. Let Dy
be any optimal k-tuple domination of G and S be any
MISof G. Then:

k|S|
(p—-1

Proof. Forallu € S, letc, = |D; N Ng[ul|. As D; is
a k-tuple domination ofG, ¢, > k for eachu € S and
we have:

D eu=kIS|.

ues

For allv € D}, letd, = |S N Ng[v]|. As G is a p-
claw free graph, for allb € Df there are at most
p — 1 independent vertices in its neighborhood and
d, < p — 1. We have:

(p=D|D;|= Y du

*
veDy

<|pj|.

Now, for allu € S, letc;, = |D; N Ng(u)|. Hence, for
alueD;NS,c,=c,+1andforallueS— Dy,
¢y = ¢j,. Thus we have:

Y eu=|DinS[+Y c.

uesS

complete, even in a restricted class of graphs. We aISOSimiIarIy for all v € D¥, let d’. = |S N N (v)|. For
propose an approximation algorithm having a constant 4, ¢ p* 0 s 4. — d’k—,k 1 and for allv € D* — S
k 1 v — v k i)

approximation ratio (ifp is constant).
5.1. Lower bounds on approximation ratio

Theorem 5. MIN k-TUPLE DOM SET is APX-
complete even when restricted to all 5-claw free
graphs of degree bounded by k + 2, for any constant
k>2.

Proof. As the set of allp-claw free graphs contains
the set of all graphs of degree bounded by 1 as

dy =d),. Thus we have:

> dy=|Dins|+ > ).

veD} veD}
The last equality finishes the proof:
Zc; =[{uveE:ueS, ve D}

ues
=Y d,. O

*
veDy
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Algorithm TUPLE-DOMINATING-CLAW.

Input: A p-claw free graptG = (V, E), a constank
such thak — 1 <4g.

1. Fori:=1tok

2. ConstructaMISS; inG — S1U---US;_1;

3.D:=851U---USg;

4. Fori :=2tok

5. LetL; be the set of vertices ¢ that are not
dominated by any vertex of;

6. S :=0;

7. Forallitu € L;, if Ng[u] — D # ¥ choose any

vertexv € Ng[u] — D and add it inD and
in S’
8. Foreach vertex € SoU---U Sy, add inD
a sufficient number of new vertices 8f;[u] — D
to ensure that is k-dominated by vertices ab;
9. OutputD;

Note that sets! are not used in the algorithm (can
be removed) but are useful for the analysis.

Theorem 6. Algorithm TUPLE-DOMINATING-
CLAW is a 222k — 1+ 2) approximation algo-
rithm for the optimal k-tuple dominating set problem
in p-claw free graphs.

Proof. Let G = (V,E) be any entry graphk a
given constantD the set of vertices returned by the
algorithm andD;’ an optimalk-tuple dominating set
of G. It is clear that the algorithm output® in
polynomial time. Let us callSg; the set of new

vertices added in the last part of the algorithm (line 7).

Let us see whyD is ak-tuple dominating set of;.
Forallue G—S1U---US, at each step, u is
not taken inS; and thus is dominated by one vertex
of S;. Atthe endy is dominated by at leatdifferent
vertices ofSy U --- U S;. Now eaclu e S1 U --- U S

we can apply Lemma 7 of; U L; and obtain for all
i=2,...k,
(p — DID}|
. (1)
Let us now upper bounfby,1|. Foreach =2, ...,k
and each vertex € S> U --- U §;, the algorithm adds
at mostk — i new vertices inS;+1. Indeed, vertex is
alreadyi-dominated by itself and at least one vertex in
S; for each 1< j <i — 1. Moreover, as each; is a
MIS, by Lemma 7 we get:

(p — DIDfI
—
Hence, we have

k k

. (p— D|D}] .

Seeal < k= D)ISi| < % Sk —i).
=2 =2

1S US| <8 ULi| <

1Si] <

Finally:

(k=1 —-2)
2k

Let us prove now the approximation ratio.

1Sk41l < (p— 1) Dy . )

k

DI = 1811+ ) _|8; US]| +[Sksal-
i=2

Using (1) and (2), we get:

k—1k—2
|D|<<p_1)|pz|+(p_1)$

(P—l) 2 *
=" (k—1+z>|Dk|. O

| D]

6. Conclusion and per spectives

We have proved the hardness of #éuple domi-
nation problem, even in restricted families of graphs.
Moreover, we have proposed approximation algo-

is k-dominated at the end because of the last stepsrithms for all these families of hard instances. For each

(producing thesS; sets tok-dominateS; and the set
Sk+1 to k-dominate vertices afo U - - - U Sg).

We can note thatZ;| > | S|, L; andS; are disjoint,
S; ands; are disjoint, henceS; U S7| < [S; U L;]. In
addition, asS; UL; is an independent set 6f (because
L;andS; are independent sets 6f and if a vertex of
u € L; is neighbor ofv € §; then it dominates it and
it is a contradiction with the definition of;). Then

of them, the lower and upper bounds on approximation
ratios are tight.

The main family studied here arg-claw free
graphs in which MIS is a good approximated domi-
nating set (we used this fact intensively in Section 5).
We can note that unit disk graphs are 6-claw free
graphs (see [13]). Our algorithms can then be applied
on this family. However, hardness results fetuple



R. Klasing, C. Laforest / Information Processing Letters 89 (2004) 75-83 83

domination on unit disk graphs are still unknown (to
our knowledge). This would be particularly interest-
ing since unit disk graphs model ad-hoc networks [2].
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