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Abstract

In this paper we investigate the Pentomino Exclusion Problem, due

to Golomb. We solve this problem on the 5 x n grid and we give some
lower and upper bounds for the £ x n grid for all k, n.
A generalization of this in graphs leads to a new combinatorial prob-
lem, the A-dislocation problem : find the minimum number of vertices
to be removed from the graph so as the remaining connected com-
ponents have cardinality at most A. We investigate the algorithmic
aspects of the A-dislocation problem : we first prove the problem is
NP-Complete, then we give a sublinear algorithm wich solves the prob-
lem on a restricted class of graphs which includes the k x n grid graphs
when k is not apart of the input.

1 The Pentomino Exclusion Problem

1.1 Introduction

A polyomino is a pattern formed by the connection of a specified number of
equal-sized squares along common edges (see [5]). A pentomino is a poly-
omino composed of 5 squares.

Golomb [5] proposed the following Pentomino Fxzclusion Problem, denoted
PEPyy, @ Find the minimum number of unit squares to be placed on a k x n
chessboard so as to exclude all pentominos.

For convenience, we will denote this number Kgy,.

Bosch [1, 2] proposed a Linear Integer Programming approach to compute
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Knxn, and determined this number when n < 12 [1]. In [6], the authors
determined Ky, for all n and k < 4 (see Theorem 1) and gave some results
about the infinite case (ZZ%). Using the asymptotical results in [6], we will
here determine k5, for all n and give some upper and lower bounds of this
number for all £ and all n.

Theorem 1

5] ifk=1
B 2\% | if k=2
Fohxn = ifk=3andn > 2 a

n
(2] - 1ifk=4,n>4

1.2 Case of the grid 5 xn

In this section, we investigate the problem PEPs5y,,.

We denote by G, ,, the kxn grid. For given k and n, C1, ..., C), (respectively
Ry, ..., Ry) denote the columns (resp. the rows) of Gy ,. The squares of
G, are denoted by s; ; where {s; ;} = R; N C}.

Lemma 1 K5y, > 2n — 2.

Proof:

The proof works by induction on n.

The cases n < 2 are obvious.

Assume now that n > 3. Let S be a solution of PFE Psy.,.

If |SNCy| > 2, then by the induction hypothesis applied on U;—3. ,,C; we
obtain |S|>2+4+2(n—1) -2 =2n—2.

Assume now, |SNCq| = 1.

Let j > 2 the smallest integer such that |SNC;| # 2.

If|SNC;|>3,then | SN(C;UCU...UC;) |> 27, and by the induction
hypothesis applied on Uj=j41,... »,C; we have | SN (Cj41 UC ;42U...UC,) |>
2(n —j) — 2, so that | S |> 2n — 2.

Assume now that | SNC; |=1

If j =2, then it is easy to see that SNCy = {s31} and SNCy = {s32} (see
Figure 1). So we obtain | SNC3 |> 4, hence | S [> 14+ 1+44+2(n—3)-2 =
2n — 2.

If j=mn,then |S|=142n-2)+1=2n-2.



Figure 1: The case [SNCy|=|SNCy =1

If 2 < 7 < n, then we have to study the position of the element in SN ;.

If SNC; € {s1;;55,;}, then [SNC;_q] > 4, which is a contradiction with
the definition of j.

If SNC; € {s2;;54,;}, then since |S N C;_1| = 2, it is easy to see that
it implies that [S N ;41| > 4. Then by induction hypothesis applied on
Ui=j+2..,Cs, we obtain |[S| > 14+2(j —2)+14+4+2(n—j—-1)—2=2n—2.

Thus, we may assume that SN C; = {s3;}.

We have |Sﬂ (R1UR2) N (Cj_QUCJ'_l UC]‘)| Z 2 and |Sﬂ (R4UR5) N (Cj_QU
C;—1UC;)| > 2. Since | C;_1 NS |= 2, we get also | C;_o NS |= 2, which
implies that j — 2 > 1 and (C;_, UC;_1) N R3 = 0.

The squares s j_1, 54 j—1 must belong to S, otherwise the set {s; ;, s2 ;, 52 j—1,
$3,5_1,53,;-2, S4,j—1, 54,5, S5,;} contains a pentomino. From now, an easy ex-
haustive exploration of cases (see Figure 2) shows that |[SNC;_3| > 3, which
is a contradiction with the definition of j. a

Theorem 2
2n— 1 ifn € {1...4}
Rsxn = .
2n—2 14 n>5

Proof: Thecasen € {1...4} holds by Theorem 1. To conclude we exhibit
solutions for n > 5 (see Figure 3) satisfying | S |=2n — 2. o



At least 3 more squarestimefirst column !!

Figure 2: The case SN C, = {s31}.

1.3 General Bounds
We need the following Theorem due to S. Gravier and C. Payan [6] :

Theorem 3 The density' of an optimal solution of PEPZz) is % O

Theorem 4 For all k,n > 5 we have :

%km %(H n) - ([4?"1 + %b _ ; < e < %(k ~ )22
Proof:

For the upper bound, we know, by Theorem 3, that the optimal density
of PEP.,2 is % In Figure 4, we give such a solution 7. This solution is
periodic and can be described as a translation of a given row. Here we will
use a more precise description. For a periodic solution § of PEPZZ2’ each
row R; can be encoded by the upper-word u; ...u; (respectively the down-
word dy .. .d;) where the integer u, (resp. ds) means that the corresponding
square belongs to a polyomino of size us (resp. dj) in Uj>;R; \' S (resp.
Uj<iR; \ §). Therefore, a square belongs to S if and only if it is labelled 0.

For instance, the solution 7 in Figure 4 admits the upper-word UW =
01040403303301 and the down-word DW = 04010103303304.

'"The density of a solution S in a finite set 7' is given by d(s,T) = % Roughly
speaking, the density of a solution S in ZZ? is the limit (when there exists one) of d(S,T)

when T ‘grows’. For a more precise definition we refer the reader to [6].



Now, from 7, we will construct a solution of PEPy, for any k,n > 5, as fol-
lows : first replace the rows U;<o R2; by two rows corresponding to a solution
of PEP, 7 where the row Ry has a down-word DW?2 = 10401040101040
(see Figure 5). The density of Ry U Ry is 15 which is better than the density
of T (13).

Observe that this gives a solution 7" (see Figure 5) of PEP,,+ .. Indeed,
each coordinate of the word UW 4+ DW?2 is smaller than 5.

Moreover, since for the solution 7 each polymino in ZZ?\ 7 has cardinality
4, then every row R; of 7' with j > 3 has an down-word for which each coor-
dinate is smaller or equal to the ‘corresponding’ coordinate of DW. In fact,
in our solution of PEP + T the down-word of R; is again DW whenever
7 > 4 and the down-word of Rz is 01010103303301.

Let k£ > 5 be an integer and let DWW’ be the down-word of 7" associated to
Ri_s.

Replace the rows Uj>r_oR; by two rows corresponding to the solution of
PEP, 77 where the row Ry_; has the upper-word UW?2 = 10401040101040
(see Figure 5).

This construction gives a solution S’ of PEP, 7, since each coordinate of

the word DW' 4+ UW?2 is smaller than 5.

Now, to obtain a solution S* for PEP,, it is enough to take n consecutive
columns (1, ..., C, of S’ for which the density of (RsU...U Rg_2) N (C1 U
UG, is < %
Finally, S* has cardinality :

- In the first (last) 2 rows, less or equal to 11[].

- In (R3U...URk_2) N (C1U...UC,), less or equal to 2(k — 4)n.
This gives the desired upper bound :

n

w(k x n) < %(k At 22[ ],

For the lower bound, let S be an optimal solution of PEPy,,. First we
claim that :



We may assume that there is at most 2 consecutive ele-

ments of S in (Cy,Cy, Ry, Rk). (1)

Indeed, each solution S of the PEPgy, can be transformed into another
solution S’ satisfying the claim by the following transformation : given 3
consecutive elements sy ;_1, 51,4, 51,i+1 of SN Ry ;set S" = SU{sg;}\ {51}
Clearly, repeating this process in C,C,, R, R, we will obtain a solution S’
of PEPyx, satisfying Claim 1 and such that | S" |<| S |.

Let S be an optimal solution of PEPpy, satisfying Claim 1. We will
construct a solution 5™ of PEP (31.19)x (2n+2) such that {s+(a.(2n+2),b.(2k+
2)) | s € 5%, a,b € 7} is a solution of PEP, ..

We set S*:SUSlLJSQUSgUBlUBQUBgUB4UB5UB6UB7UB8UT
(see Figure 7), where :

o By ={sinq1li €{1,...,k},s;in € S},and By = {sp41 ;|7 € {1,...,n},s1; &
S}. Due to Claim 1, By and Bj satisfy the pentomino exclusion prop-
erty (and even the trimino exclusion property).

e S; is the symmetric of S according to axis By, i.e. S; = {S; 2n4+2-j|si; €
S}. Analogously, define Sy as the symmetric of S according to axis
BQ, i.e. 52 = {52k+2—i,j|5i,j € S}

o In the same way, Bs = {sp41;]j € {n+2,...,2n+1}, sy ; € S1}) and
By = {Si’n+1|i € {k +2,.. ,Qk + 1}, Sk,j Q/ 52})

e Ss3is the symmetric of Sy according to axis Bs, i.e. S35 = {sgryo—i;|si; €
S1}. Notice that, by construction, Ss is also the symmetric of Sy ac-
cording to axis Bj.

o By = {Si,2n+2|i € {17"'7k}75i,2n+1 € 51}7 Be = {Si,2n+2|i € {k—l-
2,...,2k+ 1},82'7271_}_1 g 53}, B; = {82k+27]‘|j € {1,...,7@},82]6_}_17]‘ Q
52} and Bg = {82k+27]‘|j € {TL + 2, .. ,27L—|— 1}7 S2k+1,5 € 53}

o T'= {5k+1,n+17 Sk+1,2n425 S2k+2,n+1; S2k+2,2n+2}-

The set 5™ is a solution of PEP (5119)x(2n42)- The corresponding (2k +
2) x (2n + 2) rectangle tiles 7ZZ* by translation of vectors (0,2k + 2) and
(2n 4 2,0) which gives a solution of PEP;. As the optimal density for

PEPZZQ is %, then the density of S* is greater or equal to %



Since the first and last rows and columns of S have density at least é,

then the B;’s have density at most %. As the S;’s are symmetric of S then

Si| = |S| = Kk, for all i. Moreover |T'| = 4, so finally we have :
3 4n 4k
20k +2)(20+9) < [5°] < +4([ﬂ i [ﬂ) 14

Which leads to the desired bound :

3 3 an T4k, 4
D> kg S(k+n) - (|22 4 |2y - 2
Fin 2 Zhn+ 2(k+n) ([51+[51) 7

Observe that in the proof of the lower bound we need only the assumption
that k,n > 2. a

Let us mention as a direct consequence of the previous theorem, a maybe
more explicit corollary which shows how close are our bounds :

Corollary 1 For all k,n > 5. There are two constant C'y and C3, such
that :

26

770

(k—|—n)—01§nkxn§%kn—;—o(k+n)+02. O

2 The A-dislocation problem

2.1 Introduction

In this section we present a generalization of the PEP.

For a graph G = (V, E) and a positive integer A, we will say that a subset
S of vertices of G is a A-dislocation set of G if and only if all the connected
components of G — S have at most A vertices.

One can notice that if G is the grid £ xn and A = 4, then a A-dislocation set
of (G is a solution of PEPy,,.

Since S = V(@) is always a set of A-dislocation of GG for any A, then the
corresponding optimisation problem is to find an S of minimum cardinality:
A-DISLOCATION

Instance : a graph GG and an integer &

Question : is there a A-dislocation set S in G of cardinality < &k ?
Remark that for a graph G and A = 1, a A-dislocation set S of G is a
transversal of GG, i.e. the complementary of S is an independent set of G.
Since the problem TRANSVERSAL is NP-Complete[4], then for A = 1 the
problem A-DISLOCATION is NP-Complete. In the next subsection we will



prove that for any fixed A this problem is still NP-Complete.

Motivated by the PEPy, problem, we present in subsection 3 a polynomial
time algorithm for solving A-dislocation problem in the grid graph Gy,
whenever k is not apart of the input. More generally, our algorithm works for
a largest class of graphs namely fasciagraphs. This algorithm was inspired
by the work of Zerovnik and Klavzar on fasciagraphs [7].

2.2 Complexity of the A-dislocation problem

In this section we investigate the complexity of the A-dislocation problem.

Theorem 5 For any A, we have that A-DISLOCATION problem is NP-
Complete.

Proof: The problem is clearly in NP. We will reduce it to TRANSVER-
SAL.

TRANSVERSAL

Instance : A graph GG and an integer k

Question : Is there an transversal T'in G of size < k 7

Given a graph (7, let us construct a graph G’ such that G has a transversal
of size < k if and only if G’ has a set of A-dislocation of size < k.
G' is constructed in the following way :

e To each vertex v; € V() corresponds a clique K; on A vertices in G'.
e In each clique K; in G’ let us choose one vertice v
e To each edge v;v; € E(G) corresponds one edge viv; € E(G)

If S is a subset {v;}; of V(G), then S* will denote the corresponding
subset {v7}; of V(G’). Conversely for a subset S* = {v}}; of V(G'), S will
denote the subset {v;}; of V(G).

* Assume that G has a transversal T of size < k. Then T™ is a set of
A-dislocation of G’. Indeed, as T is a transversal of (&, then the connected
components of G’ are :

e the K; — v for all v} € T™, of cardinality A — 1

e the K; for all vf ¢ T, of cardinality A



This shows that T* is a set of A-dislocation of G.

% On the other hand, assume that G’ has a set S of A-dislocation of size
< k. Let us show that G has an transversal of size < k.
Let us consider the set T7* C V(G') defined by :

vieET" < K,NS#0

As S is of size < k, then T™ is of size < k.

Consider the set T"in V(G) corresponding to 7. Then we claim that 7" is
a transversal of G. Indeed, if there exist an edge vivy € F(G') such that
o7, v} ¢ T*, it means that K;NT = K;NT = (), so that K; UK is contained
in a connected component of G' — T* of size > 2A, a contradiction. a

2.3 Case of the Fasciagraphs
2.3.1 Fasciagraphs : definition

Let G4, ...,G, be disjoints graphs and X7, ..., X, a sequence of sets of edges
such that an edge of X; joins a vertex of V(G;) with a vertex of V(G;41),
where G, 41 denotes the graph G;.

A polygraph Q,,(G1,...,Gn; X1, ..., X,,) over the monographs G+, ...,G, is
defined in the following way :

o V(Q,) =V(G))UV(Ga)U...UV(G,)

[ ] E(Qn) = E(Gl) U X1 U E(Gz) U...u /Yn—l U E(Gn) U /Yn
The monographs G; are also called the fibers of the polygraph.

Assume that for all ¢ = 1...n, G; is isomorphic to a fixed graph G.
In addition, let the sets X;, i = 1...n — 1 be equal to a fixed edge set X
and X,, = (). Then we call the polygraph a fasciagraph and we denote it
v, (G, X).
2.3.2 Algorithm for fasciagraphs

Let G be a graph on k vertices vy, ..., v; and let ¥, (G, X) be a fasciagraph of
fiber G. We will denote v] the vertex v; in the j-th fiber G of ¥, (G, X). In
this section we denote by ¥;, j = 1...n the subgraph of ¥, (G, X) induced
by the j-th first fibers Gq,...,G; of U, (G, X).



For a fixed j < n, a word (ay,az,...,a;) of {0,..., A}* is said to be valid
(for Gi;) if there exists a set S of A-dislocation of ¥; such that :

a; =t iff vg belongs to a connected component of cardinality & of ¥; — S

We will construct an auxiliary digraph G(G, X).

e The vertices of G(G, X) are the valid words of {0,..., A}*, plus two
additional vertices B and F, that we call respectively begin and end

vertices of G(G, X).
e There is an arc between B and any valid word V' # E for G.
e There is an arc between any vertex V # B and FE.

e There is an arc between two valid words V and W # B, F if and only
if there exists a set S of A-dislocation and an integer 7 for which V is

valid for G; and W is valid for Gj4.

Notice that there is a one to one mapping between the sets of A-dislocation of
U, (G, X) and the pathes on n 4 2 vertices from B to E of G(G, X).

In addition, the graph is labeled in the following way :

e Lor any V and any W # F, the arc (V, W) is labeled by the number
of zeros of the vector W.

e Lor any V, the arc (V, F) is labeled by 0.

Remark that for a given path on n+2 vertices P = (B, V1, Va, ..., V,,, F),
the length of P is the sum of the number of zeros of Vi, V5, ..., V,,. So the
length of the path is the cardinality of the corresponding set of A-dislocation.
Then, determine the minimum cardinality of a A-dislocation set of ¥,,(G, X)
is equivalent to compute the minimum length of a (B, E)-path on n + 2
vertices in G(G, X'). This can be done in O(Klog n) time, where K depends
only on the size of G(G, X)) (see for example [3] or [8]).

Theorem 6 For a fized k, one can compute the A-dislocation number of a
fasciagraph ¥, (G, X) in O(logn) time whenever |V (G)| < k.

Proof: First observe that the size of G(G, X) depends only on &k and A,
since G(G, X) has at most (A + 1)* vertices.
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It remains, now, to prove that one can construct G(G, X) in O(logn) time.
This comes from the fact that determining if a word of {0,..., A}* is valid,
and checking if two valid words are adjacent, can be done by computing all
the A-dislocation sets of Wa (G, X). Indeed, for j > A, a word w is valid
for G; in ¥, (G, X) if and only if w is valid for Ga in Ua (G, X). o

3 Open Problems

Roughly speaking, Theorem 4 shows that xpy, is approximatively % times
the area of the £ x n grid minus an improvment on the boundary (k + n).
For £ = 5 and when 14 divides n, the upper bound of Theorem 4 gives
Ksxn < 2n. Moreover, Theorem 2 tolds us that x5y, = 2n — 2. Therefore,
one may ask :

Conjecture 1 For any k and n ‘sufficiently large’ (with n > k), we have

n

in = L2 (k — 4)n] +22] T

1-0().

From the algorithmic point of view, one may consider a weaker question
related to the grid graph. Theorem 6 proves that determining xyy, for a
grid graph is a polynomial task whenever £ is fixed. So a weaker version of
Conjecture 1 is :

Conjecture 2 [t is polynomially solvable to decide whether kiy, < P for
given integers P, k and n.
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n=3q+2, n=5

5 6 6 CECRCE 6 1

n=3q+1, n>7

5 6 6 | 6 5

n=3qg, n=9

Figure 3: Some solutions of PF Psy,, for n > 5.
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Figure 4: Optimal solution of 772,
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Figure 5: Construction of a solution of PEP, 7.
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Figure 6: Proof of Claim 1.

Figure 7: Construction of S* from S.
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Figure 8: Construction of G’ from G.
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