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Abstract. We develop a general theory for the existence of extremal Kähler met-
rics of Poincaré type in the sense of [6], defined on the complement of a toric divisor
of a polarized toric variety. In the case when the divisor is smooth, we obtain a list
of necessary conditions which must be satisfied for such a metric to exist. Using the
explicit methods of [3, 4] together with the computational approach of [29], we show
that on a Hirzebruch complex surface the necessary conditions are also sufficient.
In particular, on such a complex surface the complement of the infinity section ad-
mits an extremal Kähler metric of Poincaré type whereas the complement of a fibre
admits a complete ambitoric extremal Kähler metric which is not of Poincaré type.

1. Introduction

In this article, we are interested in the study of (non-compact) complete extremal
Kähler metrics, defined on the complement of a simple normal crossing divisor Z in
an n-dimensional Kähler manifold X. Such metrics naturally appear (see e.g. [17])
in attempts to apply continuity methods, or to study global properties of geometric
flows, aiming at producing extremal Kähler metrics on X in the framework of the
general problem of finding canonical Kähler metrics formulated by Calabi [11].

The main conjecture regarding the Calabi problem is the Yau–Tian–Donaldson con-
jecture which relates the existence of an extremal Kähler metric in the first Chern class
c1(L) of an ample line bundle L on X to an algebro-geometric notion of stability of the
polarized projective variety (X,L). In this context, a key point is to understand what
happens when an extremal Kähler metric does not exist in c1(L). For toric varieties,
Donaldson conjectured [17, Conj. 7.2.3.] that there should be a splitting of the corre-
sponding Delzant polytope into sub-polytopes which are semi-stable when attaching
a 0 measure to the facets that are not from the original polytope; furthermore, in the
case when a semi-stable polytope in the splitting is stable, it is conjectured to admit
a symplectic potential inducing a (unique) complete extremal Kähler metric on the
complement of the divisors corresponding to the facets with 0 measure. Such extremal
toric Kähler metrics have a finite volume, and we shall refer to them as Donaldson
metrics.

The main motivation for this paper is to study, in the toric case, the precise link
between the extremal Donaldson metrics and the class of complete Kähler metrics of
finite volume on X \Z, called of Poincaré type, early used for instance in [13, 36], and
studied by the second named author in [6].
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Definition 1.1. Let Z ⊂ X be a simple normal crossing divisor in a compact complex
n-dimensional Kähler manifold (X,ω0). A Kähler metric ω on X \ Z is said to be of
Poincaré type of class [ω0] if

• On any open subset U ⊂ X with holomorphic coordinates (z1, . . . , zn) such
that Z ∩ U is given by z1 · · · zk = 0, ω is quasi-isometric to the (1, 1)-form

ωmod =
√
−1
( k∑
j=1

1

|zj |2(log |zj |)2
dzj ∧ dz̄j +

n∑
j=k+1

dzj ∧ dz̄j
)

near Z, and
• ω = ω0+ddcϕ where ϕ is a smooth function onX\Z and ϕ = O

(∑k
j=1 log(− log |zj |)

)
in the coordinates (z1, . . . , zn) as above, with dϕ having bounded derivatives
of any order with respect to the model metric ωmod above.

General theory for extremal Poincaré type metrics on (X \ Z, [ω0]) has been devel-
oped in [6, 7, 8, 9]. In particular, a differential-geometric obstruction for the existence
of a constant scalar curvature Kähler (CSCK) metric of Poincaré type on X ⊂ Z,
reminiscent to the usual Futaki invariant, is introduced in [9]. Furthermore, in the
special case when the Kähler class [ω0] = c1(L) is associated to a polarization L on X,
an algebro-geometric notion of (relative) K-stability of (X,Z,L) is formulated by G.
Székelyhidi in [34], who introduced a suitable version of the Donaldson–Futaki invari-
ant of a test configuration associated to the triple (X,Z,L). Székelyhidi also defined
a numerical constraint, which we shall refer to in this paper as Székelyhidi’s numeri-
cal constraint (see Definition 2.6), which is related to the deformation to the normal
cone of Z ⊂ X, and is designed to guarantee the existence of a Poincaré type metric
(and not a complete extremal Kähler metric with different asymptotics near Z). It
was later shown in [7] that Székelyhidi’s numerical constraint is a necessary condition
for the existence of a CSCK Poincaré type metric on X \ Z in the class c1(L). The
case when Z is smooth and admits a Kähler metric of non-positive constant scalar
curvature has been also studied in [30, 31, 32], where it is conjectured that (X,Z,L)
is then K-semistable and admits a complete Kähler metric of negative constant scalar
curvature.

Thus motivated, in Section 3 we turn to the case when (X,L) is a smooth toric
variety, and Z a divisor invariant under the torus action. Compared to the theory
in [31], we are dealing with the case when each component of Z is a toric variety,
and therefore can only admit a positive CSCK metric. In terms of the corresponding
momentum polytope ∆, Z is the preimage by the moment map of the union F = ∪iFi
of facets Fi of ∆. In this setting (and taking F to be a single facet), we show that
Székelyhidi’s numerical constraint takes a particularly simple form (Lemma 3.2), and
matches the necessary numerical condition for the existence of an extremal Kähler
metric of Poincaré type on X \ Z found in [9]. Furthermore, building on the recent
results in [8] and a conjecture from [17] (see Conjecture 4.10 below), we formulate a
precise conjectural picture concerning the existence of an extremal Poincaré type toric
Kähler metric on (X \ Z, [ω]), see Conjecture 4.12. It states that such an extremal
Kähler metric exists if (i) the pair (∆, F ) is stable, (ii) for each facet Fi ⊂ F , the
pair (Fi, Fi ∩ (∪j 6=iFj)) is stable, and (iii) when restricted to Fi, the extremal affine
function of (∆, F ) differs from the extremal affine function of (Fi, Fi ∩ (∪j 6=iFj)) by
a negative constant. This is a much stronger statement than the original conjecture
made in [34] (see Conjecture 2.5), but in the remainder of the paper we show that it
is sharper too.
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In Section 4, we develop the Abreu–Guillemin formalism of toric Kähler metrics
of Poincaré type, thus leading to a natural class of symplectic potentials (see Defini-
tion 4.14 and Theorem 4.15) which give rise to Poincaré type metrics in the sense of
Definition 1.1. While these conditions are sufficient, they are not necessary in general
(but are conjecturally sharp when adding the extremality condition). We show that
within this class of Poincaré type metrics on X \Z, the extremal ones are unique and
the conditions (i), (ii) and (iii) of our Conjecture 4.12 are necessary too.

In the last Section 5, we turn to explicit examples by using the methods of [3, 4].
These results together with [16] confirm the Donaldson conjecture concerning the
existence of a complete extremal Kähler metric in the case when (∆, F ) is a stable
quadrilateral with some of its facets with measure 0, also allowing us to find the
metric explicitly. Investigating the stability of such pairs is, on its own, a problem of
formidable complexity but using the method from [29], we obtain a complete picture
on the Hirzebruch complex surfaces.

(i) Z = S0 (ii) Z = S∞

(iii) Z = F1 (iv) Z = S0 ∪ F1

(v) Z = F1 ∪ F2 (vi) Z = F1 ∪ F2 ∪ S0

Figure 1. The rows illustrate case (a), (b) and (c) of Theorem 1.2.

Theorem 1.2. Let X = P(O⊕O(m))→ CP 1,m ≥ 1, be the m-th Hirzebruch surface,
considered as a toric complex surface under the action of a 2-dimensinal torus T, and
[ω0] be a Kähler class on X. Then,
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(a) If Z ⊂ X is the divisor consisting of either the zero section S0, or the in-
finity section S∞, or the union of both, then X \ Z admits a T-invariant ex-
tremal Poincaré type Kähler metric in [ω0], which is a Donaldson metric of
(X,Z, [ω0]).

(b) If Z ⊂ X is the divisor consisting of either a single fibre F1 of X fixed by
the T-action, or the union of F1 with S0, or the union of F1 with S∞, then
X \ Z admits a complete T-invariant Donaldson extremal Kähler metric in
[ω0], which is not of Poincaré type.

(c) If Z consists of the union of two fibres fixed by the torus action, or contains
three curves fixed by the action, then (X,Z, [ω0]) is unstable, i.e. there are no
Donaldson metrics on X \ Z.

In particular, Conjecture 4.12 holds true.

Similar existence results hold for the toric surfaces X = CP 2 and CP 1 × CP 1, see
Corollary 5.3 and Theorem 5.13 below.

We end this introduction by noticing that part (b) of Theorem 1.2 above implies
that while for the X,Z and [ω0] considered here, the relative stability of (X,Z, [ω0])
does imply the existence of a complete extremal Kähler metric on X \ Z, this metric
is not in general of Poincaré type, even though the Székelyhidi numerical constraint
is satisfied. Thus, in general, one will need more conditions to guarantee that the
extremal metric obtained for a relatively stable triple (X,Z, [ω0]) is of Poincaré type.
Conjecture 4.12 is designed to incorporate this extra requirement in the toric setting.

2. The relative K-stability of a pair

2.1. Donaldson–Futaki invariant of a pair. We follow [34, §3.1.2]. Let (X,L) be
a smooth polarized variety of complex dimension n and Z ⊂ X a smooth divisor.
Suppose α is a C×-action on (X,L) which preserves Z. We consider the embedding

H0(X,Lk ⊗O(−Z)) ⊂ H0(X,Lk)

via a section of O(Z) which vanishes along Z. Since L is ample,

H1(X,Lk ⊗O(−Z)) = 0 for k � 0,

and we have an exact sequence

(1) 0 −→ H0(X,Lk ⊗O(−Z)) −→ H0(X,Lk) −→ H0(Z,Lk|Z ) −→ 0.

Let dk, d′k, d
Z
k be the dimensions of H0(X,Lk), H0(X,Lk ⊗ O(−Z)), H0(Z,Lk|Z )), re-

spectively, and let d̃k be the average of dk and d′k. By Riemann–Roch and (1),

dk = c0k
n + c1k

n−1 +O(kn−2); dZk = α0k
n−1 + α1k

n−2 +O(kn−3);

d̃k =
dk + d′k

2
= dk −

dZk
2

= c0k
n +

(
c1 −

α0

2

)
kn−1 +O(kn−2).

(2)

Similarly, letting wk, w′k, w
Z
k be the respective weights of the action of α onH0(X,Lk), H0(X,Lk⊗

O(−Z)), H0(Z,Lk|Z )), and w̃k be the average of wk and w′k, by the equivariant Riemann–
Roch and (1) we have

wk(α) = a0k
n+1 + a1k

n +O(kn−1); wZk (α) = β0k
n + β1k

n−1 +O(kn−2);

w̃k(α) =
wk(α) + w′k(α)

2
= wk(α)−

wZk (α)

2
= a0k

n+1 +
(
a1 −

β0

2

)
kn +O(kn−1).

(3)
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Definition 2.1. The Donaldson–Futaki invariant F̃X,Z,L(α) of α with respect to
(X,Z,L) is defined as −4 times the residue at k = 0 of the Laurent series of w̃k/(kd̃k)
with respect to k, i.e.

1

4
F̃X,Z,L(α) =

c0(a1 − β0

2 )− a0(c1 − α0
2 )

c2
0

=
1

4
FX,L(α) +

1

2

(a0α0 − c0β0

c2
0

)
,

(4)

where FX,L(α) = 4( c0a1−a0c1
c20

) is the convention for the Donaldson–Futaki invariant
in [17], so that it coincides with the differential-geometric formula in [9] for the usual
normalized Futaki invariant of α, expressed in terms of the L2 -product of a normalized
Killing potential for the C×-action and the scalar curvature with respect to an S1-
invariant Kähler metric on X in 2πc1(L), divided by the volume.

Following [34], one can also define a relative version of F̃X,Z,L(α) with respect to
another C×-action β in the group Aut(X,L,Z) of automorphisms of (X,L), preserving
Z. Recall that the inner product 〈α, β〉 is defined to be the coefficient of kn+2 of the
expansion of Tr(AkBk) − wk(α)wk(β)/dk, where Ak and Bk are generators of the
actions of α and β on H0(X,Lk). This definition is consistent with the L2 -norm of
normalized Killing potentials (the so-called Futaki–Mabuchi bilinear form [19]).

Definition 2.2. The β-relative Donaldson–Futaki invariant (of α, with respect to
(X,Z,L)) is

(5) F̃βX,Z,L(α) = F̃X,Z,L(α)− 〈α, β〉
〈β, β〉

F̃X,Z,L(β).

The above definitions make sense for any rational multiples of α and β (by linearity).
We then consider a maximal complex torus Tc = (C×)` in Aut(X,L,Z) and define
the extremal C×-action χ of (X,L,Z) as the unique C× subgroup of Tc such that
F̃χX,Z,L(α) = 0.

2.2. Test configurations and K-stability of a pair. The ingredients of the previ-
ous section yield Székelyhidi’s extension [34] of K-stability to pairs.

Definition 2.3. The triple (X,Z,L) is called K-stable if for any test-configuration
(X ,L) of (X,L) with a flat C×-invariant Cartier divisor Z ⊂ X which restricts to Z
on the non-zero fibres, the modified Donaldson–Futaki invariant of the central fibre
satisfies

(6) F̃X0,Z0,L0(α) ≥ 0

with equality if and only if the test configuration is trivial in codimension 2 (see [33]
for a precise definition of triviality). Similarly, one can define relative K-stability of
(X,L,Z) by requiring

(7) F̃χX0,Z0,L0
(α) ≥ 0,

with equality if and only if the test configuration is trivial in codimension 2. (Recall
χ is the extremal C×-action defined algebraically in the previous section.)

Investigating a ruled complex surface X = P(O⊕L)→ Σ with Z being the infinity
section, Székelyhidi [34] noticed that for some polarizations L, there are complete
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finite volume extremal Kähler metrics on X \ Z in c1(L), which are not of Poincaré
type, but have instead the asymptotics of

|dz|2

|z|2
(
− log(|z|)

) 3
2

+ smooth,

where z is a (local) defining holomorphic function of Z. In order to exclude this
behaviour, Székelyhidi furthermore proposes to use the notion of slope stability intro-
duced by Ross–Thomas [28] for the triple (X,L,Z) as follows. Recall that for any
(X,L,Z) as above, and any rational number c ∈ (0, ε(Z)) (where ε(Z) is the Seshadri
constant of Z with respect to (X,L)), one can associate a test configuration (X ,Lc,Z),
called the degeneration to the normal cone of Z: X is the blow-up of X × C along
Z×{0}, Lc = π∗(L)⊗O(−cP ) where P is the exceptional divisor (naturally identified
with the projective bundle P = P(O ⊕ νZ) → Z where νZ is the normal bundle of
Z ⊂ X), and π : X → C is the projection. Note that the central fibre X0 of π is iso-
morphic to X glued to P along the infinity section P(νZ) ∼= Z. However, considering
the zero section Z0 ⊂ P , one gets the proper transform Z of Z × C ⊂ X × C on the
blow-up X , so that π : Z → C is a trivial family. It follows from [28] that (X ,Lc,Z)
defines a test configuration for the triple (X,L,Z). This motivates:

Definition 2.4. In the notation above, we let

F (c) := F̃X0,Lc|X0
,Z0

(αc), Fχ(c) := F̃χX0,Z0,Lc|X0

(αc)

be the corresponding modified Donaldson–Futaki invariant and relative modified Donaldson–
Futaki invariant associated to the degeneration of the normal cone to Z ⊂ (X,L).

Then, Székelyhidi conjectures:

Conjecture 2.5 (Székelyhidi [34]). The triple (X,Z,L) admits a constant scalar
curvature (resp. an extremal) Kähler metric of Poincaré type if and only if (X,Z,L)
is K-stable (resp. relative K-stable) and, additionally, F ′′(0) > 0 (resp. F ′′χ (0) > 0).

Definition 2.6. We shall refer to the conditions F ′′(0) > 0 (resp. F ′′χ (0) > 0) as the
Székelyhidi numerical constraint (resp. relative Székelyhidi numerical constraint).

The following observation is made in [34]:

Lemma 2.7. F (c) := F̃X0,Lc|X0
,Z0

(αc) is a polynomial of degree ≤ (n + 1) in c sat-
isfying F (0) = F ′(0) = 0. It is positive for c ∈ (0, ε(Z)) if (X,L,Z) is K-stable.
Furthermore, the Székelyhidi numerical constraint F ′′(0) > 0 is equivalent to

(8) α1c0 > α0(c1 −
α0

2
),

where αi, ci are defined by (2).

Proof. The (usual) Donaldson–Futaki invariant of (X ,Lc) is computed in [28]:

(9)
1

4
F(αc) =

1

c2
0

[
− c0

∫ c

0
α1(x)(x− c)dx+ c

c0α0

2
+ c1

∫ c

0
α0(x)(x− c)dx

]
,

where c0, c1 are the coefficients of kn and kn−1 of dk as defined in the previous section
(with respect to (X,L,Z)), see (2), and

α0(x) =
1

(n− 1)!

∫
Z

(c1(L) + xc1(O(Z))n−1;

α1(x) =
1

2(n− 2)!

∫
Z
c1(TX) ∧ (c1(L) + xc1(O(Z))n−2.

(10)
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By Riemann–Roch, αi(0) is the constant αi appearing in the previous section (first
line of (2)).

The main ingredient in order to carry out the above calculation in the modified
case is the weight space decomposition for the induced C×-action αc on the space
H0(X0,Lc|X0

) (see [28, §4.2]):

(11) H0(X0,Lc|X0
) = H0(X,Lk ⊗O(kcZ))⊕

ck−1⊕
i=0

tck−iH0(Z,Lk|Z ⊗ (ν∗Z)i),

where the weight of αc on the first factor is 0 and −(ck − i) on the components of
the second direct sum. Note that the factor tckH0(Z,Lk|Z ) in the above decomposition
corresponds to H0(Z0,L|Z0

) in (1). It follows that

(12) dZ0
k = dZk = α0k

n−1 +O(kn−2); wZ0
k = ckdZk = cα0k

n +O(kn−1)

while the coefficients a0 and a1 of the weights induced on H0(X0,Lc|X0
) are given by

(see [28, Eqn.(4.6)]):

(13) a0 =

∫ c

0
(x− c)α0(x)dx; a1 = −c α0

2c0
+

∫ c

0
(x− c)dx.

We therefore compute the modified Donaldson–Futaki invariant given by (4):

(14)
1

4
F̃X0,Z0,Lc|X0

(αc) =
1

c2
0

[
(c1 −

α0

2
)

∫ c

0
(x− c)α0(x)dx− c0

∫ c

0
(x− c)α1(x)dx

]
.

Form the above formula, the proof of Lemma 2.7 then follows easily. �

Using Lemma 2.7, it is shown in [7]:

Theorem 2.8. [7] If there exists a CSCK metric of Poincaré type on X \ Z in the
class c1(L), then the Székelyhidi numerical constraint holds, i.e. (8) is satisfied.

Remark 2.9. It is plausible to expect a similar numerical expression for the relative
Székelyhidi numerical constraint F ′′χ (0) > 0 but we failed to see a neat way to compute
Fχ(c) in a sufficient generality, especially if the extremal C×-action is not trivial on
Z.

We shall next turn to the toric case as a model example for the above theory,
and where specific computations are manageable. We shall show (see in particular
Corollary 5.9) that there are examples of relativelyK-stable triples (X,Z,L) satisfying
F ′′χ (0) > 0, which cannot be of Poincaré type. We note, however, that these examples
do admit a complete extremal metric on X \ Z – it just cannot satisfy the Poincaré
type condition. We shall thus propose a straightened version of Conjecture 2.5 for
when a relatively K-stable triple (X,Z,L) should admit an extremal Kähler metric of
Poincaré type in c1(L) in the toric setting (see Conjecture 4.12).

3. Extremal Poincaré type Kähler metrics on toric varieties

In this section we consider the case when (X,L) is a (smooth) polarized toric variety.
We denote by T the real n-dimensional torus and by Tc ∼= (C×)n its complexification.
The material follows [17].
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3.1. Stability of pairs and toric test configurations. Switching from complex
to symplectic point of view, Delzant’s theorem [15] describes (X,L) in terms of a
compact convex polytope ∆ ⊂ t∗ (where t = Lie(T) is the Lie algebra of T) such that
∆ = {µ : Lj(µ) = 〈ej , µ〉+ λj ≥ 0, j = 1, . . . , d} with ej belonging to the lattice Λ ⊂ t
of circle subgroups of T. The fact that X is smooth corresponds to requiring that at
each vertex of v ∈ ∆ the adjacent normals span the same lattice Λ ⊂ t (see [15, 27]),
while the polarization L forces ∆ to have its vertices in the dual lattice Λ∗ ⊂ t∗.
Taking any generators of Λ as a basis of t, one identifies Λ with Zn and we consider
the Lebesgue measure dµ on t∗ ∼= Rn; furthermore, one defines a measure dν on ∂∆,
such that on each facet Fj ⊂ ∆ (i.e. a face of co-dimension one), we let

(15) −dLj ∧ dνFj = −ej ∧ dνFj = dµ.

A central fact in this theory (see e.g. [12, Sect. 6.6]) is the weight decomposition
of H0(X,Lk) with respect to the (linearized) torus action of T it is isomorphic to
{µ ∈ k∆∩Zn} with the weights identified with corresponding elements of Zn. On the
other hand, for any smooth function f on t∗, we have [24, 37]:∑

µ∈k∆∩Zn
f(µ) = kn

∫
∆
fdµ+

kn−1

2

∫
∂∆

fdν +O(kn−2), as k →∞.

If α is the C×-action with Killing potential corresponding to an affine linear function fα
on t∗ normalized by fα(0) = 0, the above formula allows us to compute the coefficients
c0, c1, a0, a1 in (2) and (3) as follows:

(16) c0 = Vol(∆); c1 =
Vol(∂∆)

2
; a0 =

∫
∆
fαdµ; a1 =

1

2

∫
∂∆

fαdν,

so that the Donaldson–Futaki invariant F(α) of α is

(17)
(2π)nVol(∆)

2
F(α) =

∫
∂∆

fαdν −
s

2

∫
∆
fαdµ,

where s = 2Vol(∂∆)/Vol(∆) = 2n
( ∫

X c1(TX)∧c1(L)n−1/
∫
X c1(L)n

)
is the averaged

scalar curvature of any compatible Kähler metric.
Similarly, if Z ⊂ X is a divisor corresponding to the preimage of the union F =

Fi1 ∪ · · · ∪ Fik of some facets ∆ by the momentum map, the coefficients α0, α1, β0, β1

in (2) and (3) are given by

(18) α0 = Vol(F ); α1 =
1

2
Vol(∂F ); β0 =

∫
F
fαdν; β1 =

∫
∂F
fαdσF ,

where dσ∂F is the induced measure on the boundary of each Fi ∈ F (viewed itself as
a Delzant polytope in Rn−1). The modified Futaki invariant F̃X,L,Z(α) is then

(19)
(2π)nVol(∆)

2
F̃X,L,Z(α) =

∫
∂∆\F

fαdν −
s(∆,F )

2

∫
∆
fαdµ,

with

s(∆,F ) = 2
Vol(∂∆ \ F )

Vol(∆)

= 2n
(∫

X
(c1(TX) + c1(O(−Z)) ∧ c1(L)n−1/

∫
X
c1(L)n

)
.

(20)
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The extremal C×-action χ has Killing potential which is an affine linear function
s∆ determined by requiring ∫

∂∆
fdν − 1

2

∫
∆
fs∆dµ = 0

for any affine function f (see e.g. [34]). Then, as shown in [17, 34], the relative
Donaldson–Futaki invariant is given by

(21)
(2π)nVol(∆)

2
Fχ(α) =

∫
∂∆

fαdν −
1

2

∫
∆
fαs∆dµ

while its modified version is

(22)
(2π)nVol(∆)

2
F̃χX,L,Z(α) =

∫
∂∆\F

fαdν −
1

2

∫
∆
fαs(∆,F )dµ

where s(∆,F ) again is the unique affine function such that∫
∂∆\F

fdν − 1

2

∫
∆
fs(∆,F )dµ = 0

for any affine linear function f .
Donaldson generalizes the above expression for F(α) by considering convex piece-

wise affine linear functions fα with integer coefficients. He associates to such an fα a
test configuration (X ,L), called toric, and identifies the Donaldson–Futaki invariant
of the central fibre (X0, L0) with (17). Székelyhidi [34, § 4.1] shows that (21) computes
the relative Donaldson–Futaki invariant for such test configurations. These compu-
tations generalize easily in the case of a pair (X,Z) where the divisor Z corresponds
to the preimage of a number of facets of ∆ by the moment map. In this case, the
toric test configurations come equipped with a divisor Z which defines a flat family for
Z; furthermore, (19) and (22) compute the modified Donaldson–Futaki and relative
Donaldson–Futaki invariant of toric test configurations, respectively. We are thus led
to the following:

Definition 3.1. Let (X,L) be a toric polarized variety and Z ⊂ X a divisor corre-
sponding to the preimage under the moment map of the union F = Fi1 ∪ · · · ∪ Fik of
some facets of the momentum polytope ∆. We say that (X,Z,L) is relative K-stable
with respect to toric degenerations if

(23) L(∆,F )(f) :=

∫
∂∆\F

fdν − 1

2

∫
∆
fs(∆,F )dµ > 0

for any convex, piecewise affine linear function f which is not affine linear on ∆. Recall
that s(∆,F ) is by definition the unique affine linear function such that (23) vanishes for
any affine linear function f , and is called the extremal affine linear function of (∆, F ).
If (23) is satisfied, we shall refer to (∆, F ) as a stable pair.

Lemma 3.2. Let (X,L) be a toric polarized variety and Z ⊂ X a divisor corresponding
to the preimage under the moment map of one facet F of the momentum polytope ∆.
Then, the relative Székelyhidi numerical constraint is equivalent to

(24) F ′′χ (0) =
1

2

∫
F

(sF − s(∆,F ))dνF > 0,

where s(∆,F ) is the extremal affine linear function of (∆, F ) and sF is the extremal
affine linear function of the facet F (seen as a Delzant polytope of an (n− 1) dimen-
sional toric variety).
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Proof. In the toric case, Ross–Thomas [28, § 4.3] link their construction of degener-
ations to the normal cone to toric test configurations: the degeneration to the nor-
mal cone of Z ⊂ X corresponding to a facet F ⊂ ∆ defined by the zero set of an
affine linear function L (with L ≥ 0 on ∆) is given by Donaldson’s construction with
fc = max(0, c−L). Therefore, the corresponding relative modified Donaldson–Futaki
invariant (22) is

Fχ(c) =

∫
∂∆\F

fcdν −
1

2

∫
∆
fcs(∆,F )dµ

=

∫
∂∆\F

fcdν −
1

2

∫
∆
fcs(∆,F )dµ

− 1

2

∫
∆
fc(s(∆,F ) − s(∆,F ))dµ.

(25)

Note that the sum on the second line is c0/4 times the function F (c) introduced in
Lemma 2.7 (and computed via (14)) and, for any affine function ξ,

∂2

∂c2

(∫
∆
fcξdµ

)∣∣∣
c=0

=

∫
F
ξdνF ,

where, we recall, dνF is determined via the defining equation L = 0 for F by letting
−dL ∧ dνF = dµ. Using (16), (18), and (20) one then gets

F ′′χ (0) =2
(
α1 − (c1 −

α0

2
)
α0

c0

)
− 1

2

∫
F

(s(∆,F ) − s(∆,F ))dνF

=Vol(∂F )− 1

2

∫
F
s(∆,F )dνF

+
Vol(∂∆ \ F )

Vol(∆)
Vol(F )− Vol(∂∆ \ F )

Vol(∆)
Vol(F )

=

∫
∂F
dσF −

1

2

∫
F
s(∆,F )dνF

=
1

2

∫
F

(sF − s(∆,F ))dνF ,

(26)

where sF denotes the extremal affine function corresponding to Z. �

Lemma 3.3. Let (X,Z) be as in Lemma 3.2. If (∆, F ) is stable, then∫
F

(sF − s(∆,F ))dνF ≥ 0,

Proof. Using the expression Fχ(c) = c0
4 F (c) − 1

2

∫
∆ fc(s(∆,F ) − s(∆,F ))dµ in (25) and

Lemma 2.7, one easily computes that Fχ(0) = F ′χ(0) = 0. It thus follows from (26) that
for c sufficiently small, the piecewise affine linear convex function fc = max(0, c− L)
will destabilize (∆, F ), should

∫
F (sF − s(∆,F ))dνF = 2F ′′χ (0) < 0. �

4. Labelled polytopes and the Abreu–Guillemin theory for Kähler
metrics of Poincaré type

4.1. Donaldson metrics on a labelled polytope. The discussion in Section 3 can
be put in a broader framework which makes sense for any labelled convex compact
simple polytope (∆,L) in (Rn)∗.



EXTREMAL KÄHLER POINCARÉ TYPE METRICS ON TORIC VARIETIES 11

Definition 4.1. Let ∆ ⊂ (Rn)∗ = t∗ be a compact convex polytope defined by a
system of d linear inequalities

∆ = {x ∈ (Rn)∗ : Lj(x) = 〈ej , x〉+ λj ≥ 0, j = 1, . . . , d}

where L = {L1(x), . . . , Ld(x)} are affine linear functions on (Rn)∗ and dLj := ej ∈ Rn
are inward normals to ∆. We suppose that ∆ is simple in the sense that for each
vertex v, there are precisely n affine linear functions Lv,1, . . . , Lv,n in L which vanish
at v and the corresponding inward normals {ev,1, . . . ev,n} form a basis of Rn. We
refer to such date (∆,L) as a labelled (simple, compact, convex) polytope. Notice
that, by Delzant’s theorem [15], (∆,L) is the momentum image of a compact smooth
toric variety if the labeling L satisfies the integrality condition that at each vertex
v, spanZ{uv,1, . . . , uv,n} is a fixed lattice Λ ⊂ Rn. We shall refer to such labelled
polytopes (∆,L) as Delzant polytopes.

In the case when (∆,L) is Delzant, the works [1, 22] give an effective way to pa-
rametrize T-invariant, ω-compatible Kähler metrics g on the toric symplectic manifold
(X,ω) classified by (∆,L) in terms of strictly convex smooth functions u(x) defined
on the interior ∆0 of ∆ ⊂ (Rn)∗ and satisfying certain boundary conditions on ∂∆.
Specifically, the Kähler metric g is written on X0 = µ−1(∆0) as

(27) g =

n∑
i,j=1

(u,ijdxi ⊗ dxj + u,ijdti ⊗ dtj)

where (x1, . . . , xn) are the Euclidean coordinates on (Rn)∗, (u,ij) = Hess(u) (and
we tacitly identify smooth functions and tensors on ∆0 with their pull-backs via µ
on X0) and (t1, . . . , tn) are angular (2π-periodic) coordinates obtained by fixing a
point p0 ∈ X0 and identifying X0 ∼= (C×)n with the principal orbit of p0 under the
complexified action Tc (with respect to the complex structure J determined by g and
ω). In this formalism, the symplectic from is

ω =
n∑
i=1

dxi ∧ dti.

A central fact in this theory (see [2, 18]) is that (27) extends to a smooth Riemannian
metric on X if and only if u satisfies the following Guillemin boundary conditions:

Definition 4.2. Let (∆,L) be a labelled convex compact simple polytope in (Rn)∗ =
t∗. We say that a strictly convex smooth function u on ∆0 satisfies the Guillemin
boundary conditions if

• u− 1
2

∑d
k=1 Lk logLk is smooth on ∆, and

• the restriction of u to the interior F 0 of any face F ⊂ ∆ is smooth and strictly
convex.

We denote by S(∆,L) the space of such u.

An example of a function in S(∆,L) is (see [22])

(28) u0 :=
1

2

d∑
k=1

Lk logLk,

which, in the Delzant case, characterizes the induced Kähler metric on X via the
Kähler reduction of the flat metric on Cd.

The space S(∆,L) can be equivalently characterized in terms of first order boundary
conditions:
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Proposition 4.3. [5, Prop.1] The space S(∆,L) consists of all smooth functions u
on ∆0 such that Hu := (Hess(u))−1 satisfies

• [smoothness] Hu extends smoothly on ∆ as an S2(t∗)-valued function;
• [boundary conditions] For any facet Fj ⊂ ∂∆ with normal ej = dLj, and
x ∈ Fj

(29) Hu
x(ej , ·) = 0; (dHu)x(ej , ej) = 2ej ;

• [positivity] Hu is positive definite on ∆0, as well as on the interior Σ0 of any
face Σ ⊂ ∆, viewed there as a smooth function with values in S2(t/tΣ)∗ where
tΣ denotes the subspace spanned by normals to facets containing Σ.

The extremality of the Kähler metric (27) with u ∈ S(∆,L) reduces to solving the
Abreu equation [1]

(30) −
n∑

i,j=1

∂2Hu
ij

∂xi∂xj
= s(∆,L),

for an affine linear function s(∆,L), pre-determined by the labelled polytope (∆,L) by
requiring that

L(∆,L)(ϕ) := 2

∫
∂∆

ϕdνL −
∫

∆
s(∆,L)ϕdµ = 0

for any affine linear function ϕ, where dµ is a (fixed) Lebesgue measure on t∗ = (Rn)∗

and dνL is obtained from dµ and L via (15). In this setting, we recall the following

Definition 4.4. A labelled compact convex polytope (∆,L) in a vector space t∗ is
called stable if

L(∆,L)(ϕ) ≥ 0

for any convex, piecewise affine linear function ϕ, and equality is achieved only when
ϕ is affine linear.

The stability of (∆,L) is a necessary condition for a solution u ∈ S(∆,L) to (30)
to exist [38], and as first observed in [21], in the latter case u must be, up to addition
of affine linear functions, the unique critical point (= the minimum) of the convex
relative Mabuchi functional

(31) M(∆,L)(u) := L(∆,L)(u)−
∫

∆
log det(Hu)dµ,

which, as shown in [17], then takes values in (0,∞].

It is observed in [17, p. 344] that most of the above theory readily generalizes to
the case when for a fixed subset F = F1 ∪ · · · ∪ Fk which is the union of facets of
(∆,L) one modifies the induced measure dνL to be zero on F . By (15), for each
facet Fi ⊂ F , the modified measure can be thought of as the limit limt→∞ dνtLi , i.e.
the measure obtained as in (15) when sending the corresponding label Li to infinity.
There is a subtle point here, however. It is not immediately clear how to extend
the Guillemin boundary conditions of Definition 4.2 over such limits. On the other
hand, the equivalent first order boundary conditions given by Proposition 4.3 extend
naturally, as observed in [4]:

Definition 4.5. Let (∆,L) be a labelled convex compact simple polytope in t∗ and
F = F1 ∪ · · · ∪ Fk the union of some of its facets. We denote by S(∆,L, F ) the
functional space of u ∈ C∞(∆0) verifying the first order boundary conditions

• [smoothness] Hu extends smoothly on ∆;
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• [boundary conditions] for any facet Fi ⊂ F and any point x ∈ Fi,
(32) Hu

x(ei, e) = 0;
(
dHu(ei, e)

)
x

= 0,

where ei = dLi is the inward normal to Fi defined by L and e ∈ t, and, for
any facet Fr which is not in F , and x ∈ Fr,

(33) Hu
x(er, e) = 0;

(
dHu(er, er)

)
x

= 2er.

• [positivity] Hu is positive definite on ∆0, as well as on the interior of any face
Σ ⊂ ∆, viewed there as a smooth function with values in S2(t/tΣ)∗ where tΣ
denotes the subspace spanned by normals to facets containing Σ.

Remark 4.6. Manifestly, the conditions (32) are independent of the choice of labels
Li for the facets Fi ⊂ F , and are obtained from (33) by letting er →∞.

Remark 4.7. Symplectic potentials satisfying Definition 4.5 do not necessarily corre-
spond to Poincaré type metrics. However, below we shall define subspaces Sα,β(∆,L, F )
of S(∆,L, F ) depending on a positive parameter α and a real parameter β which do
induce metrics of Poincaré type on X \ Z.

We are thus interested to find solutions of (30) in S(∆,L, F ), where, by the inte-
gration by parts argument from [17], the right hand side again must be the unique
affine linear function function s(∆,L,F ), called extremal affine function, satisfying

(34) L(∆,L,F )(f) =

∫
∂∆\F

fdνL −
1

2

∫
∆
fs(∆,L,F )dµ = 0

for any affine linear function f . We also have the following straightforward extension
of arguments in the case of (∆,L):

Proposition 4.8. [17, 21, 38] Suppose there exists a function u ∈ S(∆,L, F ) which
solves the Abreu equation

(35) −
n∑

i,j=1

∂2Hu
ij

∂xi∂xj
= s(∆,L,F ),

where s(∆,L,F ) is the extremal affine linear function of (∆,L, F ). Then L(∆,L,F )(ϕ) ≥ 0
for any convex, piecewise affine linear function ϕ, with equality iff ϕ is affine linear.

Definition 4.9. A labelled convex, compact, simple polytope (∆,L) in (Rn)∗ with
a fixed subset F of facets satisfying the conclusion of Proposition 4.8 will be referred
to as stable triple (∆,L, F ). A Kähler metric on gD on ∆0 × T defined by a solution
u ∈ S(∆,L, F ) of (35) (if it exists) will be called the Donaldson metric of (∆,L, F ).

The geometric interest of Donaldson metrics as above comes from [17, Conjec-
tures 7.2.3]:

Conjecture 4.10 (Donaldson [17]). Let (∆,L) be the momentum polytope of a
smooth compact toric Kähler manifold (X,ω0) and Z the divisor in X corresponding
to the momentum preimage of the union F of facets of ∆. If (∆,L, F ) is stable, then
there exists a complete extremal Kähler metric gD, defined on X \ Z.

We now use the results from [8, 9] in order to establish the following

Theorem 4.11. Let (X,L) be an n-dimensional polarized toric projective variety un-
der the action of the n-dimensional real torus T, and Z ⊂ X a smooth divisor cor-
responding to the preimage under the moment map of a facet F of the momentum
polytope ∆. If X \ Z admits a T-invariant extremal Kähler metric of Poincaré type
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in c1(L), then (∆, F ) is stable and the relative Székelyhidi numerical constraint (24)
holds. Furthermore, the Delzant polytope F is stable and

sF − (s(∆,F ))|F = const > 0.

Proof. The main point is to show that a T-invariant extremal Kähler metric (g, ω) of
Poincaré type on X \ Z gives rise to a Donaldson metric in a slightly weaker sense,
namely it corresponds to Hu ∈ C∞(∆0, S2(t∗)) which extends smoothly on ∆ \ F
and C0 on ∆ and, moreover, the conditions (32) and (33) hold where the first order
condition at F is taken in the sense of limit, i.e.

lim
x→F,x∈∆\F

(
dHu(eF , ·)

)
x

= 0,

for eF ∈ t the inward normal to F . This will be enough to establish the integration
by parts formula∫

∆

( n∑
i,j=1

Hu
ij,ij

)
ϕdµ =

∫
∆

( n∑
i,j=1

Hu
ijϕ,ij

)
dµ− 2

∫
∂∆\F

ϕdνL

for any smooth function ϕ on ∆. The latter in turn would imply that:
(a) Scalg = s(∆,F ) and
(b) (∆, F ) is stable (compare with Proposition 4.8 above).
With the conclusions (a) and (b) in place, the result follows easily from [8, 9].

Indeed, (a) and Lemma 3.2 together with [9, Thm. 4 & Prop. 2.1] show that (24) is a
necessary condition for the existence of an extremal Kähler metric of Poincaré type on
X \Z. Furthermore, by [8, Thm. 4], Z must admit an extremal Kähler metric ǧ in the
Kähler class c1

(
L|Z
)
, so that F must be a stable Delzant polytope by the result in [38].

It is also shown in [8, p.44] that the extremal vector fields JgradgScalg and JgradǧScalǧ
agree on Z, which in our case translates to say that sF − (s(∆,F ))|F = const. The
constant is positive because of (24).

We thus focus for the remainder of the proof to show that an extremal T-invariant
Poincaré type metric (g, ω) on X \ Z is (weakly) Donaldson. To this end, we fix a
T-invariant Kähler metric ω0 ∈ c1(L) on X and denote by (∆,L) the corresponding
Delzant polytope. We shall write, for any basis {e1, . . . , en} of t, x0 = (x0

1, . . . , x
0
n) the

corresponding momenta, viewed as functions from X to t∗ defined by ıKjω0 = −dx0
j

whereKj is the fundamental vector field ofX corresponding to ej ∈ t; thus ∆ = Im(x0)
and Z = (x0)−1(F ) for a facet F ⊂ ∆. Let v ∈ ∆ be a vertex of ∆ and F , and
{e1, . . . , en} the basis of t formed by the inward normals to the facets containing v,
with eF = e1. By Delzant theory (see [15, 27]) there exists a (C×)n equivariant chart
Cnv of X (with respect to the complexified (C×)n-action of T on X and the standard
(C×)n-action on Cnv = Cn) in which F is given by z1 = 0. Furthermore, in this chart,
|zj |2 = x0

je
φj(z) for smooth functions φj on X (see e.g. [17]) whereas the holomorphic

vector fields 1
2(Kj −

√
−1JKj) become

√
−1zj

∂
∂zj

.
According to Definition 1.1, we can write ω = ω0 + ddcϕ for a smooth T-invariant

function ϕ on X \Z, such that dϕ is bounded at any order with respect to the model
metric

ωmod =
√
−1
( 1

|z1|2(log |z1|)2
dz1 ∧ dz̄1 +

n∑
j=2

dzj ∧ dz̄j
)

defined on the chart Cnv : in particular

(36) dϕ(JKj) = O(|zj |), j = 2, . . . , n, dϕ(JK1) = O
( 1

| log(|z1|2)|

)
.
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Writing

(37) xj = x0
j + dϕ(JKj), j = 1, . . . n,

for the momenta of (g, ω), we see that the map x0 → x sends ∆\F to itself, preserving
the faces. Furthermore, x1 : X \ Z → ∆ \ F extends continuously as zero over Z.

We now let Hx(ei, ej) = (gp(Ki,Kj)) be the smooth S2(t∗)-valued function, defined
on ∆0 by using the extremal Kähler metric g and the momentum map x (with x = x(p)
for p ∈ X \Z). Clearly, H extends smoothly over ∆ \F . The proof of Proposition 4.3
(given in [5]) uses local arguments around a point on a facet Fr ⊂ ∆ \ F , and thus
shows that H satisfies the boundary conditions (33) on each Fr. We now focus on
F . We use the chart Cnv as above, and denote by π1 : Cnv → Cn−1 the projection
π1(z1, z2, . . . , zn) = (z2, . . . , zn). Then, [8, Thm. 4] tells that as z1 → 0, ω is written
as

(38) ω = a1

(√−1(dz1 ∧ dz̄1)

|z1|2
(

log(|z1|2)2

)
+ π∗1ω1 +O(| log |z1||−δ),

where a1 and δ are positive reals, ω1 is an extremal Kähler metric on Z ∩ Cnv =
{(0, z2, . . . , zn)}, and O(| log |z1||−δ) is understood at any order with respect to the
Kähler metric

(39) a1

(√−1(dz1 ∧ dz̄1)

|z1|2
(

log(|z1|2)2

)
+ π∗1ω1.

We compute from (38), with respect to the vector fields 1
2(Kj−

√
−1JKj) =

√
−1zj

∂
∂zj

,

H(e1, e1) = ω(K1, JK1) =
2a1

(log(|z1|2))2
+O(| log |z1||−δ−2),

H(e1, ej) = ω(K1, JKj) = O(|zj || log |z1||−δ−1),

H(ei, ej) = ω(Ki, JKj) = Ȟ1(ei, ej) +O(|zizj || log |z1||−δ), i, j ≥ 2,

(40)

where Ȟ1(ei, ej) = π∗ω1(Ki, JKj) is the z1 independent smooth function computed
from ω1 with respect to the induced vector fields on Z. It follows that H extends
continuously on F , verifying Hx(e1, ·) = 0 on F .

Taking interior product with K1 and Ki, i ≥ 2, in (38) we obtain

dx1 = a1

( d|z1|2

|z1|2(log |z1|2)2

)
+

n∑
j=1

fj(z)d|zj |2,

dxi = 2

n∑
j=2

Ȟ1(ei, ej)d|zj |+
n∑
j=1

fij(z)d|zj |2 = π∗1dx
1
i +

n∑
j=1

fij(z)d|zj |2,

where f1(z) = O
(

1
|z1|2(log |z1|2)2+δ

)
, fj(z) = O(| log |z1||−1−δ), j = 2, . . . , n, and

fi1(z) = O
(

|zi|2
|z1|(log |z1|2)1+δ

)
, fij(z) = O(|zi|2| log |z1||−δ), i, j = 2, . . . , n; here dx1

i =

−ιKiω1 for i = 2, . . . , n, and dx1
i =

∑n
j=2Aijd|zj |2 for some invertible matrix (Aij),

locally uniformly bounded together with its inverse (Aij) on Z ∩ Cnv . Putting σ1 =
d|z1|2

|z1|2| log(|z1|2)| and σi = d|zi|2, the relations above can be recapped as
∣∣ log |z1|

∣∣dx1

dx2
...

dxn

 =

[(
a1 0
0 (Aij)

)
+ ε

]σ1
...
σn

 ,
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with ε = O(| log |z1||−δ); solving this system provides

σ1 =
| log |z1||

a1
dx1 +

n∑
j=1

η1jdxj , σi = ηi1dx1 +
n∑
j=2

(Aij + ηij)dxj , i = 2, . . . , n,

with ηi1 = O(| log |z1||1−δ), i = 1, . . . , n, and ηij = O(| log |z1||−δ), i = 1, . . . , n, j =

2, . . . , n. Differentiating the first two lines of (40) with respect to z1 log |z1| ∂∂z1 , the
∂
∂zi

’s (i ≥ 2), and their conjugates1, implies:

dH(e1, e1) = − 4

log |z1|

(
(1 + ε11)dx1 +

n∑
j=2

ε1jdxj

)
,

dH(e1, ei) = εi1dx1 +

n∑
j=2

εijdxj , i = 2, . . . , n,

with εi1 = O(| log |z1||−δ), i = 1, . . . , n, and εij = O(| log |z1||−δ−1), i = 1, . . . , n, j =
2, . . . , n. Hence in particular:

lim
x→F

(dH(e1, ei))x = 0, i = 1, . . . , n,

as claimed. �

4.2. Conjectural picture for the existence of extremal toric metrics of Poin-
caré type. Theorem 4.11 and Conjecture 4.10 motivate the following conjectural
picture in the toric case:

Conjecture 4.12. A smooth toric variety (X,L) with momentum polytope ∆ and a
divisor Z ⊂ X corresponding to the preimage of the union F = ∪iFi of some facets
Fi of ∆ admits an extremal toric Kähler metric of Poincaré type if the following three
conditions are satisfied:

(i) (∆, F ) is stable, and
(ii) for any facet Fi ⊂ F , the pair (Fi, Fi ∩ (∪j 6=i∈IFj)) is stable, and
(iii) if s(Fi,Fi∩(∪j 6=i∈IFj) is the extremal affine function corresponding to (Fi, Fi ∩

(∪j 6=i∈IFj)), then

(41) s(Fi,Fi∩(∪j 6=iFj)) − s(∆,F ) = ci > 0,

where ci are real constants.

Remark 4.13. Theorem 4.11 readily generalizes to the case when Z is a smooth toric
divisor of (X,L), i.e. Z is the preimage under the moment map of the union F of
disjoint facets of ∆, thus showing the necessity of the conditions (i),(ii),(iii) in this
case. The situation is not so clear in general, when Z has simple normal crossings. In
this case we make the following remarks:

(1) In order to establish (i) we would need to show that any toric extremal Kähler
metric of Poincaré type on X \ Z belongs to the class S(∆,L, F ), at least in
the weaker sense as in the proof of Theorem 4.11.

(2) (ii) would follow from (i), noting that the extremal Poincaré type metric on
Zi \ Z ′i where Zi is the component of Z corresponding to Fi and Z ′i is the
divisor of Zi induced by Z (which exists by virtue of [8, Thm. 4]) must be
toric. Indeed, this can be derived from [8] as follows:

1using that we can replace dzi and dzi by σi with help of the torus action, as in the estimates for
fj and fij above.
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• using toric-equivariant coordinates (z1, . . . , zn) ∈ Cnv centred at a point
in Zi fixed by the torus action, and such that Zi ∩ Cnv = {z1 = 0} and
Z ∩ Cnv = {z1 · · · zs = 0}, the induced metric is a C∞loc-limit of ωεjv :=
ω|{z1=εj}\Z

(the pull-back of ω to {z1 = εj} \Z by inclusion), with εj → 0;
• the metric ω and the hypersurfaces {z1 = εj} \ Z are invariant by the
action of T/TFi ; therefore, the ω

εj
v are invariant under this action, and

their C∞loc-limit is thus toric.
(3) (iii) would follow by [9, Thm. 4 & Prop. 2.1], once we know that the scalar

curvature of the extremal Kähler Poincaré type metric coincides with s(∆,F ).
This in turn would be the case if we establish point (i) above.

Another interesting question is to know whether or not (i) implies (ii).

4.3. A class of Poincaré type toric Kähler metrics. To link Conjectures 4.10
and 4.12, one needs a criterion ensuring that the Donaldson metric is of Poincaré type.
We address this question in this section.

We start by introducing a class of toric metrics in the form (27) on (∆0 × T)
via a certain type of Guillemin boundary conditions for the corresponding symplectic
potential u, depending on the data (∆,L, F ), compare with Definition 4.5 in the case
F = ∅. For simplicity, we shall assume that (∆,L) is Delzant and F = F1 is a single
facet defined by the label LF (x) := L1(x) = 0.

Definition 4.14. Let α > 0 and β ∈ R be fixed real numbers. The class Sα,β(∆,L, F )
of symplectic potentials u is defined as the space of smooth and strictly convex func-
tions on ∆0, satisfying the following boundary conditions:

• u+ (α+ βLF ) logLF − 1
2

∑d
j=2 Lj logLj is smooth on ∆;

• if f ⊂ F is a sub-face of F , then uf := u + (α + βLF ) logLF restricts to the
relative interior of f as a smooth strictly convex function;
• if Σ 6⊂ F is regular face, then u restricts to the relative interior of Σ as a
smooth strictly convex function.

Our first observation is the following result, whose proof is given in Appendix A.

Theorem 4.15. Let (X,ω) be a smooth, compact symplectic toric manifold with
momentum Delzant polytope (∆,L) and F be a single facet of ∆. Then, for any
u ∈ Sα,β(∆,L, F ), the metric (27) defines on X a T-invariant complex structure J
such that the momentum preimage of F is a smooth divisor Z of (X, J), and (27) is
a Kähler metric of Poincaré type on X \ Z.

Using arguments similar to those in [5] (see Appendix A for more details), one can
relate the spaces Sα,β(∆,L, F ) and S(∆,L, F ) as follows:

Proposition 4.16. The space Sα,β(∆,L, F ) is equivalently defined as the space of
smooth functions on ∆0 such that Hu = (Hess(u))−1 satisfies

• [smoothness] Hu extends smoothly on ∆;
• [boundary conditions on F ] for any x ∈ F we have

Hu
x(eF , e) = 0; (dHu)x(eF , e) = 0,

(d2Hu)x(eF , eF ) =
2

α
eF ⊗ eF , (d3Hu)x(eF , eF ) = −6β

α2
e⊗3
F ,

where eF = dLF is the inward normal to F defined by L, e is any vector in t,
and for a smooth function f on t, dkf denotes the k-th covariant derivative of
f with respect to the flat affine structure on t∗, so that (dkf)x ∈ Sk(t);
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• [regular boundary conditions] for any facet Fr with inward normal er which is
not in F , and x ∈ Fr,

Hu
x(er, e) = 0; (dHu)x(er, er) = 2er;

• [positivity] Hu is positive definite on ∆0, as well as on the relative interior of
any face Σ ⊂ ∆, viewed there as a smooth function with values in S2(t/tΣ)∗

where tΣ denotes the subspace spanned by normals to facets containing Σ.

In particular, Sα,β(∆,L, F ) ⊂ S(∆,L, F ).

Our next result shows that the extremality assumption in fact determines uniquely
the space Sα,β(∆,L, F ).

Proposition 4.17. Suppose u ∈ Sα,β(∆,L, F ) is a solution of (35). Then the real
numbers α, β are uniquely and explicitly determined from the data (∆,L, F ). Further-
more, the solution u is unique modulo the addition of an affine linear function.

Proof. The uniqueness part is standard as each Sα,β(∆,L, F ) is a linearly convex space
and, choosing a reference point u′ ∈ Sα,β(∆,L, F ), we can consider the following
modification of relative Mabuchi functional (31):

M(∆,L,F )(u) := L(∆,L,F )(u− u′)−
∫

∆
log det(Hu)dµ.

The point is that M(∆,L,F )(u) is well-defined with values in (−∞,∞], as u − u′ is a
smooth function over ∆. The argument in [21] shows thatM(∆,L,F )(u) is convex and
its minima, which are unique up to the addition of affine linear function, are precisely
the solutions of (35).

The fact that s(∆,L,F )−s(F,LF ) = const follows from [8, p. 44] when it is shown that
the extremal vector of Z equals to the vector field induced on Z by the extremal vector
field of X \ Z. In the toric case, this condition reads as d((s(∆,L,F ))|F − s(F,LF )) = 0.

It remains to determine (α, β) from (∆,L, F ), which will occupy the remainder of
the proof.
Step 1. Determining α. Let us choose a basis {e1, e2, . . . , en} of t (and {e∗1, . . . , e∗n}
denote the dual basis of t∗), by fixing a vertex v ∈ F of ∆ and taking ej be the inward
normals to the facets meeting v with e1 = eF (and therefore e∗i , i = 2, . . . , n are tangent
to F ). We assume furthermore that v is at the origin (so that F ⊂ {x1 = 0}) and we
write Hu = (Hij) in the chosen basis, where Hij(x) are smooth functions on ∆, see
Proposition 4.16. As u is a solution of (35), we have

(42) s(∆,L,F ) = −
n∑

i,j=1

Hij,ij .

We denote by Ȟu ∈ S2((t/tF )∗) the induced smooth positive definite bilinear form
on F . It is easily seen (by continuity) that Ȟu satisfies the boundary conditions of
Proposition 4.3 with respect to the labeling LF of F , see [5, Rem. 1]. It thus defines
an almost-Kähler metric ǧu on F (which can be shown to be Kähler). With respect
to our choice of basis of t, we can identify t/tF ∼= Rn−1 = spanR{e2, . . . , en}, so that
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we have Ȟu = (Hij)F , i, j = 2, . . . , n. It thus follows that on F we have

s(∆,L,F ) = −
n∑

i,j=1

Hij,ij

= −H11,11 − 2

n∑
j=2

H1j,1j −
n∑

i,j=2

Hij,ij

= − 2

α
−

n∑
i,j=2

Ȟu
ij,ij = − 2

α
+ Scal(ǧu),

(43)

where we have used the boundary conditions of Proposition 4.16 (or equivalently the
form (114) in our compatible coordinates) in order to see that H1j,1j = 0 on F for
j > 1. It thus follows that ǧu is an extremal almost-Kähler metric on F and

(44) s(∆,L,F ) = s(F,LF ) −
2

α

Integrating over F , we thus have

(45) − 2

α
=

∫
F

(s(∆,L,F ) − s(F,LF ))dνF /Vol(F ),

which determines α.
Step 2: Determining β. In order to determine β, notice that (see (15)) at each
point p ∈ F , we have e1∧dνF = −dµ where we recall that we have set e1 = dLF = eF .
Furthermore, with our choice of basis we have (ej ∧ dνF ) = 0 for j = 2, . . . , n. We
thus have, using (42),

(ds(∆,L,F ) ∧ dνF ) =
( n∑
i,j=1

Hij,ij1(p)
)
dµ = cdµ

for a real constant c = c(∆,L, F ) determined from the polytope (∆,L, F ). In other
words,

c =
( n∑
i,j=1

Hij,ij1

)
F

=
(
H11,111

)
F

+ 2
( n∑
j=1

H1j,11j

)
F

+
( n∑
i,j=2

Hij,1ij

)
F

= −6β

α2
+ 2
( n∑
j=2

H1j,11j

)
F

+
( n∑
i,j=2

Hij,1ij

)
F
,

(46)

where in the last line we have used (H11,111)F = − 6β
α2 , see Proposition 4.16. We are

going to integrate (46) over F , and to this end we are going to use the integration by
parts formula

(47)
∫
F

n∑
j=2

Vj,jdνF = −
∑

Σ⊂∂F

∫
Σ
〈V, eΣ〉dσΣ,

where: F belongs to the hyperplane x1 = 0 of t∗, a smooth function V on F is seen as
a smooth function of the variables (x2, . . . , xn), the sum is taken over the facets Σ of F
with inward normal eΣ ∈ t/tF ∼= Rn−1 = spanR{e2, . . . , en}, and the induced measures
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dσΣ are constructed from the label polytope (F,LF ) via (15). Thus, integrating (46)
and using (47) gives(

c+
6β

α2

)
Vol(F ) =− 2

∑
Σ∈∂F

∫
Σ

(
H(e1, eΣ)

)
,11
dσΣ

−
∑

Σ∈∂F

∫
Σ

n∑
i=2

(
H(ei, eΣ)),1idσΣ.

(48)

We recall that in (48), α and c have been already defined in terms of (∆,L, F ), so
in order to define β it will be enough to show that each of the two sums at the right
hand side of (48) can also be defined by (∆,L, F ).

We first deal with the term
∫

Σ

(
H(e1, eΣ)

)
,11
dσΣ. Notice that if Σ is a facet of

F which meets the chosen vertex (= the origin), i.e. if Σ belongs to {x1 = 0, xj =
0}, j > 1, then

(
(H1,eΣ),11

)
|Σ = (H1j,11){x1=0,xj=0} = 0 by the expansion (114) of Hij

near Σ. For a general facet Σ of F , we let P ⊂ ∂∆ be the unique other facet of ∆,
such that Σ = F ∩ P and denote by eF , eP the corresponding inward normals. Thus,
tΣ = spanR{eF , eP } is the annihilator of TpΣ ⊂ t∗ (where p in a interior point for Σ),
equipped with a natural basis {eF , eP }. For any two vectors e′, e′′ ∈ t, the function
Hu(e′, e′′) is smooth on ∆ and we denote by Hess

(
Hu(e′, e′′)

)
p
its Hessian at p ∈ ∆,

computed with respect to the affine structure of t∗. Thus, Hess
(
Hu(e′, e′′)

)
p
∈ S2(t)

and with respect to the chosen basis we have

Hij,kr(p) =
〈
e∗k ⊗ e∗r ,Hess

(
Hu(ei, ej)

)
p

〉
.

Using the boundary conditions of Proposition 4.16, we notice that for any e ∈ t,
dHu(eF , e) = 0 along F and, hence along Σ. It thus follows that for each interior
point p ∈ Σ, the symmetric bilinear form Hess

(
Hu(eF , e)

)
p
degenerates on TpΣ, or in

other words, for each p ∈ Σ, Hess
(
Hu(eF , e)

)
p
has values in tΣ ⊗ tΣ. Using the basis

{eF , eP } of tΣ, we have a natural decomposition at each point of Σ:

Hess
(
Hu(eF , e)

)
=
(
Hu(eF , e)

)
,eF eF

eF ⊗ eF

+
(
Hu(eF , e)

)
,eF eP

(eF ⊗ eP + eP ⊗ eF )

+
(
Hu(eF , e)

)
,eP eP

eP ⊗ eP

By choosing a vertex of ∆ which belongs to Σ and a basis as above, and letting
e =

∑n
i=1 aiei the coefficients above become

(
Hu(eF , e)

)
,eF eF

=

n∑
i=1

aiH1i,11,

(
Hu(eF , e)

)
,eF eP

=
n∑
i=1

aiH1i,1j ,

(
Hu(eF , e)

)
,eP eP

=
n∑
i=1

aiH1i,jj ,

where the index j > 1 is determined by Σ ⊂ {x1 = 0, xj = 0}. Using the boundary
conditions of Proposition 4.16, which are equivalently expressed by the form (114) of
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Hu near Σ, we obtain that on Σ

Hess
(
Hu(eF , eF )

)
=

2

α
eF ⊗ eF =

2

α
e1 ⊗ e1

Hess
(
Hu(eF , eP )

)
= 0.

(49)

Similarly, using the constancy of dHu(eP , eP ) along Σ ⊂ P and (114) with respect to
a suitable basis, we also conclude that

(50) Hess
(
Hu(eP , eP )

)
=
(
Hu(eP , eP )

)
,eP eP

eP ⊗ eP .

Turning back to the term
∫

Σ

(
H(e1, eΣ)

)
,11
dσΣ, we notice that the definition of the

normal eΣ in the expression H1eΣ,11 uses the initial basis {e1, . . . , en}. Indeed, decom-
posing

eP =

n∑
i=1

ciei,

we have that eΣ = eP − c1e1 = eP − c1eF where c1 = c1(Σ) = −eP ∧ dνF /dµ is a
constant determined by the polytope (∆,L, F ) and the facet Σ of F . It thus follows
from (49) that on Σ

H(e1, eΣ),11 =
〈
e∗1 ⊗ e∗1,

(
Hu(eF , eP )− c1H

u(eF , eF )
)〉

= −2c1

α
,

and therefore

(51)
∫

Σ

(
H(e1, eΣ)

)
,11
dσΣ = −2c1(Σ)

α
Vol(Σ).

We have thus shown that the first sum in (48) only depends on (∆, F,L).
We now deal with the terms

∫
Σ

∑n
i=2

(
H(ei, eΣ)),1idσΣ in the second sum of (48).

First of all, notice that on F , the expression
n∑
i=2

(
H(ei, eΣ)),1i =

n∑
i=2

〈
e∗i ⊗ e∗1,Hess

(
Hu(ei, eΣ)

)〉
does not change if we replace the initial basis {e1 = eF , e2, . . . , en} of t with a basis of
the form {ē1 = eF , ē2, . . . , ēn} with ēj ∈ spanR{e2, . . . , en} = Rn−1 for j = 2, . . . , n.
We can thus assume that, on a given Σ, we have chosen the basis with e2 = eΣ ∈ Rn−1,
and use then the integration by parts formula (47) to write

(52)
∫

Σ

n∑
i=2

(
H(ei, eΣ)),1idσΣ =

∫
Σ

(
H(e2, e2)),12dσΣ −

∑
f∈∂Σ

∫
f
H(ef , eΣ),1dσf ,

where the sum is over the facets f of Σ (taken to be zero if n = 2), ef is the induced
inward normal of f , seen as an affine hyperplane of the affine space supporting Σ, and
dσf is the corresponding induced measure on f ⊂ Σ. With these choices, we have(

H(e2, e2)
)
,12

=
〈
e∗1 ⊗ e∗2,Hess

(
Hu(eΣ, eΣ)

)〉
=
〈
e∗1 ⊗ e∗2,Hess

(
Hu(eP − c1eF , eP − c1eF )

)〉
=
〈
e∗1 ⊗ e∗2,Hess

(
Hu(eP , eP )

)〉
= Hu(eP , eP ),eP ,eP

〈
e∗1 ⊗ e∗2, (c1e1 + e2)⊗ (c1e1 + e2)

〉
= c1H

u(eP , eP ),eP eP ,
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for the same constant c1 = c1(Σ) as above. In order to compute the (base independent)
quantity

∫
Σ Hu(eP , eP ),eP eP dσΣ, we are going to re-introduce a basis {e1 = eF , e2 =

eP , e3, . . . , en} with respect to a vertex of v ∈ ∆. In this basis, Hu(eP , eP ),eP eP =
H22,22. A computation along the lines of (43) yields∫

Σ
s(F,LF )dσΣ =

∫
Σ
−
( n∑
i,j=2

Hij,ij

)
dσΣ

=

∫
Σ

(
Scal

(
(gu)|Σ

)
−H22,22 −

n∑
j=3

H2j,2j

)
dσΣ

=

∫
Σ

(
s(Σ,LΣ) −H22,22

)
dσΣ +

∑
f⊂∂Σ

∫
f
H(e2, ef ),2dσf ,

where Scal
(
(gu)|Σ

)
:= −

∑n
i,j=2Hij,ij is the scalar curvature of the almost-Kähler

metric (gu)|Σ induced via Hu on the preimage of Σ, and for passing from the sec-
ond line to the third we have used that

∫
Σ Scal

(
(gu)|Σ

)
dσΣ =

∫
Σ s(Σ,LΣ)dσΣ (see [17,

Lem. 3.3.5]) and (47) applied to (Σ,LΣ). Note that in the last term (which is con-
sidered trivially 0 when n = 2), the sum is over the facets f of Σ, and ef denotes
the corresponding inward normal of f (when considered as an affine hyperplane of the
subspace {x1 = 0, x2 = 0}). We thus have∫

Σ
Hu(eP , eP ),eP eP dσΣ =

∫
Σ

(
s(Σ,LΣ) − s(F,LF )

)
dσΣ +

∑
f⊂∂Σ

∫
f
H(ef , e2),2dσf ,

in an (F,Σ)-compatible basis with e1 = eF , e2 = eP . Notice that in any such a basis, we
have ef = eQ−c2eF−c3eP = eQ−c2e1−c3e2, where eQ is the normal of the unique facet
Q ⊂ ∆, such that F ∩P ∩Q = f . Here, the constants c2 = c2(Σ, f) = −eQ∧dνF /(dµ)
and c3 = c3(Σ, f) = −(eQ∧dνP )/(dµ) are determined in terms of (∆,L). In particular,
we have on f

H(ef , e2),2 =
〈
e∗2, dH

u(eP , eQ − c2eF − c3eP )
〉

= −c3

〈
e∗2, dH

u(eP , eP )
〉

= −2c3〈e∗2, eP 〉 = −2c3〈e∗2, e− 2〉 = −2c3,

where we have used the first order boundary conditions along f (see Proposition 4.16):(
dHu(eF , e)

)
|f = 0, ∀e ∈ t,

(
dHu(eP , eQ)

)
|f = 0(

dHu(eP , eP )
)
|f = 2eP ,

(
dHu(eQ, eQ)

)
|f = 2eQ.

(53)

To summarize, we have shown that∫
Σ

(
H(e2, e2)

)
,12
dσΣ =c1(Σ)

(∫
Σ

(
s(Σ,LΣ) − s(F,LF )

)
dσΣ

− 2
∑
f⊂∂Σ

c3(Σ, f)Vol(f)
)
.

(54)

Finally, we deal with the terms
∫
f H(ef , eΣ),1dσf in (52) (where we recall f ⊂ Σ ⊂ F

is sequence of co-dimension one sub-faces). Using (53) again, we have along f

H(ef , eΣ),1 =
〈
e∗1, dH

u(eQ − c2eF − c3eP , eF − c1eP )
〉

= 2c1c3〈e∗1, eP 〉
= 2c1c3〈e∗1, e2 + c1e1〉 = 2c2

1c3,
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where for passing from the second line to the third we have used that we choose in
(52) a base with e1 = eF , e2 = eΣ = eP − c1eF = eP − c1e1. It follows that

(55)
∑
f⊂∂Σ

H(ef , eΣ),1dσf =
(
c1(Σ)

)2(∑
f⊂Σ

c3(Σ, f)
)
.

Substituting (54) and (55) back in (52), and (51), (52) and (45) back in (48), we obtain
an expression for β in terms of (∆,L, F ). �

Remark 4.18. (1) Theorem 4.15 and Proposition 4.17 extend without difficulty
to the case when F = F1 ∪ · · · ∪Fk is a union of non-intersecting facets, i.e. Z
is a smooth toric divisor. In general, it is natural to extend Definition 4.14 by
introducing a pair of real numbers (αi, βi) for each facet Fi ⊂ F and, for each
face f ⊂ F , one should require the smoothness and convexity over the relative
interior of f of the function

uf := u+
∑

Fi∈F :f⊂Fi

(αi + βiLi) logLi.

It will be interesting to see wether or not the above statements hold true for
a general toric divisor as above, with respect to such spaces of symplectic
potentials (compare with Conjecture 4.12 above).

(2) The explicit examples in the next section suggest that the complete Donaldson
metrics will have, more generally, symplectic potentials u with the asymptotic

u =
1

2

( ∑
Fk /∈F

Lk(x) logLk(x) +
∑
Fi∈F

fi(x) logLi(x)
)

+ smooth terms,

where, for any facet Fi ∈ F , fi is some affine function.
(3) As we noticed in the course of the proof of Proposition 4.17, the situation

simplifies when n = 2. In fact, one can then explicitly determine (α, β) as
follows: suppose (without loss of generality) that (∆,L, F ) is such that ∆ ⊂
{(x1, x2) : x1 ≥ 0, x2 ≥ 0, `− x2 − λx1 ≥ 0}, F corresponds to the affine line
x1 = 0 whereas the two adjacent facets of ∆ to F are defined by the affine lines
x2 = 0 and ` − x2 − λx1 = 0. Suppose, furthermore, that the extremal affine
function of (∆,L, F ) is s(∆,L,F ) = a0 + a1x1 + a2x2. Then the real parameters
(α, β) of Proposition 4.17 are given by

α =
2`

4− a0`
, β =

α2

6

(
a1 +

2λa0

`
− 12λ

`2

)
.

With this motivation in mind, we will show in the next section, by using the explicit
constructions of [3, 4], that Conjecture 4.10 is true for X = CP 2,CP 1 × CP 1 or the
m-th Hirzebruch complex surface Fm = P(O ⊕O(m))→ CP 1,m ≥ 1.

5. Explicit Donaldson metrics on quadrilaterals

By [4, Thm. 1 and Rem. 7], any stable compact convex quadrilateral (∆,L, F ) in R2

admits a (canonical) Donaldson metric, which is explicit and ambitoric. K. Dixon [16]
showed that when (∆,L, F ) corresponds to a compact toric complex orbi-surface X
with a divisor Z, the metric is complete on X \ Z. In other words, Conjecture 4.10
holds true for compact toric surfaces whose momentum polytope is a quadrilateral.
On the other hand, a detailed study of the stability of the triples (∆,L, F ) was carried
out by the third named author in [29]. In the next subsections we shall combine these
results in order to obtain a complete picture in the case when X = CP 2,CP 1 × CP 1

or P(O⊕O(k))→ CP 1, i.e. (∆,L) is a Delzant triangle, parallelogram or a trapezoid.
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5.1. Ambitoric structures. Here we briefly review the explicit construction of ex-
tremal toric metrics for n = 2 via the ambitoric ansatz of [3].

Definition 5.1. An ambikähler structure on a real 4-manifold or orbifold M consists
of a pair of Kähler metrics (g+, J+, ω+) and (g−, J−, ω−) such that
• g+ and g− induce the same conformal structure (i.e., g− = f2g+ for a positive
function f on M);
• J+ and J− have opposite orientations (equivalently the volume elements 1

2ω+ ∧ ω+

and 1
2ω− ∧ ω− on M have opposite signs).

The structure is said to be ambitoric if in addition
• there is a 2-dimensional subspace t of vector fields on M , linearly independent on
a dense open set, whose elements are hamiltonian and Poisson-commuting Killing
vector fields with respect to both (g+, ω+) and (g−, ω−).

ThusM has a pair of conformally equivalent but oppositely oriented Kähler metrics,
invariant under a local 2-torus action, and both locally toric with respect to that action.
There are three classes of examples of ambitoric structures.

5.2. Toric products. Let (Σ1, g1, J1, ω1) and (Σ2, g2, J2, ω2) be (locally) toric Kähler
manifolds or orbifolds of real dimension 2, with hamiltonian Killing vector fields K1

and K2. Then M = Σ1 × Σ2 is ambitoric, with g± = g1 ⊕ g2, J± = J1 ⊕ (±J2),
ω± = ω1 ⊕ (±ω2) and t spanned by K1 and K2. The metric g+ is extremal (resp.
CSCK) iff g− is extremal (resp. CSCK) iff both g1 and g2 are extremal (resp. CSCK).
Writing (Σ1, g1) and (Σ2, g2) as toric Riemann surfaces

g1 =
dx2

A(x)
+A(x)dt21; g2 =

dy2

B(y)
+B(y)dt22,

for positive functions A,B of one variable, and momentum/angular coordinates

x1 = x, x2 = y, t1, t2

the extremal metrics are given by taking A and B to be polynomials of degrees ≤ 3. In
this case, we obtain solutions to Abreu’s equation on labelled parallelograms (∆,L, F )
(which are affine equivalent to a square) by taking

(56) HA,B = diag(A(x), B(y))

for A and B polynomials of degree ≤ 3 and noting that the positivity and boundary
conditions of Definition 4.5 reduce to A > 0 on (α0, α∞), B > 0 on (β0, β∞) and

(57) A(αk) = 0 = B(βk) = 0, A′(αk) = −2rα,k, B′(βk) = 2rβ,k (k = 0,∞),

where rα,0 ≤ 0 ≤ rα,∞, rβ,0 ≥ 0 ≥ rβ,∞ are determined by the choice of inward
normals eα,k = 1

rα,k
(−1, 0) (resp. eβ,k = 1

rβ,k
(0, 1)) if the facet Fα,k (resp. Fβ,k)

defined by x = αk (resp. y = βk) does not belong to F , and rα,k = 0 (resp. rβ,k = 0)
otherwise. The above boundary conditions can be solved for polynomials of degree
3, A(x) and B(y), if and only if |rα,0| + |rα,∞| > 0 and |rβ,0| + |rβ,∞| > 0, i.e. iff
no two opposite sides of ∆ belong to F : in this case, the positivity of A and B
automatically follows from the boundary conditions. On the other hand, when two
opposite sides of ∆ belong to F there is no solution to (35) verifying the positivity
condition. Indeed, if rα,0 = rα,∞ = 0 say, then HA,B = diag(A(x), B(y)) with A ≡ 0
and B(y) a polynomial of degree ≤ 3 determined from (57). This provides a formal
solution of (35). The latter can be used (by using integration by parts, as in [26, 4]) to
compute that L∆,u,F (fα) = 0 for any simple crease function fα with crease at x = α
(α ∈ (α0, α∞)), showing that (∆,L, F ) is not stable in this case.
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Whenever it exists, the solution uA,B is determined from (56) by the formula

uA,B =

∫ x (∫ s dt

A(t)

)
ds+

∫ y (∫ s dt

B(t)

)
ds,

which leads to the intrinsic expression

(58) uA,B =
1

2

( ∑
Fj∈∂∆

Lj logLj −
∑
Fk∈F

ak logLck

)
.

where, for each facet Fj ∈ ∂∆\F , Lj(x) = 〈ej , x〉+λj is the corresponding label from
L and, for each Fk ∈ F , we define the label Lck(x) := 〈ek, x〉 + λk by requiring that
ek := −ek̃ = −dLk̃ where Lk̃ is the label form L of the opposite side Fk̃ to Fk (by the
discussion above, Fk̃ ∈ ∂∆ \ F ) and let ak := Lk + Lk̃ > 0 be a real constant.

We notice that when the solution exists, the degree ≤ 3 polynomials A(x) and B(y)
must satisfy A′′(x) = A′′(αk) > 0 (resp. B′′(y) = B′′(βk) > 0) on facets in F . The
formula for the scalar curvature

s+ = −(A′′(x) +B′′(y))

then confirms that s(∆,L,F ) − s(F,LF ,F̌ ) restricts to F as a negative constant.
We conclude that

Proposition 5.2. Let (∆,L, F ) be a labelled parallelogram in R2. Then the Abreu
equation (35) admits a solution in S(∆,L, F ) iff F doesn’t contain opposite sides. In
this case, there exists a solution explicitly given by (58).

Turning to the compact smooth case, there exists only one compact complex toric
surface whose Delzant polytopes are parallelograms, namely X = CP 1 × CP 1. The
result above trivially produces products of a cusp metric on CP 1 \{pt} with a Fubini-
Study metric on another copy of CP 1, or the product of two cusp metrics on (CP 1 \
{pt})× (CP 1 \ {pt}), according to whether Z ⊂ CP 1 ×CP 1 is a copy of CP 1 (i.e. F
is a one facet) or is the union of two copies of CP 1 (i.e. F consists of two adjacent
facets). We thus can conclude that

Corollary 5.3. Let X = CP 1 × CP 1 endowed with the product of circle actions on
each factor, and Z be either CP 1 × {p2} or (CP 1 × {p2}) ∪ ({p1} × CP 1) where p1

and p2 are fixed points for the S1 actions on each factor. Then, in each Kähler class
of CP 1 ×CP 1, there exists a complete extremal Donaldson metric on CP 1 ×CP 1 \Z
which is of Poincaré type.

If Z contains (CP 1×{p′2})∪ (CP 1×{p′′2}) where p′2 are p′′2 are the two distinct fixed
points for the S1 action, then (X,Z) is K-unstable, and admits no extremal Donaldson
metric at all.

5.3. Toric Calabi type metrics. The construction in this section is not new, see
e.g. [25]. For the sake of completeness, and to make the link with toric geometry more
explicit, we follow the formalism from [3].

Let (Σ, g, J, ω) be a toric real 2-dimensional Kähler manifold with hamiltonian
Killing vector field V (with momentum y). Let π : P → Σ be a circle bundle with
connection θ and curvature dθ = π∗ωΣ, and A(x) be a positive function defined on an
open interval I ⊂ R+. Then M = P × I is ambitoric, with

g± = x±1
(
gΣ +

dx2

A(x)
+
A(x)

x2
θ2
)
, dθ = ωΣ,

ω± = x±1
(
ωΣ ± x−1dx ∧ θ

)
, J±(xdx) = ±A(x)θ,
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and the local torus action spanned by the generator K of the circle action on P and
the lift Ṽ = V H + yK of the hamiltonian Killing field of (Σ, gΣ, ωΣ) to M . Here,
x : M → R+ is the projection onto I ⊂ R+. It is easily seen that g+ is extremal
(resp. CSCK) iff g− is extremal iff (Σ, g) has constant Gauss curvature κ and A(x)
is a polynomial of degree ≤ 4 with coefficient of x2 equal to κ. Because of this
equivalence, we shall focus on (g+, ω+), say.

Writing the toric metric (gΣ, ωΣ) in momentum/angle coordinates as

(59) gΣ =
dy2

B(y)
+B(y)dt22, ωΣ = dy ∧ dt2,

for a positive function B(y), the Kähler metric (g+, ω+) becomes (see [26])

g+ = x
dx2

A(x)
+ x

dy2

B(y)
+
A(x)

x
(dt1 + ydt2)2 + xB(y)dt22,

ω+ = dx ∧ dt1 + d(xy) ∧ dt2 = dx1 ∧ dt1 + dx2 ∧ dt2,
(60)

with

(61) (x1, x2) = (x, xy)

being the momentum coordinates and (t1, t2) the angular coordinates. The corre-
sponding symplectic potential is then

(62) uA,B(x, y) = x

∫ y (∫ s dt

B(t)

)
ds+

∫ x (∫ s tdt

A(t)

)
ds.

In order to obtain functions in S(∆,L, F ) for some compact convex labelled poly-
tope (∆,L, F ), we fix the data of real numbers

(63) 0 ≤ β0 < β∞, 0 < α0 < α∞, rα,0 ≤ 0 ≤ rα,∞, rβ,0 ≥ 0 ≥ rβ,∞
and impose the following positivity and boundary conditions on the smooth functions
of one variable A(x) and B(y)

(64) A(x) > 0 on (α0, α∞) and B(y) > 0 on (β0, β∞),

(65) A(αk) = 0, A′(αk) = −2rα,k, B(βk) = 0, B′(βk) = −2rβ,k, (k = 0,∞),

Note that the line {x = α} transforms in the (x1, x2)-coordinates (61) to the affine
line `α = {(α, x2)} with normal pα = (α, 0) and y = β (β > 0) to the affine line
`β = {(x1, βx1)} with normal pβ = (−β, 1). Thus, the image ofD = [α0, α∞]×[β0, β∞]
under (61) is a trapezoid ∆ with facets Fα,k, Fβ,k determined by the lines `αk , `βk , and
the inverse Hessian HA,B of uA,B, is given by

(66) HA,B =
1

x

(
A(x) yA(x)
yA(x) x2B(y) + y2A(x)

)
.

We write for the normals eα,k = pαk/rα,k, eβ,k = pβk/rβ,k. Then, HA,B satisfies the
smoothness, positivity and boundary conditions (32)-(33) iff rα,k = 0 (resp. rβ,k = 0)
on a facet Fα,k ∈ F (resp. Fβ,k ∈ F ).

Conversely, by [26, Lem. 4.7], if (∆,L, F ) is a labelled trapezoid, there exist real
numbers αk, rα,k, κ (k = 0,∞), subject to the inequalities (63), such that ∆ the image
of D = [α0, α∞] × [β0, β∞] under (µ1, µ2), and rα,k are determined from the normals
L and F as explained above. It is easily seen [26, Prop. 4.12] that (66) satisfies (35)
if and only if A(x) is a polynomial of degree ≤ 4, B(y) is a polynomial of degree ≤ 2,
which satisfy

(67) A′′(0) +B′′(0) = 0.
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For such polynomials to satisfy (65), one must have rβ,0 = −rβ,∞ = r ≥ 0. This is also
a sufficient condition to determine the polynomials A(x) and B(y) from (65), subject
to the relation (67). In particular, B(y) = r

(β2−β1)(y − β1)(β∞ − y), showing that the
positivity conditions (64) imply r > 0, i.e. rβ,k 6= 0. This also implies positivity for
A(x) on (α0, α∞): otherwise A(x) will have all of its roots between [α0, α∞] and, by the
boundary conditions (65), it must satisfy limx→∞A(x) = −∞. The latter contradicts
A′′(0) = −B′′(0) > 0. The corresponding Kähler metric has scalar curvature

(68) s+ = −A
′′(x) +B′′(y)

x
,

showing that the extremal affine function s(∆,L,F ) determines an affine line parallel to
Fα,0 and Fα,∞. Conversely, the proofs of [26, Lem. 4.2, Thm. 1.4] show that if (∆,L, F )
is a labelled trapezoid (∆,L, F ) which is not a parallelogram, and the extremal affine
function s(∆,L,F ) is constant on each of the pair of parallel facets of ∆, then one can
associate to (∆,L, F ) data (63) satisfying the relation rβ,0 = −rβ,∞ = r ≥ 0. The case
r = 0 (i.e. when two opposite non-parallel facets of ∆ belong to F ) implies B(y) ≡ 0.
As observed in [34], and similarly to the case of a parallelogram, this contradicts the
stability of (∆,L, F ). Indeed, substituting in (66), we still obtain a smooth matrix
HA,B on ∆ verifying (35) and the boundary conditions of Definition 4.5. This can
be used to compute L(∆,u,F )(fα) for a simple crease function fα with crease on the
line `α = {x = α}: integration by parts reduces to an integral over the crease of the
quantity HA,0(pα, pα) = 0, showing that L(∆,L,F )(fα) = 0, i.e. (∆,L, F ) is not stable.
We summarize the discussion in the following:

Proposition 5.4. [26, 34] Let (∆,L, F ) be a labelled trapezoid in R2 which is not
a parallelogram. Suppose that the corresponding extremal affine function s(∆,L,F ) is
constant on each of the pair of parallel facets of ∆. Then (∆,L, F ) admits a solution
to (35) in S(∆,L, F ) if and only if (∆, F ) is stable, if and only if F is one or the
union of 2 of the parallel facets of ∆. In these cases, the solution is of Calabi-type,
i.e. given by (62) for polynomials A(x) and B(y) as described above.

In order to derive further geometric applications, we use [26, Cor. 1.6] which identi-
fies the choice of labels L of a given trapezoid ∆ for which s(∆,L,F ) is constant on each
of the pair of parallel facets with one single linear constraint on the pair of inward
normals to non-parallel facets. Up to an overall positive rescaling of L, this fixes the
choice of these normals, but leaves no constraint on the pair of normals corresponding
to the parallel opposite facets. In our notation, this corresponds to fixing the bound-
ary condition for B(y) and allowing rα,0 ≤ 0 ≤ rα,∞ to be arbitrary real numbers. It
thus follows that if (∆,L) is a labelled trapezoid for which the corresponding extremal
affine function s(∆,L) is parallel to the pair of parallel facets, then, by taking F to
be either one or two of the parallel facets of ∆, the extremal affine function s(∆,L,F )

must also be parallel to the pair of parallel facets. We now apply this observation to
Delzant trapezoids (∆,L).

The compact toric complex surfaces X for which the Delzant polytopes are trape-
zoids (but not parallelograms) are the Hirzebruch surfaces Fm = P(O ⊕ O(m)) →
CP 1, m ≥ 1. Calabi [11] has shown that these surfaces admit extremal Kähler metric
of Calabi-type in each Kähler class. In particular, the extremal affine functions are
always constant on the pair of parallel facets of the corresponding Delzant polytopes.
Thus, Proposition 5.4 yields the following natural extension of Calabi’s result.

Corollary 5.5. Let X ∼= Fm = P(O ⊕O(m))→ CP 1 be the m-th Hirzebruch surface
and Z ⊂ X the divisor consisting of either the zero section S0, the infinity section
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S∞ or the union of both. Then X \ Z admits a complete extremal Donaldson Kähler
metric in each Kähler class of Fm. Furthermore, this metric is of Poincaré type.

Proof. The only additional clarification we need to supply is whether the explicit
extremal Calabi type metrics are of Poincaré type. This follows from the expression
(66), noting that the only the facets Fα,k are in F , and on such a facet (having
normal vector (αk, 0)), the boundary conditions of Proposition 4.16 reduce to A(αk) =
A′(αk) = 0 and A′′′(αk) 6= 0. If these hold, the extremal Kähler metric of Calabi type
is manifestly in some class Sα,β(∆,L, F ), and thus is of Poincaré type according to
Theorem 4.15. The vanishing conditions are always satisfied. The only condition we
need to verify is A′′′(αk) 6= 0. To this end, we describe the solutions explicitly.

Letting

α0 = 1, α∞ = a > 1, rα,k = 0,

β0 = 0, β∞ = m, rβ,0 = −rβ,∞ = 1,
(69)

we obtain in the case Z = S0 ∪S∞ an extremal Kähler metric on X \Z given by (60)
with

(70) B(y) = − 2

m
y(y −m), A(x) = − 2

m(a2 + 4a+ 1)
(x− 1)2(x− a)2

where a > 1 parametrizes (up to a scale) the Kähler cone of Fm. This is a complete
extremal Kähler metric defined on the total space of the principal C×-bundle over
CP 1 classified by c1(O(m)) ∈ H2(CP 1,Z), with cusp singularities at 0 and ∞. The
conditions A′′′(1) 6= 0 6= A′′′(a) obviously hold.

Similarly, when Z = S0 say, for the same choice of αk, βk the extremal solution is
given by (60) with

(71) B(y) = − 2

m
y(y −m), A(x) = −(px+ q)(x− 1)2(x− a),

where the constants p, q are given by

p =
2(
rα,∞(a+2)

(a−1)2 − 1
m)

(a2 + 4a+ 1)
,

q =
2(
rα,∞(2a+1)

(a−1)2 + a
m)

(a2 + 4a+ 1)
.

(72)

Such a metric compactifies smoothly at S∞ precisely when the real parameter rα,∞ =
1, which gives the complete extremal Kähler metrics in Corollary 5.5; for other values
of rα,∞ > 0, one gets a complete metric on X \ S0 with a cone singularity of angle
2πrα,∞ along S∞. Now, the condition A′′′(1) = 0 is equivalent to p = −q. With
rα,∞ = 1, this reads as

3m(a+ 1) + (a− 1)3 = 0,

which is impossible for a > 1.
The case of Z = S∞ can be treated similarly. �

Remark 5.6. As a special case of the ansatz (71), one can construct CSCK metrics
by putting rα,∞ = (a−1)2

m(a+2) (i.e. setting the coefficient p in (72) to be zero). For
each m ≥ 1, this defines a CSCK metric on Fm \ S0, in each Kähler class of Fm
(parametrized by a > 1) with a cusp singularity along S0 and a cone singularity of
angle 2π

(
(a−1)2

ma(a+2)

)
< 2π along S∞.



EXTREMAL KÄHLER POINCARÉ TYPE METRICS ON TORIC VARIETIES 29

5.4. Regular ambitoric structures. Let q(z) = q0z
2+2q1z+q2 be a quadratic poly-

nomial, M a 4-dimensional manifold with real-valued functions (x, y, τ0, τ1, τ2), such
that x > y, 2q1τ1 = q0τ2+q2τ0, and at each point ofM , the 1-forms dx, dy, dτ0, dτ1, dτ2

span the cotangent space. Let t be the 2-dimensional space of vector fields K on M
satisfying dx(K) = 0 = dy(K) and dτj(K) constant. Then, for any smooth and posi-
tive functions of one variable, A(x) and B(y), defined on the images of x and y in R,
respectively, M is ambitoric with respect to t and the Kähler structures

g± =

(
x− y
q(x, y)

)±1( dx2

A(x)
+

dy2

B(y)
+A(x)

(y2dτ0 + 2ydτ1 + dτ2

(x− y)q(x, y)

)2

(73)

+B(y)
(x2dτ0 + 2xdτ1 + dτ2

(x− y)q(x, y)

)2
)
,

ω± =

(
x− y
q(x, y)

)±1dx ∧ (y2dτ0 + 2ydτ1 + dτ2)± dy ∧ (x2dτ0 + 2xdτ1 + dτ2)

(x− y)q(x, y)
,(74)

J±dx = A(x)
y2dτ0 + 2ydτ1 + dτ2

(x− y)q(x, y)
, J±dy = ±B(y)

x2dτ0 + 2xdτ1 + dτ2

(x− y)q(x, y)
,

where q(x, y) = q0xy+ q1(x+ y) + q2. The metric g+ is extremal iff g− is extremal iff

A(z) = q(z)π(z) + P (z),

B(z) = q(z)π(z)− P (z),
(75)

where π(z) = π0z
2 + 2π1z + π2 is a polynomial of degree at most two satisfying

2π1q1 − (q2π0 + q0π2) = 0, and P (z) is polynomial of degree at most four.
The space of Killing fields of g± for the torus is naturally isomorphic to the space

of S2
0,q of polynomials p(z) of degree ≤ 2 which are orthogonal to q with respect to the

inner product 〈·, ·〉 defined by the discriminant, i.e. p(z) = p0z
2 + 2p1z+ p2 satisfying

〈p, q〉 = 2p1q1 − (q2p0 + q0p2) = 0.

The space S2
0,q is in turn isomorphic to the quotient space S2/〈q〉 of all polynomials of

degree ≤ 2 by the subspace generated by q, by using 1
2adq with respect to the Poisson

bracket
adq(w) = {q, w} = q′w − w′q

on S2. Thus, if {p1, p2} is a basis of S2
q,0 and {w1, w2} the corresponding basis of

S2/〈q〉 (with pi = 1
2{q, wi}) momentum/angular coordinates for g± are given by

x+
i = wi(x, y)/q(x, y), ti, (i = 1, 2)

x−i = pi(x, y)/(x− y), ti, (i = 1, 2).
(76)

It follows that the lines x = α (resp. y = β) transform to lines `+α = (x−α)(y−α)
q(x,y) = 0

(resp. `+β = (x−β)(y−β)
q(x,y) ) in the (x+

1 , x
+
2 ) plane, which are tangent to the non-degenerate

conic C∗+ ⊂ t∗ corresponding to
(
x−y
q(x,y)

)2
= 0; similarly, `−α = (x−α)q(y,α)

(x−y) (resp.

`−β = (y−β)q(x,β)
x−y ) are lines in the (x−1 , x

−
2 )-plane (corresponding to x = α and y = β in

the (x, y)-plane) which are tangent to the (possibly degenerate) conic C∗− ⊂ t∗ defined

by
(
q(x,y)
x−y

)2
= 0. In both cases, the corresponding normals are

(77) pα(z) = q(α, z)(z − α); pβ(z) = q(z, β)(z − β),
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viewed as elements of S2
0,q.

It is straightforward to compute the matrix HA,B
± of g±:

HA,B
− (pi, pj) =

A(x)pi(y)pj(y) +B(y)pi(x)pj(x)

(x− y)3 q(x, y)
,

HA,B
+ (pi, pj) =

A(x)pi(y)pj(y) +B(y)pi(x)pj(x)

(x− y) q(x, y)3
.

(78)

whose inverses are the Hessians in momenta of the symplectic potentials

u+
A,B(x, y) = −

∫ x (t− x)(t− y)dt

q(x, y)A(t)
+

∫ y 2(t− x)(t− y)dt

q(x, y)B(t)
,

u−A,B(x, y) =

∫ x 2(x− t)q(y, t)dt
(x− y)A(t)

+

∫ y 2(y − t)q(x, t)dt
(x− y)B(t)

.

(79)

In order for u±A,B be in S(∆,L, F ) for some labelled compact convex quadrilateral
(∆,L, F ), one has to choose real numbers αk, βk, rα,k, rβ,k (k = 0,∞) satisfying the
inequalities

β0 < β∞ < α0 < α∞, rα,0 ≤ 0 ≤ rα,∞, rβ,0 ≥ 0 ≥ rβ,∞,
and such that q(x, y) > 0 on D = [α0, α∞]× [β0, β∞], and then impose on the smooth
functions A(x), B(y) the positivity conditions

(80) A(x) > 0 on (α0, α∞) and B(y) > 0 on (β0, β∞),

and the boundary conditions

(81) A(αk) = 0 = B(βk), A
′(αk) = −2rα,k, B

′(βk) = 2rβ,k (k = 0,∞).

Considering HA,B
+ for simplicity (and dropping the + script), the data as above

gives rise to a convex compact quadrilateral ∆ (determined by the affine lines `αk and
`βk introduced above via (76)) which is endowed with the canonical set {pαk , pβk , k =
0,∞} of normals (77). We take F be the union of all facets `αk = 0 and `β,k = 0 for
which rα,k = 0 and rβ,k = 0, and normalize the remaining normals by

eα,k := pαk/rα,k, eβ,k := pβk/rβ,k.

One can easily check that these become inward normals to ∆ and that HA,B verifies
the boundary conditions (32)-(33) on (∆,L, F ) if and only if (81) holds. Furthermore,
as it is shown in [3], HA,B gives rise to a solution of the Abreu equation (35) on
(∆,L, F ) iff A,B are polynomials of degree ≤ 4 which satisfy (75) and the positivity
and boundary conditions (80)-(81).

Conversely, the following is established in [4].

Proposition 5.7. [4] Let (∆,L) be a compact convex labelled quadrilateral in R2, and
F the union of some of its facets. Suppose that ∆ is neither a parallelogram nor a
trapezoid whose extremal affine function s(∆,L,F ) is constant on the parallel facets ∆.
Then there exist real numbers αk, βk, rα,k, rβ,k (k = 0,∞), subject to the inequalities

β0 < β∞ < α0 < α∞, rα,0 ≤ 0 ≤ rα,∞, rβ,0 ≥ 0 ≥ rβ,∞,
and a quadratic q(z) satisfying q(x, y) > 0 on D = [α0, α∞]× [β0, β∞], such that
• ∆ is the image of D either under (x+

1 , x
+
2 ) or (x−1 , x

−
2 ) in (76);

• For each facet Fα,k of ∆ obtained as the image of x = αk under (76) (resp. Fβ,k
obtained as the image of y = βk), which does not belong to F , rα,k 6= 0 (resp.
rβ,k 6= 0) and the corresponding inward normal is eα,k =

pαk
rα,k

(resp. eβ,k =
pβk
rα,k

),
where pαk and pβk are the the normals defined by (77);
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• For each facet Fα,k of ∆ (resp. Fβ,k) which belongs to F , the corresponding rα,k = 0
(resp. rβ,k = 0);
• There exist polynomials P (z) of degree ≤ 4 and π(z) of degree ≤ 2, satisfying
〈q, π〉 = 0, such that the A(z) and B(z) defined by (75) satisfy the boundary condi-
tions (81) (but not necessarily the positivity condition (80)).

Furthermore, the corresponding HA,B
+ or HA,B

− defined by (78) satisfies (35) and de-
fines a solution uA,B ∈ S(∆,L, F ) if and only if (∆,L, F ) is stable. The latter condi-
tion is equivalent to (80).

As an illustration of the theory, let us again take (∆,L) to be a trapezoid but not
a parallelogram, and F to be either a facet which is not parallel to another facet, or
the union of two adjacent facets. We have shown in Section 5.3 that in this case the
extremal affine linear function s(∆,L,F ) is not constant on the parallel facets of ∆ and,
therefore, the solution of (35) (if it exists) must be given by Proposition 5.7 above.
On the other hand, we have the following

Proposition 5.8. Let (∆,L) be a labelled trapezoid corresponding to a Hirzebruch
surface, and F be one facet, or the union of 2 adjacent facets. Then (∆,L, F ) is
stable.

Putting Propositions 5.7 and 5.8 together, we obtain

Corollary 5.9. Let X = Fm be the m-th Hirzebruch surface and Z be the divisor
consisting of a single fibre fixed by the T action, or the union of such a fibre with
either the zero section or the infinity section. Then, X \Z admits a complete extremal
Donaldson metric in each Kähler class of X, which is not of Poincaré type.

The proofs of Proposition 5.8 and Corollary 5.9 are presented in Appendix B.

Example 5.10. In the light of Corollary 5.9, we use the explicit description of
the extremal Donaldson metrics in order to determine their asymptotic behaviour in
normal direction to Z.

The parametrization of a regular ambitoric metric by the data

αk, βk, rα,k, rβ,k, q(z), A(z), B(z)

as above is not effective: there is a natural SL(2,R) action on the space of degree
2 polynomials q(z), as well as a homothety freedom for the metric. This can be
normalized by taking q(z) to be either 1, 2z or z2 + 1 (see [3, Sec. 5.4]), thus referring
to the corresponding ambitoric metric as being of parabolic, hyperbolic or elliptic type,
respectively. Moreover, it is observed in [4, Sec. 5.4] that the solution corresponding
to a trapezoid is given by a (positive) hyperbolic ambitoric metric, i.e.

g =
(x− y)

(x+ y)

( dx2

A(x)
+

dy2

B(y)

)
+

1

(x− y)(x+ y)3

(
A(x)(dt1 + y2dt2)2 +B(y)(dt1 + x2dt2)2

)
,

ω =
dx ∧ (dt1 + y2dt2)

(x+ y)2
+
dy ∧ (dt1 + x2dt2)

(x+ y)2
,

(82)

for (x, y) ∈ [α0, α∞]× [β0, β∞] with

β0 < β∞ < α0 < α∞, β0 + α0 > 0

and polynomials A(z) =
∑4

i=0 aiz
4−i and B(z) =

∑4
i=0 biz

4−i satisfying

(83) a0 + b0 = a2 + b2 = a4 + b4 = 0,
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and the positivity and boundary conditions (80)-(81). The momentum coordinates of
(82) then become

(84) x1 = − 1

x+ y
, x2 =

xy

x+ y

so that the image of the interval [α0, α∞] × [β0, β∞] under (84) is a quadrilateral ∆
determined by the affine lines

`α,k = −α2
kx1 + x2 − αk = 0, `β,k = −β2

kx1 + x2 − βk = 0, k = 0,∞,

whose normals are pα,k = (−α2
k, 1) and pβ,k = (−β2

k, 1), respectively. It follows that
∆ is a trapezoid iff β∞ = −β0 = b > 0, see Figure 2 below.

Figure 2. The Delzant polytope of a Hirzebruch surfaces (in blue)
obtained by the hyperbolic ambitoric construction.

As observed in [16], each Hirzebruch surface Fm can be obtained from a labelled
trapezoid (∆,L) as above, by taking inward normals eα,k = pαk/rα,k and eβ,k =
pβk/rβ,k satisfying

eβ,0 = −eβ,∞, eα,∞ +meβ,0 = −eα,0.
Equivalently, the labelling L = {Lα,k = 1

rα,k
`α,k, Lβ,k = 1

rβ,k
`β,k, k = 0,∞} satisfies

(85) rβ,0 = −rβ,∞ = r > 0, rα,0 =
r

m

(α2
0 − α2

∞
α2
∞ − b2

)
, rα,∞ =

r

m

(α2
∞ − α2

0

α2
0 − b2

)
.

The positive constant r is just a scale factor for the Kähler class and can be taken r = 1.
Thus, by considering the lattice generated by eα,k, eβ,k as above, the corresponding
labelled trapezoid corresponds to a toric Hirzebruch surface Fm.

We now take Fα,∞ (defined by `α,∞ = 0) be the facet of ∆ corresponding to a fibre
of Fm fixed by the torus action. We are thus looking for extremal metrics given by
(82) for polynomials

(86) A(x) = −c(x− α0)(x− α∞)2(x− α3), B(y) = c(y − b)(y + b)(y2 + py + q)
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where 0 < b < α0 < α∞ and α3, c, p, q are real parameters (which we are going to
express as functions of (b, α0, α∞)).

The extremality conditions (83) then read as

α3(2α∞ + α0) + α2
∞ + 2α0α∞ = q − b2

α3α
2
∞α0 = −qb2

(87)

from which we get

α3 = −
(b2 + α2

∞ + 2α0α∞

2α∞ + α0 + α2
∞α0

b2

)
,

q =
α2
∞α0

b2

(b2 + α2
∞ + 2α0α∞

2α∞ + α0 + α2
∞α0

b2

)
.

(88)

From the boundary condition (81) at α0 we obtain

A′(α0) = −c(α0 − α3)(α0 − α∞)2 = −2rα,0 =
2

m

(α2
∞ − α2

0

α2
∞ − b2

)
so that we determine

c = − 2

m

( (α∞ + α0)

(α0 − α3)(α∞ − α0)(α2
∞ − b2)

)
= − 2

m

( (α∞ + α0)(2α∞ + α0 + α2
∞α0

b2
)(

α2
0 + α2

∞ + 4α0α∞ + b2 +
α2

0α
2
∞

b2

)
(α∞ − α0)(α2

∞ − b2)

)
.

(89)

Consider first the case when F = Fα,∞ consists of only one facet. The boundary
conditions (81) at ±b read as

B′(b) = 2cb(b2 + pb+ q) = 2rβ,∞ = −2, B′(−b) = −2cb(b2 − pb+ q) = 2rβ,0 = 2.

We then have p = 0 and the additional relation −1 = cb(b2 + q) which can be used in
order to express α0 as a function of (α∞, b). This last step, however, is not obvious
(and is implicit) as α0 appears to be a real root of a polynomial of degree 4, which also
needs to satisfy 0 < b < α0 < α∞. The existence of such a root is thus guaranteed
by Propositions 5.7 and 5.8, so we shall not develop this step any further. We also
notice that homotheties in (x, y) preserve the form (82) (but change A and B by
scale) so we can assume b = 1. Thus, on a fixed Hirzebruch surface Fm we obtain
a one-dimensional family of complete extremal Kähler metrics (defined on Fm \ Z)
parametrized by a = α∞ > 1, which is precisely the dimension of the Kähler cone of
Fm modulo scales.

Notice that, by (88), the third root α3 of A is negative, thus α∞ has aways multi-
plicity 2. Using (79) with q(x, y) = x+ y and A,B given by (86), we observe that up
to smooth terms on ∆, the symplectic potential is of the form

u =
(
A

(2α∞ − (x+ y))

(x+ y)
+BLα,∞

)
logLα,∞ +

1

2

∑
k=0,∞

Lα,k logLα,k + Lβ,k logLβ,k

=
(
A(−2α∞x1 − 1) +BLα,∞

)
logLα,∞ +

1

2

∑
k=0,∞

Lα,k logLα,k + Lβ,k logLβ,k

for some real constants A 6= 0, B. As α∞ > 0, the affine function
(
A(−2α∞x1 − 1) +

BLα,∞
)
is not constant when restricted to the facet Fα,∞ (on this facet x = α∞ and

y ∈ [β0, β∞]).
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Similarly, when F = Fα,∞ ∪ Fβ,∞ say, we must have y2 + py + q = (y − b)(y − β3),
so that q = bβ3 and p = −(b+ β3), and from (88) we determine

β3 =
α2
∞α0

b3

(b2 + α2
∞ + 2α0α∞

2α∞ + α0 + α2
∞α0

b2

)
.

The above formula together with the inequalities 0 < b < α0 < α∞ show that β3 > b,
thus b is double root of B(y). Similarly to the previous case, the symplectic potential
of the extremal metric then takes the form

u = fα,∞ logLα,∞ + fβ,∞ logLβ,∞ +
1

2

(
Lα,0 logLα,0 + Lβ,0 logLβ,0

)
+ smooth

where fα,∞ and fβ,∞ are affine functions in momenta which are not constant on the
corresponding facets in F . One can also check that in this case too the condition (41)
fails.

We notice also

Proposition 5.11. Let X be a Hirzebruch surface Fm or CP 1×CP 1, viewed as a toric
variety endowed with a Kähler class [ω] corresponding to a Delzant polytope (∆,L).
Let Z ⊂ X be the toric divisor corresponding to the union F of 3 facets of ∆. Then
(∆, F ) is unstable and X \Z admits neither a Donaldson extremal Kähler metric nor
an extremal Kähler metric of Poincaré type in [ω].

Proof. The proof of instability of (∆, F ) follows from the arguments in Appendix B,
see in particular Remark B.4. Thus (∆, F ) cannot admit a Donaldson metric by
Proposition 4.8.

To rule out the existence of a (non-toric) complete extremal metric of Poincaré
type, we can use [8, Thm. 5] which asserts that each rational curve corresponding to
the preimage of a facet in F must admit a complete Poincaré type extremal Kähler
metric. Taking the CP 1 corresponding to the facet in F which intersects the other
two facets in F , we conclude that CP 1 \({p}∪{q}) admits a complete extremal metric
of Poincaré type. But if it did, it would have to be scalar-flat, as the Poincaré-Futaki
invariant vanishes and the average scalar curvature is 0. This would then violate the
numerical constraint in [7, Thm. 1.2] for Poincaré type metrics of constant scalar
curvature. So no such metric can exist. �

Corollary 5.12. Conjecture 4.12 holds true if X is a Hirzebruch surface Fm or CP 1×
CP 1.

Proof. Using Corollaries 5.3, 5.5 and 5.9 together with Proposition 4.8 at one hand,
and Propositions 5.4 and 5.11 at the other hand, we conclude that the conditions (i)
and (ii) of Conjecture 4.12 limit the possibilities as follows:

(a) X = CP 1 × CP 1 and Z is the union of the preimage of one or two adjacent
facets;

(b) X = Fm and Z consist of either the zero section, the infinity section, or the
the union of both,;

(c) X = Fm and Z consist of a single fibre or the union of such a fibre and either
the zero section or the infinity section.

In the cases (a) and (b), there exists an explicit extremal Poincaré type metric by
the Corollaries 5.3 and 5.5. In the case (c), there exists a Donaldson complete ex-
tremal metric which is not of Poincaré type, but in this case the condition (iii) of
Conjecture 4.12 fails, as shown in Example 5.10. �
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5.5. Triangles as a limiting case. This case is already treated in [10] (see also
[2]), but it can also be viewed as a limiting case of the ambitoric ansatz with π = 0
(i.e. A = −B). The corresponding extremal metrics (g+, J+, ω+) provide solutions of
(35) on labelled triangles, and compactify on weighted projective planes as extremal
Bochner–flat (i.e. self-dual) orbifold metrics, see [2, 10].

Indeed, putting π = 0 and P (z) = −
∏3
j=0(z − βj) with β0 ≤ β1 < β2 < β3 in

(73) and (74), the degree 4 polynomial B(y) = −P (y) is positive on (β1, β2) while
A(x) = P (x) on (β2, β3). When β0 < β1, the Kähler metric (g+, ω+) defines an
extremal Bochner-flat Kähler metric on a labelled simplex (∆,L), while taking β0 = β1

gives rise to a solution to the Abreu equation (35) on a labelled simplex minus one
facet (corresponding to the image of y = β1 under the momentum map (76)). One can
always take the two normals to form a basis of a lattice, so that the metric extends
smoothly over the corresponding faces and has a complete end towards the third, see
[16]. We get, in fact, one of the complete Bochner-flat metrics described in [10, Thm.
4.2.7] (see also [14]).

To see this explicitly, let us identify (by an affine map) the simplex ∆ with the
standard simplex of R2 (with vertices at (0, 0), (1, 0) and (0, 1)) and assume (without
loss) that F corresponds to the facet defined by the equation L3(x) = a3(1−x1−x2) =
0 whereas the other labels are L1(x) = a1x1 and L2(x) = a2x2 with ai > 0. The Bryant
complete extremal Bochner-flat metric has symplectic potential in S(∆,L, F ), given
by

(90) uB =
1

2

(
a1x1 log(x1) + a2x2 log(x2)− (a1x1 + a2x2) log(1− x1 − x2)

)
.

If we take (∆,L) be a labelled simplex and F = F1 ∪ F2 the union of two facets,
then by identifying ∆ with the standard simplex of R2 and Fi with the affine line
xi = 0, i = 1, 2, respectively, one sees that the reflection along the line x1 = x2 is a
symmetry of (∆,L, F ). By uniqueness, s(∆,L,F ) must be invariant under this reflection,
i.e. s(∆,L,F ) = r(x1 +x2)+c for some real numbers r, c. Using the definition (3.1) with
f = 1− (x1 +x2) (which vanishes on F3), one gets r = −2c for a real number c (which
must be inverse proportional to the normal e3). It follows that s(∆,L,F ) vanishes at
the affine line parallel to F3 and passing though the midpoint m = (1/4, 1/4) of its
median d. Let fd be a simple crease function with crease along d and non-zero on the
sub-triangle ∆′ ⊂ ∆ (cut from ∆ by d). Two of the facets of ∆′ inherit the measures
of the facets of ∆ and we put measure zero to the facet along d. Thus, (∆′, dν∂∆′)
and (∆, dν∂∆) are equivalent under an affine transformation of R2. From the affine
characterization of s(∆,L,F ), it follows that the extremal affine linear function of ∆′

is a multiple of s(∆,L,F ); it is not hard to see (e.g. by using the definition (3.1) with
f = 1 − (x1 + x2) and f ≡ 1) that the extremal affine linear function of ∆′ equals
to s(∆,L,F ). Thus, L(∆,L,F )(fd) also computes the Donaldson–Futaki invariant of the
affine linear function fd over ∆′, and hence is zero. It follows that (∆,L, F ) is unstable.
We thus conclude

Theorem 5.13. Let (∆,L, F ) be a labelled simplex in R2. Then (∆,L, F ) is stable
if and only if F consist of a single facet. In this case (35) admits an explicit solution
uB in S(∆,L, F ) given by

(91) uB =
1

2

(
L1 logL1 + L2 logL2 − (L1 + L2) logL3

)
,
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where L3 vanishes on F . The corresponding metric (27) extends to the complete
Bochner-flat metric on C2 found in [10]. In particular, CP 2 \ CP 1 admits a com-
plete extremal Donaldson metric, which is of Poincaré type (and conformal to the
Taub-NUT metric).

Appendix A. Proof of Theorem 4.15 and Proposition 4.16

A.1. Proof of Theorem 4.15. We follow the notation of Sections 3 and 4. Thus, X is
a smooth compact toric variety classified by the labelled Delzant polytope (∆,L). We
fix once and for all a T-invariant Kähler metric ω0 onX with momentum map µ0 : X →
∆ ⊂ t∗. To simplify the discussion, we can take ω0 to be the Kähler quotient metric
on X obtained from the flat Kähler structure on Cd via the Delzant construction, see
equation (28). We denote by X◦ = µ−1

0 (∆0) the preimage of the interior of ∆, which
is also the subspace of regular points for the action of T. Complexifying the T-action,
we obtain a holomorphic action of the complex n-torus Tc = (C×)n with X◦ being the
principal orbit for the Tc-action. Choosing (once for all) a reference point z◦ ∈ X◦,
for each fixed point for the T-action, corresponding to a vertex v ∈ ∆, we introduce a
(C×)n-equivariant chart Cnv ∼= Cn as follows. Using a basis of t obtained by the inward
normals of the facets of ∆ meeting at v, we identify Tc with (C×)n and consider the
equivariant map Φv : (C×)n → X◦

Φv(r1e
√
−1t1 , . . . , rne

√
−1tn) := (r1e

√
−1t1 , . . . , rne

√
−1tn) · z◦,

where rie
√
−1ti ∈ C× stand for the polar coordinates on each factor. It follows by

the holomorphic slice theorem that Φv : X◦ → (C×)n extends equivariantly to a
holomorphic embedding of Cnv to X, thus defining an equivariant atlas of affine charts
Cnv of X (where v runs among the vertices of ∆).

The theory of toric varieties (see e.g. [23]) yields that in such a chart, the (smooth)
divisor Z corresponding to the preimage under µ0 of a facet F meeting v has the equa-
tion zj = 0 where (z1, . . . , zn) = (r1e

√
−1t1 , . . . , rne

√
−1tn) are the affine coordinates on

Cnv . In what follows, we will suppose without loss that

(92) Z ∩ Cnv = {(z1, . . . , zn) ∈ Cn : z1 = 0}.

To connect with the description (27) of the Kähler metric ω0, one needs to apply the
Legendre transform to the strictly convex smooth function u0 on ∆0, given by (28).
More precisely, if x0 = µ0(z◦) ∈ ∆0 and u ∈ S(∆,L) is any symplectic potential, we
let

y(x) := du(x)− du(x0) = (u,1(x), . . . , u,n(x))− (u,1(x0), . . . , u,n(x0))

and define a smooth function ϕu(y) by

(93) ϕu(y) + u(x) =
n∑
i=1

yixi.

We notice the following elementary

Lemma A.1. Let Ω be a non-empty bounded convex open subset of a finite-dimensional
affine space t∗, and u : Ω → R a smooth strictly convex function such that |du| tends
to ∞ near ∂Ω, where | · | is any Euclidean norm on t. Then du is a diffeomorphism
from Ω onto t.

Proof. Clearly, du(x) =
(
u,1(x), . . . , u,n(x)

)
is a local diffeomorphism as its differential

at x (represented by the matrix (u,ij(x)) is invertible for all x ∈ Ω by the strict
convexity assumption.
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Moreover du is injective by using the convexity of Ω and the fact that du(p(t)) is
strictly monotone in t on each linear segment p(t) ∈ Ω (which again follows from the
strict convexity of u).

Finally, du is surjective: This can be proven by checking that du(Ω) is closed,
and hence coincides with Rn as it is also non-empty and open. Indeed, let (qk) be
a sequence in Rn ∼= t, with limit q, such that qk = du(pk) for pk ∈ Ω for all k ≥ 0.
There is a subsequence, still denoted by (pk), converging to some p ∈ Ω. Now if
p ∈ ∂Ω, then by assumption, |qk| = |du(pk)| → ∞, a contradiction, and thus p ∈ Ω,
and q = du(p). �

It follows that for each u ∈ S(∆,L), we have a Tc-equivariant biholomorphism
Φu : (∆0 × T, Ju)→ (C×)nv

∼= X◦, given by

(94) Φu(x1, . . . , xn, t1, . . . , tn) := (ey1+
√
−1t1 , . . . , eyn+

√
−1tn),

where, we recall, y(x) = du(x)−du(x0) is a diffeomorphism from ∆0 to Rn by virtue of
Lemma A.1, and Ju is the T-invariant ω0-compatible complex structure corresponding
to u ∈ S(∆,L). The central fact in this theory is the following identity on (C×)nv (see
[23]):

(95) ωu := (Φ−1
u )∗(ω0) = ddc

((
ϕu(log |z1|, . . . , log |zn|)

))
,

where (z1, . . . , zn) are the complex coordinates associated to the chart Cnv , and dc

is taken with respect to the standard complex structure. The fact that u ∈ S(∆,L)
guarantees the smooth extension of the right hand side to a positive definite (1, 1)-form
on Cnv .

Let us now suppose u ∈ Sα,β(∆,L, F ) (instead of being in S(∆,L)). It is easily
checked that such a u still verifies the condition that |du| tends to∞ near ∂∆, so that,
by using Lemma A.1, (94) and (95), we obtain a Kähler metric ωu on (C×)nv , which
can be written as

(96) ωu = ω0 + ddcϕ,

where ω0 is the (globally defined on Cnv ) Kähler metric corresponding to (28) and

(97) ϕ(z1, . . . , zn) := (ϕu − ϕu0)(log |z1|, . . . , log |zn|)

is a smooth function on (C×)nv ⊂ Cnv . We notice that through this identification (which
depends upon u!), Z ∩ Cnv still corresponds to a hyperplane in the Cnv affine chart, as
it follows from the following

Lemma A.2. Let u0 be the symplectic potential in S(∆,L) given by (28) and let
u ∈ Sα,β(∆,L, F ). Then,

(du0)−1 ◦ du : ∆0 −→ ∆0

extends continuously to a homeomorphism of ∆, inducing a diffeomorphism on every
open face of the polytope ∆ and preserving its vertices.

Proof. The proof is elementary. Let p ∈ ∂∆, and consider some sequence (pk) in ∆0

converging to p. We want to see that:
(a) limk→∞((du0)−1 ◦ du)(pk) lies in the same open facet as p (or equals p if p is

a vertex of ∆);
(b) this limit does not depend on the sequence (pk).

The claimed regularity of (du0)−1 ◦ du will follow from the proof (a) and (b) above.
Let us assume that p ∈ f := (Fi1 ∩ · · · ∩ Fi`)\(Fi`+1

∪ · · · ∩ Fid), ` ≤ n, where
i1 < · · · < i` and {i1, . . . , id} = {1, . . . , d}, and also that Fi1 ∩ · · · ∩ Fin is not empty.
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As already noticed,
(
du(pk)

)
tends to ∞ in t; thus, as du0 is a diffeomorphism

∆→ t whose norm tends to ∞ near ∂∆,

(pk) :=
(
(du0)−1 ◦ du(pk)

)
tends to ∂∆. We now prove that any limit point of (pk) must belong to f . For this,
observe that if (pk) tends to ∂∆, then (pk) tends to f if and only if u0,1(pk), . . . , u0,`(pk)
tend to −∞ while u0,`+1(pk), . . . , u0,n(pk) remain bounded (we have set u0,i(x) =
∂u0
∂xi

(x)). We thus want to prove that, as k →∞,{
u0,1(pk), . . . , u0,`(pk) −→ −∞,

u0,`+1(pk), . . . , u0,n(pk) = O(1),

or equivalently

(98)

{
u,1(pk), . . . , u,`(pk) −→ −∞,

u,`+1(pk), . . . , u,n(pk) = O(1).

Since u ∈ Sα,β(∆,L, F ), up to a smooth t-valued function near p we have

u,j =


(
− α

L1
+ β logL1

)
if j = 1,

1

2
logLj if j ≥ 2,

which yield the estimates (98) and concludes the point (a) of our proof.
We now address (b). Let pk → p and pk → p. Our task is to prove that p does

not depend on (pk); if p is a vertex, this already follows from (a), so we assume that
f is an open face of ∆. Letting u0,f := (u0)|f , uf := (u + α logL1)|f if f ⊂ F = F1

and uf = u|f if f 6⊂ F , the definitions of the spaces S(∆,L) and Sα,β(∆,L, F ) ensure
that u0,f and uf are strictly convex on f . With the notations above, observe that the
u0,j , j = ` + 1, . . . , n, are smooth in a neighbourhood of f , and u0,j = (u0,f ),j along
f ; similarly, the u,j are smooth around f and u,j = (uf )j along f . In this way, letting
k →∞ in the equality du0(pk) = du(pk), we obtain

(du0,f )(p) = (duf )(p),

Using the strict convexity of u0,f and uf on f , and that the norms of their differentials
tend to ∞ near ∂f , we conclude that du0,f and duf are diffeomorphisms f → (t/tf )

∗

(see Lemma A.1 above), and thus:

p = (du0,f )
−1 ◦ duf (p),

does not depend on (pk).
This completes the proof of Lemma A.2. �

The general theory [23] (which uses local arguments around the preimage of each
face) ensures that ϕ(z) extends smoothly over Cnv \ (Cnv ∩ Z), and that ωu defines a
Kähler metric on X \Z. We shall thus focus our analysis on Cnv in order to understand
the behaviour of ωu near Z ∩ Cnv , see (92).

Let p ∈ Z ∩ Cnv . We shall consider the following limiting cases:
(a) p = (0, . . . , 0) corresponds to the vertex v of ∆;
(b) µ0(p) belongs to the relative interior of F , i.e. in the chart Cnv , p has coordi-

nates (0, z2, . . . , zn) with zj 6= 0, j = 2, . . . , n.
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The case when µ0(p) belongs to an `-codimensional face of F with 1 ≤ ` ≤ n− 1, can
be dealt with by combining the arguments for the cases (a) and (b). We shall also
assume at first that β = 0.

Case (a): p = (0, . . . , 0). We can assume without loss that the vertex µ0(p) = v of ∆
is at the origin of t∗ ∼= Rn, i.e. Lj(x) = xj , j = 1, . . . , n. We thus have, near 0 ∈ ∆,

(99) u(x) = −α log(x1) +
1

2

( m∑
j=2

xj log(xj)− xj
)

+ w(x)

with w(x) smooth on Rn. We can further modify u by adding an affine linear function
(which does not change neither the induced Kähler metric nor the belonging of u to
Sα,β(∆,L, F )) so that du(x0) = 0. It then follows that in the chart Cnv the functions
yj = u,j = log |zj | are given by

y1 = log |z1| = −
α

x1
+ w,1(x),

yj = log |zj | =
1

2
log xj + w,j(x), j = 2, . . . , n,

or equivalently,

(100)

−
1

log |z1|
= f1(x) ,

|zj |2 = fj(x) for j = 2, . . . , n,

with f1(x) = x1
α−x1w,1(x) and fj(x) = xje

2w,j(x), j = 2, . . . , n. We want to use (100) in
order to express the momentum coordinates x = (x1, . . . , xn) of ωu in terms of |zj |′s.
To this end, we notice that f(x) = (f1(x), . . . , fn(x)) extends smoothly near the origin
v = 0 ∈ ∆. (Similarly, the LHS of (100) extends continuously on Cnv by letting −1

log |z1|
be 0 along z1 = 0.) Computing the Jacobian of f(x) at 0, we conclude that the local
inverse h(ζ) of f(x) is defined on a small neighbourhood of 0 ∈ Rn and has the form

(101) h(ζ) =
(
αζ1h̃1(ζ), ζ2h̃2(ζ), . . . , ζnh̃n(ζ)

)
,

with h̃1(ζ), . . . , h̃n(ζ) smooth and non-vanishing near 0. It thus follows from (100)
that

(102)


x1 =

( −α
log |z1|

)
h̃1

( −1

log |z1|
, |z2|2, . . . , |zn|2

)
,

xj = |zj |2h̃j
( −1

log |z1|
, |z2|2, . . . , |zm|2

)
for j = 2, . . . , n.

By (93), and using that yj = log |zj | together with (102), we find that

ϕu(z) =
1

2

n∑
j=1

log(|zj |2)xj − u(x)

=− α log
(
− log |z1|

)
+W

( −1

log |z1|
, |z2|2, . . . , |zn|2

)(103)

where

(104) W (ζ) := α log
[
αh̃1(ζ)

]
− αh̃1(ζ)− 1

2

( m∑
j=2

ζj h̃j(ζ)
(

log h̃j(ζ)− 1
))
− w

[
h(ζ)

]
for w(x) defined in (99). Thus, W (ζ) is a smooth function near 0.
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A similar (and well-established) argument using u0 instead of u shows that ϕu0 can
be viewed as a smooth function ψ0(z) on Cnv , so that the relative potential ϕ(z) in
(97) is written as

ϕ(z) = −α log
(
− log |z1|

)
+ ψ0(z) +W

( −1

log |z1|
, |z2|2, . . . , |zn|2

)
and thus has the required behaviour of a Poincaré type potential near Z = {z1 = 0},
see Definition 1.1.

We now examine the asymptotic behaviour of the Kähler form ωu = ddcϕu near the
origin 0 ∈ Z ∩ Cnv . Using (103), we find that

(105) ωu = ddcϕu = 2α

√
−1dz1 ∧ dz1

|z1|2 log2(|z1|2)
+ Ω + η,

where Ω + η = ddc
[
W
( −1

log(|z1|) , |z2|2, . . . , |zn|2
)]

are given by
(106)

Ω =

n∑
j=2

Wj

( −1

log(|z1|
, |z2|2, . . . , |zn|2

)√
−1dzj ∧ dzj

+
n∑

j,k=2

Wjk

( −1

log(|z1|)
, |z2|2, . . . , |zn|2

)
zjzk
√
−1dzj ∧ dzk,

η =W1

( −1

log(|z1|)
, |z2|2, . . . , |zn|2

)√−1dz1 ∧ dz1

|z1|2 log2(|z1|)

+
n∑
j=2

W1j

( −1

log(|z1|)
, |z2|2, . . . , |zn|2

)(zj√−1dz1 ∧ dzj
z1 log(|z1|)

+
zj
√
−1dzj ∧ dz1

z1 log(|z1|)

)
,

and we have put

W1(ζ) = ζ2
1

( ∂2W

∂ζ1∂ζ1

)
(ζ) +

1

2
ζ1

(∂W
∂ζ1

)
(ζ), Wj(ζ) =

(∂W
∂ζj

)
(ζ), j ≥ 2;

W1j(ζ) = −ζ1

( ∂2W

∂ζ1∂ζj

)
(ζ), j ≥ 2; Wjk(ζ) =

( ∂2W

∂ζj∂ζk

)
(ζ), j, k ≥ 2.

Since Wk(ζ),Wpq(ζ) are smooth, ||∇sη|| = O
(

1
log(|z1|)

)
near Z for all s ≥ 0, where ∇

is the Levi–Civita connection of the model Poincaré type metric

ωmod =

√
−1dz1 ∧ dz1

|z1|2 log2(|z1|2)
+

n∑
j=2

√
−1dzj ∧ dzj

on Cnv\Z, and the norms are computed with help of ωmod.
It follows from (105)–(106) that ωu has the Poincaré type behaviour in the normal

z1-direction, as well as in the (z1, zj)-directions for j ≥ 2.
We are thus left to examine the metric over the hyperplane z1 = 0. Letting W̃j(ζ)

and W̃jk(ζ) be the smooth functions determined near 0 by

Wj(ζ) = Wj(0, ζ2, . . . , ζn) + ζ1W̃j(ζ); Wjk(ζ) = Wjk(0, ζ2, . . . , ζn) + ζ1W̃jk(ζ)



EXTREMAL KÄHLER POINCARÉ TYPE METRICS ON TORIC VARIETIES 41

one has the decomposition Ω = Ω0 + ε, where

(107)



Ω0 =

n∑
j=2

Wj(0, |z2|2, . . . , |zn|2)
√
−1dzj ∧ dzj

+
n∑

j,k=2

Wjk(0, |z2|2, . . . , |zn|2) zjzk
√
−1dzj ∧ dzk,

ε =
−1

log(|z1|)

n∑
j=2

W̃j

( −1

log(|z1|)
, |z2|2, . . . , |zn|2

)√
−1dzj ∧ dzj

− 1

log(|z1|)

n∑
j,k=2

W̃jk

( −1

log(|z1|)
, |z2|2, . . . , |zn|2

)
zjzk
√
−1dzj ∧ dzk.

We notice that Ω0 is smooth around the origin whereas ε satisfies, for all s ≥ 0,
||∇sε|| = O

(
1

log(|z1|)
)
near Z (with covariant derivatives and norms taken with respect

to the model Poincaré metric ωmod). Computing the value of Ω0 at z = 0, we get

(Ω0)|z=0
=

m∑
j=2

Wj(0)
√
−1dzj ∧ dzj .

Using (104), we have

Wj(0) =
(∂W
∂ζj

)
(0)

= −1

2
h̃j(0) log

(
h̃j(0)

)
−
(∂hj
∂ζj

)
(0)
(
w,j(0)− 1

2

)
= −1

2
h̃j(0) log

(
h̃j(0)

)
− h̃j(0)

(
w,j(0)− 1

2

)
.

(108)

By the definition (101) (and inverting the diagonal Jacobian of f at 0) we have that
for any j = 2, . . . , n, h̃j(0) = e−cj where cj = 2w,j(0). Substituting back to (108), we
conclude

Wj(0) = e−cj
(
− 1

2
(−cj)−

cj − 1

2

)
=
e−cj

2
> 0,

thus showing the positivity of ωu in the directions parallel to Z.

Case 2: p = (0, z2, . . . , zn) with zj 6= 0 for j = 2, . . . , n. Now

u(x) = −α log x1 + w(x)

with w(x) smooth in a neighbourhood of xp = µ(p) ∈ F 0. By assumption, u is strictly
convex on ∆0, and uF = w|F is strictly convex on F 0. The relations (100) now become

(109)


−1

log(|z1|)
= f1(x) ,

|zj |2 = fj(x) for j = 2, . . . , n,

with f1(x) = x1
α−x1w,1(x) , and fj(x) = e2w,j(x), j = 2, . . . , n. Using the strict convexity

of w along F 0 = {x1 = 0} ∩∆, we see that f(x) = (f1(x), . . . , fn(x)) is smooth and
locally invertible around xp = (0, b2, . . . , bn). We denote by h(ζ) = (h1(ζ), . . . , hn(ζ))
the local inverse of f around xp, which must be of the form

h(ζ) =
(
αζ1h̃1(ζ), h̃2(ζ), . . . , h̃n(ζ)

)
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with h̃1(0) > 0. Thus,

x = h
( −1

log |z1|
, |z2|2, . . . , |zn|2

)
,

(which extends along z1 = 0 near p). We obtain again

(110) ϕu(z) = −α log
(
− log |z1|

)
+W

( −1

log |z1|
, |z2|2, . . . , |zm|2

)
,

with W smooth and given by

W (ζ) =α log
(
αh̃1(ζ)

)
− αh̃1(ζ) +

1

2

m∑
j=2

h̃j(ζ) log ζj − w
[
h(ζ)

]
,

(notice that ζj(p) = |zj(p)|2 > 0 for j = 2, . . . , n). Thus,

ϕ(z) = ϕu(z)− ϕu0(z) = −α log(− log |z1|)− ψ(z) +W
( −1

log |z1|
, |z2|2, . . . , |zn|2

)
,

with ψ and W are smooth near p. Consequently, ϕ has the right asymptotics near p.
We now address the positivity of ωu near p. Writing

(111) ωu = ddcϕu =
2α
√
−1dz1 ∧ dz1

|z1|2 log2(|z1|2)
+ Ω + η,

with Ω + η = ddc
(
W
( −1

log |z1| , |z2|2, . . . , |zn|2
))

given by (106), we have that η =

O
(

1
log |z1|

)
at any order; it is thus enough to show the positivity of Ω in (111). Decom-

posing Ω = Ω0 + ε with ε = O
(

1
log |z1|

)
as in (107), we need to establish the positivity

of (Ω0)p. By its very definition, Ω0|Z = ddc
(
W (0, |z2|2, . . . , |zn|2)

)
. A careful exami-

nation of the definition ofW reveals that, up to additive pluriharmonic terms log |zj |2,
W (0, |z2|2, . . . , |zn|2), seen as a function on the hypersurface {z1 = 0}, coincides with
the Kähler potential corresponding to the Legendre transform (93) of the strictly con-
vex function uF (x) = α log x1 + u(x) = w(x) restricted to the relative interior of F .
Thus, (Ω0)p > 0.

We finally comment on the case when u ∈ Sα,β(∆,L, F ) with β 6= 0. The main
difficulty is that the equations (100) hold with

(112) f1(x) =
x1

α− βx1 log x1 − x1(β + w,1(x))

which is no longer smooth (nor even C2) around x1 = 0.
One way to bypass this difficulty is to use a suitable change of variables. We detail

below the case n = 1, for the general case is treated similarly by considering the
change of variables with respect to |z1|2 and leaving the variables |zj |2, j = 2, . . . , n
unchanged.

We set
s :=

−1

log x1
, t1 := log(− log |z1|),

so that the first equation in (100) becomes

(113)
1

t1
=

s

1 + s log
(
α+ βe−1/s/s+ e−1/s(β + w,1(e−1/s))

) =: f(s).

As w,1 is smooth in a neighbourhood of 0 and the functions

s 7−→

{
0 if s ≤ 0,

e−1/s if s > 0,
and s 7−→


0 if s ≤ 0,

1

s
e−1/s if s > 0,
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are smooth on R, we can extend f(s) as a smooth function in a neighbourhood of 0
by letting f(s) = s

1−s logα for s ≤ 0.
As ∂sf(0) = 1, we get that s = h( 1

t1
) for some h smooth around 0, satisfying

h(0) = 0, h′(0) = 1. Thus, s = 1
t1

(
1+ γ

t1
+ h̃( 1

t1
)
)
for some constant γ, and h̃ a smooth

function vanishing at order 2 at 0. In fact, one must have γ = logα, and thus
1

s
= t1 − logα+H

( 1

t1

)
,

with H a smooth function vanishing at order (at least) 1 at 0. We can be more precise,
and rewrite (113) as

1

t1
=

1

1/s+ logα+ P (s)
, i.e.

1

s
= t1 − logα− P (s)

with P (s) = log
(
1 + (β/α)e−1/s/s + e−1/s(β + w,1(e−1/s))/α

)
. Replacing 1/s with

t1 − logα+H
(

1
t1

)
in the explicit expression of P (s), we see by induction that H( 1

t1
),

as well as its derivatives with respect to t1 at any order, are O(t1e
−t1) when t1 → +∞.

Therefore,

x = e−1/s = exp
(
− t1 + logα+ P (s)

)
=
−α

log |z1|
(
1 +O(t1e

−t1)
)
,

at any order with respect to differentiation in t1. In particular, x = −α
log |z1|+O(t1e

−2t1)

(instead of O(e−2t1) in the case β = 0) at any order with respect to |dz1|2
|z1|2 log2(|z1|2)

. We
thus get for the relative potential (97)

ϕ = − log
(
− log |z1|

)
+ logα+O(t1e

−t1),

and recover the asymptotic behaviour ωu near Z with arguments identical with the
ones in the case β = 0. This ends the proof of Theorem 4.15.

A.2. Proof of Proposition 4.16. The arguments are local, near a point p ∈ ∂∆,
and not materially different from ones in [5, §1.3]. In fact, we need to only consider
the case when p ∈ F = F1 (otherwise the result follows from [5]). To this end, we fix
a vertex v ∈ F of ∆, which without loss can be taken to be at the origin of t∗, and
consider a basis of t corresponding to the inward normals of the n facets F1, . . . , Fn
meeting at v. We can also assume that F = F1 is defined by the equation x1 = 0, i.e.
p = (0, x2, . . . , xn) with xj ≥ 0, and Lj(x) = xj .

In one direction, we want to show that if u ∈ Sα,β(∆,L, F ) then u satisfies the four
conditions of Proposition 4.16.

Let us define the mutually inverse matrices

G0
α,β =


α+βx1

x2
1

0 · · · 0

0 1
2x2

. . .
...

...
. . . . . . 0

0 · · · 0 1
2xn

 and H0
α,β =


(x1)2

α+βx1
0 · · · 0

0 2x2
. . .

...
...

. . . . . . 0
0 · · · 0 2xn

 .

Given u ∈ Sα,β(∆,L, F1), we first prove that Gu = Hess(u) and its inverse Hu satisfy
the property that Gu − G0

α,β and G0
α,βH

uG0
α,β − G0

α,β extend smoothly through
(F1 ∪ · · · ∪ Fn)\(Fn+1 ∪ · · · ∪ Fd) in the region {α + βx1 > 0}, see Figure 3. Then
we will show that if Gu −G0

α,β and G0
α,βHuG

0
α,β −G0

α,β extend smoothly, then the
conditions of Propostion 4.16 must be satisfied.
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x1

x2

F1

F2

Fn+1

α+ βx1 = 0

∆

Figure 3. The polytope ∆, and the domain near the face F1 (grey)

We notice that G0
α,β = Hess(u0

α,β) with

u0
α,β = −(α− βx1) log x1 +

1

2

n∑
j=2

xj log xj .

Thus, Gu − G0
α,β is the Hessian of a smooth function through the wall (F1 ∪ · · · ∪

Fn)\(Fm+1 ∪ · · · ∪Fd). Writing u = −(α−βx1) log x1 + 1
2

∑n
j=2 xj log xj +w(x), with

w smooth, we get:

H0
α,βG

u = In +


x2

1
αx1+βw,11 · · · (x1)2

αx1+βw,1n
2x2w,21 · · · 2x2w,2n

...
...

2xnw,2n · · · 2xnw,2n


which clearly extends smoothly (with positive determinant over the origin). Moreover,
on f := (F1 ∩ · · · ∩ F`)\(F`+1 ∪ · · · ∪ Fm), for some ` ∈ {1, . . . , n}

H0
α,βG

u = In +



0 · · · 0
...

...
0 · · · 0

2x`+1w,(`+1)1 · · · 2x`+1w,(`+1)m
...

...
2xnw,2n · · · 2xnw,2n


=

(
I` 0
∗ H0

fGuf

)

where H0
f = diag(2x`+1, . . . , 2xn) and, we recall, uf :=

(
u+ (α−βx1) log x1)|f . Hence

det[H0
α,βG

u] = 2m−`x`+1 · · ·xn det[Guf ] > 0 along f , as Guf is positive definite by
assumption. Since this holds for all f and on the vertex F1 ∩ · · · ∩ Fn, we conclude
that H0

α,βG
u admits a smooth inverse, i.e. HuG0

α,β = (H0
α,βG

u)−1 can be extended
smoothly through the wall too. Therefore, (G0

α,β−Gu)HuG0
α,β = G0

α,βH
uG0

α,β−G0
α,β

extends smoothly as well.
Set Qu := G0

α,βH
uG0

α,β −G0
α,β . It follows that Hu = H0

α,βQ
uH0

α,β + H0
α,β , hence

Hu is smooth through the wall. In fact, a direct computation tells us that

(114) Hu −H0
α,β =


x4

1f11 x2
1x2f12 · · · · · · x2

1xnf1n

x2
1x2f21 x2

2f22 x2x3f23 · · · x2xnf2m
... x2x3f32

...
...

... xn−1xnf2n

x2
1xnfn1 x2xnfn2 · · · xn−1xnf2n x2

nfnn





EXTREMAL KÄHLER POINCARÉ TYPE METRICS ON TORIC VARIETIES 45

with smooth fab, which allows us to see that all the boundary conditions of Hu are
satisfied along a face f ⊂ F1.

It remains to check the positivity assertion on the faces f ⊂ F1; as above, suppose
f = (F1∩· · ·∩F`)\(F`+1∪· · ·∪Fd). Along f , H0

α,βG
u can be written as

( I` 0
∗ H0

fG
uf

)
. It

thus follows that along f (H0
α,βG

u)−1 has the shape
( I` 0
∗ HufG0

f

)
, with G0

f = (H0
f )
−1 =

diag( 1
2x`+1

, . . . , 1
2xn

), where Huf = (Guf )−1. Thus, along f , Hu = (H0
α,βG

u)−1H0
α,β =(

0 0
∗ Huf

)
(since H0

α,β =
( 0 0

0 H0
f

)
along f). The desired positivity now readily follows

from that of Huf along f , which in turn is a direct consequence of the convexity
assumption of uf .

We now deal with the converse direction of Proposition 4.16, i.e. given a strictly
convex u ∈ C∞(∆0) such that the associated Hu verifies the conditions of Propo-
sition 4.16, we have to show that u ∈ Sα,β(∆,L, F1). Again, as this is local and
already known far from the Poincaré face F1, we focus on the same region as above.
Arguments analogous to those in [5, pp. 290-291] allow one to show that the bound-
ary conditions for Hu yield that Gu −G0

α,β and HuG0
α,β extend smoothly through

(F1 ∪ · · · ∪ Fn)\(Fn+1 ∪ · · · ∪ Fd), the later having positive determinant on F1; the
smooth extension of Gu −G0

α,β ensures that u can be written as

−(α− βL1) log L1 +
1

2

d∑
j=2

Lj logLj + w(x)

for some w ∈ C∞
(
∆,R

)
.

The boundary conditions for Hu also tell us that Hu = H0
α,β + Ru, with Ru a

smooth matrix of shape given by (114) (the third order boundary condition on the
Poincaré face gives precisely the O

(
x4

1

)
estimate for the upper left coefficient of Ru).

Hence, HuG0
α,β = In + RuG0

α,β with

(115) RuG0
α,β =


(x1)2g11 (x1)2g12 · · · · · · (x1)2g1n

x2g21 x2g22 x2g23 · · · x2g2n
...

...
...

...
... xn−1g(n−1)n

xngn1 xngn2 · · · xngn,(n−1) xngnn

 ,

for smooth gab. It follows that along f = (F1 ∩ · · · ∩F`)\(F`+1 ∪ · · · ∪Fd) (1 ≤ ` ≤ n),
H0
α,βG

u = (HuG0
α,β)−1 =

( I` 0
∗ H0

fG
uf

)
. As HuG0

α,β extends as a smooth and positive
definite matrix over f , we conclude that Guf > 0, i.e. uf is strictly convex in the
relative interior of f .

Appendix B. Proof of Proposition 5.8 and Corollary 5.9

For the proof of Proposition 5.8 and Corollary 5.9 we will change point of view
slightly and use explicit computations for quadrilaterals in R2 with the standard lattice
Z2. The moment polytope corresponding to a Hirzebruch surface has at least one pair
of parallel edges. Therefore after possibly scaling the polytope, we can take it to be
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given as the intersection ∩4
i=1L

−1
i ([0,∞)) of

L1(x, y) = y,

L2(x, y) = (1− x),(116)
L3(x, y) = (q − k)x− y + k,

L4(x, y) = x,

for some positive real numbers q and k. This will then correspond to a Hirzebruch
surface exactly when q − k ∈ Z.

We begin with the proof of Proposition 5.8 in the case of two edges, then show
that the case of one edge is a corollary of this, using the convexity of the set of stable
weights. We end by proving Corollary 5.9.

B.1. The case of two edges. For this we will use a criterion for stability found in
[29] which used the ambitoric framework of [3] and [4] described above. We begin by
recalling this result.

For a pair of edges F1, F2 of a general 2-dimensional convex polytope ∆, one can
parametrize the lines that meet both F1 and F2 by [0, 1] × [0, 1]. Let the vertices of
F1 be v0 and v1 and let the vertices of F2 be w0 and w1. Then let vs = (1− s)v0 + sv1

and wt = (1− t)w0 + tw1. Picking an affine linear function hs,t whose zero set is the
line containing vs and wt, one then obtains a corresponding simple piecewise linear
function fs,t = max{0, hs,t}. We can parametrize the Donaldson-Futaki invariant of
these functions as a map

φ : [0, 1]× [0, 1] −→ R,
(s, t) 7−→ L(fs,t).

The positivity of this is independent of the scaling of hs,t chosen. Since all lines meeting
F1 and F2 are traced out as (s, t) takes all values in [0, 1] × [0, 1], it suffices to check
the positivity of φ in order to check whether or not there are any simple piecewise
linear functions with crease meeting F1 and F2 violating stability. By choosing an
appropriate scaling of hs,t, φ can be taken to be polynomial in (s, t) of bidegree (3, 3).
This was essentially shown in [17], see also [29, Lem. 2.10].

If F1 and F2 are adjacent to a common edge F̃ then each of the Fi has a vertex
lying on F̃ . Thus, up to reordering the vi and wi, we have that v0 and w0 lie on F̃ .
In the domain [0, 1] × [0, 1] of φ the point (0, 0) will then correspond to the simple
piecewise linear function f0,0 whose crease is F̃ ; f0,0 is then actually affine linear on P
and so φ

(
(0, 0)

)
= 0. Moreover, if F̃ is one of the components of F , the facets along

which we let the boundary measure vanish, then the point will be a critical point of
φ.

In the case when ∆ = Q is a quadrilateral, there are exactly two pairs of such edges
that have common adjacent edges, namely the two pairs of opposite edges. As above,
we then have functions φ1, φ2 parametrizing the Donaldson-Futaki invariant of simple
piecewise linear functions meeting opposite edges of Q. In the case when F consists
of two edges of Q, there will then be exactly two critical points corresponding to two
of the vertices of φ1 and/or φ2.

Proposition B.1. Let Q be a quadrilateral and pick two edges F1, F2 of Q. Then
(Q,L, F1 ∪ F2) is stable if and only if the determinant of the Hessian of the functions
φ1, φ2 at the points corresponding to an affine linear function is

• non-negative if F1, F2 are adjacent,
• positive if F1, F2 are opposite.
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Moreover, the positivity of the determinant implies that the relative Székelyhidi numer-
ical constraint is satisfied.

Note that the converse of the final statement is not quite true. If the determi-
nant vanishes, the Hessian is positive semi-definite but not positive definite at the
critical point of φi. This means that there is a family fc of simple piecewise linear
functions, with f0 corresponding to the critical point of the domain of φi, such that
d2

dc2

∣∣
c=0

(
L(fc)

)
= 0. However, it is not necessarily the case that the crease of this fam-

ily can be taken to be parallel to relevant edge of Q. This would have to be the case if
the positivity of the determinant was equivalent to the relative Székelyhidi numerical
constraint.

For Q being the moment polytope of a Hirzebruch surface given by equation (116)
and L the canonical scaling of the normals to Q, one can then compute the functions
φ1 and φ2 of Proposition B.1 and hence their determinants directly in terms of q and
k. The result of this computation is given in Lemmas B.2 and B.3 below.

Lemma B.2. Suppose F consists of two adjacent edges, which without loss of gener-
ality can be assumed to be the two edges not lying on the coordinate axes. Then the
determinants of the Hessians of φ1, φ2 at the two critical points are up to a positive
constant given by

k4 + 2k2q2 + q4 − k3 + 3k2q + 3kq2 − q3(117)

and

(118)
3k6q + 3k5q2 + 6k4q3 + 6k3q4 + 3k2q5 + 3kq6 + 2k6 + 2k5q + 6k4q2

+4k3q3 + 6k2q4 + 2kq5 + 2q6 − 2k5 − 2k4q + 4k3q2 + 4k2q3 − 2q4k − 2q5.

Thus to complete the proof of Proposition 5.8 in the case when F consists of two
adjacent edges, we have to show that both these numbers are always positive. This is
not true for arbitrary positive q and k, but we will use that q− k ∈ Z. In fact, having
|q − k| ≥ 1 ensures that both (117) and (118) are positive. Note that we do not have
to consider the case q = k as this corresponds to a product.

So assume first that q > k, so that q ≥ k + 1. We then use the substitution
q = k + 1 + λ, where λ ≥ 0 by assumption. The expression (117) is then given by

λ4 + 4kλ3 + 8k2λ2 + 8k3λ+ 4k4 + 3λ3 + 12kλ2

+22k2λ+ 12k3 + 3λ2 + 12kλ+ 14k2 + λ+ 4k.

Since k > 0 and λ ≥ 0 it therefore follows that the term in equation (117) is always
positive.

Similarly, using the substitution k = q + 1 + λ instead, one can show that (117)
is always positive when q < k. The same technique also works to show that (118) is
positive whenever q − k ∈ Z. This completes the proof of Proposition 5.8 for the case
of adjacent edges.

Though we have already proved this by different means, the above technique also
works when F consists of two opposite edges. Székelyhidi showed in [35, Prop. 15]
that if the two edges that are not in F are parallel, then (Q,L, F ) is always strictly
semistable. It can also be verified directly that the determinant of the Hessian as in
Proposition B.1 vanishes in this situation. With Q determined by positive numbers
k, q as above, we can therefore assume that F consists of the two edges of Q contained
in L2 = 0 and L4 = 0, respectively, since the edges lying in L1 = 0 and L3 = 0 are
the only opposite edges that may not be parallel.
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In the case of opposite edges, the two determinant conditions turn out to be equiva-
lent. Thus we need to determine that this single number is non-negative and vanishes
precisely if q = k. This is a consequence of the Lemma below.

Lemma B.3. Suppose F consists of the two opposite edges lying on L2 = 0 and
L4 = 0. Then the determinant of the Hessian of the function corresponding to the
Donaldson-Futaki invariant of simple piecewise linear functions with crease meeting
L1 = 0 and L3 = 0 at the critical point corresponding to L2 = 0 is given by

(k − q)2(k + q)2k2

2(k2 + 4kq + q2)2
.

The determinant is thus always non-negative and since k and q are positive it
vanishes if and only if k = q, i.e. if and only if Q is a rectangle, as expected.

Remark B.4. The determinant condition Proposition B.1 holds regardless of the
normals we use for the remaining two edges in F . In particular, it applies when we
have a third facet in F . In this case similar formulae to the ones given above show
that the determinant condition is violated, and so (Q,F ) is always unstable when F
consists of three edges of Q.

B.2. The case of one edge. To prove that (Q,L, F ) is stable when Q corresponds
to a Hirzebruch surface and F is a single edge of Q, we will use the notion of weighted
stability and the convexity of the set of stable weights. In general, for a Delzant
polytope ∆, we let ri ∈ R≥0 be the reciprocal of the scaling of the ith defining function
of ∆ given by the data L if this facet is not in F and ri = 0 if it is. Then we can
identify the triple with (∆,L, F ) with (∆, r) where r ∈ Rd≥0 is the weight of (∆,L, F ).
The weight r is stable if the corresponding triple (∆,L, F ) is.

For us the key property of weighted stability is that the set of non-zero stable
weights, thought of as a subset of Rd≥0 \ {0}, is a convex cone. Thus a positive linear
combination of semistable weights is semistable, and moreover, if at least one of the
weights is stable, then the linear combination is stable too.

Going back to the case when ∆ = Q corresponds to a Hirzebruch surface, the notion
of the stability of (Q,L, F ) where F is a single edge of Q is exactly the same as the
stability of the weight (0, 1, 1, 1), where F1 is the edge in F and F2, F3, F4 are the
remaining three edges of P .

We now note that this weight can be written as

(0, 1, 1, 1) =
1

2
(0, 0, 1, 1) +

1

2
(0, 1, 0, 1) +

1

2
(0, 1, 1, 0).

The stability of the weights (0, 0, 1, 1), (0, 1, 0, 1) and (0, 1, 1, 0) each correspond to the
stability of some (Q,L, F ′) where F ′ consists of exactly two edges of Q. Thus (0, 1, 1, 1)
is a positive combination of semistable weights, hence is semistable. Moreover, at least
two of the weights are then in fact stable, since two of these weights correspond to
when F ′ consists of two adjacent sides. Hence (0, 1, 1, 1) must be stable as well. This
means that (Q,L, F ) where Q is a Hirzebruch surface, L are the canonical defining
functions of Q and F is a single edge of Q, is always stable, and this completes the
proof of Proposition 5.8.

B.3. The proof of Corollary 5.9. The missing component in the proof is to show
that the extremal metrics obtained cannot be of Poincaré type. For this we will show
that in the above situation, the necessary condition in equation (41) for the existence
of a toric extremal metric of Poincaré type is violated. In the Hirzebruch surface cases
we are interested in, this condition becomes the following:
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Lemma B.5. Let Q be the moment polytope of a Hirzebruch surface X and Kähler
class Ω given by the data in equations (116). If X admits an extremal Poincaré type
metric on the complement of a divisor Z corresponding to the a union F of facets of
Q, then the associated affine linear function A satisfies that

• A is constant along F , and so in particular at its vertices, if F is a single edge,
• A is constant along the line with vertices (0, k) and ( 1

k , 0), if F consists of the
two edges lying in the x and y-axes.

Proof. The only part that needs clarification is the last statement regarding the case
of two adjacent edges. Let A be the associated affine linear function to Q given by
the equations (116). We are taking the edges in F to be F1 and F4.

Recall that for the moment polytope I = [0, λ] with coordinate z and F being the
end-point 0, the associated affine linear function is

Bλ(z) =
6

λ2
z − 2

λ
.

Since F is F1 ∪ F4 for Q, the condition of equation (41) then becomes that

A|y=0 = B1(x) + c1

A|x=0 = Bk(y) + c2,

where the ci are constants. Thus if A = ax+ by + c, we have that

a = 6

b =
6

k2
.

Thus A(0, k) = c+ 6
k and A( 1

k , 0) = c+ 6
k , too. �

We will change our parametrization of Q slightly from the beginning of this Appen-
dix and the above proof, and instead take Q to have vertices

v1 =(−d, 0),

v2 =(k, 0),

v3 =(0, 1),

v4 =(−d, 1).

Here d > 0 and k ∈ Z≥0. We can always take Q to be of this form up to scaling. We
will let F1 be the edge connecting v1 and v4, F2 to be the edge connecting v1 and v2,
F3 to be edge connecting v2 and v3 and F4 to be the edge connecting v3 and v4.
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First, we let Ai be the associated affine linear function the case when F consists of
all edges but Fi. Then

A1 =− 12

2d2 + 2dk + k2
x− 24kd(k + d)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
y

− 6(4d3 − 2d2k − 6k2d− k3)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

A2 =− 12(3d2 + 4dk + k2)

6d2 + 6dk + k2
y − 6(4d2 + 5dk + k2)

6d2 + 6dk + k2
,

A3 =
12

2d2 + 2dk + k2
x+

12k(4d2 + 4dk + k2)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
y

+
6(8d3 + 2d2k − 4k2d− k3)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

A4 =− 12(3d+ 2k)

6d2 + 6dk + k2
y − 6d(k + 2d)

6d2 + 6dk + k2
.

Since the associated linear functions depend linearly on the inverse normals, the
associated linear function Bi to when F consists of a single edge Fi is therefore given
by Bi =

∑
j 6=iAi, which is

B1 =
12

2d2 + 2dk + k2
x− 12k(4d3 + 6d2k + 4dk2 + k3 − 4d2 − 4dk − k2)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
y

+
6(4d4 + 12d3k + 12d2k2 + 6dk3 + k4 + 8d3 + 2d2k − 4dk2 − k3)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

B2 =
12(3d2 + 2dk + k)

6d2 + 6dk + k2
y − 6d(2d+ k − 2)

6d2 + 6dk + k2
,

B3 =− 12

2d2 + 2dk + k2
x− 12k(4d3 + 6d2k + 4dk2 + k3 + 2d2 + 2dk)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
y

+
6(4d4 + 12d3k + 12d2k2 + 6dk3 + k4 − 4d3 + 2d2k + 6dk2 + k3)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

B4 =− 12(3d2 + 4dk + k2 − k)

6d2 + 6dk + k2
y +

6(4d2 + 5dk + k2 + 2d)

6d2 + 6dk + k2
.

Using Lemma B.5, it suffices to verify whether or not the linear part of Bi is equal
at the two vertices of Fi. Let Ki be the difference of these two numbers. Then

K1 =
12k(4d3 + 6d2k + 4dk2 + k3 − 4d2 − 4dk − k2)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

K2 = 0,

K3 = −12k(4d3 + 6d2k + 4dk2 + k3 − 4d2 − 4dk − k2)

(2d2 + 2dk + k2)(6d2 + 6dk + k2)
,

K4 = 0.

The cases of K2 and K4 are the cases when Z is the zero or infinity section in
X. This is already treated in Corollary 5.5 where we know that there exists Poincaré
type extremal metrics. The above computations then confirm that the condition of
equation (41) holds, which we also know by general theory regarding extremal Poincaré
type metrics.

To prove Corollary 5.9 in the case when F consists of a single edge using Lemma B.5,
we need to show that K1 and K3 can never be 0 if d > 0 and k ≥ 1. The requirement
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k ≥ 1 comes from the fact that if k = 0, then X = CP1 × CP1, which is the case we
are not considering.

First note that denominator of K1 is always positive, so it will have the same sign
as

4d3 + 6d2k + 4dk2 + k3 − 4d2 − 4dk − k2

which equals

4d3 + 2d2k + 4dk(k − 1) + k2(k − 1) + 4d2(k − 1).

This is always positive as d > 0 and k ≥ 1. For K3, note that it equals −K1, hence is
always negative.

The remaining case is that of when F consists of two adjacent edges of Q, which
we take to be F1 and F2. The associated affine linear function A is then A3 +A4 and
by Lemma B.5 we need to verify that K = A(k, 0) − A(−d, 1

k+d) can never be 0. A
computation shows that this quantity is given by

K =
12(6d4 + 18d3k + 19d2k2 + 8dk3 + k4 + 6d3 + 6d2k + 3dk2 + k3)

(k + d)(2d2 + 2dk + k2)(6d2 + 6dk + k2)

which is clearly positive. In particular, it can never be 0.
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