Chapitre 1

Eléments de théorie géométrique de la mesure

Dans ce chapitre, on considère $\Omega \subset \mathbb{R}^N$ un ouvert et on désigne par $\mathcal{B}(\Omega)$ la tribu Borélienne sur Ω .

1.1 Les mesures de Radon

Définition 1.1.1. On dit que $\mu: \mathcal{B}(\Omega) \to [0, +\infty]$ est une mesure Borélienne positive si

- (i) $\mu(\emptyset) = 0$
- (ii) pour toute suite $\{B_j\}_{j\in\mathbb{N}}$ de Boréliens deux à deux disjoints,

$$\mu\left(\bigcup_{j=0}^{\infty} B_j\right) = \sum_{j=0}^{\infty} \mu(B_j).$$

Si de plus $\mu(K) < \infty$ pour tout compact $K \subset \Omega$, on dit que μ est une mesure de Radon positive.

On notera par la suite \mathcal{L}^N la mesure de Lebesgue dans \mathbb{R}^N qui est une mesure de Radon positive. Les mesures de Radon positives jouissent de propriétés de régularité permettant d'approcher la mesure d'un Borélien par la mesure d'ouverts ou de fermés.

Proposition 1.1.2. Soit μ une mesure de Radon positive sur Ω . Alors, pour tout Borélien $A \subset \Omega$

$$\mu(A) = \sup\{\mu(K) : K \subset A, K \text{ compact}\},$$

= $\inf\{\mu(U) : A \subset U \subset \Omega, U \text{ ouvert}\}.$

Démonstration. Commençons par montrer l'approximation intérieure par un compact. On suppose tout d'abord que $\mu(A) < \infty$ et on pose $\nu(B) := \mu(A \cap B)$ pour tout Borélien $B \subset \mathbb{R}^N$, ce qui définit une mesure Borélienne finie sur \mathbb{R}^N .

On considère la famille

$$\mathcal{F} := \Big\{ B \subset \mathbb{R}^N \text{ Borélien} : \text{pour tout } \varepsilon > 0, \text{ il existe} \\ \text{un fermé } C \subset B \text{ tel que } \nu(B \setminus C) < \varepsilon \Big\}.$$

La famille \mathcal{F} contient évidemment les ensembles fermés.

Montrons que \mathcal{F} est stable par union et intersection dénombrable. Soit donc $\{B_n\}_{n\in\mathbb{N}}$ une famille d'éléments de \mathcal{F} . Pour tout $\varepsilon > 0$ et tout $n \in \mathbb{N}$, il existe un ensemble fermé $C_n \subset B_n$ tel que

$$\nu(B_n \setminus C_n) < \frac{\varepsilon}{2^{n+1}}.$$

L'ensemble $C := \bigcap_n C_n$ est fermé et

$$\nu\left(\left(\bigcap_{n=0}^{\infty} B_n\right) \setminus C\right) = \nu\left(\left(\bigcap_{n=0}^{\infty} B_n\right) \setminus \left(\bigcap_{n=0}^{\infty} C_n\right)\right) \le \nu\left(\bigcup_{n=0}^{\infty} (B_n \setminus C_n)\right) \le \sum_{n=0}^{\infty} \nu(B_n \setminus C_n) < \varepsilon,$$

ce qui montre que $\bigcap_n B_n \in \mathcal{F}$. Par ailleurs, on a

$$\lim_{m \to \infty} \nu \left(\left(\bigcup_{n=0}^{\infty} B_n \right) \setminus \left(\bigcup_{n=0}^{m} C_n \right) \right) = \mu \left(\left(\bigcup_{n=0}^{\infty} B_n \right) \setminus \left(\bigcup_{n=0}^{\infty} C_n \right) \right)$$

$$\leq \nu \left(\bigcup_{n=0}^{\infty} (B_n \setminus C_n) \right) \leq \sum_{n=0}^{\infty} \nu(B_n \setminus C_n) < \varepsilon.$$

Pour m asssez grand, on a donc en posant $C' := \bigcup_{n=0}^{m} C_n$

$$\nu\left(\bigcup_{n=0}^{\infty} B_n \setminus C'\right) < \varepsilon,$$

ce qui montre, C' étant fermé, que $\bigcup_n B_n \in \mathcal{F}$.

Comme tout ouvert de \mathbb{R}^N peut s'écrire comme une union dénombrable d'ensembles fermés, on en déduit que \mathcal{F} contient tous les ouverts de \mathbb{R}^N .

Posons à présent

$$\mathcal{G} := \{ B \in \mathcal{F} : {}^{c}B \in \mathcal{F} \}$$

de sorte que $\mathbb{R}^N \in \mathcal{G}$ et \mathcal{G} est stable par union dénombrable. Par conséquent, \mathcal{G} est une tribu. Comme les ouverts sont contenus dans \mathcal{G} , on en déduit que \mathcal{G} contient la tribu Borélienne. Par conséquent, pour tout $B \subset \mathbb{R}^N$ Borélien et tout $\varepsilon > 0$ il existe un ensemble fermé $C \subset B$ tel que $\nu(B \setminus C) < \varepsilon$. En particulier, pour B = A, on obtient un fermé $C \subset A$ tel que $\mu(A \setminus C) < \varepsilon$. Pour tout $n \in \mathbb{N}$, on pose $K_n := C \cap \overline{B}(0,n)$ qui est un compact inclu dans A. Comme $\mu(C) \leq \mu(A) < \infty$), on a $\lim_n \mu(C \setminus K_n) = 0$. Pour n assez grand, on obtient donc un compact $K_n \subset A$ tel que $\mu(A \setminus K_n) < \varepsilon$.

Si $\mu(A) = \infty$, on décompose $A = \bigcup_j (A \cap C_j)$ où $C_j = \{x \in \mathbb{R}^N : j \le |x| < j+1\}$. Comme μ est une mesure de Radon, $\mu(A \cap C_j) < \infty$ pour tout $j \in \mathbb{N}$. Par ce qui a été montré précédemment, il existe un compact $K_j \subset A \cap C_j$ tel que $\mu(K_j) \ge \mu(A \cap C_j) - 2^{-j}$. Par convergence monotone,

$$\lim_{n\to\infty}\mu\left(\bigcup_{j=0}^n K_j\right) = \mu\left(\bigcup_{j\in\mathbb{N}} K_j\right) = \sum_{j\in\mathbb{N}}\mu(K_j) \ge \sum_{j\in\mathbb{N}}(\mu(A\cap C_j) - 2^{-j}) = \infty = \mu(A).$$

Comme $\bigcup_{i=0}^n K_i$ est compact, on obtient ainsi l'approximation intérieure par des compacts.

Montrons maintenant l'approximation par l'extérieur à l'aide d'ouverts. Soit $\{\omega_n\}_{n\in\mathbb{N}}$ une suite exhaustive d'ouverts relativement compacts dans Ω tels que $\overline{\omega_n}\subset \omega_{n+1}$ et $\bigcup_n\omega_n=\Omega$. L'ensemble $\omega_n\setminus A$ étant un Borélien de mesure finie (car μ est finie sur les compacts), l'étape précédente montre l'existence d'un fermé $C_n\subset\omega_n\setminus A$ tel que $\mu((\omega_n\setminus A)\setminus C_n)<\varepsilon/2^n$. Posons $U_n=\omega_n\setminus C_n$ qui est un ouvert avec $\omega_n\cap A\subset U_n$ et tel que $\mu(U_n\setminus A)<\varepsilon/2^n$. Si on pose $U:=\bigcup_n U_n$ qui est un ouvert, on obtient que $A\subset U$ et $\mu(U\setminus A)\leq \sum_n\mu(U_n\setminus A)<\varepsilon$.

Une conséquence immédiate du résultat précédent concerne la densité des fonctions continues à support compact.

Corollaire 1.1.3. Soit μ une mesure de Radon positive sur un ouvert Ω de \mathbb{R}^N . Alors l'espace $C_c(\Omega; \mathbb{R}^d)$ est dense dans $L^1_{\mu}(\Omega; \mathbb{R}^d)$.

Soit λ une mesure de Radon positive sur un ouvert $\Omega \subset \mathbb{R}^N$. On rappelle que le support de λ est donné par

$$\operatorname{Supp}(\lambda) := \{ x \in \Omega : \ \lambda(B_{\rho}(x)) > 0 \text{ pour tout } \varrho > 0 \}.$$

Lemme 1.1.4. L'ensemble $\operatorname{Supp}(\lambda)$ est fermé dans Ω et $\lambda(\Omega \setminus \operatorname{Supp}(\lambda)) = 0$.

Démonstration. Si $x \notin \operatorname{Supp}(\lambda)$, alors il existe $\varrho > 0$ tel que $B_{\varrho}(x) \subset \Omega$ et $\lambda(B_{\varrho}(x)) = 0$. Si $y \in B_{\varrho}(x)$ alors il existe R > 0 tel que $B_R(y) \subset B_{\varrho}(x)$ de sorte que $\lambda(B_R(y)) \leq \lambda(B_{\varrho}(x)) = 0$. Par conséquent $B_{\varrho}(x) \subset \Omega \setminus \operatorname{Supp}(\lambda)$, ce qui montre que $\Omega \setminus \operatorname{Supp}(\lambda)$ est ouvert et donc que $\operatorname{Supp}(\lambda)$ est fermé dans Ω .

Par ailleurs, soit K un compact contenu dans $\Omega \setminus \operatorname{Supp}(\lambda)$. Par compacité, il existe un nombre fini de points $x_1, \ldots, x_m \in K$ et $r_1, \ldots, r_m \in (0, \operatorname{dist}(K, \partial\Omega))$ tels que

$$K \subset \bigcup_{i=1}^{m} B_{r_i}(x_i), \quad \lambda(B_{r_i}(x_i)) = 0 \text{ pour tout } 1 \leq i \leq m.$$

Par conséquent, $\lambda(K) \leq \sum_{i=1}^{m} \lambda(B_{r_i}(x_i)) = 0$. Par passage au supremum parmi tous les compacts $K \subset \Omega \setminus \text{Supp}(\lambda)$, on en déduit que $\lambda(\Omega \setminus \text{Supp}(\lambda)) = 0$.

Définition 1.1.5. On dit que $\mu: \mathcal{B}(\Omega) \to \mathbb{R}^d$ est une mesure de Radon vectorielle si

- (i) $\mu(\emptyset) = 0$;
- (ii) pour toute suite $\{B_j\}_{j\in\mathbb{N}}$ de Boréliens deux à deux disjoints, la série vectorielle $\sum_j \mu(B_j)$ converge et sa somme est donnée par

$$\sum_{j=0}^{\infty} \mu(B_j) = \mu\left(\bigcup_{j=0}^{\infty} B_j\right).$$

En notant $|\cdot|$ la norme Euclidienne sur \mathbb{R}^d , on définit, pour tout $B \in \mathcal{B}(\Omega)$, la variation de μ par

$$|\mu|(B) = \sup \left\{ \sum_{j=0}^{\infty} |\mu(B_j)| : B_j \in \mathcal{B}(\Omega), B_i \cap B_j = \emptyset \text{ pour tout } i \neq j, B = \bigcup_{j \in \mathbb{N}} B_j \right\}.$$

Remarque 1.1.6. Soit $\mu = (\mu_1, \dots, \mu_d)$ une mesure de Radon vectorielle où μ_1, \dots, μ_d sont des mesures de Radon réelles. Alors on a

$$|\mu| \le \sum_{i=1}^d |\mu_i|.$$

Proposition 1.1.7. Soit μ une mesure de Radon vectorielle, alors $|\mu|$ est une mesure positive finie qui satisfait

$$|\mu(B)| \le |\mu|(B)$$
 pour tout $B \in \mathcal{B}(\Omega)$.

Démonstration. Par définition de $|\mu|$, on a bien l'inégalité $|\mu(B)| \leq |\mu|(B)$ pour tout $B \in \mathcal{B}(\Omega)$.

Montrons tout d'abord que $|\mu|$ est une mesure Borélienne. Il est clair que $|\mu|(\emptyset)=0$. Soit $\{A_n\}_{n\in\mathbb{N}}$ une suite de Boréliens deux à deux disjoints contenus dans Ω et posons $A:=\bigcup_n A_n$. Si $\{B_j\}_{j\in\mathbb{N}}$ désigne une partition Borélienne de A, alors pour tout $j\in\mathbb{N}$, $\{A_n\cap B_j\}_{n\in\mathbb{N}}$ est une partition Borélienne de B_j et il vient que $\mu(B_j)=\sum_n \mu(A_j\cap B_n)$ et donc

$$\sum_{j=0}^{\infty} |\mu(B_j)| \le \sum_{j=0}^{\infty} \sum_{n=0}^{\infty} |\mu(A_n \cap B_j)| = \sum_{n=0}^{\infty} \sum_{j=0}^{\infty} |\mu(A_n \cap B_j)| \le \sum_{n=0}^{\infty} |\mu(A_n)|.$$

Par passage au supremum parmi toutes les partitions Boréliennes $\{B_i\}_{i\in\mathbb{N}}$ de A, il vient

$$|\mu|(A) \le \sum_{n=0}^{\infty} |\mu|(A_n).$$

Pour montrer l'autre inégalité, pour tout $n \in \mathbb{N}$ et tout $\varepsilon > 0$, soit $\{E_j^n\}_{j \in \mathbb{N}}$ une partition Borélienne de A_n telle que

$$|\mu|(A_n) \le \sum_{j=0}^{\infty} |\mu(E_j^n)| + 2^{-n}\varepsilon.$$

Comme $\{E_j^n\}_{(j,n)\in\mathbb{N}^2}$ est une partition Borélienne de A, il vient

$$|\mu|(A) \ge \sum_{j,n=0}^{\infty} |\mu(E_j^n)| = \sum_{n=0}^{\infty} |\mu|(A_n) - 2\varepsilon$$

et l'inégalité vient par passage à la limite quand $\varepsilon \to 0$.

Pour établir que $|\mu|$ est une mesure finie, il suffit de considérer le cas d=1. Supposons qu'il existe $A \in \mathcal{B}(\Omega)$ tel que $|\mu|(A) = \infty$, on peut alors trouver une partition Borélienne $\{A_n\}_{n\in\mathbb{N}}$ de A telle que

$$\sum_{n=0}^{\infty} |\mu(A_n)| \ge 2(|\mu(A)| + 1).$$

Soient $E_1 = \bigcup_{\mu(A_n) \geq 0} A_n$ et $E_2 = \bigcup_{\mu(X_n) < 0} A_n$ de sorte que $A = E_1 \cup E_2$, $E_1 \cap E_2 = \emptyset$, $\mu(E_1) \geq 0$, $\mu(E_2) \leq 0$ et $|\mu(E_1)| + |\mu(E_2)| \geq 2(|\mu(A)| + 1)$. Il existe donc $i_0 = 1$ ou 2 tel que $|\mu(E_{i_0})| \geq |\mu(A)| + 1$ et on pose $E = E_{i_0}$, $F = A \setminus E$. On a donc $|\mu|(E) \geq |\mu(E)| > 1$, $|\mu|(F) \geq |\mu(F)| = |\mu(A) - \mu(E)| \geq |\mu(E)| - |\mu(A)| > 1$. Comme $\infty = |\mu|(A) = |\mu|(E) + |\mu|(F)$, il vient que $|\mu|(E) = \infty$ ou $|\mu|(F) = \infty$. Supposons sans restreindre la généralité que $|\mu|(F) = \infty$ et posons $Y_0 = E$. On reproduit l'argument précédent avec F au lieu de A. On construit alors par récurrence une suite $\{Y_j\}_{j\in\mathbb{N}}$ de Boréliens deux à deux disjoints tels que $|\mu(Y_j)| > 1$ pour tout $j \in \mathbb{N}$ ce qui montre que la série de terme général $\{\mu(Y_j)\}_{j\in\mathbb{N}}$ ne peut pas être convergente. On aboutit donc à une contradiction qui montre bien que $|\mu|(A) < \infty$ pour tout $A \in \mathcal{B}(\Omega)$.

Un exemple typique de mesure vectorielle est celui des mesures à densité.

Définition 1.1.8. Soit λ une mesure de Radon positive sur Ω et $f \in L^1_{\lambda}(\Omega; \mathbb{R}^d)$. On définit la mesure de Radon vectorielle $\mu := f\lambda$ par

$$\mu(A) = \int_A f \, d\lambda$$
 pour tout $A \in \mathcal{B}(\Omega)$.

On montre effectivement que $f\lambda$ est une mesure de Radon vectorielle par convergence dominée. Le résultat suivant détermine la mesure variation d'une mesure à densité.

Proposition 1.1.9. Soit $\mu = f\lambda$ la mesure vectorielle définie précédemment. Alors, la mesure variation de μ est donnée par $|\mu| = |f|\lambda$, i.e.

$$|\mu|(A) = \int_A |f| d\lambda$$
 pour tout $A \in \mathcal{B}(\Omega)$.

Démonstration. L'inégalité $|\mu| \leq |f|\lambda$ est immédiate. Pour montrer l'inégalité opposée, on considère un sous-ensemble $D = \{z_k\}_{k \in \mathbb{N}}$ dénombrable et dense dans la sphère $\mathbb{S}^{N-1} = \{x \in \mathbb{R}^N : |x| = 1\}$. Soient $A \in \mathcal{B}(\Omega)$, $\varepsilon > 0$ et $k \in \mathbb{N}$, on définit les ensembles Boréliens

$$A_k = \{ x \in A : f(x) \cdot z_k \ge (1 - \varepsilon) |f(x)| \}$$

de sorte que $A = \bigcup_k A_k$. On pose ensuite

$$B_0 = A_0$$
, $B_k = A_k \setminus \bigcup_{j=0}^{k-1} A_j$ pour tout $k \ge 1$,

de sorte que $B_k \in \mathcal{B}(\Omega)$ pour tout $k \in \mathbb{N}$ et les ensembles $\{B_k\}_{k \in \mathbb{N}}$ sont deux à deux disjoints. Comme $\bigcup_k B_k = \bigcup_k A_k = A$, il vient que

$$(1 - \varepsilon) \int_{A} |f| \, d\lambda = \sum_{k \in \mathbb{N}} (1 - \varepsilon) \int_{B_{k}} |f| \, d\lambda \le \sum_{k \in \mathbb{N}} \int_{B_{k}} z_{k} \cdot f \, d\lambda$$
$$= \sum_{k \in \mathbb{N}} z_{k} \cdot \mu(B_{k}) \le \sum_{k \in \mathbb{N}} |\mu(B_{k})| \le |\mu(A)|,$$

ce qui conclut la preuve du résultat.

Si d=1, on parle aussi de mesure de Radon réelle. On pose alors

$$\mu^{\pm} := \frac{|\mu| \pm \mu}{2}$$

qui définissent des mesures positives finies qui satisfont

$$\mu = \mu^+ - \mu^-, \quad |\mu| = \mu^+ + \mu^-.$$

L'intégration d'une fonction Borélienne $|\mu|$ -intégrable $f:\Omega\to\mathbb{R}$ par rapport à μ est alors définie par

$$\int_{\Omega} f \, d\mu := \int_{\Omega} f \, d\mu^+ - \int_{\Omega} f d\mu^-.$$

Si $d \ge 2$ et $\mu = (\mu_1, \dots, \mu_d)$ est une mesure de Radon vectorielle, on définit l'intégrale

$$\int_{\Omega} f \, d\mu := \left(\int_{\Omega} f \, d\mu_1, \dots, \int_{\Omega} f \, d\mu_d \right).$$

On a toujours l'inégalité

$$\left| \int_{\Omega} f \, d\mu \right| \le \int_{\Omega} |f| \, d|\mu|.$$

Si $\varphi:\Omega\to\mathbb{R}^d$ est une fonction vectorielle Borélienne $|\mu|$ -intégrable, on notera

$$\int_{\Omega} \varphi \cdot d\mu := \sum_{i=1}^{d} \int_{\Omega} \varphi_i \, d\mu_i$$

et on montre que

$$\left| \int_{\Omega} \varphi \cdot d\mu \right| \leq \int_{\Omega} |\varphi| \, d|\mu|.$$

1.2 Les mesures de Radon par dualité

On désigne par $C_c(\Omega)$ l'ensemble des fonctions continues à support compact inclus dans Ω . Toute mesure de Radon positive μ définit une forme linéaire sur $C_c(\Omega)$. En effet, l'intégrale

$$\int_{\Omega} f \, d\mu$$

est bien définie puisque, en notant K = Supp(f) le support (compact) de f, on a

$$\int_K |f| \, d\mu \le \mu(K) \max_K |f| < \infty.$$

Par conséquent, l'application

$$L: f \mapsto \int_{\Omega} f \, d\mu$$

définit une forme linéaire positive $C_c(\Omega)$, i.e.,

$$L(\alpha f + \beta g) = \alpha L(f) + \beta L(g)$$
 pour tout $f, g \in \mathcal{C}_c(\Omega)$ et tout $\alpha, \beta \in \mathbb{R}$, (1.2.1)

$$L(f) \ge 0$$
 pour tout $f \in \mathcal{C}_c(\Omega)$ avec $f \ge 0$. (1.2.2)

Nous allons en fait montrer que toute forme linéaire positive sur l'espace $C_c(\Omega)$ peut être représentée de façon unique par une telle mesure.

Théorème 1.2.1 (Théorème de représentation de Riesz). Soit $L: \mathcal{C}_c(\Omega) \to \mathbb{R}$ une forme linéaire positive (i.e. qui satisfait (1.2.1) et (1.2.2)). Il existe une unique mesure de Radon positive μ sur Ω telle que

$$L(f) = \int_{\Omega} f \, d\mu \quad pour \ tout \ f \in \mathcal{C}_c(\Omega). \tag{1.2.3}$$

Dans la preuve de l'existence, nous utiliserons le résultat suivant. Le cas n=1 correspond au Lemme d'Urysohn.

Lemme 1.2.2 (Partition de l'unité). Soient V_1, \ldots, V_n des ouverts de \mathbb{R}^N et K un compact tel que $K \subset \bigcup_{i=1}^n V_i$. Alors, pour tout $i=1,\ldots,n$, il existe des fonctions $f_i \in \mathcal{C}_c(\mathbb{R}^N;[0,1])$ telles que $\operatorname{Supp}(f_i) \subset V_i$ et $\sum_{i=1}^n f_i = 1$ sur K.

Démonstration. Pour tout $x \in K$, il existe $i \in \{1, \ldots, n\}$ et une boule ouverte B_x centrée en x et telle que $\overline{B_x} \subset V_i$. Par conséquent, $K \subset \bigcup_{x \in K} B_x$, et comme K est compact, on peut extraire un sous recouvrement fini $K \subset \bigcup_{j=1}^p B_{x_j}$. On définit K_i comme l'union des boules fermées $\overline{B_{x_j}}$ qui sont contenues dans V_i . Alors K_i est un compact contenu dans V_i et $K \subset \bigcup_{i=1}^n K_i$. Soit U_i un ouvert borné tel que $K_i \subset U_i \subset \overline{U}_i \subset V_i$, on pose alors

$$f_i(x) := \frac{\operatorname{dist}(x, \mathbb{R}^N \setminus U_i)}{\operatorname{dist}(x, K) + \sum_{i=1}^n \operatorname{dist}(x, \mathbb{R}^N \setminus U_i)} \quad \text{ pour tout } x \in \mathbb{R}^N,$$

qui satisfait bien les propriétés souhaitées.

Pour tout ouvert $V \subset \Omega$, on définit

$$\mu^*(V) := \sup\{L(f) : f \in \mathcal{C}_c(\Omega; [0,1]), \operatorname{Supp}(f) \subset V\}.$$
 (1.2.4)

Si $U\subset V$, alors $\mu^*(U)\leq \mu^*(V)$ de sorte que l'on peut étendre μ^* à n'importe quel ensemble $A\subset\Omega$ en posant

$$\mu^*(A) := \inf\{\mu^*(V) : A \subset V \subset \Omega \text{ ouvert}\}.$$

La propriété de croissance de μ^* reste vraie au sens où $\mu^*(A) \leq \mu^*(B)$ pour tout $A \subset B$.

Lemme 1.2.3. Pour tout compact $K \subset \Omega$, on a

$$\mu^*(K) = \inf\{L(g) : g \in \mathcal{C}_c(\Omega; [0, 1]), g = 1 \text{ sur } K\}.$$

En particulier, $\mu^*(K) < \infty$. De plus, pour tout ouvert $U \subset \Omega$,

$$\mu^*(U) = \sup\{\mu^*(K) : K \subset U, K \text{ compact}\}.$$

Démonstration. Soient $K \subset \Omega$ un compact et $g \in \mathcal{C}_c(\Omega; [0,1])$ telle que g = 1 sur K. Pour tout 0 < t < 1, l'ensemble $V_t := \{g > t\}$, qui est ouvert, satisfait $K \subset V_t$ et $f \leq t^{-1}g$ pour tout $f \in \mathcal{C}_c(\Omega; [0,1])$ avec $\operatorname{Supp}(f) \subset V_t$. Par conséquent, la croissance de L montre que

$$\mu^*(K) \leq \mu^*(V_t) = \sup\{L(f): f \in \mathcal{C}_c(\Omega; [0,1]) \text{ tel que Supp}(f) \subset V_t\} \leq t^{-1}L(g) < \infty.$$

En faisant tendre $t \to 1^-$, on obtient $\mu(K) \le L(g)$ et donc, par passage à l'infimum en g,

$$\mu^*(K) \le \inf\{L(g): g \in \mathcal{C}_c(\Omega; [0,1]), g = 1 \text{ sur } K\}.$$

L'autre inégalité se montre en considérant un ouvert arbitraire $U \subset \Omega$ contenant K. Si $f \in \mathcal{C}_c(\Omega; [0,1])$ est une fonction telle que $\operatorname{Supp}(f) \subset U$ et f=1 sur K, il vient par définition de μ^* sur les ouverts que

$$\inf\{L(g): g \in \mathcal{C}_c(\Omega; [0,1]), g = 1 \text{ sur } K\} \le L(f) \le \mu^*(U),$$

puis, par passage à l'infimum par rapport à U, que

$$\inf\{L(g): g \in \mathcal{C}_c(\Omega; [0,1]), g = 1 \text{ sur } K\} \le \mu^*(K).$$

Pour établir la propriété de régularité intérieure sur les ouverts, considérons un ouvert $U \subset \Omega$. Alors, par définition de μ^* sur les ouverts, pour tout $\alpha < \mu^*(U)$, il existe une fonction $f \in \mathcal{C}_c(\Omega; [0,1])$ telle que $\mathrm{Supp}(f) \subset U$ et $\alpha < L(f)$. Soit $K = \mathrm{Supp}(f)$ et $g \in \mathcal{C}_c(\Omega; [0,1])$ telle que g = 1 sur K. Comme $f \leq g$ sur Ω , on a $L(f) \leq L(g)$, puis par passage à l'infimum par rapport à g, on obtient que $L(f) \leq \mu^*(K)$. Ceci montre l'existence d'un compact $K \subset U$ tel que $\alpha < \mu^*(K)$. \square

A ce stade, nous avons défini une fonction d'ensembles $\mu^* : \mathcal{P}(\Omega) \to [0, +\infty]$ qui est finie sur les compacts, qui satisfait, par définition, la propriété de régularité extérieure

$$\mu^*(A) = \inf\{\mu^*(V) : A \subset V \subset \Omega \text{ ouvert}\} \text{ pour tout } A \in \mathcal{P}(\Omega)$$
 (1.2.5)

et la propriété de régularité intérieure

$$\mu^*(U) = \sup\{\mu^*(K) : K \subset U, K \text{ compact}\}$$
 pour tout ouvert $U \subset \Omega$. (1.2.6)

Lemme 1.2.4. La fonction d'ensemble μ^* est une mesure extérieure.

Démonstration. On a évidemment que $\mu^*(\emptyset) = 0$ et μ^* est une fonction croissante d'ensemble, i.e. si $A \subset B$, alors $\mu^*(A) \leq \mu^*(B)$. Il s'agit à présent de montrer que μ^* est dénombrablement sous-additive, i.e., pour toute suite $\{A_n\}_{n\in\mathbb{N}}$ de sous-ensembles de Ω , on a

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \sum_{n=1}^{\infty} \mu^* (A_n).$$

Montrons d'abord que si V_1 et V_2 sont des ouverts de Ω ,

$$\mu^*(V_1 \cup V_2) \le \mu^*(V_1) + \mu^*(V_2). \tag{1.2.7}$$

Soit $g \in \mathcal{C}_c(\Omega; [0,1])$ avec Supp $(g) \subset V_1 \cup V_2$. Soient f_1 et $f_2 \in \mathcal{C}_c(\Omega; [0,1])$ telles que Supp $(f_1) \subset V_1$, Supp $(f_2) \subset V_2$ et $f_1 + f_2 = 1$ sur Supp(g). Par conséquent, pour $i = 1, 2, f_i g \in \mathcal{C}_c(\Omega; [0,1])$, Supp $(f_i) \subset V_i$ et $g = f_1 g + f_2 g$ de sorte que, par linéarité de L et la définition de μ^* ,

$$L(g) = L(f_1g) + L(f_2g) \le \mu^*(V_1) + \mu^*(V_2).$$

Par passage au supremum en g, on obtient $\mu^*(V_1 \cup V_2) \leq \mu^*(V_1) + \mu^*(V_2)$.

Si $\mu(A_n)=\infty$ pour un certain $n\in\mathbb{N}$, alors le résultat suit. Sinon, si $\mu(A_n)<\infty$ pour tout n, alors quelque soit $\varepsilon>0$ il existe un ouvert V_n tel que $A_n\subset V_n$ et $\mu^*(V_n)<\mu^*(A_n)+2^{-n}\varepsilon$. On définit $V:=\bigcup_{n=1}^\infty V_n$ et on considère $f\in\mathcal{C}_c(\Omega;[0,1])$ avec $\mathrm{Supp}(f)\subset V$. Comme $\mathrm{Supp}(f)$ est compact, il existe $p\in\mathbb{N}$ tel que $\mathrm{Supp}(f)\subset\bigcup_{n=1}^p V_n$. En itérant (1.2.7), il vient

$$L(f) \le \mu^* \left(\bigcup_{n=1}^p V_n \right) \le \sum_{n=1}^p \mu^*(V_n) \le \sum_{n=1}^\infty \mu^*(E_n) + 2\varepsilon.$$

Comme cette inégalité est satisfaite quelque soit $f \in \mathcal{C}_c(\Omega; [0,1])$ avec $\operatorname{Supp}(f) \subset V$, et $\bigcup_{n=1}^{\infty} A_n \subset V$, on en déduit que

$$\mu^* \left(\bigcup_{n=1}^{\infty} A_n \right) \le \mu^*(V) \le \sum_{n=1}^{\infty} \mu^*(A_n) + 2\varepsilon,$$

ce qui montre la dénombrable sous-additivité, le paramètre $\varepsilon > 0$ étant arbitraire.

D'après le théorème de Carathéodory (voir le théorème 3.1.3), la classe \mathcal{A} des ensembles μ^* mesurables, *i.e.*, l'ensemble des parties $A \subset \Omega$ qui satisfont

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \setminus A)$$
 pour tout $E \subset \Omega$,

est une tribu sur Ω , et la restriction $\mu := \mu^*|_{\mathcal{A}}$ de μ^* à cette tribu est une mesure. De plus, pour tout $A, B \subset \Omega$ avec $\operatorname{dist}(A, B) > 0$, on a

$$\mu^*(A \cup B) = \mu^*(A) + \mu^*(B).$$

En effet, par sous-additivité de μ^* , il suffit de montrer que $\mu^*(A \cup B) \ge \mu^*(A) + \mu^*(B)$. Soit $W \subset \Omega$ un ouvert tel que $A \cup B \subset W$. Comme dist(A, B) > 0, il existe des ouverts U et V tels que $A \subset U$, $B \subset V$, $U \cup V \subset W$ et $U \cap V = \emptyset$. Par définition de μ^* sur les ouverts, on a

$$\mu^*(W) > \mu^*(U \cup V) > \mu^*(U) + \mu^*(V) > \mu^*(A) + \mu^*(B).$$

Par passage à l'infimum parmi tous les ouverts $W \supset A \cup B$, on obtient le résultat voulu. Une application immédiate de la Proposition 3.1.4 montre que $\mathcal{B}(\Omega) \subset \mathcal{A}$. Par conséquent, la restriction de μ à $\mathcal{B}(\Omega)$ est une mesure Borélienne. Comme par le Lemme 1.2.3, on a $\mu(K) = \mu^*(K) < \infty$ (puisque les compacts sont Boréliens), on en déduit que μ est une mesure de Radon positive.

Nous sommes à présent en mesure de conclure la preuve du théorème de représentation de Riesz.

Démonstration du théorème 1.2.1. Il reste à établir la propriété de représentation (1.2.3). Soit $f \in \mathcal{C}_c(\Omega)$, par linéarité de L, il suffit d'établir que

$$L(f) \le \int_{\Omega} f \, d\mu. \tag{1.2.8}$$

Soit $K := \operatorname{Supp}(f)$ et [a, b] un intervalle compact de \mathbb{R} qui contient f(K). Pour tout $\varepsilon > 0$, il existe $y_0, y_1, \ldots, y_n \in \mathbb{R}$ tels que $y_0 < a = y_1 < \cdots < y_n = b$ et $\max_{1 \le i \le n} (y_i - y_{i-1}) < \varepsilon$. On définit, pour tout $i \in \{1, \ldots, n\}$

$$B_i := f^{-1}([y_{i-1}, y_i]) \cap K.$$

Comme f est continue, les ensembles B_i constituent une partition Borélienne de K. D'après la propriété de régularité extérieure (1.2.5), il existe un ouvert V_i contenant B_i tel que $\mu(V_i) \leq \mu(B_i) + \varepsilon/n$. Par ailleurs, l'ouvert $W_i = f^{-1}(]y_i - \varepsilon, y_i + \varepsilon[)$ contenant B_i , on obtient en posant $U_i = V_i \cap W_i$ un ouvert contenant B_i et satisfaisant

$$\mu(U_i) \le \mu(B_i) + \frac{\varepsilon}{n}, \quad \sup_{U_i} f \le y_i + \varepsilon \text{ pour tout } i = 1, \dots, n.$$

Comme $\{U_i\}_{1\leq i\leq n}$ est un recouvrement ouvert du compact K, on peut trouver une partition de l'unité subordonnée à ce recouvrement, *i.e.* des fonctions $h_i \in \mathcal{C}_c(\Omega; [0,1])$ telles que $\mathrm{Supp}(h_i) \subset U_i$ et $\sum_{i=1}^n h_i = 1$ sur K. Par conséquent, $f = \sum_{i=1}^n h_i f$ et $0 \leq h_i f \leq (y_i + \varepsilon)h_i$ dans Ω , puis par linéarité et croissance de L, il vient

$$L(f) = \sum_{i=1}^{n} L(h_i f) \le \sum_{i=1}^{n} (y_i + \varepsilon) L(h_i) = \sum_{i=1}^{n} (|a| + y_i + \varepsilon) L(h_i) - |a| \sum_{i=1}^{n} L(h_i).$$

Comme $\sum_{i=1}^n h_i \in \mathcal{C}_c(\Omega;[0,1])$ est telle que $\sum_{i=1}^n h_i = 1$ sur K, le Lemme 1.2.3 montre que

$$\sum_{i=1}^{n} L(h_i) = L\left(\sum_{i=1}^{n} h_i\right) \ge \mu(K).$$

Par ailleurs, la définition de μ^* sur les ouverts (et donc de μ) montre $L(h_i) \leq \mu(U_i) \leq \mu(B_i) + \varepsilon/n$, de sorte que

$$L(f) \le \sum_{i=1}^{n} (|a| + y_i + \varepsilon) \left(\mu(B_i) + \frac{\varepsilon}{n} \right) - |a|\mu(K).$$

Comme $\{B_1, \ldots, B_n\}$ est une partition de K, on en déduit que

$$L(f) \leq \sum_{i=1}^{n} y_{i}\mu(B_{i}) + \varepsilon(|a| + |b| + \varepsilon + \mu(K))$$

$$\leq \sum_{i=1}^{n} y_{i-1}\mu(B_{i}) + \varepsilon(|a| + |b| + \varepsilon + 2\mu(K))$$

$$\leq \sum_{i=1}^{n} \int_{B_{i}} f d\mu + \varepsilon(|a| + |b| + \varepsilon + 2\mu(K))$$

$$= \int_{\Omega} f d\mu + \varepsilon(|a| + |b| + \varepsilon + 2\mu(K)),$$

ce qui prouve (1.2.8), le paramètre $\varepsilon>0$ étant arbitraire.

Etablissons enfin l'unicité. Soient μ_1 et μ_2 deux mesures de Radon positives satisfaisant la conclusion du théorème de représentation de Riesz. Par les propriétés de régularité (1.2.5) et (1.2.6), il suffit d'établir que $\mu_1(K) = \mu_2(K)$ pour tout compact $K \subset \Omega$. Soit $\varepsilon > 0$ et $K \subset \Omega$ un compact. D'après (1.2.5), il existe un ouvert V contenant K tel que $\mu_2(V) < \mu_2(K) + \varepsilon$. Par le Lemme d'Urysohn, on peut trouver une fonction $f \in \mathcal{C}_c(\Omega; [0, 1])$ telle que f = 1 sur K et Supp $(f) \subset V$ d'où $\chi_K \leq f \leq \chi_V$. Il vient alors

$$\mu_1(K) = \int_{\Omega} \chi_K d\mu_1 \le \int_{\Omega} f d\mu_1 = L(f) = \int_{\Omega} f d\mu_2 \le \int_{\Omega} \chi_V d\mu_2 = \mu_2(V) < \mu_2(K) + \varepsilon.$$

Donc $\mu_1(K) \leq \mu_2(K)$ et en échangeant les rôles de μ_1 et μ_2 on en déduit que cette inégalité et une égalité.

Pour étendre ce résultat à des formes linéaires non signées, il est nécessaire d'imposer une propriété de continuité. L'espace $C_c(\Omega; \mathbb{R}^d)$ n'étant pas un Banach, il convient de le fermer pour la topologie de la norme uniforme sur $\overline{\Omega}$. On définit alors

$$C_0(\Omega; \mathbb{R}^d) = \overline{C_c(\Omega; \mathbb{R}^d)}^{\|\cdot\|_{\infty}}$$

qui est alors un espace de Banach séparable. Par ailleurs une fonction $f \in \mathcal{C}_0(\Omega; \mathbb{R}^d)$ si et seulement si $f: \Omega \to \mathbb{R}^d$ est continue et pour tout $\varepsilon > 0$ il existe un compact $K_{\varepsilon} \subset \Omega$ tel que $|f| < \varepsilon$ sur $\Omega \setminus K_{\varepsilon}$ (f tend vers 0 sur le bord de Ω).

Définition 1.2.5. L'espace des mesures de Radon bornées sur Ω , noté $\mathcal{M}(\Omega; \mathbb{R}^d)$, est le dual topologique de l'espace de Banach $\mathcal{C}_0(\Omega; \mathbb{R}^d)$.

Grâce au théorème de représentation de Riesz (théorème 1.2.1), on peut caractériser l'espace des mesures de Radon bornées.

Théorème 1.2.6. Pour tout $L \in \mathcal{M}(\Omega; \mathbb{R}^d)$, il existe une unique mesure de Radon vectorielle μ sur Ω telle que

$$L(f) = \int_{\Omega} f \cdot d\mu := \sum_{j=1}^{d} \int_{\Omega} f_{j} d\mu_{j} \quad pour \ tout \ f \in \mathcal{C}_{0}(\Omega; \mathbb{R}^{d}).$$

De plus, en notant $|\mu|$ la mesure variation de μ , on a

$$||L||_{\mathcal{M}(\Omega;\mathbb{R}^d)} = |\mu|(\Omega).$$

Commençons par établir que toute forme linéaire continue sur $C_0(\Omega) = C_0(\Omega; \mathbb{R})$ (pour d = 1) peut s'écrire comme la différence entre deux formes linéaires positives.

Lemme 1.2.7. Pour tout $L \in \mathcal{M}(\Omega)$, il existe des formes linéaires continues positives L^+ et L^- sur $C_0(\Omega)$ telles que

$$L(f) = L^+(f) - L^-(f)$$
 pour tout $f \in \mathcal{C}_0(\Omega)$.

Démonstration. Définissons le cône $\mathcal{C}^+ := \{ f \in \mathcal{C}_0(\Omega) : f \geq 0 \text{ sur } \Omega \}$ et pour tout $f \in \mathcal{C}^+$,

$$L^+(f) := \sup\{L(g): g \in \mathcal{C}^+, g \le f\}.$$

Etape 1: L^+ est positive et finie sur C^+ . Soit $f \in C^+$, comme $0 \in C^+$, on a $L^+(f) \geq 0$. Soit maintenant $g \in C^+$ telle que $0 \leq g \leq f$. Par continuité de L, on a $L(g) \leq \|L\|_{\mathcal{M}(\Omega)} \|g\|_{\infty} \leq \|L\|_{\mathcal{M}(\Omega)} \|f\|_{\infty}$, et par passage au sup en g, on obtient que $0 \leq L^+(f) \leq \|L\|_{\mathcal{M}(\Omega)} \|f\|_{\infty} < \infty$.

Etape 2: L^+ est additive sur C^+ . Soient f_1 et $f_2 \in C^+$ et $g \in C^+$ telles que $0 \le g \le f_1 + f_2$. On décompose g comme $g = \min(f_1, g) + \max(g - f_1, 0)$, où $\min(f_1, g) \le f_1$ et $\max(g - f_1, 0) \le f_2$. Comme $\min(f_1, g)$ et $\max(g - f_1, 0) \in C^+$, alors

$$L(g) = L(\min(f_1, g)) + L(\max(g - f_1, 0)) \le L^+(f_1) + L^+(f_2),$$

puis par passage au supremum en g,

$$L^+(f_1 + f_2) \le L^+(f_1) + L^+(f_2).$$

Pour montrer l'autre inégalité, on se donne un $\varepsilon > 0$. Par définition de L^+ , il existe g_1 et $g_2 \in \mathcal{C}^+$ tels que $0 \le g_i \le f_i$ et $L^+(f_i) \le L(g_i) + \varepsilon$ pour i = 1, 2. Comme $0 \le g_1 + g_2 \le f_1 + f_2$, il s'ensuit que

$$L^+(f_1+f_2) \ge L(g_1+g_2) = L(g_1) + L(g_2) \ge L^+(f_1) + L^+(f_2) - 2\varepsilon$$

et le résultat suit par passage à la limite quand $\varepsilon \to 0$.

Etape 3 : Définition et additivité de L^+ sur $\mathcal{C}_0(\Omega)$. Soit $f \in \mathcal{C}_0(\Omega)$, on décompose f comme la différence entre sa partie positive et négative $f = f^+ - f^-$ avec $f^\pm \in \mathcal{C}^+$. On pose alors $L^+(f) := L^+(f^+) - L^+(f^-)$. Si f et $g \in \mathcal{C}_0(\Omega)$, alors $(f+g)^+ - (f+g)^- = f^+ - f^- + g^+ - g^-$ de sorte que $(f+g)^+ + f^- + g^- = (f+g)^- + f^+ + g^+$. D'où, par additivité de L^+ sur \mathcal{C}^+ ,

$$L^{+}((f+g)^{+}) + L^{+}(f^{-}) + L^{+}(g^{-}) = L^{+}((f+g)^{-}) + L^{+}(f^{+}) + L^{+}(g^{+}),$$

et donc $L^+(f+g) = L^+(f) + L^+(g)$. En particulier, comme $(-f)^{\pm} = f^{\mp}$, alors $L^+(-f) = -L^+(f)$.

Etape 4: L^+ est continue sur $C_0(\Omega)$. Soit $f \in C_0(\Omega)$. Comme L^+ est positive, alors $L^+(|f| \pm f) \geq 0$, donc par additivité de L^+ sur $C_0(\Omega)$, $L^+(|f|) \geq \pm L^+(f)$, i.e., $|L^+(f)| \leq L^+(|f|)$. Soient maintenant f_1 et $f_2 \in C_0(\Omega)$, alors les étapes 3 et 1 impliquent que,

$$|L^+(f_1) - L^+(f_2)| = |L^+(f_1 - f_2)| \le L^+(|f_1 - f_2|) \le ||L||_{\mathcal{M}(\Omega)} ||f_1 - f_2||_{\infty}.$$

Etape 5 : L^+ est une forme linéaire $\sup C_0(\Omega)$. L'additivité de L^+ montre que pour tout $n \in \mathbb{N}$, $L^+(nf) = nL^+(f)$. Comme $L^+(-f) = -L^+(f)$, l'identité précédente a en fait lieu pour $n \in \mathbb{Z}$. Si $r = p/q \in \mathbb{Q}$ avec $p,q \in \mathbb{Z}$ et $q \neq 0$, alors $pL^+(f) = L^+(pf) = L^+(qrf) = qL^+(rf)$, d'où $L^+(rf) = rL^+(f)$. La continuité de L^+ et la densité \mathbb{Q} dans \mathbb{R} implique que $L^+(\alpha f) = \alpha L^+(f)$ pour tout $\alpha \in \mathbb{R}$.

Etape 6: L^- est une forme linéaire continue positive sur $C_0(\Omega)$. On définit $L^- := L^+ - L$. Alors L^- est clairement une forme linéaire continue sur $C_0(\Omega)$. De plus, par définition de L^+ , $L^+(f) \ge L(f)$ pour tout $f \in C^+$, ce qui montre que L^- est également positive.

Démonstration du théorème 1.2.6. Si d=1, d'après le Lemme 1.2.7, on peut décomposer $L \in \mathcal{M}(\Omega)$ comme $L=L^+-L^-$ où L^\pm sont des formes linéaires continues positives sur $\mathcal{C}_0(\Omega)$. D'après le théorème de représentation de Riesz, il existe deux mesures de Radon positives μ^\pm telles que

$$L^{\pm}(f) = \int_{\Omega} f \, d\mu^{\pm}$$
 pour tout $f \in \mathcal{C}_c(\Omega)$.

De plus, par définition de μ^{\pm} sur les ouverts (voir (1.2.4)) et par définition de la norme dans $\mathcal{M}(\Omega)$, on a

$$\mu^{\pm}(\Omega) = \sup_{f \in \mathcal{C}_c(\Omega; [0,1])} L^{\pm}(f) \le ||L^{\pm}||_{\mathcal{M}(\Omega)} < \infty,$$

ce qui montre que μ^{\pm} sont des mesures finies. Par conséquent, en posant $\mu := \mu^{+} - \mu^{-}$, μ définit une mesure de réelle telle que

$$L(f) = \int_{\Omega} f \, d\mu$$
 pour tout $f \in \mathcal{C}_c(\Omega)$.

Cette inégalité peut être étendue à toute fonction $f \in \mathcal{C}_0(\Omega)$ par densité de $\mathcal{C}_c(\Omega)$ dans $\mathcal{C}_0(\Omega)$, par continuité de L et par convergence dominée.

Si $d \geq 2$, on applique l'argument précédent aux formes linéaires continues $f \in \mathcal{C}_0(\Omega) \mapsto L_j(f) := L(fe_j)$, pour tout $1 \leq j \leq d$, où e_j désigne le j-ième vecteur de la base canonique de \mathbb{R}^d . On montre alors l'existence de mesures de Radon réelles μ_j sur Ω telles que $L_j(f) = \int_{\Omega} f \, d\mu_j$ pour tout $f \in \mathcal{C}_0(\Omega)$. On pose alors $\mu = (\mu_1, \dots, \mu_d)$ qui définit une mesure de Radon vectorielle et qui satisfait, pour tout $f \in \mathcal{C}_0(\Omega; \mathbb{R}^d)$

$$L(f) = L\left(\sum_{j=1}^{d} f_{j}e_{j}\right) = \sum_{j=1}^{d} L(f_{j}e_{j}) = \sum_{j=1}^{d} L_{j}(f_{j}) = \sum_{j=1}^{d} \int_{\Omega} f_{j} d\mu_{j} = \int_{\Omega} f \cdot d\mu.$$

Si $f \in \mathcal{C}_0(\Omega; \mathbb{R}^d)$ est telle que $||f||_{\infty} \leq 1$, alors on a

$$|L(f)| \le \int_{\Omega} |f| \, d|\mu| \le |\mu|(\Omega),$$

puis par passage au supremum par rapport à f, $||L||_{\mathcal{M}(\Omega;\mathbb{R}^d)} \leq |\mu|(\Omega)$. Réciproquement, soit $\{B_i\}_{i\in\mathbb{N}}$ une partition Borélienne de Ω . On pose

$$f := \sum_{i \in \mathbb{N}, |\mu(B_i)| > 0} \frac{\mu(B_i)}{|\mu(B_i)|} \chi_{B_i}.$$

Comme $|\mu|$ est une mesure finie et $|f| \leq 1$, on en déduit que $f \in L^1_{|\mu|}(\Omega; \mathbb{R}^d)$. Par densité de $C_c(\Omega; \mathbb{R}^d)$ dans $L^1_{|\mu|}(\Omega; \mathbb{R}^d)$, pour tout $\varepsilon > 0$, il existe une fonction $g \in C_c(\Omega; \mathbb{R}^d)$ telle que $|g| \leq 1$ et $\int_{\Omega} |f - g| \, d|\mu| \leq \varepsilon$. Par conséquent

$$||L||_{\mathcal{M}(\Omega;\mathbb{R}^d)} \ge \int_{\Omega} g \cdot d\mu \ge \int_{\Omega} f \cdot d\mu - \varepsilon = \sum_{i \in \mathbb{N}} |\mu(B_i)| - \varepsilon.$$

Par passage au supremum parmi toutes les partitions Boréliennes de Ω , il vient

$$||L||_{\mathcal{M}(\Omega;\mathbb{R}^d)} \ge |\mu|(\Omega) - \varepsilon,$$

ce qui implique, $\varepsilon > 0$ étant arbitraire, que $||L||_{\mathcal{M}(\Omega;\mathbb{R}^d)} \ge |\mu|(\Omega)$.

Concernant l'unicité, soient μ_1 et μ_2 deux mesures vectorielles telles que

$$\int_{\Omega} f \, d\mu_1 = \int_{\Omega} f \, d\mu_2 \quad \text{ pour tout } f \in \mathcal{C}_c(\Omega).$$

On pose $\lambda := |\mu_1| + |\mu_2|$ et on considère un Borélien $A \subset \Omega$. Par densité de $\mathcal{C}_c(\Omega)$ dans $L^1_{\lambda}(\Omega)$, pour tout $\varepsilon > 0$ il existe une fonction $f_{\varepsilon} \in \mathcal{C}_c(\Omega)$ telle que

$$\int_{\Omega} |f_{\varepsilon} - \chi_A| \, d\lambda \le \varepsilon.$$

On en déduit alors que

$$\int_{\Omega} |f_{\varepsilon} - \chi_A| \, d|\mu_1| \le \varepsilon \quad \text{et} \quad \int_{\Omega} |f_{\varepsilon} - \chi_A| \, d|\mu_2| \le \varepsilon.$$

Par passage à la limite dans

$$\int_{\Omega} f_{\varepsilon} \, d\mu_1 = \int_{\Omega} f_{\varepsilon} \, d\mu_2$$

quand $\varepsilon \to 0$, on en déduit que $\mu_1(A) = \mu_2(A)$.

1.3 Convergence de mesures

Le théorème de représentation de Riesz permet d'identifier le dual topologique de $C_0(\Omega; \mathbb{R}^d)$, noté $\mathcal{M}(\Omega; \mathbb{R}^d)$, à l'ensemble des mesures de Radon vectorielles que nous appelerons dorénavant l'espace des mesures de Radon bornées. On définit également l'espace des mesures de Radon, $\mathcal{M}_{loc}(\Omega; \mathbb{R}^d)$, comme l'ensemble des applications $\mu: \mathcal{B}(\Omega) \to \mathbb{R}^d$ telles que $\mu \in \mathcal{M}(\omega; \mathbb{R}^d)$ pour tout ouvert borné ω tel que $\overline{\omega} \subset \Omega$. Une variante du théorème de représentation de Riesz montre qu'on peut identifier l'espace $\mathcal{M}_{loc}(\Omega; \mathbb{R}^d)$ aux distributions vectorielles d'ordre 0.

En tant qu'espace dual, on peut considérer la topologie faible* sur $\mathcal{M}(\Omega; \mathbb{R}^d)$.

Définition 1.3.1. (i) Une suite $\{\mu_n\}_{n\in\mathbb{N}}\subset\mathcal{M}(\Omega;\mathbb{R}^d)$ converge faible* vers $\mu\in\mathcal{M}(\Omega;\mathbb{R}^d)$ si

$$\int_{\Omega} \varphi \cdot d\mu_n \to \int_{\Omega} \varphi \cdot d\mu \quad \text{ pour tout } \varphi \in \mathcal{C}_0(\Omega; \mathbb{R}^d).$$

(ii) Une suite $\{\mu_n\}_{n\in\mathbb{N}}\subset\mathcal{M}_{loc}(\Omega;\mathbb{R}^d)$ converge localement faible* vers $\mu\in\mathcal{M}_{loc}(\Omega;\mathbb{R}^d)$ si

$$\int_{\Omega} \varphi \cdot d\mu_n \to \int_{\Omega} \varphi \cdot d\mu \quad \text{ pour tout } \varphi \in \mathcal{C}_c(\Omega; \mathbb{R}^d).$$

La norme étant faible* semi-continue inférieurement, il vient que si $\mu_n \rightharpoonup \mu$ faible* dans $\mathcal{M}(\Omega; \mathbb{R}^d)$, alors pour tout ouvert $U \subset \Omega$,

$$|\mu|(U) \leq \liminf_{n \to \infty} |\mu_n|(U).$$

L'espace $C_0(\Omega; \mathbb{R}^d)$ étant séparable, le résultat suivant provient d'une application immédiate du théorème de Banach-Alaoglu.

Théorème 1.3.2. Soit $\{\mu_n\}_{n\in\mathbb{N}}$ une suite bornée d'éléments de $\mathcal{M}(\Omega;\mathbb{R}^d)$. Alors, il existe une sous-suite $\{\mu_{n_k}\}_{k\in\mathbb{N}}$ et $\mu\in\mathcal{M}(\Omega;\mathbb{R}^d)$ telles que $\mu_{n_k}\rightharpoonup\mu$ faible* dans $\mathcal{M}(\Omega;\mathbb{R}^d)$.

Un exemple typique d'application du théorème de compacité précédent concerne les suites $\{f_n\}_{n\in\mathbb{N}}$ bornée dans $L^1_\lambda(\Omega;\mathbb{R}^d)$, où λ est une mesure de Radon positive. L'espace $L^1_\lambda(\Omega;\mathbb{R}^d)$ étant non réflexif, on ne peut pas en général extraire de sous-suite faiblement convergente dans $L^1_\lambda(\Omega;\mathbb{R}^d)$. Néanmoins on peut définir la suite de mesures de Radon bornées $\mu_n = f_n \lambda \in \mathcal{M}(\Omega;\mathbb{R}^d)$. Comme

$$|\mu_n|(\Omega) = \int_{\Omega} |f_n| \, d\lambda \le C,$$

la suite $\{\mu_n\}_{n\in\mathbb{N}}$ est bornée dans $\mathcal{M}(\Omega;\mathbb{R}^d)$ de sorte qu'on peut extraire une sous-suite faible* convergente dans $\mathcal{M}(\Omega;\mathbb{R}^d)$ vers une limite $\mu\in\mathcal{M}(\Omega;\mathbb{R}^d)$. En général, μ n'est pas absolument continue par rapport à λ .

Pour les suites de mesures positives, nous avons les conditions suivantes de semi continuité le long d'ouverts ou de compacts.

Proposition 1.3.3. Si $\{\mu_n\}_{n\in\mathbb{N}}$ est une suite de mesures de Radon positives dans Ω qui converge localement faible* dans $\mathcal{M}_{loc}(\Omega)$ vers une mesure de Radon positive μ , alors

$$\mu(U) \leq \liminf_{n \to \infty} \mu_n(U)$$
 pour tout ouvert $U \subset \Omega$,

$$\limsup_{n \to \infty} \mu_n(K) \le \mu(K) \quad \text{ pour tout compact } K \subset \Omega,$$

et

$$\lim_{n\to\infty}\mu_n(E)=\mu(E)\quad \text{ pour tout Borélien born\'e E tel que $\overline{E}\subset\Omega$ et $\mu(\partial E)=0$.}$$

Démonstration. Soit $U \subset \Omega$ un ouvert et C un sous ensemble compact de U. On considère une fonction $\psi \in \mathcal{C}_c(\Omega)$ telle que $0 \le \psi \le 1$, $\psi = 1$ sur C et $\psi = 0$ sur $\Omega \setminus U$. Alors

$$\liminf_{n \to \infty} \mu_n(U) \ge \lim_{n \to \infty} \int_{\Omega} \psi \, d\mu_n = \int_{\Omega} \psi \, d\mu \ge \mu(C).$$

Le résultat s'obtient par passage au supremum parmi tous les compacts $C \subset U$ et par régularité intérieure de λ .

Si $K \subset \Omega$ est compact, par régularité extérieure de μ , pour tout $\varepsilon > 0$ il existe un ouvert $V \subset \Omega$ tel que $K \subset V$ et $\mu(V) \leq \mu(K) + \varepsilon$. On peut trouver une fonction $\varphi \in \mathcal{C}_c(\Omega)$ telle que $0 \leq \varphi \leq 1$, $\varphi = 1$ sur K et $\varphi = 0$ sur $\Omega \setminus V$. Par conséquent

$$\limsup_{n\to\infty} \mu_n(K) \leq \lim_{n\to\infty} \int_{\Omega} \varphi \, d\mu_n = \int_{\Omega} \varphi \, d\mu \leq \mu(V) \leq \mu(K) + \varepsilon.$$

On obtient le résultat en faisant tendre $\varepsilon \to 0$.

Si $E \subset \Omega$ est un Borélien borné tel que $\overline{E} \subset \Omega$ et $\mu(\partial E) = 0$, alors

$$\mu(E) = \mu(\mathring{E}) \le \liminf_{n \to \infty} \mu_n(\mathring{E}) \le \liminf_{n \to \infty} \mu_n(E) \le \limsup_{n \to \infty} \mu_n(E) \le \liminf_{n \to \infty} \mu_n(\overline{E}) \le \mu(\overline{E}) = \mu(E),$$

ce qui conclut la preuve de la proposition.

Dans le cas d'une suite de mesures vectorielles, nous avons un analogue au dernier point de la Proposition 1.3.3.

Proposition 1.3.4. Soit $\{\mu_n\}_{n\in\mathbb{N}}\subset\mathcal{M}(\Omega;\mathbb{R}^d)$ telle que $\mu_n\rightharpoonup\mu$ faible* dans $\mathcal{M}(\Omega;\mathbb{R}^d)$ et $|\mu_n|\rightharpoonup\lambda$ faible* dans $\mathcal{M}(\Omega)$ où $\mu\in\mathcal{M}(\Omega;\mathbb{R}^d)$ et $\lambda\in\mathcal{M}(\Omega)$ est une mesure positive. Alors $\lambda\geq |\mu|$ et si E est un Borélien borné tel que $\overline{E}\subset\Omega$ et $\lambda(\partial E)=0$, alors

$$\mu_n(E) \to \mu(E)$$
.

Démonstration. Soit U un ouvert borné tel que $\overline{U} \subset \Omega$. Pour t > 0 petit, on pose $U_t := \{x \in U : \operatorname{dist}(x, \partial U) > t\}$ de sorte que $\overline{U}_t \subset U$. Par semi-continuité inférieure de la variation, il vient, pour tout t > 0,

$$|\mu|(U_t) \leq \liminf_{n \to \infty} |\mu_n|(U_t) \leq \lambda(\overline{U}_t) \leq \lambda(U).$$

Par passage à la limite quand $t \to 0$, il vient que $|\mu|(U) \le \lambda(U)$. Par régularité extérieure des mesures de Radon positives $|\mu|$ et λ , on en déduit que $|\mu| \le \lambda$.

On écrit

$$\mu_n = (\mu_{n,1}, \dots, \mu_{n,d}), \quad \mu = (\mu_1, \dots, \mu_d)$$

et, pour tout $1 \leq i \leq d$, $\mu_{n,i} = \mu_{n,i}^+ - \mu_{n,i}^-$ avec $|\mu_{n,i}| = \mu_{n,i}^+ + \mu_{n,i}^-$. Quitte à extraire une soussuite, il existe une mes de Radon positive $\nu_i \in \mathcal{M}(\Omega)$ telle que $\mu_{n,i}^+ \rightharpoonup \nu_i$ faible* dans $\mathcal{M}(\Omega)$. De plus, comme $|\mu_n| \geq \mu_{n,i}^+$, il vient par passage à la limite que $\lambda \geq \nu_i$. En particulier, comme $\nu_i(\partial E) \leq \lambda(\partial E) = 0$, on en déduit de la Proposition (1.3.3) que

$$\mu_{n,i}^+(E) \to \nu_i(E).$$
 (1.3.1)

De même, comme $\mu_{n,i}^- = \mu_{n,i}^+ - \mu_{n,i} \rightharpoonup \nu_i - \mu_i$ faible* dans $\mathcal{M}(\Omega)$ et $|\mu_n| \ge \mu_{n,i}^-$, on en déduit que $\lambda \ge \nu_i - \mu_i$ ce qui implique que

$$\mu_{n,i}^{-}(E) \to \nu_i(E) - \mu_i(E).$$
 (1.3.2)

Le résultat suit en faisant la différence entre (1.3.1) et (1.3.2).

Un outil important pour approcher les fonctions, distributions ou mesures est la convolution.

Définition 1.3.5. Soit $\mu \in \mathcal{M}(\Omega; \mathbb{R}^d)$ et $f : \mathbb{R}^N \to \mathbb{R}$ une fonction continue bornée. On définit la convolution de μ et f par la fonction

$$\mu * f(x) := \int_{\Omega} f(x - y) \, d\mu(y).$$

Une application importante est celle où $f=\eta_{\varepsilon}$ est une famille de noyaux de convolution de la forme

$$\eta_{\varepsilon}(x) = \frac{1}{\varepsilon^N} \eta\left(\frac{x}{\varepsilon}\right), \quad x \in \mathbb{R}^N,$$

où $\eta \in \mathcal{C}^\infty_c(\mathbb{R}^N)$ est une fonction positive, paire qui satisfait $\operatorname{Supp}(\eta) \subset \overline{B}_1(0)$ et $\int_{\mathbb{R}^N} \eta(y) \, dy = 1$.

Proposition 1.3.6. Soit $\Omega \subset \mathbb{R}^N$ un ouvert et $\mu \in \mathcal{M}(\Omega; \mathbb{R}^d)$. Pour $\varepsilon > 0$, on définit

$$\mu * \eta_{\varepsilon}(x) = \int_{\Omega} \eta_{\varepsilon}(x - y) \, d\mu(y) = \varepsilon^{-N} \int_{\Omega} \eta\left(\frac{x - y}{\varepsilon}\right) d\mu(y)$$

pour $x \in \Omega_{\varepsilon} := \{z \in \Omega : \operatorname{dist}(z, \partial \Omega) > \varepsilon\}$. Alors

- (a) $\mu * \eta_{\varepsilon} \in \mathcal{C}^{\infty}(\Omega_{\varepsilon}; \mathbb{R}^d)$ et $\partial^{\alpha}(\mu * \eta_{\varepsilon}) = \mu * (\partial^{\alpha}\eta_{\varepsilon})$ pour tout $\alpha \in \mathbb{N}^N$;
- (b) La mesure $\mu_{\varepsilon} := (\mu * \eta_{\varepsilon}) \mathcal{L}^N$ convergence localement faible* vers μ dans $\mathcal{M}_{loc}(\Omega; \mathbb{R}^d)$ et

$$|\mu_{\varepsilon}|(A) = \int_{A} |\mu * \eta_{\varepsilon}|(x) dx \le |\mu|(A + B_{\varepsilon}(0))$$

pour tout Borélien $A \subset \Omega_{\varepsilon}$.

 $D\acute{e}monstration$. (a) On calcule la limite du taux d'accroissement par passage à la limite sous le signe intégrale et convergence dominée, puis on raisonne par récurrence sur α .

(b) Soient $\varphi \in \mathcal{C}_c(\Omega)$ et $\varepsilon > 0$ assez petit tel que $\operatorname{Supp}(\varphi) \subset \Omega_{\varepsilon}$. A l'aide du théorème de Fubini et de la parité de η , on a

$$\int_{\Omega} (\mu * \eta_{\varepsilon})(x) \varphi(x) dx = \int_{\Omega} \left(\int_{\Omega} \eta_{\varepsilon}(x - y) d\mu(y) \right) \varphi(x) dx$$

$$= \int_{\Omega} \left(\int_{\Omega} \eta_{\varepsilon}(y - x) \varphi(x) dx \right) d\mu(y)$$

$$= \int_{\Omega} \varphi * \eta_{\varepsilon} d\mu.$$

Comme φ est continue à support compact, $\varphi * \eta_{\varepsilon} \to \varphi$ uniformément sur Ω et donc, du fait que $|\mu|$ est une mesure finie,

$$\lim_{\varepsilon \to 0} \int_{\Omega} (\mu * \eta_{\varepsilon})(x) \varphi(x) dx = \lim_{\varepsilon \to 0} \int_{\Omega} \varphi * \eta_{\varepsilon} d\mu = \int_{\Omega} \varphi d\mu,$$

ce qui montre $\mu_{\varepsilon} \rightharpoonup \mu$ localement faible* dans $\mathcal{M}_{loc}(\Omega; \mathbb{R}^d)$. De plus, comme μ_{ε} est une mesure absolument continue par rapport à la mesure de Lebesgue, on a de nouveau par le théorème de Fubini

$$|\mu_{\varepsilon}|(A) = \int_{A} |\mu * \eta_{\varepsilon}|(x) \, dx \le \int_{A} \int_{\Omega} \eta_{\varepsilon}(x - y) \, d|\mu|(y) \, dx$$

$$\le \int_{\Omega} \int_{A} \eta_{\varepsilon}(x - y) \, dx \, d|\mu|(y) \le \int_{A + B_{\varepsilon}(0)} \int_{A} \eta_{\varepsilon}(x - y) \, dx \, d|\mu|(y) \le |\mu|(A + B_{\varepsilon}(0)).$$

1.4 Différentiation de mesures

Dans la suite, nous allons considérer des familles \mathcal{F} de boules fermées dans \mathbb{R}^N . Une telle famille \mathcal{F} est un recouvrement de $A \subset \mathbb{R}^N$ si pour tout $x \in A$, il existe une boule $B \in \mathcal{F}$ centrée en x. Nous dirons que \mathcal{F} est un recouvrement fin de A si, pour tout $x \in A$ et tout $\delta > 0$, il existe une boule $B \in \mathcal{F}$ centrée en x telle que diam $(B) \leq \delta$.

On admet le résultat suivant (voir [1, Theorem 2.17]).

Théorème 1.4.1 (de recouvrement de Besicovitch). Il existe un entier $\xi = \xi(N) \in \mathbb{N}$ qui ne dépend que de la dimension N avec la propriété suivante : soit $A \subset \mathbb{R}^N$ un ensemble borné et \mathcal{F} un recrouvrement de A par des boules fermées et tel que

$$\sup\{\operatorname{diam}(B), B \in \mathcal{F}\} < \infty.$$

Alors, il existe ξ sous-familles $\mathcal{F}_1, \ldots, \mathcal{F}_{\xi}$ de \mathcal{F} telles que, pour tout $j \in \{1, \ldots, \xi\}$, \mathcal{F}_j est une famille dénombrable de boules deux à deux disjointes et

$$A \subset \bigcup_{j=1}^{\xi} \bigcup_{B \in \mathcal{F}_j} B.$$

Un corollaire du résultat précédent concerne les recouvrement d'un ensemble par une union dénombrable composée de boules fermées deux à deux disjointes à un ensemble de mesure μ près, où μ est une mesure de Radon arbitraire.

Corollaire 1.4.2. Soit $A \subset \mathbb{R}^N$ un ensemble Borélien borné et \mathcal{F} un recouvrement fin de A. Alors, pour toute mesure de Radon positive μ sur \mathbb{R}^N , il existe une sous famille $\mathcal{G}_{\mu} \subset \mathcal{F}$ dénombrable disjointe telle que

$$\mu\left(A\setminus\bigcup_{B\in\mathcal{G}_{\mu}}B\right)=0.$$

Démonstration. Soit $\xi \in \mathbb{N}$ donné par le théorème 1.4.1 et $\delta = 1 - 1/(2\xi)$. En posant $A_0 = A$, il existe ξ sous-familles $\mathcal{F}_1, \dots, \mathcal{F}_{\xi}$ telles que, pour tout $j \in \{1, \dots, \xi\}, \mathcal{F}_j$ est une famille dénombrable composée de boules fermées deux à deux disjointes et

$$A_0 \subset \bigcup_{j=1}^{\xi} \bigcup_{B \in \mathcal{F}_i} B.$$

En particulier, il existe $i \in \{1, ..., \xi\}$ tel que

$$\mu\left(A_0\cap\bigcup_{B\in\mathcal{F}_i}B\right)\geq \frac{1}{\xi}\mu(A).$$

Comme $\mu(A_0) < \infty$, on peut donc trouver une sous famille finie $\mathcal{G}_1 \subset \mathcal{F}_1$ qui satisfait

$$\mu\left(A_0\cap\bigcup_{B\in\mathcal{G}_1}B\right)\geq \frac{1}{2\xi}\mu(A_0).$$

On pose alors $A_1:=A_0\setminus\bigcup_{B\in\mathcal{G}_1}B$ et on applique le même argument au recouvrement fin de A_1 donné par

$$\mathcal{F}' := \left\{ B' \in \mathcal{F} : B' \cap \bigcup_{B \in \mathcal{G}_1} B = \emptyset \right\}$$

dont on extrait une sous-famille finie disjointe \mathcal{G}_2 telle que

$$\mu\left(A_1 \cap \bigcup_{B \in \mathcal{G}_2} B\right) \ge \frac{1}{2\xi}\mu(A_1).$$

En particulier, $\mathcal{G}_1 \cup \mathcal{G}_2$ est également finie et disjointe et, en posant $A_2 := A_1 \setminus \bigcup_{B \in \mathcal{G}_2} B$, on a $\mu(A_2) \leq \delta \mu(A_1)$.

Par récurrence, on construit pour tout $k \in \mathbb{N}$ un ensemble $A_{k+1} \subset A_k$ telle que $\mu(A_{k+1}) \leq \delta\mu(A_k)$ et une famille finie disjointe \mathcal{G}_{k+1} telle que $\bigcup_{j=1}^{k+1} \mathcal{G}_j$ est disjointe et

$$A_{k+1} = A_k \setminus \bigcup_{B \in \mathcal{G}_{k+1}} B = \dots = A \setminus \bigcup_{B \in \bigcup_{i=1}^{k+1} \mathcal{G}_i} B.$$

En particulier, comme $\mu(A_k) \to 0$ et la famille dénombrable et disjointe $\mathcal{G} = \bigcup_{k=1}^{\infty} \mathcal{G}_k$ satisfait

$$A \setminus \bigcup_{B \in \mathcal{G}} B \subset \bigcap_{k=1}^{\infty} A_k,$$

on obtient effectivement que $\mu(A \setminus \bigcup_{B \in \mathcal{G}} B) = 0$.

Si λ et μ sont deux mesures de Radon positives sur Ω , on définit pour $x \in \operatorname{Supp}(\lambda)$

$$D_{\lambda}^{+}\mu(x) := \limsup_{\varrho \to 0} \frac{\mu(B_{\varrho}(x))}{\lambda(B_{\varrho}(x))}, \quad D_{\lambda}^{-}\mu(x) := \liminf_{\varrho \to 0} \frac{\mu(B_{\varrho}(x))}{\lambda(B_{\varrho}(x))}.$$

Lemme 1.4.3. Pour tout $\varrho > 0$, la fonction $x \in \Omega \mapsto \lambda(B_{\varrho}(x))$ est semi-continue inférieurement. Pour tout $x \in \Omega$, la fonction $\varrho \mapsto \lambda(B_{\varrho}(x))$ est continue à gauche.

Démonstration. Soit $x_k \to x$, $f_k := \chi_{B_o(x_k)}$ et $f = \chi_{B_o(x)}$. Alors on a

$$\liminf_{k \to \infty} f_k(y) \ge f(y) \quad \text{ pour tout } y \in \mathbb{R}^N.$$

Cette inégalité est immédiate si $y \notin B_{\varrho}(x)$. Si en revanche $y \in B_{\varrho}(x)$, alors $|x - y| < \varrho$, ce qui implique que $|x_k - y| < \varrho$ pour k assez grand. Par conséquent, le Lemme de Fatou implique que

$$\liminf_{k \to \infty} \int_{\mathbb{R}^N} f_k \, d\lambda \ge \int_{\mathbb{R}^N} f \, d\lambda,$$

ce qui montre effectivement que

$$\liminf_{k \to \infty} \lambda(B_{\varrho}(x_k)) \ge \lambda(B_{\varrho}(x)).$$

Soit $\varrho_k \nearrow \varrho$, alors la suite d'ensembles $\{B_{\varrho_k}(x)\}_{k\in\mathbb{N}}$ est croissante au sens de l'inclusion et $\bigcup_k B_{\varrho_k}(x) = B_{\varrho}(x)$. Par convergence monotone, on obtient alors que $\lambda(B_{\varrho_k}(x)) \to \lambda(B_{\varrho}(x)$.

Le Lemme 1.4.3 montre que les fonctions $D_{\lambda}^{\pm}\mu$ sont Boréliennes sur Ω . De plus comme les boules ouvertes peuvent être approchées par l'intérieur par des boules fermées, les densités $D_{\lambda}^{\pm}\mu$ ne changent pas si l'on remplace les boules ouvertes par des boules fermées.

Proposition 1.4.4. Soient λ et μ deux mesures de Radon positives sur Ω et $t \geq 0$. Pour tout Borélien $A \subset \text{Supp}(\lambda)$, on a les deux implications suivantes :

$$D_{\lambda}^{-}\mu(x) \le t \quad \forall \ x \in A \implies \mu(A) \le t\lambda(A);$$
 (1.4.1)

$$D_{\lambda}^{+}\mu(x) \ge t \quad \forall \ x \in A \implies \mu(A) \ge t\lambda(A).$$
 (1.4.2)

Démonstration. Montrons (1.4.1). Soit U un ouvert contenant A et $\varepsilon > 0$. Pour tout $x \in A$ et tout $\delta > 0$, il existe $\varrho(x) \in (0, \delta)$ tel que $\overline{B}_{\varrho(x)}(x) \subset U$ et

$$\mu(\overline{B}_{\varrho(x)}(x)) \le (t+\varepsilon)\lambda(\overline{B}_{\varrho(x)}(x)).$$

On définit

$$\mathcal{F}_{\varepsilon} := \left\{ \overline{B}_{\rho}(x) : x \in A, \ \overline{B}_{\rho}(x) \subset U, \ \mu(\overline{B}_{\rho}(x)) \le (t + \varepsilon)\lambda(\overline{B}_{\rho}(x)) \right\}.$$

Par hypothèse, $\mathcal{F}_{\varepsilon}$ est un recouvrement fin de A. Le théorème de recouvrement de Besicovitch montre alors l'existence sur sous-famille dénombrable et disjointe $\mathcal{F}'_{\varepsilon} := \{\overline{B}_i\}_{i \in \mathbb{N}} \subset \mathcal{F}_{\varepsilon}$ telle que

$$\mu\left(A\setminus\bigcup_{i\in\mathbb{N}}\overline{B}_i\right)=0.$$

Par conséquent,

$$\mu(A) = \sum_{i=0}^{\infty} \mu(\overline{B}_i) \le (t+\varepsilon) \sum_{i=0}^{\infty} \lambda(\overline{B}_i) = (t+\varepsilon)\lambda\left(\bigcup_{i\in\mathbb{N}} \overline{B}_i\right) \le (t+\varepsilon)\lambda(U).$$

Par passage à l'infimum parmi tous les ouverts U contenant A et en faisant tendre $\varepsilon \to 0$, on en déduit que $\mu(A) \le t\lambda(A)$. La preuve de (1.4.2) est similaire.

Théorème 1.4.5 (Différentiation de Besicovitch). Soit λ une mesure de Radon positive sur Ω et $\mu \in \mathcal{M}(\Omega; \mathbb{R}^d)$. Alors pour λ -presque tout $x \in \text{Supp}(\lambda)$, la limite

$$f(x) := \lim_{\varrho \to 0} \frac{\mu(B_{\varrho}(x))}{\lambda(B_{\varrho}(x))}$$

existe dans \mathbb{R}^d . De plus la décomposition de Radon-Nikodým de μ est donnée par

$$\mu = f\lambda + \mu^s$$

où $\mu^s = \mu \bot E$ et E est l'ensemble λ -négligeable

$$E = (\Omega \setminus \operatorname{Supp}(\lambda)) \cup \left\{ x \in \Omega : \lim_{\varrho \to 0} \frac{|\mu|(B_{\varrho}(x))}{\lambda(B_{\varrho}(x))} = \infty \right\}.$$

 $D\acute{e}monstration$. En raisonnant sur chacune des composantes de μ et en décomposant chacune des composantes en la différence entre la partie positive et négative, on peut supposer sans restreindre la généralité que μ est une mesure positive finie.

D'après la Proposition 1.4.4,

$$\lambda(\{D_{\lambda}^{+}\mu = \infty\}) \le \lambda(\{D_{\lambda}^{+}\mu \ge t\}) \le \frac{1}{t}\mu(\{D_{\lambda}^{+}\mu \ge t\}) \le \frac{1}{t}\mu(\Omega) \to 0 \quad \text{quand } t \to \infty,$$

de sorte que $0 \le D_{\lambda}^{-}\mu \le D_{\lambda}^{+}\mu < \infty$ λ -p.p. $x \in \Omega$. Par conséquent, $\lambda(E) = 0$. On pose $F := \Omega \setminus E$ et nous allons montrer que $D_{\lambda}^{+}\mu = D_{\lambda}^{-}\mu$ λ -p.p. dans Ω . Pour ce faire, on définit pour tout Borélien $A \subset \Omega$,

$$\nu^{\pm}(A) = \int_{A} D_{\lambda}^{\pm} \mu(x) \, d\lambda(x).$$

Pour tout Borélien $A \subset F$, tout t > 1 et tout $n \in \mathbb{Z}$, on introduit

$$A_n = \{ x \in A : D_{\lambda}^+ \mu(x) \in (t^n, t^{n+1}] \}$$

de sorte que $\bigcup_n A_n = A \cap \{D_{\lambda}^+ \mu > 0\}$. D'après la Proposition 1.4.4,

$$\nu^+(A_n) \le t^{n+1} \lambda(A_n) \le t\mu(A_n),$$

puis en sommant pour $n \in \mathbb{Z}$, on obtient que $\nu^+(A) \le t\mu(A)$. Par passage à la limite quand $t \to 1$, il vient $\nu^+(A) \le \mu(A)$ et on montre de même que $\mu(A) \le \nu^-(A)$ en utilisant le fait que, par la Proposition 1.4.4, on a $\mu(\{D_{\lambda}^-\mu=0\})=0$. Par conséquent

$$\nu^+ = \nu^- = \mu \, \bot \, F,$$

ce qui montre que $f := D_{\lambda}^{+} \mu = D_{\lambda}^{-} \mu \lambda$ -p.p. dans Ω et que $\mu \perp F = f\lambda$.

Corollaire 1.4.6 (Points de Lebesgue). Soit λ une mesure de Radon positive sur un ouvert $\Omega \subset \mathbb{R}^N$ et $f \in L^1_{\lambda}(\Omega; \mathbb{R}^d)$. Alors, pour λ -presque tout $x \in \Omega$, on a

$$\lim_{\varrho \to 0} \frac{1}{\lambda(B_{\varrho}(x))} \int_{B_{\varrho}(x)} |f(y) - f(x)| \, d\lambda(y) = 0.$$

Démonstration. On applique le théorème de différentiation de Besicovitch à la mesure $\mu = |f - q|\lambda$ où $q \in \mathbb{Q}$, ce qui montre l'existence d'un ensemble Borélien E_q λ -négligeable (et donc aussi μ -négligeable) tel que pour tout $x \in \Omega \setminus E_q$,

$$\lim_{\varrho \to 0} \frac{1}{\lambda(B_{\varrho}(x))} \int_{B_{\varrho}(x)} |f(y) - q| \, d\lambda(y) = |f(x) - q|.$$

On pose $E := \bigcup_{q \in \mathbb{Q}} E_q$ qui est un Borélien λ -négligeable de Ω . Pour tout $x \in \Omega \setminus E$ et tout $q \in \mathbb{Q}$, on a alors

$$\limsup_{\varrho \to 0} \frac{1}{\lambda(B_{\varrho}(x))} \int_{B_{\varrho}(x)} |f(y) - f(x)| \, d\lambda(y) \leq \lim_{\varrho \to 0} \frac{1}{\lambda(B_{\varrho}(x))} \int_{B_{\varrho}(x)} |f(y) - q| \, d\lambda(y) + |f(x) - q| \\ \leq 2|f(x) - q|.$$

Par densité de \mathbb{Q} dans \mathbb{R} , on peut faire tendre $q \to f(x)$, ce qui implique le résultat.

Corollaire 1.4.7 (Décomposition polaire d'une mesure vectorielle). Soit $\mu \in \mathcal{M}(\Omega; \mathbb{R}^d)$. Alors il existe une fonction $f \in L^1_{|\mu|}(\Omega; \mathbb{R}^d)$ telle que

$$\mu = f|\mu|, \quad |f(x)| = 1 \ |\mu|$$
-presque pour tout $x \in \Omega$.

Démonstration. On applique le théorème de différentiation de Besicovitch à la mesure $\lambda = |\mu|$. Dans ce cas, $E = \Omega \setminus \text{Supp}(|\mu|)$ et comme $|\mu(E)| \leq |\mu|(E) = 0$, on en déduit que $\mu = f|\mu|$ où, pour $|\mu|$ -presque tout $x \in \Omega$,

$$f(x) := \lim_{\varrho \to 0} \frac{\mu(B_{\varrho}(x))}{|\mu|(B_{\varrho}(x))}.$$

Comme $|\mu(B_{\varrho}(x))| \leq |\mu|(B_{\varrho}(x))$, on a toujours l'inégalité $|f(x)| \leq 1$ pour $|\mu|$ -presque tout $x \in \Omega$. Par ailleurs, d'après la Proposition 1.1.9, on a $|\mu| = |f||\mu|$ ce qui implique que

$$\int_{\Omega} (1 - |f|) \, d|\mu| = 0.$$

On en déduit alors que $|f| = 1 |\mu|$ -p.p. dans Ω .