Processus ponctuels marqués et reconnaissance des formes

Radu Stoica email : Radu.Stoica@avignon.inra.fr

> INRA Avignon - Biometrie Domaine St. Paul, site Agroparc 84914 Avignon, Cedex 9 France

Quelques préliminaires

Définition de la forme :

- que chose de "complexe" : construite à partir des objets "simples" qui interagissent entre eux
- example : lego

Question :

- -trouver la forme cachée dans les données
- difficulté : chercher dans des grandes quantités des données \Rightarrow automatisation

Hypothèse clef :

 la forme que l'on cherche est la réalisation d'un processus ponctuel marqué - processus objet

Processus ponctuels marqués (1)

- **Définition :** un ensemble aléatoire $\mathbf{y} = \{y_n = (k_n, m_n)\}$ tel que $n \in \mathbb{N}_0$ avec :
 - points k_n : emplacement des objets
 - marques m_n : caractéristiques des objets (forme géométrique d'un objet aléatoire, mais aussi : espèce, âge, maladie, etc.)

Le plus simple processus ponctuel est le processus ponctuel de Poisson.

Cadre probabiliste : exemple d'une densité basée sur des interactions par paires

$$p(\mathbf{y}) \propto \beta^{n(\mathbf{y})} \prod_{y_i, y_j \in \mathbf{y}; y_i \sim y_j} h(y_i, y_j)$$

avec $h(\cdot, \cdot)$ la fonction d'interaction \Rightarrow : Strauss, hard-core, Widom-Rowlinson, Candy, Bisous, etc.

Processus ponctuels marqués (2)

Processus ponctuels de Gibbs :

- physique statistique
- la distribution de Gibbs caractérise l'état d'équilibre des particules à l'intérieur de systèmes physiques fermés

Distribution de Gibbs : une autre forme pour decrire un p.p.m.

$$p(\mathbf{y}) \propto \exp[-U(\mathbf{y})]$$

si par exemple la fonction d'énergie est :

$$U(\mathbf{y}) = -\sum_{i=1}^{n(\mathbf{y})} \log \beta - \sum_{1 \le i < j \le n(\mathbf{y})} \log h(y_i, y_j)$$

Et toc ...

Réponse : la forme recherchée est representée par la configuration d'objets $\hat{\mathbf{y}}$ telle que

$$\hat{\mathbf{y}} = \max_{\mathbf{y}} p(\mathbf{y}) = \min_{\mathbf{y}} U(\mathbf{y})$$

■ Méthodologie : sous les hypothèses enoncées

- modélisation : construction d'un processus ponctuel marqué
- -simulation du modèle : construction des dynamiques MCMC
- inférence statistique : détéction des positions et des characteristiques des objets, estimation des paramètres du modèle

Modélisation (1)

■ Observer les données :

Figure 1: a) Image aérienne - région rurale en Malaysie (http://southport.jpl.nasa.gov), b) Simulation 2d des configurations des galaxies (Université de Valence - Espagne et Tartu Observatory - Estonie).

■ Formuler une hypothèse :

les réseaux fins sont construites à partir

de segments qui se connectent

Modélisation (2)

- **Charactéristiques d'un segment :** $y = (k, l, w, \theta)$
 - $-\,k\in K\subset \mathbb{R}^2$: coordonnées du centre
 - $-l \in [l_{\min}, l_{\max}]$: longueur
 - $-w \in [w_{\min}, w_{\max}]$: épaisseur
 - $-\theta \in [0,\pi)$: orientation
- **Candy modèle :** processus ponctuel marqué qui simule un réseau de segments permettant
 - favoriser les alignements et les connexions entre les segments
 - penaliser les segments non connectés et ceux qui tendent à se superposer
 - permettre les croisements

Modélisation (3)

■ Densité de probabilité du Candy modèle :

$$p(\mathbf{y}) \propto \prod_{i=1}^{n(\mathbf{y})} \exp\left[\frac{l_i - l_{\max}}{l_{\max}} + \frac{w_i - w_{\max}}{w_{\max}}\right] \times \gamma_f^{n_f(\mathbf{y})} \gamma_s^{n_s(\mathbf{y})} \gamma_d^{n_d(\mathbf{y})} \gamma_o^{n_o(\mathbf{y})} \gamma_r^{n_r(\mathbf{y})}$$

avec $\gamma_f, \gamma_s, \gamma_d > 0$ and $\gamma_o, \gamma_r \in (0, 1)$, les paramètres du modèle et $n_f(\mathbf{y})$, $n_s(\mathbf{y}), n_d(\mathbf{y}), n_o(\mathbf{y}), n_r(\mathbf{y})$ les statistiques suffisantes correspondantes.

■ Energie de Gibbs :

$$U_{c}(\mathbf{y}) = -\sum_{i=1}^{n(\mathbf{y})} \frac{l_{i} - l_{\max}}{l_{\max}} + \frac{w_{i} - w_{\max}}{w_{\max}} - n_{f}(\mathbf{y}) \log \gamma_{f}$$
$$-n_{s}(\mathbf{y}) \log \gamma_{s} - n_{d}(\mathbf{y}) \log \gamma_{d} - n_{o}(\mathbf{y}) \log \gamma_{o} - n_{r}(\mathbf{y}) \log \gamma_{r}$$

Modélisation (4)

Topologies obtenues :

Quelques propriétés des processus ponctuels

Avant passer à la simulation : toujours prendre en compte

- stabilité au sens de Ruelle :

 $p(\mathbf{y}) \le M^{n(\mathbf{y})}$

- localement stable :

$$\frac{p(\mathbf{y} \cup \{\eta\})}{p(\mathbf{y})} \le M$$

- processus de Ripley Markov \approx la contribution d'un objet à l'énergie totale du système dépend de l'objet même et de l'interaction avec ses voisins seulement
- monotonie ou anti-monotonie : pouvoir imposer une rélation d'odre sur l'espace des configurations (inclusion)

Techniques MCMC pour simuler des processus ponctuels (1)

- Processus de type naissance-mort : ajouter (naissance) ou enlever (mort) un objet de la configuration
 - le calcul des rapports naissance/mort demande l'integration sur tout l'espace des paramètres ; sinon M doit avoir des valeurs raisonables
 - vitesse de mélangeance : faible
 - convergence : thé oriquement à l'infini
- **Simulation exacte** : CFTP, clan des ancêtres, exact Metropolis-Hastings, Gibbs
 - la chaîne simulée indique elle même la convergence
 - $-\,M$ doit avoir des valeurs trés, trés raisonables
 - utilisable en practique pour des valeurs restreintes des paramètres

Techniques MCMC pour simuler des processus ponctuels (2)

- **Metropolis-Hastings** : un cas particulier des dynamiques à sauts reversibles
 - calculs locaux
 - noyaux de transitions qui aident le modèle
 - -grande souplesse versus convergence à l'infini

Figure 3: Proposer des segments selon une densité non-uniforme.

Détéction des positions et des characteristiques des objets (1) Remarques :

- le Candy modèle tout seul ne détecte pas les réseaux dans les données
- il faut completer le modèle avec un terme d'attache aux données $U_d(\mathbf{y})$:

$$p(\mathbf{y}) \propto \exp[-U_d(\mathbf{y}) - U_c(\mathbf{y})]$$

La configuration des objets recherchés est alors donnée par:

 $\hat{\mathbf{y}} = \min\{U_d(\mathbf{y}) + U_c(\mathbf{y})\}\$

- $-U_d(\mathbf{y})$: terme relatif à l'emplacement du réseau dans l'image
- $-U_c(\mathbf{y})$: terme jouant le rôle d'un prior
- $\, \hat{\mathbf{y}}$ presque un MAP : nous sommes pas tout à fait dans le cadre bayésien

Détéction des positions et des characteristiques des objets (2)

Construction du terme d'attache aux données

- **images aériennes** : tests d'hypothéses considerant que les pixels couverts par un segment suivent une distribution normale

Figure 4: Masques des régions : a) trois régions homogènes, b) deux régions homogènes, c) une région homogène.

la contribution énergetique d'un segment est:

$$v(y_i) = \min\left\{\log\frac{L(H_3)}{L(H_1)}, \log\frac{L(H_3)}{L(H_2)}\right\} + \text{ route blanche/noire}$$

Détéction des positions et des characteristiques des objets (3)

- données astronomiques : comptage des points

la contribution énergetique d'un segment dans le champ de données **d** est:

 $v(y_i) = 2n(\mathbf{d} \cap \tilde{y}_i) - n(\mathbf{d} \cap \tilde{y}_{ir}) - n(\mathbf{d} \cap \tilde{y}_{il}) + \text{ quelques conditions}$

Détéction des positions et des characteristiques des objets (4)

Energie totale :

$$U(\mathbf{y}) = U_c(\mathbf{y}) + U_d(\mathbf{y}) = U_c(\mathbf{y}) + \sum_{i=1}^{n(\mathbf{y})} v(y_i)$$

■ Optimisation globale : recuit simulé

- échantilloner $p(\mathbf{y})^{\frac{1}{T}}$
- pendant que la temperature $T \rightarrow 0$
- convergence assurée par un schéma de descente logarithmique

Figure 7: Extraction des fôrets galeries : a) image originale ; b) vérité terrain ; c)-d) resultats obtenus. Données BRGM.

Structure filamentaire dans des données astronomiques

Estimation des paramètres du Candy modèle (1)

Données complètes : le Candy modèle peut s'écrire

$$p_{\omega}(\mathbf{y}) = \alpha(\omega) \exp\left[t(\mathbf{y})^T \omega\right] h(\mathbf{y})$$

avec la constante de normalisation $\alpha(\omega)$, le vecteur des statistiques suffisantes

$$t(\mathbf{y}) = (n_f(\mathbf{y}), n_s(\mathbf{y}), n_d(\mathbf{y}), n_o(\mathbf{y}), n_r(\mathbf{y}))^T,$$

le vecteur des paramètres

$$\omega = (\log \gamma_f, \log \gamma_s, \log \gamma_d, \log \gamma_o, \log \gamma_r)^T,$$

et :

$$h(\mathbf{s}) = \prod_{i=1}^{n} \exp\left[\frac{l_i - l_{\max}}{l_{\max}} + \frac{w_i - w_{\max}}{w_{\max}}\right]$$

Estimation des paramètres du Candy modèle (2)

Suivant l'approche de [Geyer, 1999], le rapport des constantes de normalisation peut s'écrire :

$$\alpha(\omega_0)/\alpha(\omega) = E_{\omega_0} \exp\left[t(Y)^T(\omega - \omega_0)\right]$$

ce qui donne pour la log-vraisemblance par rapport à un paramètre fixé ω_0 :

$$l(\omega) = \log \frac{p_{\omega}(\mathbf{y})}{p_{\omega_0}(\mathbf{y})}$$

= $t(\mathbf{y})^T (\omega - \omega_0) - \log E_{\omega_0} \exp \left[t(Y)^T (\omega - \omega_0)\right].$ (1)

avec l'espérance dans $(\ref{eq:section})$ qui peut être calculée par des approximations de type *Monte Carlo* :

$$\frac{1}{n}\sum_{i=1}^{n}\exp\left[t(Y_i)^T(\omega-\omega_0)\right]$$

Estimation des paramètres du Candy modèle (3)

Il est alors possible de calculer, le gradient

$$\nabla l(\omega) = t(\mathbf{s}) - E_{\omega}t(S)$$

et le hessien

$$I(\omega) = -\nabla^2 l(\omega) = \operatorname{Var}_{\omega} t(S)$$

de la fonction de log-vraisemblance.

■ Méthode de gradient à pas optimal : pour obtenir une valeur initiale suffisament proche de l'estimateur de maximum de vraisemblance

$$\begin{cases} l_n(\omega_k + \rho(\omega_k)\nabla l_n(\omega_k)) = \max_{\rho \in \mathbb{R}} l_n(\omega_k + \rho\nabla l_n(\omega_k)) \\ \omega_{k+1} = \omega_k + \rho(\omega_k)\nabla l_n(\omega_k) \end{cases}$$

avec $\rho(\omega_k)$ le pas optimal.

Estimation des paramètres du Candy modèle (4) ■ Modèle de référence:

Paramètres du modèle	Statistiques suffisantes
$\gamma_f = 0.0002$	$n_f = 4$
$\gamma_s = 0.05$	$n_{s} = 34$
$\gamma_d = 12.2$	$n_d = 63$
$\gamma_o = 0.08$	$n_o = 12$
$\gamma_r = 0.08$	$n_r = 9$

Figure 9: Réalisation du modèle à estimer.

Estimation des paramètres du Candy modèle (5)

■ Résultats :

Conditions	Méthode de	Monte
Initiales	gradient	Carlo MLE
$\omega_{f}^{i} = -9.5$	$\hat{\omega}_{f}^{0} = -8.37$	$\hat{\omega}_f^n = -8.32$
$\omega_{s}^{i} = -4.0$	$\hat{\omega}_{s}^{0} = -2.74$	$\hat{\omega}_s^n = -2.73$
$\omega_d^i = 1.5$	$\hat{\omega}_{d}^{0} = 2.46$	$\hat{\omega}_d^n = 2.47$
$\omega_o^i = -3.5$	$\hat{\omega}_o^0 = -2.13$	$\hat{\omega}_o^n = -2.17$
$\omega_r^i = -3.5$	$\hat{\omega}_r^0 = -2.42$	$\hat{\omega}_r^n = -2.42$

Figure 10: Estimation des paramètres du modèle de réference.

Etude des erreurs :

Ecart type assymptotique	MCSE
$\hat{\omega}-\omega_{vrai}$	$\hat{\omega}-\hat{\omega^n}$
0.51	0.002
0.23	0.003
0.17	0.001
0.30	0.002
0.31	0.005

Figure 1	1: E	rreurs o	l'estima	tion.
----------	------	----------	----------	-------

Figure 12: Représentation de la fonction de log-vraisemblance par rapport à chacune des variables prises individualement.

Les gens ...

- INRIA : Xavier Descombes, Josiane Zerubia
- IGN et BRGM : Hervé Le Men et Nicolas Baghdadi
- \blacksquare CWI : Marie-Colette van Lieshout
- $\blacksquare \, \textbf{UJI} \ :$ Pablo Gregori, Jorge Mateu
- **OA-UV et TO** : Vicent Martinez et Enn Saar
 - ... et la liste n'est pas encore finie ...

\dots et là tu fais quoi, toi ?

∎ INRA :

- détection d'agrégats (Emilie et Rachid)
- -modélisation paysage (Kassia, Hervé et Kien)
- discussions (André)
- $-\operatorname{discussions}$ (Joël)

Processus ponctuels :

- applications à des données 3d : Bisous modèle
- estimation des paramètres : données complètes et incomplètes
- simulation exacte : problème ouvert

