Modelling Daily Rain with Multisite Measures using Latent Gaussian Fields

P. Bulla, O. Cappé, E. Parent, J.M. Marin, C. Robert, J. Rousseau

Paris, 25/01/2006

The Problem

The Data:
(1) 105 rainfall stations in the Seine basin;
(2) daily observations during 27 years from 1975 to 2001 with many missing values:

- only 14 stations are complete,
- in 72 stations missing values $<10 \%$,
- but in 13 they are $>50 \%$.

The Problem

The Data:
(1) 105 rainfall stations in the Seine basin;
(2) daily observations during 27 years from 1975 to 2001 with many missing values:

- only 14 stations are complete,
- in 72 stations missing values $<10 \%$,
- but in 13 they are $>50 \%$.

The Problem

The Data:
(1) 105 rainfall stations in the Seine basin;
(2) daily observations during 27 years from 1975 to 2001 with many missing values:

- only 14 stations are complete,
- in 72 stations missing values $<10 \%$,
- but in 13 they are > 50\%.

The Problem

The Data:

(1) 105 rainfall stations in the Seine basin;
(2) daily observations during 27 years from 1975 to 2001 with many missing values:

- only 14 stations are complete,
- in 72 stations missing values $<10 \%$,
- but in 13 they are $>50 \%$.

The Seine Basin

Some Histograms of Rain Amounts

The Aim

Our aim id to build a model for rainfall introducing spatial dependence between different stations.

Modelling daily rainfalls involves:

- description of the precipitation occurrences;
- specification of the distributions of nonzero rainfall amounts.

The Aim

Our aim id to build a model for rainfall introducing spatial dependence between different stations.

Modelling daily rainfalls involves:

- description of the precipitation occurrences;
- specification of the distributions of nonzero rainfall amounts.

The Aim

Our aim id to build a model for rainfall introducing spatial dependence between different stations.

Modelling daily rainfalls involves:

- description of the precipitation occurrences;
- specification of the distributions of nonzero rainfall amounts.

The Aim

Our aim id to build a model for rainfall introducing spatial dependence between different stations.

Modelling daily rainfalls involves:

- description of the precipitation occurrences;
- specification of the distributions of nonzero rainfall amounts.

Wilks' Local Precipitation Model

Precipitation occurrence process

At site k, a two state Markov chain $s_{t k}, t \geq 0$ governs daily precipitation occurrence so that

$$
s_{t k}= \begin{cases}0 & \text { day } t \text { is dry at } k \tag{1}\\ 1 & \text { day } t \text { is wet at } k\end{cases}
$$

The transition probabilities are stationary with respect to time.

Wilks' Local Precipitation Model

At site k, a two state Markov chain $s_{t k}, t \geq 0$ governs daily precipitation occurrence so that

$$
s_{t k}= \begin{cases}0 & \text { day } t \text { is dry at } k \tag{1}\\ 1 & \text { day } t \text { is wet at } k\end{cases}
$$

The transition probabilities are stationary with respect to time.

$$
P_{t}(k)=P(k)=\left[\begin{array}{ll}
p_{0}(k) & 1-p_{0}(k) \tag{2}\\
p_{1}(k) & 1-p_{1}(k)
\end{array}\right]
$$

Wilks' Local Precipitation Model

Precipitation amounts process

The time series of precipitation amounts at location k is

$$
\begin{equation*}
R_{t k}=r_{t k} s_{t k} \tag{3}
\end{equation*}
$$

where $r_{t k}$ represents the nonzero precipitation amounts and has density independent of t

- Two components mixture exponential model: light and heavy rain, "continuity" property of the precipitation.

Wilks' Local Precipitation Model

Precipitation amounts process

The time series of precipitation amounts at location k is

$$
\begin{equation*}
R_{t k}=r_{t k} s_{t k} \tag{3}
\end{equation*}
$$

where $r_{t k}$ represents the nonzero precipitation amounts and has density independent of t

$$
\begin{equation*}
f\left(r_{k}\right)=\frac{\alpha_{k}}{\beta_{k 1}} \exp \left[-\frac{r_{k}}{\beta_{k 1}}\right]+\frac{1-\alpha_{k}}{\beta_{k 2}} \exp \left[-\frac{r_{k}}{\beta_{k 2}}\right] \tag{4}
\end{equation*}
$$

with $\beta_{k 1} \geq \beta_{k 2}>0,0<\alpha_{k} \leq 1$.

- Two components mixture exponential model: light and heavy rain, "continuity" property of the precipitation.

Wilks' Local Precipitation Model

Precipitation amounts process

The time series of precipitation amounts at location k is

$$
\begin{equation*}
R_{t k}=r_{t k} s_{t k} \tag{3}
\end{equation*}
$$

where $r_{t k}$ represents the nonzero precipitation amounts and has density independent of t

$$
\begin{equation*}
f\left(r_{k}\right)=\frac{\alpha_{k}}{\beta_{k 1}} \exp \left[-\frac{r_{k}}{\beta_{k 1}}\right]+\frac{1-\alpha_{k}}{\beta_{k 2}} \exp \left[-\frac{r_{k}}{\beta_{k 2}}\right] \tag{4}
\end{equation*}
$$

with $\beta_{k 1} \geq \beta_{k 2}>0,0<\alpha_{k} \leq 1$.
Idea:

- Two components mixture exponential model: light and heavy rain, "continuity" property of the precipitation.

Multisite Precipitation Model

Consider K sites simultaneously, let $\boldsymbol{s}_{t}=\left(s_{t 1}, \ldots, s_{t K}\right)^{\prime}$ and $\boldsymbol{r}_{t}=\left(r_{t 1}, \ldots, r_{t K}\right)^{\prime}, \forall t$.

Given s_{t-1}, to introduce spatial dependence between K sites, Wilks(1998) suggests to take

- $\boldsymbol{v}_{t}=\left(v_{t 1}, \ldots, v_{t K}\right)^{\prime} \sim \operatorname{MN}\left(\mathbf{N}, \boldsymbol{\Sigma}_{v}\right)$ ruling the amount of rain
where $\boldsymbol{\Sigma}_{u}$ and $\boldsymbol{\Sigma}_{v}$ are two correlation matrices and $\boldsymbol{u}_{t} \perp \boldsymbol{v}_{t} \forall t$.

Multisite Precipitation Model

Consider K sites simultaneously, let $\boldsymbol{s}_{t}=\left(s_{t 1}, \ldots, s_{t K}\right)^{\prime}$ and $\boldsymbol{r}_{t}=\left(r_{t 1}, \ldots, r_{t K}\right)^{\prime}, \forall t$.

Given \boldsymbol{s}_{t-1}, to introduce spatial dependence between K sites, Wilks(1998) suggests to take

- $\boldsymbol{u}_{t}=\left(u_{t 1}, \ldots, u_{t K}\right)^{\prime} \sim \mathcal{M} \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{u}\right)$ ruling temporal state transition,
- $\boldsymbol{v}_{t}=\left(v_{t 1}, \ldots, v_{t K}\right)^{\prime} \sim \mathcal{M} \mathcal{N}\left(\mathbf{0}, \boldsymbol{\Sigma}_{v}\right)$ ruling the amount of rain where $\boldsymbol{\Sigma}_{u}$ and $\boldsymbol{\Sigma}_{v}$ are two correlation matrices and $\boldsymbol{u}_{t} \perp \boldsymbol{v}_{t} \forall t$.

Multisite Precipitation Model

Let Φ be the univariate normal df: $\forall t, k$, given $s_{t-1 k}=i$, put

- for the precipitation occurrence process

$$
s_{t k}= \begin{cases}0 & \Phi\left(u_{t k}\right) \leq p_{i}(k) \tag{5}\\ 1 & \Phi\left(u_{t k}\right)>p_{i}(k)\end{cases}
$$

- for the precipitation amount process

$$
\begin{align*}
\beta_{s_{k k}}(k) & = \begin{cases}\beta_{k 1} & \frac{\phi\left(u_{k k}\right)}{1-p_{p}(k)} \leq \alpha_{k} \\
\beta_{k 2} & \frac{\Phi\left(U_{k}\right)}{1-p_{i}(k)}>\alpha_{k}\end{cases} \tag{6}\\
r_{t k} & =-\beta_{k s_{k k} \ln \left[\phi\left(V_{t k}\right)\right]} \tag{7}
\end{align*}
$$

Marginally, \boldsymbol{s}_{t} and \boldsymbol{r}_{t} have the same properties as before.

Multisite Precipitation Model

Let Φ be the univariate normal df: $\forall t, k$, given $s_{t-1 k}=i$, put

- for the precipitation occurrence process

$$
s_{t k}= \begin{cases}0 & \Phi\left(u_{t k}\right) \leq p_{i}(k) \tag{5}\\ 1 & \Phi\left(u_{t k}\right)>p_{i}(k)\end{cases}
$$

- for the precipitation amount process

Multisite Precipitation Model

Let Φ be the univariate normal df: $\forall t, k$, given $s_{t-1 k}=i$, put

- for the precipitation occurrence process

$$
s_{t k}= \begin{cases}0 & \Phi\left(u_{t k}\right) \leq p_{i}(k) \tag{5}\\ 1 & \Phi\left(u_{t k}\right)>p_{i}(k)\end{cases}
$$

- for the precipitation amount process

$$
\begin{align*}
\beta_{s_{t k}}(k) & = \begin{cases}\beta_{k 1} & \frac{\Phi\left(u_{t k}\right)}{1-p_{k}(k)} \leq \alpha_{k} \\
\beta_{k 2} & \frac{\Phi\left(u_{t k}\right)}{1-p_{i}(k)}>\alpha_{k}\end{cases} \tag{6}\\
r_{t k} & =-\beta_{k s_{t k}} \ln \left[\Phi\left(v_{t k}\right)\right] \tag{7}
\end{align*}
$$

Marginally, \boldsymbol{s}_{t} and \boldsymbol{r}_{t} have the same properties as before.

Multisite Precipitation Model

Let Φ be the univariate normal df: $\forall t, k$, given $s_{t-1 k}=i$, put

- for the precipitation occurrence process

$$
s_{t k}= \begin{cases}0 & \Phi\left(u_{t k}\right) \leq p_{i}(k) \tag{5}\\ 1 & \Phi\left(u_{t k}\right)>p_{i}(k)\end{cases}
$$

- for the precipitation amount process

$$
\begin{align*}
\beta_{s_{t k}}(k) & = \begin{cases}\beta_{k 1} & \frac{\Phi\left(u_{t k}\right)}{1-p_{i}(k)} \leq \alpha_{k} \\
\beta_{k 2} & \frac{\Phi\left(u_{k k}\right)}{1-p_{i}(k)}>\alpha_{k}\end{cases} \tag{6}\\
r_{t k} & =-\beta_{k s_{t k}}^{\ln \left[\Phi\left(v_{t k}\right)\right]} \tag{7}
\end{align*}
$$

Marginally, \boldsymbol{s}_{t} and \boldsymbol{r}_{t} have the same properties as before.

A Simpler Model

Let specify and simplify the Wilks' model.

- For each t,

$$
\begin{align*}
\boldsymbol{u}_{t} & \sim \mathcal{M N}(\mathbf{0}, \boldsymbol{\Lambda}), & & \Lambda_{i j} \tag{8}
\end{align*}=e^{-\lambda d_{i j}},
$$

where $D=\left\{d_{i j}, i, j=1, \ldots, K\right\}$ is a distance matrix;

- substitute the mixture with a simple exponential distribution;
- for each site k, we have the same transition matrix

$$
P(k)=\left[\begin{array}{ll}
p_{0} & 1-p_{0} \tag{10}\\
p_{1} & 1-p_{1}
\end{array}\right]
$$

- and the same average rainfall amount

A Simpler Model

Let specify and simplify the Wilks' model.

- For each t,

$$
\begin{align*}
\boldsymbol{u}_{t} & \sim \mathcal{M N}(\mathbf{0}, \boldsymbol{\Lambda}), & & \Lambda_{i j} \tag{8}
\end{align*}=e^{-\lambda d_{i j}},
$$

where $D=\left\{d_{i j}, i, j=1, \ldots, K\right\}$ is a distance matrix;

- substitute the mixture with a simple exponential distribution;
- for each site k, we have the same transition matrix

A Simpler Model

Let specify and simplify the Wilks' model.

- For each t,

$$
\begin{align*}
\boldsymbol{u}_{t} & \sim \mathcal{M N}(\mathbf{0}, \boldsymbol{\Lambda}), & & \Lambda_{i j}
\end{align*}=e^{-\lambda d_{i j}}{ }^{\boldsymbol{v}_{t}} \sim \mathcal{M N}(\mathbf{0}, \boldsymbol{\Gamma}), \quad ~ \quad \begin{array}{r}
i j \tag{8}
\end{array}=e^{-\gamma d_{i j}}
$$

where $D=\left\{d_{i j}, i, j=1, \ldots, K\right\}$ is a distance matrix;

- substitute the mixture with a simple exponential distribution;
- for each site k, we have the same transition matrix

- and the same average rainfall amount

A Simpler Model

Let specify and simplify the Wilks' model.

- For each t,

$$
\begin{align*}
\boldsymbol{u}_{t} & \sim \mathcal{M N}(\mathbf{0}, \boldsymbol{\Lambda}), & & \Lambda_{i j} \tag{8}
\end{align*}=e^{-\lambda d_{i j}},
$$

where $D=\left\{d_{i j}, i, j=1, \ldots, K\right\}$ is a distance matrix;

- substitute the mixture with a simple exponential distribution;
- for each site k, we have the same transition matrix

$$
P(k)=\left[\begin{array}{ll}
p_{0} & 1-p_{0} \tag{10}\\
p_{1} & 1-p_{1}
\end{array}\right]
$$

- and the same average rainfall amount

A Simpler Model

Let specify and simplify the Wilks' model.

- For each t,

$$
\begin{align*}
\boldsymbol{u}_{t} & \sim \mathcal{M N}(\mathbf{0}, \boldsymbol{\Lambda}), & & \Lambda_{i j} \tag{8}
\end{align*}=e^{-\lambda d_{i j}}{ }^{\boldsymbol{v}_{t}} \sim \mathcal{M N}(\mathbf{0}, \boldsymbol{\Gamma}), \quad ~ \Gamma_{i j}=e^{-\gamma d_{i j}}
$$

where $D=\left\{d_{i j}, i, j=1, \ldots, K\right\}$ is a distance matrix;

- substitute the mixture with a simple exponential distribution;
- for each site k, we have the same transition matrix

$$
P(k)=\left[\begin{array}{ll}
p_{0} & 1-p_{0} \tag{10}\\
p_{1} & 1-p_{1}
\end{array}\right]
$$

- and the same average rainfall amount

$$
\begin{equation*}
\beta(k)=\beta . \tag{11}
\end{equation*}
$$

Bayesian Analysis

Bayesian Analysis

- Parameters:

$$
\lambda, \gamma, \beta, \boldsymbol{p}=\left(p_{0}, p_{1}\right)
$$

- Latent variables:
- Observations:

Bayesian Analysis

- Parameters:

$$
\lambda, \gamma, \beta, \boldsymbol{p}=\left(p_{0}, p_{1}\right)
$$

- Latent variables:

$$
\boldsymbol{u}_{t}, \boldsymbol{v}_{t}
$$

Bayesian Analysis

- Parameters:

$$
\lambda, \gamma, \beta, \boldsymbol{p}=\left(p_{0}, p_{1}\right)
$$

- Latent variables:

$$
\boldsymbol{u}_{t}, \boldsymbol{v}_{t}
$$

- Observations:

$$
\boldsymbol{r}_{t}, \boldsymbol{s}_{t}
$$

Bayesian Analysis

Prior distributions:

Use noninformative priors for

$$
\begin{gather*}
{[\lambda] \propto \frac{1}{\lambda}} \tag{12}\\
{[\gamma] \propto \frac{1}{\gamma}} \tag{13}\\
{\left[p_{s}\right]=\mathcal{U}[0,1], \quad s=0,1} \tag{14}\\
P\left[s_{0 k}=1 \mid \theta\right]=\theta \quad \forall k \tag{15}\\
{[\theta]=\mathcal{U}[0,1]} \tag{16}
\end{gather*}
$$

Bayesian Analysis

Prior distributions:
Use noninformative priors for

$$
\begin{gather*}
{[\lambda] \propto \frac{1}{\lambda}} \tag{12}\\
{[\gamma] \propto \frac{1}{\gamma}} \tag{13}\\
{\left[p_{s}\right]=\mathcal{U}[0,1], \quad s=0,1} \tag{14}\\
P\left[s_{0 k}=1 \mid \theta\right]=\theta \quad \forall k \tag{15}\\
{[\theta]=\mathcal{U}[0,1]} \tag{16}
\end{gather*}
$$

and

$$
\begin{equation*}
[\beta]=\mathcal{U}[\underline{\beta}, \bar{\beta}] \tag{18}
\end{equation*}
$$

Bayesian Analysis

Transforming each component of \boldsymbol{v}_{t} according to

$$
r_{t k}= \begin{cases}-\beta \log \left(\Phi\left(v_{t k}\right)\right) & s_{t k}=1 \tag{19}\\ 0 & s_{t k}=0\end{cases}
$$

we get the conditional distribution of

$$
\begin{align*}
{\left[\boldsymbol{r}_{t} \mid \boldsymbol{s}_{t}\left(\boldsymbol{u}_{t}, \boldsymbol{r}_{t-1}\right), \boldsymbol{p}, \beta, \gamma\right] \propto } & \frac{1}{|\Gamma|^{1 / 2}} e^{-\frac{1}{2} \boldsymbol{v}_{t}^{\prime} \Gamma^{-1} \boldsymbol{v}_{t}} \\
& \prod_{k: s_{k k}>0} e^{\frac{1}{2} \phi^{-1}\left(e^{-\frac{\tau_{k}}{\beta}}\right)^{2}} \frac{1}{\beta} e^{-\frac{\tau_{k}}{\beta}} \tag{20}
\end{align*}
$$

Bayesian Analysis

Inference can be performed via MCMC methods.
Through the latent variables we can complete the dataset simulating the missing values given the available as follows

$$
\begin{gather*}
{\left[s_{t k}^{*} \mid \boldsymbol{s}_{t-1}, \boldsymbol{s}_{t(-k)}, \boldsymbol{s}_{t+1}, \boldsymbol{u}_{t(-k)}, \boldsymbol{u}_{t+1}, \boldsymbol{p}, \Lambda\right] \propto} \\
{\left[s_{t k}^{*} \mid \boldsymbol{s}_{t-1}, \boldsymbol{u}_{t(-k)}, \boldsymbol{p}, \Lambda\right]} \\
{\left[s_{t+1 k} \mid s_{t k}^{*}, \boldsymbol{s}_{t(-k)}, \boldsymbol{u}_{t+1}(-k), \boldsymbol{p}, \Lambda\right]} \\
{\left[u_{t+1 k} \mid s_{t+1 k}, s_{t k}^{*}, \boldsymbol{u}_{t+1}(-k), \boldsymbol{p}, \Lambda\right]} \tag{21}\\
P\left[s_{t k}^{*}=0 \mid \boldsymbol{s}_{t-1}, \boldsymbol{u}_{t(-k)}, \boldsymbol{p}, \Lambda\right]= \\
=\int_{-\infty}^{\Phi^{-1}\left(p_{s_{t-1 k}}\right)} \phi\left(u ; \boldsymbol{\lambda}_{k(-k)}^{\prime} \Lambda_{-k}^{-1} \boldsymbol{u}_{t(-k)}, 1-\lambda_{k(-k)}^{\prime} \Lambda_{-k}^{-1} \boldsymbol{\lambda}_{k(-k)}\right) d u \tag{22}
\end{gather*}
$$

Bayesian Analysis

$$
\begin{align*}
& {\left[u_{k k} \mid \cdots\right] \propto \mathcal{N}\left(\lambda_{k(-k)}^{\prime} \Lambda_{-k}^{-1} u_{t(-k)}, \lambda_{k k}-\lambda_{k(-k)}^{\prime} \Lambda_{-k}^{-1} \lambda_{k(-k)}\right)} \\
& 1_{\left.\left\{(-1)^{s_{k}\left(\Phi\left(u_{k}\right)-s_{s_{-1} k}\right.}\right)<0\right\}} \tag{23}\\
& {\left[\boldsymbol{v}_{t}^{*} \mid \boldsymbol{v}_{t}^{2}, \ldots\right]=\mathcal{M} \mathcal{N}\left(\Gamma_{* a} \Gamma_{a}^{-1} \boldsymbol{v}_{t}^{a}, \Gamma_{*}-\Gamma_{* a} \Gamma_{a}^{-1} \Gamma_{a *}\right)} \tag{24}
\end{align*}
$$

and then compute \boldsymbol{r}_{t}^{*}.

An example

We considered twenty stations during the 27 months of April ('75-'01).

Estimate Results

	Mean	SD	Naive SE	Time-series SE
λ	0.002525	0.0002060	$2.060 \mathrm{e}-06$	$2.890 \mathrm{e}-05$
γ	0.009804	0.0002729	$2.729 \mathrm{e}-06$	$2.852 \mathrm{e}-05$
β	3.928176	0.1022724	$1.023 \mathrm{e}-03$	$8.009 \mathrm{e}-03$
p_{0}	0.653934	0.0061804	$6.180 \mathrm{e}-05$	$6.497 \mathrm{e}-04$
p_{1}	0.527557	0.0027752	$2.775 \mathrm{e}-05$	$3.605 \mathrm{e}-04$

	2.5%	25%	50%	75%	97.5%
λ	0.002116	0.002424	0.002542	0.002645	0.002863
γ	0.009247	0.009622	0.009801	0.009971	0.010380
β	3.731738	3.856482	3.927303	3.998626	4.130867
p_{0}	0.647833	0.649566	0.651281	0.656248	0.668298
p_{1}	0.522774	0.525827	0.527030	0.528700	0.533796

An example

The densities

Density of gamma

An example

Perspectives

- Better and complete implementation of the Wilks' model according to hydrological knowledge:
parameters specific to each different station?
- Is an exponential mixture necessary?
- Is there an a posteriori dependence between the u_{t} and v_{t} and is not sufficient to use just one latent field ruling both occurrences and rainfall amounts?

Perspectives

- Better and complete implementation of the Wilks' model according to hydrological knowledge:
- parameters specific to each different station?
- Is an exponential mixture necessary?
- Is there an a posteriori dependence between the u_{t} and v_{t} and is not sufficient to use just one latent field ruling both occurrences and rainfall amounts?

Perspectives

- Better and complete implementation of the Wilks' model according to hydrological knowledge:
- parameters specific to each different station?
- Is an exponential mixture necessary?
- Is there an a posteriori dependence between the \boldsymbol{u}_{t} and \boldsymbol{v}_{t} and is not sufficient to use just one latent field ruling both occurrences and rainfall amounts?

Perspectives

- Better and complete implementation of the Wilks' model according to hydrological knowledge:
- parameters specific to each different station?
- Is an exponential mixture necessary?
- Is there an a posteriori dependence between the \boldsymbol{u}_{t} and \boldsymbol{v}_{t} and is not sufficient to use just one latent field ruling both occurrences and rainfall amounts?

Perspectives

- Embedding the model in a generic decision problem aiming the optimal shrinkage of the network of the rainfall stations, possibly integrating information about the flows of the rivers in the basin.

Let $\theta=(\lambda, \gamma, \beta, \boldsymbol{p})$ the vector of paramters of the model and let indicate the joint distribution of rainfalls and parameters as

$$
\begin{equation*}
\pi(R, \theta)=\pi(R \mid \theta) \pi(\theta) \tag{25}
\end{equation*}
$$

Perspectives

Let $d=\left(d_{1}, \ldots, d_{n}\right)$ be a vector s.t. $d_{i}=0$ means the station i is removed from the network, $d_{i}=1$ the station remains and
$D=\left\{i: d_{i}=1\right\}$.
The aim is making prediction about the streamflow of some river in the basin

$$
\begin{equation*}
q_{t}=\sum_{k} \omega_{k} \sum_{j} \rho_{k}^{j} r_{t-t_{k}^{0}-j k} \tag{26}
\end{equation*}
$$

The loss function considered is

$$
\begin{gather*}
L\left(q_{t}, \hat{q}_{t}^{d}\right)=a\left(q_{t}-\hat{q}_{t}^{d}\right)^{\alpha} \mathbb{1}_{\left\{q_{t}>\hat{q}_{t}^{d}\right\}}+b\left(\hat{q}_{t}^{d}-q_{t}\right)^{\beta} \mathbb{1}_{\left\{q_{t}<\hat{q}_{t}^{d}\right\}}+\sum_{i \in D} c_{i} \\
L\left(\mathbf{q}, \hat{\boldsymbol{q}}^{d}\right)=\sum_{t} L\left(q_{t}, \hat{q}_{t}^{d}\right) \tag{28}
\end{gather*}
$$

Perspectives

We are looking for an optimal decision d^{*} such that

$$
\begin{gather*}
d^{*}=\arg \min _{d} W(d) \tag{29}\\
W(d)=E_{\theta} E_{R \mid \theta}\left[L\left(\boldsymbol{q}, \hat{\boldsymbol{q}}^{d}\right)\right] \\
=\int L\left(\boldsymbol{q}, \hat{\boldsymbol{q}}^{d}\right) d \pi(R \mid \theta) d \pi(\theta) \tag{30}
\end{gather*}
$$

The particle algirithm developed in Amzal et al. (2003) can be employed.

Bibliography

Amzal, B., Bois, F., Parent, E. and Robert, C. (2003), Bayesian optimal design via interacting MCMC. Technical Report, Les Cahiers du CEREMADE - Université Paris Dauphine击 Wilks, D.S. (1998), Multisite generalization of a daily stochastic precipitation generation model, Journal of Hydrology 210(1998), 178-191.

The DAG

