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The Data:
@ 105 rainfall stations in the Seine basin;

@ daily observations during 27 years from 1975 to 2001 with many
missing values:

e only 14 stations are complete,
@ in 72 stations missing values < 10%,
@ butin 13 they are > 50%.
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Some Histograms of Rain Amounts

Rain Amounts in Droyes Rain Amounts in Bretigny
Q
3 2
s 3
2 2
a8 ° a °
1) )
3 3
s - T T T 1 s T T T 1
0 10 20 30 40 0 10 20 30 40
rain amount (mm) rain amount (mm)
g g
S {
z z °
Z 3 s
a8 ° 8 °
1) 2
3 3
s~ 1 T T 1 s 1 T T 1
0 10 20 30 40 0 10 20 30 40

rain amount > 0 (mm) rain amount > 0 (mm)



The Aim

Our aim id to build a model for rainfall introducing spatial dependence
between different stations.



The Problem

The Aim

Our aim id to build a model for rainfall introducing spatial dependence
between different stations.

Modelling daily rainfalls involves:



The Problem

The Aim

Our aim id to build a model for rainfall introducing spatial dependence
between different stations.

Modelling daily rainfalls involves:
@ description of the precipitation occurrences;



The Problem

The Aim

Our aim id to build a model for rainfall introducing spatial dependence
between different stations.

Modelling daily rainfalls involves:
@ description of the precipitation occurrences;
@ specification of the distributions of nonzero rainfall amounts.
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Wilks’ Local Precipitation Model

Precipitation occurrence process

At site k, a two state Markov chain sy, t > 0 governs daily
precipitation occurrence so that

s — 0 daytisdryatk
=1 1 daytiswetatk

The transition probabilities are stationary with respect to time.

w-m-[2 18]
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Wilks’ Local Precipitation Model

Precipitation amounts process

The time series of precipitation amounts at location k is
R = rucSu (3)

where ry represents the nonzero precipitation amounts and has
density independent of t

1—
f(rg) = % exp [_ﬁr;ﬂ + ﬂkjk exp {—rk} 4)

with Bix1 > Bko > 0, 0 < ay < 1.

Idea:

@ Two components mixture exponential model: light and heavy
rain, "continuity" property of the precipitation.
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Multisite Precipitation Model

Consider K sites simultaneously, let s; = (s, ..., Si)’ and
re=(re,...,mx), vt

Given s;_1, to introduce spatial dependence between K sites,
Wilks(1998) suggests to take

o ur=(up,...,ux) ~ MN(0,X,) ruling temporal state transition,
o vi=(Vu,...,Vik) ~ MN(0,X,) ruling the amount of rain
where X, and X, are two correlation matrices and u; L v; Vt.
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Multisite Precipitation Model

Let ® be the univariate normal df: Vi, k, given s;_1 = i, put
@ for the precipitation occurrence process

_ {0 o) <p(k)
se={ 1 oon) = ik ©

@ for the precipitation amount process

B < o

Boulh) = {ﬁ ‘ofly)) ©)
ke Top(k) = Yk

ik = —Bksy IN[P(Vik)] (7)

Marginally, s; and r; have the same properties as before.



A Simpler Model

Let specify and simplify the Wilks’ model.



A Simpler Model

Let specify and simplify the Wilks’ model.
@ For each t,

ur~ MN(O,N),  Aj=e % (8)
Vi ~ MN(0,T), rj=e % (9)

where D = {dj,i,j=1,...,K} is a distance matrix;



A Simpler Model

Let specify and simplify the Wilks’ model.

@ Foreach t,
ug~ MN(O,N),  Aj=e % (8)
Vi ~ MN(0,T), rj=e % (9)
where D = {dj,i,j=1,...,K} is a distance matrix;

@ substitute the mixture with a simple exponential distribution;



Simpler

A Simpler Model

Let specify and simplify the Wilks’ model.

@ Foreach t,
ug~ MN(O,N),  Aj=e % (8)
Vi ~ MN(0,T), rj=e % (9)
where D = {dj,i,j=1,...,K} is a distance matrix;

@ substitute the mixture with a simple exponential distribution;
@ for each site k, we have the same transition matrix

P(k):“;? 12” (10)



Simpler

A Simpler Model

Let specify and simplify the Wilks’ model.

@ Foreach t,
ug~ MN(O,N),  Aj=e % (8)
Vi ~ MN(0,T), rj=e % (9)
where D = {dj,i,j=1,...,K} is a distance matrix;

@ substitute the mixture with a simple exponential distribution;
@ for each site k, we have the same transition matrix

P(k):“;? 12” (10)

@ and the same average rainfall amount

Bk) = B (11)
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Bayesian Analysis

@ Parameters:
A B P = (Po, p1)
@ Latent variables:
u;, vy,
@ Observations:

rt, St
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Prior distributions:
Use noninformative priors for

[\ o & (12)

[ 1 (13)

[ps] =U[0,1], s=0,1 (14)
Plsok=1|0] =06 Vk (15)
[0] = [0, 1] (16)

(17)

and

(8] =U [, 5] (18)



Bayesian Analysis

Transforming each component of v; according to

Fa —{ o #log(®(vid) o . (19)

we get the conditional distribution of

1 1yr—1
[ri si(us, ri—1),p, 5,7] We 2Vl
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Bayesian Analysis

Inference can be performed via MCMC methods.
Through the latent variables we can complete the dataset simulating
the missing values given the available as follows

[Sii| St—1, St (—k)» St41, Ut (—k)> U1, P, N] ox
(S5l St-1, Ut k), P, ]
[St41k| Sk St (k) Uts1 (—k)> P> A]
[ Uts1 k| St+1 K Sjic> Ups1 (—k)s P, A

P [s; =0|St—1,U; (k) P: \] =

=" (ps,_4 1) _ _
= [ T AU N Nk Ut (—k)s 1 = Nl (igN g Ak (<)) AU

(22)



Simpler

Bayesian Analysis

[U[k| .. ] x N <>\;( (_k)/\j}(u, (—k)> Ak — )\;( (—k)/\:;()‘k (—k))

1{(,1 )Sik (®(um)—ps, 4, )<O0}

[Vi[vd,...] = MN (Tal'vE I —Tal7'Ta) (24)

and then compute ry.



An example

We considered twenty stations during the 27 months of April (75-'01).




Estimate Results

Mean SD | Naive SE | Time-series SE

A | 0.002525 | 0.0002060 | 2.060e-06 2.890e-05

~ | 0.009804 | 0.0002729 | 2.729e-06 2.852e-05

6 | 3.928176 | 0.1022724 | 1.023e-03 8.009e-03

Po | 0.653934 | 0.0061804 | 6.180e-05 6.497e-04

pi | 0.527557 | 0.0027752 | 2.775e-05 3.605e-04
2.5% 25% 50% 75% 97.5%

A | 0.002116 | 0.002424 | 0.002542 | 0.002645 | 0.002863
~ | 0.009247 | 0.009622 | 0.009801 | 0.009971 | 0.010380
6 | 3.731738 | 3.856482 | 3.927303 | 3.998626 | 4.130867
po | 0.647833 | 0.649566 | 0.651281 | 0.656248 | 0.668298
ps | 0.522774 | 0.525827 | 0.527030 | 0.528700 | 0.533796




An example

The densities
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An example
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Perspectives

Perspectives

@ Better and complete implementation of the Wilks’ model
according to hydrological knowledge:
e parameters specific to each different station?
@ Is an exponential mixture necessary?
e Is there an a posteriori dependence between the u; and v; and is
not sufficient to use just one latent field ruling both occurrences
and rainfall amounts?



Perspectives

Perspectives

@ Embedding the model in a generic decision problem aiming the
optimal shrinkage of the network of the rainfall stations, possibly
integrating information about the flows of the rivers in the basin.

Let 8 = (A, v, 8, p) the vector of paramters of the model and let
indicate the joint distribution of rainfalls and parameters as

7 (R,0) =7 (R|0)r (9) (25)



Perspectives

Letd = (di,...,d,) be a vector s.t. d; = 0 means the station i is
removed from the network, d; = 1 the station remains and
D={i:d=1}.

The aim is making prediction about the streamflow of some river in

the basin ,
G =Y wk > Phlp_jk (26)
k )

The loss function considered is

A~ PPN ~ B
L(qraf) = a(a — &) Lgug +0 (47 — @) Lygcqn+D_ o (27)

ieD

L(q.9°) = L(anaf) (28)
t



Perspectives

We are looking for an optimal decision d* such that

d* = arg mdin W (d) (29)

<
2
\

EoERyo [L (q, fld)}
_ / L(q.4") dr (RI0)dr (0) (30)

The particle algirithm developed in Amzal et al. (2003) can be
employed.
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