Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

Probabilités

Corrigé des TDs

Polytech Jussieu 1A

  1. Introduction aux probabilités
    1. Exercice 1
      1. On ne peut pas simplement ajouter les probabilités d'obtenir un "6", car les événements ne sont pas disjoints : l'intersection de "obtenir un 6 au premier lancer" et "obtenir un 6 au second lancer" est constituée du couple (6,6), et donc non vide.

        On peut procéder par dénombrement, en notant A l'événement "obtenir au moins un 6". P(A)=1P(¯A)=1P("ne pas obtenir 6")=15464>0.5 Le jeu est donc favorable.

      2. Cette fois l'espace Ω est constitué des listes de 24 résultats de deux dés, que l'on peut considérer comme ({1,,6}2)24. Il y a encore équiprobabilité, et le même calcul donne P(A)=135243624<0.5 Le jeu est donc défavorable.

    2. Exercice 2
      1. Ω={F,P}4 convient (ensemble des quadruplets de 'F' ou 'P'). Tous les résultats étant a priori possibles, on doit prendre E=P(Ω). Enfin, sans hypothèses additionnelles on suppose généralement l'équiprobabilité : P(ωΩ)=1#Ω=116.

      2. A correspond aux combinaisons à 3 éléments ("pile") parmi 4, auxquelles il faut ajouter l'unique configuration à 4 "pile" : PPPP. B est un simple lancer de pièce non truquée.

        P(A)=C34+116=516, et P(B)=12.

      3. C23+1=4 cas favorables pour AB, donc P(AB)=14P(A)P(B) A et B sont dépendants.

    3. Exercice 3
      1. Ω={i1,,i5{1,,50}/i1<<i5}×{i1,i2{1,,11}/i1<i2}. A priori, toutes les parties de Ω sont envisageables, et sans autres hypothèses on suppose l'équiprobabilité. E=P(Ω), P(ω)=1C550×C211.

      2. Un seul cas favorable, donc la probabilité d'avoir tout juste vaut 1C550×C211=11165318008.6e9.

      3. On exprime plutôt l'événement "ne pas gagner", consistant en l'union de "n'avoir aucune boule juste" et "avoir exactement une boule mais pas deux étoiles". En terme de cas "favorables", cela se compte comme suit. C545×C211+C445×5×(C29+9×2)=107425395. La probabilité de gain s'écrit donc 1107425395/116531800113 : on a environ une chance sur 13 de gagner.

      4. Cas favorables pour 2 boules et pas d'étoiles : C345×C25×C29=5108400.
        Cas favorables pour une boule et deux étoiles : C445×5=744975.
        La première situation est environ 7 fois plus probable.

        Cas favorables pour 2 boules et une étoile : C345×C25×9×2=2554200.
        Cette dernière situation est environ 3.5 fois plus probable.

        C'est en accord avec l'intuition : il y a plus de façon d'avoir une ou deux boules justes que d'avoir exactement deux étoiles.

    4. Exercice 4
      1. 410=1048576

      2. Cas favorables (pour répondre au moins 6 fois correctement) : 10k=6Ck10×310k=20686.
        Donc P("avoir au moins 6 reponses justes")=2068610485762e2, soit environ 2% de chances.

    5. Exercice 5
      1. On dispose de P(A)=13, P(B)=12 et P(J)=14, probabilités de toucher la cible respectivement pour Alice, Bob et Jo. On sait que la cible a été touchée deux fois, et on se demande qui a probablement raté la cible.

        Il y a trois configurations possibles déterminées par le couple de chasseurs ayant atteint la cible, correspondant respectivement aux événements AB, AJ et BJ sachant T2, où T2 désigne l'événement "atteindre la cible deux fois". On peut raisonnablement supposer les événements indépendants, et donc calculer P(AB|T2)=16P(T2), P(AJ)=112P(T2), P(BJ)=18P(T2). Ces probabilités correspondent respectivement à celles d'avoir manqué la cible pour J, B et A (toujours sachant T2). Comme elles ont pour somme 1, il n'est pas nécessaire de calculer P(T2) : il suffit de normaliser. On obtient alors P(¯A|T2)=39, P(¯B|T2)=29 et P(¯J|T2)=49.

    6. Exercice 6
      1. On sait qu'Alice a perdu sa valise, donc la somme des probabilités de l'avoir perdue dans les 4 lieux vaut 1. Comme elles sont égales par hypothèse, la probabilité d'avoir laissé la valise en Australie vaut 14.

    7. Exercice 7
      1. Avec les notations V = boule verte et Uk = choisir l'urne k, P(V)=nk=1P(V|Uk)P(Uk)=nk=1kn2=n+12nn+12 C'est cohérent avec l'intuition : il y a à peu près autant de boules vertes que de boules rouges au total, et on a autant de chances de sélectionner une urne à boules vertes majoritaires qu'une à boules rouges majoritaires.

    8. Exercice 8
      1. On note Tk l'événement "la keme montre fonctionne" et A (resp. B) "provenir de l'usine A" (resp. B). Alors on cherche P(T2|T1)=P(T1T2)P(T1). A et B formant une partition de l'espace, on utilise la formule des probabilités totales : P(T1T2)=P(T1T2|A)P(A)+P(T1T2|B)P(B) À ce stade il manque des informations sur les probabilités qu'un lot provienne d'une usine donnée. Dans ce cas on doit considérer l'hypothèse la moins informative possible, c'est-à-dire la loi uniforme : P(A)=P(B)=12. On conclut alors en utilisant les données du problème. P(T1T2)=19922×2002+99922×10002 et P(T1)=1992×200+9992×1000, soit au final P(T2|T1)0.997.

    9. Exercice 9
      1. On note respectivement M et P les événements "être malade" et "être testé positivement". Alors les données du problème se traduisent par {P(M)=11000P(P|M)=99100P(P|¯M)=21000

        P(M|P)=P(P|M)P(M)P(P), donc il suffit de déterminer P(P)=P(P|M)P(M)+P(P|¯M)P(¯M)=2.988e3. Finalement P(M|P) 0.33.

      2. On cherche P(M|¯P)=P(¯P|M)P(M)P(¯P)=(1P(P|M))P(M)1P(P). Après calculs, P(M|¯P) 1e-5.

      3. Le pourcentage de faux négatifs (être testé négativement alors qu'on est malade) est très bas, donc ce test détecte bien (presque) tous les malades. En revanche le taux de faux positifs est trop mauvais : en moyenne 2 personnes testées positivement sur 3 ne sont pas malades. Le pourcentage global de faux positifs étant tout de même bas, on peut envisager d'effectuer un second test (probablement) plus coûteux et plus précis.

    10. Exercice 10
      1. Cas défavorables = nombre de façons de choisir n éléments parmi 365, avec ordre (n365).
        Cas possibles = 365n

        Donc pour n365, p(n)=1An365365n=1365××(365n+1)365××365=1n1i=0(1i365)

      2. En 0, ex=1+x+o(x). En appliquant ce DL à chaque terme du produit on obtient p(n)1n1i=0exp(i365)=1exp(1365n1i=1i)=1en(n1)2.365

      3. L'énoncé suggère de résoudre l'équation approximative 1en(n1)2.365=0.5, soit en(n1)2.365=0.5, puis n2+n=730×ln(0.5). Cette équation a pour solutions 0.5±0.512920ln(0.5), soit environ 23 ou -22. On retient la solution positive : il faut environ 23 personnes pour avoir 50% de chances que deux aient le même jour d'anniversaire. (Le calcul exact donne n=22)

    11. Exercice 11
      1. Si on ne change pas de porte, la probabilité qui était d'un tiers reste 13. En revanche si l'on change, elle passe à 23 car le seul cas défavorable correspond à un choix initial gagnant (la voiture).

        On peut le voir algorithmiquement : il y 3 portes dont 2 mauvaises et une bonne, donc 3 choix initiaux possibles. Si on avait choisi la bonne porte alors on perd à changer, mais si en revanche on avait choisi une mauvaise, on y gagne. Dans 2 cas sur 3 on y gagne, et comme les cas sont équiprobables, on obtient 2 chances sur 3 de gagner la voiture. Voici finalement un petit programme Python qui prouve le résultat empiriquement. (Voir aussi la page Wikipedia).

        from random import randint
        
        def frequenceGain(n, change):
            total_gains = 0
            for i in range(0, n):
                position_voiture = randint(1, 3)
                choix = randint(1, 3)
                if change:
                    if choix == position_voiture:
                        #si on avait fait le bon choix, pas de chance,
                        #on change pour un poireau
                        choix = 0 #position_voiture % 3 + 1
                    else:
                        #si on avait fait un mauvais choix en revanche,
                        #on change forcément pour la voiture
                        choix = position_voiture
                if choix == position_voiture:
                    total_gains += 1
            return total_gains / n
        
        print(frequenceGain(100000, True))
        print(frequenceGain(100000, False))
    12. Exercice 12
      1. Notons X, Y, Z les événements "X (resp. Y, Z) est condamné". Alors initialement, P(X)=23. Après la révélation du geôlier on cherche P(X|Y), qui vaut par définition P(XY)P(Y).

        La probabilité P(XY) correspond à celle pour que Z soit gracié : P(XY)=P(¯Z)=1P(Z)=13. On en déduit P(X|Y)=12 : le raisonnement du prisonnier X est juste.

  2. V.a.r, espérance, fonction de répartition
    1. Exercice 13
      1. Soit XA la variable aléatoire qui à un couple de résultats de dé associe le gain d'Alice. Alors le gain moyen d'Alice correspond à l'espérance de XA, qui s'écrit E[XA]=ω=(ω1,ω2)ΩXA(ω)P(Ω)=ω1=ω2536=3036=56

        On veut que le gain moyen de Bob soit identique, d'où l'équation E[XB]=ω1ω2g36=56 avec g le gain de Bob à chaque résultat favorable et XB la variable aléatoire qui détermine ce gain. On obtient 30g36=3036, donc Bob doit gagner 1 euro pour chaque non-double.

    2. Exercice 14
      1. Un joueur mise toujours sur le même numéro, noté N. On suppose qu'il mise toujours la même somme S. On considère alors la variable aléatoire X(S)N:ωS(35δω=NδωN) indiquant le gain du joueur en fonction du numéro tiré. Le "gain" moyen du joueur s'écrit alors, compte-tenu de l'équiprobabilité des événements élémentaires E[X(S)N]=ΩP(ω)X(S)N(ω)=137(35SωNS)=S37 Le casino récupère donc en moyenne 2.7% de la mise du joueur.

      2. On définit la variable aléatoire XA donnant les gains d'Alice (éventuellement négatifs) : XA(ω)=100(δω=2k,k1δω=0ω=2k+1)+X(10)7(ω) On calcule alors l'espérance E[XA]=10037(1819)10373 Alice perd en moyenne 3€ à chaque tour (le calcul est le même avec 6 au lieu de 7).

      3. Il suffit de toujours parier sur un nombre pair (ou toujours impair) et que la mise au tour n+1 soit toujours supérieure stricte à la somme de toutes les mises précédentes. Ainsi l'événement "le nombre est pair" (resp. impair) se réalisant une infinité de fois d'après le lemme de Borel-Cantelli, on est sûr d'arriver à un tour où on gagne. La totalité des sommes perdues valant alors S, on mise S+a > S et gagne a > 0.

        Ce n'est pas réaliste car cela engendre des pertes temporaires exponentielles (si 8 échecs d'affilée, on perd déjà au moins 281=255). De plus à moins de choisir a grand (augmentant d'autant plus les pertes temporaires), on ne gagne qu'une somme minime à chaque fois. Enfin, même si on est suffisamment riche les casinos fixent une mise maximale empêchant d'appliquer cette stratégie. Il s'agit de la martingale de Hawks ; il en existe beaucoup d'autres.

        from random import randint
        
        #M = mise initiale, on s'arrête au premier gain
        def simuPair(M): 
            min_balance = 0 
            gains = 0 
            mise = M 
            tour = 1 
            while True: 
                nombre = randint(0, 37) 
                if nombre>0 and nombre%2==0:
                    gains += mise
                else:
                    gains -= mise
                if gains < min_balance:
                    min_balance = gains
                if gains > 0:
                    print("gain au bout de "+str(tour)+" tours, avec un "
                        "déficit maximal de "+str(min_balance)+" au cours du jeu")
                    return
                #doubler la mise vérifie la condition
                mise *= 2
                tour += 1
        
        simuPair(1.0)
        simuPair(100.0)
    3. Exercice 15
      1. L'événement X=k correspond à voir k faces bleues d'affilée puis une face rouge, ou k faces rouges d'affilée puis une face bleue. Les lancers étant indépendants (sauf hypothèse contraire – non mentionnée dans l'énoncé), on peut calculer P(X=k) comme suit en notant B (resp. R) l'événement "obtenir une face bleue au premier lancer" (resp. rouge). P(X=k)=P(X=k|B)P(B)+P(X=k|R)P(R)=pkq+qkp=pq(pk1+qk1), avec p=56 la probabilité de voir une face bleue et q=1p=16 celle de voir une face rouge. On peut calculer (suites géométriques) ou vérifier numériquement que la somme vaut 1, par exemple avec le logiciel R.

        k = seq(1,500) ; p = 5/6 ; q = 1/6
        probas = p * q * (p^(k-1) + q^(k-1))
        sum(probas[!is.nan(probas)])
        [1] 1
        E[X]=pq+k=1(kpk1+kqk1)=pq(s(p)+s(q))

        Avec s(x)=ddx(+k=1xk)=ddx(x1x)=1(1x)2

        Soit finalement E[X]=pq[1q2+1p2]=pq+qp=5+15 Vérification expérimentale en R :

        longueur_moyenne = 0 
        N = 100000
        for (i in 1:N) { 
            sequence=sample(c(1,2), 100, replace=TRUE, prob=c(1./6, 5./6))
            index=2
            while (sequence[index] == sequence[1]) {
                index = index+1
            }
            longueur_moyenne = longueur_moyenne + index - 1 
        }
        longueur_moyenne = longueur_moyenne / N
    4. Exercice 16
      1. E[1A]=Ω1A(ω)P(dω)=AP(dω)=P(A)

      2. 1¯Ai=(11Ai) car "x n'est dans aucun des Ai" équivaut à "11Ai(x)=1 pour tout i". Le terme de droite TD se développe en nk=1(1)k1i1<<ikn1Aik+1 L'espérance du terme de gauche est égale à P(¯Ai)=P(¯Ai)=1P(Ai). Il reste donc à calculer l'espérance du terme de droite. Pour cela on remarque que E(1A1B)=Ω1A(ω)1B(ω)P(dω)=ABP(dω)=P(AB) Le calcul se généralise à un nombre quelconque de fonctions indicatrices, et on en déduit E[TD]=nk=1(1)k1i1<<iknP(Ai1Aik)+1 On obtient l'expression demandée en enlevant 1 puis en divisant par -1.

      3. On commence par remarquer P(¯Ai1¯Ai2)=1P(Ai1Ai2)=1(P(Ai1)+P(Ai2)P(Ai1)P(Ai2))=(1P(Ai1))(1P(Ai2))=P(¯Ai1)P(¯Ai2) On montre alors l'indépendance par récurrence sur k=1,,n : P(¯Ai1¯Aik+1)=P(¯Ai1¯ik)P(¯Aik+1)=i1,,ik+1Aij (Je ne vois pas comment le prouver directement à partir de la formule).

    5. Exercice 17
      1. P(Xk+1=1|Xk=0)=1p, et P(Xk+1=1|Xk=1)=p d'après l'énoncé.

      2. An+1=(P(Xn+1=1)P(Xn+1=0))=(P(Xn+1=1|Xn=1)P(Xn=1)+P(Xn+1=1|Xn=0)P(Xn=0)P(Xn+1=0|Xn=1)P(Xn=1)+P(Xn+1=0|Xn=0)P(Xn=0))=(pA(1)n+(1p)A(2)n(1p)A(1)n+pA(2)n)=MAn
      3. On commence par remarquer que An(X0)=MnA0 avec A0=(δX0=1δX0=0). Diagonalisons alors M : M=12(1111)(1002p1)(1111) On obtient An(X0)=12(1111)(100(2p1)n)(1111)A0=12(1+(2p1)n1(2p1)n1(2p1)n1+(2p1)n)A0 Puis P(Bn)=P((Xn=1X0=1)(Xn=0X0=0))=P(Xn=1X0=1)+P(Xn=0X0=0)=P(Xn=1|X0=1)P(X0=1)+P(Xn=0|X0=0)P(X0=0)=(pAn(1))[1]+((1p)An(0))[2]=p2(1+(2p1)n)+1p2(1+(2p1)n) Bn désignant l'événement "le bit initial est correctement transmis après n étapes".

        À la limite P(Bn)12, ce qui est assez cohérent avec l'intuition : après n étapes il y a eu environ (1p)n erreurs, et "le bit est bien transmis" correspond à un nombre pair d'erreurs. Pour n grand, il y a envion une chance sur deux que le nombre d'erreurs soit pair.

    6. Exercice 18
      1. Soit N la VA du nombre de bovins atteints. NB(n,p), E[N]=np, Var(N)=np(1p).

      2. On note Mm la VA égale au nombre de tests effectués. On commence par en effectuer nm, puis on teste chaque groupe de m individus où au moins un est malade. La probabilité qu'au moins un bovin soit malade dans un groupe est indépendante des autres groupes, et vaut 1(1p)m. Le nombre moyen de tests réalisés est donc E[Mm]=nm(1+m(1(1p)m))

      3. E[Mn]=1+n(1(1p)n), et E[M1]=n [n(1+p) selon le protocole, mais ce n'est pas vraiment nécessaire]. Alors E[Mn]<E[M1]1<n(1p)np<1n1/n. Il vaut donc mieux choisir m=n pour p<1n1/n, c'est-à-dire de très petites valeurs de p car n1/n dépasse rapidement 0.9 (puis converge vers 1). Avec n=30 on trouve p<0.1, et pour n=200 on tombe à p<0.03.

      4. Cas p connu

        On veut minimiser mE[Mm]n1=1mqm avec q=1p. Étendons cette fonction ϕ à l'espace R+, et calculons sa dérivée : ϕ(x)=x2qxlnq. ϕ(x)=0x2=qxlnqx2×qx×lnq=1ψ(x)=2lnx+xlnqlnlnq=0 L'équation ψ(x)=0 ne se résout pas directement, mais on peut étudier les variations de ψ : ψ(x)=2x+lnq=0x=x0=2lnq. Ainsi ϕ est croissante sur ]0,x0] puis décroissante sur [x0,+[.

        On distingue alors deux cas :

        • ϕ(x0)0 : alors ϕ est décroissante sur R+, et on se ramène à la question précédente. On observe numériquement que ce cas correspond à q<0.6, soit un taux de contamination supérieur à 40%.
        • ϕ(x0)>0 : ϕ possède alors deux zéros, à gauche et à droite de x0. On ne s'intéresse qu'au premier, correspondant à un minimum local de ϕ.

        Dans ce dernier cas, la valeur optimale de m se situe entre 1 et 2lnq. Pour aller plus loin il faut résoudre une équation du type αx+lnx=β ; c'est faisable numériquement.

        Cas p inconnu

        On peut supposer qu'il s'agit de la situation réelle. Sans hypothèse sur la distribution de p il n'y a alors pas de stratégie optimale. Cependant, si on sait que p suit une loi normale par exemple, on peut déterminer la valeur de m "ayant le plus de chance d'être optimale" en prenant popt = mode de la loi de p. Des intervalles de confiance peuvent également être calculés via les caractéristiques de la loi normale.

    7. Exercice 19
      1. F est continue et strictement croissante, donc bijective. Pour y[0,1] on a P(F(X)y)=P(XF1(y))=F(F1)(y)=y . La VA Y=FX suit donc la loi uniforme sur [0,1]

      2. Une fois simulé u=FX(ω)[0,1], on obtient une réalisation de X en calculant F1(u).

  3. Lois usuelles
    1. Exercice 20
      1. Une méthode possible consiste à générer un nombre aléatoire dans ]0,1[ de la façon suivante après n lancers L1,,Ln : xn=nk=1δLk=face2k (On considère les résultats du lancer de pièce comme les coefficients dans la décomposition en base 2). On arrête d'affiner la précision de x=lim lorsque x_n > p ou x_n+\frac{1}{2^n} ≤ p – la variable simulée prenant alors respectivement les valeurs 0 et 1.

        Preuve : à n fixé, \Omega = \{F,P\}^n. Par définition de x_n (écriture décimale en base 2), à chaque événement élémentaire de \Omega correspond un unique rationnel du type \sum_{k=1}^n \frac{\delta_k}{2^k}. Ces derniers sont équirépartis dans \left[0, 1 - \frac{1}{2^n}\right]. Les événements élémentaires étant équiprobables, on obtient alors un rationnel choisi uniformément dans l'ensemble E_n des décimaux en base 2 tronqués à la n^{eme} décimale. Il reste à calculer \P(x_n < p) : celle-ci est égale à la proportion de nombre décimaux rationnels du type x_n inférieurs à p. Pour l'obtenir on remarque que E_n = \frac{1}{2^n} \{0, 1, 2, \dots, 2^n-1\}, et donc \P(x_n < p) = \frac{\lfloor p \times 2^n \rfloor}{2^n}.

      2. On peut appliquer l'algorithme suivant renvoyant A(n) \in \{1, \dots, n\}.
        1. Si n = 1, retourner n. Sinon :
        2. n = 2p+\delta avec p \geq 1 et \delta \in \{0,1\}.
          On lance la pièce, obtenant un entier e \in \{0, 1\}.
          On (ré)évalue alors A(p+\delta) + (p+\delta) \times e jusqu'à obtenir
          \quad (et retourner) un résultat inférieur ou égal à n.

        Explication : à chaque lancer de pièce "si c'est face, on choisit un entier aléatoirement dans [\negthinspace[1, n/2]\negthinspace]" ; et, "si c'est pile on en choisit un dans [\negthinspace[n/2, n]\negthinspace]". Une difficulté survient quand n est impair, car il reste alors un entier "au milieu". Dans ce cas j'ai simulé un entier dans [\negthinspace[1, n+1]\negthinspace] et utilisé une méthode de rejet écartant le cas n+1.

        Voici un programme Python exécutant cet algorithme :

        from random import randint
        
        def getRandInt(n): 
            if n == 1:
                return n
            else:
                delta = n%2 
                p = (n - delta)//2
                An = n+1 
                while An > n:
                    e = randint(0,1)
                    An = getRandInt(p+delta) + (p+delta) * e
                return An
        
        n = 100 
        counts = [0] * n 
        for i in range(100000):
            counts[getRandInt(n)-1] += 1
        
        print(counts)

        Note : ce serait mieux sans la boucle while, la complexité dans le pire cas passant de +\infty à \ln{n}. En pratique l'algorithme donné est suffisant car la probabilité de succès dans la boucle while est supérieure à 0.75. Cependant, si vous avez mieux je suis preneur.

    2. Exercice 21
      1. \E[Be] = 1 \times p + 0 \times (1-p) = p,
        \mbox{Var}(Be) = \E[Be^2] - \E[Be]^2 = p - p^2 = p(1-p) car Be = Be^2.

      2. \begin{align*} \E[Bi] &= \sum_{k=0}^{n} k C_n^k p^k (1-p)^{n-k}\\ &= np \sum_{k=1}^{n} C_{n-1}^{k-1} p^{k-1} (1-p)^{n-1-(k-1)}\\ &= np \sum_{k=0}^{n-1} C_{n-1}^k p^k (1-p)^{n-1-k}\\ &= np (p + (1-p))^{n-1}\\ &= np \end{align*}

        Pour calculer la variance, on remarque que k^2 = k(k-1) + k.

        \begin{align*} \mbox{Var}(Bi) &= \sum_{k=0}^{n} k^2 C_n^k p^k (1-p)^{n-k} - n^2 p^2\\ &= np - n^2p^2 + n(n-1)p^2 \sum_{k=2}^{n} C_{n-2}^{k-2} p^{k-2} (1-p)^{n-2-(k-2)}\\ &= np - n^2p^2 + n(n-1)p^2\\ &= n(p - np^2 + (n-1)p^2)\\ &= np(1-p) \end{align*}
      3. Bi étant égale à la somme de n VA de Bernouilli Be indépendantes, les espérances et variances se somment.

    3. Exercice 22
      1. \P(F_i = k) = \frac{C_N^k (n-1)^{N-k}}{n^N} (cas favorables / cas possibles).

        \begin{align*} \E[F_i] &= \sum_{k=0}^N k \frac{C_N^k (n-1)^{N-k}}{n^N}\\ &= \frac{N}{n^N} \sum_{k=1}^N C_{N-1}^{k-1} (n-1)^{N-1-(k-1)}\\ &= \frac{N}{n^N} \sum_{k=0}^{N-1} C_{N-1}^k (n-1)^{N-1-k}\\ &= \frac{N}{n} \end{align*} \begin{align*} \mbox{Var}(F_i) &= \E[F_i^2] - \frac{N^2}{n^2}\\ &= \frac{N}{n} - \frac{N^2}{n^2} + \sum_{k=0}^N k(k-1) \frac{C_N^k (n-1)^{N-k}}{n^N}\\ &= \frac{N}{n} - \frac{N^2}{n^2} + \frac{N(N-1)}{n^N} \sum_{k=0}^{N-2} C_{N-2}^k (n-1)^{N-2-k}\\ &= \frac{N}{n} - \frac{N^2}{n^2} + \frac{N(N-1)}{n^2}\\ &= N \frac{n - 1}{n^2} \end{align*}
      2. F est égale au nombre total de tirages, puisqu'à chaque fois on obtient un nombre dans [1, n].

        Donc \P(F = k) = \delta_{k=N}, \E[F] = N et \mbox{Var}(F) = 0.

    4. Exercice 23
      1. Y_n \in \{0, 1\}

        \P(Y_n=1) = \P(X_n=1 \cap X_{n+1}=1) = p^2, et \P(Y_n=0) = 1-p^2. Donc Y_n \sim \cB(p^2).

        Y_n et Y_{n+1} ne sont pas indépendantes car elles réutilisent la même VA X_{n+1}. On peut aussi le voir par le calcul de \P(Y_n Y_{n+1} = 1) = \P(X_n=1 \cap X_{n+1}=1 \cap X_{n+2}=1) = p^3 \neq \P(Y_n=1) \P(Y_{n+1}).

      2. Par linéarité de l'espérance, \E[U_n] = n \E[Y_1] = n p^2.

        \mbox{Var}(U_n) = \E[U_n^2] - n^2 p^4.
        U_n^2 = \sum_{i=1}^n Y_i^2 + 2 \sum_{i < j} Y_i Y_j.
        Il faut alors distinguer les paires (Y_i, Y_j) dépendantes (pour i et j consécutifs) des paires indépendantes (toutes les autres). On remarque que pour une paire indépendante, \E(Y_i Y_j) = \E[Y_i] \E[Y_j] = p^4, et \E(Y_i Y_{i+1}) = p^3. \begin{align*} \mbox{Var}(U_n) &= n p^2 - n^2 p^4 + 2 (n-1) \E(Y_1 Y_2) + (n-1)(n-2) \E(Y_1 Y_3)\\ &= n p^2 - n^2 p^4 + (n-1) (2 p^3 + (n-2) p^4)\\ &= n p^2 + 2 (n-1) p^3 + (2 - 3n) p^4 \end{align*}

        Interprétation : U_n correspondrait au nombre de point total marqués par un jour de badminton au bout de n échanges, sachant qu'il a une probabilité p fixée de les gagner. Une partie entre deux joueurs d'habiletés égales comporterait donc en moyenne n = \frac{21}{p^2} = 84 échanges (à vérifier expérimentalement...)

    5. Exercice 24
      1. X \sim \cP(\lambda). \begin{align*} \E[X] &= \sum_{k=0}^{+\infty} k \P(X = k)\\ &= e^{-\lambda} \sum_{k=0}^{+\infty} k \frac{\lambda^k}{k!}\\ &= \lambda e^{-\lambda} \sum_{k=1}^{+\infty} \frac{\lambda^{k-1}}{(k-1)!} = \lambda \end{align*} \begin{align*} \mbox{Var}(X) &= \E[X^2] - \E[X]^2\\ &= e^{-\lambda} \sum_{k=0}^{+\infty} k(k-1) \frac{\lambda^k}{k!} + \lambda - \lambda^2\\ &= \lambda^2 + \lambda - \lambda^2 = \lambda \end{align*}

      2. \begin{align*} \P(X+Y = k) &= \sum_{j=0}^{k} \P(X+Y=k|Y=j) \P(Y=j)\\ &= \sum_{j=0}^{k} e^{-\lambda} \frac{\lambda^{k-j}}{(k-j)!} e^{-\mu} \frac{\mu^j}{j!}\\ &= e^{-\lambda-\mu} \frac{1}{k!} \sum_{j=0}^{k} C_k^j \lambda^{k-k} \mu^j\\ &= e^{-\lambda-\mu} \frac{(\lambda+\mu)^k}{k!} \end{align*}

    6. Exercice 25
      1. On note Y la VA du nombre d'oeufs pondus, et q = 1-p. \begin{align*} \P(Z = k) &= \sum_{j=k}^{+\infty} \P(Z=k|Y=j) \P(Y=j)\\ &= \sum_{j=k}^{+\infty} C_j^k p^k q^{j-k} e^{-\lambda} \frac{\lambda^j}{j!}\\ &= \frac{p^k}{k!} e^{-\lambda} \sum_{j=k}^{+\infty} \frac{1}{(j-k)!} q^{j-k} \lambda^j\\ &= \frac{(p\lambda)^k}{k!} e^{-\lambda} \sum_{j=0}^{+\infty} \frac{(q\lambda)^j}{j!}\\ &= e^{-p\lambda} \frac{(p\lambda)^k}{k!} \sim \cP(p\lambda) \end{align*}

      2. Loi de Poisson \Rightarrow \E[Z] = p\lambda

    7. Exercice 26
      1. C'est le nombre de clients parmi X qui ont choisi le guichet A.

      2. \P(S=k|X=n) = C_n^k p^k q^{n-k}, loi binomiale.

      3. C'est exactement le même calcul qu'à l'exercice précédent : S \sim \cP(p\lambda).

    8. Exercice 27
      1. On peut supposer que le nombre d'objets cassés par mois suit une loi de Poisson. Alors X \sim \cP(3) et Y \sim \cP(1).

      2. X+Y \sim \cP(3+1) = \cP(4)

      3. \P(X+Y=0) = e^{-4}

      4. On peut effectuer le calcul de \P(W = k) en distinguant 4 cas :
        • A_1 : X<5 \cap Z<5
        • A_2 : X<5 \cap Z \geq 5
        • A_3 : X \geq 5 \cap Z<5
        • A_4 : X \geq 5 \cap Z \geq 5

        X et Z étant indépendantes par (défaut d') hypothèse, on calcule facilement les probabilités des 4 cas. De même, \P(W=k | A_i) se calcule bien. La somme est cependant un peu longue à écrire et sans trop d'intérêt : je ne l'indique donc pas dans le corrigé.

    9. Exercice 28
      1. X \sim \cG\left(\frac{1}{6}\right).

    10. Exercice 29
      1. Soient n, k \in \N^*. \begin{align*} \P(X > n+k | X > k) &= \frac{\P(X > n+k \cap X > k)}{\P(X > k)}\\ &= \frac{\P(X > n+k)}{\P(X > k)}\\ &= \frac{q^{n+k}}{q^k} = q^n = \P(X > n) \end{align*}

      2. Dans le cas d'une VA discrète à support dans \N^*, on note G(n) = \P(X > n). Alors être sans mémoire équivaut à, pour tout (n,m) \in \N^{*2} G(n+m) = G(n)G(m) Donc G(n) = G(1)^{n-1} G(1) : \P(X \leq n) = 1 - (1 - p)^n. On reconnaît la loi géométrique.

        Dans le cas d'une VA continue en notant encore \P(X > x) = G(x), être sans mémoire est équivalent à avoir pour tout (x,y) \in \R^2 G(x+y) = G(x) G(y) Les solutions de cette équation sont de la forme G(x) = e^{-\lambda x}. Donc F(x) = 1 - e^{-\lambda x} : on reconnaît la loi exponentielle. Remarque : dans un contexte "durée de vie d'un appareil", suivre une loi sans mémoire revient à ne pas s'user.

      3. Soient F_1, F_2 et F les fonctions de répartition de X_1, X_2 et Y. \begin{align*} F(y) &= \P(Y \leq y)\\ &= \P(X_1 \leq y \cup X_2 \leq y)\\ &= F_1(y) + F_2(y) - F_1(y)F_2(y) \mbox{ par independance}\\ &= (1-q_1^y) + (1-q_2^y) - (1-q_1^y)(1-q_2^y)\\ &= 1 - (q_1 q_2)^y \end{align*} Donc \P(Y = y) = F(y) - F(y-1) = (q_1 q_2)^{y-1} (1-q_1 q_2). Ou encore Y \sim \cG(1-q_1 q_2).

    11. Exercice 30
      1. X \sim \cH \left(n, \frac{N_1}{N}, N \right) (définition de la loi hypergéométrique).

    12. Exercice 31
      1. On reconnaît une loi hypergéométrique : P(n) \sim \cH \left(s, \frac{N_1}{N}, N \right). \P(P(n) = k) = \frac{C_{r}^{k} \times C_{n-r}^{s-k}}{C_n^s}

      2. On observe que si n \leq r, tous les poissons pêchés seront marqués et donc u_n = 1 dès que n \leq r. Il faut aussi supposer s \leq n et k \leq s. Alors, \begin{align*} u_n &= \frac{C_{n-r}^{s-k} \times C_{n-1}^s}{C_n^s \times C_{n-1-r}^{s-k}}\\ &= \frac{(n-s) (n-r)}{n (n-r-s+k)} \end{align*} Ainsi, \begin{align*} u_n > 1 &\Leftrightarrow (n-s) (n-r) > n (n-r-s+k)\\ &\Leftrightarrow rs > nk\\ \end{align*}

      3. u_n < 1 (resp. u_n > 1) correspond à P(n) < P(n-1) (resp. P(n) > P(n-1)). On en déduit que P(n) > P(n-1) tant que n < \frac{rs}{k}. La valeur de n maximisant P(n) est donc le plus petit entier inférieur ou égal à \frac{rs}{k} : \hat{n} = \left\lfloor \frac{rs}{k} \right\rfloor

      4. Il faut commencer par choisir (arbitrairement) des valeurs numériques pour r et s – par exemple r = s = 100en faisant l'hypothèse que ces valeurs sous-estiment n. On prend r = s = 100, et on fait varier n de 150 à 1050 par pas de 100. Pour chaque valeur de n on effectue N = 1000 simulations de pêches de s poissons en supposant les r premiers marqués. On obtient 1000 estimations de n, dont on calcule la moyenne et l'écart-type afin de juger de l'efficacité de la méthode.

        Voici le code R :

        r = 100
        s = r
        nmin = 150
        nmax = 1050
        nstep = 100
        nvalues = seq(nmin, nmax, nstep)
        N = 1000
        
        output = list()
        counter = 1
        for (n in nvalues) {
            kvalues = rhyper(N, r, n-r, r)
            # Attention aux divisions par zéro
            kvalues = kvalues[kvalues > 0]
            nestimates = floor(r*s / kvalues)
            output[[counter]] = c(mean(nestimates), sqrt(var(nestimates)))
            counter = counter + 1
        }

        L'estimation est acceptable pour n \leq 350, médiocre pour 450 \leq n \leq 650 puis clairement mauvaise. C'est normal : la proportion de poissons pêchés diminue lorsque n augmente, donc les divisions \frac{rs}{k} sont de plus en plus imprécises. On peut corriger ce problème par une estimation adaptative qui augmente r jusqu'à ce que la proportion de poissons marqués pêchés dépasse une certaine valeur fixée, 0.25 par exemple. Cela fonctionnera, mais revient à pêcher au moins le quart de l'étang...

    13. Exercice 32
      1. \E[X] = \frac{a+b}{2}, \mbox{Var}(X) = \frac{(b-a)^2}{2}.

      2. On utilise la formule f_{X+Y} = f_X * f_Y dans le cas de VA indépendantes. Effectuons le calcul de f_n avec S_n = X_1 + \dots + X_n \in [0,n] pour n=2. \begin{align*} f_2(s) &= \int_{x=0}^{1} f(s-x) f(x) dx\\ &= \int_{\max(0, s-1)}^{\min(1, s)} 1 dx\\ &= \min(1, s) - \max(0, s-1)\\ &= s \delta_{s \leq 1} + (2-s) \delta_{s > 1} \end{align*} On reconnaît la fonction "triangle" symétrique avec f(0) = 0, f(1) = 1, f(2) = 0. Pour n \geq 3 le calcul est de plus en plus pénible, et on a du mal à reconnaître une formule (que l'on montrerait ensuite par récurrence). S_n suit la loi de Irwin-Hall, dont l'expression de la densité n'est en effet pas triviale. f_n(x) = \frac{1}{(n-1)!} \sum_{k=0}^{\lfloor x \rfloor} (-1)^k C_n^k (x - k)^{n-1} Philip Hall l'obtient par des arguments géométriques.

    14. Exercice 33
      1. X,Y \sim \cU(0,1) \begin{align*} \P\left(\max(X,Y) > \frac{3}{4} \left| \min(X,Y) > \frac{1}{3} \right.\right) &= 2 \P\left(\max(X,Y) > \frac{3}{4} \left| \min(X,Y) > \frac{1}{3} \cap X < Y \right. \right) \P(X < Y)\\ &= \P\left(Y > \frac{3}{4} \left| Y > \frac{1}{3}\right. \right) \mbox{ par arguments de symetrie}\\ &= \frac{\P(Y > 3/4)}{\P(Y > 1/3)}\\ &= \frac{1}{4} \times \frac{3}{2} = \frac{3}{8} \end{align*}

    15. Exercice 34
      1. Suivons les indications de l'énoncé : on cherche \P(B|\overline{A}) = \P_{\overline{A}}(B). \begin{align*} \P_{\overline{A}}(B) &= \P_{\overline{A}}(B | C) \P_{\overline{A}}(C)\\ &= 1 \times \frac{\P(\overline{A}|C) \P(C)}{\P(\overline{A})}\\ &= \frac{(1 - F_{\ell}(x)) \times p}{\P(\overline{A}|C)\P(C) + \P(\overline{A}|\overline{C}) \P(\overline{C})}\\ &= \frac{p (1 - F_{\ell}(x))}{p (1 - F_{\ell}(x)) + 1 \times (1-p)}\\ &= \frac{1}{1 + \frac{(1-p)}{p (1 - x / \ell)}}\\ &= \frac{p(\ell-x)}{p(\ell -x) + \ell (1-p)}\\ &= \frac{\ell - x}{\ell/p - x}\\ \end{align*} Le résultat n'est pas conforme à l'intuition qu'on aurait pu en avoir (p \frac{\ell - x}{\ell}). On vérifie cependant qu'il est juste, avec le petit programme R suivant. (En effet l'"intuition" calcule \P(B) = \P(B|C) \P(C), incluant les cas où A se réalise).

        # Run N simulations; discard unwanted cases
        getEmpiricProba = function(N, p, l, x) {
            crevasses = rbinom(N, 1, p)
            # About pN crevasses
            nbCrevasses = sum(crevasses)
            positions = runif(nbCrevasses, 0., l)
            # Count B events: ~= nbCrevasses*(l-x)/l
            nbBevents = sum(positions > x)
            # Frequency of B among "not A" events.
            # Formula ~= pN(1-x/l) / pN(1-x/l) + N - pN)
            #          = lp - px / l - px
            return (nbBevents / (nbBevents + N - nbCrevasses) )
        }
        
        getTheoricProba = function(p, l, x) {
            return ((l - x) / (l/p - x)) 
        }
        
        getWrongIntuition = function(p, l, x) {
            return (p * (l - x) / l)
        }
        
        N = 100000
        p = 0.2 
        l = 1.0 
        x = 0.4 
        cat(paste("Empirical:",getEmpiricProba(N,p,l,x),'\n'))
        cat(paste("Expected:",getTheoricProba(p,l,x),'\n'))
        cat(paste("(Wrong) intuition:",getWrongIntuition(p,l,x),'\n'))
        
        p = 0.4 
        l = 2.0 
        x = 1.3 
        cat(paste("Empirical:",getEmpiricProba(N,p,l,x),'\n'))
        cat(paste("Expected:",getTheoricProba(p,l,x),'\n'))
        cat(paste("(Wrong) intuition:",getWrongIntuition(p,l,x),'\n'))
    16. Exercice 35
      1. On distingue deux cas, suivant que la fève intersecte le centre de la galette ou non. On suppose que le centre de la fève est choisi uniformément sur le disque de rayon R-r. Notons I l'événement "la fève intersecte le centre", et F l'événement "le couteau rencontre la fève". Si I n'est pas réalisé, on note \delta la distance du centre de la galette au bord de la fève, et le secteur angulaire pour couper sur la fève vaut 2 \arcsin\left(\frac{r}{r+\delta}\right) (faire un dessin). \begin{align*} \P(F) &= \P(F|I)\P(I) + \P(F|\overline{I})\P(\overline{I})\\ &= 1 \times \frac{r^2}{(R-r)^2} + \frac{1}{\pi} \arcsin\left(\frac{r}{r+\delta}\right) \times \frac{R^2 - 2rR}{(R-r)^2}\\ &\simeq \frac{r^2}{(R-r)^2} + \frac{1}{\pi} \frac{r}{r+\delta} \frac{R^2 - 2rR}{(R-r)^2} \mbox{ DL de arcsin a l'ordre 1}\\ &\simeq \frac{1}{\pi} \frac{r}{r+\delta} \mbox{ suppression des termes d'ordre > 1} \end{align*}

    17. Exercice 36
      1. Notons X_{a,b} = aX + b. Pour a > 0, \P(X_{a,b} \leq x) = \P\left(X \leq \frac{x-b}{a}\right), donc \begin{align*} f_{a,b}(x) &= \frac{d}{dx} F\left(\frac{x-b}{a}\right)\\ &= \frac{1}{a} f\left(\frac{x-b}{a}\right)\\ &= \frac{1}{a \sigma \sqrt{2 \pi}} \exp \left( \frac{(x-(a \mu +b))^2}{2 (a\sigma)^2} \right) \end{align*} On reconnaît \cN(a\mu+b, a\sigma). Pour a < 0 le calcul est le même et on obtient \cN(a\mu+b, -a\sigma), ce qu'on peut résumer en X_{a,b} \sim \cN(a\mu+b, |a|\sigma).

      2. X \sim \cN(0,1) \Rightarrow X^2 \sim \chi^2(1) (cf. cours).
        \P\left(\frac{X^2}{2} \leq x \right) = \P(X^2 \leq 2x), donc f_{X^2/2}(x) = 2 f_{X^2}(2x) = \frac{1}{\sqrt{\pi x}} e^{-x}.

      3. Si X \sim \cN(\mu, \sigma) et X' \sim \cN(\mu', \sigma'), alors X+Y \sim \cN(\mu+\mu', \sqrt{\sigma^2+\sigma'^2}). Preuve : produit de convolution des densités, ou utiliser les fonctions caractéristiques + propriétés de la transformée de Fourier.

      4. Après calcul en utilisant les questions i. et iii., on trouve \frac{\sqrt{n}}{\sigma} \left( \frac{S_n}{n} - \mu \right) \sim \cN(0,1). Dans le cas général de n VA iid., S_n converge (dans un sens à préciser) vers une VA de loi \cN(0,1) : c'est le théorème central limite.

    18. Exercice 37
      1. Soit X la VA donnant la masse en grammes d'un oeuf pondu. Les données du problème se traduisent par \P(X < 53) \simeq \frac{104}{2000} et \P(X > 63) \simeq \frac{130}{2000}. X est obtenu par une certaine transformation affine d'une VA normale centrée réduite (disons Y). Les proportions sont conservées, donc on recherche les quantiles q_1 = \frac{104}{2000} et q_2 = 1 - \frac{130}{2000} de Y. On ne peut pas résoudre l'équation intégrale F(x) = q, alors on regarde comme suggéré dans la table donnée à la fin du polycopié de cours : x_1 = -1.65 et x_2 = 1.52. Il reste juste à résoudre le système d'équations \left\{ \begin{align*} a x_1 + b &= 53\\ a x_2 + b &= 63 \end{align*}\right. On trouve X \sim \cN(b, a) avec a = \frac{10}{x_2 - x_1} \simeq 3.15 et b = \frac{53 x_2 - 63 x_1}{x_2-x_1} \simeq 58.21.

      2. Poids moyen d'un oeuf \simeq b = 58.21g.

      3. On se ramène encore aux quantiles de Y \sim \cN(0,1) : q = \frac{71 - b}{a} \simeq 4.06. La table fournit l'approximation trop grossière F(q) \simeq 1.0000. On a donc recourt à un logiciel (R dispose par exemple de la fonction pnorm calculant F), qui nous donne F(q) \simeq 0.9999750397978. Donc on peut espérer vendre 365 \times 2000 \times (1 - F(q)) \simeq 18 très gros oeufs dans l'année (considérant la répétition de 365 \times 2000 épreuves de Bernouilli avec un taux de succès égal à 1 - F(q)).

        Vérification empirique avec R :

        totalTGO = 0
        for (i in 1:100) {
            totalTGO = totalTGO + sum(rnorm(2000*365, 58.21, 3.15) > 71)
        }
        totalTGO / 100
        [1] 18
    19. Exercice 38
      1. \begin{align*} F_U(x) &= \P(X \leq x \cup Y \leq x)\\ &= F_X(x) + F_Y(x) - F_X(x) F_Y(x) \mbox{ par indépendance}\\ F_V(x) &= \P(X \leq x \cap Y \leq x)\\ &= F_X(x) F_Y(x) \end{align*} Donc f_U(x) = f_X(x) (1 - F_Y(x)) + f_Y(x) (1 - F_X(x)), et f_V(x) = f_X(x) F_Y(x) + f_Y(x) F_X(x).

      2. Si X \sim \cE(\lambda), alors F_X(x) = 1 - e^{-\lambda x}. On en déduit d'après la formule précédente, avec U_n = \min(X_1,\dots,X_n) : \begin{align*} f_{U_2}(x) &= \lambda_1 e^{-\lambda1 x} e^{-\lambda_2 x} + \lambda_2 e^{-\lambda_2 x} e^{-\lambda_1 x}\\ &= (\lambda_1 + \lambda_2) e^{-(\lambda_1+\lambda_2)x} \end{align*} Soit U_2 \sim \cE(\lambda_1+\lambda_2). Par récurrence immédiate, U_n \sim \cE(\sum_{i=1}^n \lambda_i).

      3. C'est une application directe de la question précédente : Y \sim \cE(\sum_{i=1}^n \lambda_i).

    20. Exercice 39
      1. On suppose \theta > 0 (sinon e^{-1/\theta} > 1). Alors pour k \in \N^* \begin{align*} \P(Y = k) &= \P(\lceil \theta X \rceil = k)\\ &= \P(k-1 < \theta X \leq k)\\ &= F(k) - F(k-1)\\ &= e^{-(k-1)/\theta} ( 1 - e^{-1/\theta} ) \end{align*} On reconnaît la loi géométrique de paramètre p = 1 - e^{-1/\theta}.

    21. Exercice 40
      1. Vérifions que f_X est une densité : \int_{1}^{+\infty} f_X(x) dx = [-x^{-1/\theta}]_1^{+\infty} = 1^{-1/\theta} = 1 Puis on calcule F_X(x) = [-t^{-1/\theta}]_1^x = 1 - x^{-1/\theta}.

      2. \P(0 \leq X < 2) = F_X(2) = 1 - 2^{-1/\theta}.

      3. X admet une espérance ssi. x \mapsto x^{-1/\theta} est intégrable. C'est-à-dire ssi. \frac{-1}{\theta} < -1 ; ou, autrement dit ssi. \theta < 1.

        Dans ce cas, \begin{align*} \E[X] &= \int_{1}^{+\infty} \frac{1}{\theta} x^{-1/\theta} dx\\ &= \left[ \frac{-1}{1-\theta} x^{\frac{-1+\theta}{\theta}} \right]_1^{+\infty}\\ &= \frac{1}{1-\theta} \end{align*}

  4. Fonctions caractéristiques
    1. Exercice 41
      1. \varphi(t) = \E[e^{itX}] = \int_{\Omega} e^{itX(\omega)} d\P(\omega) = \int_{\R} e^{itx} d\P_X(x). Après calculs :

        1. \varphi(t) = (e^{it} p + q)^n
        2. \varphi(t) = \exp(\lambda (e^{it} - 1))
        3. \varphi(t) = \frac{\lambda}{\lambda - it}
        4. \varphi(t) = e^{-t^2/2} puis \varphi(t) = e^{i\mu t - (\sigma t)^2/2} dans le cas général
        5. \varphi(t) = \frac{e^{it} - e^{-it}}{2it}

        Pas de difficultés particulières, hormis pour la fonction caractéristique de la loi normale. Il y a (au moins) deux méthodes de calcul de cette dernière : remarquer que \varphi(t) = \frac{1}{\sqrt{2 \pi}} \int_{\R} \cos{t x} e^{-x^2/2} dx puis par intégration par parties que \varphi'(t) = -t \varphi(t), ou écrire itx - \frac{x^2}{2} = -\left( \frac{x}{\sqrt{2}} + \frac{it}{\sqrt{2}} \right)^2 - \frac{t^2}{2} puis effectuer le changement de variable u = \frac{x}{\sqrt{2}} + \frac{it}{\sqrt{2}} et intégrer dans le plan complexe.

      2. \varphi_{X+Y} = \varphi_X . \varphi_Y, \varphi_{aX+b} = e^{ibt} \varphi(at) (cf. cours)

      3. On calcule \varphi_{X+Y} = \varphi_X . \varphi_Y puis conclut grâce à l'injectivité de la transformée de Fourier (admise dans le cours).

        1. \varphi_{X+Y} = (e^{it} p + q)^{n+m}, loi \cB(n+m, p)
        2. \varphi_{X+Y} = \exp((\lambda+\mu) (e^{it} - 1)), loi \cP(\lambda+\mu)
        3. On sait que \sigma X+\mu \sim \cN(\mu, \sigma) (cf. séance 2) (...)
        4. \varphi_{X-Y+2Z}(t) = \varphi_X(t) \varphi_{-Y}(t) \varphi_{2 Z}(t) = e^{(-t^2 -(-t)^2 - (2t)^2) / 2} = e^{-6t^2/2} : loi \cN(0, \sqrt{6})
  5. Convergences des VAr
    1. Exercice 42
      1. Cf. cours

      2. Non : prenons X_n = Y \sim \cB\left(\frac{1}{2}\right), suite constante et convergente en loi vers X = 1-Y ; mais X_n - X = 2Y - 1 ne converge pas en loi vers 0.

    2. Exercice 43
      1. Lemme (utile à cette question et aux suivantes) : n p_n \longrightarrow \lambda \in \R \quad \Rightarrow \quad (1 - p_n)^n \longrightarrow e^{-\lambda} Pour voir cela on écrit (1-p_n)^n = \exp(n \ln(1-p_n)) puis - n \sum_{r=1}^{+\infty} p_n^r \leq n \ln(1-p_n) = - n \sum_{r=1}^{+\infty} \frac{p_n^r}{r} \leq - n p_n (cf. développement en série du logarithme, valable sur ]-1,1[). Après calculs (série géométrique) on obtient -n \frac{p_n}{1-p_n} \leq n \ln(1-p_n) \leq - n p_n. Les termes à gauche et à droite convergent vers -\lambda, ce qui permet de conclure d'après le théorème des gendarmes.

        \begin{align*} \P(X_n = k) &= (1 - p_n)^{n-k} \times p_n n \times p_n (n-1) \times \dots \times p_n (n-k+1) \times \frac{1}{k!}\\ &\longrightarrow e^{-\lambda} \left( \prod_{i=0}^{k-1} \underset{n \to +\infty}{\lim} p_n (n-i) \right) \frac{1}{k!} = e^{-\lambda} \frac{\lambda^k}{k!} \end{align*} On reconnnaît la loi de Poisson.

      2. X \sim \cH(N,n,p). \begin{align*} \P(X = k) &= \binom{pN}{k} \, \binom{qN}{n-k} \, / \, \binom{N}{n}\\ &= \binom{n}{k} \frac{(pN)!}{(pN-k)!} \frac{(qN)!}{(qN-(n-k))!} \frac{(N-n)!}{N!}\\ &\simeq \binom{n}{k} \sqrt{\frac{pN}{pN-k}} \left(\frac{pN}{e}\right)^{pN} \left(\frac{e}{pN-k}\right)^{pN-k}\\ &\qquad . \sqrt{\frac{qN}{qN-(n-k)}} \left(\frac{qN}{e}\right)^{qN} \left(\frac{e}{qN-(n-k)}\right)^{qN-(n-k)}\\ &\qquad . \sqrt{\frac{N-n}{N}} \left(\frac{N-n}{e}\right)^{N-n} \left(\frac{e}{N}\right)^{N} \text{ (formule de Stirling)}\\ &\simeq \binom{n}{k} \frac{(pN)^{pN}}{(pN-k)^{pN-k}} \frac{(qN)^{qN}}{(qN-(n-k))^{qN-(n-k)}} \frac{(N-n)^{N-n}}{N^N}\\ &= \binom{n}{k} \frac{(pN)^k}{N^k} \frac{(qN-(n-k))^{n-k}}{N^{n-k}} \left( \frac{pN}{pN-k} \right)^{pN} \left( \frac{qN}{qN-(n-k)} \right)^{qN} \left( \frac{N-n}{N} \right)^{N-n}\\ &\simeq \binom{n}{k} p^k q^{n-k} \left(1 - \frac{k}{pN}\right)^{-pN} \left(1 - \frac{n-k}{qN}\right)^{-qN} \left(1 - \frac{n}{N} \right)^{N-n}\\ &\longrightarrow \binom{n}{k} p^k q^{n-k} e^{k} e^{n-k} e^{-n} = \binom{n}{k} p^k q^{n-k} \text{ (utiliser le lemme) } \end{align*} On reconnaît la loi binomiale.

      3. Y_n = \frac{X_n}{a_n}. \begin{align*} \P(Y_n \leq x \in \R^+) &= \P(X_n \leq x a_n)\\ &= 1 - \P(X_n > x a_n)\\ &= 1 - (1-p_n)^{\lceil x a_n \rceil}\\ &\longrightarrow 1 - \exp\left(-\lim_{n \to +\infty} p_n \lceil x a_n \rceil\right) = 1 - e^{-\lambda} \, ,\\ &\text{ car } p_n a_n x \leq p_n \lceil x a_n \rceil \leq p_n a_n x + p_n \end{align*} On reconnaît la fonction de répartition de la loi exponentielle.

      4. Typo dans l'énoncé : \frac{1}{n^2} \sum_{k=1}^{n} \sigma_n^2 \longrightarrow 0. (Sinon ça ne peut pas converger vers une constante).
        Soit \varepsilon > 0. Notons \overline{X_n} = \frac{1}{n} \sum_{k=1}^{n} X_k. Alors \E[\overline{X_n}] = \frac{1}{n} \sum_{k=1}^{n} \mu_k et \text{Var}(\overline{X_n}) = \frac{1}{n^2} \sum_{k=1}^{n} \sigma_k^2, et on veut majorer \P(|\overline{X_n} - \mu| > \varepsilon). Écrivons alors \begin{align*} |\overline{X_n} - \mu| &= |\overline{X_n} - \E[\overline{X_n}] + \E[\overline{X_n}] - \mu|\\ &\leq |\overline{X_n} - \E[\overline{X_n}]| + |\E[\overline{X_n}] - \mu|\\ \Rightarrow \,\, & \P(|\overline{X_n} - \mu| > \varepsilon) \leq \P(|\overline{X_n} - \E[\overline{X_n}]| + |\E[\overline{X_n}] - \mu| > \varepsilon) = \P(|\overline{X_n} - \E[\overline{X_n}]| > \varepsilon - |\E[\overline{X_n}] - \mu|) \end{align*} On applique finalement l'inégalité de Bienaymé-Tchebyshev : \P(|\overline{X_n} - \E[\overline{X_n}]| > \varepsilon - |\E[\overline{X_n}] - \mu|) \leq \frac{\text{Var}(\overline{X_n})}{(\varepsilon - |\E[\overline{X_n}] - \mu|)^2} \, . Le terme de droite tend vers 0 par hypothèse, ce qui prouve le résultat.

    3. Exercice 44
      1. p = \frac{1}{500}, n = 2000. p étant "plutôt petit" et n "plutôt grand", l'approximation par une loi de Poisson est légitime : \P(X \leq 5) \simeq e^{-4} \sum_{k=0}^{5} \frac{4^k}{k!} \simeq 0.79, soit pas loin de 80% de chances de faire 5 fautes ou moins.

    4. Exercice 45
      1. Y_n = \frac{X_n}{n}X_n est égal au nombre de fous parmi n individus. X_n est une somme de n VA de Bernouilli de paramètre p, donc Y_n a même loi que Z_n = \frac{1}{n} \sum_{k=1}^{n} Ber(p). On applique alors l'inégalité de Bienaymé-Tchebyshev : \P(|Y_n - 0.09| > 0.001) \leq \frac{\text{Var}(Y_n)}{0.001^2} = \frac{p q}{n 0.001^2} Être dans l'intervalle [0.009, 0.011] avec probabilité \geq 0.9 est équivalent à être en dehors de cet intervalle avec probabilité \leq 0.1. On cherche donc à résoudre \frac{p q}{n 0.001^2} = 0.1, soit n = \frac{0.01 \times 0.99}{1e^{-7}} = 99000

      2. D'après le théorème de De Moivre-Laplace, \sqrt{\frac{n}{p q}} (Y_n - p) = \frac{n Y_n - n p}{\sqrt{n p q}} suit asymptotiquement la loi normale \cN(0,1). Pour "n grand" on écrit donc \begin{align*} \P(Y_n \in [0.009, 0.011]) &= \P\left(\sqrt{\frac{n}{p q}} (Y_n - p) \in \left[ \sqrt{\frac{n}{p q}} (0.009 - p), \sqrt{\frac{n}{p q}} (0.011 -p) \right] \right)\\ &\simeq \Phi\left(\sqrt{\frac{n}{p q}} 0.001 \right) - \Phi\left(- \sqrt{\frac{n}{p q}} 0.001 \right)\\ &= 1 - 2 \Phi\left(- \sqrt{\frac{n}{p q}} 0.001 \right) \end{align*}\Phi est la fonction de répartition de \cN(0,1), la dernière ligne découlant de la symétrie de la loi normale. La résolution de l'équation 1 - 2 \Phi\left(- \sqrt{\frac{n}{p q}} 0.001 \right) = 0.9 mène à n = 164 environ.

        Attention cependant : en effectuant cette approximation on fait une erreur sur la probabilité \P(Y_n \in [0.009, 0.011]), qui est quantifiée par l'inégalité de Berry-Esseen. Cette dernière permet d'écrire \begin{align*} \P(Y_n \in [0.009, 0.011]) &= \left|F_n\left(\sqrt{\frac{n}{p q}} 0.001\right) - F_n\left(-\sqrt{\frac{n}{p q}} 0.001\right)\right|\\ &= \left|F_n\left(\sqrt{\frac{n}{p q}} 0.001\right) - \Phi\left(\sqrt{\frac{n}{p q}} 0.001\right) + \Phi\left(\sqrt{\frac{n}{p q}} 0.001\right)\right.\\ &\quad \left. - \Phi\left(-\sqrt{\frac{n}{p q}} 0.001\right) + \Phi\left(-\sqrt{\frac{n}{p q}} 0.001\right) - F_n\left(-\sqrt{\frac{n}{p q}} 0.001 \right)\right|\\ &\in \left[ \left|\Phi\left(\sqrt{\frac{n}{p q}} 0.001\right) - \Phi\left(-\sqrt{\frac{n}{p q}} 0.001\right)\right| - \frac{\rho}{\sigma^3 \sqrt{n}}, \right.\\ &\quad \left. \left|\Phi\left(\sqrt{\frac{n}{p q}} 0.001\right) - \Phi\left(-\sqrt{\frac{n}{p q}} 0.001\right)\right| + \frac{\rho}{\sigma^3 \sqrt{n}} \right] \end{align*} avec F_n la fonction de répartition de Z_n = \sqrt{\frac{n}{p q}} (Y_n - p), \sigma son écart-type et \rho son moment d'ordre 3. Pour une comparaison juste avec l'inégalité de Bienaymé-Tchebyshev, il faut donc en outre choisir n tel que \frac{\rho}{\sigma^3 \sqrt{n}} < 0.005 : cela assure que la probabilité recherchée vaut 0.9 avec une erreur inférieure à 0.5%. Après calculs (attention : faux pour \rho) \sigma = 1 et \rho = \frac{|1 - 2p|}{\sqrt{npq}}, puis n \simeq 1970.

    5. Exercice 46
      1. Pour n=10 on n'approxime rien du tout, il ne faut pas exagérer :) Avec les notations de l'exercice précédent on cherche \P(Y_n \geq 0.5) = \P(X_n \geq 5) = \sum_{k=5}^{10} \binom{10}{k} p^k q^{n-k} \, ,p = 0.45. Le calcul donne environ 0.4956, et peut être effectué avec le logiciel R comme suit

        p = 0.45 ; q = 0.55
        proba = 0
        n = 10
        for (k in (n/2):n)
        	proba = proba + choose(n,k) * p^k * q^(n-k)

        À partir de n=100 l'approximation par une loi normale est raisonnable (sans forcément être juste). On écrit comme pour l'exercice précédent \begin{align*} \P(Y_n \geq 0.5) &= \P\left(\sqrt{\frac{n}{p q}} (Y_n - p) \geq \sqrt{\frac{n}{p q}} (0.5 - p) \right)\\ &\simeq \Phi\left(- \sqrt{\frac{n}{p q}} (0.5 - p) \right) \, , \end{align*} par symétrie de la loi normale. Pour n=100 on obtient \P(Y_n \geq 0.5) \simeq 0.16, et pour n=1000 : \P(Y_n \geq 0.5) \simeq 7.4e^{-4}.

        En fait R parvient à faire le calcul (car les coefficients binomiaux peuvent être obtenus sans calculer les factorielles complètes). On obtient respectivement 0.18 et 8.5e^{-4}, indiquant que l'approximation par le TCL est légèrement biaisée vers le bas.

      2. n est fixé de façon à ce qu'à chaque sondage sur n individus, la probabilité d'obtenir un résultat favorable au président est de 0.15. (D'après la question précédente on sait que n est de l'ordre de 100). Un sondage peut alors être considéré comme une épreuve de Bernouilli de probabilité de succès fixe : r = 0.15. On note S_k le résultat du k^{\mbox{eme}} sondage, dans \{0, 1\}.

        La probabilité d'avoir au moins un sondage favorable parmi N effectués s'écrit P_1 = 1 - \P(\sum_{k=1}^{n} S_k = 0), soit 1 - \P(X_N = 0) = 1 - (1 - r)^N avec X_n \sim \cB(N, r). Reste à résoudre l'équation (1 - r)^N = 0.1 en N. On obtient N = \lceil \frac{\ln 0.1}{\ln 0.85} \rceil = 15, donc il faut au moins 15 sondages.

    6. Exercice 47
      1. On peut raisonnablement supposer devoir chercher la probabilité que 99 pièces pèsent entre 995 et 1005 grammes, ou bien que 101 pièces pèsent entre 995 et 1005 grammes (l'énoncé n'est pas très clair), car on arrêterait alors la formation du lot à ce stade. La somme de n VA de loi normale \cN(10,0.15) suivant la loi normale \cN(10n, 0.15 \sqrt{n}), on en déduit que la probabilité P_1 recherchée vaut P_1 = \sum_{n \in \{99, 101\}} \Phi\left(\frac{1005 - 10 \times n}{0.15 \sqrt{n}}\right) - \Phi\left(\frac{995 - 10 \times n}{0.15 \sqrt{n}}\right) \simeq 8.6e^{-4} avec \Phi fonction de répartition de la loi normale centrée réduite.
        On peut aussi calculer la probabilité de faire une erreur d'au moins une unité : \begin{align*} P_{1+} &= 1 - \P(\cN(10 \times 100, 0.15 \sqrt{100}) \in [995, 1005])\\ &= 1 - \Phi\left(\frac{1005 - 10 \times 100}{0.15 \sqrt{100}}\right) + \Phi\left(\frac{995 - 10 \times 100}{0.15 \sqrt{100}}\right)\\ &\simeq 8.6e^{-4} \end{align*} On est donc quasi sûr de ne pas faire d'erreur, et s'il y a une erreur elle n'excède pas une unité.

    7. Exercice 48
      1. On applique le TCL (même si n = 50 est assez limite). \begin{align*} \P(S > 1050) &= \P\left(\frac{S - 50 \times 20}{1 \times \sqrt{50}} > \frac{1050 - 50 \times 20}{\sqrt{50}} \right)\\ &\simeq \P(\cN(0,1) > \sqrt{50})\\ &\simeq 7.7e^{-13} \end{align*} Obtenir un total supérieur à 1050 semble donc fort peu probable.

    8. Exercice 49
      1. Il faut commencer par traduire l'énoncé. En l'occurrence, le nombre de clients C_1 souhaitant le plat 1 (je les numérote : c'est plus simple) suit la loi binomiale \cB(n, p) tandis que le nombre de clients souhaitant le plat 2 est déterminé par C_2 = n - C_1. Ensuite, "toute la clientèle est satisfaite" équivaut à np + s \geq C_1 et n(1-p) + s \geq C_2, conditions équivalentes à np - s \leq C_1 \leq np + s. On cherche donc s tel que \P(C_1 \in [\negthinspace[np-s, np+s]\negthinspace]) \simeq 0.95.

        n étant "grand" (\geq 100), l'approximation par une loi normale est légitime. On applique donc le théorème de De Moivre-Laplace. \begin{align*} \P(C_1 \in [\negthinspace[np-s, np+s]\negthinspace]) &= \P\left(\frac{C_1 - np}{\sqrt{n p (1-p)}} \in \left[ -\frac{s}{\sqrt{n p (1-p)}}, \frac{s}{\sqrt{n p (1-p)}} \right]\right)\\ &\simeq \P\left(\cN(0,1) \in \left[ -\frac{s}{\sqrt{n p (1-p)}}, \frac{s}{\sqrt{n p (1-p)}} \right]\right)\\ &= 1 - 2 \Phi\left(-\frac{s}{\sqrt{n p (1-p)}}\right) \end{align*} On cherche donc s tel que \Phi\left(-\frac{s}{\sqrt{n p (1-p)}}\right) = 0.025, c'est-à-dire \frac{s}{\sqrt{n p (1-p)}} \simeq 1.96. On obtient en arrondissant à l'entier supérieur :

        • n=100 : s \simeq 10
        • n=1000 : s \simeq 31

        Le pourcentage moyen de plats 1 (resp. 2) non consommés s'écrit \frac{s}{np+s} (resp. \frac{s}{n(1-p)+s}). Cette dernière quantité est la plus grande : il faut donc préférer le plat le plus populaire pour diminuer le risque de manger les restes de la veille...

    9. Exercice 50
      1. L'expérience s'est (d'après les nombres de l'énoncé) déroulée avec \ell = \frac{L}{2}L est la largeur d'une lame de parquet. On obtient donc l'excellente approximation \pi \simeq \frac{220}{70} = \frac{22}{7} \simeq 3.1529

      2. Chaque lancer d'aiguille correspondant à une épreuve de Bernouilli de paramètre p = \frac{1}{\pi} ; la somme suit donc la loi binomiale \cB(n,p). On applique le théorème de De Moivre-Laplace avec n=220 : \begin{align*} \quad& \P\left( \frac{S_{220}\pi - 220}{\sqrt{220 (\pi-1)}} \in \left]\frac{69.5\pi - 220}{\sqrt{220 (\pi-1)}}, \frac{70.5\pi - 220}{\sqrt{220 (\pi-1)}}\right[ \right)\\ &\simeq \Phi\left(\frac{70.5\pi - 220}{\sqrt{220 (\pi-1)}}\right) - \Phi\left(\frac{69.5\pi - 220}{\sqrt{220 (\pi-1)}}\right)\\ &\simeq 0.058 \end{align*} Il semble donc que Bob aie eu beaucoup de chance... Ceci dit, si l'on cherche (par le même calcul) la probabilité d'obtenir entre 65 et 75 intersections (en arrondissant à l'entier le plus proche après approximation par le TCL), on trouve une probabilité d'environ 0.57. Obtenir 70 est donc tout à fait plausible.

      3. \pi est approximé par \frac{n}{S_n}, donc on cherche n tel que P = \P\left(\frac{n}{S_n} \in ]\pi - 5e^{-4}, \pi+5e^{-4}[\right) \geq 0.95. On écrit alors \begin{align*} P &= \P\left( S_n \in \left] \frac{n}{\pi+5e^{-4}}, \frac{n}{\pi-5e^{-4}} \right[ \right)\\ &= \P\left( \frac{S_n \pi - n}{\sqrt{n(\pi-1)}} \in \left] - \frac{\sqrt{n}}{\sqrt{\pi-1}} \frac{5e^{-4}}{\pi+5e^{-4}}, \frac{\sqrt{n}}{\sqrt{\pi-1}} \frac{5e^{-4}}{\pi-5e^{-4}} \right[ \right)\\ &\simeq \P\left( \cN(0,1) \in \left] - \frac{\sqrt{n}}{\sqrt{\pi-1}} \frac{5e^{-4}}{\pi+5e^{-4}}, \frac{\sqrt{n}}{\sqrt{\pi-1}} \frac{5e^{-4}}{\pi-5e^{-4}} \right[ \right)\\ &= \Phi(a_n) - \Phi(-b_n) \, , \end{align*} avec a_n = \frac{\sqrt{n}}{\sqrt{\pi-1}} \frac{5e^{-4}}{\pi-5e^{-4}} et b_n = \frac{\sqrt{n}}{\sqrt{\pi-1}} \frac{5e^{-4}}{\pi+5e^{-4}}. a_n > b_n, donc 1 - 2 \Phi(-b_n) \leq P \leq 1 - 2 \Phi(-a_n), ce qui permet d'encadrer n entre 324679251 et 324886014 : il faut choisir n de l'ordre de 325 millions.

  6. Couples de variables aléatoires
    1. Exercice 51
      1. X et Y sont indépendantes et suivent la loi uniforme dans [0,1] (translation de l'intervalle [19h, 20h]). On cherche la probabilité que |X - Y| < \frac{1}{6} (dix minutes = un sixième d'heure). On la calcule via l'intégrale suivante \begin{align*} \P\left(|X - Y| < \frac{1}{6} \right) &= \int_{x=0}^{1} \int_{y=\max(0, x-1/6)}^{\min(1, x+1/6)} 1 dx dy\\ &= \int_{0}^{1} \min(1, x+1/6) - \max(0, x-1/6) dx\\ &= \int_{1/6}^{1-1/6} \frac{1}{3} dx + 2 \int_{0}^{1/6} x + \frac{1}{6} dx\\ &= \frac{2}{9} + 2 \left( \frac{1}{72} + \frac{1}{36} \right)\\ &= \frac{2}{9} + \frac{1}{12} = \frac{11}{36} \, , \end{align*} soit un peu moins d'une chance sur trois.

      2. Si Alice n'en tient pas compte, je ne vois pas ce que ça peut changer. Si elle en tient compte et décide par exemple d'arriver à un instant aléatoire à partir de l'horaire t_0 indiqué par Bob, alors il faut effectuer le calcul \int_{y=t_0}^{\min(t_0+1/6, 1)} \frac{1}{1-t_0} dy. On trouve logiquement 1 si t_0 est après 19h50, et \frac{1}{6(1-t_0)} sinon. Intégrant ce résultat pour t_0 variant entre 0 et 1 on obtient la probabilité qu'Alice rencontre Bob sachant qu'elle arrive après lui : P = \frac{1}{6} + \int_{0}^{1-1/6} \frac{dt}{6(1-t)} = \frac{1}{6} + \frac{\ln{6}}{6} \simeq 0.47 Presque une chance sur deux.

      3. La situation est similaire à celle de l'exercice 34, mais tout de même différente. On commence par appliquer la formule des probabilités totales avec V = "voir Alice", R = "elle est déjà arrivée et repartie" et A = "elle n'est pas encore arrivée" à un instant fixé t_0. \begin{align*} P_{t_0}(V) &= \P_{t_0}(V|R) \P_{t_0}(R) + \P_{t_0}(V|A) \P_{t_0}(A)\\ &= 0 + \frac{\min(1/6, 1-t_0)}{1-t_0} \frac{1-t_0}{1 - 0}\\ &= \min(1/6, 1-t_0) \end{align*} Intégrant ensuite ce résultat sur [0,1] on obtient \begin{align*} P &= \int_{0}^{1} P_t(V) dt\\ &= \frac{1}{6} \int_{0}^{1-1/6} 1 dt + \int_{1-1/6}^{1} (1-t) dt\\ &= \frac{5}{36} + \frac{1}{72} = \frac{11}{72} \, , \end{align*} soit un peu plus d'une chance sur sept.

    2. Exercice 52
      1. Y = 0Y = 1Y = 2P_X
        X = 001/81/81/4
        X = 11/81/41/81/2
        X = 21/81/801/4
        P_Y1/41/21/4
      2. Cf. marges du tableau. \P(X=0 \cap Y = 0) = 0 \neq \P(X = 0) \P(Y = 0) donc pas indépendance.

      3. \text{Cov}(X,Y) = \sum_{i,j} p_{i,j} x_i y_j - \E[X] \E[Y] = \frac{3}{4} - 1 = -\frac{1}{4} Corrélation légèrement négative : quand X augmente, Y a tendance à diminuer (et réciproquement).

    3. Exercice 53
      1. Triangle de sommets (0,0), (1,0) et (1,1)

      2. \int_{x=0}^{1} \int_{y=0}^{x} 8 x y dx dy = \int_{0}^{1} \frac{8 x^3}{2} dx = 1

      3. f_X(x) = \int_{y=0}^{x} 8 x y dy = 4 x^3

        f_Y(y) = \int_{x=y}^{1} 8 x y dx = 4 y (1 - y^2)

      4. \begin{align*} \text{Cov}(X,Y) &= \E[XY] - \E[X]\E[Y]\\ &= \int_{x=0}^{1} \int_{y=0}^{x} 8 x^2 y^2 dx dy - \int_{0}^{1} x f_X(x) dx \int_{0}^{1} y f_Y(y) dy\\ &= \frac{4}{9} - \frac{4}{5} \times \left(\frac{4}{3} - 1\right)\\ &= \frac{20}{45} - \frac{12}{45} = \frac{8}{45} \end{align*}

      5. Indépendantes \Rightarrow covariance nulle. Donc pas indépendance.

    4. Exercice 54
      1. \int_{x=0}^{+\infty} \int_{y=0}^{+\infty} e^{-x} e^{-2y} dx dy = \frac{1}{2}, donc \alpha = 2

      2. f_X(x) = \int_{y=0}^{+\infty} 2 e^{-x} e^{-2y} dy = e^{-x} : densité de la loi exponentielle \cE(1).

      3. \begin{align*} \P(X < Y) &= \int_{x=0}^{+\infty} \int_{y=x}^{+\infty} 2 e^{-x} e^{-2y} dx dy\\ &= \int_{0}^{+\infty} e^{-3x} dx\\ &= \frac{1}{3} \end{align*} C'est cohérent car Y suit marginalement la loi \cE(2), dont la moyenne est inférieure à \cE(1). On pouvait s'attendre à ce que \P(X < Y) soit inférieur à 0.5.

      4. Oui : densité du couple = produit des densités marginales.

    5. Exercice 55
      1. Triangle de sommets (0,0), (1,0) et (1,1) privé de la diagonale u = v.

      2. \int_{u=0}^{1} \int_{v=0}^{u} u(u-v) du dv = \int_{0}^{1} \frac{u^3}{2} = \frac{1}{8}, donc \alpha = 8.

      3. f_U(u) = \int_{v=0}^{u} 8 u(u-v) dv = 4 u^3

        f_V(v) = \int_{u=v}^{1} 8 u(u-v) du = \frac{8}{3} - \frac{8 v^3}{3} - 4v + 4v^3 = \frac{4v^3}{3} - 4v + \frac{8}{3}

      4. \begin{align*} \text{Cov}(X,Y) &= \E[XY] - \E[X]\E[Y]\\ &= \int_{u=0}^{1} \int_{v=0}^{u} 8 (u^3 v - u^2 v^2) du dv - \int_{u=0}^{1} 4 u^4 du - \int_{u=0}^{1} \left( \frac{4v^4}{3} - 4v^2 + \frac{8v}{3} \right) dv\\ &= ... \text{ (un truc non nul)} \end{align*}

      5. Non car la covariance calculée est non nulle.

    6. Exercice 56
      1. \P(Y=k \text{ et } X = \ell) = \left\{ \begin{align*} & \frac{1}{18} \text{ si } k < \ell < 2k \, ,\\ &\frac{1}{36} \text{ si } \ell = 2k \, ,\\ &0 \text{ sinon} \end{align*} \right. On peut vérifier que \sum p_{k,\ell} = 1

        \P(Y = k) = \frac{1}{36} + \delta_{k \geq 2} \sum_{\ell=k+1}^{2k-1} \frac{1}{18} = \frac{2k - 1}{36}

        Pour 2 \leq \ell \leq 12 : \begin{align*} \P(X = \ell) &= \frac{\delta_{\ell \text{ pair}}}{36} + \sum_{k=1}^{6} \frac{\delta_{k < \ell < 2k}}{18}\\ &= \frac{\delta_{\ell \text{ pair}}}{36} + \sum_{k=\left\lfloor \frac{\ell}{2} \right\rfloor + 1}^{\ell-1} \frac{1}{18}\\ &= \frac{1}{36} \left( \delta_{\ell \text{ pair}} + 2 \left(\ell - 1 - \left\lfloor \frac{\ell}{2} \right\rfloor \right) \right) \end{align*}

      2. Non : p_{6,6} = 0 \neq \P(X = 6) \P(Y = 6)

      3. \begin{align*} \P(Y = k|X = 6) &= \frac{\P(Y = k \text{ et } X = 6)}{\P(X = 6)}\\ &= \frac{36}{5} \P(Y = k \text{ et } X = 6)\\ &= 0 \, , \frac{1}{5} \text{ ou } \frac{2}{5} \text{ suivant les cas} \end{align*}