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In the present study, we derive from kinetic theory a unified fluid model for multicom-
ponent plasmas by accounting for the electromagnetic field influence. We deal with a
possible thermal nonequilibrium of the translational energy of the particles, neglecting
their internal energy and reactive collisions. Given the strong disparity of mass between
the electrons and heavy particles, such as molecules, atoms, and ions, we conduct a
dimensional analysis of the Boltzmann equation and introduce a scaling based on a
multiscale perturbation parameter equal to the square root of the ratio of the electron
mass to a characteristic heavy-particle mass. We then generalize the Chapman—Enskog
method, emphasizing the role of the perturbation parameter on the collisional opera-
tor, the streaming operator, and the collisional invariants of the Boltzmann equation.
The system is examined at successive orders of approximation, each corresponding to a
physical timescale. At the highest approximation order investigated, the multicomponent
Navier—Stokes regime is reached for the heavy particles and is coupled to first-order drift-
diffusion equations for the electrons. The transport coefficients are then calculated in
terms of bracket operators whose mathematical structure allows for positivity properties
to be determined and Onsager’s reciprocal relations to hold. The transport coefficients
exhibit an anisotropic behavior when the magnetic field is strong enough. We also give a
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complete description of the Kolesnikov effect, i.e. the crossed contributions to the mass
and energy transport fluxes coupling the electrons and heavy particles. Finally, the first
and second laws of thermodynamics are proved to be satisfied by deriving a total energy
equation and an entropy equation. Moreover, the purely convective system of equations
is shown to be hyperbolic.

Keywords: Kinetic theory; plasmas in thermal nonequilibrium; conservation equations;
multicomponent transport properties.

AMS Subject Classification: 82C40, 76X05, 41A60

1. Introduction

Plasmas are ionized gas mixtures, either magnetized or not, that have many prac-
tical applications. For instance, lightning is a well-known natural plasma and has
been studied for many years.* A second application is encountered in hypersonic
flows; when a spacecraft enters into a planetary atmosphere at hypervelocity, the
gas temperature and pressure strongly rise through a shock wave, consequently,
dissociation and ionization of the gas particles occur in the shock layer. Atmo-
spheric entry plasmas are reproduced in dedicated wind-tunnels such as plasma-
trons, arc-jet facilities, and shock-tubes.*®4%:%3 A third example was found about
two decades ago, when large-scale electrical discharges were discovered in the meso-
sphere and lower ionosphere above large thunderstorms; these plasmas are now
commonly referred to as sprites.®> 4% Fourth, discharges at atmospheric pressure
have received renewed attention in recent years due to their ability to enhance
the reactivity of a variety of gas flows for applications ranging from surface treat-
ment to flame stabilization and ignition (see Refs. 44, 48, 51 and 54 and refer-
ences cited therein). Fifth, Hall thrusters are being developed to replace chemical
systems for many on-orbit propulsion tasks on communications and exploration
spacecraft.>? Finally, two important applications of magnetized plasmas are labo-

6,50

ratory thermonuclear fusion and the magnetic reconnection phenomenon in

astrophysics.®®

Depending on the magnitude of the ratio of the reference particle mean free path
to the system characteristic length (Knudsen number), two different approaches are
generally followed to describe the transport of mass, momentum, and energy in a
plasma’®: either a particle approach at high values of the Knudsen number (solu-
tion to the Boltzmann equation using Monte Carlo methods), or a fluid approach
at low values (solution to macroscopic conservation equations by means of com-
putational fluid dynamics methods). In this work, we study plasmas that can be
described by a fluid approach, which encompasses most of the above-mentioned
applications. In this case, kinetic theory can be used to obtain the governing con-
servation equations and transport fluxes. Hence, closure of the problem is realized
at the microscopic level by determining from experimental measurements either the
potentials of interaction between the gas particles or the cross-sections, allowing for
the transport coefficients to be computed.
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A complete model of plasmas should allow for the following physical phenomena
to be described

Thermal nonequilibrium of the translational energy,
Influence of the electromagnetic field,

Occurrence of reactive collisions,

Excitation of internal degrees of freedom.

So far, no such unified model has been derived by means of kinetic theory. Besides, a
derivation of the mathematical structure of the conservation equations also appears
to be crucial in the design of the associated numerical methods. In the present
study, we investigate based on our previous work the thermal nonequilibrium of
the translational energy*® and the influence of the magnetic field.?® We generalize
the Chapman—Enskog method within the context of a dimensional analysis of the
Boltzmann equation, emphasizing the role of a multiscale perturbation parameter
on the collisional operator, the streaming operator, and the collisional invariants of
the Boltzmann equation. Then, we obtain macroscopic equations eventually leading
to a sound entropy structure. Moreover, the purely convective system of equations
is shown to be hyperbolic. Let us now describe in more detail how these issues are
currently addressed in the literature.

First, a multiscale analysis is essential to solve the Boltzmann equation gov-
erning the velocity distribution functions. We recall that a fluid can be described
in the continuum limit provided that the Knudsen number is small. In the case
of plasmas, a thermal nonequilibrium may occur between the velocity distribution
functions of the electrons and heavy particles (atoms, molecules, and ions), given
the strong disparity of mass between both types of species. The square root of
the ratio of the electron mass to a characteristic heavy-particle mass represents an
additional small parameter to be accounted for in the derivation of an asymptotic
solution to the Boltzmann equation. The literature abounds with expressions for
the scaling for the perturbative solution method. For instance, significant results
are given in Refs. 15, 19, 24, 35 and 57. Petit and Darrozes*” have suggested that
the only sound scaling is obtained by means of a dimensional analysis of the Boltz-
mann equation. Moreover, they have deduced that the Knudsen number is propor-
tional to the square root of the electron heavy-particle mass ratio. Subsequently,
Degond and Lucquin®®2! have established a formal theory of epochal relaxation
based on such a scaling. In their study, the mean velocity of the electrons was
shown to vanish in an inertial reference frame. Moreover, the heavy-particle diffu-
sive fluxes were scarcely dealt with since their work is restricted to a single type
of heavy particles, and thus no multicomponent diffusion was to be found. In such
a simplified context, the details of the interaction between the heavy particles and
electrons degenerate and the positivity of the entropy production is straightfor-
ward. We will establish a theory based on a multiscale analysis for multicomponent
plasmas (which includes the single heavy-particle case) where the mean electron
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velocity is the mean heavy-particle velocity in the absence of external forces. As an
alternative, Magin and Degrez*® have also proposed a model for multicomponent
plasmas in a hydrodynamic velocity frame. They have applied a multiscale analysis
to the derivation of the multicomponent transport fluxes and coefficients. However,
since the hydrodynamic velocity is used to define the reference frame instead of
the mean heavy-particle velocity, the Chapman—Enskog method requires additional
low order terms in the integral equation for the electron perturbation function to
ensure mass conservation. Finally, we also desire that the development of thermal
equilibrium models shall always be obtained as a particular case of the general
theory.

Second, the magnetic field induces anisotropic transport fluxes when the elec-
tron collision frequency is lower than the electron cyclotron frequency of gyration
around the magnetic lines. Braginskii'® has studied the case of fully ionized plas-
mas composed of one single ion species. Recently, Bobrova et al. have generalized
the previous work to multicomponent plasmas. However, the scaling used in these
studies does not comply with a dimensional analysis of the Boltzmann equation.
Lucquin®”-3® has investigated magnetized plasmas in this framework. Nevertheless,
the same limitation is found for the diffusive fluxes as in Refs. 20 and 21. Finally,
Giovangigli and Graille?® have studied the Enskog expansion of magnetized plasmas
and obtained macroscopic equations together with expressions for transport fluxes
and coefficients. Unfortunately, the difference of mass between the electrons and
heavy particles is not accounted for in their work.

Third, plasmas are strongly reactive gas mixtures. The kinetic mechanism
comprises numerous reactions'?: dissociation of molecules by electron and heavy-
particle impact, three-body recombination, ionization by electron and heavy-
particle impact, associative ionization, dissociative recombination, radical reactions,
charge exchange. .. Giovangigli and Massot?? have derived a formal theory of chem-
ically reacting flows for the case of neutral gases. Subsequently, Giovangigli and
Graille?® have studied the case of ionized gases. We recall that their scaling does
not take into account the mass disparity between electrons and heavy particles.
Besides, in chemical equilibrium situations, a long-standing theoretical debate in
the literature deals with nonuniqueness of the two-temperature Saha equation for
quasi-equilibrium composition. Recently, Giordano and Capitelli*® have emphasized
the importance of the physical constraints imposed on the system by using a ther-
modynamic approach. A derivation based on kinetic theory should further improve
the understanding of the problem. Choquet et al.'617 have already studied the case
of ionization reactions by electron impact.

Fourth, molecules rotate and vibrate, and moreover, the electronic energy levels
of atoms and molecules can be excited. Generally, the rotational energy mode is
considered to be fully excited above a few Kelvins. In a plasma environment, the
vibrational and electronic energy modes are also significantly excited. The detailed
treatment of the internal degrees of freedom is however beyond the scope of the
present work where we will only tackle the translational energy in the context of
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thermal nonequilibrium. The reader is thus referred to the specialized literature for
the treatment of the internal energy.'! 3% 43

Fifth, the development of numerical methods to solve conservation equations
relies on the identification of their intrinsic mathematical structure. For instance,
the system of conservation equations of mass, momentum, and energy is known
to be nonconservative for thermal nonequilibrium ionized gases. Therefore, this
formulation is not suitable for numerical approximations of discontinuous solutions.
Coquel and Marmignon'® have derived a well-posed conservative formulation based
on a phenomenological approach. Nevertheless, their derivation is not consistent
with a scaling based on a dimensional analysis. We will show that kinetic theory,
based on first principles, naturally allows for an adequate mathematical structure
to be obtained, as opposed to the phenomenological approach.

In this work, we propose to derive the multicomponent plasma conservation
equations of mass, momentum, and energy, as well as the expressions for the
associated multicomponent transport fluxes and coefficients. The multicomponent
Navier—Stokes regime is reached for the heavy particles and is coupled to first-order
drift-diffusion equations for the electrons. We deal here with first-order equations
for electrons, thus one order beyond the expansion commonly investigated in the
literature. The derivation relies on kinetic theory and is based on the ansatz that
the particles of the plasma are inert and only possess translational degrees of free-
dom. The electromagnetic field influence is accounted for. In Sec. 2, we express
the Boltzmann equation in a noninertial reference frame. We show that the mean
heavy-particle velocity is a suitable choice for the reference frame velocity. This step
is essential to establish a formalism where the electrons follow the bulk movement
of the plasma. Then, we define the reference quantities of the system in order to
derive the scaling of the Boltzmann equation from a dimensional analysis. The mul-
tiscale aspect occurs in both the streaming operator and collision operator of the
Boltzmann equation. Consequently, Sec. 3 is devoted to the scaling of the partial
collision operators between unlike particles. We determine the collisional invariants
associated with respectively the electrons and the heavy particles. In Sec. 4, we
use a Chapman—FEnskog method to derive macroscopic conservation equations. The
system is examined at successive orders of approximation, each corresponding to a
physical timescale. For that purpose, scalar products and linearized collision opera-
tors are introduced. The global expressions for the macroscopic fluid equations are
then provided up to Navier—Stokes equations for the heavy particles and first-order
drift-diffusion equations for the electrons. We also prove that our choice of refer-
ence frame is essential in order to reach this expansion level. In Sec. 5, we establish
the formal existence and uniqueness of a solution to the Boltzmann equation. The
multicomponent transport coefficients are then calculated in terms of bracket oper-
ators whose mathematical structure allows for the sign of the transport coefficients
to be determined, including for the Kolesnikov effect, or the crossed contributions
to the mass and energy transport fluxes coupling the electrons and heavy particles.
The explicit expressions for the transport coefficients can be obtained by means



532 B. Graille, T. E. Magin € M. Massot

of a Galerkin spectral method!'#; this is not treated in the present study. Finally,
in Sec. 6, the first and second laws of thermodynamics are proved to be satisfied
by deriving a total energy equation and an entropy equation. Moreover, Onsager’s
reciprocal relations hold between the transport coefficients. Then, we identify, from
a fluid standpoint, the mathematical structure of the purely convective system of
macroscopic equations. Hence, we demonstrate that kinetic theory can be used as
a guideline in the derivation of the macroscopic conservation equations as well as
in the design of the associated numerical methods.

Beyond the obvious interest from the point of view of applications and design
of numerical schemes, the present study also yields a formal kinetic theory of mix-
tures of separate masses, where the light species obey a scaling of the Boltzmann
equation characteristic of neutral gases in the low Mach number limit (yielding
parabolic macroscopic equations) whereas the heavy species obey a scaling charac-
teristic of neutral gases in the compressible gas dynamics regime (yielding hyper-
bolic macroscopic equations). The original treatment of the purely parabolic and
hyperbolic scalings was first provided by Bardos et al.? These scalings, quite stan-
dard, can be used for various asymptotics such as the Vlasov—Navier—Stokes equa-
tions in different regimes investigated by Goudon et al.??33 A rigorous derivation of
a set of macroscopic equations in the situation where the hyperbolic and parabolic
scalings are entangled in the same problem is an original result obtained in the
present work.

2. Boltzmann’s Equation
2.1. Assumptions

(1) The plasma is described by the kinetic theory of gases based on classical
mechanics, provided that: (a) The mean distance between the gas particles
1/(n°)/3 is larger than the thermal de Broglie wavelength, where n°
erence number density,®* (b) The square of the ratio of the electron thermal
speed V0 to the speed of light is small.

(2) Reactive collisions and particle internal energy are not accounted for.

(3) The particle interactions are modeled as binary encounters by means of a Boltz-
mann collision operator, provided that: (a) The gas is sufficiently dilute, i.e. the
mean distance between the gas particles 1/(n°)!/3 is larger than the particle
interaction distance (¢%)%/?2 0
common to all species, (b) The plasma parameter, quantity proportional to the
number of electrons in a sphere of radius equal to the Debye length, is sup-
posed to be large. Hence, multiple charged particle interactions are treated as
equivalent binary collisions by means of a Coulomb potential screened at the
Debye length.!:23

(4) The plasma is composed of electrons and a multicomponent mixture of heavy
particles (atoms, molecules, and ions). The ratio of the electron mass m? to a

is a ref-

, where ¢ is a reference differential cross-section
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characteristic heavy-particle mass m{ is such that the nondimensional number
e = /mY/mY is small.

(5) The pseudo-Mach number, defined as a reference hydrodynamic velocity divided
by the heavy-particle thermal speed, M; = v°/V is supposed to be of
order one.

(6) The macroscopic timescale t° is assumed to be comparable with the heavy-
particle kinetic timescale t9 divided by €. The macroscopic length scale is based
on a reference convective length L° = v%¢°.

(7) The reference electrical and thermal energies of the system are of the same
order of magnitude.

The mean free path [° and macroscopic length scale L allow for the Knudsen
number to be defined Kn = [9/L°. Tt will be shown that this quantity is small,
provided that assumptions (4)—-(6) are satisfied. Therefore, a continuum description
of the system is deemed to be possible.

2.2. Inertial reference frame

The choice of a proper reference frame will prove to be essential in the following mul-
tiscale analysis. Two such frames are commonly used in the literature. Degond and
20,21 work in the inertial reference frame, as do Ferziger and Kaper.?6 The
second reference frame is presented in the following section. Considering assump-
tions (1)—(3), the temporal evolution of the velocity distribution function f* of
the plasma particles 7 is governed in the phase space (x*,c?) by the Boltzmann
equation®?: 26

Lucquin

Dr(f;) =855 1)), €S, (2.1)
JES
where symbol S is the set of indices of the gas species. Dimensional quantities are
denoted by the superscript *. The streaming operator reads

*
TE(fF) = O [7 +CF - O [1 + i—(E + ¢ ABY) B ff, €S, (2.2)
1
in an inertial reference frame. Symbol ¢* stands for time, E*, the electric field, B*,
the magnetic field, m}, the mass of the particle 4, and ¢, its charge. The partial
collision operator of particle 7 impacting on particle i reads

85 (12, 1) = / Ur S = Frlet — ctlotdwdel, i) €S, (2.3)

After collision, quantities are denoted by the superscript . The differential cross-
section o7 = o7;[uf;|cy — ¢j[?/(kT"),w - €] depends on the relative kinetic energy
of the colliding particles and the cosine of the angle between the unit vectors of
relative velocities w = (¢’ — ¢}’)/|c;’ — ¢}'| and e = (¢} — c})/|c; — c}|. Quan-
tity pi; = mimi/(m; + m7) is the reduced mass of the particle pair, T° a
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reference temperature, and kg, Boltzmann’s constant. Therefore, the differential

cross-sections are symmetric with respect to their indices i,j € S, Le. 0; = 07;.
The collision operator reads in a compact form

JES

2.3. Noninertial reference frame

52

Sutton and Sherman,’® as Chapman and Cowling,'* have proposed a noninertial

reference frame based on the hydrodynamic velocity

PV Z/m*c* rdcj, (2.5)
JES
where the mixture mass density is defined as p* = ) jes pj. Symbol pf = nim;
stands for the partial mass density, and n} = [ f*dc}, the partial number density.
It is a convenient choice since it is the reference frame associated with the definition
of the peculiar velocities

CY*=c —v*, ies, (2.6)

induced from the usual momentum constraint. We infer from definition (2.5) that
the global diffusion flux vanishes

> / m3CY* frdel = (2.7)
JES
that is, the standard momentum constraint.
Given the strong disparity of mass between the electrons and heavy particles,
a frame linked with the heavy particles appears to be a rather more natural choice
for plasmas, as fully justified in the following detailed multiscale analysis. Thus, we
define the mean electron velocity and mean heavy-particle velocity

pavE = /m* sfxder,  ppvy = /m c; fides, (2.8)

where the heavy-particle mass density reads pj, = >y p;. Symbol H stands for
the set of indices of heavy particles. In this v frame, the free electrons interact
with heavy particles whose global movement is frozen in space. A similar view-
point is commonly adopted in the quantum theory of molecules when the Born—
Oppenheimer approximation is used to study the motion of the bound electrons
about the nuclei.” Based on the following definition of peculiar velocities

Ci=c;—v}, (€8, (2.9)
the heavy-particle diffusion flux vanishes

Z/m*c*fj de} (2.10)

jeH
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For now, we defer the choice of the reference velocity. We use the symbol u* to
define the peculiar velocities Ci** = ¢} — u*, ¢ € S. Then, the Boltzmann equation
is expressed in a frame moving at u* velocity by means of this change of variables.
Hence, the streaming operator (2.2) is transformed into the expression

TE(F7) = 00 7 4+ (C 4 10) - O f7 + AL (B 4 (O 4 w') £ aB) - Doy f7

Du*
Dt*
where D/Dt* = 0y« + u* - Ox». The partial collision operator (2.3) is found to be

A f — (Bcp [ @ C) 1 O 0™, (2.11)

By (11 87) = sy = £20)ICE - CFlojdwdCy, iges.  (212)

In a noninertial reference frame, the velocity distribution function f7, the differen-

tial cross-section o; = o7 [uf;|C* — C¥*|?/(kgT?), w - €], as well as both the unit

vectors w = (C* — C;-"*)/|C;-"* — C}"*| and e = (C** — C}‘*)/|C;‘* — C;-‘*| depend
on the peculiar velocities. For simplicity, the notation is the same as for the inertial
reference frame, where the previous quantities depend on the absolute velocities.

2.4. Collisional invariants
We now define collisional invariants in a reference frame moving at velocity u.

Definition 2.1. The space of scalar collisional invariants Z"* is spanned by the
following elements

wud* — (m:(sl])l687 ] S S7

u,ns+u* — *Ouk) .
¢ (m1 Cw )1657 Ve {17273}7 (213)

wu,ns+4* — (lmjczl* . C;l*) ,
2 €S

where symbol n° denotes the cardinality of the set of species S.

We introduce the scalar product

ey =% / £ 0 acw, (2.14)

JES

for families {* = (£),cq and ¢* = ((});cq- The symbol © stands for the fully
contracted product in space, and the symbol ~ for the conjugate transpose oper-
ation. The collision operator §* = (J}),.q defined in Eq. (2.4) obeys the following
property.

Property 2.1. The collision operator J* is orthogonal to the space of collisional
invariants 7%, i.e. (™%, )™ =0, for all l € {1,...,nS +4}.
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Proof. The projection of the collision operator §* onto ¥™™*, 1 € {1,...,n5 + 4},
is shown to be

1 * u,lx fu,l fu,l
12 sy = gt = it =gt

i,jES
X |C¥* — C¥* |0, dwd CE*dCY,

see for instance Chapman and Cowling.'* This expression vanishes for all [ €
{1,...,n5 +4}. O

Finally, the macroscopic properties can be expressed by means of the scalar
product of the distribution functions and the collisional invariants

(f= ) =pf, i€S,
(gt = ot (ol — up), ve {123},
<<f*7wn5+4*>>u* — p*ev* 4 % *(V* _ 11*) . (V* _ 11*),

where quantity eV* stands for the gas thermal energy per unit mass in the hydro-
dynamic velocity frame.

2.5. Dimensional analysis

A sound scaling of the Boltzmann equation is deduced from a dimensional analy-
sis inspired by Petit and Darrozes.*” First, reference quantities are introduced in
Table 1. The characteristic temperature, number density, differential cross-section,
mean free path, macroscopic timescale, hydrodynamic velocity, macroscopic length,

Table 1. Reference quantities.

Common to all species

Temperature 70
Number density n0
Differential cross-section o?
Mean free path 10
Macroscopic timescale 0
Hydrodynamic velocity 00
Macroscopic length Lo
Electric field EO
Magnetic field BY
Electrons Heavy particles
Mass mQ m%
Thermal speed Vo V,?

Kinetic timescale 19 t%
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and electric and magnetic fields are assumed to be common to all species. Refer-
ence dimensional quantities are denoted by the superscript “0”. The nondimensional
number

mg

= 2.1
= (215)

quantifies the ratio of the electron mass to a reference heavy-particle mass. Accord-
ing to assumption (4), the value of ¢ is small. Consequently, electrons exhibit a
larger thermal speed than that of heavy particles

[kgTO A
A - v = V0. (2.16)
myg mj

Moreover, the electron and heavy-particle temperatures may be distinct, provided
that Eq. (2.16) does not fail to describe the order of magnitude of the thermal
speeds. The differential cross-sections are of the same order of magnitude o°. Hence,
the characteristic mean free path 1 = 1/(n%?) is found to be identical for all
species. As a result, the kinetic timescale, or relaxation time of a distribution func-
tion towards its respective quasi-equilibrium state, is lower for electrons than for
heavy particles

tozﬂ tozﬂzg (2.17)
v W
Assumption (6) states that the macroscopic timescale reads
40
9 = ?’ (2.18)

It is shown in Sec. 4 that this quantity corresponds to the average time during
which electrons and heavy particles exchange their energy through encounters. In
addition, the macroscopic temporal and spatial scales are linked by the expression

LY =%, (2.19)

where the hydrodynamic velocity is determined by the pseudo-Mach number M}, =
v?/VY. Given assumption (5), the pseudo-Mach number is of order one. Hence, the
Knudsen number

10 €

K:—:—
L T VA

(2.20)

is small, due to our choice of macroscopic and temporal scales, leading to a contin-
uum description of the gas. Finally, following assumption (7), the reference electric
field is such that

¢"E°L° = kpT". (2.21)
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The intensity of the magnetic field is governed by the Hall numbers of the electrons
and heavy particles

OBO OBO
ﬂe = qu tg = 1_b7 ﬂh = qu t% = é‘ﬂe, (222)
e h

defined as the Larmor frequencies, ¢" B®/m, for the electrons and ¢’ B%/m{ for the
heavy particles, multiplied by their corresponding kinetic timescale. The magnetic
field is assumed to be proportional to a power of € by means of an integer b < 1.
The physical interpretation of the b parameter appears in Sec. 5.5.

The dimensional analysis can be summarized as follows: (a) Two spatial scales
were introduced, one spatial scale at the microscopic level and one spatial scale
at the macroscopic level, they are related by Eq. (2.20); (b) Whereas three tem-
poral scales were defined in Eq. (2.17), two timescales at the microscopic level,
respectively for the electrons and for the heavy particles, and one timescale at the
macroscopic level, given in Eq. (2.18), common to all species.

Nondimensional variables are based on the reference quantities. They are
denoted by dropping the superscript *. In particular, one has the following expres-
sions for the particle velocities

ct =V, ¢ =Vl icH (2.23)

The reference hydrodynamic velocity, mean electron velocity, and mean heavy-
particle velocity are equal to v°. The hydrodynamic velocity defined in Eq. (2.5) is

(ph + €2pe)V = prvi + €2peve, (2.24)

in terms of nondimensional variables, whereas the mean electron and heavy-particle
velocities given in Eq. (2.8) read

1
peMpve = g/cefedce7 pnMpvy, = Z/mjcjfjdcj. (2.25)
JEH

The peculiar velocities are given by the relations

Cl! =ce —ecMpu, C}

K3

=c; — Mpu, i€ H. (2.26)

Usually, they are associated with the momentum constraints of the mixture, so that
the natural choice is u = v. In such a case, we get the following relation

Z/mjc;fjdc; +a/CZfedcg =0.

jeH
However, the hydrodynamic velocity of the mixture, electrons included, can also
be expanded in the € parameter and thus receives contributions at various e orders
in the Chapman—FEnskog method. Since the reference frame should not depend on
the expansion order, we could mimic the approach of Lucquin and Degond?® 2537
and take u = 0, which means working in the inertial reference frame. However, we
follow a different path, not only by choosing the mean heavy-particle velocity as
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reference velocity, u = vy, but also by defining the peculiar velocities based on this
quantity, as opposed to Petit and Darrozes.*” The rationale for such a choice is
threefold: (a) The mean heavy-particle velocity v;, does not depend on e while still
being a perturbation of the hydrodynamic velocity v of the complete mixture up
to second order in €

(pn + €2pe) My (v —vp) =€ / CY" fedCY¥", (2.27)

since quantity [CY"f.dCY" taken with f, as a perturbation of a Maxwell-
Boltzmann distribution will be of O(e) in the Chapman—Enskog expansion pre-
sented in Sec. 4; (b) It will prove to be the natural reference frame in which the
heavy particles thermalize in the context of the proposed multiscale analysis; (c) It
will also prove to be the only available choice for electron thermalization and suc-
cessive order solutions, thus making the proposed change of reference frame optimal
and leading to a rigorous formalism as well as a simplified algebra. In the following,
since there is no ambiguity, we will drop the v, superscript in the use of the peculiar
velocities CY" and C}", i € H.

Consequently, the heavy-particle diffusion flux vanishes, as shown in Eq. (2.10)

Z /ijjfj dCJ =0. (228)
jeH
We investigate the system at the macroscopic time t* = t°¢ and macroscopic

length x* = L%. Thus, the Boltzmann equation (2.1) can be expressed, in nondi-
mensional form, respectively for the electrons and heavy particles, as

Oife + (Ce +eMpvy) - O fo + e~ g [(Ce + eMyvy,) AB] - 9c_ fe

1
eMy,
Dvy,

Dt

L 1
+ <5theE —eMy, ) 0c, fe —(Oc fe ®Ce):0xvi = 5_236’ (2.29)

1 i
Oufs + ——(Ci+ Myvy) - 0xfs + "L ((C, + Myvy) AB]-Bc, fi
My, m;
1 g Dvy, ) 1 .
+ (Mh EE - MhD—t) : acifz - (3Cif1 ®Cl)~8xvh - 6317 S Ha
(2.30)
where the collision operators read
He :3ee(fe7fe)+zgej(fevfj)v (231)
jeH
1 .
Ji = ggie(fivfe) + Zgij(fi,fj), 1€ H. (2.32)
jeH

Let us emphasize that Eq. (2.29) for the electrons exhibits a similar scaling as that
of the kinetic equation for neutral gases in the low Mach number limit (yielding
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parabolic macroscopic equations), whereas the scaling of Eq. (2.30) for the heavy
particles is typical of that of the kinetic equation for neutral gases in the compress-
ible gas dynamics regime (yielding hyperbolic macroscopic equations).? Therefore,
the coupled system of kinetic Egs. (2.29) and (2.30) combines the usual scalings
and the mathematical structure of the resulting system of macroscopic equations
has to be identified.

The collisional invariants (2.13) depend on the mass ratio as well, as shown in
their following nondimensional form.

Definition 2.2. The space of scalar collisional invariants Z is spanned by the
following elements L = (¢, ¢!), 1 € {1,...,n% + 4}, with

Wl = €20, U, = (midij )ien, Jes,

S ns v
G = ey, v = (miCi)ien, ve{L2,3}, (2.33)
we 209 C., h <2mzcz CZ)ieH'

It is worth noticing the influence of the hierarchy of scales: whereas the scal-
ing does not introduce any structural change in the mass and energy collisional
invariants, the electron contribution disappears from the momentum collisional
invariant vector in the limit of ¢ tending to zero. A similar behavior can be
observed for the total mass; however, the single species collisional invariants are not
affected.

For a family £ = (&;),.g, We introduce two separate contributions: &, concerning
the electrons, and &, = (&;),cy, concerning the heavy particles. Hence, the scalar
product between the families £ = (&)ics and ¢ = ((;)ies defined in Eq. (2.14) is
decomposed into a sum of partial scalar products with different scales

(€, € = (€, CeNe + €2 (En, s (2.34)

given by the expressions

(€)= [€0GdC, (et =Y [Gogdc, (2.35)

JjEH

Finally, we introduce the collision operator J. = (£de, 2d5), where Eq. (2.29) has
been multiplied by a factor €3 corresponding to a scaling of the two Boltzmann
equations coherent with the definition of the scalar product. Then, we derive the
following property.

Property 2.2. The collision operator J. is orthogonal to the space of collisional
invariants Z, i.e. (¥!,d.) = 0, for all [ € {1,...,n° + 4}. Furthermore, the three
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types of pairwise interaction terms in (1L, J.)) separately vanish, i.e.
(w8, dee)) = 0, (2.36)
D (W e + (hs Anedy, = 0, (2.37)

jeEH
> (W 3n)y, =0, (2.38)

jeH
respectively for the electron, electron heavy-particle, and heavy-particle

interactions.

Proof. The projection of the collision operator J. onto ¢!, I € {1,...,n% +4}, is
given by the expression

<< é7 35» = gee +e Z 36] + 5<<"/}§L7 3he>>h
JjeH
+e2 ) (Wh, dns)),
JEH

The terms of this sum are examined by interaction pairs

(W Bech = 7 [ (120 — Fo )+ s — 0t = 0t

X |Ce — Cel|aeeldwdCedCel,

S (kB + 0 el = 5 3 / S fo £+ 0k — g — )

jeH jEH
% |Ce — £C;|06;dwd CedC;,

S (bt = 7 O / FLE = B fy) (ot — g — )

JjeH i,j€H
X |Cz — Cj|aijdwdCide.

These expressions vanish and thus the sum (¥!,d.)) = 0. 0

The multiscale analysis occurs at three levels: (a) In the kinetic equations (2.29)
and (2.30); (b) In the collisional invariants (2.33) and thus in the conservation
of the associated macroscopic quantities; (c¢) In the collision operators. Encoun-
ters between particles of the same type are dealt with as usual,'
collision operators between unlike particles (electron heavy-particle interactions)
depend on the ¢ parameter via their relative kinetic energy and velocity, and the
vectors w and e. The scaling of these operators is investigated in the following

section.

whereas the
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3. Preliminary Results
3.1. Electron heavy-particle collision dynamics

The study of the electron heavy-particle collision dynamics yields the dependence
of the peculiar velocities on the € parameter. First, we express momentum con-
servation in terms of the peculiar velocities in the heavy-particle reference frame.
Considering a collision of a heavy species, i € H, against an electron, the peculiar
velocities after collision C} and C, are related to their counterpart before collision
C; and C,

€ m; €

Cl = C. + Ci+s——|eC; — Colw, i€ H,
m; + 2 m; + 2 m; + €2
g2 em; m; (8-1)
Cl = Cot - ¢ —s— " _|C; — Colu,
m; + 2 m; + 2 m; + 2

provided that the mean heavy-particle velocity is not modified by this single colli-
sion event. The direction of the relative velocities after collision is defined in their
center of mass by

eC, - C,

W =8—""-"-
eCi - Cil

Symbol s stands for an integer either equal to +1 for the collision operator J;e,
1 € H, or —1 for Je;, ¢ € H. This notation is consistent with the definition of w in
Eq. (2.12). We are now able to expand the crossed-collision operators.

3.2. Ezxpansion of the collision operator J;e

Dimensional analysis yields the following expression for the nondimensional collision
operator J;e, 7 € H,

(s N — ) 2 e o
Hle(fufe)(cl) /Uw (|7e| , W |’Ye|) |€Cl Ce|

x [fi(Ci) fe(Ce) — £i(Ci) fe(Ce)]dwdCe, (3-2)

where the relative kinetic energy and the vector e are expressed by means of the
vector v, = s(¢C; — Co) /(1 + 2 /my)' /2.

We then introduce the generalized momentum cross-section'? in a thermal
nonequilibrium context*?

QO (1ve2) :27T/ oie(yel2 cosB)(1 — cosl ) sin@dd, icH, 1€Ny, (3.3)
0
where symbol 6 stands for the angle between the vectors w and e. For [ = 1,

this cross-section represents the average momentum transferred in encounters from
electrons to i heavy particles for a given value of the relative kinetic energy.
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Theorem 3.1. The collision operator J;e, i € H, can be expanded in the form
Jic(fir [)(Ci) = edio(fis fo)(Ci) + €287 (fi, fe)(Ci)
+ %85 (fis f)(Ci) + O(h). (34)

The zeroth-order collision operator 3%, (fi, fo)(Cy), i € H, vanishes. The first-order
term 3k, i € H, reads

e

B3 J(C0) =~ 00,1 [ QU Db fulrelde, i€ B,
(3.5)

The second-order term J2., i € H, is found to be

e’

312e(fiafe)(ci) = __80 (fi(Ci) /Q |'7e JvelOc, fo(ve) @ Yedve

+ e (G [ Q2 (eIl (el®T = 37 @7 flre)de

m ac c, fi(C /Q ([7el®) [7e|Ve @ Ve folve)dVe. (3.6)

Finally, the third-order term 33, i € H, is given by

3§e(fi7 fe)(cl)
- iaci (300 9¢) © [ QL ()0, fulr) & e

m;

80 fl 1 /Q |'76 |'7e|'7e®'7e -Oc, fe('ye)d')’e

2

+% (P, £(C) 8 C) @ / QL (el velve @7 © e, fulre) e
1

+ 06, 00,£(C) 9 © [ QR (el )vel(vl)

- 379 ®'}'e) ® aC fe(7e d7e
~ am 28C C;C; fi(Cy) / Q |7€ |"7'<%|(|")’13|2H +Ye @Ye) ® Yefe(Ve)dve

1
T am2 8% C; lel(cl) © /ng)(|79|2)|7e|(|79|2ﬂ —3Ye ®%e) @ YeSe(Ye)dve

1
+ 00 (€ © [ O (el P57 © 7eflre)de

+ 2—W3%e(fi7fe)(ci)' (3.7)
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Proof. The change of variable dC, = —(1 + £2/m;)?/2d~, allows for the differen-
tial cross-section dependence on € to be eliminated

Bl (G = | al-e(mﬁw- e ) el + €/my)?

[¥el
X [fi(C)) fe(CL) — [i(C;) fe(Ce)]dwdye, i€ H.

Then, the peculiar velocities are expanded in a power series of €

1 1
C,=C;+ec—a; —’—a; +0("), a;=—ve+ [velw, i €H,
m; 2m?

3

1 1
C, = —|vVe|w +¢C; + Ezﬁaz +0(Y), ay=—7e+ §|'ye|w,

1
Ce = —Ye + eC; — 52
2mi

Ye + 0(84).

Hence, the distribution functions are found to be
1

o2 0&.c,fi(Ci): (an ®ay)

£(C)) = Fi(C) + emiiacifi(ca oy 4 &?
e U0 (G © (a9 9 )
- €3ﬁacifi(ci) ca; + O(eh), ieH,

Fo(CL) = o~ relw) + 20, fel—lrelw) - i + 2508, o fol—lvelw) : (C:© Cy)
4B Lo~ Ielw) 22 + 0508, .0, o~ ek 0 (G 9 Ci . Cy)

1
+8— 03,0, ol ~relw) : (Ci @ an) + O(*),

Fil€) = =) + <0, fol—4e) - Cu + 2308, fol—70) - Ci B C

1
2mi

1
- 52 8Cefe(_’7e) “Ye + Eggaéececefe(_ve) ® Cz ® Ci ® Cz

1
—e? om, 8(23€Cefe(_'7e) G ®ye + 0(84)'

Combining these equations, the zeroth-order term g%, i € H, is thus given by

e’

90 (i £2)(Cy) = F(Cy) / Giollvel? @ - @)vel?

X [fe(lrelw) = fe(lvele)|dwded|yel.

Interchanging e and w, the integral is shown to vanish. Then, Eqgs. (3.5)—(3.7) are
obtained after some lengthy calculation. O
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Theorem 3.1 admits three corollaries.

Corollary 3.1. The first-order collision operator i, (fi, fe), i € H, vanishes when
fe 1is an isotropic function of the velocity C,.

Proof. Expression (3.5) immediately yields that the integrand is an odd function
of v if fo is isotropic in the heavy-particle reference frame, so that the first-order
collision operator vanishes. O

A collision frequency is defined as a Maxwell-Boltzmann averaged momentum
cross-section

1 .
vie= 7 [ QU v, i€t

where fg('ye) = Te eXP[_'Ye '79/(2Te)]/(27rT6)3/2'

Corollary 3.2. Considering the function f0 = neexp[—C.- Ce/(2T,)]/(2nT:)%/?,
the second-order collision operator reads

82(fir £O)(Ci) = 2

T, ,
B, (Bci (fiCi) + EAcifl> , dcH. (3.8)

Proof. A direct calculation of g% (fi, f0)(C;) given in (3.6) immediately yields
expression (3.8) if f0 = neexp[—C, - Co/(2T0)]/(27T:)3/2. |

Corollary 3.3. The third-order collision operator 33.(fi, fe), i € H, vanishes when
fe 1is an isotropic function of the velocity Ce.

Proof. Expression (3.7) immediately yields that the integrand is an odd function
of 7, if fo is isotropic in the heavy-particle reference frame, so that the third-order
collision operator vanishes. O

3.3. Expansion of the collision operator Je;

Dimensional analysis yields the following expression for the nondimensional collision
operator Je;, © € H,

mi|Ce — €Ci|2
m; + €2

wmmmmzf%( we)q-&ﬂ

X [fe(C) fi(C7) = fe(Ce) fi(Ci)]dwdC;. (3.9)
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The original set of variables {C,, C;,w} is retained. We introduce the momentum
cross-section

(1)(|C 1) = 27r/0 0ei(|Ce|?, cos0)(1 — cos @) sinfdf, i€ H, (3.10)

representing the average momentum transferred in encounters from ¢ heavy particles
to electrons. It is equal to the cross-section Qgi)

Theorem 3.2. The collision operator Je;, i € H, can be expanded in the form

Jei(fes fi)(Ce) = 32i(fe7 fi)(Ce) + 53éi(fev fi)(Ce) + 5233i(fey fi)(Ce)
+838§i(fe7fi)(ce) +O(€4)' (311)

The zeroth-order term 3%, i € H, is given by the expression

et

Jei(fe fi)(Ce) /fl )dC; /om (|C 2w IgZ|)

X |Cel[fe(|Celw) — fe(Ce)]dw. (3.12)

The first-order term 31, i € H, reads

e’

I (for £(Co) (/f CdC)

{oe. [ou (1€ G5 ) 1€ - FlICIw)lCelaw

+ fo (|ce|2, Cs -w) e[, £o(|Celw) —3ccfe(Ce)]dW}-

Cel
(3.13)
The second-order term 3%, i € H, is found to be
1
(o £)(Ce) = - K2(Co) [ fi(Copac
1
+5KS (Co) :/fi(Ci)Ci@)CidCi, (3.14)

with

2,1 = . O¢i 2 Ce — w w
KA(C) = e, [ m(|ce| e )(C 1Cle0)|Colfo(Cofr) e

C.
s [0

) elICele) — fo(Co)ldew,
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and

2,2 = 92 Oei w w
K3(C) = 0t c, | ez(|0| T | )|c [u(Culw) — (o

2 / 26, (am (|c = w) ICe|>®[5ccfe(Ce)—accfe(ICeIW)]dw
Ce
e [ o (|ce|2, o -w) 08,0, Fo(Co) — 0% 6, Fol|Coluw)]de
, C. C.
+olC, |/0m <|c i w) o © @k LoICule)

Proof. The relative velocity and peculiar velocities after collision are expanded in
a power series of ¢. For ¢ € H, we have

Ce
Em -C; + E2b1 + 0(83),

|Ce —eCy| = [Ce| -
/ 1 2 1 3
C,=C,+e—ay —e"—a; + 0(e),
my m

0

1
C. = |Co|w +ca5 + &2 (ﬁazl + a6> +0(e%),

(2

. 2
with b1 = 3¢[ICil*> = (&7-Ci)], a1 = Ce — |Celw, a5 = C; —

ag = byw. Hence, the distribution functions are found to be

& o,

1
—zaé,icifi(ci) H(as ®ay)

F(C)) = f4(Ca) + smiiacifxci) A

_822m1 Ji(Ch) a5 +0(e%), ieH,

fe(Ce) = fol|Ce|w) + €0c, fo(|Ce|w) - a5 + %528%cccfe(|ce|w) (a5 ®as)
4200 1(Clw) (a0 ) + O)

Combining these equations, we obtain Egs. (3.12)—(3.14) after some lengthy
calculation. 0

Theorem 3.2 admits three corollaries. First, we define the rate of entropy pro-
duced at order £° in collisions between electrons and i heavy particles

3/2,0
= /8 fe7fz e @Tnfe(ce) dce, 1€ H,

where Q0 = (2rmkpT/h%)3/? is the translational partition function of electrons.
Symbol hp stands for Planck’s constant. The zeroth-order operator describes the
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relaxation of the electron population towards an isotropic distribution function in
the heavy-particle reference frame.

Corollary 3.4. The zeroth-order collision operator 3%,(fe, fi), i € H, vanishes when
fe is an isotropic function of the velocity Ce.. Moreover, the zeroth-order entropy is
non-negative, that is Y%, >0, i € H, and the inequality is an equality if and only if
fe is an isotropic functzon of the velocity Ce.

Proof. If f, is an isotropic function of C., we have fo(|Celw) = fo(C.) for any

w in the unit sphere, so that expression (3.12) implies that J%(fe, fi) = 0. The
zeroth-order entropy production rate reads

10 = [ ou (1. |C|)|C|[fe(|C @)~ £(Co)

{(2# 3/2 0

x In

d|C.Jd-Se
} |C |

and interchanging ‘g—c‘ and w,
e

12 =5 [ o (1CPw+ G ) ICPOAR(CI), ACHIC, o

where Q(z,y) = (z — y)In(x/y) is a non-negative function. We then obtain that
TO

et

¢ € H, is non-negative and equal to 0 if and only if f. is isotropic in the
heavy-particle reference frame. O

Corollary 3.5. The first-order collision operator 3L, (fe, f:), i € H, vanishes when
fi is an isotropic function of the velocity C;.

Proof. Expression (3.13) immediately yields that the integrand is an odd function
of C;, i € H, if f; is isotropic in the heavy-particle reference frame, so that the
first-order collision operator vanishes. O

Remark 3.1. So far, we note that the isotropy property of f; is strongly related
to our choice of reference frame. For example, such a property is not satisfied when
u = 0. Thus, the structure of the expansion of collision operators depends on the
initial choice of reference frame. We will come back to this point in Sec. 4.8.

Corollary 3.6. Considering the functions fO = neexp[—C, - Co/(2T0)]/(2nT.)3/?
and f2 = nim?/2 exp[—m;C; - Ci/(QTh)]/(27rTh)3/2, 1 € H, the second-order colli-
sion operator J2,(f0, f2)(Ce), i € H, reads

3ei(f, F)(Ce) = (Th — T )——fo( o)|Cel

e @ cac) + (1- 1S o] e
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Proof. A direct calculation of J2,(f0, f;)(Ce) given in (3.14) immediately yields
expression (3.15) if f2 and f? are the Maxwell-Boltzmann distribution functions
given in the assumptions of Corollary 3.6. O

3.4. FElectron and heavy-particle collisional invariants
Based on the space of collisional invariants Z defined in Eq. (2.33), we introduce

two subspaces naturally associated with our choice of scaling.

Definition 3.1. The space of scalar electron collisional invariants Z, is spanned
by the following elements

Pl =1,

R 3.16
¢g = %CE'Ce- ( )

Definition 3.2. The space of scalar heavy-particle collisional invariants Zj is
spanned by the following elements

Vi = (midij)ien, j €H,
oy
P = (miCi)ien, ve{l,2,3}, (3.17)

- 1
= <_mici : Ci) ;
2 icH

where symbol 7! denotes the cardinality of the set of heavy particles H.

The decoupling of the collision invariants is clearly identified in the proposed
scaling. More precisely, the definition of the electron linearized collision operator
(given in Sec. 4) will involve the electron partial collision operator Je. and the mixed
partial collision operators 3%, i € H, satisfying the following important property.

e’

0

e’

Property 3.1. The partial collision operators J.., « € H, are orthogonal to the
space of collisional invariants Te, i.e. (!, %), =0 for all I € {1,2}.
Proof. The projection of the collision operator J°., i € H, onto ﬁé, I €{1,2} reads

et

. C.
(L2, = [0 (1€ w65 )ICif

. C.

X [fe(|Celw) — fe(Ce)]¢éd|Ce|dwd|C -
Interchanging w and |8§|, the projection ({ Aé,321.>>e is shown to vanish for all
le{1,2}. o

We emphasize that the partial collision operators g%, i € H, are not orthogonal

for the scalar product ((-,-)), to the space spanned by the electron momentum. This



550 B. Graille, T. E. Magin € M. Massot

is the reason why the vector C, does not belong to Z.. In contrast, the definition
of the heavy-particle linearized collision operator (given in Sec. 4) only involves the
heavy-particle partial collision operators d;;, 7, j € H.

Subsequently, using the newly defined collisional invariants, the orthogonality
Property 2.2 of the cross-collision operators can be rewritten

D (3N =0, (Wh.dne), =0, i €H, (3.18)

jeH
for mass conservation,

€Y (Covdei)e + (D7 + e, =0, v e {1,2,3}, (3.19)

jEH
for momentum conservation, and

32, i) + (D) T e, =0, (3.20)

jeH

for energy conservation. This set of relations is essential since it corresponds
to the conservation of mass, momentum, and energy in the electron heavy-
particle interactions through the various orders in e of the Chapman-Enskog
expansion.

Then, the macroscopic properties are expressed as partial scalar products of the
distribution functions and the new collisional invariants

(fer 1N = pes
’ 3.21
{«fe,ws»e = pece. (3:21)
and
<<fh71%1>>h = Pi» 1€ H,
(077, =0, ve{l,2,3}, (3.22)

(b4, = pren-

Symbol e, stands for the electron thermal energy per unit mass and ey, the heavy-
particle thermal energy per unit mass. It is important to mention that these quanti-
ties are defined in the heavy-particle reference frame. Furthermore, the decoupling
of the collisional invariants is also consistent with the expression for the macro-
scopic properties. In particular, because the electron momentum is not a collision
invariant in the proposed asymptotic limit, the electron mass flux is not constrained
in the heavy-particle reference frame.

Translational temperatures are introduced as averaged thermal energies in the
heavy-particle reference frame as follows.
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Definition 3.3. The electron and heavy-particle translational temperatures are

given by
_ 2 22
R (3:23)
2 ~oH
Ty, = %«fh, " +4>>h, (3.24)

where the heavy-particle number density is np, = jen M-

Consequently, the energy can be rewritten

(fer B2 = e

for the electrons, and

. 3
(s 03 T4, = 3T

for the heavy particles. It will be shown in Sec. 4 that these two temperatures are
generally different.

4. Chapman—Enskog Method

We employ an Enskog expansion to derive an approximate solution to the Boltz-
mann equations (2.29)—(2.30) by expanding the species distribution functions as

fo = fO(1 +epe + 202 +243) + O(e%), (4.1)
fi = 20 4ep; +e%07) +0O(e?), icH, (4.2)

and by imposing that the zeroth-order contributions f0 and f yield the local
macroscopic properties

(fQ0e = (ferthler 1€{1,2}, (4.3)
(R Db = b pe L€ {L,o., 't 4}, (4.4)

Hence, based upon the dimensional analysis of Sec. 2.5, the electron Boltzmann
equation (2.29) becomes

e 29[ + e DD be) + DS, be, 2) + €DE(fL, e, B2, 62)
=202+ 197+ 30 + 3t + O0(?), (4.5)

where the electron streaming operators read at successive orders
99—2(]03) = 0p1qe(Ce AB) - acefe?v
P12, 0e) = D1 (FS) + 4 (011 Co AB) - Dc (fOde),
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A 1 1
—1700y _ & o~ 0 . 0
@e (fe)_ the axfe +qe (ML +6b009/\B> accfe7
D0, ey 02) = DO(f2, Pe) + 4e(051Ce AB) - e (f262),
A 1
D1 0e) = Ouf + 5 Ce- Bx(f0e) + Vi - Oxf — (Dc, [0 © Ce) : Bxviy
h

+ g (SyoMp vy AB + 6y(—1)Ce AB) - 0c_ [

+qe (]\;} EI +6bOCe/\B> 'acc(fg¢e)7
DI ber 82, 82) = Do (£, e, 02) + 4e(01Ce AB) - D (f262),
R 1
Qel(fg,cbe,gbg) = 8t(fg¢e) + mce'BX(f£¢g) + vy BX(fSQSe)

— Mp—— Dt ac fO (BC (f ¢e)®c ) OxVh

+ g (Sp(— 1y Mpvi AB + 6_9)Ce AB) - Oc_ f?
+ ¢e (S0 Mpvi AB + 8y 1)Ce AB) - 9c_(fO0e)

1
+Qe <_EI+5bOCe/\B> 'ac (feo(bg)7
My, ¢

with the electric field expressed in the heavy-particle reference frame as E' = E +
op1 M ,%vh A B. The electron collision operators are given by

39_2 = e J*‘ZW’
jeH
8;1 = 3ee(f£¢e»f£) +3ee( g,fg(be)

D 80 (f2e, £7) + AuUEATET) + BT

jeH

30 = Jee(fO02, 2) + oo (fO e, [20e) + dee (£, fO02)

+ 3G (F02 1)) + 31797 + 42,

jeH
=380 (F0e, FL05) + 8L, (00 T + 34 (10, £Y5) + 32, (£, 1),
JjeEH
Je = Jee(JOB2, 1) + Bee([EOZ, [20e) + Boo(FODes [OB2) + Bee [ [O42)
+Zg f0¢57 0 607 7 ])+3Aé7

jeH
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8= 3" (3% (F002, £907) + 8% (f0e, 1O67) + 0L, (205 T0)

jeEH
8,0, 110) + 34 (10, £202) + 32, (£20e, £7)
+33 (12, 1)65) + 3510, 1)}

For ease of readability in Secs. 4.2—4.7, we strike through the collision operators that
vanish when f0 and f?, i € H, are isotropic functions. Likewise, the heavy-particle
Boltzmann equation (2.30) is found to be

D[ +e2} ([ di) =137 +3) + €3] + O(?), i€H, (4.6)

where the heavy-particle streaming operators read at successive orders

1 Gi
) = 0uf? + (5 Ctvn ) -0u? 4 & (B +0uCinB) B0 !

Dv
_MhD—th aclflo (aC f ® C; ) axviu

1
Z2(120) = 00+ 7€t ) -0(1%0)

+ %6b0[(Ci+thh) A B] . aclflo

m;

.1
+ 4 (—E’+6b1Ci/\B) -dc, (£°%;)
M,

D
My 00, (60) — (e, (26 © C): Bxvi.

The heavy-particle collision operators are given by

T =D BT + LT,

jeH
30 =" 85 (£, 1) + 8is (2, 1705) + 8Ll Fob5 ) + 37,
jeH

37 = 8L (f0 10e) + B(£1 1),
3= 8i;(FP00 1)) + 8 (fPbi £285) + Bii (fD 107)

JjeEH
+ LT + 0

gzl = 3zle(fzo¢l7feo¢e) +3zle( 107 fe?(bz) +312e(fz0¢17feo)
F 0 (D fobe) + BT

In the Chapman—Enskog method, the plasma is described at successive orders of
the ¢ parameter as equivalent to as many timescales. The micro- and macroscopic
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Table 2. Chapman-Enskog steps.

Order Time Heavy particles Electrons
g2 12 Expression for f9
Thermalization (T¢)
et t‘,)l Expression for fzp7 1€ H Equation for ¢e
Thermalization (T},) Zeroth-order momentum relation
g0 0 Equation for ¢;, i € H Equation for ¢2
Euler equations Zeroth-order drift-diffusion equations
First-order momentum relation
o
€ o Navier—Stokes equations  First-order drift-diffusion equations

equations derived at each order are reviewed in Table 2. The second-order elec-
tron momentum equation, relevant to the second-order heavy-particle macroscopic
equations, is not established in this study.

4.1. Order e—2: Electron thermalization

We solve the electron Boltzmann equation (4.5) at order £~2 corresponding to

the kinetic timescale t2. The electron population is shown to thermalize in the
heavy-particle reference frame to a quasi-equilibrium state described by a Maxwell-
Boltzmann distribution function at temperature T,. In contrast, heavy particles do
not exhibit any ensemble property at this order.

Proposition 4.1. Considering a family of functions f, i € H, sufficiently reqular
so that the collision operators 39,(f2, f2), i € H, exist, the zeroth-order electron
distribution function f0, solution to Eq. (4.5) at order =2, i.e. 27%(f0) = 52, that
satisfies the scalar constraints (4.3), is a Mazwell-Boltzmann distribution function
at the electron temperature

. 1 \3/2 1
1Y =mne (27TT9> exp ( o, —C.-C ) (4.7

Proof. Multiplying the equation 2, 2(f9) = -2 by In[(27)3/2n° £0/QY] and inte-
grating over dC, yields the zeroth-order entropy production rate

0+ 57T 4 e / (Ce AB)- 0o, £ In[(2m)*/2n® 2 /QUJAC, = 0,
jeH
with To = — [Jee(f? C.) In[(27)3/2n°f9/QY% dC,. Using the equality
B, f2 In](2m)%/n° £/ Q] = 3cc{f§ In[(2m)**n°f/QQ] — fI} and integrating by
parts, the entropy production rate is found to be Y9 + > ng = 0. Moreover,
a well-established derivation yields'#

JjEH

70, = / (1%, £ F%)|Co — Ce[oeerdwdCedCey > 0.
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Using Corollary 3.4, we first obtain that T, > 0, i € H, so that both terms Y% =0
and Y9, = 0, i € H. Then, Corollary 3.4 implies that f{ is isotropic in the heavy-
particle reference frame. Seeing that YO, = 0, In f0 is thus a collisional invariant,
i.e. is in the space Z,. By using the macroscopic constraints, expression (4.7) is
readily obtained. O

The choice of the reference frame in which electrons thermalize turns out to be
crucial for the rest of the development. In the u = v, frame, the quasi-equilibrium
electron velocity distribution function is isotropic and the electrons follow the bulk
movement associated with the heavy particles, leading to a physically plausible sce-
nario. As already mentioned, the mean heavy-particle velocity v; does not depend
on the small € parameter while still being close to the actual hydrodynamic veloc-
ity v of the entire mixture; this property is essential in order to conduct a rigorous
multiscale analysis in the framework of the present Chapman—Enskog expansion.
The relevance of such a choice of reference frame will be thoroughly investigated in
Sec. 4.8.

4.2. Order e~1: Heavy-particle thermalization

We solve the heavy-particle Boltzmann equation (4.6) at order ¢*

to the kinetic timescale ¢). The heavy-particle population is shown to thermalize
in the heavy-particle reference frame to a quasi-equilibrium state described by a

corresponding

Maxwell-Boltzmann distribution function at temperature 7Tj.

Proposition 4.2. Considering f0 given by Eq. (4.7), the zeroth-order family of
heavy-particle distribution functions fy solution to Eq. (4.6) at order e, i.e. 3;1 =
0, ¢ € H, that satisfies the scalar constraints (4.4), is a family of Mazwell-Boltzmann
distribution functions at the heavy-particle temperature

o \3/2 _
fgzm(;%h) exp (—%CC) i€ H. (4.8)

Proof. As the zeroth-order electron distribution function f2 is isotropic in the
heavy-particle reference frame, Corollary 3.1 yields that the heavy-particle Boltz-
mann equation (4.6) reads at order e 1

> (£ f)) =0, i€H

jeH

After some classical algebra,'® we obtain expression (4.8) for the zeroth-order heavy-
particle distribution functions. O

Thus, Propositions 4.1 and 4.2 describe electron and heavy-particle quasi-
equilibrium states at different temperatures.
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4.3. Order e~ 1: Electron momentum relation

We conduct the solution and derive a momentum relation based on the electron
Boltzmann equation (4.5) at order e~}
We then emphasize an original property of the Chapman—FEnskog expansion at this
order associated with both the absence of a momentum constraint in Eq. (3.21)

corresponding to the kinetic timescale t?L.

and our multiscale analysis.
With the previously obtained Maxwell-Boltzmann electron distribution func-
tion, we first define the electron linearized collision operator.

Definition 4.1. The electron linearized collision operator F, reads
1
f9
where f0 is given by Eq. (4.7) and f? by Eq. (4.8).

Fo(be) = =75 |Beo(fober fO) + Beo (£, Fo0e) + D 8 (f0es )|

jeH

The kernel of this operator is given in the following property.

Property 4.1. The kernel of the linearized collision operator J, is the space of
scalar electron collisional invariants Ze.

Proof. The linearized collision operator &, is rewritten in the form

Sje((be) = _/fgl ((bé: + ¢Iel - (be - ¢el)|ce - Cel|aeeld‘4-’dce1

Ce
=3 [ (G w6 ) [Cul@u(1Culw) = bu(CNw,
jEH N
We then obtain that the space Z is in the kernel of F.. Conversely, if Fo(¢.) = 0,
multiplying Fe(de) by f2¢e and integrating over dC, yields

1
Z /fe?fgl (¢</3 + ¢21 — ¢ — ¢e1)2|ce - Cel|0ee1deCedCel

1
+§an/aej <|Ce|27w'

jeH

C.
&) 1CCIF2n(1Cw) ~ 6,(C0)PwaC, =,
so that ¢, is in the space Z. O

Based on Corollaries 3.4 and 3.5, the electron Boltzmann equation (4.5) is found
to be at order ¢!

FFe(de) + 1900, (f9e) - Ce NB = =T 1(f2), (4.9)

with the constraints
(foesdi)e =0, 1e{1,2}). (4.10)
The terms ¢, (f2¢e) - Ce AB and Z71(f9) are orthogonal to the kernel of F, for

the scalar product (-, -)),. Consequently, no macroscopic conservation equations of
mass and energy can be derived at this order.
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Actually, for any value of w, defining the shifted Maxwell-Boltzmann
distribution

3/2 1

w0 2
= Ne - Ce — M, , 4.11
o= () o (-5 (Co b (1.11)

we can expand it as a function of €
M, M? (Co-w)?
w0 __ 0 v . 2°7h | s e 3

fe _fe (1+ET9 Ce w+e 2Te |: W-W + Te_ +O(€ ), (412)

which still yields, at leading order, the same distribution as defined in Eq. (4.7). We
then realize that the Chapman—Enskog expansion can be rewritten in a different
way at this order

o1+ epe +€202) = fYO1 4 g + 2070 + O(e?), (4.13)
with
Ge =0+ Aéhce'w’ (4.14)
My, M? (Ce-w)? '
2 w2 . w h | .
¢e - (be + tz've (Ce W)gbe + 2Te W-w + Te

It is interesting to notice that, whatever the choice of w, the part of the hydro-
dynamic velocity of the full mixture

(pn + €2pe)V = pnvi + &2 peve,

associated with the electrons p.v, will be split into two parts at the same order of
the multiscale expansion

Ve =vVp + ]\/‘[L}LVe +0(E)=vp+w+ MLhVZ" + O(e),
with po V¥ = [ Cof¥ Y¢WdC,. Thus, as opposed to the standard expansion, since no
momentum constraint is to be found for the electrons, the definition of the mixture
hydrodynamic velocity does not allow to uniquely define electron diffusion velocities.
In any case, the hydrodynamic velocity of the mixture is v;, at order e~ !. It is then
necessary to properly delineate the possible choices for the w velocity, which should
not be confused with a change of reference frame, since it only influences the electron
Chapman-Enskog expansion.

Lemma 4.1. In the chosen reference frame, any velocity w leads to a new definition
of ¢¥ for which property 4.1 is preserved and thus leads to an equivalent solvability
condition for ¢y as for ¢pe. Moreover, the solution for ¢¥ is completely equivalent
to the solution for ¢..

Proof. It is sufficient to note that the difference 6% = ¢¥ — ¢po = —M,Ce-w/Te
is orthogonal to the collisional invariants ((f05¢¥,yL), =0, 1€ {1,2}. O
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For our choice of moving frame u = vy, the electron thermalization naturally
occurs in the “appropriate” reference frame in close connection to the physics of
the problem, and there is no need to use the above-mentioned property in order to
conduct the solution at order e~!. Therefore, we take w = 0 in the following. We
will also have to check the validity of such a strategy at higher orders; we will come
back to this point in Sec. 4.5.

As mentioned earlier, the partial collision operators J°

ois @ € H, are not orthogo-
nal to the space spanned by the vector C.. However, an electron momentum relation
is obtained by projecting Eq. (4.9) onto this space. First, the electron pressure, diffu-
sion velocity, mean velocity, conduction current density in the mean heavy-particle
velocity frame, and conduction current density in the inertial reference frame are

defined as

Pe = N, (415)

Ve = i / CengSedCea Ve =V + Lvea (416)
Ne My

Jo = neQeVea Je = Negeve. (417)

Then, we have the following proposition.

Proposition 4.3. Considering f0 given by Eq. (4.7) and f?, i € H, by Eq. (4.8),
the zeroth-order momentum transferred from electrons to heavy particles reads

1 eYde .
D (82 (fe, 1) Col, = - Obe waqh E — 1je AB. (4.18)

jeH

Proof. Equation (4.9) is projected onto the space spanned by the vector C,
_<<f£~rfe(¢e)7 Ce>>e = <<9e_17 Ce>>e + 5blCIe«aCe (fe?@se) ’ (Ce A B), Ce>>e~

Then, Eq. (4.18) is readily established by simplifying the left-hand side by means
of Eq. (2.36), (Ce,dee)), = 0, at order € and by integrating by parts the right-hand
side. -

The zeroth-order momentum transferred from electrons to heavy particles is
thus expressed in terms of the electron pressure and electric force. In addition,
the following lemma allows for the momentum transferred from heavy particles to
electrons to be calculated at order zero.

Lemma 4.2. Considering f0 given by Eq. (4.7) and f°, i € H, by Eq. (4.8),
the net zeroth-order momentum exchanged between electrons and heavy particles
vanishes, i.e.

(Bhel S J200) By + D408, (JEes ), Carl) = 0, (4.19)
forv e {1,2,3}. et
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Proof. Equation (4.19) is derived from Eq. (3.19) at order €2 based on Coroll-
aries 3.1-3.5. O

Moreover, the zeroth-order momentum transferred from heavy particles to elec-
trons can be directly calculated after introducing the average force of an electron
acting on a heavy particle ¢ given by

F,.= /Qz(‘el)(|’7e|2)|79|7ef£(79)¢9(7e)d797 i € H. (4.20)

Lemma 4.3. Considering f0 given by Eq. (4.7) and f°, i € H, by Eq. (4.8), the
zeroth-order momentum transferred from heavy particles to electrons reads
(@he(fh: 100e), PR ) = > i Feys (4.21)
jeH

forve{1,2,3}.

Proof. Equation (4.21) is derived by means of Lemma 4.2, Theorem 3.2, and
definitions (3.10) and (4.20). m|

We will see that the average forces F;,

e’

1 € H, contribute to the heavy-particle
diffusion driving forces and, in particular, yield anisotropic diffusion velocities for
the heavy particles in the b = 1 case.

4.4. Order €°: Heavy-particle Euler equations

We derive Euler equations based on the heavy-particle Boltzmann equation (4.6) at
order £ corresponding to the macroscopic timescale t°. First, a linearized collision
operator is introduced for heavy particles.

Definition 4.2. The linearized collision operator F, = (F;);cn reads
1 .
v jeH
where f, i € H, is given by Eq. (4.8), for a family ¢5, = (¢;)icn.
The first nonvanishing term of the partial collision operator Jpe is not included
in the linearized collision operator since it is not orthogonal to Zj for the scalar

product (-,-)),. The kernel of F}, is given in the following property, the proof of
which is omitted since it is a well-established result.26

Property 4.2. The kernel of the linearized collision operator F, is the space of
scalar collisional invariants Zj,.

Furthermore, we define the heavy-particle pressure, p, = n, T}, the global pres-
sure, p = pe + pp, the heavy-particle charge, nngp = > jen i, the global charge,
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ng = NeQe + Npqn, and the total current density Iy = npgn vy + negeve. The energy
transferred from heavy particles to electrons reads at order zero

AEp = (33 (f0, fO), dp ). (4.22)

This quantity is of the order of the thermal energy divided by the macroscopic
timescale, n’kpT?/t°. The accurate Landau-Teller expression is calculated by
means of Corollary 3.2

Sne(Te —Tn) 1 2n;

AR =2 °° vV _— i 4.23
h T T —~ 3nem; Vi ( )

where 7 is the average collision time at which this energy transfer occurs. Then,
the heavy-particle Euler equations are derived in the following proposition.

Proposition 4.4. If ¢, is a solution to Eq. (4.6) at order €Y, i.e.
FFion) = =20(f)) + 8, ieH, (4.24)

where f0 is given by Eq. (4.7), f?, i € H, by Eq. (4.8), and ¢, by Egs. (4.9)—(4.10),
and if fén = (f2¢:i)ien satisfies the constraints

(b, Dh ), =0, Te{1,... n"+4}, (4.25)

then, the zeroth-order conservation equations of heavy-particle mass, momentum
and energy read

Bipi + Bx - (piv) =0, icH, (4.26)

1 1
Ot (pnvp) + Ox - (phvh QVvy + —2p]I) = —5nqE + 0p11p A B, (4.27)
My My

Oy (pheh) + Oy - (phehvh) = —ppOx - vy + AE2 (4.28)

Proof. Fredholm’s alternative3! represents the solvability condition of Eq. (4.24)
<<-@}?7 1%1»]1 = <<g27 1%1»]17

I € {1,...,n" + 4}. Integrating by parts the left-hand side and simplifying the
right-hand side based on Theorem 3.1 and Corollary 3.2, one obtains Eqs. (4.26),
(4.28), and the following momentum conservation equation

Dv, 1 1
My 8. ph + —np g E

WPhTR T g OxPh Tt

+ <<3llze (f}?: fg(be)a ( A}?h+u)ue{l,2,3}>>h = 0. (429)

Simplifying this equation by means of the heavy-particle mass conservation equation
Orpn + Ox - (prvi) = 0 and Lemma 4.2, yields Eq. (4.27). O
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4.5. Order €°: Zeroth-order electron drift-diffusion equations

We derive zeroth-order electron drift-diffusion equations and a momentum relation
based on the electron Boltzmann equation (4.5) at order ¥ corresponding to the
macroscopic timescale t°. We also prove, at this order of the solution, that any
nonzero shift introduced at the previous order leads to a series of difficulties at the
present order. It thus demonstrates that the initial choice of reference frame leads
to a quite natural solution at successive orders.

Based on the Maxwell-Boltzmann electron distribution function previously
obtained in Eq. (4.7) we introduce the electron heat flux

1
Qe = / 5Ce CeCe f2¢edCe. (4.30)
The energy transferred from electrons to heavy particles reads at order zero
AES = (8502, 7). 02D, (4.31)
j€eH

This expression is calculated by means of Eq. (3.20) at order 2
AE? + AE) =0, (4.32)

where AEY is given by Eq. (4.23). Then, the zeroth-order electron drift-diffusion
equations are derived in the following proposition.

Proposition 4.5. If ¢? is a solution to Eq. (4.5) at order £°, i.e.
[IFe(92) + 0p10:0c, (f292) - C. AB
= — DS, 9e) + deel [0, [20e) + B2, (4.33)

where f2 is given by Eq. (4.7), f2, i € H, by Eq. (4.8), ¢e by Egs. (4.9)-(4.10), and
¢i, i € H by Eqs. (4.24)(4.25), and if fO¢? satisfies the constraints

<<f£¢g7¢é>>e =0, le {17 2}7 (4'34)

then, the zeroth-order conservation equations of electron mass and energy read

1
Otpe + Ox - (pevh + —peVe) =0, (4.35)
M},

1 1
Ot(pe€e) + Ox - (Pe€cVh) = —PeOx - Vi — —Ox - Qe + ﬁJe -E' + AE?.
h

Mh
(4.36)

Proof. Fredholm’s alternative3! represents the solvability condition of Eq. (4.33)

<<9260722}é>>e = <<j27"2}é>>e7 le {17 2}'

Integrating by parts the left-hand side and simplifying the right-hand side based
on Theorem 3.2 and Corollary 3.5 yields Eqgs. (4.35) and (4.36). m|
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Lemma 4.4. In the chosen reference frame, any velocity w leads to a new definition
of ¢¥? in Eq. (4.14), for which property 4.1 is preserved, and thus leads to an
equivalent solvability condition for ¢¥? and ¢2. However, the solution for ¢p¥? is
not equivalent to the solution for ¢?: in particular, the expansion corresponding to
w £ 0 yields a nonstandard Chapman—Enskog expansion where the second-order
perturbation function does not satisfy the scalar constraints (4.34).

Proof. Using Eq. (4.14), the difference between ¢¥2 and ¢? reads

Mj, M? (Ce-w)?
Te (Ce W)¢e + 2Te Te .

S = % — §2 = — {ww+

The projection of ¢¥2 onto the collisional invariants is given by

w2 7 _ Mh
<<feo6¢e 27¢g>>e - Te

new - (Mpw — V),

(o502, 42N = Muw - (2Mhnew - Tiqe> :

The difference §¢%? is then orthogonal to the collisional invariants if and only if
w = 0. To conclude, the solution for ¢¥? yields a linearized Boltzmann equation
where the right-hand side is orthogonal to the collisional invariants — a direct
calculation shows that Fe(60%?) + 6p1¢e0c, (6¢%?) - Ce AB is orthogonal to the
collisional invariants — whereas the scalar constraints on the unknown function
P2 are not zero. |

Consequently, for the reasons invoked so far, we will not try to shift the center
of the Maxwell-Boltzmann distribution for electrons and stick with w = 0 at all
orders.

We define the electron viscous tensor, second-order electron diffusion velocity,
and second-order current density as

II. = / C.®C.f2¢.dC., (4.37)
1

vi— - [cupoac, (4.38)

J2 = neq. V2. (4.39)

A first-order electron momentum relation is given in the following proposition.

Proposition 4.6. Considering f0 given by Eq. (4.7), f°, i € H, by Eq. (4.8), ¢

by Egs. (4.9)—(4.10), ¢4, i € H, by Egs. (4.24)—(4.25), and ¢? by Egs. (4.33)—(4.34),
the first-order momentum transferred from electrons to heavy particles reads

Z <<32](f£ gv fjo)v Ce>>e + <<jg7 Ce>>e = Mihax ’ He - (5b0j9 + 5b1Jg) AB.
JEH
(4.40)
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Proof. Equation (4.33) is projected onto the space spanned by the vector Ce
~(f2Fe(62), Cede + (82, Ce).
= D2(f0, ¢e) + 010 (Dc, (f20?) - Ce AB, Co)),.
Then, Eq. (4.40) is readily established by simplifying the left-hand side by means

of Eq. (2.36) at order €%, ((Ce,Jee)), = 0, and by integrating by parts the
right-hand side. |

The first-order momentum transferred from electrons to heavy particles is thus
expressed in terms of the electron viscous tensor and electric force. The following
lemma allows for the momentum transferred from heavy particles to electrons to
be calculated at order ¢.

Lemma 4.5. Considering f° given by Eq. (4.7), f2, i € H, by Eq. (4.8), ¢.
by Egs. (4.9)-(4.10), ¢, i € H, by Egs. (4.24)—(4.25), and ¢? by Egs. (4.33)-
(4.34), the net first-order momentum exchanged between electrons and heavy parti-

cles vanishes, 1i.e.
(@h P 0+ D (% (L2092, 7). Cau), + (32, Cau) = 0, v € {1,2,3},
jeH
(4.41)

Proof. Equation (4.41) is derived from Eq. (3.19) at order £? based on Corollar-
ies 3.1-3.6. O

4.6. Order e: Heavy-particle Navier—Stokes equations

We derive Navier—Stokes equations based on the heavy-particle Boltzmann equa-
tion (4.6) at order e. First, we introduce the diffusion velocity and mean velocity
of species i € H,

1
V, = —/Cifi%idci, v, =vh+ —V,, icH, (4.42)
n; Mh
the heavy-particle viscous tensor,
11, = Z /ijj ®ijj°¢jdcj7 (4.43)
jEH
the second-order electron mean velocity,
1 €
2=vp+—V,+—V?2 4.44
ve V} + Mh e + Mh e ( )
the heavy-particle heat flux,
1
an = Z/§mjcj'cjcjfjo¢jdcj7 (4.45)

j€H
the heavy-particle conduction current density in the mean heavy-particle velocity
frame, the heavy-particle conduction current density in the inertial reference frame,
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the second-order electron conduction current density in the inertial reference frame,
and the total current density,

o= "maVy n = ngv;, 3 =neev? T=jy+3.  (4.46)
jEH jeH
Furthermore, we define the energy transferred from heavy particles to electrons at
order € as

AES = (@he(f b, f0e), 03 TN, + (@2e (1, fo0e), Dpn ),

+ (e (fR Ons £, RN, (4.47)
The first term can be calculated by means of Theorem 3.1
<<8he(fh (bh? fo(be nh+4 Z n] ]e7 (448)
jeH

and the two other terms will be shown to vanish in Sec. 5. Then, we establish
the following lemma used in the derivation of the heavy-particle Navier—Stokes
equations.

Lemma 4.6. Considering f0 given by Eq. (4.7), f°, i € H, by Eq. (4.8), ¢e by
Egs. (4.9)~(4.10), ¢4, i € H, by Eqs. (4.24)~(4.25), and ¢? by Egs. (4.33)—(4.34),
the mass transferred at order € from heavy particles to electrons vanishes, i.e.

(@50, =0, le{l,...,mu}. (4.49)
Proof. Equation (4.49) is readily derived from Eq. (3.18) at order &3. |

Proposition 4.7. If ¢7 is a solution to Eq. (2.30) at order €', i.e.
FFih) = =200 + Y 85 (00, [705) + 37, i €H, (4.50)
jeH
where f0 is given by Eq. (4.7), f2, i € H, by Eq. (4.8), ¢ by Egs. (4.9)~(4.10), ¢;,

i € H, by Egs. (4.24)-(4.25), and ¢§ by Egs. (4.33)—(4.34), and if f)¢7 = (f2¢2)ien
satisfies the constraints

(Fdh, ), =0, 1e{l,... " +4}, (4.51)

then, the first-order conservation equations of heavy-particle mass, momentum and
energy read

Oipi + Dy - (pivh + MiinZ) =0, ieH, (4.52)
h

1
O(pnvn) + Ox - (/)th ®@vp+ WPH)
h

€ 1
=~ 9. (I, +1IL) + E + [050Lo + dp I A 453
M7 (ITy, + TL,) + M,%nq + [0p0Xo + 0p1 ] A (4.53)
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at (Pheh) + ax ‘ (Phehvh)

= (a4 eI ):85vh — B an + ~——Jp-E' + AEY £ eAEL  (4.54)
M;p,

M;p,

Proof. The Chapman-FEnskog method allows for the following conservation equa-
tions to be derived

(D0, G + 4 Dns iD= (80 DhD s + @R Dl

1 €{1,...,n'+4}. Integrating by parts the left-hand side and simplifying the right-
hand side based on the proof of heavy-particle Euler Eqs. (4.26)—(4.28), Proposi-
tion 4.6, Lemmas 4.5 and 4.6, one obtains Eqs. (4.52)—(4.54). m|

Remark 4.1. When only one single type of heavy particles is considered, the
first-order energy transfer term, heavy-particle diffusion velocities, and conduc-
tion current degenerate, AE} = 0, V, = 0, i € H, J, = 0, the total current
is simplified as well, I = ngvy, + neqeVo/Mp. Therefore, we retrieve the for-
malism of Degond and Lucquin. In such a case, the Navier-Stokes system can
be coupled to the system of drift-diffusion equations for the electrons obtained
at order €° in the previous section. Since no energy transfer occurs at order
¢!, there is no need to solve the electrons at order €' to obtain a conservative
model which insures positivity of the entropy production. However, this oversim-
plified case hides the details of the complex interaction between the electrons and
heavy particles which is exhibited by the system of conservation Eqgs. (4.52)—(4.54).
For a multicomponent mixture of heavy particles, thus, we have to extend one
order further the model obtained so far for the electrons, as done in the following
section.

4.7. Order e: First-order electron drift-diffusion equations

We derive first-order electron drift-diffusion equations based on the electron Boltz-
mann equation (4.5) at order .
We define the second-order electron heat flux

1
o« = / £C. C.CLJ062C. (4.55)

The energy transferred from electrons to heavy particles at order ¢ is calculated by
means of Eq. (3.20) at order &*

AE! + AE}! =0, (4.56)

where AE}L is given by Eq. (4.47). Moreover, we establish the following lemma used
in the derivation of the first-order electron drift-diffusion equations.
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Lemma 4.7. Considering f0 given by Eq. (4.7), f°, i € H, by Eq. (4.8), ¢e by
Egs. (4.9)-(4.10), ¢4, i € H, by Egs. (4.24)(4.25), and ¢? by Egs. (4.33)-(4.34),
the mass transferred at order € from electrons to heavy particles vanishes, i.e.

(3¢, behe = 0. (457)
Proof. Equation (4.57) is readily derived from Eq. (3.18) at order 3. m|

Proposition 4.8. If &2 is a solution to Eq. (4.5) at order &', i.e.
fO (¢3)+6bIQeaC (f0¢3) Ce/\B = _@ (f ¢ )+8ee(f0¢e7f0¢e)

+ Jee (fOes fO02) + B2 (4.58)
where f0 is given by Eq. (4.7), f2, i € H, by Eq. (4.8), ¢ by Egs. (4.9)~(4.10), ¢;,
i € H, by Eqgs. (4.24)-(4.25), ¢§ by Eqs. (4.33)(4.34), and ¢2, i € H, by Egs. (4.50)—
(4.51), and if fO0¢3 satisfies the constraints

(1282, dehe =0, e {12}, (4.59)

then, the first-order conservation equations of electron mass and energy read

Oipe + Ox - [ (vh—f— A (V, +aV2)>] =0, (4.60)

1
at(peee) + Ox- (peeevh) = —PpeOx -V, — max ) (qe + &‘qg)

1
+—(Jo +&J2)-E' + dpoeMpJ.-vi, AB
M,

+AE? + eAEL. (4.61)

Proof. The Chapman—Enskog method allows for the following conservation equa-
tions to be derived

(22,0 e + D2 dede = (020, D)o + (s, P L {L,2)

Integrating by parts the left-hand side and simplifying the right-hand side based
on Lemma 4.7, one obtains Eqs. (4.60)—(4.61). m|

Before reaching Sec. 5 in which the transport flux expressions are evaluated, we
come back to the question of the influence of the choice of reference frame.

4.8. About the necessity of working in the vy, frame

As mentioned earlier, the mean heavy-particle velocity frame is not commonly
adopted in the literature to conduct the Chapman-Enskog expansion. We have
already emphasized that the choice of the hydrodynamic velocity frame is not appro-
priate insofar as the global hydrodynamic velocity v depends on the € parameter.
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Besides, the choice of the inertial reference frame gives a vanishing mean velocity
of the electrons; Degond and Lucquin?®! 37,38
However, since the expansion of the collision operators in terms of € depends on the
choice of reference frame (see Remark 3.1) and since the choice of the inertial refer-
ence frame prevents some terms from vanishing (such as g% (f2°, %), i € H), we
will first show that these authors compensate the presence of nonzero terms in the
integro-differential equations by the help of the w velocity introduced in Sec. 4.3.
This is acceptable for the solution for ¢., as proved in the following.

Let us review the Chapman—Enskog expansion in a general frame. Considering
a frame moving with the velocity u, the peculiar velocities are given by

and Lucquin reach such a conclusion.

C! =ce—ecMpu, C}=

K2

— Myu, i€H. (4.62)

The space of scalar electron collisional invariants Z!' is spanned by the following
elements

1Lu71
e

L

e

A 1
u,2:_Cu.Cu
2 e e

the space of scalar heavy-particle collisional invariants Z;' by

}lzlj (mldlj)ZEHv .7 S H7
A}I;,n = (mlc )16H7 Ve {17273}7

Tl B (lmic?'c?> )
2 ieH

and the macroscopic properties are expressed as partial scalar products of the dis-
tribution functions and the collisional invariants

(fo, 018 = pe
(fa, e = gneTe + Mpne Ve - (u—vy)e? + %Mgnem —vpl2e? + O(?),
and
(fr D = pi, i cH,
(DR N = o M (vh, — ), v e {1,2,3},

o 3 1
<<fhv"/}u +4>> :§nhTh+§M13Ph|U—Vh|27

where the temperatures are defined in the heavy-particle reference frame, as usual.
Similarly to the low Mach number approximation for neutral gases, we decouple
the electron thermal energy from the mixture kinetic energy in the limit ¢ — 0.
Then, we rewrite the Chapman—Enskog expansion of Sec. 4 in the u frame.
First, let us reformulate two propositions from the beginning of this section.
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Proposition 4.9. (Order £~2: electron thermalization) The zeroth-order electron

distribution function f3°, solution to Eq. (4.5) at order €72, i.e. %7 2(fu9) =
Jw=2 that satisfies the scalar constraints ({90, NS = lim. o ((f3, P3N 1 €
{1,2}, is a Mazwell-Boltzmann distribution function at the electron temperature

1 \3/2
SER

Proof. The proof is identical to the one of Proposition 4.1. O

v ~Cg) : (4.63)

Proposition 4.10. (Order e~!: heavy-particle thermalization) Considering f°
given by Eq. (4.63), the zeroth-order family of heavy-particle distribution functions
U0 solution to Eq. (4.6) at order e, i.e. J ' = 0, i € H, that satisfies the
scalar constraints (f0, PtNe = (frdmye 1 e {1,..., 4}, is a family of
Mazwell-Boltzmann distribution functions at the heavy- particle temperature

3/2
w0 — p, i exp | —
i 27Ty,

Proof. The proof is identical to the one of Proposition 4.2. O

(vh—u)|2>, i€ H. (4.64)

At this step, two properties appear: the electron thermalization takes place in
any velocity frame, whereas the zeroth-order heavy-particle distribution functions
do not depend on the selected frame. Indeed, we clearly have f° = 0 i € H, for
all velocity u.

Considering then the Boltzmann equation at order e !, the first-order electron
perturbation function ¢2 satisfies the linearized Boltzmann equation

Fe(ed) + 5b1qeacu(¢é‘) C.AB

_ gu—l fu0 +Z

)
f icH

J(CEP)CY (v —w)-CY, (4.65)

e

with the constraints

(fR002, P2ty =0, 1e{1,2}. (4.66)

The right-hand side of Eq. (4.65) is orthogonal to the collisional invariants, that is
the solvability condition. Moreover, in order to avoid treating the newly introduced
term in the integro-differential equation, one can use the absence of momentum
constraints on the electron distribution function and introduce a velocity shift w =
v, — u and notice that3”

=Y QY (cuP)cycy, (4.67)
1€H
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we thus obtain that the conduction of the Chapman-Enskog expansion in the u
frame is equivalent to that in the v, frame with

8 = 6ot S (v — ) -CL.
e

As already mentioned in Sec. 4.3, the electron velocity v, can be split into two
parts at the same order of the multiscale expansion v = u + V2/M;, + O(e),
with V¥ =V _ 4+ M}, (v, — u). We have thus provided a nice interpretation of the
algebra proposed in Lucquin®’ where the use of w = v}, allows then to eliminate the
term > oy Héj( fuo, f;‘o) in the integro-differential equation for ¢ obtained when
working in the inertial reference frame u = 0.

It amounts to “coming back” to the heavy-particle reference frame. Let us
emphasize at this point, that the set of equations obtained for the heavy-
particle Euler Eqgs. (4.26)—(4.28) coupled to the zeroth-order electron drift-diffusion
Egs. (4.35)—(4.36) is identical to the set obtained in Lucquin.?” At this order of the
expansion, while still equivalent to our study and yielding the same macroscopic
equations, the inertial reference frame leads to an artificial complexity. This is a
justification of the choices made in Sec. 2.5 in terms of the reference frame and
associated simplified algebra. At order €, which yields heavy-particle Navier—Stokes
equations coupled to first-order electron drift-diffusion equations, we realize that
such a compensation used through the velocity shift w has an undesirable influ-
ence on the structure of the expansion at the next order (see Lemma 4.4) and
hence makes the solution for ¢¥? difficult. Concerning the heavy-particle Boltz-
mann equation at order €°, the first-order perturbation functions ¢, i € H, also
satisfy Eq. (4.24), and that implies that ¢ = ¢;, i € H.

5. Transport Coefficients

In this section, we investigate the electron and heavy-particle perturbation func-
tions in order to obtain expressions for the transport fluxes. We deal with strongly
magnetized plasmas (b = 1) having anisotropic transport coefficients, both the
cases of weakly magnetized plasmas (b = 0) and unmagnetized plasmas (b < 0) are
investigated at the end of this section.

5.1. Extra notations for anisotropy

We introduce some extra notations in order to conveniently express the solution to
the Boltzmann equation in the presence of a strong magnetic field. First, we define
a unit vector for the magnetic field B = B/|B| and also three direction matrices

0 —Bs B
Ml =BgB, M'=I-BgB, M®=| B, 0 B,
—By By 0
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so that we have for any vector x in three dimensions
xl=Mlx=x-BB, x'=M'x=x-x-BB, x°=M%%=BAx.

In the (x,B) plane, the vector x!l is the component of x parallel to the magnetic
field and x* its component perpendicular to the magnetic field. Thus, we have
x = xll + x*. The vector x® lies in the direction transverse to the (x,B) plane.
L+ and x® are then mutually orthogonal. We will show
that the transport coefficients are anisotropic, as expressed by means of the matrix
notation fi = /Ml 4 - M+ 4+ ©M®. In the b = 0 and b < 0 cases, the transport
coefficients are identical in the parallel and perpendicular directions, pll = ', and
vanish in the transverse direction, u® = 0.

Finally, the direction matrices satisfy the following two properties. The matrices
M, M+ and M® are linearly independent, that is

The three vectors x!, x

f=0=pl =pt=p® =0
Moreover, the space spanned by the matrices Mll, M+ and M@ is stable under
multiplication, since we have the following relations
MMl =Ml MIML = o, MIM® =
MMl =0, MM'=M+ MM®=M®
MOMI =0, MOML=M®, MOM® =_-M"’.

5.2. First-order electron perturbation function
The first-order perturbation function ¢, is a solution to Eq. (4.9)
Sje(¢e)"’_qeacc(¢e)'cje/\B = \Ilev (51)

and satisfies the constraints (4.10), where W, is given by the expression ¥, =
—P7Hf0)/ 2 and fO by Eq. (4.7). After some algebra based on the expression for
12, the quantity W, is transformed into

/ 1
U = —pePLe-d, — W)e -9y (?> : (5.2)
where the electron diffusion driving force d, is defined by the relation
1 eqde
de = _axpe - ME,» (53)
and with
1 / 1 5 1
Y- — _C,, W¥r=_—(-T.—--C. C.|C.. 5.4
¢ Mppe " ¢ M, (2 2 ) (5:4)

The right-hand side of Eq. (5.1) does not depend on the heavy-particle driving
forces. Therefore, the first-order electron perturbation function is decoupled from
the heavy particles.

The existence and uniqueness of a solution to Eq. (5.2) is given in the following
proposition.
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Proposition 5.1. The scalar function ¢, given by
o = —pRMIQPD (M 4 SMO )P,
’ ’ 1
—RMIEE D 4 (M 4+ 1MO)p ) g, (?) 7 (5.5)

is the solution to Eq. (5.1) under the constraints (4.10), where the vectorial functions
De(1)  De(2) (1) AL(2)

e we L we 7 and e are the solutions to the equation
Fe(ph™W) = vt (5.6)
(Fe +1[BITE) (o) = WL, (5.7)
where Fle(u) = geu, under the constraints
(fopt® gy, =0, 1€{1,2}, (5.8)
(fopt® ). =0, 1e{1,2}, (5.9)

with 1 € {De, A, }.

Proof. By linearity and isotropy of the linearized Boltzmann operator F, the
development (5.2) of ¥, can be followed through for ¢, as well to give

/ 1
e = —pe¢£e d, — ¢é\c Oy (-) .

T
The functions @, u € {De, \.}, are now vectorial and satisfy the equations
Fe(@h) + ¢Ce AB- 0 ¢} = ¥, (5.10)
and the scalar constraints
(fepl, k). =0, 1e{1,2}. (5.11)

We seek a solution ¢f in the form
ot = PV C, + gD C AB + ¢ C, - BB,
where gbg(l), ¢§(2) and ¢g“3) are scalar functions of C, - Ce, (Ce - B)2 and B - B, since

¢! must be invariant under a change of coordinates. Substituting this expansion
n (5.10), and using isotropy, Eq. (5.10) splits into three separate coupled equations

Fo(otVC,) — ¢.B-Bot P C, = wh, (5.12)
Fo($P'CoAB) + goptVC AB =0, (5.13)
Fo(¢"®C, - BB) + ¢.C.- BB = 0. (5.14)

Further simplification is now obtained if, instead of three real quantities ¢, ?)
and ¢f (3), we introduce one real and one complex unknown defined by
u(l) — ¢u(1) +B- B¢§(3)7 @5(2) — ¢g(1) + i|B|¢‘e‘(2).

Upon introducing ga”(l) 5‘”06 and <p§(2) = gpﬁ,‘(Q)Ce7 Egs. (5.12)-(5.14) can be
conveniently rewritten in terms of these new functions as Eqgs. (5.6) and (5.7). Fur-
thermore, the constraints (5.11) are easily rewritten in the form given in Eqgs. (5.8)
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and (5.9). Moreover, expression (5.5) for ¢e is immediately obtained using the
recombination formula
ol = M) 1 MU SR(l?) — MO3(pl), )

The structure of the integral equation (5.6) under the constraints (5.8) is stan-
dard and the structure of Eq. (5.7) under the constraints (5.9) is similar in a
complex framework. More specifically, the operator F, + i|B|F% and the asso-
ciated bilinear form a(u,v) = (fou, (Fe + i|B|FL)v)),, defined on the proper
Hilbert space of complex isotropic squared integrable functions associated with
the scalar product [-, -], are such that |a(u,u)| > [u, u], which yields existence and
uniqueness thanks to the constraints. Moreover, from the isotropy of the opera-
tor F., the expressions o4 and ¢ cannot be functions of (C.-B)? as shown
in Ref. 26.

We further introduce the electron bracket operators [-, -], and ((-,-)), associated
with the two operators F, and Fde. For any & and (., we define

[e, Gele = (foCe, TelCeler  ((€erCe))e = IBI (e, T (Ce) e

These bracket operators expand into

[€o, Gl an/aej ICel2,w-€)|Ce* £2(ICele)

jEH

X [£e(|Cele) — &e(|Celw)] © [Ce(|Cele) — (e(|Ce|w)]dwded|Ce|

1
+Z/Ueel|ce_cel|fe? 6(3)1

X (ge + fel - f(la - 5(131) © (Ce + Cel - Cé - él)deCedCeL

and
((€0:¢)). = IBlae / 26, © C.dC,.

The bracket operator [-,-], is hermitian [&, (], = [Ce,&e],, positive semi-definite
[&c, €], = 0, and its kernel is spanned by the collisional invariants, i.e. [, &],

0 implies that & is a (tensorial) collisional invariant, or in other words, all its
tensorial components are in the space Z,. The bracket operator ((-,-)), is hermitian

((éesCe))e = ((Ce, &), and negative definite ((&,&e)), < 0 if & # 0.

Remark 5.1. In the limit case in which B tends to zero, expression (5.5) for the
first-order electron perturbation function reduces to an isotropic form. We prove
indeed that, for u € {De, AL}, gag(l) does not depend on the magnetic field and that

oh @ converges to k"’ for a vanishing magnetic field.

The expression for the electron diffusion velocity is given in the following
proposition.
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Proposition 5.2. The electron diffusion velocity V, reads

V, = —Dede — 0.05In T, (5.15)

where the diﬁusion coefficients and thermal diﬁusion coefficients are given by

DII 3peT LM, [ De(1) SOD (1)]] 9! _ ——M, [[90 (1) SOA (1)]]

1 1
Df = p LMol @l P, 6 = — oMl ? P, (5.16)
1 1 >\' 2

D2 = —3pTebMi((92°®, @2, 02 = ZM((92*®), o)),
Note that these expressions are real, in particular for 0 and 62, although functions
ga?cm and pe°© 2@ gre complez.

Proof. Using definition (4.16) of the diffusion velocity V, and expression (5.4) for
WPle yields

Ve = Tth«\Il?C ’ fe(z)(be»e'
Further substituting expansion (5.5) into this equation, and using isotropy,

we obtain expression (5.15) for the diffusion velocity V., where the trans-
port coefficients are defined by D! = tpeTe Mh«f De(1) ,WDey | 6!

My (02D, WD), DE +4DQ = Lp LMy ((fol ) D), 0 + 102 =
—§Mh<< gcpé‘ o(2) g De Ve Equatlonb (5.6) and (5.7) for 1 = D, classically yields?¢:28

e’

DH 3p T M}L[[QODE(I) ¢£e(1)ﬂ
1
Dy +1D¢ = gpLeMi([pd*®, 0P, — i((0 2@, 02®)),),

1 A (1
ol = —3Maleet () DM

1 /
b+ 169 = — 2 Mu ([ ™ @], = (0, 02 ?)),).

As the bracket operators [+, -], and ((-, -)),, are hermitian, we immediately obtain the

expressions for D!7 DZ, DE and 6¢. Concerning 6+ and 69, we use the imaginary
part of Eq. (5.7) for 1 € {De, AL} to establish the relation

S[(Fe +1[BIFEL) (@] =0, p € {De, N}
Taking the scalar product of this equation with ga”( )7 1 € {Deg, AL}, yields the
following four relations
[[§cheDe(2) o AQ(Q)]] +

[[S‘PD .(2) (\(PA (2)]] +

[See

(
(
Dc(Q) S Ae(2):[| +(
[[\S (2) §R‘P>\ (2) Io + (Rl e(2),§R(Peé(2)
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Then, a direct calculation implies that
3

Do) M@y _ _ 3 o1 De(2) M@y _ 3 g0
%II(PQ ) Pe ]]e Mh e %(((Pe )y Pe ))e Mh e
C\\Y[[QOEEQ), Sog\é@)]]e -0, C\\Y((SOeDe(g), (Pg\é@)))e =0,
SO that 93; — _%Mhﬂ¢£e(2)’¢2;(2)ﬂe and 9? — %Mh((soeDe(Q),(Pg‘/c(Q)))e. 0
An alternative form of the diffusion velocity is given by
V, = —De(de +X,0xInTy), (5.17)

where the real-valued thermal diffusion ratios X(L,I, X&, X& are defined by the relation

. (5.18)

0. =D

5
X

Indeed the compact matrix relation (5.18) well defines the matrix thermal diffusion
ratio x, because (5.18) is equivalent to both the split equations

6l = DIxl, 6 +169 = (D +1D9)(xi +ix?).
The viscous tensor is calculated in the following proposition.
Proposition 5.3. The electron viscous tensor vanishes, i.e.

I, = 0. (5.19)

Proof. Using definition (4.37) of the stress tensor and expression (5.5) for ¢, one
readily obtains that II, = 0. O

The electron heat flux is given in the following proposition.

Proposition 5.4. The electron heat flur q. reads
de = — NBxTo — pefede + peheV, (5.20)

where the partial thermal conductivities are given by

1 ’ ’
)\QI _ —Mhﬂsaée(l), (Pé\eu)]]y

3772
1 A(2) A2
)\gl_ — ﬁMhII(PEC( )7(PeC( )]]87 (5'21)
1 A(2) AL(©2
NO = _3T2Mh((80eC( ),QOeC( )))e'

Proof. Using definition (4.30) of the heat flux g, and expression (5.4) of \Ilig yields
9e = peheV, — Mh«‘Ilé\evfe?qse»e'

Further substituting expansion (5.5) into this equation, and using isotropy,
we obtain expression (5.20) for the heat flux q. where the transport coefficients
9‘!7 0L, 62 are given in Eq. (5.16) and the partial thermal conductivities
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AN NE are defined by M = gk My (£ w2 N+ aNe =
%MFL((fe?gag‘C(z)7 \Ilé‘é ). Equations (5.6) and (5.7) for p1 = Ae classically yields?6:®
1 AL(1 1
A= ﬁM n [ 2™,

. (2) AL(2) . 2 AL(2
I&L+1A?-—3T2 (lpe= @, 02, = (2", 02", ).

As the bracket operators [-,-], and ((-,)), are hermitian, we immediately obtain
the expressions for AJl, ML and \©. i

Using the thermal diffusion ratios defined in Eq. (5.18), the electron heat flux
is rewritten
= AeDxTo +peXe Ve + poho Ve, (5.22)
where the thermal conductivities )\ﬂ, AL, A are real quantities given by
Ae = N, = NeXole-
Finally, the first-order electron mass-energy flux vector
Fe = [@e — pehe Vo, Ve]T

is proportional to the electron diffusion force vector X, = (0xInT,, pede)T, as
expressed by the relation

Fo=—AcXe, (5.23)
where the electron mass-energy transport matrix is given by
TN, B
Ac=| _ Tk (5.24)
O —D,
Pe

The positivity properties associated with the heat flux and diffusion velocities are
given in the following.

Property 5.1. Considering any two-dimensional real vectors x!I, x+ and x®, the
following two inequalities are satisfied:

(Alxll xIy > 0, (5.25)
(Alxt — APx® xt) + (ALx® + APx: x@) > 0. (5.26)
Proof. Introducing x/I = (x” xg) = (z1,75), and x® = (27, 25), expressions
(5.16) and (5.21) for transport coefficients yield
(Al xly = Lo Mh[[ M,y
Tth

(Adxt = APXY,x5) 4+ (Apx© + ADx x7) = =2y ¥,

3
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with
A (1
)(1) x!cpe () T !%e ( )7

1
y® = (23 +12§)pl*® = —(ai +ia)p"®.

e

Inequalities (5.25) and (5.26) are then obtained, thanks to the positivity of the
bracket operator [-, -],. |

Remark 5.2. In the limit case in which B tends to zero, the behavior of the

transport coefficients can be investigated. We formally prove that the matrix Aﬂ

does not depend on the magnetic field, that A} converges to Aﬂ, and that A?

vanishes.

5.3. First-order heavy-particle perturbation function

The first-order perturbation function ¢y, = (¢;);cy is a solution to Eq. (4.24), i.e
g:i (¢h) = fo

and satisfies the constraints (4.25), where ¥; = —2°(f%)/f°, i € H. After some
lengthy calculation based on the expression (4.8) for fp, the Euler equations (4.26),
(4.28) and (4.29), Theorem 3.1 and Corollary 3.2, one obtains

1
Cﬂ((bh)——‘l/nh 8 xVp — phZ\II J d — )\h 8 ( )

3?, icH,

JjeH Th
—UO(T, — T)), (5.27)
where
; 1
v =" (c,0C; ~ C;-Cil | cH
i Th( oy 3 ) 1 € H,
D, 1 Pi .
v = 0i; —— | G 1,7 € H,
! Mpp; ( ! Ph) /
, 5.28)
Yoo L (5 1o o), - (
v =g <2Th 5miC.-Ci ) C; icH,
2 ie Yie 1 .
po = 2 Yo m i) By L6l e
T 3my; Lt Mp M 2 2
h jeH J

Quantity p; = n;T}), stands for the partial pressure of species ¢ € H. A linearly
independent family of diffusion driving forces is also introduced

d_ Loy, Mg i
DPh Ph Ph

The average electron forces acting on the heavy particles belong to the category of

F

e’

i€H. (5.29)

diffusion driving forces and allow for a coupling between the heavy particles and
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electrons. Expression for ¢, given in Eq. (5.5) and definition (4.20) implies that
F,., i € H, is proportional to the electron diffusion driving force and the electron
temperature gradient. Thus, the heavy-particle transport fluxes to be derived are
also expected to be proportional to the electron forces.

The existence and uniqueness of a solution to Eq. (5.27) is then established in

the following proposition.

Proposition 5.5. The family of scalar functions ¢n = (¢i);cy, given by

o / 1 .
¢i =~ Oxvi —pr Y b d; — ¢ O (—) — ¢ (T = Ty), i€H,

jeH Th
(5.30)

is the solution to Eq. (5.27) under the constraints (4.25), where the family of tenso-
rial functions ¢)" = (¢]"),cyy, the families of vectorial functions ¢fj = (¢1Dj)ieH7
j € H, and ¢,);;L = (¢j‘;z)ieH, and the family of scalar functions ¢f) = (¢),cqy are
the solutions to the equations

Fi(¢l) =W, icH, (5.31)

under the scalar constraints

(fReh by, =0, le{l,...,nl+4}, (5.32)
with p1 € {nn, (Dj)jen, Ay, O}
Proof. By linearity and isotropy of the linearized Boltzmann operator F;, the
development of ¥, can be followed through for ¢; as well. Therefore, ¢; is given

by Eq. (5.30) where the function families ¢}, for p € {nn, (D;);cu, A}, ©} satisfy
Eq. (5.31) under the scalar constraints (5.32). We seek a solution in the form

P! = ¢f(1)Ci7 i€ H, pe{(Dj)jen, \p}s

P = ¢!V (ci ®C;— %ci : Cl-]I) , i€H.

Quantities gbf(l), 1€ {nn, (Dj)jen, A\, }, and ¢9 are scalar functions of C, - C;, for
i € H, since @), p € {nn, (Dj) cu, \j,, ©} must be invariant under a change of coor-
dinates. Uniqueness of the solution is readily proved based on the linearity property
of the operator F, its kernel given in property 4.2, and the constraints (4.25) sat-
isfied by ¢,. O

We further introduce the heavy-particle bracket operator [-, -], associated with
the operator Fy. For any &, (, we define

[€n, Chln = (fh&ns Fn(Cn)) -
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This bracket operator expands into

1

ncilu= 3 3 [ 506+ 6 -6 -6)
i,jeH

© (Q + Cj - C{ - C§)|CZ — Cj|aijdwdCide.
This bracket operator [-,-], is hermitian, [&4,C¢n], = [Cns&n]y,. positive semi-
definite, [£4,&,], > 0, and its kernel is spanned by the collisional invariants, i.e.
€n,&n], = 0 implies that &, is a (tensorial) collisional invariant, or in other words,

that all its tensorial components are in the space Zj. The expression for the heavy-
particle diffusion velocities is given in the following proposition.

Proposition 5.6. The diffusion velocity of species i € H reads
V, ==Y Dyd; —60!0,nT,, (5.33)
jEH

where the diffusion coefficients and thermal diffusion coefficients are given by

1
Dy =g

T My, &y, i,j € H,
(5.34)

1 oV .
OF = —3Mplgy" 6,1, i€ H.

Proof. Using definition (4.42) of the diffusion velocity and expression (5.28) for
Wi € H, yields

Vi = Tth<<‘IJ€i7f}?¢h>>h7 1€ H.

Further substituting expansion (5.30) into this equation, we obtain expression (5.33)
for the diffusion velocities. O

From the properties of the bracket operator, we infer that the diffusion matrix
D is symmetric. Moreover, an alternative form for the diffusion velocities is given by

v,=-YD, (&j +x8,In Th> . ieH, (5.35)
jeH
where the thermal diffusion ratios are defined from the relations
ZDin? =0}, ieH,
jeH

> xj=0.

jeH

(5.36)

Then, we introduce the tensor
2
S = [vah + (vah)T] — §8x . Vh]I,

in order to express the viscous tensor in the following proposition.
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Proposition 5.7. The heavy-particle viscous tensor reads

Hh = —77hs7 (537)
where the shear viscosity is given by
Th

= 1elol &', (5.:38)

Proof. Using definition (4.43) of the viscous tensor and expression (5.28) for ¥}"
yields

II;, =1 <<‘I]Zh y f}? ¢h>>h'

Further substituting expansion (5.30) into this equation, we obtain expression (5.37)
for the viscous tensor. O

The expression for the heavy-particle heat flux is given in the following
proposition.

Proposition 5.8. The heavy-particle heat flux reads

qp = —A;LBXT;L — Dh Z H;ldAJ + Z pjthj, (539)

jeH jen
where the partial thermal conductivity is given by
1 PRV
h = 3—T,3Mh[[ YR (5.40)

Proof. Using definition (4.45) of the heavy-particle heat flux and expression (5.28)
for \Il;‘h yields

Y 5
an = —Mp(®,", £l én ), + o Ih > nV;
jeH
Further substituting expansion (5.30) into this equation, we obtain expression (5.39)
for the heat flux. |

Remark 5.3. The heavy-particle diffusion velocities and heat flux are thus pro-
portional to the electron driving force and electron temperature gradient through
the F,, contribution to d,, i € H. Kolesnikov® has already introduced electron
heavy-particle diffusion coeflicients and thermal diffusion coefficients and ratios to
couple the heavy-particle diffusion velocities and heat flux to the electron forces.
Therefore, we propose to refer to this phenomenon as the Kolesnikov effect for the
heavy particles.

Using the thermal diffusion ratios defined in Eq. (5.36), the heavy-particle heat
flux can be rewritten

qn = _AhaxTh +ph Z X?Vj + Z pjthj7 (541)
jeEH jeEH
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where the thermal conductivity is given by
Aw =X, —nn Yy xro". (5.42)
jeH
Finally, the first-order heavy-particle mass-energy flux vector
T

Fro=an—Y_pihiV, (Vien | ,
jen

is proportional to the heavy-particle diffusion force vector
Xp, = (8xIn Ty, pr(d,)ien)”,
as expressed by the relation
Frn=—Ap, Xp, (5.43)
where the heavy-particle mass-energy transport matrix is given by
TpX,  1(0F)ien]”

Ah - h 1
(01‘ )ien p—h(Dij)i,jGH

The positivity properties associated with the heat flux and diffusion velocities are
given in the following.

Property 5.2. The heavy-particle mass-energy transport matrix A, is symmetric,
positive semi-definite, and its kernel is one dimensional and spanned by the vector

[07 (pi)ieH]T

Proof. We consider the vector x = [z7, (z;)icu]T and the family y;, = (y;)
where

i€H>
p 1 ),
yi=) 2 — —on,é;"
; h
jeEH
Seeing the scalar constraints (5.32), this family is orthogonal to the collisional
invariants. Expressions (5.34) and (5.40) for transport coefficients yield

1
<Ahxv X> = gTth Hyhv Yh]]h~

Given the properties of the heavy-particle bracket operator [-,-],, we have
(A,x,x) > 0, and (A, x,x) = 0 implies that y; is a collisional invariant, hence
yvr = 0. Moreover, the linear rank of the family (d)?;ﬂd)lpl ey ¢lan) is exactly nff
because it is the rank of the corresponding right-hand side (\1;;‘;1’ L N \IliD"H) of
Eq. (5.31). We then conclude that y, = 0 if and only if x lies in the space spanned
by the vector [0, (p;)icn]T. O
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5.4. Second-order electron perturbation function
The second-order perturbation function ¢? is a solution to Eq. (4.33), i.e.
Fe(¢2) + 4edc, (#7) - Ce N B = U2, (5.44)

and satisfies the constraints (4.34), where

1 N .
\I’g = F(_gg( e07 Pe) + gee(feo(bm f£¢e) + 32)
Introducing second-order heavy-particle diffusion driving forces d? = —V,, i € H,
one obtains after some lengthy calculation
U2 = W9, vy, — Do Z wDhi ~d? — \I'g,
jE€H
where \ng is a scalar function of C, - C,, and
1 1
Wl = T C.2C, — §Ce-CeI[ ,
© (5.45)

w2 = =l (CP)CC,, ieH.

The coupling of the electrons with the heavy particles occurs in the integral equation
for the second-order perturbation function through the d? forces, i € H. Thus,
the second-order electron transport fluxes to be derived are also expected to be
proportional to the heavy-particle forces.

The complete solution to Eq. (5.44) is not necessary since we only need to
express the second-order transport fluxes V2 and q? in terms of bracket operators.
Consequently, we only have to examine the contribution of the two vectorial terms
Wl and ¥l i e H.

Proposition 5.9. The scalar function ¢? given by

02 =~ 1 0xvi —pe Y RIMIDI D 4 (M +iM®)pl5 @] a2 — §2,  (5.46)
jeH

is the solution to Eq. (5.44) under the constraints (4.34). The vectorial functions

soc?i(l), CPEi(2), i € H, are the solutions to the equations
Fe(pt V) = P, (5.47)
(Fe + i|B[TE) (@) = wP", (5.48)
under the constraints
(fee2 W dehe =0, Le {12}, (5.49)
(fQp21P ), =0, 1e{1,2}. (5.50)

The tensorial function ¢l satisfies

Fe(@) + geBc, (@) - Coe AB = e,
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under the constraints

(fopl,deh. =0, le{1,2},
and the function 253 is a scalar function of Ce-Ce and (C.-B)2.

Proof. The proof for this proposition is similar to the one for Proposition 5.1 since
Egs. (5.1) and (5.44) for ¢, and ¢2 only differ with their right-hand side. m|

The expressions for the second-order electron diffusion velocity and heat flux
and of the average electron force are given in the following proposition.

Proposition 5.10. The second-order electron diffusion velocity V2 is given by
= ae;d] (5.51)
jEH
the second-order electron heat flur g2
= —pe Y _X5d7 + pehe Ve, (5.52)
JjeEH
and the average electron force F;, acting on i heavy particles
DPe = Pe
F,=———aude —
e niMh QeiCe niMh
The element of the matrices of ae; coefficients and second-order electron thermal
diﬁusion ratios read

e0xInT,, ieH. (5.53)

e ]. Al .

aﬂi = 3peT oMppse 1) (PD (1)]] Xl-H _ _th[[(PD A (1) Saee(l)]]e’ iem,
1 1 .

ok = 3peT LMy [P, oD@ Xt = —th[[SOD .(2) 7¢A (2)]] -

1 .
O[Q = __peTth(((ch(2)7 (Pgt(Q)))

o 1 (2 .
8= 3 KO = M0l @, @), ie .

(5.54)

e’

Note that these expressions are real, in particular for ok, ae®1-7 X$t and qu 1€ H,

A(2)  De(2) Di(2)

although functions pe® ™, we ° ", and pe are complex.

Proof. Using definition (4.38) (respectively (4.55) and (4.20)) of the second-order
diffusion velocity V2 (respectively the second-order electron heat flux g2 and
average electron force F, , i € H), the same proof as that of Proposition 5.2 yields

the conclusion. O

Remark 5.4. The term ¢/ :0xvy, of Eq. (5.46) contributes to a second-order
electron momentum relation not investigated here.

Remark 5.5. The second-order electron diffusion velocity and heat flux are thus
proportional to the heavy-particle diffusion velocities, that is the Kolesnikov effect
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for the electrons. To the author’s knowledge, it is the first time that such second-
order transport fluxes are rigorously derived from a multiscale analysis. However,
since the electron collision operator is of the order of 1/£2 in the electron Boltzmann
equation (2.29), it is important to mention that they should not be confused with
Burnett transport fluxes?® based on a second-order perturbation function and a
collision operator of the order of 1/e.

We rewrite the mass and energy transport fluxes in terms of the diffusion forces
by replacing expression (5.53) for F,, in Eq. (5.29). The heavy-particle diffusion
velocities given in Eq. (5.33) read

V, = —088xInT. — 0/ 8xInT}, — Died, — > _ Dy}, i€ H, (5.55)
jeH

with the modified driving forces

o 1
d,=2d., dj = —.pi -
bn Pn

The matrices of heavy-particle electron diffusion coefficients and electron thermal
diffusion coefficients, defined as

:e pe 3
w—ZD”aej, 0f = ZD”XJ, 1€ H,
jeH jEH
exhibit the following properties
D piDre=0. > p;67=0.
jeH jeH

The alternative formulation (5.35) is found to be

N pe =e .
V,=-Did, - > D, (d;- o xInT. + X} 9xIn Th) , ieH.  (5.56)
jeH '

The heavy-particle heat flux given in Eq. (5.39) reads

= “AVOxT. — Ny OxTy, — pnfldl, —pr Y 005+ > p;hiV,,  (5.57)
JjeEH JjeH
with the matrices of partial thermal conductivity and thermal diffusion coefficient
LD YA W
JjEH jEH

Then, substituting the previous expression (5.55) for V;, i € H, into the expression
(5.51) for the second-order electron diffusion velocity V2, one has

V2 =~ 0¢8xInT, — 018xInT), — Deed, — > D, (5.58)
jEH
with the following second-order matrices of electron diffusion coeflicients, electron
heavy-particle diffusion coefficients, and electron thermal diffusion coefficient

599 = Z Ozéejﬁjey Eei = Die; 1€ H, ég = Z &ej 5}3

jeH jeH
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The alternative formulation reads
A A Pe =e
V2 = —Deed, =Y Dy (d; oK OxIn T + X} OxIn Th> : (5.59)
jE€H
Regarding the electron heat flux given in Eq. (5.52), one obtains
- T, = - -
Ap = —A2OxTe = - AOTh —prOsd —pn ) 05+ peheVeE,  (5.60)
! jeH
with the second-order matrix of electron partial thermal conductivity

N =ne} X0

JjEH

5.5. Weakly magnetized and unmagnetized plasmas

We recall that the intensity of the magnetic field is expressed by means of the b
parameter used to define the scaling of the nondimensional electron Hall param-
eter ¢°BY/mQ = £'=*. We deal with weakly magnetized plasmas (b = 0) and
unmagnetized plasmas (b < 0) by reviewing the whole section in this simplified
frame.

The first-order electron perturbation function ¢, is a solution to Eq. (4.9), i.e.

g:e(qse) =, (561)

and satisfies the constraints (4.10). The transport coefficients are shown to be
isotropic since the operator ¥ does not appear in Eq. (5.61). Defining the electron
driving force de = (OxPpe — NegeE)/pe, the electron perturbation function is given
in the following proposition.
Proposition 5.11. The scalar function ¢. given by
/ 1
¢e = —Pe¢£)c 'de - ¢2\e 'ax (T) ) (562)
]

is the solution to Eq. (5.61) under the constraints (4.10), where the vectorial func-
tions d)?c and d)é‘c are the solutions to the equations

Fe(oe) = WL, (5.63)
under the scalar constraints
(folsdehe =0, 1e {12}, (5.64)
with p € {De, A, }.
Proof. By linearity and isotropy of the linearized collision Boltzmann operator
Fe, the development of ¥, can be followed through for ¢, as well. Therefore, the

functions ¢% for p € {De, A} satisfy Eq. (5.63) under the scalar constraints (5.64).
We seek a solution in the form ¢! = ¢4 C.. Quantities ¢*, u € {De, AL}, are scalar
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functions of Ce - Ce since ¢, p € {De, AL}, must be invariant under a change of
coordinates. Uniqueness of the solution is readily proved based on the linearity prop-
erty of the operator Fe, its kernel given in property 4.1, and the constraints (4.10)
satisfied by ¢. |

The expressions for the electron transport fluxes are given in the following
proposition.

Proposition 5.12. The electron diffusion velocity reads
V,=-D.d. —0,0xInT,, (5.65)
the electron heat flux,
de = —Ae0xTe — pefede + pehe Ve, (5.66)

where the diffusion coefficients, thermal diffusion coefficients, and partial thermal
conductivity are given by

1 1 '
De — _peTthII¢£c7¢eDc]]e7 ee = _th[[¢eDc7¢é\c]]ev

3
(5.67)
N = LM, [ . ¢>\é]]
e 3Teg v e »7e le’
and the electron viscous tensor vanishes, i.e.
II, = 0. (5.68)

Proof. The proof of this proposition is based on definition (4.16) (respectively
(4.30) and (4.37)) of the first-order diffusion velocity V (respectively the first-order
electron heat flux ge and viscous tensor Ile) and on expression (5.62) for ¢.. O

Alternative forms of the electron diffusion velocity and heat flux are also
introduced

V,=-D,(de + x,0xInT,),

e

Qe = _)\eaxTe + peXeVe + peheVe7

where the thermal diffusion ratio y, is defined by the relation 6, = D_x,, and the
thermal conductivity by Ae = A, — e X0,

Concerning the heavy particles, the entire Sec. 5.3 remains valid since Eq. (4.24)
is identical for all cases (b =1, b= 0 and b < 0).

The second-order electron perturbation function ¢? is a solution to Eq. (4.33)

Fo(02) = W2, (5.69)
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and satisfies the constraints (4.34). Introducing a second-order electron diffusion
driving force d? = —neg. M7 vy, A B/pe, one obtains after some lengthy calculation

U2 = —Wl: devy, — Spope ¥ - d2 — pe Z wli.dj - w2
jeH

Proposition 5.13. The scalar function ¢2 given by

0F =~ L v — Gropel A2 —p. Y| $P -~ 32, (5.70)
JjEH

is the solution to Eq. (5.69) under the constraints (4.34). The vectorial functions
d)?c, d)?, i € H, and the tensorial function ¢J° are the solutions to the equa-
tions Fe(dt) = WL, under the constraints (fOP!, YL). = 0, 1 € {1,2}, with
i € {Dq, (D;)ict,ne}. The function (Eg s a scalar function of Cg - Cs.

Proof. The proof of this proposition is similar to the one of Proposition 5.11 since
Egs. (5.61) and (5.69) only differ with their right-hand side. O

The expressions for the second-order electron diffusion velocity and heat flux
and of the average electron force are given in the following proposition.

Proposition 5.14. The second-order electron diffusion velocity is given by

V2 = =00 Dd? — ) ae;d3, (5.71)
j€H

the second-order electron heat fluz,

qg = _5b0peeedg — Pe Z X;d? + pehevgv (572)
jeH

and the average electron force acting on i heavy particles

P\ oq _ _Pe

F. = *OxInT, e H. .
o L L X5 OxIn 1 e (5.73)

The aw; coefficients and second-order electron thermal diffusion ratios read

1 , o 1 ) ’ .
Qi = §peTth[[¢eDe7 d)eDl]]e Xi = _thII¢£l7¢ic]]e7 i€ H. (574)

Proof. The proof of this proposition is based on the definition (4.38) (respectively
(4.55) and (4.20)) of the second-order diffusion velocity V2 (respectively the second-
order electron heat flux q? and average electron force F,,, i € H) and on the

expression (5.70) for ¢2. O
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Table 3. Magnetic field influence.

b Conservation equations Transport properties
<0 — —
0 Bulk magnetic force Electron bulk magnetic driving force

Electron magnetic force

1 Bulk magnetic force Electron bulk magnetic driving force
Electron magnetic force Heavy-particle bulk magnetic driving forces
Heavy-particle magnetic force  Anisotropic electron transport properties

Three categories of plasmas are reviewed in Table 3. A value of b < 0 corresponds
to unmagnetized plasmas, b = 0, weakly magnetized plasmas, and b = 1, strongly
magnetized plasmas.

6. Conservation Equations

We review the heavy-particle Navier-Stokes equations (4.52)—(4.54) and electron
drift-diffusion equations (4.60) and (4.61). We also derive a total energy equation
and an entropy equation.

6.1. Mass
The species mass conservation equations read
1
Orpe + Ox - {pe (vh + — (V. + ng))} =0, (6.1)
My,
Bupi + O {pi (vh + iv)] =0, ieH (6.2)
My,

Summing Eq. (6.2) over ¢ € H and using the constraint ZJEH piV,; = 0 given in
Eq. (4.25), a heavy-particle mass conservation equation is obtained

O¢pr + Ox - (phvh) =0. (6.3)

The heavy-particle mass is conserved in the mean heavy-particle velocity frame.
Then, adding the electron drift Eq. (6.1) to Eq. (6.3) and using Eq. (2.27), i.e.

1
PV = prvn + €2 pe (vh +—(V + sVz)) ,

My,
a conservation equation of global mass p = pj, + £2p. is also established
Op+ 0x - (pv) = 0. (6.4)

The global mass is conserved in the hydrodynamic velocity frame, although the
transport fluxes are calculated in the mean heavy-particle velocity frame. It is
the only place where the difference between the global hydrodynamic velocity and
the mean heavy-particle velocity, of the order of €2, plays an essential role. This fact
is another evidence of the coherence of our formalism compared to other approaches
found in the literature.
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6.2. Momentum

The momentum conservation is expressed by

1
Oc(pnvn) + Ox - (phvh v+ Wpl[)
h

€ 1
=~ C 8. Ty + —nqE + [Slo + 651 AB. .
e h+M]%nq + [6p0X0 + 0p11] (6.5)

It is important to recall that the electrons participate to the momentum balance
through the pressure gradient and the Lorentz force.

6.3. Energy

A flow kinetic energy equation is obtained by projecting Eq. (6.5) onto the mean
heavy-particle velocity

1 , 1 , 1
Oy <§Ph|vh| >+3x' [Vh (§ph|vh| +Wp)}
LI S v B Thy 4 ——ngB-vi + v - (Ss0T0 + O 1) A B
= 772P0x " Vh — 75 Vh Ox - Ly — —=nqgli- vy +— V- (0polo bl .
M M M
(6.6)

The electron energy equation reads

1 2\  w
A A (Je+¢J2) -E

+ 0p0eMpJe - vi AB + AE? + cAEL, (6.7)

1
at(peee) + Ox- (peeevh) = _peax vy — —O0x - (qe + qu) +

and the heavy-particle energy equation

€ g
at(pheh) + Oy - (phehvh) = —(th + EHh) :0xVvp — —O0xqn + —Jn - E’
My, My,

+AE) + eAFE;. (6.8)
So that a global energy equation is derived by summing Eqs. (6.7) and (6.8)

1
i(pe) + Ox - (pevy) = —(pl + elly,) : Ox vy — max o)
1
+ M(Je +eJ2 4+ edp) E + 0poeMpJe -vi, AB,  (6.9)
h

where quantity @ = qe + g2 + £qy, is the total heat flux and pe = peee + pren,
the mixture energy in the heavy-particle reference frame. Finally, a total energy
equation is derived by adding Eq. (6.6)

1
8,5(5) + Oy - (th) = —e0x - (Hh -Vh) — max O+ 1-E, (6.10)

where quantity &€ = pe + M,%ph%|vh|2 stands for the total energy and H = £ + p,
the total enthalpy. The term I-E of Eq. (6.10) represents the power developed by
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the electromagnetic field. It has the form prescribed by Poynting’s theorem. Hence,
the first law of thermodynamics is satisfied.

6.4. Entropy

In addition to the thermal energy, we introduce other relevant thermodynamic
functions. First, the species Gibbs free energy is defined by the relations

nen® ) n;n
Pefe = NeTsIn <7 . pigi=nTpln | ——————|, i€H, (6.11)
T*Q (miT)"* Q)
where the translational partition functions read
27rm8kBT0 3/2 2rmOkp TP 3/2
Q= (T) , Q= (1,}1172) . (6.12)
P P
Then, the species enthalpy is given by
5 5 .
pehe = §neTe7 pihi = §niTh, 1 € H. (6.13)
Finally, the species entropy is introduced as
he — ge hi — g .
Se = Teg s S; = Thg s 1 € H. (614)

Therefore, the mixture entropy reads ps = jes Pisi- The thermodynamic func-
tions exhibit a wider range of validity than in classical thermodynamics, introduced
for stationary homogeneous equilibrium states.?” Indeed, they are interpreted in
the framework of kinetic theory by establishing a relation between the thermody-
namic entropy and the kinetic entropy. This quantity is based upon the distribution

functions
kin . (2m)3/2n0 . . (27)3/2n0
S —j;{/fj{l_h'l lwfj }dcj+/fe{1_ln|:Tgfe:|}dce'

(6.15)

Proposition 6.1. The kinetic entropy and the thermodynamic entropy are asymp-
totically equal at order 2, i.e.

Sk — ps + O(e?), (6.16)

provided that the distribution functions follow the FEnskog expansion given in
Egs. (4.1) and (4.2).
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Proof. Using definition (6.15) and expansions (4.1) and (4.2), the kinetic entropy

is found to be
3/2,.0
}dcj+/f§{1—1n [@T"fg”dce

3/2,,0
Z/fo{l_l [277)3@0 fj

jeH
(2m)3 (2m)3/2n0 ]
Oh:ln | 22— dC 0 o 0 dC,
+ez;/f¢J l ; Lyl +e/f¢ { T
+0(e?).

The first-order term vanishes by the constraints (4.10) and (4.25). Then,
using expressions (4.7) and (4.8) and definition (6.14), Eq. (6.16) is readily
obtained. O

Consequently, a first-order conservation equation of thermodynamic entropy
can be used instead of a conservation equation of kinetic entropy to ensure that the
second law of thermodynamics is satisfied. First, we introduce the heavy-particle
entropy pnsp = ZjeH pjs; and derive the entropy equations.

Proposition 6.2. The electron and heavy-particle entropy equations associated
with the macroscopic conservation equations (6.1)—(6.8) read

Ot(pese) + Ox - (pesevi) + Ox - (T +eTL) = Y0 +eX1, (6.17)
8t(ph8h)+8x'(ph8hvh) —|—€8x"7}1 = T,ELJ—FETI}L, (6.18)

where the electron and heavy-particle entropy fluxes are given by

1 1

0 1 2 2
= e = Pe eV 5 e — e — Pe eVe 5 1
J. VLT (de — pegeVe), T, VT (@2 — pegeVe) (6.19)
Ti = MT an—>_rioiVy | (6.20)
h jeH

and the electron and heavy-particle entropy production rates by

1 e
T! = AL - MIZT d. -V, — MhT 8,0 T, (qe — pehe V), (6.21)

1

1_ L Apl 2
T = TEAEQ MhTe(d V24 6,0d2- V)
o 2
MhT 9, InT, - (q? — pehe V2), (6.22)
T, = AEhv (6.23)

Th
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1 Ph 1
1! AE —1II;, : Ox vy — Ox n;¢;E) - V.
h = Ty h Ty h F M, T, %}:1 Dh ( pj — njdq; ) J
1
— ——0xInTy}, - — h: V.. .24
M T, nip ahn j;{pj iV (6.24)

Proof. Based on the relations

e 3N i 3n; .
ped (%) = dne — LdTe, pld ({Zg—,_h> - dnl 2n dTh7 (S H7

and definition (6.14), one obtains
1
8t(pese) + 8x ‘ (PeSth) - ?[at(peee) + ax : (peeevh)] + neax *Vp

- [atpe + 8x . (pth)]%»

1
O¢(pnsn) + Ox - (prnSnvh) = —[3t(ph€h) + Ox - (prenvn)] + np0x - v

— Y [Owp; + O pjvh)]

j€H

Then, using Eqgs. (6.1), (6.2), (6.7), (6.8), and the relations

d (%) - ;sz +odpe, d (%) - —;—édTh—F %pidpi, i€ H,
and expressions for the second-order electron diffusion velocity V2, heat flux qg,
first-order energy transfer terms AE!, AE} and average electron forces F;,, i

H, given in Sec. 5, we readily obtain Eqs. (6.17) and (6.18), with the entropy
fluxes given in Eqgs. (6.19) and (6.20) and the entropy production rates given in
Eqs. (6.21)-(6.24). O

Remark 6.1. In Eq. (6.22), the entropy produced by the first-order energy transfer
term AE! is partially compensated by the transport fluxes associated with the
Kolesnikov effect (second-order electron transport fluxes) in the magnetized cases
(b =1 and b = 0) and is exactly compensated in the unmagnetized case (b = 0).
In Eq. (6.24), the entropy produced by the first-order energy transfer term AE] is
exactly compensated by the transport fluxes associated with the Kolesnikov effect
(average electron forces acting on the heavy particles).

Adding Egs. (6.17) and (6.18), a global entropy equation is found

O(ps) +0x- (psvp) +0x- T =7, (6.25)
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where the global entropy flux is given by
T =T +eTl +eT), (6.26)
and the global entropy production rate by
T =70+l + 1P+t (6.27)

Proposition 6.3. Defining x;, = (OxIn Th,ph(&i)ieH)T, XL! = ((OxIn Te)”7ped£)T7
and xt = ((0xInT,)*, pedH)™, where

d, =d, - 22(a2d® + x:®(8xInT.)?), i€H,
Ty

the global entropy production rate Y defined in Eq. (6.27) can be rewritten for
strongly magnetized plasmas (b = 1) in the following form

(Te — Th)2 Uz 1
YT = Vi S:S+e——(A,xp,
T. Ty Z m; Vie TEMS ST “MiTy, (A )
JjeH
LAl x4 L (ALl by, (6.28)
MhTe e MhTe e ¢
where the matriz AZ,
TN 6t o0 1o 00
N €7e e e Xl XJ pe ein
Ag=| 1| e D Dy 1 ’
6 p—De ijeH —adx®  Sadad
¢ pe pe

is a perturbation of the mass-energy transport matriz AL defined in Eq. (5.24).
In particular, the global entropy production rate is non-negative provided that € is
small enough and that the collision frequencies vie, i € H, are non-negative.

Proof. Expression (6.28) is obtained after some lengthy calculation based on the
expressions for the diffusion velocities V,, V2, V., i € H, heat fluxes qe, q2, qx,
viscous stress tensor ITj, energy transfer terms AE?, AE!, AEY, AE] and average
forces F,,, © € H, given in Sec. 5.

The positivity of the collision frequencies v, i € H, (respectively the vis-
cosity 7)) immediately yields the positivity of the first term of Eq. (6.28)
(Te — T;L)Q/(TeTh)ZjeH n;vje/m; (respectively the second term 7,S:S). More-
over, Propositions 5.1 and 5.2 ensure that both terms (A, xy,xp) and (Agxﬂ,xg)
are non-negative. Finally, the last term is expanded as

1
<Aé_hXé_,Xé_> =

1
—€- 2
MhTe IIY7y]]e €3|IZ7Z]]}L7 (6 9)

W =
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where the vectors y and z;, i € H, are defined as

1 ’
y pedé_ @ Pe (2 T(axlnTe)L ®gpé‘e(2),

1 ; D
zi = gpeTiMy Y (v, ) @ 97
JjEH

We conclude after noticing that the standard term [y,y], is non-negative and
vanishes if and only if y = 0 thanks to the scalar constraints (5.8) and (5.9). m|

For weakly magnetized plasmas (b = 0) and unmagnetized plasmas (b < 0), we
define xj, = (OxIn T, pr(d,)ien)T and xe = [OxIn Te, pe(de + £dp0d2)]T. Hence, the
global entropy production rate reads

(T — Th)? < n; 1
T N 'S+ e—(A,xn,
., Z=m;” +emS:S + e (Anxn, xn)
jeEH
b (Auxe,xe) — 2602 p a2 a2 (6.30)
M,T, e e My, oG e '

This quantity is non-negative provided that ¢ is small enough in the b = 0 case
and that the collision frequencies v;e, ¢ € H, are non-negative in the two b = 0 and
b < 0 cases.

The non-negativity of the global entropy production rate implies that the second
law of thermodynamics is satisfied. This statement could be equivalently formulated
by means of a H-Theorem. In addition, the electron and heavy-particle temperatures
must be equal when an equilibrium state is reached. Provided that the collision
frequencies v, © € H, are positive, the quasi-equilibrium states described by the
Maxwell-Boltzmann distribution functions given in Eqgs. (4.7) and (4.8) create some
non-negative entropy expressed by the term (T, —T%)?/(ToTh) > jer yVje/my;. This
term vanishes when the electron and heavy-particle temperatures are identical.

6.5. Onsager’s reciprocal relations

In this section, we deduce from kinetic theory the Onsager reciprocal relations for
strongly magnetized plasmas. The expressions for the transport fluxes, denoted by
the vector F, are proportional to the diffusion forces, denoted by the vector X, i.e.

Fo= =2 Las Xa.
B
Omnsager’s reciprocal relations are symmetry constraints which must hold between
the transport coefficients?? 5°
T
Lag(—B) = [Lga(B)]". (6.31)

They result from microscopic reversibility, the magnetic field appearing with a
minus sign to achieve motion reversal for charged particles. We identify the diffusion
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forces from the quadratic form of the entropy production rate given in Eq. (6.28)
and use the transport coefficient expressions established in Sec. 5. Alternatively,
the derivation could be based on the symetrization of the system of macroscopic
equations expressed in (extensive) conservative variables, the resulting system of
equations being expressed in (intensive) entropic variables obtained by Legendre
transform of the conservative variables.

At order £°, the first-order electron mass-energy flux vector is proportional to
the electron diffusion force vector as shown in Eq. (5.23). The generalized Onsager
reciprocal relations for the first-order electron transport coefficients are given by

Q(B)]Tv ée(_B) = [ée(B)]T7 De(_B) = [De(B)]T

At order €', the momentum flux is decoupled from the mass and energy fluxes.??

The heavy-particle viscous tensor obeys standard Onsager reciprocal relations. The
global mass-energy flux vector

T
F= qg - pehevzv qn — Z pjhjvj7 Vg: (Vi)zeH ’
jeH
is proportional to the global diffusion force vector
X = (axlnTev BxlnTh, phdfy ph(di)iGH)T7

as expressed by the relation F = —A X, where the mass-energy transport matrix
has the following block structure

ATe)  (AM'Te) (6¢) [(0),eml”

(A'Te) - (N, Tol) (0) (07 T);enl”

= 1= 1= T
D () (eS| e
Ph Pn icH
= 1 = 1
@)en ODiaw (D) (oo0y1)
et €t Pn icH pn Y ijeH

The notation 7" has been introduced for the transpose operation restricted to the
species components, excluding the space components. Concerning the mass-energy
transport, the generalized Onsager reciprocal relations for the second-order elec-
tron transport coefficients and first-order heavy-particle transport coefficients are
given by

bl

Il
—~
o2
N—
—

>
>

AZ(~B) = [AZ(B)]T, AM(-B)=[AMB)",
fe(~B) =[6:(B)]", 6h(~-B)=[61(B)]T, 62(~B)=[6:(B)]", iecH,
Deo(—B) = [Dee(B)]T, Dye(—B) = [Die(B)]T, i€ H.
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6.6. Mathematical structure

A purely convective system extracted from the mass, momentum, electron and
heavy-particle energy, and entropy equations (6.1), (6.2), (6.5), (6.7) and (6.8) is
written in a quasi-linear form

OW + A -9, W = )y, (6.33)
by means of the variables
W = [pe, (pi)ict, Vi, Pes Pil
the source terms
o= 10,0, 2By L5 £ 6V AB, 2AEY, ZAEY T,
M pn Ph 3 3
with the current I’ = ngvy, and the Jacobian matrices
Vhy 0 peef 0 0
0 vn(0ij)ijen (pi)ienel 0 0
A, =10 0 Up I Méph e, M,%ph e, |, re{l,23}
peel Vhy 0
0 0 prel 0 Vhu
(6.34)

where the specific heat ratio reads v = 5/3 and symbol e, stands for the unit vector
in the v direction. For any direction defined by the unit vector n, the matrix n- A is
shown to be diagonalizable with real eigenvalues and a complete set of eigenvectors.
There are two nonlinear acoustic fields with the eigenvalues vy -n £ ¢, where the
sound speed is given by ¢? = yp/(pn,M?), and linearly degenerate fields with the
eigenvalue vy, - n of multiplicity n° 4+ 3. Thus, the macroscopic system of conser-
vation equations derived from kinetic theory in the proposed mixed hyperbolic-
parabolic scaling has a hyperbolic structure from a fluid point of view, as far as the
convective part of the system is concerned. Such a property is far from being obvious
since the obtained sound speed involves the electron pressure and the rigorous
derivation of the momentum equation of the heavy particles involves the many
analytic steps shown in the paper.

7. Conclusions

In the present study, we have derived from kinetic theory a unified fluid model for
multicomponent plasmas by accounting for electromagnetic field influence, neglect-
ing particle internal energy and reactive collisions. Given the strong disparity of
mass between the electrons and heavy particles, such as molecules, atoms, and
ions, we have conducted a dimensional analysis of the Boltzmann equation follow-
ing Petit and Darrozes*” and introduced a scaling based on the ¢ parameter, or
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square root of the ratio of the electron mass to a characteristic heavy-particle mass.
The multiscale analysis occurs at three levels: in the kinetic equations, the collisional
invariants, and the collision operators. The Boltzmann equation has been expressed
in the heavy-particle reference frame allowing for the first- and second-order electron
perturbation function equations to be solved, as opposed to the inertial reference
frame chosen by Degond and Lucquin.??:2! Then, the solvability of the electron
and heavy-particle perturbation functions has been based on the identification of
the kernel of the linearized collision operators and the space of scalar collisional
invariants for both types of species. The system has been examined at successive
orders of approximation by means of a generalized Chapman—FEnskog method. The
micro- and macroscopic equations derived at each order are reviewed in Table 2.
Depending on the type of species, the quasi-equilibrium solutions are Maxwell-
Boltzmann velocity distribution functions at either the electron temperature or the
heavy-particle temperature, thereby, allowing for thermal non-equilibrium to occur.
At order 51, the set of macroscopic conservation equations of mass, momentum, and
energy comprises multicomponent Navier—Stokes equations for the heavy particles,
which results from a hyperbolic scaling, and first-order drift-diffusion equations for
the electrons, which results from a parabolic scaling. The expressions for the trans-
port fluxes have also been derived: first- and second-order diffusion velocity and
heat flux for the electrons, and first-order diffusion velocities, heat flux, and vis-
cous tensor for the heavy particles. The transport coefficients have been written in
terms of bracket operators; both electron and heavy-particle transport coeflicients
exhibit anisotropy, provided that the magnetic field is strong enough. We have also
proposed a complete description of the Kolesnikov effect, i.e. the crossed contri-
butions to the mass and energy transport fluxes coupling the electrons and heavy
particles. This effect, appearing in multicomponent plasmas, is essential to obtain a
positive entropy production. It also contains, as a degenerate case, the single heavy-
species plasmas considered by Degond and Lucquin for which the Kolesnikov effect
is not present. The properties of electron and heavy-particle mass-energy trans-
port matrices have been established by using the mathematical structure of the
bracket operators. In particular, the properties of symmetry and positivity imply
that the second law of thermodynamics is satisfied, as shown by deriving an entropy
equation. Moreover, Onsager’s reciprocal relations hold between the transport coef-
ficients. The first law of thermodynamics was also verified by deriving a total energy
equation. Finally, the purely convective system of equations was found to be hyper-
bolic, thus leading to a well defined structure.

The proposed formalism remains valid for collision operators of Fokker—Planck—
Landau type. These operators can be used to model the charged particle interac-
tion, instead of Boltzmann operators associated with a Coulomb potential screened
at the Debye distance. In addition, the explicit expression for the diffusion coef-
ficients, thermal diffusion coefficients, viscosity, and partial thermal conductivities
can be obtained by means of a variational procedure to solve the integral equations
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(Galerkin spectral method!*). The expressions for the thermal conductivity, ther-
mal diffusion ratios, and Stefan-Maxwell equations for the diffusion velocities can
be derived by means of a Goldstein expansion of the perturbation function, as
proposed by Kolesnikov and Tirskiy.?¢ Finally, the mathematical structure of the
transport matrices obtained by the variational procedure can readily be used to
build efficient transport algorithms, as already shown by Ern and Giovangigli®® for
neutral gases, or Magin and Degrez*! for unmagnetized plasmas.
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