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In the present study, we derive from kinetic theory a unified fluid model for multicom-
ponent plasmas by accounting for the electromagnetic field influence. We deal with a
possible thermal nonequilibrium of the translational energy of the particles, neglecting
their internal energy and reactive collisions. Given the strong disparity of mass between
the electrons and heavy particles, such as molecules, atoms, and ions, we conduct a
dimensional analysis of the Boltzmann equation and introduce a scaling based on a
multiscale perturbation parameter equal to the square root of the ratio of the electron
mass to a characteristic heavy-particle mass. We then generalize the Chapman–Enskog
method, emphasizing the role of the perturbation parameter on the collisional opera-
tor, the streaming operator, and the collisional invariants of the Boltzmann equation.
The system is examined at successive orders of approximation, each corresponding to a

physical timescale. At the highest approximation order investigated, the multicomponent
Navier–Stokes regime is reached for the heavy particles and is coupled to first-order drift-
diffusion equations for the electrons. The transport coefficients are then calculated in
terms of bracket operators whose mathematical structure allows for positivity properties
to be determined and Onsager’s reciprocal relations to hold. The transport coefficients
exhibit an anisotropic behavior when the magnetic field is strong enough. We also give a
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complete description of the Kolesnikov effect, i.e. the crossed contributions to the mass
and energy transport fluxes coupling the electrons and heavy particles. Finally, the first

and second laws of thermodynamics are proved to be satisfied by deriving a total energy
equation and an entropy equation. Moreover, the purely convective system of equations
is shown to be hyperbolic.

Keywords: Kinetic theory; plasmas in thermal nonequilibrium; conservation equations;
multicomponent transport properties.

AMS Subject Classification: 82C40, 76X05, 41A60

1. Introduction

Plasmas are ionized gas mixtures, either magnetized or not, that have many prac-
tical applications. For instance, lightning is a well-known natural plasma and has
been studied for many years.4 A second application is encountered in hypersonic
flows; when a spacecraft enters into a planetary atmosphere at hypervelocity, the
gas temperature and pressure strongly rise through a shock wave, consequently,
dissociation and ionization of the gas particles occur in the shock layer. Atmo-
spheric entry plasmas are reproduced in dedicated wind-tunnels such as plasma-
trons, arc-jet facilities, and shock-tubes.45, 49, 53 A third example was found about
two decades ago, when large-scale electrical discharges were discovered in the meso-
sphere and lower ionosphere above large thunderstorms; these plasmas are now
commonly referred to as sprites.8, 46 Fourth, discharges at atmospheric pressure
have received renewed attention in recent years due to their ability to enhance
the reactivity of a variety of gas flows for applications ranging from surface treat-
ment to flame stabilization and ignition (see Refs. 44, 48, 51 and 54 and refer-
ences cited therein). Fifth, Hall thrusters are being developed to replace chemical
systems for many on-orbit propulsion tasks on communications and exploration
spacecraft.3, 9 Finally, two important applications of magnetized plasmas are labo-
ratory thermonuclear fusion6, 50 and the magnetic reconnection phenomenon in
astrophysics.56

Depending on the magnitude of the ratio of the reference particle mean free path
to the system characteristic length (Knudsen number), two different approaches are
generally followed to describe the transport of mass, momentum, and energy in a
plasma5: either a particle approach at high values of the Knudsen number (solu-
tion to the Boltzmann equation using Monte Carlo methods), or a fluid approach
at low values (solution to macroscopic conservation equations by means of com-
putational fluid dynamics methods). In this work, we study plasmas that can be
described by a fluid approach, which encompasses most of the above-mentioned
applications. In this case, kinetic theory can be used to obtain the governing con-
servation equations and transport fluxes. Hence, closure of the problem is realized
at the microscopic level by determining from experimental measurements either the
potentials of interaction between the gas particles or the cross-sections, allowing for
the transport coefficients to be computed.
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A complete model of plasmas should allow for the following physical phenomena
to be described

• Thermal nonequilibrium of the translational energy,
• Influence of the electromagnetic field,
• Occurrence of reactive collisions,
• Excitation of internal degrees of freedom.

So far, no such unified model has been derived by means of kinetic theory. Besides, a
derivation of the mathematical structure of the conservation equations also appears
to be crucial in the design of the associated numerical methods. In the present
study, we investigate based on our previous work the thermal nonequilibrium of
the translational energy40 and the influence of the magnetic field.28 We generalize
the Chapman–Enskog method within the context of a dimensional analysis of the
Boltzmann equation, emphasizing the role of a multiscale perturbation parameter
on the collisional operator, the streaming operator, and the collisional invariants of
the Boltzmann equation. Then, we obtain macroscopic equations eventually leading
to a sound entropy structure. Moreover, the purely convective system of equations
is shown to be hyperbolic. Let us now describe in more detail how these issues are
currently addressed in the literature.

First, a multiscale analysis is essential to solve the Boltzmann equation gov-
erning the velocity distribution functions. We recall that a fluid can be described
in the continuum limit provided that the Knudsen number is small. In the case
of plasmas, a thermal nonequilibrium may occur between the velocity distribution
functions of the electrons and heavy particles (atoms, molecules, and ions), given
the strong disparity of mass between both types of species. The square root of
the ratio of the electron mass to a characteristic heavy-particle mass represents an
additional small parameter to be accounted for in the derivation of an asymptotic
solution to the Boltzmann equation. The literature abounds with expressions for
the scaling for the perturbative solution method. For instance, significant results
are given in Refs. 15, 19, 24, 35 and 57. Petit and Darrozes47 have suggested that
the only sound scaling is obtained by means of a dimensional analysis of the Boltz-
mann equation. Moreover, they have deduced that the Knudsen number is propor-
tional to the square root of the electron heavy-particle mass ratio. Subsequently,
Degond and Lucquin20, 21 have established a formal theory of epochal relaxation
based on such a scaling. In their study, the mean velocity of the electrons was
shown to vanish in an inertial reference frame. Moreover, the heavy-particle diffu-
sive fluxes were scarcely dealt with since their work is restricted to a single type
of heavy particles, and thus no multicomponent diffusion was to be found. In such
a simplified context, the details of the interaction between the heavy particles and
electrons degenerate and the positivity of the entropy production is straightfor-
ward. We will establish a theory based on a multiscale analysis for multicomponent
plasmas (which includes the single heavy-particle case) where the mean electron
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velocity is the mean heavy-particle velocity in the absence of external forces. As an
alternative, Magin and Degrez40 have also proposed a model for multicomponent
plasmas in a hydrodynamic velocity frame. They have applied a multiscale analysis
to the derivation of the multicomponent transport fluxes and coefficients. However,
since the hydrodynamic velocity is used to define the reference frame instead of
the mean heavy-particle velocity, the Chapman–Enskog method requires additional
low order terms in the integral equation for the electron perturbation function to
ensure mass conservation. Finally, we also desire that the development of thermal
equilibrium models shall always be obtained as a particular case of the general
theory.

Second, the magnetic field induces anisotropic transport fluxes when the elec-
tron collision frequency is lower than the electron cyclotron frequency of gyration
around the magnetic lines. Braginskii10 has studied the case of fully ionized plas-
mas composed of one single ion species. Recently, Bobrova et al. have generalized
the previous work to multicomponent plasmas. However, the scaling used in these
studies does not comply with a dimensional analysis of the Boltzmann equation.
Lucquin37, 38 has investigated magnetized plasmas in this framework. Nevertheless,
the same limitation is found for the diffusive fluxes as in Refs. 20 and 21. Finally,
Giovangigli and Graille28 have studied the Enskog expansion of magnetized plasmas
and obtained macroscopic equations together with expressions for transport fluxes
and coefficients. Unfortunately, the difference of mass between the electrons and
heavy particles is not accounted for in their work.

Third, plasmas are strongly reactive gas mixtures. The kinetic mechanism
comprises numerous reactions12: dissociation of molecules by electron and heavy-
particle impact, three-body recombination, ionization by electron and heavy-
particle impact, associative ionization, dissociative recombination, radical reactions,
charge exchange . . . Giovangigli and Massot29 have derived a formal theory of chem-
ically reacting flows for the case of neutral gases. Subsequently, Giovangigli and
Graille28 have studied the case of ionized gases. We recall that their scaling does
not take into account the mass disparity between electrons and heavy particles.
Besides, in chemical equilibrium situations, a long-standing theoretical debate in
the literature deals with nonuniqueness of the two-temperature Saha equation for
quasi-equilibrium composition. Recently, Giordano and Capitelli30 have emphasized
the importance of the physical constraints imposed on the system by using a ther-
modynamic approach. A derivation based on kinetic theory should further improve
the understanding of the problem. Choquet et al.16, 17 have already studied the case
of ionization reactions by electron impact.

Fourth, molecules rotate and vibrate, and moreover, the electronic energy levels
of atoms and molecules can be excited. Generally, the rotational energy mode is
considered to be fully excited above a few Kelvins. In a plasma environment, the
vibrational and electronic energy modes are also significantly excited. The detailed
treatment of the internal degrees of freedom is however beyond the scope of the
present work where we will only tackle the translational energy in the context of
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thermal nonequilibrium. The reader is thus referred to the specialized literature for
the treatment of the internal energy.11, 39, 43

Fifth, the development of numerical methods to solve conservation equations
relies on the identification of their intrinsic mathematical structure. For instance,
the system of conservation equations of mass, momentum, and energy is known
to be nonconservative for thermal nonequilibrium ionized gases. Therefore, this
formulation is not suitable for numerical approximations of discontinuous solutions.
Coquel and Marmignon18 have derived a well-posed conservative formulation based
on a phenomenological approach. Nevertheless, their derivation is not consistent
with a scaling based on a dimensional analysis. We will show that kinetic theory,
based on first principles, naturally allows for an adequate mathematical structure
to be obtained, as opposed to the phenomenological approach.

In this work, we propose to derive the multicomponent plasma conservation
equations of mass, momentum, and energy, as well as the expressions for the
associated multicomponent transport fluxes and coefficients. The multicomponent
Navier–Stokes regime is reached for the heavy particles and is coupled to first-order
drift-diffusion equations for the electrons. We deal here with first-order equations
for electrons, thus one order beyond the expansion commonly investigated in the
literature. The derivation relies on kinetic theory and is based on the ansatz that
the particles of the plasma are inert and only possess translational degrees of free-
dom. The electromagnetic field influence is accounted for. In Sec. 2, we express
the Boltzmann equation in a noninertial reference frame. We show that the mean
heavy-particle velocity is a suitable choice for the reference frame velocity. This step
is essential to establish a formalism where the electrons follow the bulk movement
of the plasma. Then, we define the reference quantities of the system in order to
derive the scaling of the Boltzmann equation from a dimensional analysis. The mul-
tiscale aspect occurs in both the streaming operator and collision operator of the
Boltzmann equation. Consequently, Sec. 3 is devoted to the scaling of the partial
collision operators between unlike particles. We determine the collisional invariants
associated with respectively the electrons and the heavy particles. In Sec. 4, we
use a Chapman–Enskog method to derive macroscopic conservation equations. The
system is examined at successive orders of approximation, each corresponding to a
physical timescale. For that purpose, scalar products and linearized collision opera-
tors are introduced. The global expressions for the macroscopic fluid equations are
then provided up to Navier–Stokes equations for the heavy particles and first-order
drift-diffusion equations for the electrons. We also prove that our choice of refer-
ence frame is essential in order to reach this expansion level. In Sec. 5, we establish
the formal existence and uniqueness of a solution to the Boltzmann equation. The
multicomponent transport coefficients are then calculated in terms of bracket oper-
ators whose mathematical structure allows for the sign of the transport coefficients
to be determined, including for the Kolesnikov effect, or the crossed contributions
to the mass and energy transport fluxes coupling the electrons and heavy particles.
The explicit expressions for the transport coefficients can be obtained by means
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of a Galerkin spectral method14; this is not treated in the present study. Finally,
in Sec. 6, the first and second laws of thermodynamics are proved to be satisfied
by deriving a total energy equation and an entropy equation. Moreover, Onsager’s
reciprocal relations hold between the transport coefficients. Then, we identify, from
a fluid standpoint, the mathematical structure of the purely convective system of
macroscopic equations. Hence, we demonstrate that kinetic theory can be used as
a guideline in the derivation of the macroscopic conservation equations as well as
in the design of the associated numerical methods.

Beyond the obvious interest from the point of view of applications and design
of numerical schemes, the present study also yields a formal kinetic theory of mix-
tures of separate masses, where the light species obey a scaling of the Boltzmann
equation characteristic of neutral gases in the low Mach number limit (yielding
parabolic macroscopic equations) whereas the heavy species obey a scaling charac-
teristic of neutral gases in the compressible gas dynamics regime (yielding hyper-
bolic macroscopic equations). The original treatment of the purely parabolic and
hyperbolic scalings was first provided by Bardos et al.2 These scalings, quite stan-
dard, can be used for various asymptotics such as the Vlasov–Navier–Stokes equa-
tions in different regimes investigated by Goudon et al.32, 33 A rigorous derivation of
a set of macroscopic equations in the situation where the hyperbolic and parabolic
scalings are entangled in the same problem is an original result obtained in the
present work.

2. Boltzmann’s Equation

2.1. Assumptions

(1) The plasma is described by the kinetic theory of gases based on classical
mechanics, provided that: (a) The mean distance between the gas particles
1/(n0)1/3 is larger than the thermal de Broglie wavelength, where n0 is a ref-
erence number density,34 (b) The square of the ratio of the electron thermal
speed V 0

e to the speed of light is small.
(2) Reactive collisions and particle internal energy are not accounted for.
(3) The particle interactions are modeled as binary encounters by means of a Boltz-

mann collision operator, provided that: (a) The gas is sufficiently dilute, i.e. the
mean distance between the gas particles 1/(n0)1/3 is larger than the particle
interaction distance (σ0)1/2, where σ0 is a reference differential cross-section
common to all species, (b) The plasma parameter, quantity proportional to the
number of electrons in a sphere of radius equal to the Debye length, is sup-
posed to be large. Hence, multiple charged particle interactions are treated as
equivalent binary collisions by means of a Coulomb potential screened at the
Debye length.1, 23

(4) The plasma is composed of electrons and a multicomponent mixture of heavy
particles (atoms, molecules, and ions). The ratio of the electron mass m0

e to a
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characteristic heavy-particle mass m0
h is such that the nondimensional number

ε =
√
m0

e/m
0
h is small.

(5) The pseudo-Mach number, defined as a reference hydrodynamic velocity divided
by the heavy-particle thermal speed, Mh = v0/V 0

h , is supposed to be of
order one.

(6) The macroscopic timescale t0 is assumed to be comparable with the heavy-
particle kinetic timescale t0h divided by ε. The macroscopic length scale is based
on a reference convective length L0 = v0t0.

(7) The reference electrical and thermal energies of the system are of the same
order of magnitude.

The mean free path l0 and macroscopic length scale L0 allow for the Knudsen
number to be defined Kn = l0/L0. It will be shown that this quantity is small,
provided that assumptions (4)–(6) are satisfied. Therefore, a continuum description
of the system is deemed to be possible.

2.2. Inertial reference frame

The choice of a proper reference frame will prove to be essential in the following mul-
tiscale analysis. Two such frames are commonly used in the literature. Degond and
Lucquin20, 21 work in the inertial reference frame, as do Ferziger and Kaper.26 The
second reference frame is presented in the following section. Considering assump-
tions (1)–(3), the temporal evolution of the velocity distribution function f�

i of
the plasma particles i is governed in the phase space (x�, c�

i ) by the Boltzmann
equation13, 26

D�
i (f�

i ) =
∑
j∈S

J�
ij(f

�
i , f

�
j ), i ∈ S, (2.1)

where symbol S is the set of indices of the gas species. Dimensional quantities are
denoted by the superscript �. The streaming operator reads

D�
i (f�

i ) = ∂t�f�
i + c�

i ·∂x�f�
i +

q�
i

m�
i

(E� + c�
i ∧B�) ·∂c�

i
f�

i , i ∈ S, (2.2)

in an inertial reference frame. Symbol t� stands for time, E�, the electric field, B�,
the magnetic field, m�

i , the mass of the particle i, and q�
i , its charge. The partial

collision operator of particle j impacting on particle i reads

J�
ij(f

�
i , f

�
j ) =

∫
(f�′

i f
�′
j − f�

i f
�
j )|c�

i − c�
j |σ�

ijdωdc�
j , i, j ∈ S. (2.3)

After collision, quantities are denoted by the superscript ′. The differential cross-
section σ�

ij = σ�
ij [µ

�
ij |c�

i − c�
j |2/(kBT

0),ω · e] depends on the relative kinetic energy
of the colliding particles and the cosine of the angle between the unit vectors of
relative velocities ω = (c�′

i − c�′
j )/|c�′

i − c�′
j | and e = (c�

i − c�
j )/|c�

i − c�
j |. Quan-

tity µ�
ij = m�

im
�
j/(m

�
i + m�

j ) is the reduced mass of the particle pair, T 0, a
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reference temperature, and kB, Boltzmann’s constant. Therefore, the differential
cross-sections are symmetric with respect to their indices i, j ∈ S, i.e. σ�

ij = σ�
ji.

The collision operator reads in a compact form

J�
i =

∑
j∈S

J�
ij(f

�
i , f

�
j ), i ∈ S. (2.4)

2.3. Noninertial reference frame

Sutton and Sherman,52 as Chapman and Cowling,14 have proposed a noninertial
reference frame based on the hydrodynamic velocity

ρ�v� =
∑
j∈S

∫
m�

jc
�
jf

�
j dc�

j , (2.5)

where the mixture mass density is defined as ρ� =
∑

j∈S ρ
�
j . Symbol ρ�

i = n�
im

�
i

stands for the partial mass density, and n�
i =

∫
f�

i dc�
i , the partial number density.

It is a convenient choice since it is the reference frame associated with the definition
of the peculiar velocities

Cv�
i = c�

i − v�, i ∈ S, (2.6)

induced from the usual momentum constraint. We infer from definition (2.5) that
the global diffusion flux vanishes∑

j∈S

∫
m�

jC
v�
j f�

j dc�
j = 0, (2.7)

that is, the standard momentum constraint.
Given the strong disparity of mass between the electrons and heavy particles,

a frame linked with the heavy particles appears to be a rather more natural choice
for plasmas, as fully justified in the following detailed multiscale analysis. Thus, we
define the mean electron velocity and mean heavy-particle velocity

ρ�
ev

�
e =

∫
m�

ec
�
ef

�
e dc�

e , ρ�
hv

�
h =

∑
j∈H

∫
m�

jc
�
jf

�
j dc�

j , (2.8)

where the heavy-particle mass density reads ρ�
h =

∑
j∈H ρ

�
j . Symbol H stands for

the set of indices of heavy particles. In this v�
h frame, the free electrons interact

with heavy particles whose global movement is frozen in space. A similar view-
point is commonly adopted in the quantum theory of molecules when the Born–
Oppenheimer approximation is used to study the motion of the bound electrons
about the nuclei.7 Based on the following definition of peculiar velocities

C�
i = c�

i − v�
h, i ∈ S, (2.9)

the heavy-particle diffusion flux vanishes∑
j∈H

∫
m�

jC
�
jf

�
j dc�

j = 0. (2.10)
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For now, we defer the choice of the reference velocity. We use the symbol u� to
define the peculiar velocities Cu�

i = c�
i − u�, i ∈ S. Then, the Boltzmann equation

is expressed in a frame moving at u� velocity by means of this change of variables.
Hence, the streaming operator (2.2) is transformed into the expression

D�
i (f�

i ) = ∂t�f�
i + (Cu�

i + u�) ·∂x�f�
i +

q�
i

m�
i

[E� + (Cu�
i + u�) ∧ aB�] · ∂Cu�

i
f�

i

− Du�

Dt�
·∂Cu�

i
f�

i − (∂Cu�
i
f�

i ⊗Cu�
i ) : ∂x�u�, (2.11)

where D/Dt� = ∂t� + u� ·∂x� . The partial collision operator (2.3) is found to be

J�
ij

(
f�

i , f
�
j

)
=
∫

(f ′�
i f

′�
j − f�

i f
�
j )|Cu�

i − Cu�
j |σ�

ijdωdCu�
j , i, j ∈ S. (2.12)

In a noninertial reference frame, the velocity distribution function f�
i , the differen-

tial cross-section σ�
ij = σ�

ij [µ
�
ij |Cu�

i −Cu�
j |2/(kBT

0), ω · e], as well as both the unit
vectors ω = (Cu′�

i −Cu′�
j )/|Cu′�

i −Cu′�
j | and e = (Cu�

i −Cu�
j )/|Cu�

i −Cu�
j | depend

on the peculiar velocities. For simplicity, the notation is the same as for the inertial
reference frame, where the previous quantities depend on the absolute velocities.

2.4. Collisional invariants

We now define collisional invariants in a reference frame moving at velocity u.

Definition 2.1. The space of scalar collisional invariants Iu� is spanned by the
following elements

ψu,j� = (m�
i δij)i∈S, j ∈ S,

ψu,nS+ν� = (m�
iC

u�
iν )i∈S, ν ∈ {1, 2, 3},

ψu,nS+4� =
(

1
2
m�

i C
u�
i ·Cu�

i

)
i∈S

,

(2.13)

where symbol nS denotes the cardinality of the set of species S.

We introduce the scalar product

〈〈ξ�, ζ�〉〉u� =
∑
j∈S

∫
ξ�
j � ζ̄j

�dCu�
j , (2.14)

for families ξ� = (ξ�
i )i∈S and ζ� = (ζ�

i )i∈S. The symbol � stands for the fully
contracted product in space, and the symbol ¯ for the conjugate transpose oper-
ation. The collision operator J� = (J�

i )i∈S defined in Eq. (2.4) obeys the following
property.

Property 2.1. The collision operator J� is orthogonal to the space of collisional
invariants Iu�, i.e. 〈〈ψu,l�, J�〉〉u� = 0, for all l ∈ {1, . . . , nS + 4}.
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Proof. The projection of the collision operator J� onto ψu,l�, l ∈ {1, . . . , nS + 4},
is shown to be

1
4

∑
i,j∈S

∫
(f�′

i f
�′
j − f�

i f
�
j )(ψu,l�

i + ψu,l�
j − ψ̂u,l′�

i − ψ̂u,l′�
j )

× |Cu�
i − Cu�

j |σ�
ijdωdCu�

i dCu�
j ,

see for instance Chapman and Cowling.14 This expression vanishes for all l ∈
{1, . . . , nS + 4}.

Finally, the macroscopic properties can be expressed by means of the scalar
product of the distribution functions and the collisional invariants

〈〈f�, ψi�〉〉u∗ = ρ�
i , i ∈ S,

〈〈f�, ψnS+ν�〉〉u∗ = ρ�(v�
ν − u�

ν), ν ∈ {1, 2, 3},
〈〈f�, ψnS+4�〉〉u� = ρ�ev� +

1
2
ρ�(v� − u�) · (v� − u�),

where quantity ev� stands for the gas thermal energy per unit mass in the hydro-
dynamic velocity frame.

2.5. Dimensional analysis

A sound scaling of the Boltzmann equation is deduced from a dimensional analy-
sis inspired by Petit and Darrozes.47 First, reference quantities are introduced in
Table 1. The characteristic temperature, number density, differential cross-section,
mean free path, macroscopic timescale, hydrodynamic velocity, macroscopic length,

Table 1. Reference quantities.

Common to all species

Temperature T 0

Number density n0

Differential cross-section σ0

Mean free path l0

Macroscopic timescale t0

Hydrodynamic velocity v0

Macroscopic length L0

Electric field E0

Magnetic field B0

Electrons Heavy particles

Mass m0
e m0

h

Thermal speed V 0
e V 0

h

Kinetic timescale t0e t0h
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and electric and magnetic fields are assumed to be common to all species. Refer-
ence dimensional quantities are denoted by the superscript “0”. The nondimensional
number

ε =

√
m0

e

m0
h

(2.15)

quantifies the ratio of the electron mass to a reference heavy-particle mass. Accord-
ing to assumption (4), the value of ε is small. Consequently, electrons exhibit a
larger thermal speed than that of heavy particles

V 0
e =

√
kBT 0

m0
e

, V 0
h =

√
kBT 0

m0
h

= εV 0
e . (2.16)

Moreover, the electron and heavy-particle temperatures may be distinct, provided
that Eq. (2.16) does not fail to describe the order of magnitude of the thermal
speeds. The differential cross-sections are of the same order of magnitude σ0. Hence,
the characteristic mean free path l0 = 1/(n0σ0) is found to be identical for all
species. As a result, the kinetic timescale, or relaxation time of a distribution func-
tion towards its respective quasi-equilibrium state, is lower for electrons than for
heavy particles

t0e =
l0

V 0
e

, t0h =
l0

V 0
h

=
t0e
ε
. (2.17)

Assumption (6) states that the macroscopic timescale reads

t0 =
t0h
ε
. (2.18)

It is shown in Sec. 4 that this quantity corresponds to the average time during
which electrons and heavy particles exchange their energy through encounters. In
addition, the macroscopic temporal and spatial scales are linked by the expression

L0 = v0t0, (2.19)

where the hydrodynamic velocity is determined by the pseudo-Mach number Mh =
v0/V 0

h . Given assumption (5), the pseudo-Mach number is of order one. Hence, the
Knudsen number

Kn =
l0

L0
=

ε

Mh
, (2.20)

is small, due to our choice of macroscopic and temporal scales, leading to a contin-
uum description of the gas. Finally, following assumption (7), the reference electric
field is such that

q0E0L0 = kBT
0. (2.21)
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The intensity of the magnetic field is governed by the Hall numbers of the electrons
and heavy particles

βe =
q0B0

m0
e

t0e = ε1−b, βh =
q0B0

m0
h

t0h = εβe, (2.22)

defined as the Larmor frequencies, q0B0/me for the electrons and q0B0/m0
h for the

heavy particles, multiplied by their corresponding kinetic timescale. The magnetic
field is assumed to be proportional to a power of ε by means of an integer b ≤ 1.
The physical interpretation of the b parameter appears in Sec. 5.5.

The dimensional analysis can be summarized as follows: (a) Two spatial scales
were introduced, one spatial scale at the microscopic level and one spatial scale
at the macroscopic level, they are related by Eq. (2.20); (b) Whereas three tem-
poral scales were defined in Eq. (2.17), two timescales at the microscopic level,
respectively for the electrons and for the heavy particles, and one timescale at the
macroscopic level, given in Eq. (2.18), common to all species.

Nondimensional variables are based on the reference quantities. They are
denoted by dropping the superscript �. In particular, one has the following expres-
sions for the particle velocities

c�
e = V 0

e ce, c�
i = V 0

h ci, i ∈ H. (2.23)

The reference hydrodynamic velocity, mean electron velocity, and mean heavy-
particle velocity are equal to v0. The hydrodynamic velocity defined in Eq. (2.5) is

(ρh + ε2ρe)v = ρhvh + ε2ρeve, (2.24)

in terms of nondimensional variables, whereas the mean electron and heavy-particle
velocities given in Eq. (2.8) read

ρeMhve =
1
ε

∫
cefe dce, ρhMhvh =

∑
j∈H

∫
mjcjfj dcj . (2.25)

The peculiar velocities are given by the relations

Cu
e = ce − εMhu, Cu

i = ci −Mhu, i ∈ H. (2.26)

Usually, they are associated with the momentum constraints of the mixture, so that
the natural choice is u = v. In such a case, we get the following relation∑

j∈H

∫
mjCv

j fj dCv
j + ε

∫
Cv

e fe dCv
e = 0.

However, the hydrodynamic velocity of the mixture, electrons included, can also
be expanded in the ε parameter and thus receives contributions at various ε orders
in the Chapman–Enskog method. Since the reference frame should not depend on
the expansion order, we could mimic the approach of Lucquin and Degond20, 21, 37

and take u = 0, which means working in the inertial reference frame. However, we
follow a different path, not only by choosing the mean heavy-particle velocity as
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reference velocity, u = vh, but also by defining the peculiar velocities based on this
quantity, as opposed to Petit and Darrozes.47 The rationale for such a choice is
threefold: (a) The mean heavy-particle velocity vh does not depend on ε while still
being a perturbation of the hydrodynamic velocity v of the complete mixture up
to second order in ε

(ρh + ε2ρe)Mh(v − vh) = ε

∫
Cvh

e fe dCvh
e , (2.27)

since quantity
∫

Cvh
e fe dCvh

e taken with fe as a perturbation of a Maxwell–
Boltzmann distribution will be of O(ε) in the Chapman–Enskog expansion pre-
sented in Sec. 4; (b) It will prove to be the natural reference frame in which the
heavy particles thermalize in the context of the proposed multiscale analysis; (c) It
will also prove to be the only available choice for electron thermalization and suc-
cessive order solutions, thus making the proposed change of reference frame optimal
and leading to a rigorous formalism as well as a simplified algebra. In the following,
since there is no ambiguity, we will drop the vh superscript in the use of the peculiar
velocities Cvh

e and Cvh

i , i ∈ H.
Consequently, the heavy-particle diffusion flux vanishes, as shown in Eq. (2.10)∑

j∈H

∫
mjCjfj dCj = 0. (2.28)

We investigate the system at the macroscopic time t� = t0t and macroscopic
length x� = L0x. Thus, the Boltzmann equation (2.1) can be expressed, in nondi-
mensional form, respectively for the electrons and heavy particles, as

∂tfe +
1

εMh
(Ce + εMhvh) ·∂xfe + ε−(1+b)qe

[
(Ce + εMhvh)∧B

] ·∂Ce
fe

+
(

1
εMh

qeE − εMh
Dvh

Dt

)
·∂Ce

fe − (∂Ce
fe ⊗Ce):∂xvh =

1
ε2

Je, (2.29)

∂tfi +
1
Mh

(Ci +Mhvh) ·∂xfi + ε1−b qi
mi

[(Ci +Mhvh)∧B] ·∂Cifi

+
(

1
Mh

qi
mi

E −Mh
Dvh

Dt

)
·∂Cifi − (∂Cifi ⊗Ci):∂xvh =

1
ε
Ji, i ∈ H,

(2.30)

where the collision operators read

Je = Jee(fe, fe) +
∑
j∈H

Jej(fe, fj), (2.31)

Ji =
1
ε
Jie(fi, fe) +

∑
j∈H

Jij(fi, fj), i ∈ H. (2.32)

Let us emphasize that Eq. (2.29) for the electrons exhibits a similar scaling as that
of the kinetic equation for neutral gases in the low Mach number limit (yielding
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parabolic macroscopic equations), whereas the scaling of Eq. (2.30) for the heavy
particles is typical of that of the kinetic equation for neutral gases in the compress-
ible gas dynamics regime (yielding hyperbolic macroscopic equations).2 Therefore,
the coupled system of kinetic Eqs. (2.29) and (2.30) combines the usual scalings
and the mathematical structure of the resulting system of macroscopic equations
has to be identified.

The collisional invariants (2.13) depend on the mass ratio as well, as shown in
their following nondimensional form.

Definition 2.2. The space of scalar collisional invariants I is spanned by the
following elements ψl

ε = (ψl
e, ψ

l
h), l ∈ {1, . . . , nS + 4}, with

ψj
e = ε2δej , ψj

h = (miδij)i∈H, j ∈ S,

ψnS+ν
e = εCeν , ψnS+ν

h = (miCiν )i∈H, ν ∈ {1, 2, 3},
ψnS+4

e =
1
2
Ce ·Ce, ψnS+4

h =
(

1
2
miCi ·Ci

)
i∈H

.

(2.33)

It is worth noticing the influence of the hierarchy of scales: whereas the scal-
ing does not introduce any structural change in the mass and energy collisional
invariants, the electron contribution disappears from the momentum collisional
invariant vector in the limit of ε tending to zero. A similar behavior can be
observed for the total mass; however, the single species collisional invariants are not
affected.

For a family ξ = (ξi)i∈S, we introduce two separate contributions: ξe, concerning
the electrons, and ξh = (ξi)i∈H, concerning the heavy particles. Hence, the scalar
product between the families ξ = (ξi)i∈S and ζ = (ζi)i∈S defined in Eq. (2.14) is
decomposed into a sum of partial scalar products with different scales

〈〈ξ, ζ〉〉 = 〈〈ξe, ζe〉〉e + ε3〈〈ξh, ζh〉〉h, (2.34)

given by the expressions

〈〈ξe, ζe〉〉e =
∫
ξe � ζ̄edCe, 〈〈ξh, ζh〉〉h =

∑
j∈H

∫
ξj � ζ̄jdCj . (2.35)

Finally, we introduce the collision operator Jε =
(
εJe,

1
εJh

)
, where Eq. (2.29) has

been multiplied by a factor ε3 corresponding to a scaling of the two Boltzmann
equations coherent with the definition of the scalar product. Then, we derive the
following property.

Property 2.2. The collision operator Jε is orthogonal to the space of collisional
invariants I, i.e. 〈〈ψl

ε, Jε〉〉 = 0, for all l ∈ {1, . . . , nS + 4}. Furthermore, the three
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types of pairwise interaction terms in 〈〈ψl
ε, Jε〉〉 separately vanish, i.e.

〈〈ψl
e, Jee〉〉e = 0, (2.36)∑

j∈H

〈〈ψl
e, Jej〉〉e + 〈〈ψl

h, Jhe〉〉h = 0, (2.37)∑
j∈H

〈〈ψl
h, Jhj〉〉h = 0, (2.38)

respectively for the electron, electron heavy-particle, and heavy-particle
interactions.

Proof. The projection of the collision operator Jε onto ψl
ε, l ∈ {1, . . . , nS + 4}, is

given by the expression

〈〈ψl
ε, Jε〉〉 = ε〈〈ψl

e, Jee〉〉e + ε
∑
j∈H

〈〈ψl
e, Jej〉〉e + ε〈〈ψl

h, Jhe〉〉h

+ ε2
∑
j∈H

〈〈ψl
h, Jhj〉〉h.

The terms of this sum are examined by interaction pairs

〈〈ψl
e, Jee〉〉e =

1
4

∫
(f ′

e f
′
e1 − fe fe1)(ψl

e + ψl
e1 − ψl′

e − ψl′
e1)

× |Ce − Ce1|σee1dωdCedCe1,∑
j∈H

〈〈ψl
e, Jej〉〉e + 〈〈ψl

h, Jhe〉〉h =
1
2

∑
j∈H

∫
(f ′

e f
′
j − fe fj)(ψl

e + ψl
j − ψl′

e − ψl′
j )

× |Ce − εCj|σejdωdCedCj ,∑
j∈H

〈〈ψl
h, Jhj〉〉h =

1
4

∑
i,j∈H

∫ (
f ′

i f
′
j − fi fj

) (
ψl

i + ψl
j − ψl′

i − ψl′
j

)
× |Ci − Cj|σijdωdCidCj .

These expressions vanish and thus the sum 〈〈ψl
ε, Jε〉〉 = 0.

The multiscale analysis occurs at three levels: (a) In the kinetic equations (2.29)
and (2.30); (b) In the collisional invariants (2.33) and thus in the conservation
of the associated macroscopic quantities; (c) In the collision operators. Encoun-
ters between particles of the same type are dealt with as usual,14 whereas the
collision operators between unlike particles (electron heavy-particle interactions)
depend on the ε parameter via their relative kinetic energy and velocity, and the
vectors ω and e. The scaling of these operators is investigated in the following
section.
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3. Preliminary Results

3.1. Electron heavy-particle collision dynamics

The study of the electron heavy-particle collision dynamics yields the dependence
of the peculiar velocities on the ε parameter. First, we express momentum con-
servation in terms of the peculiar velocities in the heavy-particle reference frame.
Considering a collision of a heavy species, i ∈ H, against an electron, the peculiar
velocities after collision C′

i and C′
e are related to their counterpart before collision

Ci and Ce

C′
i =

ε

mi + ε2
Ce +

mi

mi + ε2
Ci + s

ε

mi + ε2
|εCi − Ce|ω, i ∈ H,

C′
e =

ε2

mi + ε2
Ce +

εmi

mi + ε2
Ci − s

mi

mi + ε2
|εCi − Ce|ω,

(3.1)

provided that the mean heavy-particle velocity is not modified by this single colli-
sion event. The direction of the relative velocities after collision is defined in their
center of mass by

ω = s
εC′

i − C′
e

|εC′
i − C′

e|
.

Symbol s stands for an integer either equal to +1 for the collision operator Jie,
i ∈ H, or −1 for Jei, i ∈ H. This notation is consistent with the definition of ω in
Eq. (2.12). We are now able to expand the crossed-collision operators.

3.2. Expansion of the collision operator Jie

Dimensional analysis yields the following expression for the nondimensional collision
operator Jie, i ∈ H,

Jie(fi, fe)(Ci) =
∫
σie

(
|γe|2,ω · γe

|γe|
)
|εCi − Ce|

× [fi(C′
i)fe(C

′
e) − fi(Ci)fe(Ce)]dωdCe, (3.2)

where the relative kinetic energy and the vector e are expressed by means of the
vector γe = s(εCi − Ce)/(1 + ε2/mi)1/2.

We then introduce the generalized momentum cross-section14 in a thermal
nonequilibrium context42

Q
(l)
ie (|γe|2) = 2π

∫ π

0

σie(|γe|2, cos θ)(1 − cosl θ) sin θdθ, i ∈ H, l ∈ N0, (3.3)

where symbol θ stands for the angle between the vectors ω and e. For l = 1,
this cross-section represents the average momentum transferred in encounters from
electrons to i heavy particles for a given value of the relative kinetic energy.
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Theorem 3.1. The collision operator Jie, i ∈ H, can be expanded in the form

Jie(fi, fe)(Ci) = εJ1
ie(fi, fe)(Ci) + ε2J2

ie(fi, fe)(Ci)

+ ε3J3
ie(fi, fe)(Ci) + O(ε4). (3.4)

The zeroth-order collision operator J0
ie(fi, fe)(Ci), i ∈ H, vanishes. The first-order

term J1
ie, i ∈ H, reads

J1
ie(fi, fe)(Ci) = − 1

mi
∂Cifi(Ci) ·

∫
Q

(1)
ie (|γe|2)|γe|γefe(γe)dγe, i ∈ H.

(3.5)

The second-order term J2
ie, i ∈ H, is found to be

J2
ie(fi, fe)(Ci) = − 1

mi
∂Ci(fi(Ci)Ci) :

∫
Q

(1)
ie (|γe|2)|γe|∂Cefe(γe)⊗γedγe

+
1

4m2
i

∂2
CiCi

fi(Ci) :
∫
Q

(2)
ie (|γe|2)|γe|(|γe|2I − 3γe ⊗γe)fe(γe)dγe

+
1
m2

i

∂2
CiCi

fi(Ci) :
∫
Q

(1)
ie (|γe|2)|γe|γe ⊗γefe(γe)dγe. (3.6)

Finally, the third-order term J3
ie, i ∈ H, is given by

J3
ie(fi, fe)(Ci)

=
1
mi

∂Ci

(
1
2
fi(Ci)Ci ⊗Ci

)
�
∫
Q

(1)
ie (|γe|2)|γe|∂2

CeCe
fe(γe) ⊗ γedγe

+
1

2m2
i

∂Cifi(Ci) ·
∫
Q

(1)
ie (|γe|2)|γe|γe ⊗γe ·∂Cefe(γe)dγe

+
1
m2

i

∂Ci(∂Cifi(Ci)⊗Ci) �
∫
Q

(1)
ie (|γe|2)|γe|γe ⊗γe ⊗ ∂Cefe(γe)dγe

+
1

4m2
i

∂Ci(∂Cifi(Ci)⊗Ci) �
∫
Q

(2)
ie (|γe|2)|γe|(|γe|2I

− 3γe ⊗γe)⊗ ∂Cefe(γe)dγe

− 1
4m2

i

∂3
CiCiCi

fi(Ci) �
∫

Q
(1)
ie (|γe|2)|γe|(|γe|2I + γe ⊗γe) ⊗ γefe(γe)dγe

− 1
4m2

i

∂3
CiCiCi

fi(Ci) �
∫
Q

(2)
ie (|γe|2)|γe|(|γe|2I − 3γe ⊗γe) ⊗ γefe(γe)dγe

+
1

12m2
i

∂3
CiCiCi

fi(Ci) �
∫
Q

(3)
ie (|γe|2)|γe|(3|γe|2I−5γe⊗γe) ⊗ γefe(γe)dγe

+
3

2mi
J1

ie(fi, fe)(Ci). (3.7)
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Proof. The change of variable dCe = −(1 + ε2/mi)3/2dγe allows for the differen-
tial cross-section dependence on ε to be eliminated

Jie(fi, fe)(Ci) =
∫
σie

(
|γe|2,ω · γe

|γe|
)
|γe|(1 + ε2/mi)

2

× [fi(C′
i)fe(C

′
e) − fi(Ci)fe(Ce)]dωdγe, i ∈ H.

Then, the peculiar velocities are expanded in a power series of ε

C′
i = Ci + ε

1
mi

a1 − ε3
1

2m2
i

a1 + O(ε4), a1 = −γe + |γe|ω, i ∈ H,

C′
e = −|γe|ω + εCi + ε2

1
mi

a2 + O(ε4), a2 = −γe +
1
2
|γe|ω,

Ce = −γe + εCi − ε2
1

2mi
γe + O(ε4).

Hence, the distribution functions are found to be

fi(C′
i) = fi(Ci) + ε

1
mi

∂Cifi(Ci) · a1 + ε2
1

2m2
i

∂2
CiCi

fi(Ci) : (a1 ⊗a1)

+ ε3
1

6m3
i

∂3
CiCiCi

fi(Ci)� (a1 ⊗a1 ⊗a1)

− ε3
1

2m2
i

∂Cifi(Ci) ·a1 + O(ε4), i ∈ H,

fe(C′
e) = fe(−|γe|ω) + ε∂Cefe(−|γe|ω) ·Ci + ε2

1
2
∂2
CeCe

fe(−|γe|ω) : (Ci ⊗Ci)

+ ε2
1
mi

∂Cefe(−|γe|ω) · a2 + ε3
1
6
∂3
CeCeCe

fe(−|γe|ω)� (Ci ⊗Ci ⊗Ci)

+ ε3
1
mi

∂2
CeCe

fe(−|γe|ω) : (Ci ⊗a2) + O(ε4),

fe(Ce) = fe(−γe) + ε∂Cefe(−γe) ·Ci + ε2
1
2
∂2
CeCe

fe(−γe) :Ci ⊗Ci

− ε2
1

2mi
∂Cefe(−γe) ·γe + ε3

1
6
∂3
CeCeCe

fe(−γe)�Ci ⊗Ci ⊗Ci

− ε3
1

2mi
∂2
CeCe

fe(−γe) :Ci ⊗γe + O(ε4).

Combining these equations, the zeroth-order term J0
ie, i ∈ H, is thus given by

J0
ie(fi, fe)(Ci) = fi(Ci)

∫
σie(|γe|2,ω · e)|γe|3

× [fe(|γe|ω) − fe(|γe|e)]dωded|γe|.
Interchanging e and ω, the integral is shown to vanish. Then, Eqs. (3.5)–(3.7) are
obtained after some lengthy calculation.
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Theorem 3.1 admits three corollaries.

Corollary 3.1. The first-order collision operator J1
ie(fi, fe), i ∈ H, vanishes when

fe is an isotropic function of the velocity Ce.

Proof. Expression (3.5) immediately yields that the integrand is an odd function
of γe if fe is isotropic in the heavy-particle reference frame, so that the first-order
collision operator vanishes.

A collision frequency is defined as a Maxwell–Boltzmann averaged momentum
cross-section

νie =
1
Te

∫
Q

(1)
ie (|γe|2)|γe|3f0

e (γe)dγe, i ∈ H,

where f0
e (γe) = ne exp[−γe ·γe/(2Te)]/(2πTe)3/2.

Corollary 3.2. Considering the function f0
e = ne exp[−Ce ·Ce/(2Te)]/(2πTe)3/2,

the second-order collision operator reads

J2
ie(fi, f

0
e )(Ci) =

νie

3mi

(
∂Ci · (fiCi) +

Te

mi
∆Cifi

)
, i ∈ H. (3.8)

Proof. A direct calculation of J2
ie(fi, f

0
e )(Ci) given in (3.6) immediately yields

expression (3.8) if f0
e = ne exp[−Ce ·Ce/(2Te)]/(2πTe)3/2.

Corollary 3.3. The third-order collision operator J3
ie(fi, fe), i ∈ H, vanishes when

fe is an isotropic function of the velocity Ce.

Proof. Expression (3.7) immediately yields that the integrand is an odd function
of γe if fe is isotropic in the heavy-particle reference frame, so that the third-order
collision operator vanishes.

3.3. Expansion of the collision operator Jei

Dimensional analysis yields the following expression for the nondimensional collision
operator Jei, i ∈ H,

Jei(fe, fi)(Ce) =
∫
σei

(
mi|Ce − εCi|2

mi + ε2
,ω · e

)
|Ce − εCi|

× [fe(C′
e)fi(C′

i) − fe(Ce)fi(Ci)]dωdCi. (3.9)
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The original set of variables {Ce,Ci,ω} is retained. We introduce the momentum
cross-section

Q
(1)
ei (|Ce|2) = 2π

∫ π

0

σei(|Ce|2, cos θ)(1 − cos θ) sin θdθ, i ∈ H, (3.10)

representing the average momentum transferred in encounters from i heavy particles
to electrons. It is equal to the cross-section Q(1)

ie .

Theorem 3.2. The collision operator Jei, i ∈ H, can be expanded in the form

Jei(fe, fi)(Ce) = J0
ei(fe, fi)(Ce) + εJ1

ei(fe, fi)(Ce) + ε2J2
ei(fe, fi)(Ce)

+ ε3J3
ei(fe, fi)(Ce) + O(ε4). (3.11)

The zeroth-order term J0
ei, i ∈ H, is given by the expression

J0
ei(fe, fi)(Ce) =

∫
fi(Ci)dCi

∫
σei

(
|Ce|2,ω · Ce

|Ce|
)

× |Ce|[fe(|Ce|ω) − fe(Ce)]dω. (3.12)

The first-order term J1
ie, i ∈ H, reads

J1
ei(fe, fi)(Ce) =

(∫
fi(Ci)CidCi

)

·
{
∂Ce

∫
σei

(
|Ce|2, Ce

|Ce| ·ω
)

[fe(Ce) − fe(|Ce|ω)]|Ce|dω

+
∫
σei

(
|Ce|2, Ce

|Ce| ·ω
)
|Ce|[∂Cefe(|Ce|ω) − ∂Cefe(Ce)]dω

}
.

(3.13)

The second-order term J2
ie, i ∈ H, is found to be

J2
ei(fe, fi)(Ce) =

1
mi

K2,1
ei (Ce)

∫
fi(Ci)dCi

+
1
2
K2,2

ei (Ce) :
∫
fi(Ci)Ci ⊗CidCi, (3.14)

with

K2,1
ei (Ce) = ∂Ce ·

∫
σei

(
|Ce|2, Ce

|Ce| ·ω
)

(Ce − |Ce|ω)|Ce|fe(|Ce|ω)dω

− |Ce|Ce ·
∫
∂Ceσei

(
|Ce|2, Ce

|Ce| ·ω
)

[fe(|Ce|ω) − fe(Ce)]dω,
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and

K2,2
ei (Ce) = ∂2

CeCe

∫
σei

(
|Ce|2, Ce

|Ce| ·ω
)
|Ce|[fe(Ce|ω) − fe(Ce)]dω

+ 2
∫
∂Ce

(
σei

(
|Ce|2, Ce

|Ce| ·ω
)
|Ce|

)
⊗ [∂Cefe(Ce)−∂Cefe(|Ce|ω)]dω

+ |Ce|
∫
σei

(
|Ce|2, Ce

|Ce| ·ω
)

[∂2
CeCe

fe(Ce) − ∂2
CeCe

fe(|Ce|ω)]dω

+ 2|Ce|
∫
σei

(
|Ce|2, Ce

|Ce| ·ω
)

Ce

|Ce| ⊗ω∂2
CeCe

fe(|Ce|ω)dω.

Proof. The relative velocity and peculiar velocities after collision are expanded in
a power series of ε. For i ∈ H, we have

|Ce − εCi| = |Ce| − ε
Ce

|Ce| ·Ci + ε2b1 + O(ε3),

C′
i = Ci + ε

1
mi

a4 − ε2
1
mi

a5 + O(ε3),

C′
e = |Ce|ω + εa5 + ε2

(
1
mi

a4 + a6

)
+ O(ε3),

with b1 = 1
2|Ce| [|Ci|2 − (

Ce
|Ce| ·Ci

)2], a4 = Ce − |Ce|ω, a5 = Ci − Ce
|Ce| ·Ciω,

a6 = b1ω. Hence, the distribution functions are found to be

fi(C′
i) = fi(Ci) + ε

1
mi

∂Cifi(Ci) · a4 + ε2
1

2m2
i

∂2
CiCi

fi(Ci) : (a4 ⊗a4)

− ε2
1

2mi
∂Cifi(Ci) · a5 + O(ε3), i ∈ H,

fe(C′
e) = fe(|Ce|ω) + ε∂Cefe(|Ce|ω) · a5 +

1
2
ε2∂2

CeCe
fe(|Ce|ω) : (a5 ⊗ a5)

+ ε2∂Cefe(|Ce|ω) ·
(

1
mi

a4 + a6

)
+ O(ε3).

Combining these equations, we obtain Eqs. (3.12)–(3.14) after some lengthy
calculation.

Theorem 3.2 admits three corollaries. First, we define the rate of entropy pro-
duced at order ε0 in collisions between electrons and i heavy particles

Υ0
ei = −

∫
J0
ei(fe, fi)(Ce) ln

[
(2π)3/2n0

Q0
e

fe(Ce)
]
dCe, i ∈ H,

where Q0
e = (2πm0

ekBT
0/h2

P)3/2 is the translational partition function of electrons.
Symbol hP stands for Planck’s constant. The zeroth-order operator describes the
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relaxation of the electron population towards an isotropic distribution function in
the heavy-particle reference frame.

Corollary 3.4. The zeroth-order collision operator J0
ei(fe, fi), i ∈ H, vanishes when

fe is an isotropic function of the velocity Ce. Moreover, the zeroth-order entropy is
non-negative, that is Υ0

ei ≥ 0, i ∈ H, and the inequality is an equality if and only if
fe is an isotropic function of the velocity Ce.

Proof. If fe is an isotropic function of Ce, we have fe(|Ce|ω) = fe(Ce) for any
ω in the unit sphere, so that expression (3.12) implies that J0

ei(fe, fi) = 0. The
zeroth-order entropy production rate reads

Υ0
ei = −ni

∫
σei

(
|Ce|2,ω · Ce

|Ce|
)
|Ce|3[fe(|Ce|ω) − fe(Ce)]

× ln
[
(2π)3/2n0

Q0
e

fe(Ce)
]
d|Ce|d Ce

|Ce|dω,

and interchanging Ce
|Ce| and ω,

Υ0
ei =

ni

2

∫
σei

(
|Ce|2,ω · Ce

|Ce|
)
|Ce|3Ω(fe(|Ce|ω), fe(Ce))d|Ce|d Ce

|Ce|dω,

where Ω(x, y) = (x − y) ln(x/y) is a non-negative function. We then obtain that
Υ0

ei, i ∈ H, is non-negative and equal to 0 if and only if fe is isotropic in the
heavy-particle reference frame.

Corollary 3.5. The first-order collision operator J1
ei(fe, fi), i ∈ H, vanishes when

fi is an isotropic function of the velocity Ci.

Proof. Expression (3.13) immediately yields that the integrand is an odd function
of Ci, i ∈ H, if fi is isotropic in the heavy-particle reference frame, so that the
first-order collision operator vanishes.

Remark 3.1. So far, we note that the isotropy property of fi is strongly related
to our choice of reference frame. For example, such a property is not satisfied when
u = 0. Thus, the structure of the expansion of collision operators depends on the
initial choice of reference frame. We will come back to this point in Sec. 4.8.

Corollary 3.6. Considering the functions f0
e = ne exp[−Ce ·Ce/(2Te)]/(2πTe)3/2

and f0
i = nim

3/2
i exp[−miCi ·Ci/(2Th)]/(2πTh)3/2, i ∈ H, the second-order colli-

sion operator J2
ei(f

0
e , f

0
i )(Ce), i ∈ H, reads

J2
ei(f

0
e , f

0
i )(Ce) = (Th − Te)

ni

mi

1
Te
f0
e (Ce)|Ce|

×
[
∂Ce · (Q(1)

ei (Ce)Ce) +
(

1 − |Ce|2
Te

)
Q

(1)
ei (Ce)

]
. (3.15)
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Proof. A direct calculation of J2
ei(f

0
e , fi)(Ce) given in (3.14) immediately yields

expression (3.15) if f0
e and f0

i are the Maxwell–Boltzmann distribution functions
given in the assumptions of Corollary 3.6.

3.4. Electron and heavy-particle collisional invariants

Based on the space of collisional invariants I defined in Eq. (2.33), we introduce
two subspaces naturally associated with our choice of scaling.

Definition 3.1. The space of scalar electron collisional invariants Ie is spanned
by the following elements ψ̂

1
e = 1,

ψ̂2
e =

1
2
Ce ·Ce.

(3.16)

Definition 3.2. The space of scalar heavy-particle collisional invariants Ih is
spanned by the following elements

ψ̂j
h = (miδij)i∈H, j ∈ H,

ψ̂nH+ν
h = (miCiν)i∈H, ν ∈ {1, 2, 3},
ψ̂nH+4

h =
(

1
2
miCi ·Ci

)
i∈H

,

(3.17)

where symbol nH denotes the cardinality of the set of heavy particles H.

The decoupling of the collision invariants is clearly identified in the proposed
scaling. More precisely, the definition of the electron linearized collision operator
(given in Sec. 4) will involve the electron partial collision operator Jee and the mixed
partial collision operators J0

ei, i ∈ H, satisfying the following important property.

Property 3.1. The partial collision operators J0
ei, i ∈ H, are orthogonal to the

space of collisional invariants Ie, i.e. 〈〈ψ̂l
e, J

0
ei〉〉e = 0 for all l ∈ {1, 2}.

Proof. The projection of the collision operator J0
ei, i ∈ H, onto ψ̂l

e, l ∈ {1, 2} reads

〈〈ψ̂l
e, J

0
ei〉〉e = ni

∫
σei

(
|Ce|2,ω · Ce

|Ce|
)
|Ce|3

× [fe(|Ce|ω) − fe(Ce)]ψ̂l
ed|Ce|dωd

Ce

|Ce| .

Interchanging ω and Ce
|Ce| , the projection 〈〈ψ̂l

e, J
0
ei〉〉e is shown to vanish for all

l ∈ {1, 2}.

We emphasize that the partial collision operators J0
ei, i ∈ H, are not orthogonal

for the scalar product 〈〈·, ·〉〉e to the space spanned by the electron momentum. This
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is the reason why the vector Ce does not belong to Ie. In contrast, the definition
of the heavy-particle linearized collision operator (given in Sec. 4) only involves the
heavy-particle partial collision operators Jij , i, j ∈ H.

Subsequently, using the newly defined collisional invariants, the orthogonality
Property 2.2 of the cross-collision operators can be rewritten∑

j∈H

〈〈ψ̂1
e , Jej〉〉e = 0, 〈〈ψ̂i

h, Jhe〉〉h = 0, i ∈ H, (3.18)

for mass conservation,

ε
∑
j∈H

〈〈Ceν , Jej〉〉e + 〈〈ψ̂nH+ν
h , Jhe〉〉h = 0, ν ∈ {1, 2, 3}, (3.19)

for momentum conservation, and∑
j∈H

〈〈ψ̂2
e , Jej〉〉e + 〈〈ψ̂nH+4

h , Jhe〉〉h = 0, (3.20)

for energy conservation. This set of relations is essential since it corresponds
to the conservation of mass, momentum, and energy in the electron heavy-
particle interactions through the various orders in ε of the Chapman–Enskog
expansion.

Then, the macroscopic properties are expressed as partial scalar products of the
distribution functions and the new collisional invariants{

〈〈fe, ψ̂1
e 〉〉e = ρe,

〈〈fe, ψ̂2
e 〉〉e = ρeee,

(3.21)

and 
〈〈fh, ψ̂

i
h〉〉h = ρi, i ∈ H,

〈〈fh, ψ̂
nH+ν
h 〉〉h = 0, ν ∈ {1, 2, 3},

〈〈fh, ψ̂
nH+4
h 〉〉h = ρheh.

(3.22)

Symbol ee stands for the electron thermal energy per unit mass and eh, the heavy-
particle thermal energy per unit mass. It is important to mention that these quanti-
ties are defined in the heavy-particle reference frame. Furthermore, the decoupling
of the collisional invariants is also consistent with the expression for the macro-
scopic properties. In particular, because the electron momentum is not a collision
invariant in the proposed asymptotic limit, the electron mass flux is not constrained
in the heavy-particle reference frame.

Translational temperatures are introduced as averaged thermal energies in the
heavy-particle reference frame as follows.
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Definition 3.3. The electron and heavy-particle translational temperatures are
given by

Te =
2

3ne
〈〈fe, ψ̂2

e 〉〉e, (3.23)

Th =
2

3nh
〈〈fh, ψ̂

nH+4
h 〉〉h, (3.24)

where the heavy-particle number density is nh =
∑

j∈H nj.

Consequently, the energy can be rewritten

〈〈fe, ψ̂2
e 〉〉e =

3
2
neTe,

for the electrons, and

〈〈fh, ψ̂
nH+4
h 〉〉h =

3
2
nhTh

for the heavy particles. It will be shown in Sec. 4 that these two temperatures are
generally different.

4. Chapman–Enskog Method

We employ an Enskog expansion to derive an approximate solution to the Boltz-
mann equations (2.29)–(2.30) by expanding the species distribution functions as

fe = f0
e (1 + εφe + ε2φ2

e + ε3φ3
e ) + O(ε4), (4.1)

fi = f0
i (1 + εφi + ε2φ2

i ) + O(ε3), i ∈ H, (4.2)

and by imposing that the zeroth-order contributions f0
e and f0

h yield the local
macroscopic properties

〈〈f0
e , ψ̂

l
e〉〉e = 〈〈fe, ψ̂l

e〉〉e, l ∈ {1, 2}, (4.3)

〈〈f0
h , ψ̂

l
h〉〉h = 〈〈fh, ψ̂

l
h〉〉h, l ∈ {1, . . . , nH+ 4}. (4.4)

Hence, based upon the dimensional analysis of Sec. 2.5, the electron Boltzmann
equation (2.29) becomes

ε−2D−2
e (f0

e ) + ε−1D−1
e (f0

e , φe) + D0
e (f0

e , φe, φ
2
e) + εD1

e (f0
e , φe, φ

2
e , φ

3
e )

= ε−2J−2
e + ε−1J−1

e + J0
e + εJ1

e + O(ε2), (4.5)

where the electron streaming operators read at successive orders

D−2
e (f0

e ) = δb1qe(Ce ∧B) ·∂Ce
f0
e ,

D−1
e (f0

e , φe) = D̂−1
e (f0

e ) + qe(δb1Ce ∧B) ·∂Ce
(f0

e φe),
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D̂−1
e (f0

e ) =
1
Mh

Ce ·∂xf
0
e + qe

(
1
Mh

E′ + δb0Ce ∧B
)
·∂Ce

f0
e ,

D0
e (f0

e , φe, φ
2
e) = D̂0

e (f0
e , φe) + qe(δb1Ce ∧B) ·∂Ce

(f0
e φ

2
e),

D̂0
e (f0

e , φe) = ∂tf
0
e +

1
Mh

Ce ·∂x(f0
e φe) + vh ·∂xf

0
e − (∂Ce

f0
e ⊗Ce) : ∂xvh

+ qe(δb0Mhvh ∧B + δb(−1)Ce ∧B) ·∂Ce
f0
e

+ qe

(
1
Mh

E′ + δb0Ce ∧B
)
·∂Ce

(f0
e φe),

D1
e (f0

e , φe, φ
2
e , φ

3
e ) = D̂1

e (f0
e , φe, φ

2
e) + qe(δb1Ce ∧B) ·∂Ce

(f0
e φ

3
e ),

D̂1
e (f0

e , φe, φ
2
e) = ∂t(f0

e φe) +
1
Mh

Ce ·∂x(f0
e φ

2
e) + vh ·∂x(f0

e φe)

−Mh
Dvh

Dt
·∂Ce

f0
e − (∂Ce

(f0
e φe)⊗Ce) : ∂xvh

+ qe(δb(−1)Mhvh ∧B + δb(−2)Ce ∧B) ·∂Ce
f0
e

+ qe(δb0Mhvh ∧B + δb(−1)Ce ∧B) ·∂Ce
(f0

e φe)

+ qe

(
1
Mh

E′ + δb0Ce ∧B
)
·∂Ce

(f0
e φ

2
e),

with the electric field expressed in the heavy-particle reference frame as E′ = E +
δb1M

2
hvh ∧B. The electron collision operators are given by

J−2
e = �����

Jee(f0
e , f

0
e ) +

∑
j∈H

�����
J0
ej(f

0
e , f

0
j ),

J−1
e = Jee(f0

e φe, f
0
e ) + Jee(f0

e , f
0
e φe)

+
∑
j∈H

J0
ej(f

0
e φe, f

0
j ) +������

J0
ej(f

0
e , f

0
j φj) +�����

J1
ej(f

0
e , f

0
j )

J0
e = Jee(f0

e φ
2
e , f

0
e ) + Jee(f0

e φe, f
0
e φe) + Jee(f0

e , f
0
e φ

2
e)

+
∑
j∈H

J0
ej(f

0
e φ

2
e , f

0
j ) +������

J0
ej(f

0
e , f

0
j φ

2
j ) + Ĵ0

e ,

Ĵ0
e =

∑
j∈H

J0
ej(f

0
e φe, f

0
j φj) +������

J1
ej(f

0
e φe, f

0
j ) + J1

ej(f
0
e , f

0
j φj) + J2

ej(f
0
e , f

0
j ),

J1
e = Jee(f0

e φ
3
e , f

0
e ) + Jee(f0

e φ
2
e , f

0
e φe) + Jee(f0

e φe, f
0
e φ

2
e) + Jee(f0

e , f
0
e φ

3
e )

+
∑
j∈H

J0
ej(f

0
e φ

3
e , f

0
j ) +������

J0
ej(f

0
e , f

0
j φ

3
j ) + Ĵ1

e ,
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Ĵ1
e =

∑
j∈H

{J0
ej(f

0
e φ

2
e , f

0
j φj) + J0

ej(f
0
e φe, f

0
j φ

2
j ) +������

J1
ej(f

0
e φ

2
e , f

0
j )

+ J1
ej(f

0
e φe, f

0
j φj) + J1

ej(f
0
e , f

0
j φ

2
j ) + J2

ej(f
0
e φe, f

0
j )

+ J2
ej(f

0
e , f

0
j φj) + J3

ej(f
0
e , f

0
j )}.

For ease of readability in Secs. 4.2–4.7, we strike through the collision operators that
vanish when f0

e and f0
i , i ∈ H, are isotropic functions. Likewise, the heavy-particle

Boltzmann equation (2.30) is found to be

D0
i (f0

i ) + εD1
i (f0

i , φi) = ε−1J−1
i + J0

i + εJ1
i + O(ε2), i ∈ H, (4.6)

where the heavy-particle streaming operators read at successive orders

D0
i (f0

i ) = ∂tf
0
i +

(
1
Mh

Ci+vh

)
·∂xf

0
i +

qi
mi

(
1
Mh

E′ + δb1Ci ∧B
)
·∂Cif

0
i

−Mh
Dvh

Dt
·∂Cif

0
i − (∂Cif

0
i ⊗Ci):∂xvh,

D1
i (f0

i , φi) = ∂t(f0
iφi) +

(
1
Mh

Ci+vh

)
·∂x(f0

iφi)

+
qi
mi

δb0[(Ci+Mhvh)∧B] ·∂Cif
0
i

+
qi
mi

(
1
Mh

E′ + δb1Ci ∧B
)
·∂Ci(f

0
iφi)

−Mh
Dvh

Dt
·∂Ci(f

0
iφi) − (∂Ci(f

0
iφi)⊗Ci) : ∂xvh.

The heavy-particle collision operators are given by

J−1
i =

∑
j∈H

�����
Jij(f0

i , f
0
j ) +�����

J1
ie(f

0
i , f

0
e ),

J0
i =

∑
j∈H

Jij(f0
i φi, f

0
j ) + Jij(f0

i , f
0
j φj) +������

J1
ie(f

0
i φi, f

0
e ) + Ĵ0

i ,

Ĵ0
i = J1

ie(f
0
i , f

0
e φe) + J2

ie(f
0
i , f

0
e ),

J1
i =

∑
j∈H

Jij(f0
i φ

2
i , f

0
j ) + Jij(f0

i φi, f
0
j φj) + Jij(f0

i , f
0
j φ

2
j )

+������
J1

ie(f
0
i φ

2
i , f

0
e ) + Ĵ1

i ,

Ĵ1
i = J1

ie(f
0
i φi, f

0
e φe) + J1

ie(f
0
i , f

0
e φ

2
e) + J2

ie(f
0
i φi, f

0
e )

+ J2
ie(f

0
i , f

0
e φe) +�����

J3
ie(f

0
i , f

0
e ).

In the Chapman–Enskog method, the plasma is described at successive orders of
the ε parameter as equivalent to as many timescales. The micro- and macroscopic
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Table 2. Chapman–Enskog steps.

Order Time Heavy particles Electrons

ε−2 t0e Expression for f0
e

Thermalization (Te)

ε−1 t0h Expression for f0
i , i ∈ H Equation for φe

Thermalization (Th) Zeroth-order momentum relation

ε0 t0 Equation for φi, i ∈ H Equation for φ2
e

Euler equations Zeroth-order drift-diffusion equations

First-order momentum relation

ε t0

ε
Navier–Stokes equations First-order drift-diffusion equations

equations derived at each order are reviewed in Table 2. The second-order elec-
tron momentum equation, relevant to the second-order heavy-particle macroscopic
equations, is not established in this study.

4.1. Order ε−2: Electron thermalization

We solve the electron Boltzmann equation (4.5) at order ε−2 corresponding to
the kinetic timescale t0e . The electron population is shown to thermalize in the
heavy-particle reference frame to a quasi-equilibrium state described by a Maxwell–
Boltzmann distribution function at temperature Te. In contrast, heavy particles do
not exhibit any ensemble property at this order.

Proposition 4.1. Considering a family of functions f0
i , i ∈ H, sufficiently regular

so that the collision operators J0
ei(f

0
e , f

0
i ), i ∈ H, exist, the zeroth-order electron

distribution function f0
e , solution to Eq. (4.5) at order ε−2, i.e. D−2

e (f0
e ) = J−2

e , that
satisfies the scalar constraints (4.3), is a Maxwell–Boltzmann distribution function
at the electron temperature

f0
e = ne

(
1

2πTe

)3/2

exp
(
− 1

2Te
Ce ·Ce

)
. (4.7)

Proof. Multiplying the equation D−2
e (f0

e ) = J−2
e by ln[(2π)3/2n0f0

e /Q
0
e] and inte-

grating over dCe yields the zeroth-order entropy production rate

Υ0
ee +

∑
j∈H

Υ0
ej + δb1qe

∫
(Ce ∧B) ·∂Ce

f0
e ln[(2π)3/2n0f0

e /Q
0
e ]dCe = 0,

with Υ0
ee = − ∫

Jee(f0
e , f

0
e )(Ce) ln[(2π)3/2n0f0

e /Q
0
e] dCe. Using the equality

∂Ce
f0
e ln[(2π)3/2n0f0

e /Q
0
e] = ∂Ce

{f0
e ln[(2π)3/2n0f0

e /Q
0
e ] − f0

e } and integrating by
parts, the entropy production rate is found to be Υ0

ee +
∑

j∈H Υ0
ej = 0. Moreover,

a well-established derivation yields14

Υ0
ee =

1
4

∫
Ω(f0

e f
0
e1 , f

0′
e f

0′
e1 )|Ce − Ce1|σee1dωdCedCe1 ≥ 0.
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Using Corollary 3.4, we first obtain that Υ0
ei ≥ 0, i ∈ H, so that both terms Υ0

ee = 0
and Υ0

ei = 0, i ∈ H. Then, Corollary 3.4 implies that f0
e is isotropic in the heavy-

particle reference frame. Seeing that Υ0
ee = 0, ln f0

e is thus a collisional invariant,
i.e. is in the space Ie. By using the macroscopic constraints, expression (4.7) is
readily obtained.

The choice of the reference frame in which electrons thermalize turns out to be
crucial for the rest of the development. In the u = vh frame, the quasi-equilibrium
electron velocity distribution function is isotropic and the electrons follow the bulk
movement associated with the heavy particles, leading to a physically plausible sce-
nario. As already mentioned, the mean heavy-particle velocity vh does not depend
on the small ε parameter while still being close to the actual hydrodynamic veloc-
ity v of the entire mixture; this property is essential in order to conduct a rigorous
multiscale analysis in the framework of the present Chapman–Enskog expansion.
The relevance of such a choice of reference frame will be thoroughly investigated in
Sec. 4.8.

4.2. Order ε−1: Heavy-particle thermalization

We solve the heavy-particle Boltzmann equation (4.6) at order ε−1 corresponding
to the kinetic timescale t0h. The heavy-particle population is shown to thermalize
in the heavy-particle reference frame to a quasi-equilibrium state described by a
Maxwell–Boltzmann distribution function at temperature Th.

Proposition 4.2. Considering f0
e given by Eq. (4.7), the zeroth-order family of

heavy-particle distribution functions f0
h solution to Eq. (4.6) at order ε−1, i.e. J−1

i =
0, i ∈ H, that satisfies the scalar constraints (4.4), is a family of Maxwell–Boltzmann
distribution functions at the heavy-particle temperature

f0
i = ni

(
mi

2πTh

)3/2

exp
(
− mi

2Th
Ci ·Ci

)
, i ∈ H. (4.8)

Proof. As the zeroth-order electron distribution function f0
e is isotropic in the

heavy-particle reference frame, Corollary 3.1 yields that the heavy-particle Boltz-
mann equation (4.6) reads at order ε−1∑

j∈H

Jij(f0
i , f

0
j ) = 0, i ∈ H.

After some classical algebra,14 we obtain expression (4.8) for the zeroth-order heavy-
particle distribution functions.

Thus, Propositions 4.1 and 4.2 describe electron and heavy-particle quasi-
equilibrium states at different temperatures.
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4.3. Order ε−1: Electron momentum relation

We conduct the solution and derive a momentum relation based on the electron
Boltzmann equation (4.5) at order ε−1 corresponding to the kinetic timescale t0h.
We then emphasize an original property of the Chapman–Enskog expansion at this
order associated with both the absence of a momentum constraint in Eq. (3.21)
and our multiscale analysis.

With the previously obtained Maxwell–Boltzmann electron distribution func-
tion, we first define the electron linearized collision operator.

Definition 4.1. The electron linearized collision operator Fe reads

Fe(φe) = − 1
f0
e

Jee(f0
e φe, f

0
e ) + Jee(f0

e , f
0
e φe) +

∑
j∈H

J0
ej(f

0
e φe, f

0
j )

,
where f0

e is given by Eq. (4.7) and f0
i by Eq. (4.8).

The kernel of this operator is given in the following property.

Property 4.1. The kernel of the linearized collision operator Fe is the space of
scalar electron collisional invariants Ie.

Proof. The linearized collision operator Fe is rewritten in the form

Fe(φe) = −
∫
f0
e1 (φ′e + φ′e1 − φe − φe1)|Ce − Ce1|σee1dωdCe1

−
∑
j∈H

nj

∫
σej

(
|Ce|2,ω · Ce

|Ce|
)
|Ce|(φe(|Ce|ω) − φe(Ce))dω.

We then obtain that the space Ie is in the kernel of Fe. Conversely, if Fe(φe) = 0,
multiplying Fe(φe) by f0

e φe and integrating over dCe yields
1
4

∫
f0
e f

0
e1 (φ′e + φ′e1 − φe − φe1)

2|Ce − Ce1|σee1dωdCedCe1

+
1
2

∑
j∈H

nj

∫
σej

(
|Ce|2,ω · Ce

|Ce|
)
|Ce|f0

e (φe(|Ce|ω) − φe(Ce))2dωdCe = 0,

so that φe is in the space Ie.

Based on Corollaries 3.4 and 3.5, the electron Boltzmann equation (4.5) is found
to be at order ε−1

f0
e Fe(φe) + δb1qe∂Ce

(f0
e φe) ·Ce ∧B = −D̂−1

e (f0
e ), (4.9)

with the constraints

〈〈f0
e φe, ψ̂

l
e〉〉e = 0, l ∈ {1, 2}. (4.10)

The terms ∂Ce
(f0

e φe) ·Ce ∧B and D̂−1
e (f0

e ) are orthogonal to the kernel of Fe for
the scalar product 〈〈·, ·〉〉e. Consequently, no macroscopic conservation equations of
mass and energy can be derived at this order.



April 7, 2009 15:19 WSPC/103-M3AS 00353

Kinetic Theory of Plasmas 557

Actually, for any value of w, defining the shifted Maxwell–Boltzmann
distribution

fw0
e = ne

(
1

2πTe

)3/2

exp
(
− 1

2Te
(Ce − εMhw)2

)
, (4.11)

we can expand it as a function of ε

fw0
e = f0

e

(
1 + ε

Mh

Te
Ce ·w + ε2

M2
h

2Te

[
−w ·w +

(Ce ·w)2

Te

])
+ O(ε3), (4.12)

which still yields, at leading order, the same distribution as defined in Eq. (4.7). We
then realize that the Chapman–Enskog expansion can be rewritten in a different
way at this order

f0
e (1 + εφe + ε2φ2

e) = fw0
e (1 + εφw

e + ε2φw0
e ) + O(ε3), (4.13)

with

φe = φw
e +

Mh

Te
Ce ·w,

φ2
e = φw2

e +
Mh

Te
(Ce ·w)φw

e +
M2

h

2Te

[
−w ·w +

(Ce ·w)2

Te

]
.

(4.14)

It is interesting to notice that, whatever the choice of w, the part of the hydro-
dynamic velocity of the full mixture

(ρh + ε2ρe)v = ρhvh + ε2ρeve,

associated with the electrons ρeve will be split into two parts at the same order of
the multiscale expansion

ve = vh +
1
Mh

Ve + O(ε) = vh + w +
1
Mh

Vw
e + O(ε),

with ρeVw
e =

∫
Cef

w0
e φw

e dCe. Thus, as opposed to the standard expansion, since no
momentum constraint is to be found for the electrons, the definition of the mixture
hydrodynamic velocity does not allow to uniquely define electron diffusion velocities.
In any case, the hydrodynamic velocity of the mixture is vh at order ε−1. It is then
necessary to properly delineate the possible choices for the w velocity, which should
not be confused with a change of reference frame, since it only influences the electron
Chapman–Enskog expansion.

Lemma 4.1. In the chosen reference frame, any velocity w leads to a new definition
of φw

e for which property 4.1 is preserved and thus leads to an equivalent solvability
condition for φw

e as for φe. Moreover, the solution for φw
e is completely equivalent

to the solution for φe.

Proof. It is sufficient to note that the difference δφw
e = φw

e − φe = −MhCe ·w/Te

is orthogonal to the collisional invariants 〈〈f0
e δφ

w
e , ψ̂

l
e〉〉e = 0, l ∈ {1, 2}.
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For our choice of moving frame u = vh, the electron thermalization naturally
occurs in the “appropriate” reference frame in close connection to the physics of
the problem, and there is no need to use the above-mentioned property in order to
conduct the solution at order ε−1. Therefore, we take w = 0 in the following. We
will also have to check the validity of such a strategy at higher orders; we will come
back to this point in Sec. 4.5.

As mentioned earlier, the partial collision operators J0
ei, i ∈ H, are not orthogo-

nal to the space spanned by the vector Ce. However, an electron momentum relation
is obtained by projecting Eq. (4.9) onto this space. First, the electron pressure, diffu-
sion velocity, mean velocity, conduction current density in the mean heavy-particle
velocity frame, and conduction current density in the inertial reference frame are
defined as

pe = neTe, (4.15)

Ve =
1
ne

∫
Cef

0
e φedCe, ve = vh +

1
Mh

Ve, (4.16)

Je = neqeVe, je = neqeve. (4.17)

Then, we have the following proposition.

Proposition 4.3. Considering f0
e given by Eq. (4.7) and f0

i , i ∈ H, by Eq. (4.8),
the zeroth-order momentum transferred from electrons to heavy particles reads∑

j∈H

〈〈J0
ej(f

0
e φe, f

0
j ),Ce〉〉e =

1
Mh

∂xpe − neqe
Mh

E− δb1je ∧B. (4.18)

Proof. Equation (4.9) is projected onto the space spanned by the vector Ce

−〈〈f0
e Fe(φe),Ce〉〉e = 〈〈D̂−1

e ,Ce〉〉e + δb1qe〈〈∂Ce
(f0

e φe) · (Ce ∧B),Ce〉〉e.
Then, Eq. (4.18) is readily established by simplifying the left-hand side by means
of Eq. (2.36), 〈〈Ce, Jee〉〉e = 0, at order ε and by integrating by parts the right-hand
side.

The zeroth-order momentum transferred from electrons to heavy particles is
thus expressed in terms of the electron pressure and electric force. In addition,
the following lemma allows for the momentum transferred from heavy particles to
electrons to be calculated at order zero.

Lemma 4.2. Considering f0
e given by Eq. (4.7) and f0

i , i ∈ H, by Eq. (4.8),
the net zeroth-order momentum exchanged between electrons and heavy particles
vanishes, i.e.

〈〈J1
he(f

0
h , f

0
e φe), ψ̂nh+ν

h 〉〉h +
∑
j∈H

〈〈J0
ej(f

0
e φe, f

0
j ), Ceν〉〉e = 0, (4.19)

for ν ∈ {1, 2, 3}.
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Proof. Equation (4.19) is derived from Eq. (3.19) at order ε2 based on Coroll-
aries 3.1–3.5.

Moreover, the zeroth-order momentum transferred from heavy particles to elec-
trons can be directly calculated after introducing the average force of an electron
acting on a heavy particle i given by

Fie =
∫
Q

(1)
ie (|γe|2)|γe|γef

0
e (γe)φe(γe)dγe, i ∈ H. (4.20)

Lemma 4.3. Considering f0
e given by Eq. (4.7) and f0

i , i ∈ H, by Eq. (4.8), the
zeroth-order momentum transferred from heavy particles to electrons reads

〈〈J1
he(f

0
h , f

0
e φe), ψ̂nh+ν

h 〉〉h =
∑
j∈H

njFjeν , (4.21)

for ν ∈ {1, 2, 3}.

Proof. Equation (4.21) is derived by means of Lemma 4.2, Theorem 3.2, and
definitions (3.10) and (4.20).

We will see that the average forces Fie, i ∈ H, contribute to the heavy-particle
diffusion driving forces and, in particular, yield anisotropic diffusion velocities for
the heavy particles in the b = 1 case.

4.4. Order ε0: Heavy-particle Euler equations

We derive Euler equations based on the heavy-particle Boltzmann equation (4.6) at
order ε0 corresponding to the macroscopic timescale t0. First, a linearized collision
operator is introduced for heavy particles.

Definition 4.2. The linearized collision operator Fh = (Fi)i∈H reads

Fi(φh) = − 1
f0

i

∑
j∈H

[Jij(f0
i φi, f

0
j ) + Jij(f0

i , f
0
j φj)], i ∈ H,

where f0
i , i ∈ H, is given by Eq. (4.8), for a family φh = (φi)i∈H.

The first nonvanishing term of the partial collision operator Jhe is not included
in the linearized collision operator since it is not orthogonal to Ih for the scalar
product 〈〈·, ·〉〉h. The kernel of Fh is given in the following property, the proof of
which is omitted since it is a well-established result.26

Property 4.2. The kernel of the linearized collision operator Fh is the space of
scalar collisional invariants Ih.

Furthermore, we define the heavy-particle pressure, ph = nhTh, the global pres-
sure, p = pe + ph, the heavy-particle charge, nhqh =

∑
j∈H njqj , the global charge,
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nq = neqe + nhqh, and the total current density I0 = nhqhvh + neqeve. The energy
transferred from heavy particles to electrons reads at order zero

∆E0
h = 〈〈J2

he(f
0
h, f

0
e ), ψ̂nh+4

h 〉〉h. (4.22)

This quantity is of the order of the thermal energy divided by the macroscopic
timescale, n0kBT

0/t0. The accurate Landau–Teller expression is calculated by
means of Corollary 3.2

∆E0
h =

3
2ne(Te − Th)

τ
,

1
τ

=
∑
j∈H

2nj

3nemj
νje, (4.23)

where τ is the average collision time at which this energy transfer occurs. Then,
the heavy-particle Euler equations are derived in the following proposition.

Proposition 4.4. If φh is a solution to Eq. (4.6) at order ε0, i.e.

f0
i Fi(φh) = −D0

i (f0
i ) + Ĵ0

i , i ∈ H, (4.24)

where f0
e is given by Eq. (4.7), f0

i , i ∈ H, by Eq. (4.8), and φe by Eqs. (4.9)–(4.10),
and if f0

h φh = (f0
i φi)i∈H satisfies the constraints

〈〈f0
h φh, ψ̂

l
h〉〉h = 0, l ∈ {1, . . . , nH + 4}, (4.25)

then, the zeroth-order conservation equations of heavy-particle mass, momentum
and energy read

∂tρi + ∂x · (ρivh) = 0, i ∈ H, (4.26)

∂t(ρhvh) + ∂x ·
(
ρhvh ⊗vh +

1
M2

h

pI

)
=

1
M2

h

nqE + δb1I0 ∧B, (4.27)

∂t(ρheh) + ∂x · (ρhehvh) = −ph∂x ·vh + ∆E0
h. (4.28)

Proof. Fredholm’s alternative31 represents the solvability condition of Eq. (4.24)

〈〈D0
h , ψ̂

l
h〉〉h = 〈〈Ĵ0

h, ψ̂
l
h〉〉h,

l ∈ {1, . . . , nH + 4}. Integrating by parts the left-hand side and simplifying the
right-hand side based on Theorem 3.1 and Corollary 3.2, one obtains Eqs. (4.26),
(4.28), and the following momentum conservation equation

−Mhρh
Dvh

Dt
− 1
Mh

∂xph +
1
Mh

nhqhE′

+ 〈〈J1
he

(
f0

h, f
0
e φe

)
, (ψ̂nh+ν

h )ν∈{1,2,3}〉〉h = 0. (4.29)

Simplifying this equation by means of the heavy-particle mass conservation equation
∂tρh + ∂x · (ρhvh) = 0 and Lemma 4.2, yields Eq. (4.27).
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4.5. Order ε0: Zeroth-order electron drift-diffusion equations

We derive zeroth-order electron drift-diffusion equations and a momentum relation
based on the electron Boltzmann equation (4.5) at order ε0 corresponding to the
macroscopic timescale t0. We also prove, at this order of the solution, that any
nonzero shift introduced at the previous order leads to a series of difficulties at the
present order. It thus demonstrates that the initial choice of reference frame leads
to a quite natural solution at successive orders.

Based on the Maxwell–Boltzmann electron distribution function previously
obtained in Eq. (4.7) we introduce the electron heat flux

qe =
∫

1
2
Ce ·CeCef

0
e φedCe. (4.30)

The energy transferred from electrons to heavy particles reads at order zero

∆E0
e =

∑
j∈H

〈〈J2
ej(f

0
e , f

0
j ), ψ̂2

e 〉〉e. (4.31)

This expression is calculated by means of Eq. (3.20) at order ε2

∆E0
e + ∆E0

h = 0, (4.32)

where ∆E0
h is given by Eq. (4.23). Then, the zeroth-order electron drift-diffusion

equations are derived in the following proposition.

Proposition 4.5. If φ2
e is a solution to Eq. (4.5) at order ε0, i.e.

f0
e Fe(φ2

e) + δb1qe∂Ce
(f0

e φ
2
e) ·Ce ∧B

= −D̂0
e (f0

e , φe) + Jee(f0
e φe, f

0
e φe) + Ĵ0

e , (4.33)

where f0
e is given by Eq. (4.7), f0

i , i ∈ H, by Eq. (4.8), φe by Eqs. (4.9)–(4.10), and
φi, i ∈ H by Eqs. (4.24)–(4.25), and if f0

e φ
2
e satisfies the constraints

〈〈f0
e φ

2
e , ψ̂

l
e〉〉e = 0, l ∈ {1, 2}, (4.34)

then, the zeroth-order conservation equations of electron mass and energy read

∂tρe + ∂x ·
(
ρevh +

1
Mh

ρeVe

)
= 0, (4.35)

∂t(ρeee) + ∂x · (ρeeevh) = −pe∂x ·vh − 1
Mh

∂x ·qe +
1
Mh

Je ·E′ + ∆E0
e .

(4.36)

Proof. Fredholm’s alternative31 represents the solvability condition of Eq. (4.33)

〈〈D̂0
e , ψ̂

l
e〉〉e = 〈〈Ĵ0

e , ψ̂
l
e〉〉e, l ∈ {1, 2}.

Integrating by parts the left-hand side and simplifying the right-hand side based
on Theorem 3.2 and Corollary 3.5 yields Eqs. (4.35) and (4.36).
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Lemma 4.4. In the chosen reference frame, any velocity w leads to a new definition
of φw2

e in Eq. (4.14), for which property 4.1 is preserved, and thus leads to an
equivalent solvability condition for φw2

e and φ2
e . However, the solution for φw2

e is
not equivalent to the solution for φ2

e : in particular, the expansion corresponding to
w 	= 0 yields a nonstandard Chapman–Enskog expansion where the second-order
perturbation function does not satisfy the scalar constraints (4.34).

Proof. Using Eq. (4.14), the difference between φw2
e and φ2

e reads

δφw2
e = φw2

e − φ2
e = −Mh

Te
(Ce ·w)φe +

M2
h

2Te

[
w ·w +

(Ce ·w)2

Te

]
.

The projection of δφw2
e onto the collisional invariants is given by

〈〈f0
e δφ

w2
e , ψ̂1

e 〉〉e =
Mh

Te
new · (Mhw − Ve),

〈〈f0
e δφ

w2
e , ψ̂2

e 〉〉e = Mhw ·
(

2Mhnew − 1
Te

qe

)
.

The difference δφw2
e is then orthogonal to the collisional invariants if and only if

w = 0. To conclude, the solution for φw2
e yields a linearized Boltzmann equation

where the right-hand side is orthogonal to the collisional invariants — a direct
calculation shows that Fe(δφw2

e ) + δb1qe∂Ce
(δφw2

e ) ·Ce ∧B is orthogonal to the
collisional invariants — whereas the scalar constraints on the unknown function
φw2

e are not zero.

Consequently, for the reasons invoked so far, we will not try to shift the center
of the Maxwell–Boltzmann distribution for electrons and stick with w = 0 at all
orders.

We define the electron viscous tensor, second-order electron diffusion velocity,
and second-order current density as

Πe =
∫

Ce ⊗Cef
0
e φedCe, (4.37)

V2
e =

1
ne

∫
Cef

0
e φ

2
edCe, (4.38)

J2
e = neqeV2

e . (4.39)

A first-order electron momentum relation is given in the following proposition.

Proposition 4.6. Considering f0
e given by Eq. (4.7), f0

i , i ∈ H, by Eq. (4.8), φe

by Eqs. (4.9)–(4.10), φi, i ∈ H, by Eqs. (4.24)–(4.25), and φ2
e by Eqs. (4.33)–(4.34),

the first-order momentum transferred from electrons to heavy particles reads∑
j∈H

〈〈J0
ej(f

0
e φ

2
e , f

0
j ),Ce〉〉e + 〈〈Ĵ0

e ,Ce〉〉e =
1
Mh

∂x ·Πe −
(
δb0je + δb1J2

e

) ∧B.

(4.40)
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Proof. Equation (4.33) is projected onto the space spanned by the vector Ce

−〈〈f0
e Fe(φ2

e),Ce〉〉e + 〈〈Ĵ0
e ,Ce〉〉e

= D̂0
e (f0

e , φe) + δb1qe〈〈∂Ce
(f0

e φ
2
e) ·Ce ∧B,Ce〉〉e.

Then, Eq. (4.40) is readily established by simplifying the left-hand side by means
of Eq. (2.36) at order ε2, 〈〈Ce, Jee〉〉e = 0, and by integrating by parts the
right-hand side.

The first-order momentum transferred from electrons to heavy particles is thus
expressed in terms of the electron viscous tensor and electric force. The following
lemma allows for the momentum transferred from heavy particles to electrons to
be calculated at order ε.

Lemma 4.5. Considering f0
e given by Eq. (4.7), f0

i , i ∈ H, by Eq. (4.8), φe

by Eqs. (4.9)–(4.10), φi, i ∈ H, by Eqs. (4.24)–(4.25), and φ2
e by Eqs. (4.33)–

(4.34), the net first-order momentum exchanged between electrons and heavy parti-
cles vanishes, i.e.

〈〈Ĵ1
h, ψ̂

nh+ν
h 〉〉h +

∑
j∈H

〈〈J0
ej(f

0
e φ

2
e , f

0
j ), Ceν〉〉e + 〈〈Ĵ0

e , Ceν〉〉e = 0, ν ∈ {1, 2, 3}.

(4.41)

Proof. Equation (4.41) is derived from Eq. (3.19) at order ε2 based on Corollar-
ies 3.1–3.6.

4.6. Order ε: Heavy-particle Navier–Stokes equations

We derive Navier–Stokes equations based on the heavy-particle Boltzmann equa-
tion (4.6) at order ε. First, we introduce the diffusion velocity and mean velocity
of species i ∈ H,

Vi =
1
ni

∫
Cif

0
i φidCi, vi = vh +

ε

Mh
Vi, i ∈ H, (4.42)

the heavy-particle viscous tensor,

Πh =
∑
j∈H

∫
mjCj ⊗Cjf

0
j φjdCj , (4.43)

the second-order electron mean velocity,

v2
e = vh +

1
Mh

Ve +
ε

Mh
V2

e , (4.44)

the heavy-particle heat flux,

qh =
∑
j∈H

∫
1
2
mjCj ·CjCjf

0
j φjdCj , (4.45)

the heavy-particle conduction current density in the mean heavy-particle velocity
frame, the heavy-particle conduction current density in the inertial reference frame,
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the second-order electron conduction current density in the inertial reference frame,
and the total current density,

Jh =
∑
j∈H

njqjVj , jh =
∑
j∈H

njqjvj , j2e = neqev2
e , I = jh + j2e . (4.46)

Furthermore, we define the energy transferred from heavy particles to electrons at
order ε as

∆E1
h = 〈〈J1

he(f
0
h φh, f

0
e φe), ψ̂nh+4

h 〉〉h + 〈〈J2
he(f

0
h , f

0
e φe), ψ̂nh+4

h 〉〉h
+ 〈〈J2

he(f
0
h φh, f

0
e ), ψ̂nh+4

h 〉〉h. (4.47)

The first term can be calculated by means of Theorem 3.1

〈〈J1
he(f

0
h φh, f

0
e φe), ψ̂nh+4

h 〉〉h =
∑
j∈H

njVj ·Fje, (4.48)

and the two other terms will be shown to vanish in Sec. 5. Then, we establish
the following lemma used in the derivation of the heavy-particle Navier–Stokes
equations.

Lemma 4.6. Considering f0
e given by Eq. (4.7), f0

i , i ∈ H, by Eq. (4.8), φe by
Eqs. (4.9)–(4.10), φi, i ∈ H, by Eqs. (4.24)–(4.25), and φ2

e by Eqs. (4.33)–(4.34),
the mass transferred at order ε from heavy particles to electrons vanishes, i.e.

〈〈Ĵ1
h, ψ̂

l
h〉〉h = 0, l ∈ {1, . . . , nh}. (4.49)

Proof. Equation (4.49) is readily derived from Eq. (3.18) at order ε3.

Proposition 4.7. If φ2
h is a solution to Eq. (2.30) at order ε1, i.e.

f0
i Fi(φ2

h) = −D1
i (f0

i , φi) +
∑
j∈H

Jij(f0
i φi, f

0
j φj) + Ĵ1

i , i ∈ H, (4.50)

where f0
e is given by Eq. (4.7), f0

i , i ∈ H, by Eq. (4.8), φe by Eqs. (4.9)–(4.10), φi,

i ∈ H, by Eqs. (4.24)–(4.25), and φ2
e by Eqs. (4.33)–(4.34), and if f0

h φ
2
h = (f0

i φ
2
i )i∈H

satisfies the constraints

〈〈f0
hφ

2
h, ψ̂

l
h〉〉h = 0, l ∈ {1, . . . , nH + 4}, (4.51)

then, the first-order conservation equations of heavy-particle mass, momentum and
energy read

∂tρi + ∂x ·
(
ρivh +

ε

Mh
ρiVi

)
= 0, i ∈ H, (4.52)

∂t(ρhvh) + ∂x ·
(
ρhvh ⊗vh +

1
M2

h

pI

)
= − ε

M2
h

∂x · (Πh + Πe) +
1
M2

h

nqE + [δb0I0 + δb1I]∧B, (4.53)
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∂t(ρheh) + ∂x · (ρhehvh)

= −(phI + εΠh):∂xvh − ε

Mh
∂x ·qh +

ε

Mh
Jh ·E′ + ∆E0

h + ε∆E1
h. (4.54)

Proof. The Chapman–Enskog method allows for the following conservation equa-
tions to be derived

〈〈D0
h , ψ̂

l
h〉〉h + ε〈〈D1

h , ψ̂
l
h〉〉h = 〈〈Ĵ0

h, ψ̂
l
h〉〉h + ε〈〈Ĵ1

h, ψ̂
l
h〉〉h,

l ∈ {1, . . . , nH+4}. Integrating by parts the left-hand side and simplifying the right-
hand side based on the proof of heavy-particle Euler Eqs. (4.26)–(4.28), Proposi-
tion 4.6, Lemmas 4.5 and 4.6, one obtains Eqs. (4.52)–(4.54).

Remark 4.1. When only one single type of heavy particles is considered, the
first-order energy transfer term, heavy-particle diffusion velocities, and conduc-
tion current degenerate, ∆E1

h = 0, Vi = 0, i ∈ H, Jh = 0, the total current
is simplified as well, I = nqvh + neqeVe/Mh. Therefore, we retrieve the for-
malism of Degond and Lucquin. In such a case, the Navier–Stokes system can
be coupled to the system of drift-diffusion equations for the electrons obtained
at order ε0 in the previous section. Since no energy transfer occurs at order
ε1, there is no need to solve the electrons at order ε1 to obtain a conservative
model which insures positivity of the entropy production. However, this oversim-
plified case hides the details of the complex interaction between the electrons and
heavy particles which is exhibited by the system of conservation Eqs. (4.52)–(4.54).
For a multicomponent mixture of heavy particles, thus, we have to extend one
order further the model obtained so far for the electrons, as done in the following
section.

4.7. Order ε: First-order electron drift-diffusion equations

We derive first-order electron drift-diffusion equations based on the electron Boltz-
mann equation (4.5) at order ε1.

We define the second-order electron heat flux

q2
e =

∫
1
2
Ce ·CeCef

0
e φ

2
edCe. (4.55)

The energy transferred from electrons to heavy particles at order ε is calculated by
means of Eq. (3.20) at order ε3

∆E1
e + ∆E1

h = 0, (4.56)

where ∆E1
h is given by Eq. (4.47). Moreover, we establish the following lemma used

in the derivation of the first-order electron drift-diffusion equations.
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Lemma 4.7. Considering f0
e given by Eq. (4.7), f0

i , i ∈ H, by Eq. (4.8), φe by
Eqs. (4.9)–(4.10), φi, i ∈ H, by Eqs. (4.24)–(4.25), and φ2

e by Eqs. (4.33)–(4.34),
the mass transferred at order ε from electrons to heavy particles vanishes, i.e.

〈〈Ĵ1
e , ψ̂

1
e 〉〉e = 0. (4.57)

Proof. Equation (4.57) is readily derived from Eq. (3.18) at order ε3.

Proposition 4.8. If φ3
e is a solution to Eq. (4.5) at order ε1, i.e.

f0
e Fe(φ3

e ) + δb1qe∂Ce
(f0

e φ
3
e ) ·Ce ∧B = −D̂1

e (f0
e , φe, φ

2
e) + Jee(f0

e φ
2
e , f

0
e φe)

+ Jee(f0
e φe, f

0
e φ

2
e) + Ĵ1

e , (4.58)

where f0
e is given by Eq. (4.7), f0

i , i ∈ H, by Eq. (4.8), φe by Eqs. (4.9)–(4.10), φi,

i ∈ H, by Eqs. (4.24)–(4.25), φ2
e by Eqs. (4.33)–(4.34), and φ2

i , i ∈ H, by Eqs. (4.50)–
(4.51), and if f0

e φ
3
e satisfies the constraints

〈〈f0
e φ

3
e , ψ̂

l
e〉〉e = 0, l ∈ {1, 2}, (4.59)

then, the first-order conservation equations of electron mass and energy read

∂tρe + ∂x ·
[
ρe

(
vh +

1
Mh

(Ve + εV2
e)
)]

= 0, (4.60)

∂t(ρeee) + ∂x · (ρeeevh) = −pe∂x ·vh − 1
Mh

∂x · (qe + εq2
e)

+
1
Mh

(Je + εJ2
e) ·E′ + δb0εMhJe ·vh ∧B

+ ∆E0
e + ε∆E1

e . (4.61)

Proof. The Chapman–Enskog method allows for the following conservation equa-
tions to be derived

〈〈D̂0
e , ψ̂

l
e〉〉e + ε〈〈D̂1

e , ψ̂
l
e〉〉e = 〈〈Ĵ0

e , ψ̂
l
e〉〉e + ε〈〈Ĵ1

e , ψ̂
l
e〉〉e, l ∈ {1, 2}.

Integrating by parts the left-hand side and simplifying the right-hand side based
on Lemma 4.7, one obtains Eqs. (4.60)–(4.61).

Before reaching Sec. 5 in which the transport flux expressions are evaluated, we
come back to the question of the influence of the choice of reference frame.

4.8. About the necessity of working in the vh frame

As mentioned earlier, the mean heavy-particle velocity frame is not commonly
adopted in the literature to conduct the Chapman–Enskog expansion. We have
already emphasized that the choice of the hydrodynamic velocity frame is not appro-
priate insofar as the global hydrodynamic velocity v depends on the ε parameter.
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Besides, the choice of the inertial reference frame gives a vanishing mean velocity
of the electrons; Degond and Lucquin21 and Lucquin37, 38 reach such a conclusion.
However, since the expansion of the collision operators in terms of ε depends on the
choice of reference frame (see Remark 3.1) and since the choice of the inertial refer-
ence frame prevents some terms from vanishing (such as Ju1

ei (fu0
e , fu0

i ), i ∈ H), we
will first show that these authors compensate the presence of nonzero terms in the
integro-differential equations by the help of the w velocity introduced in Sec. 4.3.
This is acceptable for the solution for φe, as proved in the following.

Let us review the Chapman–Enskog expansion in a general frame. Considering
a frame moving with the velocity u, the peculiar velocities are given by

Cu
e = ce − εMhu, Cu

i = ci −Mhu, i ∈ H. (4.62)

The space of scalar electron collisional invariants Iu
e is spanned by the following

elements 
ψ̂u,1

e = 1,

ψ̂u,2
e =

1
2
Cu

e ·Cu
e ,

the space of scalar heavy-particle collisional invariants Iu
h by

ψ̂u,j
h = (miδij)i∈H, j ∈ H,

ψ̂u,nH+ν
h = (miC

u
iν)i∈H, ν ∈ {1, 2, 3},

ψ̂u,nH+4
h =

(
1
2
miCu

i ·Cu
i

)
i∈H

,

and the macroscopic properties are expressed as partial scalar products of the dis-
tribution functions and the collisional invariants

〈〈fu
e , ψ̂

u,1
e 〉〉ue = ρe

〈〈fu
e , ψ̂

u,2
e 〉〉ue =

3
2
neTe +MhneVe · (u − vh)ε2 +

1
2
M2

hne|u − vh|2ε2 + O(ε3),

and 
〈〈fu

h , ψ̂
u,i
h 〉〉uh = ρi, i ∈ H,

〈〈fu
h , ψ̂

u,nH+ν
h 〉〉uh = ρhMh(vhν − uν), ν ∈ {1, 2, 3},

〈〈fu
h , ψ̂

u,nH+4
h 〉〉uh =

3
2
nhTh +

1
2
M2

hρh|u− vh|2,
where the temperatures are defined in the heavy-particle reference frame, as usual.
Similarly to the low Mach number approximation for neutral gases, we decouple
the electron thermal energy from the mixture kinetic energy in the limit ε→ 0.

Then, we rewrite the Chapman–Enskog expansion of Sec. 4 in the u frame.
First, let us reformulate two propositions from the beginning of this section.
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Proposition 4.9. (Order ε−2: electron thermalization) The zeroth-order electron
distribution function fu0

e , solution to Eq. (4.5) at order ε−2, i.e. Du,−2
e (fu0

e ) =
Ju,−2
e , that satisfies the scalar constraints 〈〈fu0

e , ψ̂u,l
e 〉〉ue = limε→0〈〈fu

e , ψ̂
u,l
e 〉〉ue , l ∈

{1, 2}, is a Maxwell–Boltzmann distribution function at the electron temperature

fu0
e = ne

(
1

2πTe

)3/2

exp
(
− 1

2Te
Cu

e ·Cu
e

)
. (4.63)

Proof. The proof is identical to the one of Proposition 4.1.

Proposition 4.10. (Order ε−1: heavy-particle thermalization) Considering fu0
e

given by Eq. (4.63), the zeroth-order family of heavy-particle distribution functions
fu0

h solution to Eq. (4.6) at order ε−1, i.e. J
u,−1
i = 0, i ∈ H, that satisfies the

scalar constraints 〈〈fu0
h , ψ̂u,l

h 〉〉ue = 〈〈fu
h , ψ̂

u,l
h 〉〉ue , l ∈ {1, . . . , nH+ 4}, is a family of

Maxwell–Boltzmann distribution functions at the heavy-particle temperature

fu0
i = ni

(
mi

2πTh

)3/2

exp
(
− mi

2Th
|Cu

i −Mh(vh−u)|2
)
, i ∈ H. (4.64)

Proof. The proof is identical to the one of Proposition 4.2.

At this step, two properties appear: the electron thermalization takes place in
any velocity frame, whereas the zeroth-order heavy-particle distribution functions
do not depend on the selected frame. Indeed, we clearly have fu0

i = f0
i , i ∈ H, for

all velocity u.
Considering then the Boltzmann equation at order ε−1, the first-order electron

perturbation function φu
e satisfies the linearized Boltzmann equation

Fe(φu
e ) + δb1qe∂Cu

e
(φu

e ) ·Ce ∧B

= − 1
fu0
e

D̂u,−1
e (fu0

e ) +
∑
i∈H

ni
Mh

Te
Q

(1)
ei (|Cu

e |2)|Cu
e |(vh − u) ·Cu

e , (4.65)

with the constraints

〈〈fu0
e φu

e , ψ̂
u,l
e 〉〉ue = 0, l ∈ {1, 2}. (4.66)

The right-hand side of Eq. (4.65) is orthogonal to the collisional invariants, that is
the solvability condition. Moreover, in order to avoid treating the newly introduced
term in the integro-differential equation, one can use the absence of momentum
constraints on the electron distribution function and introduce a velocity shift w =
vh − u and notice that37

Fe(Cu
e ) = −

∑
i∈H

niQ
(1)
ei (|Cu

e |2)|Cu
e |Cu

e , (4.67)
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we thus obtain that the conduction of the Chapman–Enskog expansion in the u
frame is equivalent to that in the vh frame with

φu
e = φe +

Mh

Te
(vh − u) ·Cu

e .

As already mentioned in Sec. 4.3, the electron velocity ve can be split into two
parts at the same order of the multiscale expansion ve = u + Vu

e /Mh + O(ε),
with Vu

e = Ve +Mh(vh − u). We have thus provided a nice interpretation of the
algebra proposed in Lucquin37 where the use of w = vh allows then to eliminate the
term

∑
j∈H J1

ej(f
u0
e , fu0

j ) in the integro-differential equation for φu
e obtained when

working in the inertial reference frame u = 0.
It amounts to “coming back” to the heavy-particle reference frame. Let us

emphasize at this point, that the set of equations obtained for the heavy-
particle Euler Eqs. (4.26)–(4.28) coupled to the zeroth-order electron drift-diffusion
Eqs. (4.35)–(4.36) is identical to the set obtained in Lucquin.37 At this order of the
expansion, while still equivalent to our study and yielding the same macroscopic
equations, the inertial reference frame leads to an artificial complexity. This is a
justification of the choices made in Sec. 2.5 in terms of the reference frame and
associated simplified algebra. At order ε, which yields heavy-particle Navier–Stokes
equations coupled to first-order electron drift-diffusion equations, we realize that
such a compensation used through the velocity shift w has an undesirable influ-
ence on the structure of the expansion at the next order (see Lemma 4.4) and
hence makes the solution for φw2

e difficult. Concerning the heavy-particle Boltz-
mann equation at order ε0, the first-order perturbation functions φu

i , i ∈ H, also
satisfy Eq. (4.24), and that implies that φu

i = φi, i ∈ H.

5. Transport Coefficients

In this section, we investigate the electron and heavy-particle perturbation func-
tions in order to obtain expressions for the transport fluxes. We deal with strongly
magnetized plasmas (b = 1) having anisotropic transport coefficients, both the
cases of weakly magnetized plasmas (b = 0) and unmagnetized plasmas (b < 0) are
investigated at the end of this section.

5.1. Extra notations for anisotropy

We introduce some extra notations in order to conveniently express the solution to
the Boltzmann equation in the presence of a strong magnetic field. First, we define
a unit vector for the magnetic field B = B/|B| and also three direction matrices

M‖ = B⊗B, M⊥ = I − B⊗B, M� =

 0 −B3 B2

B3 0 −B1

−B2 B1 0

 ,
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so that we have for any vector x in three dimensions

x‖ = M‖x = x ·BB, x⊥ = M⊥x = x − x ·BB, x� = M�x = B∧x.

In the (x,B) plane, the vector x‖ is the component of x parallel to the magnetic
field and x⊥ its component perpendicular to the magnetic field. Thus, we have
x = x‖ + x⊥. The vector x� lies in the direction transverse to the (x,B) plane.
The three vectors x‖, x⊥ and x� are then mutually orthogonal. We will show
that the transport coefficients are anisotropic, as expressed by means of the matrix
notation ¯̄µ = µ‖M‖ +µ⊥M⊥ +µ�M�. In the b = 0 and b < 0 cases, the transport
coefficients are identical in the parallel and perpendicular directions, µ‖ = µ⊥, and
vanish in the transverse direction, µ� = 0.

Finally, the direction matrices satisfy the following two properties. The matrices
M‖, M⊥ and M� are linearly independent, that is

¯̄µ = 0 ⇒ µ‖ = µ⊥ = µ� = 0.

Moreover, the space spanned by the matrices M‖, M⊥ and M� is stable under
multiplication, since we have the following relations

M‖M‖ = M‖, M‖M⊥ = 0, M‖M� = 0,

M⊥M‖ = 0, M⊥M⊥ = M⊥, M⊥M� = M�,

M�M‖ = 0, M�M⊥ = M�, M�M� = −M⊥.

5.2. First-order electron perturbation function

The first-order perturbation function φe is a solution to Eq. (4.9)

Fe(φe) + qe∂Ce
(φe) ·Ce ∧B = Ψe, (5.1)

and satisfies the constraints (4.10), where Ψe is given by the expression Ψe =
−D̂−1

e (f0
e )/f0

e and f0
e by Eq. (4.7). After some algebra based on the expression for

f0
e , the quantity Ψe is transformed into

Ψe = −peΨDe
e ·de − Ψλ′

e
e ·∂x

(
1
Te

)
, (5.2)

where the electron diffusion driving force de is defined by the relation

de =
1
pe

∂xpe − neqe
pe

E′, (5.3)

and with

ΨDe
e =

1
Mhpe

Ce, Ψλ′
e

e =
1
Mh

(
5
2
Te − 1

2
Ce ·Ce

)
Ce. (5.4)

The right-hand side of Eq. (5.1) does not depend on the heavy-particle driving
forces. Therefore, the first-order electron perturbation function is decoupled from
the heavy particles.

The existence and uniqueness of a solution to Eq. (5.2) is given in the following
proposition.



April 7, 2009 15:19 WSPC/103-M3AS 00353

Kinetic Theory of Plasmas 571

Proposition 5.1. The scalar function φe given by

φe = −pe�[M‖ϕDe(1)
e + (M⊥ + iM�)ϕDe(2)

e ] ·de

−�[M‖ϕλ′
e(1)

e + (M⊥ + iM�)ϕλ′
e(2)

e ] ·∂x

(
1
Te

)
, (5.5)

is the solution to Eq. (5.1) under the constraints (4.10), where the vectorial functions
ϕ

De(1)
e , ϕ

De(2)
e , ϕ

λ′
e(1)

e , and ϕ
λ′
e(2)

e are the solutions to the equation

Fe(ϕ
µ(1)
e ) = Ψµ

e , (5.6)

(Fe + i|B|Fqe
e )(ϕµ(2)

e ) = Ψµ
e , (5.7)

where Fqe
e (u) = qeu, under the constraints

〈〈f0
e ϕµ(1)

e , ψ̂l
e〉〉e = 0, l ∈ {1, 2}, (5.8)

〈〈f0
e ϕµ(2)

e , ψ̂l
e〉〉e = 0, l ∈ {1, 2}, (5.9)

with µ ∈ {De, λ
′
e}.

Proof. By linearity and isotropy of the linearized Boltzmann operator Fe, the
development (5.2) of Ψe can be followed through for φe as well to give

φe = −peφ
De
e ·de − φλ′

e
e ·∂x

(
1
Te

)
.

The functions φµ
e , µ ∈ {De, λ

′
e}, are now vectorial and satisfy the equations

Fe(φµ
e ) + qeCe ∧B ·∂Ce

φµ
e = Ψµ

e , (5.10)

and the scalar constraints

〈〈f0
e φµ

e , ψ̂
l
e〉〉e = 0, l ∈ {1, 2}. (5.11)

We seek a solution φµ
e in the form

φµ
e = φµ(1)

e Ce + φµ(2)
e Ce ∧B + φµ(3)

e Ce ·BB,

where φµ(1)
e , φµ(2)

e and φµ(3)
e are scalar functions of Ce ·Ce, (Ce ·B)2 and B ·B, since

φµ
e must be invariant under a change of coordinates. Substituting this expansion

in (5.10), and using isotropy, Eq. (5.10) splits into three separate coupled equations

Fe(φ
µ(1)
e Ce) − qeB ·Bφµ(2)

e Ce = Ψµ
e , (5.12)

Fe(φ
µ(2)
e Ce ∧B) + qeφ

µ(1)
e Ce ∧B = 0, (5.13)

Fe(φ
µ(3)
e Ce ·BB) + qeCe ·Bφµ(2)

e B = 0. (5.14)

Further simplification is now obtained if, instead of three real quantities φµ(1)
e , φµ(2)

e

and φµ(3)
e , we introduce one real and one complex unknown defined by

ϕµ(1)
e = φµ(1)

e + B ·Bφµ(3)
e , ϕµ(2)

e = φµ(1)
e + i|B|φµ(2)

e .

Upon introducing ϕ
µ(1)
e = ϕ

µ(1)
e Ce and ϕ

µ(2)
e = ϕ

µ(2)
e Ce, Eqs. (5.12)–(5.14) can be

conveniently rewritten in terms of these new functions as Eqs. (5.6) and (5.7). Fur-
thermore, the constraints (5.11) are easily rewritten in the form given in Eqs. (5.8)
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and (5.9). Moreover, expression (5.5) for φe is immediately obtained using the
recombination formula

φµ
e = M‖ϕµ(1)

e + M⊥R(ϕµ(2)
e ) − M�I(ϕµ(2)

e ).

The structure of the integral equation (5.6) under the constraints (5.8) is stan-
dard and the structure of Eq. (5.7) under the constraints (5.9) is similar in a
complex framework. More specifically, the operator Fe + i|B|Fqe

e and the asso-
ciated bilinear form a(u,v) = 〈〈f0

e u, (Fe + i|B|Fqe
e )v〉〉e, defined on the proper

Hilbert space of complex isotropic squared integrable functions associated with
the scalar product [·, ·], are such that |a(u,u)| ≥ [u,u], which yields existence and
uniqueness thanks to the constraints. Moreover, from the isotropy of the opera-
tor Fe, the expressions ϕµ(1)

e and ϕ
µ(2)
e cannot be functions of (Ce ·B)2 as shown

in Ref. 26.
We further introduce the electron bracket operators [[·, ·]]e and ((·, ·))e associated

with the two operators Fe and Fqe
e . For any ξe and ζe, we define

[[ξe, ζe]]e = 〈〈f0
e ξe,Fe(ζe)〉〉e, ((ξe, ζe))e = |B| 〈〈f0

e ξe,F
qe
e (ζe)〉〉e.

These bracket operators expand into

[[ξe, ζe]]e =
1
2

∑
j∈H

nj

∫
σej(|Ce|2,ω · e)|Ce|3f0

e (|Ce|e)

× [ξe(|Ce|e) − ξe(|Ce|ω)]� [ζe(|Ce|e) − ζe(|Ce|ω)]dωded|Ce|

+
1
4

∫
σee1|Ce − Ce1|f0

e f
0
e1

× (ξe + ξe1 − ξ′e − ξ′e1)� (ζe + ζe1 − ζ′e − ζ′e1)dωdCedCe1,

and

((ξe, ζe))e = |B|qe
∫
f0
e ξe � ζ̄edCe.

The bracket operator [[·, ·]]e is hermitian [[ξe, ζe]]e = [[ζe, ξe]]e, positive semi-definite
[[ξe, ξe]]e ≥ 0, and its kernel is spanned by the collisional invariants, i.e. [[ξe, ξe]]e =
0 implies that ξe is a (tensorial) collisional invariant, or in other words, all its
tensorial components are in the space Ie. The bracket operator ((·, ·))e is hermitian
((ξe, ζe))e = ((ζe, ξe))e and negative definite ((ξe, ξe))e < 0 if ξe 	= 0.

Remark 5.1. In the limit case in which B tends to zero, expression (5.5) for the
first-order electron perturbation function reduces to an isotropic form. We prove
indeed that, for µ ∈ {De, λ

′
e}, ϕ

µ(1)
e does not depend on the magnetic field and that

ϕ
µ(2)
e converges to ϕ

µ(1)
e for a vanishing magnetic field.

The expression for the electron diffusion velocity is given in the following
proposition.
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Proposition 5.2. The electron diffusion velocity Ve reads

Ve = − ¯̄Dede − ¯̄θe∂xlnTe, (5.15)

where the diffusion coefficients and thermal diffusion coefficients are given by

D
‖
e =

1
3
peTeMh[[ϕDe(1)

e ,ϕDe(1)
e ]]e, θ

‖
e = −1

3
Mh[[ϕDe(1)

e ,ϕ
λ′
e(1)

e ]]e,

D⊥
e =

1
3
peTeMh[[ϕDe(2)

e ,ϕDe(2)
e ]]e, θ⊥e = −1

3
Mh[[ϕDe(2)

e ,ϕ
λ′
e(2)

e ]]e,

D�
e = −1

3
peTeMh((ϕDe(2)

e ,ϕDe(2)
e ))e, θ�e =

1
3
Mh((ϕDe(2)

e ,ϕ
λ′
e(2)

e ))e.

(5.16)

Note that these expressions are real, in particular for θ⊥e and θ�e , although functions
ϕ

De(2)
e and ϕ

λ′
e(2)

e are complex.

Proof. Using definition (4.16) of the diffusion velocity Ve and expression (5.4) for
ΨDe

e yields

Ve = TeMh〈〈ΨDe
e , f0

e φe〉〉e.
Further substituting expansion (5.5) into this equation, and using isotropy,
we obtain expression (5.15) for the diffusion velocity Ve, where the trans-
port coefficients are defined by D

‖
e = 1

3peTeMh〈〈f0
e ϕ

De(1)
e ,ΨDe

e 〉〉e, θ
‖
e =

− 1
3Mh〈〈f0

e ϕ
λ′
e(1)

e ,ΨDe
e 〉〉e, D⊥

e + iD�
e = 1

3peTeMh〈〈f0
e ϕ

De(2)
e ,ΨDe

e 〉〉e, θ⊥e + iθ�e =

− 1
3Mh〈〈f0

e ϕ
λ′
e(2)

e ,ΨDe
e 〉〉e. Equations (5.6) and (5.7) for µ = De classically yields26, 28

D
‖
e =

1
3
peTeMh[[ϕDe(1)

e ,ϕDe(1)
e ]]e,

D⊥
e + iD�

e =
1
3
peTeMh([[ϕDe(2)

e ,ϕDe(2)
e ]]e − i((ϕDe(2)

e ,ϕDe(2)
e ))e),

θ
‖
e = −1

3
Mh[[ϕλ′

e(1)
e ,ϕDe(1)

e ]]e,

θ⊥e + iθ�e = −1
3
Mh([[ϕλ′

e(2)
e ,ϕDe(2)

e ]]e − i((ϕλ′
e(2)

e ,ϕDe(2)
e ))e).

As the bracket operators [[·, ·]]e and ((·, ·))e are hermitian, we immediately obtain the
expressions for D‖

e , D⊥
e , D�

e and θ‖e . Concerning θ⊥e and θ�e , we use the imaginary
part of Eq. (5.7) for µ ∈ {De, λ

′
e} to establish the relation


[(Fe + i|B|Fqe
e )(ϕµ(2)

e )] = 0, µ ∈ {De, λ
′
e}.

Taking the scalar product of this equation with ϕ
µ(2)
e , µ ∈ {De, λ

′
e}, yields the

following four relations

[[�ϕ
De(2)
e ,
ϕ

λ′
e(2)

e ]]e + ((�ϕ
De(2)
e ,�ϕ

λ′
e(2)

e ))e = 0,

[[
ϕ
De(2)
e ,
ϕ

λ′
e(2)

e ]]e + ((
ϕ
De(2)
e ,�ϕ

λ′
e(2)

e ))e = 0,

[[
ϕ
De(2)
e ,
ϕ

λ′
e(2)

e ]]e + ((�ϕ
De(2)
e ,
ϕ

λ′
e(2)

e ))e = 0,

[[
ϕ
De(2)
e ,�ϕ

λ′
e(2)

e ]]e + ((�ϕ
De(2)
e ,�ϕ

λ′
e(2)

e ))e = 0.
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Then, a direct calculation implies that

�[[ϕDe(2)
e ,ϕ

λ′
e(2)

e ]]e = − 3
Mh

θ⊥e , �((ϕDe(2)
e ,ϕ

λ′
e(2)

e ))e =
3
Mh

θ�e ,


[[ϕDe(2)
e ,ϕ

λ′
e(2)

e ]]e = 0, 
((ϕDe(2)
e ,ϕ

λ′
e(2)

e ))e = 0,

so that θ⊥e = − 1
3Mh[[ϕDe(2)

e ,ϕ
λ′
e(2)

e ]]e and θ�e = 1
3Mh((ϕDe(2)

e ,ϕ
λ′
e(2)

e ))e.

An alternative form of the diffusion velocity is given by

Ve = − ¯̄De(de + ¯̄χe∂xlnTe), (5.17)

where the real-valued thermal diffusion ratios χ‖
e , χ⊥

e , χ�
e are defined by the relation

¯̄θe = ¯̄De ¯̄χe. (5.18)

Indeed the compact matrix relation (5.18) well defines the matrix thermal diffusion
ratio ¯̄χe because (5.18) is equivalent to both the split equations

θ‖e = D‖
eχ

‖
e , θ⊥e + iθ�e = (D⊥

e + iD�
e )(χ⊥

e + iχ�
e ).

The viscous tensor is calculated in the following proposition.

Proposition 5.3. The electron viscous tensor vanishes, i.e.

Πe = 0. (5.19)

Proof. Using definition (4.37) of the stress tensor and expression (5.5) for φe, one
readily obtains that Πe = 0.

The electron heat flux is given in the following proposition.

Proposition 5.4. The electron heat flux qe reads

qe = − ¯̄λ′e∂xTe − pe
¯̄θede + ρeheVe (5.20)

where the partial thermal conductivities are given by

λ
′‖
e =

1
3T 2

e

Mh[[ϕλ′
e(1)

e ,ϕ
λ′
e(1)

e ]]e,

λ′⊥e =
1

3T 2
e

Mh[[ϕλ′
e(2)

e ,ϕ
λ′
e(2)

e ]]e,

λ′�e = − 1
3T 2

e

Mh((ϕλ′
e(2)

e ,ϕ
λ′
e(2)

e ))e.

(5.21)

Proof. Using definition (4.30) of the heat flux qe and expression (5.4) of Ψλ′
e

e yields

qe = ρeheVe −Mh〈〈Ψλ′
e

e , f
0
e φe〉〉e.

Further substituting expansion (5.5) into this equation, and using isotropy,
we obtain expression (5.20) for the heat flux qe where the transport coefficients
θ
‖
e , θ⊥e , θ�e are given in Eq. (5.16) and the partial thermal conductivities
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λ
′‖
e , λ′⊥e , λ′�e are defined by λ

′‖
e = 1

3T 2
e
Mh〈〈f0

e ϕ
λ′
e(1)

e ,Ψλ′
e

e 〉〉e, λ′⊥e + iλ′�e =
1

3T 2
e
Mh〈〈f0

e ϕ
λ′
e(2)

e ,Ψλ′
e

e 〉〉e. Equations (5.6) and (5.7) for µ = λe classically yields26, 28

λ′‖e =
1

3T 2
e

Mh [[ϕλ′
e(1)

e ,ϕ
λ′
e(1)

e ]]e,

λ′⊥e + iλ′�e =
1

3T 2
e

Mh([[ϕλ′
e(2)

e ,ϕ
λ′
e(2)

e ]]e − i((ϕλ′
e(2)

e ,ϕ
λ′
e(2)

e ))e).

As the bracket operators [[·, ·]]e and ((·, ·))e are hermitian, we immediately obtain
the expressions for λ′‖e , λ′⊥e and λ′�e .

Using the thermal diffusion ratios defined in Eq. (5.18), the electron heat flux
is rewritten

qe = −¯̄λe∂xTe + pe ¯̄χeVe + ρeheVe, (5.22)

where the thermal conductivities λ‖e , λ⊥e , λ�e are real quantities given by
¯̄λe = ¯̄λ′e − ne ¯̄χe

¯̄θe.

Finally, the first-order electron mass-energy flux vector

Fe = [qe − ρeheVe,Ve]
T

is proportional to the electron diffusion force vector Xe = (∂xlnTe, pede)T, as
expressed by the relation

Fe = − ¯̄Ae Xe, (5.23)

where the electron mass-energy transport matrix is given by

¯̄Ae =

Te
¯̄λ′e

¯̄θe

¯̄θe
1
pe

¯̄De

 . (5.24)

The positivity properties associated with the heat flux and diffusion velocities are
given in the following.

Property 5.1. Considering any two-dimensional real vectors x‖, x⊥ and x�, the
following two inequalities are satisfied:

〈A‖
ex‖,x‖〉 ≥ 0, (5.25)

〈A⊥
e x⊥ − A�

e x�,x⊥〉 + 〈A⊥
e x� + A�

e x⊥,x�〉 ≥ 0. (5.26)

Proof. Introducing x‖ = (x‖1, x
‖
2), x⊥ = (x⊥1 , x⊥2 ), and x� = (x�1 , x

�
2 ), expressions

(5.16) and (5.21) for transport coefficients yield

〈A‖
ex‖,x‖〉 =

TeMh

3
[[y(1),y(1)]]e,

〈A⊥
e x⊥ − A�

e x�,x⊥〉 + 〈A⊥
e x� + A�

e x⊥,x�〉 =
TeMh

3
[[y(2),y(2)]]e,
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with

y(1) = x
‖
2ϕ

De(1)
e − 1

Te
x
‖
1ϕ

λ′
e(1)

e ,

y(2) = (x⊥2 + ix�2 )ϕDe(2)
e − 1

Te
(x⊥1 + ix�1 )ϕλ′

e(2)
e .

Inequalities (5.25) and (5.26) are then obtained, thanks to the positivity of the
bracket operator [[·, ·]]e.

Remark 5.2. In the limit case in which B tends to zero, the behavior of the
transport coefficients can be investigated. We formally prove that the matrix A‖

e

does not depend on the magnetic field, that A⊥
e converges to A‖

e , and that A�
e

vanishes.

5.3. First-order heavy-particle perturbation function

The first-order perturbation function φh = (φi)i∈H is a solution to Eq. (4.24), i.e.

Fi(φh) = Ψi +
1
f0

i

Ĵ0
i , i ∈ H,

and satisfies the constraints (4.25), where Ψi = −D0
i (f0

i )/f0
i , i ∈ H. After some

lengthy calculation based on the expression (4.8) for f0
h , the Euler equations (4.26),

(4.28) and (4.29), Theorem 3.1 and Corollary 3.2, one obtains

Fi(φh) = −Ψηh

i : ∂xvh − ph

∑
j∈H

ΨDj

i · d̂j − Ψλ′
h

i ·∂x

(
1
Th

)
−ΨΘ

i (Te − Th), (5.27)

where

Ψηh

i =
mi

Th

(
Ci ⊗Ci − 1

3
Ci ·CiI

)
i ∈ H,

ΨDj

i =
1

Mhpi

(
δij − ρi

ρh

)
Ci i, j ∈ H,

Ψλ′
h

i =
1
Mh

(
5
2
Th − 1

2
miCi ·Ci

)
Ci i ∈ H,

ΨΘ
i =

2
T 2

h

 νie

3mi
−
∑
j∈H

njνje

nhmj

(
3
2
Th − 1

2
miCi ·Ci

)
i ∈ H.

(5.28)

Quantity pi = niTh stands for the partial pressure of species i ∈ H. A linearly
independent family of diffusion driving forces is also introduced

d̂i =
1
ph

∂xpi − niqi
ph

E′ − niMh

ph
Fie, i ∈ H. (5.29)

The average electron forces acting on the heavy particles belong to the category of
diffusion driving forces and allow for a coupling between the heavy particles and
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electrons. Expression for φe given in Eq. (5.5) and definition (4.20) implies that
Fie, i ∈ H, is proportional to the electron diffusion driving force and the electron
temperature gradient. Thus, the heavy-particle transport fluxes to be derived are
also expected to be proportional to the electron forces.

The existence and uniqueness of a solution to Eq. (5.27) is then established in
the following proposition.

Proposition 5.5. The family of scalar functions φh = (φi)i∈H, given by

φi = −φηh

i :∂xvh − ph

∑
j∈H

φ
Dj

i · d̂j − φ
λ′

h

i ·∂x

(
1
Th

)
− φΘ

i (Te − Th), i ∈ H,

(5.30)

is the solution to Eq. (5.27) under the constraints (4.25), where the family of tenso-
rial functions φηh

h = (φηh

i )i∈H, the families of vectorial functions φ
Dj

h = (φDj

i )i∈H,

j ∈ H, and φ
λ′

h

h = (φλ′
h

i )i∈H, and the family of scalar functions φΘ
h = (φΘ

i )i∈H are
the solutions to the equations

Fi(φ
µ
h) = Ψµ

i , i ∈ H, (5.31)

under the scalar constraints

〈〈f0
h φµ

h, ψ̂
l
h〉〉h = 0, l ∈ {1, . . . , nH + 4}, (5.32)

with µ ∈ {ηh, (Dj)j∈H, λ
′
h,Θ}.

Proof. By linearity and isotropy of the linearized Boltzmann operator Fi, the
development of Ψi can be followed through for φi as well. Therefore, φi is given
by Eq. (5.30) where the function families φµ

h, for µ ∈ {ηh, (Dj)j∈H, λ
′
h,Θ} satisfy

Eq. (5.31) under the scalar constraints (5.32). We seek a solution in the form

φµ
i = φ

µ(1)
i Ci, i ∈ H, µ ∈ {(Dj)j∈H, λ

′
h},

φηh

i = φ
η(1)
i

(
Ci ⊗Ci − 1

3
Ci ·CiI

)
, i ∈ H.

Quantities φµ(1)
i , µ ∈ {ηh, (Dj)j∈H, λ

′
h}, and φΘ

i are scalar functions of Ci ·Ci, for
i ∈ H, since φµ

h, µ ∈ {ηh, (Dj)j∈H, λ
′
h,Θ} must be invariant under a change of coor-

dinates. Uniqueness of the solution is readily proved based on the linearity property
of the operator Fh, its kernel given in property 4.2, and the constraints (4.25) sat-
isfied by φh.

We further introduce the heavy-particle bracket operator [[·, ·]]h associated with
the operator Fh. For any ξh, ζh, we define

[[ξh, ζh]]h = 〈〈f0
h ξh,Fh(ζh)〉〉h.
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This bracket operator expands into

[[ξh, ζh]]h =
1
4

∑
i,j∈H

∫
f0

i f
0
j (ξi + ξj − ξ′i − ξ′j)

� (ζi + ζj − ζ′i − ζ′j)|Ci − Cj |σijdωdCidCj .

This bracket operator [[·, ·]]h is hermitian, [[ξh, ζh]]h = [[ζh, ξh]]h, positive semi-
definite, [[ξh, ξh]]h ≥ 0, and its kernel is spanned by the collisional invariants, i.e.
[[ξh, ξh]]h = 0 implies that ξh is a (tensorial) collisional invariant, or in other words,
that all its tensorial components are in the space Ih. The expression for the heavy-
particle diffusion velocities is given in the following proposition.

Proposition 5.6. The diffusion velocity of species i ∈ H reads

Vi = −
∑
j∈H

Dijd̂j − θh
i ∂xlnTh, (5.33)

where the diffusion coefficients and thermal diffusion coefficients are given by

Dij =
1
3
phThMh[[φDi

h ,φ
Dj

h ]]
h
, i, j ∈ H,

θh
i = −1

3
Mh[[φDi

h ,φ
λ′

h

h ]]h, i ∈ H.
(5.34)

Proof. Using definition (4.42) of the diffusion velocity and expression (5.28) for
ΨDi

h , i ∈ H, yields

Vi = ThMh〈〈ΨDi

h , f0
hφh〉〉h, i ∈ H.

Further substituting expansion (5.30) into this equation, we obtain expression (5.33)
for the diffusion velocities.

From the properties of the bracket operator, we infer that the diffusion matrix
D is symmetric. Moreover, an alternative form for the diffusion velocities is given by

Vi = −
∑
j∈H

Dij

(
d̂j + χh

j ∂xlnTh

)
, i ∈ H, (5.35)

where the thermal diffusion ratios are defined from the relations
∑
j∈H

Dijχ
h
j = θh

i , i ∈ H,

∑
j∈H

χh
j = 0.

(5.36)

Then, we introduce the tensor

S = [∂xvh + (∂xvh)T] − 2
3
∂x ·vhI,

in order to express the viscous tensor in the following proposition.
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Proposition 5.7. The heavy-particle viscous tensor reads

Πh = −ηhS, (5.37)

where the shear viscosity is given by

ηh =
Th

10
[[φηh

h ,φηh

h ]]h. (5.38)

Proof. Using definition (4.43) of the viscous tensor and expression (5.28) for Ψηh

h

yields

Πh = Th〈〈Ψηh

h , f0
h φh〉〉h.

Further substituting expansion (5.30) into this equation, we obtain expression (5.37)
for the viscous tensor.

The expression for the heavy-particle heat flux is given in the following
proposition.

Proposition 5.8. The heavy-particle heat flux reads

qh = −λ′h∂xTh − ph

∑
j∈H

θh
j d̂j +

∑
j∈H

ρjhjVj , (5.39)

where the partial thermal conductivity is given by

λ′h =
1

3T 2
h

Mh[[φλ′
h

h ,φ
λ′

h

h ]]h. (5.40)

Proof. Using definition (4.45) of the heavy-particle heat flux and expression (5.28)
for Ψλ′

h
i yields

qh = −Mh〈〈Ψλ′
h

h , f0
h φh〉〉h +

5
2
Th

∑
j∈H

njVj .

Further substituting expansion (5.30) into this equation, we obtain expression (5.39)
for the heat flux.

Remark 5.3. The heavy-particle diffusion velocities and heat flux are thus pro-
portional to the electron driving force and electron temperature gradient through
the Fie contribution to d̂i, i ∈ H. Kolesnikov35 has already introduced electron
heavy-particle diffusion coefficients and thermal diffusion coefficients and ratios to
couple the heavy-particle diffusion velocities and heat flux to the electron forces.
Therefore, we propose to refer to this phenomenon as the Kolesnikov effect for the
heavy particles.

Using the thermal diffusion ratios defined in Eq. (5.36), the heavy-particle heat
flux can be rewritten

qh = −λh∂xTh + ph

∑
j∈H

χh
j Vj +

∑
j∈H

ρjhjVj , (5.41)
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where the thermal conductivity is given by

λh = λ′h − nh

∑
j∈H

χh
j θ

h
j . (5.42)

Finally, the first-order heavy-particle mass-energy flux vector

Fh =

qh −
∑
j∈H

ρjhjVj , (Vi)i∈H

T

,

is proportional to the heavy-particle diffusion force vector

Xh = (∂xlnTh, ph(d̂i)i∈H)T,

as expressed by the relation

Fh = −Ah Xh, (5.43)

where the heavy-particle mass-energy transport matrix is given by

Ah =

 Thλ
′
h [(θh

i )i∈H]T

(θh
i )i∈H

1
ph

(Dij)i,j∈H

 .

The positivity properties associated with the heat flux and diffusion velocities are
given in the following.

Property 5.2. The heavy-particle mass-energy transport matrix Ah is symmetric,
positive semi-definite, and its kernel is one dimensional and spanned by the vector
[0, (ρi)i∈H]T.

Proof. We consider the vector x = [xTh
, (xi)i∈H]T and the family yh = (yi)i∈H,

where

yi =
∑
j∈H

xjφ
Dj

i − 1
Th
xTh

φ
λ′

h

i .

Seeing the scalar constraints (5.32), this family is orthogonal to the collisional
invariants. Expressions (5.34) and (5.40) for transport coefficients yield

〈Ahx,x〉 =
1
3
ThMh[[yh,yh]]h.

Given the properties of the heavy-particle bracket operator [[·, ·]]h, we have
〈Ahx,x〉 ≥ 0, and 〈Ahx,x〉 = 0 implies that yh is a collisional invariant, hence
yh = 0. Moreover, the linear rank of the family (φλ′

h
i ,φD1

i , . . . ,φ
D

nH
i ) is exactly nH

because it is the rank of the corresponding right-hand side (Ψλ′
h

i ,ΨD1
i , . . . ,ΨDnH

i ) of
Eq. (5.31). We then conclude that yh = 0 if and only if x lies in the space spanned
by the vector [0, (ρi)i∈H]T.
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5.4. Second-order electron perturbation function

The second-order perturbation function φ2
e is a solution to Eq. (4.33), i.e.

Fe(φ2
e) + qe∂Ce

(φ2
e) ·Ce ∧B = Ψ2

e , (5.44)

and satisfies the constraints (4.34), where

Ψ2
e =

1
f0
e

(−D̂0
e (f0

e , φe) + Jee(f0
e φe, f

0
e φe) + Ĵ0

e).

Introducing second-order heavy-particle diffusion driving forces d2
i = −Vi, i ∈ H,

one obtains after some lengthy calculation

Ψ2
e = −Ψηe

e :∂xvh − pe

∑
j∈H

ΨDj
e ·d2

j − Ψ̃2
e ,

where Ψ̃2
e is a scalar function of Ce ·Ce, and

Ψηe
e =

1
Te

(
Ce ⊗Ce − 1

3
Ce ·CeI

)
,

ΨDi
e =

ni

peTe
Q

(1)
ei (|Ce|2)|Ce|Ce, i ∈ H.

(5.45)

The coupling of the electrons with the heavy particles occurs in the integral equation
for the second-order perturbation function through the d2

i forces, i ∈ H. Thus,
the second-order electron transport fluxes to be derived are also expected to be
proportional to the heavy-particle forces.

The complete solution to Eq. (5.44) is not necessary since we only need to
express the second-order transport fluxes V2

e and q2
e in terms of bracket operators.

Consequently, we only have to examine the contribution of the two vectorial terms
ΨDe

e and ΨDi
e , i ∈ H.

Proposition 5.9. The scalar function φ2
e given by

φ2
e = −φηe

e :∂xvh − pe

∑
j∈H

�[M‖ϕDj(1)
e + (M⊥+iM�)ϕDj(2)

e ] ·d2
j − φ̃2

e , (5.46)

is the solution to Eq. (5.44) under the constraints (4.34). The vectorial functions
ϕ

Di(1)
e , ϕ

Di(2)
e , i ∈ H, are the solutions to the equations

Fe(ϕ
Di(1)
e ) = ΨDi

e , (5.47)

(Fe + i|B|Fqe
e )(ϕDi(2)

e ) = ΨDi
e , (5.48)

under the constraints

〈〈f0
e ϕDi(1)

e , ψ̂l
e〉〉e = 0, l ∈ {1, 2}, (5.49)

〈〈f0
e ϕDi(2)

e , ψ̂l
e〉〉e = 0, l ∈ {1, 2}. (5.50)

The tensorial function φηe
e satisfies

Fe(φηe
e ) + qe∂Ce

(φηe
e ) ·Ce ∧B = Ψηe

e ,
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under the constraints

〈〈f0
e φηe

e , ψ̂
l
e〉〉e = 0, l ∈ {1, 2},

and the function φ̃2
e is a scalar function of Ce ·Ce and (Ce ·B)2.

Proof. The proof for this proposition is similar to the one for Proposition 5.1 since
Eqs. (5.1) and (5.44) for φe and φ2

e only differ with their right-hand side.

The expressions for the second-order electron diffusion velocity and heat flux
and of the average electron force are given in the following proposition.

Proposition 5.10. The second-order electron diffusion velocity V2
e is given by

V2
e = −

∑
j∈H

¯̄αejd2
j (5.51)

the second-order electron heat flux q2
e

q2
e = −pe

∑
j∈H

¯̄χe
jd

2
j + ρeheV2

e , (5.52)

and the average electron force Fie acting on i heavy particles

Fie = − pe

niMh

¯̄αeide − pe

niMh

¯̄χe
i ∂xlnTe, i ∈ H. (5.53)

The element of the matrices of ¯̄αei coefficients and second-order electron thermal
diffusion ratios read

α
‖
ei =

1
3
peTeMh[[ϕDe(1)

e ,ϕDi(1)
e ]]e, χ

e‖
i = −1

3
Mh[[ϕDi(1)

e ,ϕ
λ′
e(1)

e ]]e, i ∈ H,

α⊥
ei =

1
3
peTeMh[[ϕDe(2)

e ,ϕDi(2)
e ]]e, χe⊥

i = −1
3
Mh[[ϕDi(2)

e ,ϕ
λ′
e(2)

e ]]e, i ∈ H,

α�
ei = −1

3
peTeMh((ϕDe(2)

e ,ϕDi(2)
e ))e, χe�

i =
1
3
Mh((ϕDi(2)

e ,ϕ
λ′
e(2)

e ))e, i ∈ H.

(5.54)

Note that these expressions are real, in particular for α⊥
ei, α

�
ei, χ

e⊥
i and χe�

i , i ∈ H,
although functions ϕ

λ′
e(2)

e , ϕ
De(2)
e , and ϕ

Di(2)
e are complex.

Proof. Using definition (4.38) (respectively (4.55) and (4.20)) of the second-order
diffusion velocity V2

e (respectively the second-order electron heat flux q2
e and

average electron force Fie, i ∈ H), the same proof as that of Proposition 5.2 yields
the conclusion.

Remark 5.4. The term φηe
e : ∂xvh of Eq. (5.46) contributes to a second-order

electron momentum relation not investigated here.

Remark 5.5. The second-order electron diffusion velocity and heat flux are thus
proportional to the heavy-particle diffusion velocities, that is the Kolesnikov effect
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for the electrons. To the author’s knowledge, it is the first time that such second-
order transport fluxes are rigorously derived from a multiscale analysis. However,
since the electron collision operator is of the order of 1/ε2 in the electron Boltzmann
equation (2.29), it is important to mention that they should not be confused with
Burnett transport fluxes26 based on a second-order perturbation function and a
collision operator of the order of 1/ε.

We rewrite the mass and energy transport fluxes in terms of the diffusion forces
by replacing expression (5.53) for Fie in Eq. (5.29). The heavy-particle diffusion
velocities given in Eq. (5.33) read

Vi = − ¯̄θe
i ∂xlnTe − θh

i ∂xlnTh − ¯̄Died′
e −

∑
j∈H

Dijd
′
j , i ∈ H, (5.55)

with the modified driving forces

d′
e =

pe

ph
de, d′

i =
1
ph

∂xpi − niqi
ph

E′, i ∈ H.

The matrices of heavy-particle electron diffusion coefficients and electron thermal
diffusion coefficients, defined as

¯̄Die =
∑
j∈H

Dij
¯̄αej ,

¯̄θe
i =

pe

ph

∑
j∈H

Dij
¯̄χe

j , i ∈ H,

exhibit the following properties∑
j∈H

ρj
¯̄Dje = 0,

∑
j∈H

ρj
¯̄θe
j = 0.

The alternative formulation (5.35) is found to be

Vi = − ¯̄Died′
e −

∑
j∈H

Dij

(
d′

j +
pe

ph

¯̄χe
j ∂xlnTe + χh

j ∂xlnTh

)
, i ∈ H. (5.56)

The heavy-particle heat flux given in Eq. (5.39) reads

qh = − ¯̄λh′
e ∂xTe − λ′h∂xTh − ph

¯̄θh
e d′

e − ph

∑
j∈H

θh
j d′

j +
∑
j∈H

ρjhjVj , (5.57)

with the matrices of partial thermal conductivity and thermal diffusion coefficient
¯̄λh′
e = ne

∑
j∈H

θh
j
¯̄χe

j ,
¯̄θh
e =

∑
j∈H

θh
j

¯̄αej .

Then, substituting the previous expression (5.55) for Vi, i ∈ H, into the expression
(5.51) for the second-order electron diffusion velocity V2

e , one has

V2
e = − ¯̄θe

e∂xlnTe − ¯̄θh
e ∂xlnTh − ¯̄Deed′

e −
∑
j∈H

¯̄Dejd′
j , (5.58)

with the following second-order matrices of electron diffusion coefficients, electron
heavy-particle diffusion coefficients, and electron thermal diffusion coefficient

¯̄Dee =
∑
j∈H

¯̄αej
¯̄Dje,

¯̄Dei = ¯̄Die, i ∈ H, ¯̄θe
e =

∑
j∈H

¯̄αej
¯̄θe
j .
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The alternative formulation reads

V2
e = − ¯̄Deed′

e −
∑
j∈H

¯̄Dej

(
d′

j +
pe

ph

¯̄χe
j ∂xlnTe + χh

j ∂xlnTh

)
. (5.59)

Regarding the electron heat flux given in Eq. (5.52), one obtains

q2
e = − ¯̄λ2′

e ∂xTe − Te

Th

¯̄λh′
e ∂xTh − ph

¯̄θe
ed

′
e − ph

∑
j∈H

¯̄θe
j d

′
j + ρeheV2

e , (5.60)

with the second-order matrix of electron partial thermal conductivity
¯̄λ2′
e = ne

∑
j∈H

¯̄χe
j

¯̄θe
j .

5.5. Weakly magnetized and unmagnetized plasmas

We recall that the intensity of the magnetic field is expressed by means of the b
parameter used to define the scaling of the nondimensional electron Hall param-
eter q0B0t0e/m

0
e = ε1−b. We deal with weakly magnetized plasmas (b = 0) and

unmagnetized plasmas (b < 0) by reviewing the whole section in this simplified
frame.

The first-order electron perturbation function φe is a solution to Eq. (4.9), i.e.

Fe(φe) = Ψe, (5.61)

and satisfies the constraints (4.10). The transport coefficients are shown to be
isotropic since the operator Fqe

e does not appear in Eq. (5.61). Defining the electron
driving force de = (∂xpe − neqeE)/pe, the electron perturbation function is given
in the following proposition.

Proposition 5.11. The scalar function φe given by

φe = −peφ
De
e ·de − φλ′

e
e ·∂x

(
1
Te

)
, (5.62)

is the solution to Eq. (5.61) under the constraints (4.10), where the vectorial func-
tions φDe

e and φλ′
e

e are the solutions to the equations

Fe(φµ
e ) = Ψµ

e , (5.63)

under the scalar constraints

〈〈f0
e φµ

e , ψ̂
l
e〉〉e = 0, l ∈ {1, 2}, (5.64)

with µ ∈ {De, λ
′
e}.

Proof. By linearity and isotropy of the linearized collision Boltzmann operator
Fe, the development of Ψe can be followed through for φe as well. Therefore, the
functions φµ

e for µ ∈ {De, λ
′
e} satisfy Eq. (5.63) under the scalar constraints (5.64).

We seek a solution in the form φµ
e = φµ

e Ce. Quantities φµ
e , µ ∈ {De, λ

′
e}, are scalar
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functions of Ce ·Ce since φµ
e , µ ∈ {De, λ

′
e}, must be invariant under a change of

coordinates. Uniqueness of the solution is readily proved based on the linearity prop-
erty of the operator Fe, its kernel given in property 4.1, and the constraints (4.10)
satisfied by φe.

The expressions for the electron transport fluxes are given in the following
proposition.

Proposition 5.12. The electron diffusion velocity reads

Ve = −Dede − θe∂xlnTe, (5.65)

the electron heat flux,

qe = −λ′e∂xTe − peθede + ρeheVe, (5.66)

where the diffusion coefficients, thermal diffusion coefficients, and partial thermal
conductivity are given by

De =
1
3
peTeMh[[φDe

e ,φDe
e ]]e, θe = −1

3
Mh[[φDe

e ,φλ′
e

e ]]e,

λ′e =
1

3T 2
e

Mh[[φλ′
e

e ,φ
λ′
e

e ]]e,
(5.67)

and the electron viscous tensor vanishes, i.e.

Πe = 0. (5.68)

Proof. The proof of this proposition is based on definition (4.16) (respectively
(4.30) and (4.37)) of the first-order diffusion velocity Ve (respectively the first-order
electron heat flux qe and viscous tensor Πe) and on expression (5.62) for φe.

Alternative forms of the electron diffusion velocity and heat flux are also
introduced

Ve = −De(de + χe∂xlnTe),

qe = −λe∂xTe + peχeVe + ρeheVe,

where the thermal diffusion ratio χe is defined by the relation θe = Deχe, and the
thermal conductivity by λe = λ′e − neχeθe.

Concerning the heavy particles, the entire Sec. 5.3 remains valid since Eq. (4.24)
is identical for all cases (b = 1, b = 0 and b < 0).

The second-order electron perturbation function φ2
e is a solution to Eq. (4.33)

Fe(φ2
e) = Ψ2

e , (5.69)
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and satisfies the constraints (4.34). Introducing a second-order electron diffusion
driving force d2

e = −neqeM
2
hvh ∧B/pe, one obtains after some lengthy calculation

Ψ2
e = −Ψηe

e : ∂xvh − δb0peΨDe
e ·d2

e − pe

∑
j∈H

ΨDj
e ·d2

j − Ψ̃2
e .

Proposition 5.13. The scalar function φ2
e given by

φ2
e = −φηe

e : ∂xvh − δb0peφ
De
e ·d2

e − pe

∑
j∈H

φDj
e ·d2

j − φ̃2
e , (5.70)

is the solution to Eq. (5.69) under the constraints (4.34). The vectorial functions
φDe

e , φDi
e , i ∈ H, and the tensorial function φηe

e are the solutions to the equa-
tions Fe(φµ

e ) = Ψµ
e , under the constraints 〈〈f0

e φµ
e , ψ̂

l
e〉〉e = 0, l ∈ {1, 2}, with

µ ∈ {De, (Di)i∈H, ηe}. The function φ̃2
e is a scalar function of Ce ·Ce.

Proof. The proof of this proposition is similar to the one of Proposition 5.11 since
Eqs. (5.61) and (5.69) only differ with their right-hand side.

The expressions for the second-order electron diffusion velocity and heat flux
and of the average electron force are given in the following proposition.

Proposition 5.14. The second-order electron diffusion velocity is given by

V2
e = −δb0Ded

2
e −

∑
j∈H

αejd2
j , (5.71)

the second-order electron heat flux,

q2
e = −δb0peθed

2
e − pe

∑
j∈H

χe
jd

2
j + ρeheV2

e , (5.72)

and the average electron force acting on i heavy particles

Fie = − pe

niMh
αeide − pe

niMh
χe

i∂xlnTe i ∈ H. (5.73)

The αei coefficients and second-order electron thermal diffusion ratios read

αei =
1
3
peTeMh[[φDe

e ,φDi
e ]]e χe

i = −1
3
Mh[[φDi

e ,φλ′
e

e ]]e, i ∈ H. (5.74)

Proof. The proof of this proposition is based on the definition (4.38) (respectively
(4.55) and (4.20)) of the second-order diffusion velocity V2

e (respectively the second-
order electron heat flux q2

e and average electron force Fie, i ∈ H) and on the
expression (5.70) for φ2

e .
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Table 3. Magnetic field influence.

b Conservation equations Transport properties

< 0 — —

0 Bulk magnetic force Electron bulk magnetic driving force
Electron magnetic force

1 Bulk magnetic force Electron bulk magnetic driving force
Electron magnetic force Heavy-particle bulk magnetic driving forces
Heavy-particle magnetic force Anisotropic electron transport properties

Three categories of plasmas are reviewed in Table 3. A value of b < 0 corresponds
to unmagnetized plasmas, b = 0, weakly magnetized plasmas, and b = 1, strongly
magnetized plasmas.

6. Conservation Equations

We review the heavy-particle Navier–Stokes equations (4.52)–(4.54) and electron
drift-diffusion equations (4.60) and (4.61). We also derive a total energy equation
and an entropy equation.

6.1. Mass

The species mass conservation equations read

∂tρe + ∂x ·
[
ρe

(
vh +

1
Mh

(Ve + εV2
e)
)]

= 0, (6.1)

∂tρi + ∂x ·
[
ρi

(
vh +

ε

Mh
Vi

)]
= 0, i ∈ H. (6.2)

Summing Eq. (6.2) over i ∈ H and using the constraint
∑

j∈H ρjVj = 0 given in
Eq. (4.25), a heavy-particle mass conservation equation is obtained

∂tρh + ∂x · (ρhvh) = 0. (6.3)

The heavy-particle mass is conserved in the mean heavy-particle velocity frame.
Then, adding the electron drift Eq. (6.1) to Eq. (6.3) and using Eq. (2.27), i.e.

ρv = ρhvh + ε2ρe

(
vh +

1
Mh

(Ve + εV2
e)
)
,

a conservation equation of global mass ρ = ρh + ε2ρe is also established

∂tρ+ ∂x · (ρv) = 0. (6.4)

The global mass is conserved in the hydrodynamic velocity frame, although the
transport fluxes are calculated in the mean heavy-particle velocity frame. It is
the only place where the difference between the global hydrodynamic velocity and
the mean heavy-particle velocity, of the order of ε2, plays an essential role. This fact
is another evidence of the coherence of our formalism compared to other approaches
found in the literature.
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6.2. Momentum

The momentum conservation is expressed by

∂t(ρhvh) + ∂x ·
(
ρhvh ⊗vh +

1
M2

h

pI

)
= − ε

M2
h

∂x ·Πh +
1
M2

h

nqE + [δb0I0 + δb1I]∧B. (6.5)

It is important to recall that the electrons participate to the momentum balance
through the pressure gradient and the Lorentz force.

6.3. Energy

A flow kinetic energy equation is obtained by projecting Eq. (6.5) onto the mean
heavy-particle velocity

∂t

(
1
2
ρh|vh|2

)
+ ∂x ·

[
vh

(
1
2
ρh|vh|2 +

1
M2

h

p

)]
=

1
M2

h

p∂x ·vh − ε

M2
h

vh ·∂x ·Πh +
1
M2

h

nqE ·vh + vh · (δb0I0 + δb1I)∧B.

(6.6)

The electron energy equation reads

∂t(ρeee) + ∂x · (ρeeevh) = −pe∂x ·vh − 1
Mh

∂x ·
(
qe + εq2

e

)
+

1
Mh

(
Je + εJ2

e

) ·E′

+ δb0εMhJe ·vh ∧B + ∆E0
e + ε∆E1

e , (6.7)

and the heavy-particle energy equation

∂t(ρheh) + ∂x · (ρhehvh) = −(phI + εΠh) : ∂xvh − ε

Mh
∂x ·qh +

ε

Mh
Jh ·E′

+ ∆E0
h + ε∆E1

h. (6.8)

So that a global energy equation is derived by summing Eqs. (6.7) and (6.8)

∂t(ρe) + ∂x · (ρevh) = −(pI + εΠh) : ∂xvh − 1
Mh

∂x ·Q

+
1
Mh

(Je + εJ2
e + εJh) ·E′ + δb0εMhJe ·vh ∧B, (6.9)

where quantity Q = qe + εq2
e + εqh is the total heat flux and ρe = ρeee + ρheh,

the mixture energy in the heavy-particle reference frame. Finally, a total energy
equation is derived by adding Eq. (6.6)

∂t(E) + ∂x · (Hvh) = −ε∂x · (Πh ·vh) − 1
Mh

∂x ·Q + I ·E, (6.10)

where quantity E = ρe + M2
hρh

1
2 |vh|2 stands for the total energy and H = E + p,

the total enthalpy. The term I ·E of Eq. (6.10) represents the power developed by
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the electromagnetic field. It has the form prescribed by Poynting’s theorem. Hence,
the first law of thermodynamics is satisfied.

6.4. Entropy

In addition to the thermal energy, we introduce other relevant thermodynamic
functions. First, the species Gibbs free energy is defined by the relations

ρege = neTe ln

(
nen

0

T
3/2
e Q0

e

)
, ρigi = niTh ln

[
nin

0

(miTh)3/2
Q0

h

]
, i ∈ H, (6.11)

where the translational partition functions read

Q0
e =

(
2πm0

ekBT
0

h2
P

)3/2

, Q0
h =

(
2πm0

hkBT
0

h2
P

)3/2

. (6.12)

Then, the species enthalpy is given by

ρehe =
5
2
neTe, ρihi =

5
2
niTh, i ∈ H. (6.13)

Finally, the species entropy is introduced as

se =
he − ge
Te

, si =
hi − gi

Th
, i ∈ H. (6.14)

Therefore, the mixture entropy reads ρs =
∑

j∈S ρjsj . The thermodynamic func-
tions exhibit a wider range of validity than in classical thermodynamics, introduced
for stationary homogeneous equilibrium states.27 Indeed, they are interpreted in
the framework of kinetic theory by establishing a relation between the thermody-
namic entropy and the kinetic entropy. This quantity is based upon the distribution
functions

Skin =
∑
j∈H

∫
fj

{
1 − ln

[
(2π)3/2n0

m3
jQ

0
h

fj

]}
dCj +

∫
fe

{
1 − ln

[
(2π)3/2n0

Q0
e

fe

]}
dCe.

(6.15)

Proposition 6.1. The kinetic entropy and the thermodynamic entropy are asymp-
totically equal at order ε2, i.e.

Skin = ρs+ O(ε2), (6.16)

provided that the distribution functions follow the Enskog expansion given in
Eqs. (4.1) and (4.2).
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Proof. Using definition (6.15) and expansions (4.1) and (4.2), the kinetic entropy
is found to be∑

j∈H

∫
f0

j

{
1 − ln

[
(2π)3/2n0

m3
jQ

0
h

f0
j

]}
dCj +

∫
f0
e

{
1 − ln

[
(2π)3/2n0

Q0
e

f0
e

]}
dCe

+ ε
∑
j∈H

∫
f0

j φj ln

[
(2π)3/2n0

m3
jQ

0
h

f0
j

]
dCj + ε

∫
f0
e φe ln

[
(2π)3/2n0

Q0
e

f0
e

]
dCe

+O(ε2).

The first-order term vanishes by the constraints (4.10) and (4.25). Then,
using expressions (4.7) and (4.8) and definition (6.14), Eq. (6.16) is readily
obtained.

Consequently, a first-order conservation equation of thermodynamic entropy
can be used instead of a conservation equation of kinetic entropy to ensure that the
second law of thermodynamics is satisfied. First, we introduce the heavy-particle
entropy ρhsh =

∑
j∈H ρjsj and derive the entropy equations.

Proposition 6.2. The electron and heavy-particle entropy equations associated
with the macroscopic conservation equations (6.1)–(6.8) read

∂t(ρese) + ∂x · (ρesevh) + ∂x · (J 0
e + εJ 1

e ) = Υ0
e + εΥ1

e , (6.17)

∂t(ρhsh) + ∂x · (ρhshvh) + ε∂x ·J 1
h = Υ0

h + εΥ1
h , (6.18)

where the electron and heavy-particle entropy fluxes are given by

J 0
e =

1
MhTe

(qe − ρegeVe), J 1
e =

1
MhTe

(q2
e − ρegeV2

e), (6.19)

J 1
h =

1
MhTh

qh −
∑
j∈H

ρjgjVj

 , (6.20)

and the electron and heavy-particle entropy production rates by

Υ0
e =

1
Te

∆E0
e − pe

MhTe
de ·Ve −

1
MhTe

∂xlnTe · (qe − ρeheVe), (6.21)

Υ1
e =

1
Te

∆E1
e − pe

MhTe
(de ·V2

e + δb0d2
e ·Ve)

− 1
MhTe

∂xlnTe · (q2
e − ρeheV2

e), (6.22)

Υ0
h =

1
Th

∆E0
h, (6.23)
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Υ1
h =

1
Th

∆E1
h − 1

Th
Πh :∂xvh − ph

MhTh

∑
j∈H

1
ph

(
∂xpj − njqjE′) ·Vj

− 1
MhTh

∂xlnTh ·
qh −

∑
j∈H

ρjhjVj

 . (6.24)

Proof. Based on the relations

ρed
(
ge
Te

)
= dne − 3ne

2Te
dTe, ρid

(
gi

Th

)
= dni − 3ni

2Th
dTh, i ∈ H,

and definition (6.14), one obtains

∂t(ρese) + ∂x · (ρesevh) =
1
Te

[∂t(ρeee) + ∂x · (ρeeevh)] + ne∂x ·vh

− [∂tρe + ∂x · (ρevh)]
ge
Te
,

∂t(ρhsh) + ∂x · (ρhshvh) =
1
Th

[∂t(ρheh) + ∂x · (ρhehvh)] + nh∂x ·vh

−
∑
j∈H

[∂tρj + ∂x · (ρjvh)]
gj

Th
.

Then, using Eqs. (6.1), (6.2), (6.7), (6.8), and the relations

d
(
ge
Te

)
= − he

T 2
e

dTe +
1
pe

dpe, d
(
gi

Th

)
= − hi

T 2
h

dTh +
1

mipi
dpi, i ∈ H,

and expressions for the second-order electron diffusion velocity V2
e , heat flux q2

e ,
first-order energy transfer terms ∆E1

e , ∆E1
h, and average electron forces Fie, i ∈

H, given in Sec. 5, we readily obtain Eqs. (6.17) and (6.18), with the entropy
fluxes given in Eqs. (6.19) and (6.20) and the entropy production rates given in
Eqs. (6.21)–(6.24).

Remark 6.1. In Eq. (6.22), the entropy produced by the first-order energy transfer
term ∆E1

e is partially compensated by the transport fluxes associated with the
Kolesnikov effect (second-order electron transport fluxes) in the magnetized cases
(b = 1 and b = 0) and is exactly compensated in the unmagnetized case (b = 0).
In Eq. (6.24), the entropy produced by the first-order energy transfer term ∆E1

h is
exactly compensated by the transport fluxes associated with the Kolesnikov effect
(average electron forces acting on the heavy particles).

Adding Eqs. (6.17) and (6.18), a global entropy equation is found

∂t(ρs) + ∂x · (ρsvh) + ∂x ·J = Υ, (6.25)
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where the global entropy flux is given by

J = J 0
e + εJ 1

e + εJ 1
h, (6.26)

and the global entropy production rate by

Υ = Υ0
e + εΥ1

e + Υ0
h + εΥ1

h . (6.27)

Proposition 6.3. Defining xh = (∂xlnTh, ph(d̃i)i∈H)T, x‖
e = ((∂xlnTe)‖, ped

‖
e)T,

and x⊥
e = ((∂xlnTe)⊥, ped⊥

e )T, where

d̃i = d̂i −
ne

nh
(α�

eid
�
e + χe�

i (∂xlnTe)�), i ∈ H,

the global entropy production rate Υ defined in Eq. (6.27) can be rewritten for
strongly magnetized plasmas (b = 1) in the following form

Υ =
(Te − Th)2

TeTh

∑
j∈H

nj

mj
νje + εηhS :S + ε

1
MhTh

〈Ahxh,xh〉

+
1

MhTe
〈A‖

ex
‖
e ,x

‖
e〉 +

1
MhTe

〈A⊥
ehx

⊥
e ,x

⊥
e 〉, (6.28)

where the matrix A⊥
eh

A⊥
eh =

Teλ
′⊥
e θ⊥e

θ⊥e
1
pe
D⊥

e

− εpe
ne

nh

∑
i,j∈H

Dij


χe�

i χe�
j

1
pe
α�

eiχ
e�
j

1
pe
α�

ejχ
e�
i

1
p2
e

α�
eiα

�
ej

 ,

is a perturbation of the mass-energy transport matrix A⊥
e defined in Eq. (5.24).

In particular, the global entropy production rate is non-negative provided that ε is
small enough and that the collision frequencies νie, i ∈ H, are non-negative.

Proof. Expression (6.28) is obtained after some lengthy calculation based on the
expressions for the diffusion velocities Ve, V2

e , Vi, i ∈ H, heat fluxes qe, q2
e , qh,

viscous stress tensor Πh, energy transfer terms ∆E0
e , ∆E1

e , ∆E0
h, ∆E1

h, and average
forces Fie, i ∈ H, given in Sec. 5.

The positivity of the collision frequencies νie, i ∈ H, (respectively the vis-
cosity ηh) immediately yields the positivity of the first term of Eq. (6.28)
(Te − Th)2/(TeTh)

∑
j∈H njνje/mj (respectively the second term ηhS :S). More-

over, Propositions 5.1 and 5.2 ensure that both terms 〈Ahxh,xh〉 and 〈A‖
ex

‖
e ,x

‖
e〉

are non-negative. Finally, the last term is expanded as

1
MhTe

〈A⊥
ehx

⊥
e ,x

⊥
e 〉 =

1
3
[[y,y]]e − ε

1
3
[[z, z]]h, (6.29)
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where the vectors y and zi, i ∈ H, are defined as

y = ped⊥
e ⊗ϕDe(2)

e − 1
Te

(∂xlnTe)⊥ ⊗ϕ
λ′
e(2)

e ,

zi =
1
3
peThMh

∑
j∈H

((y,ϕDj(2)
e ))e ⊗φ

Dj

i .

We conclude after noticing that the standard term [[y,y]]e is non-negative and
vanishes if and only if y = 0 thanks to the scalar constraints (5.8) and (5.9).

For weakly magnetized plasmas (b = 0) and unmagnetized plasmas (b < 0), we
define xh = (∂xlnTh, ph(d̂i)i∈H)T and xe = [∂xlnTe, pe(de + εδb0d2

e)]T. Hence, the
global entropy production rate reads

Υ =
(Te − Th)2

TeTh

∑
j∈H

nj

mj
νje + εηhS :S + ε

1
MhTh

〈Ahxh,xh〉

+
1

MhTe
〈Aexe,xe〉 − ε2δb0

ne

Mh
Ded

2
e ·d2

e . (6.30)

This quantity is non-negative provided that ε is small enough in the b = 0 case
and that the collision frequencies νie, i ∈ H, are non-negative in the two b = 0 and
b < 0 cases.

The non-negativity of the global entropy production rate implies that the second
law of thermodynamics is satisfied. This statement could be equivalently formulated
by means of a H-Theorem. In addition, the electron and heavy-particle temperatures
must be equal when an equilibrium state is reached. Provided that the collision
frequencies νie, i ∈ H, are positive, the quasi-equilibrium states described by the
Maxwell–Boltzmann distribution functions given in Eqs. (4.7) and (4.8) create some
non-negative entropy expressed by the term (Te−Th)2/(TeTh)

∑
j∈H njνje/mj. This

term vanishes when the electron and heavy-particle temperatures are identical.

6.5. Onsager’s reciprocal relations

In this section, we deduce from kinetic theory the Onsager reciprocal relations for
strongly magnetized plasmas. The expressions for the transport fluxes, denoted by
the vector F, are proportional to the diffusion forces, denoted by the vector X, i.e.

Fα = −
∑

β

Lαβ Xβ .

Onsager’s reciprocal relations are symmetry constraints which must hold between
the transport coefficients22, 55

Lαβ(−B) = [Lβα(B)]T. (6.31)

They result from microscopic reversibility, the magnetic field appearing with a
minus sign to achieve motion reversal for charged particles. We identify the diffusion
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forces from the quadratic form of the entropy production rate given in Eq. (6.28)
and use the transport coefficient expressions established in Sec. 5. Alternatively,
the derivation could be based on the symetrization of the system of macroscopic
equations expressed in (extensive) conservative variables, the resulting system of
equations being expressed in (intensive) entropic variables obtained by Legendre
transform of the conservative variables.

At order ε0, the first-order electron mass-energy flux vector is proportional to
the electron diffusion force vector as shown in Eq. (5.23). The generalized Onsager
reciprocal relations for the first-order electron transport coefficients are given by

¯̄λ′e(−B) = [ ¯̄λ′e(B)]T, ¯̄θe(−B) = [ ¯̄θe(B)]T, ¯̄De(−B) = [ ¯̄De(B)]T.

At order ε1, the momentum flux is decoupled from the mass and energy fluxes.22

The heavy-particle viscous tensor obeys standard Onsager reciprocal relations. The
global mass-energy flux vector

F =

q2
e − ρeheV2

e , qh −
∑
j∈H

ρjhjVj , V2
e , (Vi)i∈H

T

,

is proportional to the global diffusion force vector

X = (∂xlnTe, ∂xlnTh, phd′
e, ph(d′

i)i∈H)T,

as expressed by the relation F = − ¯̄A X, where the mass-energy transport matrix
has the following block structure

¯̄A =



(¯̄λ2′
e Te) ( ¯̄λh′

e Te) (¯̄θe
e ) [(¯̄θe

i )i∈H]T̃

( ¯̄λh′
e Te) (λ′hThI) ( ¯̄θh

e ) [(θh
i I)i∈H]T̃

(¯̄θe
e ) ( ¯̄θh

e )
(

1
ph

¯̄Dee

) [(
1
ph

¯̄Dei

)
i∈H

]T̃

(¯̄θe
i )i∈H (θh

i I)i∈H

(
1
ph

¯̄Die

)
i∈H

(
1
ph
DijI

)
i,j∈H


. (6.32)

The notation T̃ has been introduced for the transpose operation restricted to the
species components, excluding the space components. Concerning the mass-energy
transport, the generalized Onsager reciprocal relations for the second-order elec-
tron transport coefficients and first-order heavy-particle transport coefficients are
given by

¯̄λ2′
e (−B) = [ ¯̄λ2′

e (B)]T, ¯̄λh′
e (−B) = [ ¯̄λh′

e (B)]T,
¯̄θe
e (−B) = [ ¯̄θe

e (B)]T, ¯̄θh
e (−B) = [ ¯̄θh

e (B)]T, ¯̄θe
i (−B) = [ ¯̄θe

i (B)]T, i ∈ H,
¯̄Dee(−B) = [ ¯̄Dee(B)]T, ¯̄Die(−B) = [ ¯̄Die(B)]T, i ∈ H.
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6.6. Mathematical structure

A purely convective system extracted from the mass, momentum, electron and
heavy-particle energy, and entropy equations (6.1), (6.2), (6.5), (6.7) and (6.8) is
written in a quasi-linear form

∂tW + A ·∂xW = Ω′
W , (6.33)

by means of the variables

W = [ρe, (ρi)i∈H,vh, pe, ph]T,

the source terms

Ω′
W =

[
0, 0,

nq

M2
hρh

E +
1
ρh

(δb0 + δb1)I′ ∧B,
2
3
∆E0

e ,
2
3
∆E0

h

]T

,

with the current I′ = nqvh and the Jacobian matrices

Aν =



vhν 0 ρeeT
ν 0 0

0 vhν(δij)i,j∈H (ρi)i∈HeT
ν 0 0

0 0 vhνI
1

M2
hρh

eν
1

M2
hρh

eν

0 0 γpeeT
ν vhν 0

0 0 γpheT
ν 0 vhν


, ν ∈ {1, 2, 3},

(6.34)

where the specific heat ratio reads γ = 5/3 and symbol eν stands for the unit vector
in the ν direction. For any direction defined by the unit vector n, the matrix n ·A is
shown to be diagonalizable with real eigenvalues and a complete set of eigenvectors.
There are two nonlinear acoustic fields with the eigenvalues vh ·n ± c, where the
sound speed is given by c2 = γp/(ρhM

2
h), and linearly degenerate fields with the

eigenvalue vh ·n of multiplicity nS + 3. Thus, the macroscopic system of conser-
vation equations derived from kinetic theory in the proposed mixed hyperbolic-
parabolic scaling has a hyperbolic structure from a fluid point of view, as far as the
convective part of the system is concerned. Such a property is far from being obvious
since the obtained sound speed involves the electron pressure and the rigorous
derivation of the momentum equation of the heavy particles involves the many
analytic steps shown in the paper.

7. Conclusions

In the present study, we have derived from kinetic theory a unified fluid model for
multicomponent plasmas by accounting for electromagnetic field influence, neglect-
ing particle internal energy and reactive collisions. Given the strong disparity of
mass between the electrons and heavy particles, such as molecules, atoms, and
ions, we have conducted a dimensional analysis of the Boltzmann equation follow-
ing Petit and Darrozes47 and introduced a scaling based on the ε parameter, or
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square root of the ratio of the electron mass to a characteristic heavy-particle mass.
The multiscale analysis occurs at three levels: in the kinetic equations, the collisional
invariants, and the collision operators. The Boltzmann equation has been expressed
in the heavy-particle reference frame allowing for the first- and second-order electron
perturbation function equations to be solved, as opposed to the inertial reference
frame chosen by Degond and Lucquin.20, 21 Then, the solvability of the electron
and heavy-particle perturbation functions has been based on the identification of
the kernel of the linearized collision operators and the space of scalar collisional
invariants for both types of species. The system has been examined at successive
orders of approximation by means of a generalized Chapman–Enskog method. The
micro- and macroscopic equations derived at each order are reviewed in Table 2.
Depending on the type of species, the quasi-equilibrium solutions are Maxwell–
Boltzmann velocity distribution functions at either the electron temperature or the
heavy-particle temperature, thereby, allowing for thermal non-equilibrium to occur.
At order ε1, the set of macroscopic conservation equations of mass, momentum, and
energy comprises multicomponent Navier–Stokes equations for the heavy particles,
which results from a hyperbolic scaling, and first-order drift-diffusion equations for
the electrons, which results from a parabolic scaling. The expressions for the trans-
port fluxes have also been derived: first- and second-order diffusion velocity and
heat flux for the electrons, and first-order diffusion velocities, heat flux, and vis-
cous tensor for the heavy particles. The transport coefficients have been written in
terms of bracket operators; both electron and heavy-particle transport coefficients
exhibit anisotropy, provided that the magnetic field is strong enough. We have also
proposed a complete description of the Kolesnikov effect, i.e. the crossed contri-
butions to the mass and energy transport fluxes coupling the electrons and heavy
particles. This effect, appearing in multicomponent plasmas, is essential to obtain a
positive entropy production. It also contains, as a degenerate case, the single heavy-
species plasmas considered by Degond and Lucquin for which the Kolesnikov effect
is not present. The properties of electron and heavy-particle mass-energy trans-
port matrices have been established by using the mathematical structure of the
bracket operators. In particular, the properties of symmetry and positivity imply
that the second law of thermodynamics is satisfied, as shown by deriving an entropy
equation. Moreover, Onsager’s reciprocal relations hold between the transport coef-
ficients. The first law of thermodynamics was also verified by deriving a total energy
equation. Finally, the purely convective system of equations was found to be hyper-
bolic, thus leading to a well defined structure.

The proposed formalism remains valid for collision operators of Fokker–Planck–
Landau type. These operators can be used to model the charged particle interac-
tion, instead of Boltzmann operators associated with a Coulomb potential screened
at the Debye distance. In addition, the explicit expression for the diffusion coef-
ficients, thermal diffusion coefficients, viscosity, and partial thermal conductivities
can be obtained by means of a variational procedure to solve the integral equations
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(Galerkin spectral method14). The expressions for the thermal conductivity, ther-
mal diffusion ratios, and Stefan–Maxwell equations for the diffusion velocities can
be derived by means of a Goldstein expansion of the perturbation function, as
proposed by Kolesnikov and Tirskiy.36 Finally, the mathematical structure of the
transport matrices obtained by the variational procedure can readily be used to
build efficient transport algorithms, as already shown by Ern and Giovangigli25 for
neutral gases, or Magin and Degrez41 for unmagnetized plasmas.
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24. R. S. Devoto, Transport properties of ionized monoatomic gases, Phys. Fluids 9 (1966)

1230.
25. A. Ern and V. Giovangigli, Multicomponent Transport Algorithms (Springer-Verlag,

1994).
26. J. H. Ferziger and H. G. Kaper, Mathematical Theory of Transport Processes in Gases

(North-Holland, 1972).
27. V. Giovangigli, Multicomponent Flow Modeling (Birkhäuser, 1999).
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