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Modeling of reactive plasmas for atmospheric
entry flows based on kinetic theory

By B. Graille†, T. E. Magin AND M. Massot‡

We derive a model for reactive plasmas based on kinetic theory, accounting for an
ionization mechanism and dealing with a possible thermal non-equilibrium of the trans-
lational energy of the electrons and heavy particles, such as atoms and ions, given their
strong disparity of mass. We conduct a dimensional analysis of the Boltzmann equation
and use a multi-scale Chapman-Enskog method to derive macroscopic conservation equa-
tions and expressions for the chemical production rates. Our model satisfies the law of
mass action and the first and second laws of thermodynamics.

1. Introduction

When a spacecraft enters into a planetary atmosphere at hypervelocity, the gas temper-
ature and pressure strongly rise through a shockwave and the mixture particles dissociate
and ionize in the shock layer. Return trajectory of the Orion crew exploration vehicle
involves significantly higher velocities (>10 km/s) than Earth orbit re-entry experienced
by the space shuttle, enhancing the ionization degree of the plasma flow. Recently, Graille
et al. (2008) have derived from kinetic theory a unified fluid model for such multicom-
ponent plasmas by accounting for thermal non-equilibrium between the translational
energies of the electrons and heavy particles, such as atoms and ions, given their strong
mass disparity. We propose to extend this model by accounting for reactive collisions in
a 3-species plasma, based on the ionization mechanism comprising the reactions ri:

n + i ⇀↽ i + e + i, i ∈ S.

Electrons, neutral particles and ions are respectively denoted by the indices e, n, and i.
The full mixture of species is denoted by the set of indices S = {e, n, i}, and the heavy
particles, by the set of indices H = {n, i}.

Appleton & Bray (1964) have derived conservation equations for reactive plasmas,
accounting for the electron impact ionization reaction re, a chain reaction in which two
electrons are produced from one. This avalanche phenomenon is limited by a chemical loss
rate controlling the electron thermal energy (Park 1990). Unfortunately, their derivation
is not based on the correct scaling for the mass difference between the electrons and heavy
particles. Choquet & Lucquin-Desreux (2005) have studied the same reaction based on
the correct scaling, but did not investigate the thermodynamics of plasmas in thermal
and chemical non-equilibrium. Finally, derivation of the Saha equation, describing chem-
ical equilibrium and modified for the case of multi-temperature plasmas, is a recurrent
topic in theoretical works with the consequent debate regarding which of the forms for
this equation is the correct one to apply (see Giordano & Capitelli 2001, and references
cited therein). In this work, we will study both processes of ionization by electron im-
pact, reaction re, and by heavy-particle impact, reactions rn and ri. We will also propose
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a suitable thermodynamics for plasmas and extend the Saha equation to thermal non-
equilibrium for our mechanism. The derivation is based on a dimensional analysis of the
Bolzmann equation. The scaling for the differential cross-sections for ionization is chosen
to obtain a Maxwellian reaction regime in which the chemical production rates appear
in the Euler/drift-diffusion equations.

Let us emphasize the broad field of possible applications, such as air-breathing hyper-
sonic vehicles (control by plasma technology), spacecraft atmospheric entries (influence
of precursor electrons), high-enthalpy wind tunnels (plasmatrons, arc-jet facilities and
shock tubes), lightning phenomena, discharges at atmospheric pressure, laboratory nu-
clear fusion, and astrophysics.

2. Boltzmann equation

2.1. Assumptions

Our model for multi-component plasmas relies on the following set of assumptions:
(1) The description is based on the kinetic theory of gases and classical mechanics.
(2) The particle internal energy and spin are not accounted for.
(3) The inert particle interactions are modeled as binary encounters by means of a

Boltzmann collision operator.
(4) The gas, spatially uniform, is at rest and in absence of external forces.
(5) The ratio of the electron mass m0

e to a characteristic heavy-particle mass m0
h is

such that the non-dimensional number ε = (m0
e/m

0
h)1/2 is small.

(6) The macroscopic time scale t0 is comparable with the heavy-particle kinetic time
scale t0h divided by ε. The macroscopic length scale L0 = V 0

h t
0 is based on the heavy-

particle thermal speed V 0
h .

(7) The reference differential cross-section σ0 is common to all inert collisions. The
differential cross-sections for ionization are assumed to scale as σ0 multiplied by a suitable
power of ε such that a Maxwellian reaction regime be reached.

The mean free path l0 and macroscopic length scale L0 allow for the Knudsen number
to be defined as Kn = l0/L0. This quantity is small, provided that assumptions (5)-(6)
are satisfied. Therefore, a continuum description of the system is deemed to be possible.

2.2. Dimensional Boltzmann equation

Considering assumptions (1)-(4), the temporal evolution of the velocity distribution func-
tion f⋆

i for the velocity c⋆
i of the plasma particles i is governed by the Boltzmann equation

∂t⋆f⋆
i = J⋆

i (f
⋆) + C⋆

i (f
⋆), i ∈ S (2.1)

(see, for instance, Giovangigli 1999). Dimensional quantities are denoted by the super-
script ⋆. Symbol t⋆ stands for time.

The non-reactive collision operator, the rate at which the velocity distribution is al-
tered by inert collisions, is given by the expression J⋆

i (f) =
∑

j∈S J⋆
ij

(

f⋆
i , f

⋆
j

)

, where the
partial collision operator of particle j impacting on particle i reads

J⋆
ij

(

f⋆
i , f

⋆
j

)

=

∫

(

f⋆′
i f⋆′

j − f⋆
i f

⋆
j

)

|c⋆
i − c⋆

j |σ
⋆
ijdωdc⋆

j , i, j ∈ S.

After collision, quantities are denoted by the superscript ′. The differential cross-section
for inert interaction σ⋆

ij =σ⋆
ij

[

µ⋆
ij |c

⋆
i − c⋆

j |
2/(kBT

0),ω·e
]

depends on the relative kinetic
energy of the colliding particles and the cosine of the angle between the unit vectors of
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relative velocities ω = (c⋆′
i − c⋆′

j )/|c⋆′
i − c⋆′

j | and e = (c⋆
i − c⋆

j )/|c
⋆
i − c⋆

j |. Quantity µ⋆
ij is

the reduced mass of the particle pair, T 0, a reference temperature, and kB, Boltzmann’s
constant. The differential cross-sections are symmetric with respect to their indices, i.e.,

σ⋆
ij = σ⋆

ji, i, j ∈ S. (2.2)

The chemical reactions taking place in the mixture can be written in a generic form:

∑

i∈Fr

Mi ⇀↽
∑

k∈Br

Mk, r ∈ R,

where the set of reactions reads R = {re, rn, ri}. The indices for reactants and products are
counted with their multiplicity, for instance for reaction re, F

re = {n, e} and Bre = {i, e, e}.
For reaction r, we denote by νf

ir and νb
ir the forward and the backward stoichiometric

coefficients for species i ∈ S , order of multiplicity in Fr and Br, respectively. Finally,
we denote by Fr

i a subset of Fr where the index i has been removed, if possible, only
once, and we use the same notation for a subset of Br, for instance, Bre

e = {i, e}. The
reactive collision operator, the rate at which the velocity distribution is altered by reactive
collisions, is given by C⋆

i (f
⋆) =

∑

r∈R C
r⋆
i (f⋆), with the partial collision operator for

reaction r:

C
r⋆
i (f⋆) = νf

ir

∫
(

∏

k∈Br

f⋆
k

∏

k∈Br

β⋆
k

∏

j∈Fr

β⋆
j

−
∏

j∈Fr

f⋆
j

)

WB
r

Fr

⋆ ∏

j∈Fr

i

dc⋆
j

∏

k∈Br

dc⋆
k

− νb
ir

∫
(

∏

k∈Br

f⋆
k

∏

k∈Br

β⋆
k

∏

j∈Fr

β⋆
j

−
∏

j∈Fr

f⋆
j

)

WB
r

Fr

⋆ ∏

j∈Fr

dc⋆
j

∏

k∈Br

i

dc⋆
k, i ∈ S, (2.3)

where quantity β⋆
i = (hP/m

⋆
i )

3 is the statistical weight of species i in the phase space,

hP, Planck’s constant, m⋆
i , the mass of particle i, and WB

r

Fr

⋆
, the reactive transition

probability for a collision in which the reactants Fr are transformed into products Br.
The reciprocity relations (2.2) are generalized for the reactive transition probabilities as

WB
r

Fr

⋆ ∏

k∈Br

β⋆
k = WF

r

Br

⋆ ∏

j∈Fr

β⋆
j . (2.4)

Let us illustrate Eq. (2.3) for the electron partial collision operator in reaction re:

Cre⋆
e (f⋆) =

∫
(

f⋆
i f

⋆
e1
f⋆

e2

β⋆
i β

⋆
e

β⋆
n

− f⋆
nf

⋆
e

)

W iee
ne

⋆
dc⋆

ndc⋆
i dc⋆

e1
dc⋆

e2

− 2

∫
(

f⋆
i f

⋆
e f

⋆
e2

β⋆
i β

⋆
e

β⋆
n

− f⋆
nf

⋆
e1

)

W iee
ne

⋆
dc⋆

ndc⋆
i dc⋆

e1
dc⋆

e2
.

When several particles of the same species are involved in a collision, they are distin-
guished by adding a number to their index.

2.3. Collisional invariants

Collisional invariants of the non-reactive collision operator are microscopic quantities
conserved during an inert collision between the particles i, j ∈ S, i.e., ψ⋆

i +ψ⋆
j = ψ⋆′

i +ψ⋆′
j .
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(e, c⋆

e)

(i, c⋆

i )(e, c⋆

ē)

(n, c⋆

n)

(i, c⋆

i )

(e, c⋆

ê)

(e, c⋆

ẽ) (i, c⋆

ĩ
)(n, c⋆

n)

(i, c⋆

ī
)

Figure 1. Left: ionization by electron impact; right: ionization by heavy-particle impact,
where particle i ∈ H is a catalyst for the reaction.

The space of scalar collisional invariants is spanned by the following elements:














ψj⋆ =
(

m⋆
i δij

)

i∈S
, j ∈ S,

ψnS+ν⋆ =
(

m⋆
i c

⋆
iν

)

i∈S
, ν ∈ {1, 2, 3},

ψnS+4⋆ =
(

1
2m

⋆
i c

⋆
i ·c

⋆
i +m⋆

i U
F⋆
i

)

i∈S
,

(2.5)

where symbol nS stands for the number of species, and UF⋆
i , for the formation energy of

species i. At the macroscopic level of the gas, mass, momentum and energy are shown to
be conserved by introducing the scalar product†

〈〈ξ⋆, ζ⋆〉〉
⋆

=
∑

j∈S

∫

ξ⋆
j⊙ζj

⋆ dc⋆
j , (2.6)

for families ξ⋆ = (ξ⋆
i )i∈S and ζ⋆ = (ζ⋆

i )i∈S, the non-reactive collision operator given in

Eq. (2.1) being orthogonal to the space of collisional invariants, i.e., 〈〈ψl⋆, J⋆〉〉
⋆

= 0, for
all l ∈ {1, . . . , nS + 4}. Finally, the macroscopic properties can be expressed by means
of the scalar product of the distribution functions and the collisional invariants. The
partial mass density reads ρ⋆

i = 〈〈f⋆, ψi⋆〉〉⋆, i ∈ S, the gas is at rest 〈〈f⋆, ψnS+ν⋆〉〉⋆ = 0,
ν ∈ {1, 2, 3}, and the energy is given by ρ⋆eT⋆ + ρ⋆UF⋆ = 〈〈f⋆, ψnS+4⋆〉〉⋆, where quantity
eT⋆ stands for the gas thermal energy per unit mass, ρ⋆ =

∑

j∈S ρ
⋆
j is the mixture mass

density, and UF⋆, the mixture formation energy per unit mass, with ρ⋆UF⋆ =
∑

j∈S ρ
⋆
jU

F⋆
j ,

and UF⋆
i , the species formation energy.

2.4. Parameterization of the reactive collisions

In this section, we change variables to parameterize the partial collision operator given
in Eq. (2.3), for the ionization reactions sketched in Fig. 1, in terms of differential cross-
sections. This step is essential for the expansion of this operator in terms of the small
parameter ε. We only consider the direct reaction since expressions for the reverse reac-
tion are obtained by means of Eq. (2.4) for the transition probabilities.

Following Alexeev et al. (1994), the transition probability can be related to a differ-
ential cross-section that reads, for reaction re,

σiee⋆
ne = σiee⋆

ne (|g⋆
ne|, |g

′⋆
ie |,ω

⋆
ie·e

⋆,ω⋆
ee·e

⋆,ω⋆
ie·ω

⋆
ee),

where relative velocities are defined between the reactants g⋆
ne = c⋆

n − c⋆
ē , and products

g′⋆
ie = c⋆

i − (c⋆
ê + c⋆

ẽ)/2 and g′⋆
ee = c⋆

ẽ − c⋆
ê , and their corresponding unit vectors given

by e⋆ = g⋆
ne/|g

⋆
ne|, ω⋆

ie = g′⋆
ie/|g

′⋆
ie |, and ω⋆

ee = g′⋆
ee/|g

′⋆
ee|. Then, the change of variables is

† The fully contracted product in space is denoted by symbol “ ⊙ ”, associated with a product
ab, for two scalar a and b, and with a scalar product a·b, for two vectors a and b.
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Electrons Heavy particles

Mass m
0

e m
0

h

Thermal speed V
0

e V
0

h

Kinetic time scale t
0

e t
0

h

Table 1. Electron and heavy-particle reference quantities.

expressed by means of the following relation:

W iee
ne

⋆
dc⋆

i dc⋆
êdc⋆

ẽ =
|g⋆

ne||g
′⋆
ie |

2σiee⋆
ne

16π2

3

(

1
2

m⋆
n

m⋆

i

|g⋆
ne|

2 −
m⋆

n+m⋆
e

m⋆
em⋆

i

∆E
⋆)3/2

d|g′⋆
ie |dω⋆

iedω⋆
ee, (2.7)

where ∆E
⋆ = m⋆

i U
F⋆
i +m⋆

eU
F⋆
e −m⋆

nUF⋆
n stands for the ionization energy. For reaction ri,

i ∈ H, the transition probability can be related to the following differential cross-section:

σiei⋆
ni = σiei⋆

ni (|g⋆
ni|, |g

′⋆
he|,ω

⋆
he·e

⋆,ω⋆
ii·e

⋆,ω⋆
he·ω

⋆
ii), i ∈ H,

where relative velocities are defined between the reactants g⋆
ni = c⋆

n − c⋆
ī
, and products

g′⋆
he = m⋆

i c
⋆
i /(m

⋆
i +m⋆

i )+m
⋆
i c

⋆
ĩ
/(m⋆

i +m⋆
i )−c⋆

e and g′⋆
ii = c⋆

i −c⋆
ĩ
, and their corresponding

unit vectors e⋆ = g⋆
ni/|g

⋆
ni|, ω⋆

he = g′⋆
he/|g

′⋆
he| and ω⋆

ii = g′⋆
ii /|g

′⋆
ii |. Then, the change of

variables is expressed by means of the following relation, for i ∈ H:

W iei
ni

⋆
dc⋆

i dc⋆
edc⋆

ĩ
=

|g⋆
ni||g

′⋆
he|

2σiei⋆
ni

16π2

3

( m⋆
nm⋆

i

m⋆
e(m⋆

i
+m⋆

i
) |g

⋆
ni|

2 −
2(m⋆

n+m⋆

i
)

m⋆
e(m⋆

i
+m⋆

i
)∆E

⋆
)3/2

d|g′⋆
he|dω⋆

hedω⋆
ii. (2.8)

2.5. Dimensional analysis

A sound scaling of the Boltzmann equation is deduced from a dimensional analysis in-
spired by Petit & Darrozes (1975). Reference dimensional quantities are denoted by
the superscript 0. The characteristic temperature T 0, number density n0, differential
cross-section for inert collisions σ0, mean free path l0, macroscopic time scale t0, and
macroscopic length scale L0 are assumed to be common to all species. Electron and
heavy-particle reference quantities are introduced in Table 1. The non-dimensional num-
ber

ε =

√

m0
e

m0
h

(2.9)

quantifies the ratio of the electron mass to a reference heavy-particle mass. According to
assumption (5), the value of ε is small. Consequently, electrons exhibit a larger thermal
speed V 0

e = (kBT
0/m0

e)
1/2 than that of heavy particles V 0

h = (kBT
0/m0

h)1/2 = εV 0
e . The

differential cross-sections for inert collisions being of the same order of magnitude σ0,
the characteristic mean free path l0 = 1/(n0σ0) is found to be identical for all species.
As a result, the kinetic time scale, or relaxation time of a distribution function toward
its respective quasi-equilibrium state, is lower for electrons, t0e = l0/V 0

e , than for heavy
particles, t0h = l0/V 0

h = t0e/ε. Assumption (6) states that the macroscopic time scale

reads t0 = t0h/ε. In addition, the macroscopic temporal and spatial scales are linked by

the expression L0 = V 0
h t

0. Hence, the Knudsen number Kn = l0/L0 = ε is small, due to
our choice of macroscopic and temporal scales, leading to a continuum description.

Non-dimensional variables are based on the reference quantities. They are denoted
by removing the superscript ⋆. In particular, one uses the following expressions for the
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particle velocities, c⋆
e = V 0

e ce, and c⋆
i = V 0

h ci, i ∈ H. The non-dimensional ionization
energy reads

∆E
⋆ = kBT

0∆E, (2.10)

whereas the differential cross-sections for ionization are scaled as

σiee⋆
ne = ε2σ0σiee

ne , σiei⋆
ni = εσ0σiei

ni , i ∈ H, (2.11)

according to assumption (7). Using relations (2.10) and (2.11), the dimensional analysis
of the transition probabilities can be deduced from Eqs. (2.7) and (2.8) in the following
way:

W iee
ne

⋆
= ε2

σ0

(V 0
h )3(V 0

e )5
W iee

ne , W iei
ni

⋆
= ε2

σ0

(V 0
h )6(V 0

e )2
W iei

ni , i ∈ H. (2.12)

We investigate the system at the macroscopic time t⋆ = t0t, the Boltzmann Eq. (2.1) can
be expressed, in non-dimensional form, for the electrons and heavy particles, as

∂tfe = 1
ε2 [Jee (fe , fe ) +

∑

j∈H

Jej (fe , fj )] +
∑

r∈R

Cr
e (f), (2.13)

∂tfi = 1
ε [ 1εJie(fi , fe ) +

∑

j∈H

Jij(fi , fj )] +
∑

r∈R

C
r
i (f), i ∈ H, (2.14)

respectively. The multi-scale analysis occurs at three levels: (a) in the kinetic Eqs. (2.13)
and (2.14); (b) in the collisional invariants (2.5) and thus in the conservation of the
associated macroscopic quantities; (c) in the collision operators. The scaling of the re-
active collision operators is investigated in the following section, the treatment of the
non-reactive collision operators is given in Graille et al. (2008). It is important to men-
tion that the Maxwellian reaction regime is reached, since the temporal derivative of the
distribution function and the reactive collision operators of Eqs. (2.13) and (2.14) are
of order ε0, corresponding to the macroscopic time scale t0 at which the conservation
equations are derived.

2.6. Expansion of the reactive operators Ce and Ci, i ∈ H

The study of the collision dynamics for the three-body ionization collisions yields the
dependence of the velocities on the ε parameter. For reaction re, it can be shown that
these velocities can be parameterized as

ci = cn + O(ε), cê = −g′
ie −

1
2g′

ee + O(ε), cẽ = −g′
ie + 1

2g′
ee + O(ε).

After some algebra, energy conservation is expressed by means of two decoupled equations
for the electrons and heavy particles:

|cn|
2 = |ci|

2 + O(ε), |cē|
2 = |cê|

2 + |cẽ|
2 + 2∆E + O(ε). (2.15)

Due to the large mass disparity between the electrons and heavy particles, the energy
required to pull an electron from a neutral particle is provided by the colliding free
electron, ionization can only occur if its energy is greater than the ionization energy.
After collision, two electrons are emitted with a global energy corresponding to the
difference between the electron energy before interaction and the ionization energy. The
ion keeps the same momentum and energy as the neutral particle before collision. For
reaction ri, i ∈ H, the velocities can be parameterized as

ci = G0 + 1
2g′

ii + O(ε), cĩ = G0 −
1
2g′

ii + O(ε), i ∈ H, ce = −g′
he + O(ε),
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where the center of mass reads G0 = 1
2cn + cī + O(ε) = 1

2ci + cĩ + O(ε). After some
algebra, energy conservation is expressed by means of one equation coupling electrons
and heavy particles:

1
2mi|gni|

2 − 2∆E = 1
2mi|g

′
ii|

2 + |g′
he|

2 + O(ε), i ∈ H. (2.16)

In order to decouple the heavy-particle energy from the electron energy, we assume that
the electron pulled from the neutral particle is cold, since it is not yet thermalized at the
electron temperature. Its characteristic speed has the same magnitude as the one of the
heavy particles implied in the collision. Therefore, its energy is null at zero-order and we
can split Eq. (2.16) into two uncoupled equations:

1
2mi|gni|

2 − 2∆E = 1
2mi|g

′
ii|

2 + O(ε), i ∈ H, |g′
he|

2 = O(ε). (2.17)

Ionization can only occur if the relative kinetic energy between the neutral particle and
the catalyst is greater than the ionization energy.

Let us define Q0
e = (m0

ekBT
0/h2

P)3/2, quantity proportional to the electron transla-
tional partition function, and the zero-order transition probability such that we have
W iei

ni = W iei0
ni + O(ε), i ∈ S. Then, we give, without their proof, the following theorems

for the expansion of the reactive collision operators.

Theorem 2.1 The reactive collision operator Ce can be expanded in the form

Ce(f) = C0
e(f) + O(ε), (2.18)

where C0
e(f) =

∑

r∈R Cr0
e (f), with the zero-order partial collision operators

Cre0
e (f) =

∫
(

fife1fe2

n0

Q0
e

(mn

mi

)3

− fnfe

)

W iee0
ne dcndcidce1dce2

− 2

∫
(

fifefe2

n0

Q0
e

(mn

mi

)3

− fnfe1

)

W iee0
ne dcndcidce1dce2 ,

Cri0
e (f) = −

∫
(

fifefi2

n0

Q0
e

(mn

mi

)3

− fnfi1

)

W iei0
ni dcndci1dcidci2 , i ∈ H.

Theorem 2.2 The reactive collision operators Ci, i ∈ H, can be expanded in the form

Ci(f) = C0
i (f) + O(ε), (2.19)

where C0
i (f) =

∑

r∈R C
r0
i (f), i ∈ H, with the zero-order partial collision operators

C
re0
n (f) =

∫
(

fife2fe3

n0

Q0
e

(mn

mi

)3

− fnfe1

)

W iee0
ne dcidce1dce2dce3 ,

C
ri0
n (f) = (1 + δni)

∫
(

fi1fefi

n0

Q0
e

(mn

mi

)3

− fnfi2

)

W iei0
ni dcidcedci1dci2

− δni

∫
(

fifefn

n0

Q0
e

(mn

mi

)3

− fi1fi2

)

W iei0
ni dcidcedci1dci2 , i ∈ H,

C
re0
i (f) = −

∫
(

fife2fe3

n0

Q0
e

(mn

mi

)3

− fnfe1

)

W iee0
ne dcndce1dce2dce3 ,
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C
ri0
i (f) = δii

∫
(

fi1fefi2

n0

Q0
e

(mn

mi

)3

− fnfi

)

W iei0
ni dcndcedci1dci2

− (1 + δii)

∫
(

fifefi2

n0

Q0
e

(mn

mi

)3

− fnfi1

)

W iei0
ni dcndcedci1dci2 , i ∈ H.

3. Multi-scale Chapman-Enskog expansion

We employ an Enskog expansion to derive an approximate solution to the Boltzmann
equation by expanding the species distribution functions in a series of the ε parameter
as a perturbation of the quasi-equilibrium distribution functions f0

e and f0
i , i ∈ H,

fe = f0
e (1 + εφe + ε2φ2

e ) + O(ε3), (3.1)

fi = f0
i (1 + εφi ) + O(ε2), i ∈ H. (3.2)

Injecting these expressions into Eqs. (2.13) and (2.14), one obtains,

∂tfe = ε−2J−2
e + ε−1J−1

e + J0
e + C0

e + O(ε), (3.3)

∂tfi = ε−1J
−1
i + J0

i + C0
i + O(ε), i ∈ H, (3.4)

where the non-reactive collision operators are found in Graille et al. (2008).
In the Chapman-Enskog method, the plasma is described at successive orders of ε, as

equivalent to as many time scales. Let us introduce some mathematical tools to derive
the conservation equations. We define the electron and heavy-particle scalar products,

〈〈ξe, ζe〉〉e =

∫

ξe⊙ζe dce, 〈〈ξh, ζh〉〉h =
∑

j∈H

∫

ξj⊙ζj dcj , (3.5)

and the collisional invariants for electrons,

{

ψ̂1
e = 1,

ψ̂2
e = 1

2ce·ce + UF
e ,

(3.6)

and for heavy particles,



















ψ̂l
h =

(

miδil
)

i∈H
, l ∈ H,

ψ̂nH+ν
h =

(

miciν
)

i∈H
, ν ∈ {1, 2, 3},

ψ̂nH+4
h =

(

1
2mici·ci +miU

F
i

)

i∈H
,

(3.7)

where symbol nH denotes the number of heavy particles in the mixture. The linearized
collision operators of the Boltzmann equation for electrons and heavy particles are or-
thogonal, with respect to the scalar product, to the space spanned by their collisional
invariants. The partial mass densities read ρe = 〈〈fe , ψ̂

1
e 〉〉e, ρi = 〈〈fh , ψ̂

i
h〉〉h, i ∈ H;

momentum vanishes, 〈〈fh , ψ̂
nH+ν
h 〉〉 = 0, ν ∈ {1, 2, 3}; and the heavy-particle and electron

energies are given by

ρeee = ρee
T
e + ρeU

F
e = 〈〈fe , ψ̂

2
e 〉〉, ρheh = ρhe

T
h +

∑

j∈H

ρjU
F
j = 〈〈fh , ψ̂

nh+4
h 〉〉.
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Finally, we impose the constraints that f0
e and f0

h yield the local macroscopic properties

〈〈f0
e , ψ̂

l
e〉〉e = 〈〈fe , ψ̂

l
e〉〉e, l ∈ {1, 2}, (3.8)

〈〈f0
h , ψ̂

l
h〉〉h = 〈〈fh , ψ̂

l
h〉〉h, l ∈ {1, . . . , nH+4}. (3.9)

3.1. Conservation equations

When solving the electron Boltzmann Eq. (3.3) at order ε−2, corresponding to the kinetic
time scale t0e , the electron population is shown to thermalize to a quasi-equilibrium state
described by a Maxwell-Boltzmann distribution function at temperature Te = 2

3e
T
e

f0
e = ne

(

1

2πTe

)3/2

exp

(

−
1

2Te

ce·ce

)

, (3.10)

where ne is the electron number density. In contrast, heavy particles do not exhibit any
ensemble property at this order. Solving the heavy-particle Boltzmann Eqs. (3.4) at order
ε−1 corresponding to the kinetic time scale t0h, the heavy-particle population is shown to
thermalize to a quasi-equilibrium state described by a Maxwell-Boltzmann distribution
function at temperature Th = 2

3ρhe
T
h /nh, nh =

∑

i∈H ni,

f0
i = ni

(

mi

2πTh

)3/2

exp

(

−
mi

2Th

ci·ci

)

, i ∈ H. (3.11)

where ni is the number density of species i. The quasi-equilibrium states are described
by means of distinct temperatures for the electrons and heavy particles.

Macroscopic equations can be derived by means of the scalar products defined in
Eq. (3.5). The projection of the Boltzmann Eq. (3.3) at order ε−1 on the collisional

invariants ψ̂l
e, l ∈ {1, 2}, is trivial. At order ε0, corresponding to the macroscopic time

scale t0, we obtain the zero-order drift-diffusion equations for the electrons and Euler
equations for the heavy species in the non-homogeneous case considered in Graille et al.
(2008). Here, we obtain as source terms for the macroscopic equations, the translational
energy transferred from heavy particles to electrons, expressed as ∆E0

h = 3
2ne(Te−Th)/τ ,

where τ is the average collision time at which this energy transfer occurs, as well as zero-
order chemical production rates expressed as

ω0
i =

∑

r∈R

ωr0
i , ωr0

i =

∫

C
r0
i (f0) dci, i ∈ S, r ∈ R. (3.12)

These terms appear in the two following propositions derived by projecting Eqs. (3.3)-
(3.4) on the collisional invariants.

Proposition 3.1 If φh is a solution to Eq. (3.4) at order ε0, where f0
e is given by

Eq. (3.10), f0
i , i ∈ H, by Eq. (3.11), if φe = 0, and if f0

h φh = (f0
i φi )i∈H satisfies the

constraints

〈〈f0
h φh, ψ̂

l
h〉〉h = 0, l ∈ {1, . . . , nH+4},

then the zero-order conservation equations of heavy-particle mass and energy read

dtρi = mi ω
0
i , i ∈ H, (3.13)

dt(ρhe
T
h ) = ∆E0

h + ∆E ωrn0
n − ∆E ωri0

i . (3.14)

Proposition 3.2 If φ2
e is a solution to Eq. (3.3) at order ε0, where f0

e is given by
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Eq. (3.10), f0
i , i ∈ H, by Eq. (3.11), if φe = 0, if φi , i ∈ H, is a solution of Eq. (3.4) at

order ε0 under the constraints 〈〈f0
h φh, ψ̂

l
h〉〉h = 0, l ∈ {1, . . . , nH+4}, and if f0

e φ
2
e satisfies

the constraints

〈〈f0
e φ

2
e , ψ̂

l
e〉〉e = 0, l ∈ {1, 2},

then the zero-order conservation equations of electron mass and energy read

dtρe = ω0
e , (3.15)

dt(ρee
T
e ) = −∆E0

h − ∆Eωre0
e . (3.16)

Using the property of the chemical production rates for ionization ωr0
e = ωr0

i = −ωr0
n ,

r ∈ R, it can be shown that the mixture mass and energy are conserved, i.e.,

dtρ = 0, dt(ρe
T + ρUF) = 0.

The ionization energy, given by the catalyst involved in the ionization reaction, con-
tributes to the balance of translational energy of this catalyst, our thermodynamics
being globally at constant total density and total energy. Let us emphasize that we do
not make any further assumption on the internal variables, defined by Woods (1986) as
the mixture composition and energy distribution among the species.

3.2. Zero-order chemical production rates and microreversibility

The kinetic theory allows us to rigorously derive the expression for the zero-order chem-
ical production rates. This is a major contribution of this work, since it provides the
ingredients to obtain a new form for the second law of thermodynamics. After some
lengthy algebra, these rates can be expressed in terms of the number densities as

ωre0
e = Kf

re(Te)nnne − Kb
re(Te)nin

2
e , (3.17)

ωri0
e = K

f
ri(Th)nnni − K

b
ri(Th, Te)nineni, i ∈ H. (3.18)

The temperature dependence for the forward and backward rate constants is strongly
connected with the reaction mechanism. The ionization energy is provided by the reaction
catalyst at temperature Tr , r∈ R, defined as

Tre = Te, Tri = Th, i ∈ H.

The forward rate, associated with the endothermic reaction, is a function of the tem-
perature Tr . The temperature dependence for the backward rate, associated with the
exothermic reaction, is less straightforward to interpret.

The reaction rates obey the relation Keq
r = Kf

r/K
b
r , r ∈ R, where the quasi-equilibrium

rate constant is defined as

K
eq
r (Te, Tr) =

(mi

mn

)3/2

QT
e (Te) exp

(

−
∆E

Tr

)

, r ∈ R, (3.19)

with the electron translational partition function given by QT
e (Te) = (2πTe)

3/2Q0
e/n

0.
Such a form follows from two essential physical properties. First, Eqs. (2.15) and (2.17),
for the scaled conservation of energy during reactive collisions, allow for a common sym-
metric reaction rate to be defined for the forward and backward reaction, such as in
Giovangigli (1999). Second, the formation energies for the species involved in a given
reaction, light or heavy, are taken into account into this symmetric reaction constant at
the common temperature Tr . The zero-order chemical production rates are thus compat-
ible with the law of mass action and irreversible thermodynamics. Equation (3.19) is a
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generalized Saha law for a quasi-equilibrium state in which electrons and heavy particles
are in chemical equilibrium and thermal non-equilibrium. We have retrieved the Morro-
Romeo-van de Sanden equation for the electron-impact ionization reaction (see Giordano
& Capitelli 2001) and have derived a new equation for the heavy-particle impact ioniza-
tion reactions.

In addition to the thermal energy, we introduce other relevant thermodynamic func-
tions. First, the species Gibbs free energy is defined by the relations

ρege = neTe ln
[ ne

QT
e (Te)

]

+ neU
F
e , ρigi = niTh ln

[ ni

QT
i (Th)

]

+ niU
F
i , i ∈ H,

where the translational partition functions read QT
i (Th) = (2πmiTh)3/2Q0

h/n
0, i ∈ H,

with quantity Q0
h = (m0

hkBT
0/h2

P)3/2. The species enthalpy is given by ρehe = 5
2neTe +

ρeU
F
e and ρihi = 5

2niTh + ρiU
F
i , i ∈ H, and the species entropy by se = (he − ge)/Te

and si = (hi − gi)/Th, i ∈ H. The mixture entropy read ρs =
∑

j∈S ρjsj . For reactive
plasmas, Gibbs relation is found to be

dt(ρs) =
1

Te

dt(ρeee) +
1

Th

dt(ρheh) −
ge

Te

dtρe −
∑

j∈H

gj

Th

dtρj .

In the present case, we note that the usual entropy produced by a chemical reaction,
−geω

r0
e /Te −

∑

j∈Hmjgjω
r0
j /Th, r ∈ R, does not have a definite sign. Thus, the Gibbs

free energy does not allow the definition of a suitable chemical potential and does not
include the thermal exchange in a chemical reaction between species thermalized at
different temperatures. Consequently, we redefine the Gibbs free energy as

ρeg̃
r
e = ρege + (

Te

Tr
− 1)ρeU

F
e , ρig̃

r
i = ρigi + (

Th

Tr
− 1)ρiU

F
i , i ∈ H, r∈ R,

and distinguish two sources of entropy production, using Eqs. (3.13) and (3.15),

dt(ρs) = Υth +
∑

r∈R

Υr
ch.

Quantity Υth = [dt(ρee
T
e ) + ∆Eωre0

e ]/Te +[dt(ρhe
T
h ) + ∆E(ωri0

i − ωrn0
n )]/Th stands for the

entropy production rate due to thermal non-equilibrium. Using Eqs. (3.14) and (3.16),
we show that this quantity is non-negative, Υth = 3

2ne(Te − Th)2/(TeThτ). The entropy

production rate is given by Υr
ch = −g̃r

eω
r0
e /Te −

∑

j∈Hmj g̃
r
jω

r0
j /Th, r ∈ R. After some

algebra, we obtain

Υri
ch = Kri(Tri) Ω

(

nn

Qn(Th,Tri
)

ni

Qi(Ti,Tri
) ,

ni

Qi(Th,Tri
)

ne

Qe(Te,Tri
)

ni

Qi(Ti,Tri
)

)

, i ∈ S,

where Ti = Th, i ∈ H, and Qi(Th, Tr) = QT
i (Th) exp(−miU

F
i /Tr), i ∈ H, r ∈ R,

Qe(Te, Tr) = QT
e (Te) exp(−UF

e /Tr), r ∈ R. The terms Υr
ch are non-negative, since the

function Ω(x, y) = (x − y) log(x/y) is positive. The second law of thermodynamics is
satisfied.

4. Conclusion

Based on kinetic theory, we have proposed a unified description of the thermody-
namic state of plasmas in thermal and chemical non-equilibrium, thus extending the
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work of Woods (1986), in which the non-equilibrium effects are treated separately in
terms of internal variables. The full thermodynamic equilibrium state of the system, un-
der well-defined and natural constraints, can be studied by following the approach used
in Giovangigli (1999) and Massot (2002). It can be shown that the system asymptoti-
cally converges toward a unique thermal and chemical equilibrium state. Our results are
complementary of the conservation equations and transport flux expressions derived by
Graille et al. (2008) for non-homogeneous plasmas in the presence of external forces,
since we provide adequate chemical source terms to be added to the zero-order drift-
diffusion/Euler set of equations or to the first-order drift-diffusion/Navier-Stokes set of
equations, in particular, with a description of the Kolesnikov effect for multi-component
plasmas (Kolesnikov 1974).
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