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Thermo-chemical dynamics and chemical
quasi-equilibrium of plasmas in thermal

non-equilibrium

By T. E. Magin, B. Graille† AND M. Massot‡

1. Motivation and objective

Plasmas have a broad field of applications, such as air-breathing hypersonic vehicles
(plasma control for scramjet engine), spacecraft atmospheric entries (influence of pre-
cursor electrons and prediction of blackout phenomenon), high-enthalpy wind tunnels
(plasmatron, arc-jet, and shock tube facilities), lightning phenomena, discharges at at-
mospheric pressure, laboratory nuclear fusion and astrophysics. Graille et al. (2008, 2009)
have derived from kinetic theory a unified fluid model for multicomponent plasmas by
accounting for thermal non-equilibrium between the translational energies of the elec-
trons and heavy particles, such as atoms and ions, given their strong mass disparity. The
following ionization mechanism, comprising the reactions ṙı, was considered:

n + ı̇ 
 i + e + ı̇, ı̇ ∈ S,

for a 3-species plasma. Electrons, neutral particles, and ions are, respectively, denoted
by the indices e, n, and i. The full mixture of species is denoted by the set of indices
S = {e, n, i}, and the heavy particles, by the set of indices H = {n, i}.

A recurrent topic in theoretical works on plasmas is the derivation of a modified Saha
equation, describing systems in chemical quasi-equilibrium and thermal non-equilibrium,
with the consequent debate regarding which of the forms of this equation is the correct
one to apply (see Giordano & Capitelli 2001, and references cited therein). In particular,
Morro & Romeo (1988) and van de Sanden et al. (1989) have derived an equation for the
electron-impact ionization reaction based on techniques issued from thermodynamics of
homogeneous systems at equilibrium. This approach is questionable for plasmas in both
thermo-chemical non-equilibrium, seeing the strong coupling between chemical evolution
and thermal exchange. In particular, it is not obvious to choose a suitable set of con-
straints associated with the optimization of the thermodynamic functions. In this work,
we propose to study both processes of ionization by electron impact, reaction re, and by
heavy-particle impact, reactions rn and ri. We propose to examine systems in chemical
quasi-equilibrium and thermal non-equilibrium by means of a singular perturbation anal-
ysis, as opposed to a standard thermodynamic approach, by extending the work of Massot
(2002) to thermal non-equilibrium. This analysis is based on a set of differential equations
derived by Graille et al. (2008) for the following physical scenario, in which the thermal
relaxation becomes much slower than the chemical reactions. The singular perturbation
analysis, consistent with the scale separation associated with this scenario, is used to
study the dynamics of the system in two cases. First, electron-impact ionization is inves-
tigated. The dynamics of the system rapidly becomes close to a slow dynamics manifold
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that allows for defining a unique chemical quasi-equilibrium for two-temperature plasmas
and proving that the second principle is satisfied. Then, all ionization reactions are taken
into account simultaneously, leading to a surprising conclusion: when ionization through
both electron and heavy-particle impact is considered, the inner layer for a short time
scale (or time boundary layer) directly leads to thermal equilibrium. Thus, the global
thermo-chemical equilibrium is reached within a short time scale, involving only chemical
reactions, even if thermal relaxation through elastic collisions is not efficient and slow.
To our knowledge, this approach sheds some completely new light on this matter and
has not been used previously for such multicomponent reactive plasmas out of thermal
equilibrium.

2. Conservation equations

In this section, we review the conservation equations derived from kinetic theory by
Graille et al. (2008) for a spatially uniform plasma at rest in the absence of external forces.
Then, we introduce thermodynamic functions and derive an entropy equation for the
singular perturbation analysis. The derivation is based on a multicomponent Boltzmann
equation with conventional elastic collision operators and reactive collision operators
written in terms of transition probabilities (Giovangigli 1999). A dimensional analysis of
the Boltzmann equation provides a small parameter for the scale separation, quantity
ε = (m0

e/m
0
h)1/2, equal to the square root of the ratio of the electron mass to a reference

heavy-particle mass. The Knudsen number is assumed to scale as this parameter, allowing
for a continuum description of the system. The transition probabilities are linked to
differential cross-sections, allowing for a parametrization of the reactive collisions and a
suitable choice for the scaling leading to the Maxwellian reaction regime. In the multiscale
Chapman-Enskog method, both the solution and the collision operators are expanded in a
series of the ε parameter, leading to two major results. First, new expressions are derived
for the reaction rate coefficients and zero-order chemical production rates for plasmas in
thermal non-equilibrium. These expressions are compatible with the law of mass action.
The species formation energy is associated with a temperature specific to the ionization
reaction considered. Consequently, chemical reactions involving collision partners with
populations distributed at distinct temperatures do not result only in changes for the
mixture chemical composition, but also result in heat exchange between the electrons
and heavy particles. Second, the set of derived conservation equations is compatible with
the first and second laws of thermodynamics. Energy and total density are conserved
and the entropy production rate for each type of ionization reaction is shown to be
non-negative, involving a new definition of the Gibbs free energy for plasmas in thermal
non-equilibrium.

At the electron kinetic time scale (order ε−2), Graille et al. (2009) have shown that
the electron population thermalizes to a quasi-equilibrium state described by means of a
Maxwell-Boltzmann distribution function at temperature Te = 2

3mee
T
e /kB

f0
e = ne

(
me

2πkBTe

)3/2

exp
(
− me

2kBTe
ce·ce

)
, (2.1)

where quantity me stands for the electron mass; eTe , the electron translational energy; ne,
the electron number density; kB, Boltzmann’s constant; and ce, the electron velocity. In
contrast, heavy particles do not exhibit any ensemble property at this time scale. At the
heavy-particle kinetic time scale (order ε−1), Graille et al. (2009) have shown that the
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heavy-particle population thermalizes to a quasi-equilibrium state described by means of
a Maxwell-Boltzmann distribution function at temperature Th = 2

3ρhe
T
h /(nhkB)

f0
i = ni

(
mi

2πkBTh

)3/2

exp
(
− mi

2kBTh
ci·ci

)
, i ∈ H, (2.2)

where quantity ni = ρi/mi stands for the number density of species i, mi its mass,
ρi its mass density, ci its velocity, eTh the heavy-particle translational energy, ρh the
heavy-particle mass density, and nh =

∑
i∈H ni the heavy-particle number density. The

quasi-equilibrium states given in Eqs. (2.1) and (2.2) are described by means of dis-
tinct temperatures for the electrons and heavy particles. At the macroscopic time scale
(order ε0), Graille et al. (2008) have derived conservation equations for the mass and
translational energy for the electrons and heavy particles

dtρe = meω
0
e , (2.3)

dtρi = mi ω
0
i , i ∈ H, (2.4)

dt(ρee
T
e ) = −∆E0

h −∆Eωre0
e , (2.5)

dt(ρhe
T
h ) = ∆E0

h + ∆E ωrn0
n −∆E ωri0i . (2.6)

The ionization energy, ∆E = miU
F
i + meU

F
e −mnUF

n , is defined based on the formation
energy UF

i for species i ∈ S. The ionization energy is provided by the catalyst involved
in the ionization reaction and contributes to the balance of translational energy for this
catalyst, as shown in Eqs. (2.5) and (2.6). The zero-order chemical production rates
comprise the contribution of the various chemical reactions

ω0
i =

∑
j∈S

ω
rj0
i , i, j ∈ S.

These rates satisfy the property ωri0e = ωri0i = −ωri0n , i ∈ S and can be expressed in terms
of the number densities as

ωṙı0e = Kf
ṙınnnı̇ −Kb

ṙıninenı̇, ı̇ ∈ S.

For the reaction ri, the direct and reverse rate coefficients are linked to a symmetric rate
coefficient, Kri(Tri), by the following relation:

Kf
ri =

Kri(Tri)
Qn(Th, Tri)Qi(Ti, Tri)

, Kb
ri =

Kri(Tri)
Qi(Th, Tri)Qe(Te, Tri)Qi(Ti, Tri)

, i ∈ S, (2.7)

with the global and translational partition functions

Qı̇(Ti, Trj ) = QT
i (Ti) exp

(
−mı̇U

F
ı̇

kBTrj

)
, QT

i (Ti) =
(

2πmı̇kBTi

h2
P

)3/2

, ı̇, j ∈ S,

and the heavy-particle temperature Ti = Th, i ∈ H. The temperature dependence for the
direct and reverse rate coefficients is strongly connected with the reaction mechanism.
The ionization energy is provided by the catalyst at a reaction temperature defined as

Tre = Te, Tṙı = Th, ı̇ ∈ H.

It is important to mention that the sound structure for the rate coefficients given in
Eq. (2.7) results from the scaling used in Graille et al. (2008) for the energy conservation
in the reactive collisions. The translational energy transferred from heavy particles to
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electrons, is expressed as

∆E0
h = 3

2nekB(Te − Th)
1
τ
,

where τ is the average collision time at which this energy transfer occurs. Defining global
electron and heavy-particle particle energies

Ee = ρee
T
e + ρeU

F
e , Eh = ρhe

T
h +

∑
j∈H

ρjU
F
j ,

after some algebra, it is possible to write an alternative formulation for Eqs. (2.5) and
(2.6) as follows,

dt(Ee) = −∆E0
h + ∆F

reω
re0
e + ∆F

ri
ωri0e + ∆F

rnω
rn0
e , (2.8)

dt(Eh) = ∆E0
h −∆F

reω
re0
e −∆F

ri
ωri0e −∆F

rnω
rn0
e . (2.9)

with the energy exchange coefficients by heavy-particle impact ionization ∆F
ri

= ∆F
rn =

me UF
e , and by electron-impact ionization, ∆F

re = mn UF
n −mi U

F
i . The ionization energy

is obtained from the relation ∆E = ∆F
ri
−∆F

re . Using Eqs. (2.3) and (2.4), the total mass
ρ = ρe + ρh, and the total charge, Q = qe(ne − ni), with the electron charge qe, are
conserved for the mixture, i.e.,

dtρ = 0, (2.10)
dtQ = 0. (2.11)

Adding Eqs. (2.8) and (2.9), the total energy E = Ee + Eh, is also conserved

dtE = 0. (2.12)

The system evolves at constant total density, total charge and total energy. It is important
to mention that no further assumption is made on the internal variables, defined by
Woods (1986) as the mixture composition and energy distribution among the species.

In addition to the energy, other relevant thermodynamic functions are introduced.
First, the species Gibbs free energy is defined by the relations

ρigi = nikBTi ln
( ni
QT
i (Ti)

)
+ ρiU

F
i , i ∈ S.

The species enthalpy is given by ρihi = 5
2nikBTi + ρiU

F
i , i ∈ S, and the species entropy

by si = (hi − gi)/Ti, i ∈ S. The mixture entropy reads S =
∑
j∈S ρjsj . For reactive

plasmas, Gibbs relation is found to be

dtS = Υth + Υch (2.13)

The first term of the right-hand-side of Eq. (2.13)

Υth =
dt(ρee

T
e ) + ∆Eωre0

e

Te
+

dt(ρhe
T
h ) + ∆E(ωri0i − ωrn0

n )
Th

,

is the entropy production rate due to thermal non-equilibrium. Using Eqs. (2.6) and
(2.5), this quantity is shown to be non-negative

Υth = 3
2ne(Te − Th)2

1
TeThτ

. (2.14)
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The second term of the right-hand-side of Eq. (2.13)

Υch = −
∑
i∈S

megeω
ri0
e

Te
+
∑
j∈H

mjgjω
ri0
j

Th

 ,

is the entropy production rate due to chemical reactions. We notice that each of the
usual entropy production terms associated with a chemical reaction, −megeω

ri0
e /Te −∑

j∈Hmjgjω
ri0
j /Th, i ∈ S, is not positive. Thus, the conventional expression for the

Gibbs free energy does not allow for definition of a suitable chemical potential and does
not include the thermal exchange in a chemical reaction between species thermalized at
different temperatures. Consequently, we propose to define a reaction dependent Gibbs
free energy as

ρig̃
rj
i = ρigi +

( Ti
Trj
− 1
)
ρiU

F
i , i, j ∈ S,

and rewrite the second term of the right-hand-side of Eq. (2.13) as

Υch =
∑
j∈S

Υrj
ch.

The entropy production rate due to chemistry,

Υri
ch = − g̃

ri
e ω

ri0
e

Te
−
∑
j∈H

mj g̃
ri
j ω

ri0
j

Th
, i ∈ S,

can be rewritten, after some algebra as

Υri
ch = Kri(Tri) Λ

(
nn

Qn(Tri
,Th)

ni

Qı̇(Tri
,Ti)

, ni

Qi(Tri
,Th)

ne

Qe(Tri
,Te)

ni

Qı̇(Tri
,Ti)

)
, ı̇ ∈ S, (2.15)

where the function Λ(x, y) = (x−y) log(x/y) is positive. The terms Υri
ch are non-negative,

and the second law of thermodynamics is thus satisfied.

3. Results

In this section, we use a singular perturbation analysis to study the dynamics of plas-
mas in thermo-chemical non-equilibrium.

3.1. Second law of thermodynamics and global equilibrium
A compact vectorial notation is introduced to study the global equilibrium of the system
of Eqs. (2.3)-(2.4) and (2.8)-(2.9). The temporal evolution of the conservative variable
U = (%t, Ee, Eh)t, with the mass density vector %t = (ρe, ρi, ρn), is described by means of
the five-dimensional dynamical system

dtU = Ω(U), U(0) = U0, (3.1)

Ω(U) = Ωch(U) + Ωth(U), Ωch(U) =
∑
j∈S

ω
rj0
e (U)M∗rjν∗, Ωth = ∆E0

e (U)κ. (3.2)

The reaction vector in the composition space reads νt = (1, 1,−1) ∈ R3, and the reaction
vector in the full composition and energy space, ν∗t = (νt, 1,−1) ∈ R5. Mass matrices are
defined in these two spaces as M = diag(me, mi, mn) and M∗rj = diag(M,∆F

rj ,∆
F
rj ). The

source term associated to thermal relaxation Ωth involves the vector κt = (0, 0, 0, 1,−1).
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A

ρi

UOrth

U

ρe

B

ρn

Figure 1. The reaction simplex is the line segment AB in the composition space (ρe, ρi, ρn).
The total charge is assumed to be zero. Point A corresponds to a fully neutral mixture, and
point B, to a fully ionized mixture. The space orthogonal to the reaction simplex is spanned by
the orthogonal basis (U ,UOrth).

The total mass density reads ρ = 〈%,U〉, where symbol 〈 , 〉 denotes the euclidian
scalar product, and U t = (1, 1, 1), the unit vector in R3. The reaction vector space is
one-dimensional, R = span{ ν }, and we denote the augmented vector space R∗ =
span{ ν∗ }. The reaction simplex, where % lives, is the one-dimensional affine sub-
space R = (%0 + n0MR) ∩ (0,∞)3, where quantity n0 is a dimensional number density
(see figure 1). In addition to ρ, we define ρOrth = 〈%,UOrth〉, where the vector UOrth =
(−mi −mn,mn + me,mi −me)t/mn is orthogonal to U as well as orthogonal to Mν in
R3. Then dtρOrth = 0 and quantity ρOrth is invariant by the dynamical system (3.1), as a
result of the total mass and charge conservation Eqs. (2.10) and (2.11).

Proposition 3.1. Let us assume %0 ∈ (0,∞)3, Ee0 ∈ (0,∞), Eh0 ∈ (0,∞), and under
some classical properties that can be found in Massot (2002), there exists a smooth global
in time solution of the dynamical system (3.1). The species densities are positive and there
exists two positive temperatures, T1 and T2, bounding the temperatures: T1 ≤ Te(t) ≤ T2,
T1 ≤ Th(t) ≤ T2.

The system admits an entropic structure, i.e., it can be symmetrized through the use
of the entropic variable V , V = ∂Uσ

t = (Yt,−1/Te,−1/Th)t, where σ = −S is the
mathematical entropy and Y = (ge/ Te, gi/Th, gn/ Th)t :

Ã0(V ) dtV = Ω̃(V ), Ω̃(V ) = Ω(U),

where Ã0(V ) = ∂V U = (∂U Uσ)−1 is a symmetric positive definite matrix and where
dtσ = −dtS = 〈V, Ω̃(V )〉 is non-positive; it expresses the decrease of the entropy σ due
to chemical reactions and thermal relaxation as well as the convexity of the mathematical
entropy as a function of the variable U .

There exists a unique equilibrium point U eq = (%eq, E eq
e , E eq

e ) ∈ OU , where %eq is in
the reaction simplex, such that the source term vanishes Ω(U eq) = 0 or equivalently
ωri0e (U eq) = 0 for all i ∈ S and T eq

e = T eq

h , or equivalently V eq(U eq) ∈ (M∗riR∗)⊥, for all
i ∈ S.

The equilibrium composition and energies are smooth functions of (ρ0, ρ
Orth

0 , E0), which
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are invariant by the dynamical system (3.1).
The linearization of the source term at U eq has non-positive eigenvalues and exactly two

negative real eigenvalues. The mathematical entropy production from chemical reactions
and thermal relaxation admits both zero as a strict maximum at U eq.

Proof. The arguments are similar to what can be found in Massot (2002) and are based
on the previous expressions for thermal relaxation Eq. (2.14) and the entropy production
from chemical reactions Eq. (2.15); these expressions directly yield the thermal equilib-
rium, the orthogonality relations on the entropic variables, as well as the equilibrium
conditions.

It is important to mention two issues in the previous results: we have provided, with
the help of kinetic theory and of a multi-scale Chapman-Enkog expansion a set of or-
dinary differential equations which satisfies a second principle of thermodynamics and
allows for defining properly global equilibrium. One of the key issues, however, is to
provide a rigorous framework in order to define chemical quasi-equilibrium in thermal
non-equilibrium where many possibilities and Saha law can be found in the litterature;
this is the purpose of the following section.

3.2. Chemical quasi-equilibrium for plasmas in thermal non-equilibrium

In this section, we investigate particular flow conditions for which the thermal relaxation
term Ωth is assumed to be much lower that the chemical relaxation term Ωch, i.e., denoting
by µ a ratio between a chemical time and a thermal relaxation time which is supposed
to be small with respect to one, the system (3.1) is rewritten as:

dtU =
Ωch(U)
µ

+ Ωth(U), U(0) = U0, (3.3)

and a singular perturbation analysis of the dynamics of such a system is carried out in
the limit µ→ 0.

3.2.1. Ionization by sole electron impact

A simplified case, for which Ω = Ωe = ωre0
e M eν, is first examined. The chemical mech-

anism comprises ionization only by electron impact. The dynamics of the system, in the
approximation of small µ parameter, can be decomposed into an inner temporal layer in-
volving only chemical reactions and an outer temporal layer at chemical quasi-equilibrium
involving only thermal relaxation toward the unique global equilibrium described in the
previous section. We will first tackle the problem of the inner layer for U inn, the typical
time of which is denoted by τ = t/µ. It satisfies the following set of equations:

dτU inn = Ωe(U inn) = ωre0
e (U inn)Mre ∗ν∗, U inn(0) = U0. (3.4)

For this time scale τ , the inner layer is a regular perturbation of the dynamics of the full
system at short time scales, where thermal relaxation does not play any role and fast
reactions govern the evolution of the system. Let us emphasize that, within the inner layer
approximation, the translation energy of the heavy particles is conserved dτ (ρhe

T
h ) = 0,

as well as the total energy, so that we also have dτ (EF
e,re) = 0, where the augmented

electron energy is given by the expression EF
e,re = ρee

T
e +

∑
i∈S ρiU

F
i . The dynamics of

the full original system does not possess additional invariants, but its dynamics can be
approximated, for short time scales, to the one of the inner layer.
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Proposition 3.2. Under the assumption of proposition 3.1 there exists a smooth
global in time solution of the dynamical system (3.4). The species densities are posi-
tive and there exists two positive temperatures, T1 and T2, bounding the temperatures:
T1 ≤ T inn

e (τ) ≤ T2, T1 ≤ T inn

h (τ) ≤ T2, for all µ.
The system admits an entropic structure, i.e., it can be symmetrized through the use of

the entropic variable V inn and the system satisfies a second principle of thermodynamics,
i.e. dτσ(U inn) is non-positive; it expresses the decrease of the entropy σ purely due to the
chemical reaction.

There exists a unique chemical quasi-equilibrium point U qe = (%qe, Eqe
e , E

qe

h ), where %qe is
in the reaction simplex, such that the source term vanishes Ωch(U qe) = 0 or equivalently
ωre0

e (U qe) = 0, or equivalently V qe(U qe) ∈ (M∗reR∗)⊥.
The quasi-equilibrium composition and energies are smooth function of (ρ0, ρOrth

0 , (ρhe
T
h )0,

(EF
e,re)0) which are invariant by the dynamical system (3.4). The linearization of the source

term at U qe has non-positive eigenvalues and exactly one negative real eigenvalue. The
mathematical entropy production from chemical reactions admits zero as a strict maxi-
mum at U qe over the reaction simplex.

Finally, the unique chemical quasi-equilibrium is asympotically stable and attracts the
long time behavior of the dynamical system (3.4).

Proof. The approach is a direct extension of Massot (2002) to thermal non-equilibrium
and we will only present a sketch of the proof. The first key issue is related to the abil-
ity to define a smooth manifold of chemical equilibrium at constant temperatures for
both electrons and heavy particles, that is equilibrium of the new dynamical system
dτ (Ũ inn

1 , Ũ inn
2 , Ũ inn

3 )t = ωre0
e ((Ũ inn

1 , Ũ inn
2 , Ũ inn

3 , Te, Th)t)Mreν. In order to define such equilib-
rium, we study the chemical dynamics at constant temperatures and use the Helmholtz
free energy

Hre = σ +
EF

e,re

Te
+
ρhe

T
h

Th
;

we heavily rely on the fact the EF
e,re and ρhe

T
h are invariant by the original dynamical sys-

tem (3.3). It allows for defining a smooth two-dimensional manifold Ũ eq(Te, Th, ρ0, ρ
Orth

0 )
for all (Te, Th) ∈ [T1, T2]. Then, for a fixed Te ∈ [T1, T2], it can be shown that ρhe

T
h is

a monotone function of Th so that there exists a unique T eq

h such that ρhe
T
h = (ρhe

T
h )0.

This defines a smooth one-dimensional manifold Ũ eq(Te, T
eq

h ((ρhe
T
h )0), ρ0, ρ

Orth

0 ) of chemi-
cal equilibrium at constant electron temperature. The last step consists in showing that
EF

e,re(Ũ eq) is a smooth monotone function of Te so that there exists a unique T eq
e such that

EF
e,re = (EF

e,re)0. The obtained equilibrium can be shown to be the global chemical equilib-
rium that satisfies all the properties in the proposition. It is in particular straightforward
to prove that this equilibrium is the global maximizer of the mathematical entropy pro-
duction under the original constraints. We further can use the estimate on the entropy
production used in Massot (2002) in order to prove that this equilibrium is asymptotically
stable and attracts the full dynamics of the inner layer.

Following Massot (2002), the fast chemical dynamics which leads to chemical quasi-
equilibrium provides us with the ability of partitioning the system (3.3) into fast and
slow variables. The fast variable UFast is simply defined as a projection; let us denote
UFast = (ΠFast)t U , where ΠFast = M∗reν is the projection matrix, up to a metric, onto the
reaction vector space. In fact, in our particular simple case, it is easy to describe the basis
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of (M∗reR∗)⊥ since it corresponds to the four invariant variables of our dynamical sys-
tem: a1 = (U t, 0, 0)t for the conservation of mass, a2 = (0, 0, 0, 1, 1)t for the conservation
of total energy, a3 = (UOrth,t, 0, 0)t for the conservation of ρOrth and a4 = (0,UF

i ,U
F
n, 1, 0)t

for the conservation of augmented electron energy. These vectors form a basis which was
denoted Π⊥ = [a1, a2, a3, a4] in Massot (2002).

Following Massot (2002) the orthogonality relations satisfied at chemical quasi-equilibrium
by the entropic variable defines, once a basis of (M∗reR∗)⊥ is chosen, the slows variable
which is denoted by U⊥ = (Π⊥)t U . We will then naturally have

R5 = M∗reR∗
⊥
⊕ span{ ai, i ∈ [1, 4] }.

From there, the outer layer can easily be defined:

dtU⊥,out = (Π⊥)tΩth(U qe(U⊥,out)), (3.5)

which can also be rewritten :

dtρ = 0, (3.6)
dtE = 0, (3.7)

dtρOrth = 0, (3.8)

dtEF
e,re = −∆E0

h

(
U qe
(
ρ0, ρ

Orth

0 , (ρhe
T
h )0, E

F
e,re

))
, (3.9)

with the help of the slow variable EF,qe

e,re left invariant by the fast chemical reaction.
This last equation describes rather straightforwardly the fact that the chemical quasi-
equilibrium will evolve owing to heat exchange and converge toward the unique global
equilibrium point.

Proposition 3.3. The outer layer follows a second principle of thermodynamics, that
is, dτσout ≤ 0, where σout = σ(U out). In addition, the global equilibrium point defined in the
previous section is asymptotically stable and the dynamics of the outer layer converges
toward this point.

Proof. The entropy σ⊥(U⊥,out) = σ
(
U(U⊥,out)

)
is a smooth convex function of U⊥,out;

the corresponding entropic variable on the chemical quasi-equilibrium manifold is such
that, since V = Π⊥V ⊥,out :

V ⊥,out = ∂U⊥,outσ⊥, V ∈
(
(Mre ∗RFast∗)

)⊥
.

Differentiating (ΠFast)t V = 0 with respect to U⊥, and using ∂2
U⊥,out U⊥,outσ

⊥ = ∂U⊥V
⊥,out,

we finally get :

∂2
U⊥,out U⊥,outσ =

(
Π⊥J⊥+ ΠFastJFast∂U⊥,outU

Fast qe
)t
∂2
U Uσ

(
Π⊥J⊥+ ΠFastJFast∂U⊥,outU

Fast qe
)
,

where JFast and J⊥ are metric matrices related to the projections ΠFast and Π⊥, so that σ⊥

is a convex function of U⊥,out at quasi-equilibrium (∂2
U Uσ is symmetric positive definite),

which allows this conclusion. The chemical entropy production at quasi-equilibrium reads
∂tσ
⊥ = 〈V ⊥,out, (Π⊥)tΩth〉 = 〈V,Ωth〉, so that it is non-positive. The end of the proof is

then classical and we refer to Massot (2002).

Thus, we can completely characterize through a singular perturbation analysis the
dynamical behavior of the system in the limit of small µ. We do not provide the details
of the proof omitted here for two reasons. First the principle of such an analysis was
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already provided in Massot (2002); second, it is not the scope of the present contribution
to focus on mathematical background, but rather to focus on the physics of the considered
phenomena.

It can then be proved that the dynamics of (3.3) can be approximated in the following
way:

U⊥ = U⊥,out +O(µ),

UFast = UFast qe(U⊥,out) +O(exp(−δ t/µ)) +O(µ),

where both the inner layer where U⊥inn = U⊥0 and UFast inn converge toward UFast qe and the
outer layer U⊥,out with UFast qe(U⊥,out) satisfy a second principle of thermodynamics. Such
an expansion provides a very precise sense to the notion of chemical quasi-equilibrium
in the framework of thermal non-equilibrium because it describes the outer layer, that is
the slow dynamics, of (3.3) through thermal relaxation, whereas the reaction operates in
temporal boundary layers associated to the time ratio µ. Let us emphasize that the same
study can be conducted in the framework of the ionization by the sole heavy particles,
leading to the same type of results. As a conclusion, for this case of a single ionization
reaction through electron impact, we have been able to identify and characterize the
two-temperature chemical quasi-equilibrium. The purpose of the following subsection is
to conduct the same kind of analysis in the framework of the whole set of three ionization
reactions.

3.2.2. Ionization by electron and heavy-particle impact
In this section, we only have to tackle the problem of the inner layer. Starting from

the same initial conditions as the full system, it satisfies the following set of equations :

dτU inn = Ω(U inn), U inn(0) = U0, (3.10)

where the chemical source term is defined by (3.2). Once again, it represents the dynamics
at short time scales where thermal relaxation does not play any role, but where the three
fast reactions govern the evolution of the system. It is important to mention that for
this configuration, we do not have the conservation of translation energy of heavy species
dτ (ρhe

T
h ) 6= 0, but we still have the conservation of total energy.

Proposition 3.4. Under the assumption of proposition 3.1 there exists a smooth
global in time solution of the dynamical system (3.4). The species densities are posi-
tive and there exists two positive temperatures, T1 and T2, bounding the temperatures:
T1 ≤ T inn

e (τ) ≤ T2, T1 ≤ T inn

h (τ) ≤ T2.
The system admits an entropic structure, i.e., it can be symmetrized through the use of

the entropic variable V inn and the system satisfies a second principle of thermodynamics,
i.e. dτσ(U inn) is non-positive; it expresses the decrease of the entropy σ purely due to the
chemical reaction.

There exists a unique chemical equilibrium point U
eq

= (%eq, E eq
e , E

eq

h ), where %eq is in
the reaction simplex, such that the source term vanishes Ωch(U eq) = 0 or equivalently
ωri0e (U eq) = 0, for all i ∈ S, or equivalently V eq(U eq) ∈ (M∗riR∗)⊥, for all i ∈ S.

However, this chemical equilibrium satisfies the extra property : T eq
e = T eq

h , i.e., ion-
ization by electron and heavy-particle impact with different temperatures leads to fast
temperature relaxtion and the global chemical and thermal equilibrium is reached within
the inner layer.

Thus the equilibrium composition and energies are smooth functions of (ρ0, ρ
Orth

0 , E0)
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which are invariant by the dynamical system (3.4). The mathematical entropy production
from chemical reactions admits zero as a strict maximum at U qe over the reaction sim-
plex.

Finally, the unique chemical quasi-equilibrium is asympotically stable and attracts the
long time behavior of the dynamical system (3.4).

Proof. Most of the material has already been given either in the previous parts or in
Massot (2002) and we focus on the key issues. It is not no longer possible in this context to
define chemical equilibrium at constant electron and heavy species temperature, because
the only invariant quantity by the dynamical system in terms of energy is the only
global energy E . The second point, related to the first, is a direct interpretation of the
orthogonality relations in terms of entropic variables V eq(U eq) ∈ (M∗riR∗)⊥, for all i ∈ S,
that is a direct equivalent formulation of a zero entropy production rate. This constraint
directly implies the following relation:

∆E

(
1
T eq

e
− 1
T eq

h

)
= 0,

so that the two types of chemical reactions systematically yield thermal equilibrium.

Let us emphasize that when ionization through both electron and heavy-particle impact
is considered, the inner layer for short time scale directly leads to thermal equilibrium.
Thus, the global thermo-chemical equilibrium is reached within a short time scale, involv-
ing only chemical reactions, even if thermal relaxation through elastic collisions is not
efficient and slow. To our knowledge, this approach sheds some completely new light on
this matter and has not been used previously for such multicomponent reactive plasmas
out of thermal equilibrium.

4. Future plans

Based on kinetic theory, we have proposed a unified description of the thermody-
namic state of plasmas in thermal and chemical non-equilibrium, thus extending the
work of Woods (1986), in which the non-equilibrium effects are treated separately in
terms of internal variables. The full thermodynamic equilibrium state of the system,
under well-defined and natural constraints, can be studied by following the approach
used in Giovangigli (1999) and Massot (2002). Our results are complementary to the
conservation equations and transport flux expressions derived by Graille et al. (2009)
for non-homogeneous plasmas in the presence of external forces, because we provide ad-
equate chemical source terms to be added to the zero-order drift-diffusion/Euler set of
equations or to the first-order drift-diffusion/Navier-Stokes set of equations, in particu-
lar, with a description of the Kolesnikov effect for multi-component plasmas (Kolesnikov
1974).

From a numerical point of view, it can be difficult to simulate plasmas flows with fast
chemical reactions; however, using operator splitting such as in Descombes & Massot
(2004); Descombes et. al (2003), it is not necessary to reduce the numerical stiffness
induced by fast reactions and work within the framework of chemical quasi-equilibrium
but it is possible to treat the full chemical system. This will have a strong impact on the
numerical simulation for such flows.
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