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1. Introduction
1.1. Transport linear systems

In nonionized gas mixtures, the evaluation of transport coefficients—such as the diffusion matrix
or the thermal conductivity—requires solving real linear systems [10,7]. Similarly, in partially ionized
gas mixtures subjected to strong magnetic fields, the evaluation of non-isotropic transport coefficients
requires solving complex linear systems [10,16,17]. The linear systems associated with transport coef-
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ficients parallel to the magnetic field are real and similar to that of nonionized mixtures whereas the
linear systems associated with transport coefficients perpendicular and transverse to the magnetic
field are complex and are investigated in this paper. These linear systems arise—in a kinetic theory
framework—from variational procedures used to solve approximately linearized Boltzmann integral
equations [10,6,15].

The complex linear systems associated with partially ionized gas mixtures are constrained singular
systems that can be written

Ya =b,

_— (1.1)
where ¥ € C™", % is a linear subspace of C", and a,b € C" are vectors. The matrix % and the con-
strained space % have a special structure derived from the kinetic theory of magnetized multicompo-
nent transport [16,17]. The matrix ¢ is in the form % = G + iG’ where G € R™" is a symmetric positive
semi-definite matrix, G’ ¢ R™" a symmetric matrix with a ‘compatible’ nullspace, that is, such that
G'N(G) = 0. The constrained subspace % is the complexification % = C + iC of a real linear subspace
¢ c R" complementary to N(G). In some applications, there are n complex transport coefficients asso-
ciated with the system (1.1) which are given by the components of a and in some others there is a
single complex transport coefficient usually given by a scalar product x = (a,b’) where b’ ¢ C" is a
vector. The constraint a € % is generally a constraint on the transport coefficients which is important
from a physical point of view and is typically associated with a conservation property.

In this paper, we generalize the mathematical tools introduced in [6,7] in the special situation G’ = 0.
We first relate the solution of (1.1) to generalized inverses naturally associated with the problem and
investigate their symmetry. We also investigate regular reformulations of (1.1) involving symmetric
matrices with a positive definite real part which can be inverted by using a complex Cholesky method.
We then study the convergence of projected stationary iterative methods for solving the constrained
singular system (1.1). We establish in particular that the convergence rate is never worse in the case
G’ # 0 upon properly choosing the splitting matrix.

Various generalized conjugated gradient techniques have been introduced in order to solve invert-
ible complex symmetric linear systems [9,11,12]. In this paper, we investigate projected orthogonal
residuals methods for solving the constrained singular system (1.1) and establish their convergence.
Orthogonal residuals methods seem natural in this framework since they make use of the positiv-
ity properties of the real symmetric part G and they exactly correspond to previously introduced
algorithms when G’ = 0 [7]. Orthogonal residuals methods have a better convergence behavior than
stationary methods and should generally be preferred. However they do not yield a linear dependency
between the iterates and the right-hand side and this linear dependency may be important in some
applications.

In order to illustrate the projected iterative algorithms we present an application to the species
diffusion matrices perpendicular and transverse to the magnetic field in partially ionized magnetized
mixtures.

After some mathematical preliminaries in Section 1, we investigate in Section 2 the properties of
generalized inverses as well as regular reformulations and Cholesky type decompositions. In Section 3,
we study the convergence of projected stationary iterative algorithms. In Section 4 we discuss projected
orthogonal residuals algorithms. Finally, in Section 5, we present an application to multicomponent
transport.

1.2. Notation and preliminaries

Let K be a field designating either R or C, we denote by K" the corresponding n-dimensional
vector space, and by KK™" the set of n x n matrices wheren € N,n > 1. Fora vector z € K", we denote
by z = (z1,...,2n) its components and by [z the subspace span(z) of K". For x,y € C", (x,y) denotes
the scalar product (x,y) = 3 1 <x<n XYk and [1x|| = (x,x)1/2 the Hermitian norm of x. Therefore, if x,y €

R", (x,y) also denotes the scalar product (X,y) = Y"1 <x<n XYk and x|l = (x,x)!/? the Euclidean norm
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of x. For a subspace ¢ of R", we denote by & Lits orthogonal complement and for a nonzero vector
a € R" we denote by a* the orthogonal complement of Ra. For x,y € C", (x,y) denotes the bilinear
form (x,y) = 31 <k<n XYk 5O that (x,y) = (x, ).

We use classical notation concerning complexifications and z € C" may be writtenz = x + iy where
x,y € R". Asubspace # c C"isthe complexification of a subspace of R" ifand only if # = % in which
case 7 is the complexification of # = Z NR" so that # = # + i and dimg(F) = dimp(H). If
&1 and &5 are two complementary subspaces %1 & %5 = R", the corresponding complexifications
are easily shown to satisfy (1 +i97) ® (¥ +iS5) = C" as well as (L7 + iyll) @ (,?ﬁ + iyf) =
C".If # is a real vector space and & = J# + i its complexification, #~ +i#" is the orthogonal
complement of % with respect to either the scalar product (, ) or the bilinear form (, ).

For A ¢ K™", we write A = (axD1<ki<n the coefficients of the matrix A and A’ the transpose of
A. The nullspace and the range of A are denoted by N(A) and R(A), respectively, and the rank of A is
denoted by rank(A). Forx,y € [K",x ® y € K™" denotes the tensor product matrixx ® y = (XkYD1<ki<n-
The identity matrix is denoted by I and diag(r1, ..., An) is the diagonal matrix with diagonal elements
M, A If %1 and &, are two complementary subspaces of K", i.e., %1 & %, = R", we denote
by Py, &, the oblique projector matrix onto the subspace ¥’y along the subspace .%’,. For a matrix

nn . . _ N\ 1/2 nn .
A e K™, we denote by |A|| its Frobenius norm ||A| = (Zlgk,lgn |ag ) .If Ae K™ is such that

N@A) @ RA) = K" we denote by A its group inverse [1,4]. The following proposition characterizes
generalized inverses with prescribed range and nullspace and its proofis identical in the real or complex
cases [1,4,15].

Proposition 1.1. Let % ¢ C™" be a matrix and let % and . be two subspaces of C" such that N(%) & € =
C"andR(%) @ & = C". Then there exists a unique matrix % suchthat %% =4, % 4% = % N(Z) =
S, and R(Z) = €. The matrix Z is called the generalized inverse of % with prescribed range % and
nullspace & and is also such that % = Pgey) o and ZY = Py ).

For amatrix 7 € C™",0(7") and p(7) denote, respectively, the spectrum and the spectral radius
of 7, and we also define y(9) = max{|A; » € 6(J ), A # 1}. A matrix .7 is said to be convergent

when lim;_, ,, 7~ " exists—not necessarily being zero [22]—and we have the following characterization
[26,22].

Proposition 1.2. A matrix 7 e C™" is convergent if and only if either p(T) < 10r p(T) =1,1 € 6(F),
v(T) < 1,and (I — I)Ht exists, i.e., .7 has only elementary divisors corresponding to the eigenvalue 1.

Next, for a matrix 4 ¢ C™", the decomposition
Gl —W (12)

is a splitting if the matrix ./ is invertible. In order to solve the linear system %a = b, where b € C",
the splitting (1.2) induces the iterative scheme

Ziy1 = 3‘2,-—1—%4& i>0, (1.3)

where 7 = ./~ 'W. Assuming that b € R(¥), we have M b e R(I — 7)), and the behavior of the
sequence of iterates (1.3) is given in the next lemma which can be found in [21,4] (some misprints in
the matrix E are corrected in recent versions of Bermann and Plemmons [4]).

Lemma 1.3. Let 7 € C"" and let c € C" such thatc € R(I — 7). Then the iterative scheme zj., = 7 z; +
c,i > 0, converges for any zg € C" ifand only if 7 is convergent. In this situation, the limitlim;_, ., z; = Zoc
isgiven by zoo = (I — 7 )c+ Ezg whereE=1— (I - I)I — T )".
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2. Constrained singular systems

In this section we investigate well posedness of constrained singular systems, complex symmetric
generalized inverses, regular symmetric reformulations of (1.1) and complex Cholesky methods.

2.1. Well posedness

Proposition 2.1. Let 4 ¢ C™" be a matrix and % be a subspace of C". The constrained linear system (1.1)
is well posed, i.e., admits a unique solution a for any b € R(¥), if and only if

N% o ¥ =C" (2.1)

In this situation, for any subspace % such that R(%) @ & = C", the solution a can be written a = %b,
where & is the generalized inverse of ¥ with prescribed range € and nullspace ¥ .

Proof. Assume first that the system (1.1) is well posed and let x € C". Then there exists a unique
solution y € % to the system ¥y = %x, and hence x — y € N(%) so that N(%) + % = C". Furthermore,
foranyz e N(%) N €,z satisfies ¥z = 0 and z € %, so that we must have N(%) N € = {0} by uniqueness.
Conversely, if N(%) @ € = C" and b € R(%), there exists x € C" such that %x = b, and we may write
x =y +zwherey e N(%9) and z € €. Therefore, we have %z = b and z € € so that (1.1) has at least one
solution which is also unique since the difference between any two solutions is in N(¥¢) N € = {0}. Let
now .% be a subspace such that R(%) @ % = C". The generalized inverse Z then exists by Proposition
11since N(%) @ ¢ = C" and R(%) ® & = C". Moreover, the vector Zb satisfies ¥Z'b = Py, b = b
since b € R(%), and we also have Zb € % since R(%) = €, so thata = Zb. [

We also investigate in this section the range and nullspace of the complex matrices 4 = G + iG’
associated with the linear systems (1.1).

Lemma 2.2. Let ¥ = G +iG’ where G,G’ are real symmetric matrices, G is positive semi-definite and
G'N(G) = 0. Then we have N(%) = N(G) + iN(G) and R(%) = N(G)* +iN(G)*. Moreover, for any sub-
space ¢ c R" complementary to N(G), we have G’ = (Pene)'G'Pen), and denoting € = C +iC the
complexification of ¢, we have N(%) ® € = C" and Pe NGy = Pynes)-

Proof. For any z = x + iy where x,y € R", a direct calculation yields
(G +iGNz,2) = (Gx,X) + (Gy,Y) +i((G'X,X) + (C'y,y)),

since G and G’ are symmetric. Assuming (G + iG’)z = 0 thus yields that x,y € N(G) since G is positive
semi-definite and conversely, it is obvious that N(G) +iN(G) c N(G +iG’) since G'N(G) = 0. Since
N(G) c N(G’), we also deduce by transposing that N(G')* c N(G)* so that R(G") c R(G) since G and
G’ are symmetric. As a consequence R(G + iG") ¢ R(G) + iR(G) and thus R(G + iG’) = R(G) + iR(G) since
both subpaces of C" are of dimension n — dim(N(G)) = n — dim(N(%)). If C is complementary to N(G),
we can decompose any x € R" into x = PeniGyx + (I — Peng))x where Pe y)X € C and (I — Pe n))X €
N(G), and this implies that G’x = G'P¢ ()X so that G’ = G'P¢ n(). Upon transposing this relation we
also obtain G’ = (P¢ n))'G'. Finally it is straightforward to establish that N(%) @ C = C" and that
PeneG) = Py new) upon decomposing vectors of C" into their real and imaginary parts. [J

2.2. Symmetric generalized inverses

By using the symmetry of the matrix & = G + iG' it is possible to select a symmetric generalized
inverse of ¢ with prescribed range % = C + iC.

Proposition 2.3. Let 4 = G + iG’' where G, G’ are real symmetric matrices, G is positive semi-definite and
G'N(G) = 0. Let € = C +ic where ¢ c R" is a subspace complementary to N(G). Let Z be the generalized
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inverse of ¢ with prescribed nullspace N(Z') = ¢t +ict and range R(%) = C + iC. Then the matrix %
is symmetric and is the unique symmetric generalized inverse of & with range €, that is, the unique
symmetric matrix & suchthat ¥4 ¥ = ¥, 9 ¥4 = 4 and R(¥) = €. Upon decomposing & =7 +iZ’,
where Z,Z' ¢ R™,Z and Z' are symmetric matrices, Z is positive semidefinite, Z/N(Z) = 0 and N(Z) = c*.
Furthermore, denoting by uy, ..., up areal basis of N(G), where p = dim(N(G)) > 1, there exist real vectors
Vv1,...,Vp spanning C* such that (v;, uj) = 8,1 < i,j < p. Then for any positive numbers «;, g, 1 < i< p,
such that o;8; = 1,1 < i < p, we have

-1
¥ = (g—i— Z aivi®\/,‘) — Z Bil; ® U; (2.2)

1<i<p 1<i<p
and the real part G + 3 q¢icp @iVi ® Y of the matrix G + > 1<i<p %iVi ® Vj is symmetric positive definite.
Therefore, for b € R(%), the solution a of (1.1) obtained from Proposition 2.1 also satisfies the regular system

(g-Q— Z a,»vi®v,-)a=b (23)

1<i<p
and we also have
Pene =Pene =1- ) ui®v; (24)
1<i<p

Proof. From N(G) @ ¢ = R" we obtain that N(G)* & ¢t = R" so that R(G) @ ¢+ = R" since G is sym-
metric. These relations implies that N(%) & (C +i¢) = C" and R(%) & ¢+ +ict) = C" in such a way
that the generalized inverse of % with prescribed range % = C + ic and prescribed nullspace ¢t +
ict is well defined. Furthermore, from 429 = 4, 24 % = % ,N(%) = c* +ict,R(Z) = C +ic,and
4" — @, we first deduce that 929 = 4, 7'4 7" — 7", and we also have N(Z") = ¢! +ict, and
R(Z") = ¢ + ic. More specifically, let z = x + iy, x,y € R" and assume that 2z = 0. For any ¢ e C there
existsz € C"withZz' = cand (z,¢) = (z, 7)) = (¥'z,7/) = 0sothat (z,¢) = (z,¢) = (x,C) + i(y,c) =0.
This yields x,y € ¢,z e ¢+ +ict and N(Z") c ¢+ +ic* so that N(Z") = ¢ +ict since both sub-
spaces of C" are of dimension p over C. Similarly, assume thatz = #'z',2 ¢ C",andz = x + iy, x,y €
R". Then for any d € ¢+ we have (z,d) = (¥'2,d) = (z, %d) = 0 since N(¥) = ¢+ +ict and #d = 0.
Thus (z,d) = (z,d) = (x,d) +i(y,d) = 0,sothatx,y € C,R(Z") c ¢ +icandfinallyR(Z") = C + iC. Since
RZY =RZ)NZHY=NZ),9%"G = G, and ' 97" = 7", we deduce from the uniqueness of the
generalized inverse with prescribed range and nullspace that & = & 5o that & is symmetric. Any
symmetric matrix % suchthat 9 = ¥, 9 4% = % and R(L) = C also satisfies N(¥) = ¢+ +ict
by symmetry. Indeed, if £z = 0 then for any z’ € C", (¥£z,2/) =0 = (z, £Z).If c € C, there exists Z' €
C" such that c= Z7 and if z=x+iy,x,y € R",(z,c) = (z,¢) = (x,¢) +i(y,c) = 0 for any c € C and
X,y e CLN(&) cct +ict and N(&¥) = ¢t +ic* so that £ coincides with Z.

Writing 2 = Z +iZ’, where Z,Z' ¢ R™", we have already established that Z and Z’ are symmetric.
From the relation (Z +iZ")(G +iG’) = Pwhere P = P¢ y(;), we obtainthatZG — Z'G' = Pand ZG' +Z'G =
0. This implies that Z = PZ = ZGZ — 7Z'G'Z = ZGZ + Z'GZ' so that (Zx,x) = (GZx,Zx) + (GZ'x,Z'x) and Z
is positive semidefinite. Moreover, Zx = 0 implies that Z’x € N(G) and since R(%) = C +iC,Z'x € C, so
that Z'x = 0,and Z’N(Z) = 0. From Lemma 2.2 we deduce that N(¥) = N(Z) +iN(Z) and since N(¥) =
¢t +ict weobtainN(Z) = ¢t.Thevectorsv;, 1 < i < p,withp = dim(N(G)) are then easily obtained by
selecting for v; a nonzero element in the one-dimensional subspace span(uy, . .., Uj_1, Ujy1, .., Up)= N
¢+ and by normalizing it. It is then easily shown that Pg ) n) =1 — > 1<i<p Ui ® Vi and Praynz) =
I'= ¥ 1<icp Vi ® u;, which yields (2.4) and implies that GY =1- > 1<i<p Vi ® u; and the formula (2.2)
directly follows. Eq. (2.3) is then a direct consequence of (2.2) since b € R(%) = N(G)* +iNG)*. O

2.3. Cholesky method

Since the transport linear systems (1.1) can be rewritten into the nonsingular form (2.3) involving
an invertible matrix 4 + 2 1<i<p YiVi ® with a positive definite real part G + > 1<i<p YiVi ® Vi we
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investigate direct methods in this section. We first restate a classical result about Cholesky decompo-
sition of complex symmetric matrices and next investigate the situation of matrices associated with
the linear systems (1.1). Cholesky decomposition may also be used for large full systems arising from
discretized integral equations [3].

Theorem 2.4. Let .o/ be a complex symmetric matrix such that all principal minors 8,1 <i < n, are
nonzero. There exists an upper triangular matrix U with diagonal coefficient unity such that

o/ =Ut9U, (2.5)
where & is the diagonal matrix & = diag(81,82/81, . ..,8n/8n_1)-

Proof. Omitted. [J

We now apply the preceding proposition to the symmetric complex regular form (2.3) of the trans-
port linear system (1.1).

Proposition 2.5. Keeping the assumptions of Proposition 2.3, the matrix ¥ + Pi<icp Vi ® Vi can be
decomposed in the form UtZU where U is an upper triangular matrix with diagonal coefficients unity and
9 is a diagonal matrix whose diagonal coefficients have a positive real part.

Proof. Denoting ./ = & + 31 <j<p @iVi ® Vi, = (aj)1<ij<n and W = (@j)1<ij<k We have to check
that the submatrix /™% is invertible. Assume that .7zl — 0 where z¥! ¢ C* and define z ¢ C"
by z; = z,.”‘J if 1 <i < kandz = 0otherwise. Then (.¢/z,z) = 0 and from symmetry (.«/z,z) = (Az,z) +
(G'z,z) where A = G + 31 ¢j<p Vi ® V; is positive definite. Upon decomposingz = x +y,X,y € R", we
also have (Az,z) = (Ax,x) + (Ay,y) in such a way that z = 0, /™ is invertible and S = det(&i[k]) +0.

The matrix U in Theorem 2.4 is constructed as the components in the canonical basis eq,...,ep
of a family of vectors fi, ..., fn orthogonal with respect to the bilinear form ¢ associated with .¢Z, i.e.,
o, Y) = (Zx,y) = (Zx,7),%,y € C".This familyis constructed fromf; = e; andf, = e, + D 1<ick-1 Yik
e;/8x—1 where aj, is the cofactor of a;; in /! This family is such that ¢(f;, e;) = 0 whenever 1 < i <
k—10(f1.f1) =81 = Zn,and (i, e) = /01 = D= .
_However, we canalso write that ¢(fy, fi) = ¢(fi.. ) = ¢(fi. fi) since the conjugate vector fy is given by
fi=fifork=1and fi = e, + Y 1<k 1 @ikei/Sk_1 otherwise, and thus Dy = (Afi. fu) = (Afi. fi) =
(Afi. fe) + 1(G'fi.. fr) where A is positive definite. [J

3. Stationary iterative algorithms
3.1. Convergence of projected iterative algorithms

We are now interested in solving the constrained singular system (1.1) by stationary iterative tech-
niques. These techniques provide iterates which depend linearly on the right-hand side b, and this
property may be important for some applications.

Foragivensplitting% = .# — #" andforb e R(%), assuming that the iteration matrix 7 = .# '~
is convergent, the iterates (1.3) will converge for any zg. When the matrix ¢ is singular, we have
0(J) = 1since I z = zforz € N(%), and neither the iterates {z;; i >> 0} nor the limit z., are guaranteed
to be in the constrained space %. In order to overcome these difficulties, we will used a projected
iterative scheme [14,7]

2, =PTZ+PM'b, i>0, (3.1)

where 2 = Py ) is the projector matrix onto the subspace % along N(%). All the corresponding
iterates {z; i > 0} then satisfy the constraint zie %. Moreover, in order to obtain an iterative scheme
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with convergence properties valid for any matrix G’ we will include the full imaginary part iG’ of ¢ in
the splitting matrix .#. We will thus use splitting matrices in the form

M =M +iG, (3.2)

where G = M — W is a splitting of the symmetric positive semi-definite matrix G, so that %" = .# —
4 =W =M — G is a real matrix. In addition, ¥ and N(%) are in the form % = C +iC and N(¥%) =
N(G) +iN(G) so that Z = P¢ (@) = Pene) = P.

The spectral radius of the iteration matrix 2.9 associated with (3.1) can be estimated by using the
following result of Neumann and Plemmons [22].

Theorem 3.1. Let 7 be a matrix such that (I — )" exists, i.e., such that R — T )NNd — T ) = {0}. Let
% be a subspace complementary to N0 — 7), i.e., such that Nd — ) & % = C", and let also 2 be the
oblique projector matrix onto the subspace € along N(I — 7). Then we have

p(PT)=y(T). (3.3)

This result (3.3) has also been strengthened and the spectra of 7 and 2.7 are essentially the same
[7]. Although the proofin [7] is given in a real framework it directly extends to the complex case mutatis
mutandis.

Theorem 3.2. Keep the assumptions of Theorem 3.1. Then,

_ Je@n(apui{o}, ifNI-T)+{0},
o PT) = {0(3—), if NI —.7) = {0}.

Furthermore, the matrices  and 2 satisfy the relation 2T = T .

We now investigate the convergence and properties of the projected iterative algorithms (3.1) when
applied to the complex symmetric constrained singular systems (1.1). Note that Keller’s theorem [20]
cannot be applied directly as in the real case [7] since % is not Hermitian when G’ is nonzero.

Theorem 3.3. Let ¥ = G + iG’' where G,G' are real symmetric matrices, G is positive semi-definite and
G'N(G) = 0. Let ¢ c R" be a subspace complementary to N(G) and let C be the complexification of C.
Consider a splitting G = M — W, assume that M is symmetric and that M + W is positive definite, so that
M is also symmetric positive definite. Define M =M +iG', 9 = .4 — W, so that W =W, and T =
MW T = M-1W. Let P = P be the oblique projector matrix onto the subspace C along N(G). Let also
beR(®),zy e C",z(’) = P2y, and consider fori > 0 the iterates zi,; = 7 z; + M~ b as in (1.3) and Zi 4=
PTzZ + PM~1basin (3.1). Then z = Pz for alli > 0, the matrices 7,27, T, and PT are convergent,
p(T) = p(T) =1whendimN(G)) 2 1,p(PT)=y(T) < 1,0PT) = y(T) < 1, and

() <y, (3.4)

so that the convergence rate is never worse in the case G’ # 0, and we have the following limits:

lim z{ = Z(lim z) = q, (3.5)
1—00 1—00
where a is the unique solution of (1.1). Moreover, for all i >> 1, each partial sum
Zi= Y @PTVPMT'P (3.6)
0<j<i-1

is symmetric and lim;_, ., Z; = & where
L= @PITVPM'P (3.7)
0<j<oo

is the symmetric generalized inverse of % with prescribed nullspace N(%) = ¢t + ict and range R(%) =
% =cC+ic.
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In the proof of Theorem 3.3 we will use the following lemma whose proof is postponed.

Lemma 3.4. Keeping the assumptions of Theorem 3.3, we have

_ [{(Wx,x)| n _
y(T) = sup{ Mxx) x e R, x#+0,Yu e N(G), (Mx,u) = O} . (3.8)

Proof. By applying Keller’s theorem [20,7] to the splitting G = M — W it is readily seen that the matrix
T is convergent so that from Theorems 3.1 and 3.2 we deduce that y(T) = p(PT) < 1,PT is convergent,
and p(T) = 1 when dim(N(G)) > 1.

With respect to .7, we first note that 1 € 0(9") when dim(N(G)) > 1 since then ¥ is singular,
N(%) = N(G) +iN(G),and 7 z = zforany z € N(%).Let now A € o(7 ), 1 # 1, so that there exists z # 0
with .7 z = Az and z ¢ N(%). Upon writing z = x + iy, x,y € R", we have (Gz,z) = (Gx,x) + (Gy,y) and
(Gz,z) = 0impliesx,y € N(G) and z € N(%).Since z ¢ N(¥%) we have (Gz,z) > 0so that (Wz,z) < (Mz,z)
with (Wz,z) = (Wx,x) + (Wy,y) and (Mz,z) = (Mx,x) + (My,y). Similarly, we know that M + W is sym-
metric positive definite so that —(Mz,z) < (Wz,z) and finally |(Wz,z)| < (Mz,z). On the other hand,
since .7 z = Az, upon multiplying by .# this identity we obtain that Wz = ».#z = »(M + iG')z. Taking
the scalar product with z we obtain » = (Wz,z)/((Mz,z) +i(G'z,z)) so that
(Wz,2)| _

(Mz,z)
thanks to (Mz,z) < |(Mz,z) +1(G'z,z)| and we have established that y(7) < 1.

In order to establish that (I — .7)* exists, we assume on the contrary that N —.7 ) NRI — .9) # 0.
In this situation, there exists z,z’ € C",z + 0,2’ + 0, such that 7 (z') = z + ' and .7 (z) = z. This yields
Wz = (M +iG)(Z' +2) and Wz = (M +iG')z. Since .J (z) = z we have z € N(G) +iN(G) so that G’z =
0,Wz = Mz, and

(WZ',z) = (M +iG(Z +2),2) = (M(Z' + 2),2), (3.10)

since (G'(z' +z),z) = (G'Z",z) = (Z,G'z) = 0 thanks to G’z = 0. Therefore (3.10) implies that (Mz’,z) +
(Mz,z) = (z/,Wz) = (Z,Mz) = (Mz',z) and (Mz,z) = 0 and z = 0 contradicting z # 0, and .7 is conver-
gent.

In order to compare the values of y(T) and y () we now make use of Lemma 3.4. If z e C",z +
0 is such that 7 z = Az with A # 1, and if u € R" is such that u € N(G) we have Wz = A(M + iG)z
and Wu = Mu. Therefore, (Wz,u) = A((M + iG')z, u) = A(Mz, u) since G'u = 0. Since W is symmetric we
also have (Wz,u) = (z, Wu) = (z, Mu) = (Mz,u) and we have thus shown that »(Mz, u) = (Mz, u). Since
1 # 1 we conclude that (Mz,u) = 0 and thus, upon decomposing z = x + iy, x,y € R", we deduce that
(Mx, u) + i(My, u) = 0 so that finally (Mx,u) = (My,u) =0 for any u € N(G). We can now write from
(3.9)

Al <

(3.9)

(Wz,z)|  [(Wx,x) + (Wy,y)
Al < = ,
(Mz,z) (Mx,x) + (My,y)
but since (Mx,u) = (My,u) = 0 for any u € N(G) we have |(Wx,x)| < y(T)(Mx,x) and |(Wy,y)| < y(T)
(My,y) so that finally |A| < y(T) and this yields y (7)) < y(D).
Since the matrices 7 and 27 are convergent, we know that both sequences {z;; i > 0} and {z}; i >
0} are convergent. Denoting by z., and z,, the corresponding limits, we deduce from the relation
Ziy1 =T zi+ M b that zo = T 2o + " 'b. This shows that ¥z, = b and since 2.7 = 2T P it is
easily established by induction that z; = 2z, for any i 2> 0. Therefore, Pz =17, and since YP =9
we obtain that ¥z, = ¥z, = b.Finally, sincez,, = #z. wehavez, € % andz. is the unique solution
of the constrained singular system (1.1).
Assume now that zyp = 0 so that z; = 0 and then z; = Z;b for any i > 1. We indeed have z; =

PM b = Z1b, and assuming by induction that zj = Z'1b we obtain that
2 =PT L+ PM b= PT L+ P PHb=Z b,

since i1 =29 Z;+ P~ P Passing to the limiti — oo and thanks to Proposition 2.1 we obtain
for any b € R(%) that Zb = Zgo(ﬁf)i{f"ﬂ_]ﬁtb so that Z and Zi>0(9’9_)i97’/%_19t coincide
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over R(%) and ¢+ + ict and therefore over C". Finally, in order to establish that Z; is symmetric, it is
sufficient to establish that each term (2.7 Y 2.4 ~12" in the series (3.6) is symmetric. However, from
the relation 27 = 27 &% we obtain (" )1'/7%*1?? = 2T 17 P which is symmetric since
T =M~V and .4 and W are symmetric. [J

Remark 3.5. The projector matrix 2 = P is needed for the convergence of th¢ series (3.7). Indeed, the
partial sums % in (3.6) can be rewritten in the form Z; = 2 (ZKKH 9'1,/%_1) 2" but the series

Yo<j<ioi 7.~ has no limit since Y o<j<ioi T (M) = iuforue ND).

Remark 3.6. Uponwriting Z; = Z; +iZ/,whereZ;, Z| € R™", we have established that Z; and Z] are sym-
metric and it should be true that Z; is positive semi—deﬁnite,Z{N (Z;) = 0,and N(Z;) = ¢*.This canindeed
be established for the firstiterates %y = 2.4~ P and %5 = P~ (M + W) M~ P' . More specif-
ically, we first note thatif .#~' = A +iA’,A,A’ ¢ R™, then we have AM — A'G’ = I and AG' + A'M = 050
that AMA + AMA’ = A and A is positive definite since A = (M + G'M~1G’)~1. We then obtain after some
algebra that Z; = PAP! and Z, = P(A + AWA — AWA)P! so that Z, = P(A(M + W)A + A’ (M — W)A")Pt
and Z; and Z, are positive semi-definite with nullspace c*. Since by construction Z;c* = 0and Z,c* =
0 we get that Z;N(Z;) = 0 and Z;N(Z,) = 0. On the other hand, the next iterates Z;, i > 3, are intricated
expressions involving A,A’, and W.

Remark 3.7. Iterative methods applied to the regular formulation (2.3) usually converge more slowly
than those applied to the singular formulation (1.1) [6]. Moreover, the corresponding iterates do not
generally satisfy the constraint at each step.

Proof of Lemma 3.4. Denote by (, ) the scalar product (x,y) = (Mx,y),x,y € R". With respect to this
scalar product, the matrix T = M~1W is then symmetric since
(Tx,y) = (MTx,y) = (Wx,y) = (x, Wy) = (M~'Mx, Wy) = (Mx, Ty) = (x,Ty).

As a direct application of spectral properties of symmetric matrices, we know that T has a complete
set of real eigenvectors orthogonal with respect to (, ). In addition, the eigenspace associated with
the eigenvalue 1 is the eigenspace N(I — T) = N(G), so that

[{Tx, x)|
(x,x)

and (3.8) directly follows since (Tx,x) = (Wx,x) and (x,x) = (Mx,x). [

y(T)=suPi x e R x # 0,vu € N(G), (Mx, u) =0}

3.2. Calculation of an inverse

The projected iterative algorithm (3.1) defined in Section 3.1 canreadily be applied to solve the linear
systems (1.1) provided that the inverse of the splitting matrix .# = M + iG’ can easily be evaluated.
In practical applications, even though the matrix G’ may not be sparse, it generally has the special
structure [16,17]

G =P'M'P, (3.11)

where M’ is diagonal and P = P¢ n(,. We will thus assume that the matrix M + iM’ is easily invertible
and investigate the inverse of .# = M +iG’ in terms of the inverse of M + iM’.

We first consider—for the sake of simplicity—the special situation where the nullspaces of G and
% are of dimension 1. In the following proposition, we evaluate the inverse of M + iG’ when M is
symmetric positive definite, N(G) = Ru,C = y* in R", (y,u) = 1, so that N(%) = Cu % = y* +iy* in
C" and the well posedness property N(G) & ¢ = R" holds.
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Proposition 3.8. Assume that M is symmetric positive definite and that G € R™" is in the form
G=I-youMl-uy),

where y,u € R", (y,u) = 1, and M’ € R™" is a symmetric matrix. The matrices M +iM’ and M + iG’ are
invertible, (M + iM")~1y,y) # 0, and we define the matrix E by

1 M+iIM)YTlye (M +iM)ly
E=M+iM) 1 - 4 ) 312
(M +iM")~1y,y) G12)
Then (M — MEM)u, u) # 0 and the inverse of M + iG' is given by
M +iG)! =4 {ZEMu® d = EMu (3.13)

((M — MEM)u, u)

Proof. We introduce for convenience the compact notation P=1-u®y and Q =] —y ® u in such
a way that G’ = QM'P. It is first easily checked that M + iM’ and M + iG’ are invertible since M is
symmetric positive definite and M’ and G’ are symmetric. Moreover, defining z = (M + iM")~ly we
have (M +iM")~ly,y) = (z, M + iM")z) = (M — iM')z,z), and upon decomposing z = x + iy, the real
partof (M — iM")z,z) is (Mz,z) = (Mx,x) + (My,y) which is nonzero since z is nonzero and M is positive
definite and this shows that (M + iM")~1y,y) # 0.

The matrix E is thus well defined and denoting F = Q(M + iM’)P = QMP + iG', E is the generalized
inverse of F with nullspace Cy and range y* + iy, since it is easily checked that EF = —u®y and
FE=I-y®u.

We introduce u’' = (M + iG’)(u — EMu) and u’ is nonzero since M + iG’ is invertible and u — EMu is
nonzero because R(E) = y' + iyt and u ¢ y*. We now establish that u’ = (M — MEM)u, u)y. Indeed,
we first have u' = Mu — MEMu — iQM’EMu since Pu = 0 and PE = E thanks to E = E' and Ey = 0. This
yields v = Mu — Q(M + iM")EMu — (I — Q)MEMu, and thus

_y®M+iM)ly
(M +iM")~1y,y)
Since Qy = Owe getu’ = Mu — QMu — (I — Q)MEMu = (I — Q)(Mu — MEMu),and thusu’ = y ® u(Mu —
MEMu) = (M — MEM)u, u)y and this shows that (M — MEM)u, u) + 0 since U’ is nonzero.
We now decompose M +iG' = M +iQM'P = M — QMP + Q(M + iM’)P and evaluate the product of
M +iG’ by the right-hand side of (3.13) by forming
gy I—EMu®d - EMu
((M — MEM)u, u)
The first contribution simplifies into E(M — QMP) = E(M — MP) = EM( — P) = EMu® y since EQ = E
thanks to Q =1 — y ® u and Ey = 0. Moreover
_M+iM)lyey)
(M +iM")~1y,y) '
sincea® yP = a ® (P'y) = a ® (Qy) = 0,and the whole contribution E(M + iG’) finally sum up to EMu ®
y+I-u®y=1I- (u—EMu) ®y. We now form the product
(I —EMu® (I — EM)uM +iG') = (I — EM)u ® (M +iG"yd — EM)u),
and v = (M +iG")(u — EMu) = ((M — MEM)u, u)y so that gathering all terms of the product (3.14) we
obtainI — (u— EMu) ® y + (u — EMu) ® y = I and the proof is complete. []

u’:Mu—Q(I )Mu—(I—Q)MEMu.

) (M — QMP + Q(M + iM")P). (314)

EQ(M + iM")P = E(M + iM')P = (1

We now consider the general situation where N(G) and C* are of dimension p >> 1 and are spanned
by basis vectors as in Proposition 2.3.

Proposition 3.9. Assume that M is symmetric positive definite and that G’ ¢ R™ is in the form

G = (1— > vi®ui) M’ (I— > u,-®v,-), (3.15)

1<i<p 1<i<p
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where p 2> 1,uy,...,up are real independent vectors, v1,...,Vp are real independent vectors, (v;,u;) =
8ip 1 < i,j<p,andM’ e R™" is a symmetric matrix. The matrices M + iM’ and M + iG’ are invertible, and
thetmatgig (M + iM’)*lvi,vj))KiKp is invertible. Upon denoting by (vjj)1<ij<p its inverse, we define the
matrix E by

E=M+iM)"" = > yM+iM)"vi@ (M +iM)v;. (3.16)

1<ij<p

Then the matrix ((M — MEM)u;, u;))1<ij<p IS invertible, and denoting by (uij)1<ij<p its inverse, the inverse
of M + iG’ is given by

M+iG)"=E+ > ud —EMyu; @ (I — EMu;. (3.17)
1<ij<p

Proof. We only give a sketch of the proof and denote for convenience P =1 -3, ;,u; ® v;and Q =
I' =¥ 1<icp Vi ® U s0 that G’ = QM'P. It is easily checked that M +iM’ and M + iG’ are invertible. The
matrix (M + iM’)*lvi,vj))lgijgp is also invertible since upon defining w; = (M +iM")~1v;,1 <i < p,
we have (M + iM/)‘lvi,vj) = ((M — iM")w;, w;) and the proof is similar to that of Corollary 2.5 since
the real part of the symmetric matrix M — iM’ is positive definite.

The matrix E is shown to be the generalized inverse of Q (M + iM’)P = QMP + iG’ with range C + iC
and nullspace ¢* + ic* upon simply calculating that Q(M + iM")PE = Q. In order to establish that the
matrix (((M — MEM)u;, uj))1<ij<p is invertible, one first note that

(M +iQM'P)(u; — EMu;) = Z (M — MEM)u;, uj)vj, 1<i<p. (3.18)
1<j<p

Thevectorsu; — EMu;, 1 < i < p,arelinearly independant since if there exists alinearrelation }~; <j<,, 6;
(u; — EMu;) = 0, we obtain upon taking the scalar product with v; that ¢; = 0 since (u;, vj) = 8, R(E) C
C+ic,andvj,1 <j < p, formabasis of ¢*. As a consequence, the vectors (M + iQM'P)(u; — EMu;), 1 <
i < p, are independent, and from the relations (3.18) we deduce that (((M — MEM)u;, uj))1<ij<p 18
invertible. Finally, a direct calculation shows that the right-hand side of (3.17) is the inverse of M +
iQv'p. J

Remark 3.10. Assume that the splitting matrix M is diagonal and that G’ is in the form (3.15) where the
matrix M’ is diagonal. Then each iteration of the scheme (1.3) costs n? + O(n) (complex) flops thanks
to the expression of (3.17) of (M +iQM’P)~1. The main costs are associated with the n? operations
required by the multiplication of W by a complex vector. Similarly, each iteration of (3.1) requires
approximately the same costs thanks to the decomposition Pe ) =1 — 3 1<i<p Ui ® v; Obtained in
Proposition 2.3.

4. Orthogonal residuals algorithms

Conjugate gradients-type methods—used in combination with preconditioning—are among the
most effective iterative procedures for solving Hermitian systems [19,25,18]. Projected conjugate
gradients methods have been introduced in particular to solve real symmetric constrained singular
semi-definite systems [6,7]. For general linear systems, however, one cannot obtain short recurrence
algorithms which globally minimize some error norm over the corresponding Krylov subspaces unless
the matrix has certain rather special spectral properties [8]. Examples of short recurrence algorithms
are CGS or BiCGStab whereas GMRES [27] corresponds to a global error minimization over the Krylov
subspaces.

Complex symmetric systems have received much less attention than real systems even though
symmetric complex systems arise in electromagnetic applications [9,11,12,3]. Special systems with
diagonal positive imaginary parts have been investigated by Freund [ 11] as well as the Lanczos recursion
and related algorithms [12]. Complex symmetric systems can be solved either in their complex form,
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since it is convenient and benefits from interesting numerical properties [12], or in their real equivalent
form upon relying on good preconditioners [2,5].

We investigate in this section projected orthogonal residuals methods for solving the complex sym-
metric constrained singular systems (1.1). Orthogonal residuals methods are a natural generalization
of conjugate gradient algorithms associated with Arnoldi algorithm [27] as well as with orthogonal
errors methods introduced by Faber and Manteuffel [9]. Orthogonal residuals methods seem natural
for the constrained singular systems (1.1) since they make use of the positivity properties of the real
symmetric part.

The projected orthogonal residuals method usually has a better convergence behavior than the pro-
jected stationary method introduced in the previous section and should generally be preferred. How-
ever, the corresponding iterates depend nonlinearly on the right-hand side b because of the quadratic
nature of conjugate gradients-type algorithms, and this prevents its use in some special applications.

4.1. A projected orthogonal residuals algorithm

In this section we investigate a projected orthogonal residuals method for solving the constrained
singular linear systems (1.1). These algorithms correspond to the particular choice B = A in the paper
of Faber and Manteuffel on orthogonal errors methods in such a way that the errors are computable
[9]. We consider again a matrix in the form % = G + iG’ where G, G’ are real symmetric matrices, G is
positive semi-definite and G'N(G) = 0, a vector b € R(%), a subspace ¢ c R" complementary to N(G)
and % the complexification of C.

The orthogonal residuals algorithm can be described as follows [9]. Let zg € C" be an initial guess,
ro =b — %zy,and set pg = rg. If (9pg, po) = 0 then ryg = 0 and we stop at step 0, and if (¥pg, pg) + 0 we
setop = (ro, Po)/{%Po. Po), voo = (9°Po. Po)/{%Po. Po), and we define py = ¥po — vooPo. 21 = Zo + ooPo,
and 1 =1y — 0p%po. Assume now by induction that for k > 1 we have defined {p;}o<;<k. (Zi}o<i<k:
{ri}osickr With [To<ick_1 (9P pi) # 0,1 =b — 92,0 <i < k,and

) =0, 0<j<i<k, (4.1)
(Ypipj) =0, 0<j<i<k, (4.2)
(r,',pj) = O, 0 <] <1 § k, (43)
i = span(po, ...,p;) = span(rg,...,T;) = span(ro,...,giro), 0<i<k, (4.4)

where dim(# ;) =i+ 1for 0 < i < k— 1. Then (9py, px) = 0if and only if r, = 0 and in this situation
we stop at step k, whereas if (¥py, py) # 0 we define the coefficients vy, 0 < j < k, by solving the linear
system

(%P0, po) Vko (%” Pk, Po)
(9po.p1)  (9p1.p1) Vk1 (G Py, p1)
. . . = . , (4.5)
(@po.pe)  (“p1pk) - (GIDpk)) \vi (DD, Pr)
we define oy, = (1, Pi)/(¥Dr, D) and we set
Pt =9k — Y, viDj» Zki1 =2k +OkDko Tha1 =Tk — 0% DDy (4.6)
o<k

Theorem 4.1. The orthogonal residuals algorithm is well defined and converges in at most rank(%) steps
towards the unique solution z of %z = b and z € R(%).

Since we are interested in the solution of %z = b which is in %, we now consider a projected version
of the orthogonal residuals algorithm, constructed by using projected directions at each step. More
specifically, we set z; = 2zg,p;, = Ppo. T = b — 9z}, and if (9p;, p;) = 0 we stop at step 0, whereas

if (9py, Py) # 0 we define of = (1. Pp) /(9P}y, Py): Voo = (7P, Py)/(GPy. Py and py = PGy — vyopo,
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Zy = zy + opp.and ry = 1y — 0y%p;,. Assume now by induction thatfor k > 1 we have defined {p}}o<i<k.
(Z]}o<icko (M Yo<icho With [Togick1 (9P, p)) # 0 and 1/ = b — %z,0 < i < k. Then (%p;(,p;() =0if and
only if r;, = 0 and in this situation we stop at step k. On the other hand if (%p}(,pk) # 0 we introduce
the solution vy, ..., vy, of the linear system similar to (4.5) but using the directions {p;}o<i< instead
of {pi}o<i<k to form the system coefficients, we define as well o}, = (r,@,p;{)/(%pk,p;() and we set

/ _ g r_ /ol / - 1l ’ o ’
Phr1 = 29D, Z VigPjr Zkp1 =2+ (Pl Thyq =Ti — 049D} (4.7)
o<k

Theorem 4.2. The projected orthogonal residuals algorithm is well defined and converges in at most
rank(%) steps towards the unique solution a of Ya = b and a € €. Moreover, at each step k, we have
1y = T2, = P21, P, = PPy, 0 = oy, and vi; = vy, for 0 < i < k. Finally, we have at step k

Hi=span(py,...,p)) = PAH 'y, Hi=HAH;, 0<i<k, (4.8)
where #' =1—31<jj<p vl ® Uj and (v 1<ij<p iS the inverse of the matrix ({us, Uj)1<ij<p-

Proof of Theorems 4.1 and 4.2. Upondecomposingry = pg = X +iy,x,y € R", thereal partof (4py, po)
is given by (Gx,x) + (Gy,y) and (¥pg, po) = 0 implies that x,y € N(G). However, ry € N(G)* +iN(G)*
so that (9pg, po) = 0 finally implies x,y € N(G) N N(G)* and rg = 0. Conversely, rog = 0 obviously im-
plies that (¥pg,po) = 0. On the other hand, if (9pg,po) # 0, we can form p; = ¥pg — vooPo, Z1 =
20 + ooPo, and 11 = 1o — 09%po, With v = (4°po, Po)/(%Po. Po) and g = (o, Po)/(%Po, Po) and 1y =
b — %z + ogpo) = b — %z;. From the definition of vgg we have (¥p1,po) = 0 and from the defini-
tion of o9 we obtain (ry,pg) = (r1,19) = 0, and # ¢ = span(pg) = span(rg) with dim(#"¢) = 1 since
rg # 0. From py = ¥pg — noopo We also have 9pg e span(pg,p1) and p; € span(pg, ¥po). Similarly
since 1 =g — 09%po and og # 0 we have ry € span(rg, ¥rg) and %ry € span(rg, 1) and all induction
properties at step 1 are established.

Assume now that k steps of the algorithm have been taken. Suppose first that (9py, py) = 0. Then
it is easily obtained as in the case k = 0 that p; € N(%) = N(G) + iN(G), but we also deduce from (4.4)
that p; e span(rg, ...,r,) C R(%) = N(G)* + iN(G)*. This shows that p;, = 0Oand ry € span(py, . ..,Pr_1)-
However, since ry is orthogonal to span(py, . . ., px_1), we deduce that (ry, 1) = 0 and the algorithm is
already converged. Conversely, if r, = 0, then p, € span(ry,...,T_1) so that p, € span(py, ..., Pk_1)
from (4.4) and (9py, py) = 0.

Supose now that (9py, py) # 0, then the scalars vy, ..., v and oy are well defined and we can
form py, 1, X1, Tky1- We note that oy # 0 since o, = 0 implies that py, is orthogonal to r, and then
from py € span(ry,...,r;) we obtain pj € span(ry,...,r,_1) and py € span(py, ..., Px_1) in such a way
that (9py,px) = 0. We next have (9p;,1,p;) = 0,0 < i<k, from the definition of the coefficients
Vko» - - - » Vkk» and (1,1, p;) = 0 by definition of the coefficient oy. The recurrence relations (4.2) and
(4.3) are then obtained at step k + 1 and (4.1) at step k + 1 follows from (4.3) at step k + 1 and (4.4) at
step k. In additionr 1 = b — 9z, — 0y 9py = b — Gz + oxpr) = b — Gz} ,4.

Fromry 1 = r, — 0 9p, wefirstobtainr,, ¢ € span(ry, .. .,gk“ro)sincepk e A" sothatspan(r,...,
1) C span(ro,l..,%kﬂro). Conversely, since o, # 0, we have ¥pj, € span(ry,..., 1) and if 0 <
i<k-1,9p; € 94 _1 c Ay This shows 44", C span(ry, ..., 1) o that span(ry, . ,.,%k“ro) C
span(ry, ..., Tx,1)- Similarly, from py 1 = 9p, — > o<j<k VkjPj» we have 9py, € span(py, . .., Py+1) and
ifO<i<k—1,9e€GAH 1 C Ay, sothat ¥4, C span(py,...,Pr+1) and span(ry, . ..,gk“ro) c
span(po, . . ., Px+1)- Conversely, since p; € A, if0 < i < k,span(py, ..., Prr1) C span(ro,l..,%kﬂro)and
we have established (4.4) for k + 1. Finally, we also have dim(# ) = k + 1 since ry, is nonzero and all
induction properties at step k + 1 are established.

We now investigate the projected algorithm and establish by induction that p, = Zp; z, = 2z

and r}, = ry at each step. We first note the relations % = 92 = #'% which imply in particular that
for any x,y € C",x' = Px,y’ = Px, we have (9x,y) = (9X,y) = (9x,y') = (9x',y’), and similarly that
(%Zx,y) = (gzx’,y/). Now for k = 0 we know by assumption that pj = #pg and z;, = Pz so that ry =
b—%z)=b—%zy =ry and (¥po,po) = (9P|, Pp). Therefore (4p, py) =0 if and only if rj = 0 and
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then we stop at step 0. When (¥po, po) + 0 then it is easily checked that vj; = vgg and o) = ag. Since

= PYGp,y — vyoby, and Z; =z + o), we obtain that p; = 2(%pg, — vooPo) = #p1 and z; = P(zp +
ooPo) = P71 and thus 1} = b — ¥Pzy = ry. Assume now by induction that for k > 1 we have defined
(P} }o<ickr 12 Yo<iccks (T }o<ick» With TTocick_1 (9D, D)) # 0, and that p; = Pp; z; = Pz; and 1] =1; for
0 < i < k.Since (9py, pr) = (9D, p,) and 1}, =1y, (9D}, p}) = 0if and only if r, = 0. On the other hand,
when (9p,,p;,) # 0 we define the coefficients v,/q,O < j < k, by solving the linear system

2 / 4
(9P, Pp) Vio @zpk,p(,)
(9py,py)  (9p1.p)) Vi (G ppY)
(.) 1 1 1 ‘ 1.<1 _ .k 1 (4.9)
(Gpo.p)  (Dp1p) - (GPPl)) \vig (%Dl p))
and define o}, = { ,;,pk>/(%pk,p;<> However, from the relations p; = #p;,0 < i < k, we obtain that

(%pipj) = (gpl pj) and (4> pi.Dj) = (@2131 p;) in such a way that "k = 14,0 <] <k, and o}, = oy. The
relationspy , = 29p; — > ocj<k qu 1Zyq = Hoppj.andr =1 — 0, 9p) thendirectly yield that
Pis1 = PPrs1:2 4 = P2k andry | = 14, and the relation A = PA;is then obvious. Conversely,
ifp’ = Ppandp € N(G)* + iN(G)*, itis easily obtained thatp’ = #pwhere # =1 — Pi<ij<p Villi ® Uj
and (yj)1<ij<p is the inverse of the matrix ((u;, uj))1<ij<p, and dim(#"j) = dim(# ) =i+ 1for0 < i <
k — 1. Note that the projected iterates also satisly the properties (r;, rj’) =0, (gp;,pp =0, and (r{,p]’.) =
0, for 0 <j < i<k, and the projected algorithm can entirely be formulated in terms of projected
quantities. [J

4.2. The preconditioned algorithm

We investigate in this section a preconditioned version of the projected orthogonal residuals algo-
rithm. In order to precondition this algorithm, we rewrite the system (1.1) in the form

BGH( HB a) =B b,
BachE, (4.10)

where 4 is an invertible matrix, 4" its adjoint and %" the inverse of the adjoint. The preconditioned
algorithm is simply obtained upon writing the natural unpreconditioned algorithm presented in Sec-
tion 4.1 in terms of the new matrix 93_1{4%_*, the new right-hand side 93_1b, the new unknown
2*a, with the directions %*p; and residuals % 'r;, and finally by reformulating back the resulting
algorithm in terms of the original system with the help of the Hermitian matrix M = #%". The form
(4.10)seems natural since (B~ 9B *z,z) = (9B *z, B *z) insuchaway that the positivity properties
of the matrix ¢ associated with (1.1) are maintained with the matrix 4~ 4% associated with (4.10).

Keeping the assumptions of Section 4.1 and assuming that M € R™" is Hermitian positive defi-
nite, the preconditioned orthogonal residuals algorithm can be described as follows. Let zy € C" be
an initial guess, ro = b — %z, and set pg = M~1ry. If (9pg, po) = 0 then ry = 0 and we stop at step
0, and if (9po, po) # 0 we set oo = (1o, Po)/(%Po. Po), voo = (9M~1%po, po)/(9Po. Po), and we define
p1 = M~1%pg — voopo. 21 = 2o + ogpo, and 1y = rg — 0p%po. Assume now by induction that for k > 1
we have defined {pi}o<i<i (Zi}o<i<kr {TiYo<i<io With [Tocick—1 (9Pipi) # 0,1i = b — 92,0 < i< k, and

M) =0, 0<j<i<k, (411)
(gp,.p]) 0, 0<j<i<k (4.12)
(ripiy =0, 0<j<i<k, (413)

%ﬁ = Mspan(po. ....D) = span(ry, ..., ;) = span(r, ..., (YM~rg),
0<i<k, (4.14)
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where dim(#";) =i+ 1for 0 < i< k— 1. Then (9py, px) = 0 if and only if r,, = 0 and in this situation
we stop at step k, whereas if (@pk, pr) # 0 we define the coefficients vi;,0 < j < k, by solving the linear
system

(%o, po) VkO (GM~19py, po)
(%po,p1)  (9p1.p1) Vi1 (GM~1%Gpy., p1)
. . = , , (415)
GpoDk) (Dp1.pk) - (Dpepr)) \vie (GM~1Gpy, i)
we define oy, = (1, D)/ (% Dk, Dx) and we set
Pri1 =M Gp; — Z ViDj»  Zkt1 = Zk + 0kPlo Tkt =Tk — ok GDk- (4.16)

0j<k

Theorem 4.3. The preconditioned orthogonal residuals algorithm is well defined and converges in at most
rank(%) steps towards the unique solution z of 9z = b and z € R(9).

We now consider a projected version of the preconditioned orthogonal residuals algorithm. We set
zy = P20,pp = WM‘lpo,r(’) =b — 9z, and if (¥p, py) = 0 we stop at step 0, whereas if (9p;, p;) +
0 we define o, = (ré,pé)/(gpé,pa), Voo = (gM*{!fpg),pb}/(%pb,pb), and py = PM~19p — vy,pp. 24 =
zg + 0Py, and 1} =1 — 6(%p;,. Assume now by induction that for k > 1 we have defined {p}}o<i<k,
{Z,{}ogigk {rYo<ick> With TTogick_1 (9P, p}) # 0 and 1} = b — 92,0 < i < k. Then (9p;,p,) =0 if and
only if rj, = O and in this situation we stop at step k. On the other hand if (9p;,p;) # 0 we introduce
the solution Vigr - - - » Vi Of the linear systems similar to (4.15) but using the directions {pj}o<i<x instead
of {pi}o<i<k to form the system coefficients, as well as o}, = (1}, p},)/(¥D},, P},) and we set

’ _ G -1 /o v, / S [ / o /
Phy1 =M™ %p; Z ViPir Ziey1 =2k kPl Tiyr =Ty — 09D} (4.17)
o<k

Theorem 4.4. The projected preconditioned orthogonal residuals algorithm is well defined and converges
in at most rank(¥) steps towards the unique solution a of Ya = b and a € €. Moreover, at each step k, we
haver, = ry, 2z, = Pz, p;, = PPy, 0}, = oy, and vy; = vy, for 0 < i < k. Finally, we have

Hi=spanpy,....p) = PM Ay, Hi=AHA}, 0<i<k, (4.18)

where A =1— 31 <j<p vijthi ® Muj and (yj1<ij<p is the inverse of the matrix ((Mu;,u;))1<ij<p and
dim(A ;) =dim(A ) =i+ 1for0 <i<k—1.

Proof of Theorems 4.3 and 4.4. The proof is similar to that of the unpreconditioned algorithm. [J

Remark 4.5. In order to precondition the orthogonal residuals algorithm one may also consider the
following reformulation of (1.1)

B'GH " Bay =B b,
{%a e #%, (419)

where 4 is an invertible matrix. The corresponding iterative scheme is more complex than the algo-
rithm associated with (4.10) and can be written in terms of the matrices M = %", M A% and 0 =
BB ~* . The coefficient of the linear system are (0! gpk,p]) and theright-handsides (O (0'9M~'Gpy, pj).
At step k the orthogonal relations are (M‘lr,-,r]) 0,(0- {ﬁpl,p]) 0,(0- rl,pj> 0,for0 <j<i<k
The new directions are defined from the relations py 1 = M- 1gp, — > o<j<k Viipj- This algorithm is
not guarantee to converge unless 4 is such that (O (N*] %z,z) = 0implies thatz € N(%) and (M*lz z)=0
implies that z = 0. Last but not least, the corresponding iterates defined with the projected directions
generally do not correspond to the projected iterates. When 4 is Hermitian, we have O = I,M = M and
we recover the simpler algorithm introduced in Theorem 4.3.
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5. Application to magnetized multicomponent transport
5.1. Transport coefficients in partially ionized gas mixtures

The equations governing partially ionized gas mixtures in the presence of a strong magnetic field can
be derived from the kinetic theory of dilute gases and express the conservation of mass, momentum,
and energy [10,16,17]. These equations contain the terms for transport fluxes, that is, the viscous tensor,
the species diffusion velocities, and the heat flux vector, which are non-isotropic under the influence
of the magnetic field. In this paper, we discuss the species diffusion velocities V;, 1 < i < nS, which are
vectors of R, where S is the number of species in the mixture. We denote by B the magnetic field,
assumed to be nonzero, by B = ||B|| its norm and by % the corresponding unitary vector % = B/B.

Upon neglecting thermal diffusion—for the sake of simplicity—the species diffusion velocities can
be written in the form

Vi=— Y (Djd +Djd +D2d?), 1<i<n, (5.1)
1<<n®

where d; is the diffusion driving force of the jth species d; = (Vp; — pif;)/p and
I I
dj =(dj,.@)ﬂ, djl:dj_djv djengd]

denote the corresponding parallel, perpendicular and transverse vectors. In these expressions, D!l =
(D}})K,-J-gns,DL = (Dﬁ)lgijgns and D°® = (D?)]gugns denote the diffusion matrices parallel, perpen-
dicular and transverse to the magnetic field, v the space derivative operator, p; the partial pressure
of the jth species, p = 3 j<ps Pj the total pressure, p; the partial density of the jth species, f; the
force per unit mass acting on the jth species, and A the vector product. We also denote by y; the mass
fraction of the jth species y; = p;j/(3_1<i<ps 1), by y the mass fractions vectory = (y1,...,y;), and by T
the temperature.

The diffusion matrices D!, D+, and D®, are functions of the variables (T,p,y1,...,y5, B). However,
these coefficients are not explicitly given by the kinetic theory. Their evaluation requires solving lin-
ear systems derived from orthogonal polynomial expansions of the species perturbed distribution
functions [10,16,17]. The size of these systems is typically n ~ rn® where r € {1, 2,3} and the number
of species in the mixture n’ is generally in the range 10 < n® < 100—although very large chemi-
cal mechanisms involving several of hundreds of reactive species 100 < n* < 1000 are sometimes
encountered. The resulting size of the transport linear systems is thus between 10 < n < 300 and
solving these linear systems by direct methods may become computationally expensive keeping in
mind that transport properties have to be evaluated at each computational cell in space and time.
Iterative techniques therefore constitute an appealing alternative and the mathematical and numerical
theory of iterative algorithms for solving the transport linear systems in nonionized mixtures [6,7,15]
has been generalized to the situation of ionized mixtures in strong magnetic fields [16,17].

In the next section we discuss the first order diffusion matrices in a multicomponent gas mixture
of n® components. We assume in the following that n® > 3 and that the variables (T,p,y1,...,y5,B)
are given positive quantities. We also assume that the mass fractions satisfy the natural normalization
condition Y jcps Vi = 1.

5.2. Application to diffusion matrices

The transport linear systems associated with the evaluation of the diffusion matrices D!, D+, and
DO, are the following n® systems of size n = n® indexed by [,1 < I < nS,
Ad'l =bl, [ +ida'? = b, (52)

atl ey, a2 eyt iyt .

where 4, 4" ¢ R™™ and a1,bl,y ¢ R" anda? e C™ [10,16,17]. The coefficients of the matrices 4 and
A'/B are functions of the state variables (T, p,y1, . ..,y$) which usually have complex expressions and
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are omitted. The real part 4 is thus independent of B but the imaginary part A is proportional to the
intensity of the magnetic field B. Once the solutions of the transport linear systems (5.2) are obtained,
the diffusion coefficients are evaluated from
I _ A1 1, in0 _ A2
Dy=a;, Dy+iDy=a;. (5.3)

The vectors ab!,1 < [ < nS, are therefore the column vectors of the diffusion matrix D!, and the vectors
ak2,1 < 1< ns, are the column vectors of the diffusion matrix D+ + iD®.

In the framework of the kinetic theory of gases, where the transport linear systems arise from
variational procedures, the authors have established the following properties for the matrices 4, A,
and the vectors y,u, and b!,1 <1 < nf, when n® > 3[6,17] :

e (41) A is symmetric positive semi-definite.

o (42)N(A) = Ruwhereu=(1,...,1).

o (43) (y,u) =1.

. (A4) bi =01k — Yk» 1< kI<nb.

o (45) 2diag(4) — 4 is symmetric positive definite.
o (46) A = -y@uMJ—-u®y).

e (A7) M’ is a diagonal matrix.

In the situation of first order diffusion matrices, the properties (41)-(47) can directly be deduced
from the special structure of 4,4, and of the vectors y,u, and b',1 <1< n%, and the matrix 4 is a
singular M-Matrix [6,7,23]. From the properties (41)-(47) we can now establish that the transport
linear systems are well posed as well as several properties of the diffusion matrices.

Proposition 5.1. Assume that the matrices A, A’, and the vectors y,u, and b', 1 < | < nS, satisfy the prop-
erties (A1)-(A7). Then the n® systems (5.2) are well posed, the matrix D! is symmetric and is the generalized
inverse of A with prescribed range y* and prescribed nullspace Ry, whereas the matrix D+ + iD® is sym-
metric and is the generalized inverse of A +iA" with prescribed range y*- + iy* and nullspace Cy. The
matrices D and D+ are symmetric positive semi-definite and N(D') = N(D+) = Ry. In addition, the diffu-
sion matrices can be evaluated from D! = (A + oy ®y)~! — (1/e)u®@ uand D+ +iD® = (A +id + ay ®
y)~! — (1/a)u ® u where « > 0 is arbitrary.

Proof. The proof is similar to that of the unmagnetized case thanks to Propositions 2.3 and 2.1 and
since b' € R(4) = ut and we refer to Ern and Giovangigli [7] for more details. [J

Projected stationary iterative techniques as well as projected orthogonal residuals methods can
be used to solve the constrained singular systems associated with the species diffusion coefficients
(5.2). Iterative techniques for the real transport linear systems associated with D! are similar to that
of nonionized mixtures and have been investigated comprehensively [14,6,7]. We thus only discuss
in the following the evaluation by iterative techniques of the complex matrix D+ + iD® by solving the
corresponding constrained linear systems (5.2). As a direct application of Theorem 3.3 we obtain an
asymptotic expansion for D+ + iD®.

Theorem 5.2. Let A, A" ¢ R™™ be matrices, and y,u € R™,bl ¢ R™, 1 <1< S, be vectors satisfying
the properties (A1)-(47) and let M = diag(My, ..., My) be such that My, > Ay, 1 < k < n®. Consider the
splittings A =M —W and A +id' = .4 — W, where #M =M +iA', the iteration matrices T = M~1W,
and 7 = 47", and let P = P = — u® y denote the oblique projector matrix onto y* along Ru. Let

zh e R",z} = 2z}, and consider for i > 0 and 1 <1< n’ the iterates ZI!H =72z +M~ b and zlf’+1 =

PTz! + PA"DL. Then zl' = 22! for all i > 0, the matrices T, 7 ,PT and 2.7 are convergent, p(T) =
p(T)=1,y(T)=pPT) < 1,y(T) = p(PT) < 1,y(T) < y(T), and we have the following limits:

lim z! = P( lim z{) =d?, 1<I<n’, (5.4)

1—-00 1—00
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where al? is the unique solution of the (right) linear system of (5.2). Moreover, fori > 1, the matrix iterates

D +iD = N @PTYPM P (5.5)
0<j<i-1

are symmetric, and converge as i — oo towards D+ + iD®, and we have the convergent asymptotic expan-
sion

DY +iD® = Y @PITVPM TP
0<j<oo

The interest of these algorithms is that they perform well whatever the intensity of the magnetic
field B since the complete matrix i4’ has been taken into account in the splitting matrix .# = M +i4’".
They do not perform well, however, independently of the ionization degree and convergence rates dete-
riorate asionization levels increase as investigated by Garcia Mufi in the unmagnetized case [13,17]. The

. . . (1 _ . . . . .
first approximation (DL + 1D®) = PP generalizes the Hirschfelder-Curtiss approximation

with a mass corrector [24,14,15] to the magnetized case. Upon using Proposition 3.8 and Zu = 0 we
obtain the explicit formula

EMu ® EMu

L ipOy[1] _ - -
D=+ 1D =E+ Vim0

(5.6)
where E = (M +iM)~1 — (M +iM)~ly @ (M + iM’)—ly/<(M +iM")~ 1y, y>. The second order approxi-
mation can further be written

(D* +iD®)? = (D' +iD®) + 2T (D +iD®)!V (5.7)
and yields a more accurate approximation. Since .# ~lisarank two perturbation of the diagonal matrix
. . . (1 . [2] s .
(M +iM")~1, both iterates (DL + 1DO) and (DL + 1D@) are evaluated within O(15%) operations. The
corresponding real parts D1 and D+2! are shown to be positive semi-definite with nullspace Ry.

Remark 5.3. When only the diffusion velocities are required—and not the diffusion coefficient matri-
ces—a complex form of the Stefan-Maxwell equations can be solved by using orthogonal residuals
algorithms [17]. These equations are in the form

—A+id)VE —iVO) =dt —id® —y Z dj —id?) (5.8)

1<i<ns

and must be solved with the constraint V- —iV® e y*+ +iy*, where V° = (V7,...,V%),d° = (d3,...,
dss), o € {|I, L, ©}. Only the diffusion velocities are required when an explicit time marching technique
is use to compute a multicomponent flow for instance.
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