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This paper studies the stability properties of a two-dimensional relative velocity scheme 
for the Navier–Stokes equations. This scheme inspired by the cascaded scheme has the 
particularity to relax in a frame moving with a velocity field function of space and time. 
Its stability is studied first in a linear context then on the nonlinear test case of the Kelvin–
Helmholtz instability. The link with the choice of the moments is put in evidence. The set 
of moments of the cascaded scheme improves the stability of the d’Humières scheme for 
small viscosities. On the contrary, a relative velocity scheme with the usual set of moments 
deteriorates the stability.
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r é s u m é

Cet article étudie la stabilité d’un schéma de Boltzmann sur réseau à vitesse relative 
appliqué aux équations de Navier–Stokes bidimensionnelles. Ce schéma est une extension 
du schéma en cascade et s’y ramène dans un repère associé à un champ de vitesse fonction 
de l’espace et du temps. Sa stabilité est d’abord étudiée dans un cadre linéaire puis pour 
le cas test non linéaire de l’instabilité de Kelvin–Helmholtz. L’importance du choix des 
moments est mise en évidence. Le choix de moments du schéma en cascade améliore la 
stabilité de la variante de d’Humières du schéma de Boltzmann sur réseau dans le cas 
de petites viscosités. Au contraire, un régime de vitesse relative avec le jeu habituel des 
moments détériore la stabilité.

© 2015 Published by Elsevier Masson SAS on behalf of Académie des sciences.
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0. Introduction

The lattice Boltzmann schemes have been successfully used for the simulation of the compressible Navier–Stokes equa-
tions in two or three dimensions [1–4]. This method aims to mimic the microscopic behaviour in order to simulate some 
macroscopic problems. The algorithm consists in evaluating some particle distributions. The particles, moving from node to 
node of a lattice, undergo a phase of collision and a phase of transport. Different collision operators have been proposed for 
the simulation of the Navier–Stokes equations. The simplest one is the single relaxation time operator [5,1–3] also called 
BGK. An alternative called the multiple relaxation times (MRT) operator [4,6] has been proposed. During the collision, some 
moments, linear combinations of the particle distributions, relax towards the equilibrium with a priori different velocities. 
It contains the particularity to offer more degrees of freedom to fix the different parameters as the viscosities. The multiple 
relaxation times approach is thus more flexible than the BGK. Both schemes have been well studied particularly in terms of 
stability [6]. They still encounter some instability features as the viscosities tend to zero that limits high Reynolds number 
simulations.

In 2006, a cascaded scheme improving the stability for low viscosities has been presented [7]. Its relaxation occurs in a 
frame moving with the fluid velocity. To understand the positive features of this scheme, a general notion of relative velocity 
schemes was defined [9]. Their relaxation is made for a set of moments depending on a velocity field function of space and 
time that is the velocity fluid for the cascaded scheme [9] and zero for the d’Humières scheme [4]. These relative velocity 
schemes are not restricted to the simulation of the Navier–Stokes equations: they are defined for an arbitrary number 
of conservation laws. Their consistency has already been studied for one and two conservation laws [8,9] but the same 
reasoning holds for an arbitrary number of conservation laws. The purpose is not to compare different schemes in terms of 
stability but to study the stability of the class of the relative velocity schemes according to the choice of some parameters.

The purpose of this contribution is to present some numerical stability results of the two dimensional nine velocities 
(D2Q9) relative velocity scheme for the compressible Navier–Stokes equations. We want to characterize the influence of the 
relative velocity and the link with the moments choice: the polynomials defining the moments of the cascaded scheme are 
different from the usual ones and may act on the stability. In a first part, we recall the basis of the relative velocity schemes. 
We then present the relative velocity D2Q9 we are interested in. The second part exhibits the results of stability, first in 
a linear context (L2 von Neumann notion) and then for a non-linear test case, the Kelvin–Helmholtz instability. It puts in 
evidence the link between the relative velocity, the choice of the polynomials defining the moments and the stability.

1. Description of the scheme

We first introduce the relative velocity scheme for an arbitrary number of dimensions and velocities. We then particu-
larize it to the case of two dimensions and nine velocities.

1.1. The relative velocity DdQq scheme

This section presents the derivation of the relative velocity lattice Boltzmann schemes introduced in [9] and inspired by 
the cascaded scheme [7]. Let L be a Cartesian lattice in d dimensions with a typical mesh size �x. The time step �t is 
linked to the space step by the acoustic scaling �t = �x/λ for λ ∈ R the velocity scale. We introduce V = (v0, . . . , vq−1) a 
set of q velocities of Rd . This defines the scheme called DdQq . We assume that for each node x of the lattice L, and each 
vj in V , the point x + vj�t is still a node of L. The DdQq scheme computes a particle distribution f = ( f0, . . . , fq−1) on the 
lattice L at discrete values of time. An iteration of the scheme consists in two phases: the relaxation that is nonlinear and 
local in space, and the linear transport solved exactly by a characteristic method.

The relaxation phase reads more easily in a moments basis using the d’Humières framework [4]. A velocity field ũ(x, t)
that depends on space and time being given, we define the change of basis matrix M (̃u), usually called “matrix of mo-
ments”, by

M (̃u)kj = Pk(vj − ũ), 0 � k, j � q − 1,

where (P0, . . . , Pq−1) are some polynomials of R[X1, . . . , Xd]. This matrix of moments, supposed to be invertible, defines 
the moments m(̃u) = (m0(̃u), . . . , mq−1(̃u)) by the relation

m(̃u) = M (̃u) f , (1)

where mk (̃u) is the kth moment. If the vector f represents the coordinates of the state in the canonical basis, then the 
vector m(̃u) represents the same state in the new basis obtained by the linear transformation given by M (̃u).

The collision phase is viewed as the relaxation of the particle distributions towards an equilibrium distribution f eq

independent of the moments and of the velocity field parameter ũ. This allows us to define the moments at equilibrium 
meq (̃u) = (meq

0 (̃u), . . . , meq
q−1(̃u)) by

meq(̃u) = M (̃u) f eq. (2)

The relative velocity schemes use a diagonal relaxation phase in this shifted moments basis
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Fig. 1. The D2Q9 velocities.

m�
k (̃u) = mk (̃u)+sk(m

eq
k (̃u) − mk (̃u)), 0 � k � q − 1, (3)

where sk is the relaxation parameter associated with the kth moment for 0 � k � q − 1. Some of these moments are 
conserved by the relaxation: they are associated with relaxation parameters equal to zero. The equilibrium distribution 
function at the equilibrium f eq is a function of the conserved moments determined by the partial differential equations to 
be approximated. The inverse of the matrix of moments is used to return to the distributions

f � = M−1(̃u)m�(̃u). (4)

The transport phase spreads the particle distributions on the neighbouring nodes

fj(x, t + �t) = f �
j (x − vj�t, t), 0 � j � q − 1.

This framework embeddes the d’Humières scheme for ̃u equal to 0 and the cascaded scheme for ̃u equal to the fluid velocity 
and a particular set of moments [9]. In the following, when ũ is specified, we call the associated relative velocity scheme 
the scheme relative to ũ.

1.2. The study framework: the relative velocity D2Q9 scheme

The purpose of this section is to introduce the scheme whose stability properties are investigated: the relative velocity 
D2Q9 scheme with two conservation laws on the density and the momentum

ρ =
∑

j

fj, qα =
∑

j

vα
j fj, 1 � α � d.

for the compressible Navier–Stokes equations. We expose its features and the different degrees of freedom used to check its 
stability. We put a particular attention on the definition of the moments.

For this two-dimensional scheme, nine velocities are involved: they are defined by

v = {(0,0), (λ,0), (0, λ), (−λ,0), (0,−λ), (λ,λ), (−λ,λ), (−λ,−λ), (λ,−λ)},
with λ ∈R the velocity scale. These velocities are also represented in Fig. 1.

We need to deal with the set of the moments and the equilibrium to completely characterize the scheme. Historically 
the D2Q9 scheme has been mainly used with the following set of moments

1, X, Y , X2 + Y 2, X2 − Y 2, XY , X(X2 + Y 2), Y (X2 + Y 2), (X2 + Y 2)2, (5)

or its orthogonalized analogue for the simulation of the Navier–Stokes equations [6]. They have been chosen because of 
their physical meaning: they involve the density, the momentum, the energy, the diagonal and off-diagonal components of 
the stress tensor, the heat flux and the square of the energy. Nevertheless, the D2Q9 cascaded scheme [7], which seems to 
improve the stability at low viscosities, has brought to light another set of moments given by

1, X, Y , X2 + Y 2, X2 − Y 2, XY , XY 2, Y X2, X2Y 2. (6)

This scheme has been written as a relative velocity scheme for the moments (6) and the fluid velocity [9]. The relaxations 
of (5) and (6) are equivalent in the d’Humières framework corresponding to ũ = 0 (Section 2.2). However, this is not true 
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any more when ũ is different from 0. This point naturally leads to the question: does the set of moments have an influence 
on the stability properties of the relative velocity scheme? Giving some experimental rudiments of an answer is the purpose 
of this study.

That’s why we introduce two sets of moments tuned by a parameter α ∈R:

1, X, Y , X2 + Y 2, X2 − Y 2, XY , X(αX2 + Y 2), Y (X2 + αY 2),
α

2
(X4 + Y 4) + X2Y 2, (7)

and

1, X, Y , X2 + Y 2, X2 − Y 2, XY , XY 2 + α(X2 + Y 2), Y X2 + α(X2 + Y 2), X2Y 2. (8)

The moments (7) generalize those of the D2Q9 cascaded scheme corresponding to α = 0 [9] given by (6) and the ones 
associated with α = 1 defined by (5). The introduction of α results from the will not to restrict the study to two sets 
of moments. This also allows us to understand the impact on the stability of the X3 component when α moves from 0
to 1. The choice of the moments (8), even if it seems strange because it mixes some second- and third-order polynomials, 
improves the understanding of the differences of stability between (5) and (6) for the relative velocity D2Q9 scheme. Taking 
α = 0 also recovers the cascaded moments.

The equilibrium may also have an influence on the stability. That’s why, denoting u = q/ρ the fluid velocity, we introduce

f eq
1, j(ρ, u) = ρω j

(
1 + u.vj

c2
0

+ (u.vj)
2

2c4
0

− |u|2
2c2

0

)
, 0 � j � 8, (9)

and

f eq
2, j(ρ, u) = ρω j

(
1 + u.vj

c2
0

+ (u.vj)
2

2c4
0

− |u|2
2c2

0

+ (u.vj)
3

6c6
0

− |u|2(u.vj)

2c4
0

+ d j(ux)2(u y)2

c4
0

)
, 0 � j � 8, (10)

where d0 = −1/4, d j = 1/2, j = 1, . . . , 4, d j = −1, j = 5, . . . , 8, respectively corresponding to the second-order truncated 
equilibrium [3] and to a fourth-order equilibrium [10,11] particularly used for the D2Q9 cascaded scheme. The product 
equilibrium corresponds to the fourth-order truncation of the Maxwellian equilibrium. Both equilibria allow us to simulate 
the compressible Navier–Stokes equations whatever the velocity field ũ. Indeed, the second-order equivalent equations 
of the relative velocity schemes are independent of ũ [9] and the Navier–Stokes equations are recovered by the D2Q9
d’Humières scheme (̃u = 0) at the second order for small Mach numbers [12]. Let us note that the simulations of Section 3
have been also made for the incompressible analogue of (9) and (10) used in [6]: the same trends as those presented in 
Section 3 are obtained.

We choose to work with several two-relaxation-time schemes (TRT) to understand the role of each polynomial of the 
moments: the one given by

s = (se, sν, sν, se, se, se), (11)

called TRT1 and the one given by

s = (se, se, se, sp, sp, se), (12)

called TRT2 where se, sν, sp ∈ R. Note that the TRT1 and the TRT2 differ from the TRT schemes defined in [13] and based on 
the symmetry of the lattice. If all the relaxation parameters are identical, we recover the BGK scheme [4].

Four degrees of freedom are tunable in this section: the moments, the vector of the relaxation parameters s, the veloc-
ity field ũ and the equilibrium. The link between these parameters and their influence on the stability is studied in the 
following.

2. Experimental study of linear stability

In this section, we study the linear von Neumann L2 stability of the relative velocity D2Q9 scheme defined in Section 1.2. 
The influence of the moments according to the choice of the velocity field ũ is the keypoint of the section. Our first interest 
goes to the moments (6) and (5), respectively corresponding to α = 0 and α = 1 in (7), because they are usually chosen by 
the community [4,6,7,14]. The first subsection compares those two sets according to the velocity field parameter. We show 
that taking ũ = u, the velocity of the fluid improves the stability if the moments (6) are chosen, deteriorates it if the set (5)
is taken. The second subsection answers the following question: what is the better choice of moments (of α) in terms of 
stability? A range of α is proposed and α = 0 is showed to be the most stable choice.
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Table 1
Highest stable V = (V x, 0) in λ units for the d’Humières scheme (ũ = 0), with α = 0 or α = 1, of equilibrium (9). se = 2 − 2−m and sν = 2 − 2−n .

n m

0 1 2 3 4 5 6 7

0 0.42 0.41 0.34 0.26 0.20 0.15 0.11 0.08
1 0.42 0.41 0.36 0.30 0.23 0.18 0.13 0.09
2 0.31 0.34 0.34 0.32 0.28 0.23 0.17 0.13
3 0.21 0.28 0.32 0.30 0.25 0.22 0.18 0.15
4 0.14 0.21 0.28 0.26 0.22 0.18 0.16 0.13
5 0.10 0.16 0.22 0.23 0.20 0.17 0.13 0.11
6 0.07 0.12 0.17 0.20 0.18 0.16 0.12 0.11
7 0.05 0.08 0.12 0.17 0.16 0.15 0.11 0.11

2.1. Methodology: the von Neumann stability

The study of the relative velocity D2Q9 scheme is based on the L2 von Neumann stability. This notion being adapted to 
linear contexts, we linearize the equilibria (9) and (10) around a velocity V = |V | eiθ ∈ R

2, θ ∈ R. Thus there exists a matrix 
E so that

f eq = E f .

Using (1), (3), (2), (4) the linearized relaxation phase of the relative velocity schemes reads

f � = (I + M (̃u)−1 D M (̃u)(E − I)) f ,

where D = diag(s) is the diagonal matrix of the relaxation parameters. This expression holds for each node x of the lattice, 
the relaxation being local in space. One can deduce the expression of the distribution after an iteration thanks to the 
transport phase

fj(x, t + �t) = [(I + M (̃u)−1 D M (̃u)(E − I)) f ] j(x − vj�t, t), x ∈ L, t ∈R.

In the Fourier space, the transport operator becomes local in space and is represented by the diagonal matrix A whose 
diagonal components are given by ei�tk.vj , 0 � j � 8. We can then define the amplification matrix L (̃u) = L(̃u, V , k, s, α) =
A(I + M (̃u)−1 D M (̃u)(E − I)), for k, V , ̃u ∈ R

2, s ∈ R
9, α ∈ R, V ∈ R

2 characterizing a time iteration of the scheme in the 
Fourier space

f̂ (k, t + �t) = L(̃u) f̂ (k, t), t ∈R,

where f̂ is the Fourier transform of f . We want to determine the quantity

max{|V |, max
k∈R2

r(L(̃u)) � 1}, (13)

for some parameters s, ũ, α, a direction of linearization θ ∈ R and r(L(̃u)) the spectral radius of L(̃u). It characterizes the 
set of the linearization velocities V for which the scheme verifies the necessary condition of L2 stability max

k∈R2
r(L(̃u)) � 1.

2.2. Comparison between the d’Humières scheme and the scheme relative to the linearization velocity

We show that the schemes relative to ũ = V can improve or deteriorate the linear stability compared to the d’Humières 
scheme. The stability behaviour depends strongly on the choice of the moments.

We compare the schemes relative to ũ = 0 and ũ = V for the two sets of moments (5) and (6): we have α = 0, 1 in (7). 
We here restrict to the second-order truncated equilibrium (9) linearized around V . The variable of comparison is the largest 
stable velocity V (13) for a linearization direction θ equal to 0. We choose to deal with the TRT1 (11) for se = 2 − 2−m and 
sν = 2 − 2−n where m, n, ∈N, 0 � m, n � 7. The parameters se and sν respectively tune the bulk and the shear viscosities of 
the Navier–Stokes equations. This choice of parameters allows us to study the zero viscosity limit by increasing m or/and n. 
Table 1 deals with the d’Humières scheme for both sets of moments, the values for those two sets being identical. Tables 2
and 3 give analogous results for the scheme relative to ũ = V : they correspond respectively to the moments with α = 0 (6)
and α = 1 (5).

We notice the importance of the choice of the moments for the schemes relative to ̃u = V : stability areas are the biggest 
for α = 0 (6) (Table 2) and the smallest for α = 1 (5) (Table 3) whatever the choice of s. The d’Humières scheme (ũ = 0, 
Table 1) has smaller stability areas than the scheme relative to ũ = V with α = 0 and bigger than the one with α = 1.

The scheme relative to ũ = V with α = 0 provides the most important gain compared to the d’Humières scheme when 
se or sν is close to 2 and the other is far from 2 (for one small and one large viscosity). Instead these areas are the most 
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Table 2
Highest stable V = (V x, 0) in λ units for the scheme relative to ̃u = V with α = 0 of equilibrium (9). se = 2 − 2−m and sν = 2 − 2−n .

n m

0 1 2 3 4 5 6 7

0 0.42 0.42 0.40 0.37 0.33 0.28 0.24 0.21
1 0.42 0.41 0.37 0.34 0.33 0.30 0.27 0.23
2 0.42 0.36 0.34 0.33 0.29 0.25 0.22 0.19
3 0.36 0.34 0.33 0.30 0.25 0.21 0.18 0.16
4 0.32 0.32 0.30 0.26 0.22 0.18 0.16 0.13
5 0.29 0.30 0.27 0.24 0.21 0.17 0.13 0.11
6 0.26 0.28 0.24 0.21 0.18 0.16 0.12 0.11
7 0.23 0.26 0.22 0.19 0.16 0.15 0.11 0.11

Table 3
Highest stable V = (V x, 0) in λ units for the scheme relative to ̃u = V with α = 1 of equilibrium (9). se = 2 − 2−m and sν = 2 − 2−n .

n m

0 1 2 3 4 5 6 7

0 0.42 0.42 0.27 0.18 0.12 0.08 0.06 0.04
1 0.42 0.41 0.37 0.31 0.20 0.13 0.09 0.06
2 0.24 0.36 0.34 0.32 0.27 0.21 0.14 0.09
3 0.15 0.29 0.33 0.30 0.25 0.21 0.18 0.14
4 0.10 0.19 0.29 0.26 0.22 0.18 0.16 0.13
5 0.07 0.12 0.20 0.29 0.21 0.17 0.13 0.11
6 0.05 0.09 0.14 0.20 0.18 0.16 0.12 0.11
7 0.03 0.06 0.09 0.14 0.16 0.15 0.11 0.11

Table 4
Highest stable V = (V x, 0) in λ units for the d’Humières scheme (ũ = 0), with α = 0, of equilibrium (10). se = 2 − 2−m and sν = 2 − 2−n .

n m

0 1 2 3 4 5 6 7

0 0.42 0.42 0.39 0.32 0.24 0.16 0.11 0.07
1 0.42 0.42 0.41 0.38 0.31 0.20 0.14 0.09
2 0.42 0.42 0.41 0.40 0.38 0.30 0.20 0.14
3 0.26 0.41 0.40 0.39 0.37 0.32 0.28 0.20
4 0.16 0.28 0.38 0.36 0.33 0.29 0.24 0.21
5 0.10 0.18 0.29 0.33 0.31 0.26 0.21 0.19
6 0.07 0.12 0.19 0.30 0.29 0.24 0.20 0.18
7 0.05 0.08 0.13 0.20 0.28 0.23 0.19 0.17

deteriorated when α is equal to 1. When se and sν are close, the scheme presents stability areas nearly independent of ũ. 
The case se = sν corresponds to the BGK scheme: the velocity field ũ does not play any role since (2) is verified.

Finally, for the d’Humières scheme, the results are independent of the choice of the moments. Indeed, the third-order 
moment X(X2 + Y 2) is equivalent to λ2 X + XY 2 on the velocity network [8]: its relaxation is then equivalent to the 
relaxation of XY 2, X being a conserved component. The same reasoning holds for the symmetrical moment. The moment 
(X2 + Y 2)2 is equal to X2Y 2 + λ2(X2 + Y 2) on the velocity network. Its relaxation is equivalent to relax X2Y 2 because 
X2 + Y 2 and X2Y 2 are both in the eigenspace related to se for the TRT1.

All these trends are independent of the direction of linearization θ : the results are similar for θ = π/8, π/4, π/3.
We now do the same job for the product equilibrium (10) restricting the study to the choice α = 0. Note that the 

combination of these moments and this equilibrium corresponds to the D2Q9 cascaded scheme [11,9]. The TRT1 (11), tuned 
by se and sν , and the direction θ = 0 are chosen. Table 4 is about the d’Humières scheme, Table 5 corresponds to the scheme 
relative to ũ = V .

The results are analogous to the ones associated with equilibrium (9). The scheme relative to ũ = V has bigger linear 
stability areas than the d’Humières scheme (ũ = 0) when α = 0. The gain is more important when the relaxation parameters 
are far from each other. The velocity field impact is lightened when se and sν are close.

We finally assess the influence of the equilibrium on linear stability. Whatever the choice of ũ and s, equilibrium (10)
provides bigger stability areas than the truncated equilibrium (9). Particularly, the BGK scheme associated with (10) is more 
stable than the one corresponding to (9).

As a conclusion, the most important fact of the study is the following: the scheme relative to ũ = V for α = 0 is more 
stable than for α = 1. Instead choosing a scheme relative to ũ = V with an “inappropriate” set of moments can deteriorate 
stability.
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Table 5
Highest stable V = (V x, 0) in λ units for the scheme relative to ̃u = V with α = 0 of equilibrium (10). se = 2 − 2−m and sν = 2 − 2−n .

n m

0 1 2 3 4 5 6 7

0 0.42 0.42 0.42 0.42 0.35 0.30 0.26 0.23
1 0.42 0.42 0.42 0.41 0.39 0.35 0.32 0.28
2 0.42 0.41 0.41 0.40 0.40 0.35 0.31 0.29
3 0.41 0.41 0.40 0.39 0.36 0.30 0.27 0.23
4 0.40 0.40 0.39 0.36 0.33 0.28 0.23 0.20
5 0.35 0.37 0.36 0.33 0.31 0.26 0.21 0.18
6 0.31 0.33 0.33 0.31 0.29 0.25 0.20 0.17
7 0.28 0.30 0.31 0.29 0.27 0.24 0.19 0.17

Fig. 2. Draw of V x as a function of α for the d’Humières scheme with the moments (7). Left: TRT1, se = 2 − 2−m and sν = 2 − 2−n . Right: TRT2, se = 2 − 2−m

and sp = 2 − 2−n .

2.3. Influence of the choice of the moments on the stability

The previous section has studied the stability of the relative velocity and d’Humières schemes for two choices of α. This 
parameter seems to be crucial for the relative velocity schemes. The purpose of this section is to see more precisely its 
influence on stability. It studies the stability properties of the schemes relative to ũ = 0 and ũ = V for a bigger range of α. 
We show numerically and justify that α = 0 constitutes the better choice of moments.

We are interested in the stability of the relative velocity schemes for both sets of moments (7) and (8): the discussion 
carries on the choice of the parameter α ∈ R characterizing these moments. Both equilibria leading to the same trends, we 
focus on the truncated one (9) linearized around V = (V x, 0) ∈ R

2. Two sets of relaxation parameters s are used: the TRT1
(11) and the TRT2 (12) where se = 2 − 2−m and sν = sp = 2 − 2−n with (m, n) = (0, 3), (3, 0), (0, 7), (7, 0), (7, 7). The quantity 
(13) is drawn as a function of α in [−1, 1]. A negative value of (13) means that the scheme is unstable for all V .

We first focus on the d’Humières scheme corresponding to ũ = 0. Figs. 2 and 3 represent respectively the draws associ-
ated with the moments (7) and (8). On each figure, the left draw is associated with the TRT1 and the right one with the 
TRT2.

For the moments (7), the draws are independent of α whatever the TRT chosen and s. For the moments (8), the draw 
corresponding to the TRT1 is independent of α unlike the TRT2. The figure associated with the TRT2 induces to choose 
α = 0: it corresponds to the maximum of the curve and the stability area decreases as |α| increases. As expected, the draw 
for m = n = 7 corresponding to a BGK scheme is constant in α. We notice that α = 0 belongs to the set of α maximizing 
the stability whatever the draw.

We can exhibit the origin of the dependence or independence on α. Let’s consider the moments (7). For the d’Humières 
scheme, the relaxation of these moments is independent of α. The last three moments of (7) are:

αX3 + XY 2,αY 3 + X2Y ,
α

2
(X4 + Y 4) + X2Y 2.

Knowing that X3 = λ2 X on the velocity set [8], the scheme is unchanged if we replace them by

λ2αX + XY 2, λ2αY + X2Y ,
λ2α

(X2 + Y 2) + X2Y 2.

2
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Fig. 3. Draw of V x as a function of α for the d’Humières scheme with the moments (8). Left: TRT1, se = 2 − 2−m and sν = 2 − 2−n . Right: TRT2, se = 2 − 2−m

and sp = 2 − 2−n .

Fig. 4. Draw of V x as a function of α for the scheme relative to ũ = V with the moments (7). Left: TRT1, se = 2 − 2−m and sν = 2 − 2−n . Right: TRT2, 
se = 2 − 2−m and sp = 2 − 2−n .

Relaxing the moments (7) is then equivalent to relax the same moments for α = 0. Indeed, X and Y are associated with 
some conserved moments and X2 + Y 2 has the same relaxation parameter se as the fourth order moment. It is thus consis-
tent for this draws to be independent of α.

We now focus on the moments (8): the parameter α appears only in the third order moments. For the TRT1, X2 + Y 2

and the third-order polynomials are relaxed with the same relaxation parameter se. Choosing

XY 2 + α(X2 + Y 2), X2Y + α(X2 + Y 2),

is then equivalent to choose

XY 2, X2Y ,

and the scheme does not depend on α as the left draw of Fig. 3 shows it. For the TRT2, X2 + Y 2 and the third-order 
moments are relaxed with different relaxation parameters: it is expected to have a dependence on α, excepted for the BGK 
case (m = n = 7) involving only one relaxation parameter.

We now do the same job for the scheme relative to ũ = V . Fig. 4 is associated with the moments (7) and Fig. 5 with the 
moments (8).

The stability of the scheme relative to ũ = V depends on α whatever the moments (Fig. 4). The maximum is reached 
for α = 0 whatever the choice of s. For the moments (8), the stability of the TRT1 is not linked to α (Fig. 5 on the left side). 
Instead, this parameter is influential for the TRT2 (Fig. 5 on the right side): α = 0 still corresponds to the optimum.

We interpret Fig. 4 as corresponding to the moments (7). Because X3 = λ2 X and Y 3 = λ2Y on the velocity set, relaxing 
the relative moments associated with (7) is equivalent to relax
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Fig. 5. Draw of V x as a function of α for the scheme relative to ũ = V with the moments (8). Left: TRT1, se = 2 − 2−m and sν = 2 − 2−n . Right: TRT2, 
se = 2 − 2−m and sp = 2 − 2−n .

1, X, Y , X2 + Y 2, X2 − Y 2, XY , P6(̃u,α), P7(̃u,α), P8(̃u,α),

where

P6(̃u,α) = XY 2 + α(−3̃ux X2 + (λ2 − 3(̃ux)2)X + ũx(λ2 − (̃ux)2)),

P7(̃u,α) = X2Y + α(−3̃u y Y 2 + (λ2 − 3(̃u y)2)Y + ũ y(λ2 − (̃u y)2)), (14)

and

P8(̃u,α) = X2Y 2 + α

2

(
(λ2 + 6(̃ux)2)X2 + (λ2 + 6(̃u y)2)Y 2

+ 2̃ux(−λ2 + 4(̃ux)2)X + 2̃u y(−λ2 + 4(̃u y)2)Y

− 3(̃ux)2(λ2 − (̃ux)2) − 3(̃u y)2(λ2 − (̃u y)2)
)
.

Let us observe the equivalent class of the third-order moment given by (14). The dependence on α of the stability comes 
from the term −3αũx X2. Indeed, relaxing (14) is equivalent to relax XY 2 −3αũx X2 since the moments corresponding to the 
polynomials 1 and X are conserved by the collision. On the contrary, the moment associated with X2 is not conserved. For 
the TRT1, it is a linear combination of the moments X2 + Y 2 and X2 − Y 2 associated with different relaxation parameters 
se and sν . For the TRT2, it is associated with se, whereas P6 corresponds to sp.

These remarks justify the introduction of the moments (8) to study the influence of the non-conserved components X2

and Y 2. Fig. 5, implying the moments (8), gives similar results as its analogous for ũ = 0 (Fig. 3): the same interpretation 
is still valid. Note that for α = 0, the areas are bigger with ũ = V (Fig. 5) than with ũ = 0 (Fig. 3). This confirms the 
observations of the Section 2.2.

3. Numerical stability for the Kelvin–Helmholtz test case

The purpose of this section is to confirm on a non-linear test case the previous linear stability results: this test case is 
the Kelvin–Helmholtz instability [15,16].

We compare six versions of the relative velocity D2Q9 scheme to study the influence of the moments, of the velocity 
field ũ, and of the equilibrium. We consider the scheme associated with α = 0 relative to ũ = 0 and ũ = u (the fluid veloc-
ity) for the equilibria (9) and (10). We compare it to the choice α = 1 for the relative velocities 0 and u with equilibrium (9). 
We choose not to consider the product equilibrium (10) for α = 1, this equilibrium being introduced for the moments of 
the cascaded scheme [11]. We work with the TRT1 defined by (11): unless otherwise specified, se et sν are fixed by

μ = λ2�σe

3
, ν = λ2�σν

3
,

where σe = 1/se − 1/2 and σν = 1/sν − 1/2, so that the viscosities μ and ν are set to 0.0366 and 10−4.
We test the stability of the scheme by increasing the velocity U defining the initial shear layers
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Fig. 6. (Colour online.) Vorticity draw at t = 0.6.

Fig. 7. (Colour online.) Vorticity draw at t = 1.

ux(x, y,0) =
{

U tanh(k(y − 1
4 )) if y � 1

2

U tanh(k( 3
4 − y)) if y > 1

2

, (x, y) ∈ [0,1]2,

u y(x, y,0) = Uδ sin(2π(x + 1
4 )), (x, y) ∈ [0,1]2.

This velocity U is chosen as Ma/
√

3 for Ma ∈ R the Mach number. The parameters k and δ controlling the width of the 
shear layers and the magnitude of the initial data are set to 80 and 0.05.

We first validate the vorticity draws obtained in [17,16,15] using the scheme relative to the fluid velocity u for the 
second-order truncated equilibrium (9). This vorticity is defined by

ω = ∂xu y − ∂yux.

For this simulation, the domain is constituted of 128 × 128 points, the Mach number is fixed at 0.04 (λ is chosen as in [16]
so that U = 1). Figs. 6 and 7 are the vorticity plots at time t = 0.6 and t = 1.

We now present a stability analysis depending on the different parameters for λ = 1. We expect to confirm the linear 
stability results. The scheme is considered stable if it has not broken after 2000 iterations. Table 6 contains the maximal 
stable Mach number Ma for different meshes at 0.01 close. Table 7 presents the greater Reynolds number Re = 1/ν stable 
at 1000 close for different meshes and Ma = 0.09. Since we discuss on the Reynolds number, the viscosity ν becomes a 
parameter.

We obtain results consistent with the linear stability study. First, choosing a scheme relative to ũ = u has a positive 
effect if α = 0, negative if α = 1. We must choose the moments of the D2Q9 cascaded scheme to improve the stability. 
This improvement occurs whatever the equilibrium and the mesh: the stability limit sν = 2 is stable (Table 7) and high 
Mach numbers are reached for this scheme (Table 6). Second, the d’Humières scheme is independent of α as for the linear 
stability study. Its stability area is smaller than the scheme relative to ũ = u when α = 0, greater when α = 1. Finally, the 
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Table 6
Maximum of Ma stable according to the mesh. The two last columns indicates a convergence of each scheme as �x decreases.

Space step �x 1/16 1/32 1/64 1/128 1/256 1/512 1/1024
Corresponding se 0.44 0.25 0.13 0.07 0.03 0.02 0.01
Corresponding sν 1.98 1.96 1.93 1.86 1.73 1.53 1.24

α = 0, ũ = 0, equilibrium (9) 0.18 0.13 0.12 0.12 0.12 0.12 0.12
α = 0, ũ = u, equilibrium (9) 0.96 0.82 0.62 0.49 0.43 0.39 0.39
α = 0, ũ = 0, equilibrium (10) 0.18 0.13 0.12 0.12 0.12 0.12 0.12
α = 0, ũ = u, equilibrium (10) 0.92 0.80 0.62 0.50 0.43 0.39 0.39
α = 1, ũ = 0, equilibrium (9) 0.18 0.13 0.12 0.12 0.12 0.12 0.12
α = 1, ũ = u, equilibrium (9) 0.09 0.07 0.06 0.05 0.05 0.05 0.05

Table 7
Maximum of the Reynolds number stable for Ma = 0.09 according to the mesh.

Space step �x 1/16 1/32 1/64 1/128
Corresponding se 0.44 0.25 0.13 0.07
Corresponding sν 1.98 1.96 1.93 1.86

α = 0, ũ = 0, equilibrium (9) sν = 2 21 · 103 17 · 103 17 · 103

α = 0, ũ = u, equilibrium (9) sν = 2 sν = 2 sν = 2 sν = 2
α = 0, ũ = 0, equilibrium (10) sν = 2 21 · 103 17 · 103 17 · 103

α = 0, ũ = u, equilibrium (10) sν = 2 sν = 2 sν = 2 sν = 2
α = 1, ũ = 0, equilibrium (9) sν = 2 21 · 103 17 · 103 17 · 103

α = 1, ũ = u, equilibrium (9) 10 · 103 6 · 103 4 · 103 4 · 103

Table 8
Maximum of Ma stable according to μ.

Viscosity μ 10−2 0.5 · 10−2 10−3 10−4 10−5

Corresponding se 0.23 0.41 1.13 1.86 1.98
Corresponding sν 1.86 1.86 1.86 1.86 1.86

α = 0, ũ = 0, equilibrium (9) 0.22 0.29 0.43 0.38 0.32
α = 0, ũ = u, equilibrium (9) 0.73 0.76 0.68 0.63 0.60
α = 0, ũ = 0, equilibrium (10) 0.22 0.30 0.45 0.38 0.32
α = 0, ũ = u, equilibrium (10) 0.72 0.76 0.76 0.63 0.61
α = 1, ũ = 0, equilibrium (9) 0.22 0.29 0.43 0.38 0.32
α = 1, ũ = u, equilibrium (9) 0.10 0.14 0.32 0.38 0.32

Table 9
Maximum of Ma stable according to ̃u.

ũ 0 0.2u 0.4u 0.6u 0.8u u 1.2u 1.4u

α = 0, equilibrium (9) 0.12 0.15 0.21 0.34 0.60 0.49 0.42 0.33
α = 1, equilibrium (9) 0.12 0.11 0.09 0.07 0.06 0.05 0.05 0.04
α = 0, equilibrium (10) 0.12 0.15 0.21 0.34 0.60 0.50 0.42 0.33

equilibrium does not influence a lot the stability unlike in the linear case. The obtained values are close whatever the choice 
of the equilibrium. It is important to note that Table 6 exhibits a convergence of all the schemes as �x decreases.

We now characterize the behaviour of the scheme when diffusion is weak (when the relaxation parameters are close 
to 2). Table 8 presents the maximal Ma stable for decreasing bulk viscosity μ. The domain is comprised of 1282 points and 
ν is still equal to 10−4.

This table is also consistent with the linear stability study. When se and sν are far from each other, the linear case 
(Tables 2 and 5) presents an important gain for the scheme relative to ũ = u for α = 0 whatever the equilibrium. These 
results are confirmed by the first columns of Table 8 corresponding to take a big bulk viscosity. When μ tends to 0, the 
stability areas for the different choices of ũ are expected to be close at fixed equilibrium: this case corresponds to close 
parameters se and sν , regime where the linear stability results are homogeneous in ũ. This behaviour is confirmed by 
Table 8: indeed, the four cases associated with equilibrium (9) have the same stability areas when the bulk viscosity is 
smaller than 10−4. Similarly, the two cases associated with equilibrium (10) have close stability areas for these viscosities.

Table 9 deals with the influence of the velocity field ũ on the stability: other choices than 0 and u are considered. We 
determine the maximal Mach number stable for different ũ according to the choice of the moments. We study the two 
choices α = 0 and α = 1 for a mesh of 1282 points.

This table is an evidence of the importance of the moments for the relative velocity schemes. Taking a velocity different 
from 0 provides stability improvements only for α = 0. These moments improve the numerical stability for ũ = u compared 
to the d’Humières scheme whatever the equilibrium. Instead, choosing ũ �= 0 for the moments (5) deteriorates the stability 
of the scheme. The most stable choice for α = 1 corresponds to the d’Humières scheme.
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As a conclusion, we recommend to take the parameters α = 0, ũ = u = q/ρ (that corresponds to the parameters used 
by the cascaded automaton [7,9]) for any nonlinear Navier–Stokes simulation. Concerning this Kelvin–Helmholtz test case, 
the next step would be to show quantitatively that this relative velocity scheme is accurate for the calculation of a physical 
instability. Since this flow is physically unstable, what should be done is to compare the growth rate of the kinetic energy 
of the perturbations to the one predicted by the classical stability analysis of the base flows. In the non-linear regime, we 
should compare the results to those given by a Navier–Stokes-based spectral solver.

4. Conclusion

We have studied the numerical stability of the relative velocity D2Q9 scheme with two conservation laws. A linear 
stability study was presented and strengthened by a non-linear test case for the compressible Navier–Stokes equations: the 
Kelvin–Helmholtz instability. The main conclusion of the article is the following: the relative velocity schemes improve or 
deteriorate the stability of the d’Humières schemes and it depends strongly on the choice of the moments. An improvement 
occurs if the moments of the cascaded scheme are chosen whatever the equilibrium. It is bigger when one viscosity is 
very small and the other is important. The usual set of moments and its orthogonalized analogous deteriorates the stability 
of the d’Humières scheme. This degradation originates from the presence of second-order components in the third- and 
fourth-order moments. These components do not appear for the moments of the cascaded scheme that explains the better 
stability behaviour. That is why we recommend to take the parameters α = 0, ũ = u = q/ρ for any nonlinear Navier–Stokes 
simulation.
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