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4Laboratoire de Mathématiques d’Orsay, Univ. Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay,
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Abstract. This contribution deals with the fluid modeling of multicomponent magnetized plasmas in

thermo-chemical non-equilibrium from the partially- to fully-ionized collisional regimes, aiming at the

predictive simulation of magnetic reconnection in Sun chromosphere conditions. Such fluid models are

required for large-scale simulations by relying on high performance computing. The fluid model is derived

from a kinetic theory approach, yielding a rigorous description of the dissipative and non-equilibrium

effects and a well-identified mathematical structure. We start from a general system of equations that

is obtained by means of a multiscale Chapman-Enskog method, based on a non-dimensional analysis

accounting for the mass disparity between the electrons and heavy particles, including the influence of the

electromagnetic field and transport properties. The latter are computed by using a spectral Galerkin method

based on a converged Laguerre-Sonine polynomial approximation. Then, in the limit of small Debye length

with respect to the characteristic scale in the Sun chromosphere, we derive a two-temperature single-

momentum multicomponent diffusion model coupled to Maxwell’s equations, which is able to describe

fully- and partially-ionized plasmas, beyond the multi-fluid model of Braginskii, valid for the whole range

of the Sun chromosphere conditions. The second contribution is the development and verification of an

accurate and robust numerical strategy that is based on CanoP, a massively parallel code with adaptive mesh

refinement capability, which is able to cope with the full spectrum of scales of the magnetic reconnection

process, without additional constraint on the time steps compared to single-fluid Magnetohydrodynamics

(MHD) models. The final contribution is a study of the physics of magnetic reconnection in collaboration

with the heliophysics team of NASA Ames Research Center. We show that the model and methods allow

us to retrieve the results of usual single-fluid MHD models in the highly collisional case at equilibrium,

while achieving a more detailed physics description relevant to such applications in the weakly collisional

case, where non-equilibrium effects become important.

1. Introduction
Magnetic reconnection is a process where the topology of the magnetic field lines is modified due to

dissipative effects. Lines of different polarity are broken and rejoined in a small diffusion region, leading

to conversion of the magnetic energy into plasma kinetic and thermal energy. This phenomenon is

http://creativecommons.org/licenses/by/3.0
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not captured correctly by ideal models. Leake et al. [1] have simulated the magnetic reconnection

phenomenon for a weakly ionized reacting plasma in Sun chromosphere conditions by means of a

self-consistent multi-fluid model. In this context, when the characteristic scale of the current sheet

width is comparable to the collisional mean-free-path, a decoupling of ions from neutrals and enhanced

recombination in the reconnection region are observed. This decoupling cannot be captured by

conventional single-fluid MHD models, whereas multi-fluid model lead to extreme stiffness, which is

hard to resolve numerically [2, 3].

However, Graille et al. [4] have developed a two-temperature single-momentum multicomponent

diffusion model as an alternative to multi-fluid models [5, 6, 7, 2, 3, 8] to describe fully- and partially-

ionized plasmas, beyond the multi-fluid model of Braginskii (valid only for fully-ionized plasma) and

with a solid mathematical structure [4]. The model is obtained rigorously from kinetic theory using

a multiscale Chapman-Enskog expansion combining the usual Knudsen number and the mass ratio

between electrons and heavy species. This leads to a system of equations that is less stiff as the electron

inertia is neglected.

In this paper, we first couple this model to Maxwell’s equations and derive the asymptotic limit

of small Debye length, which is reasonable considering the size of the Debye length with respect to

the characteristic scales representative of the Sun atmosphere. The resulting model is derived and

allows us to describe fully and partially ionized plasmas; it is valid for the whole range of the Sun

chromosphere conditions and should be an interesting alternative to study magnetic reconnection. We

check that we recover the usual single-fluid MHD model under temperature equilibrium and isotropic

transport properties. Then, we propose an accurate and robust numerical strategy relying on a finite

volume approach and based on the CanoP code [9, 10]. CanoP is a massively parallel code with adaptive

mesh refinement capability managed by the p4est library [11], which is able to cope with the full

spectrum of scales of the magnetic reconnection process, without additional constraint on the time

steps as compared to multi-fluid MHD models. We have coupled the CanoP code to the MUTATION++

library [12] and it gives the possibility to compute thermodynamic properties, multicomponent transport

properties with high accuracy, finite rate chemistry in thermal non-equilibrium. The numerical strategy

is verified through several standard test-cases used as benchmarks in the community and we refer to

[13, 14] for further verifications/validations concerning the MUTATION++ library and the CanoP code for

magnetized plasma out of thermal equilibrium and parallel capabilities. Finally, we propose a comparison

between the two-temperature single-momentum multicomponent diffusion model and the single-fluid

MHD model for a magnetic reconnection configuration under Sun chromosphere condition in several

collisional regimes. The model and numerical strategy are assessed and we discuss the potential of our

approach.

2. Two-temperature single-momentum multicomponent diffusion model
In this section, we briefly describe the multicomponent plasma model that is derived from kinetic theory

by Graille et al. [4]. The model is suitable for both partially- and fully-ionized multicomponent plasmas.

Moreover, it accounts for the thermal non-equilibrium between the heavy particles (ions and neutrals)

and the electrons as well as for the anisotropy in the transport properties that is introduced by the

magnetic field. In the present work, we propose to apply the mentioned model to the simulation of

the Sun chromosphere as a sound alternative to multi-fluid models.

2.1. Multi-scale analysis of the Boltzmann equations
Multi-fluid models can be obtained by taking moments of Boltzmann’s equation (see e.g., [15, 16, 17, 7])

while the present model, prior to taking the moments, examines the different scales of the kinetic

equation for electrons and heavy particles through a dimensional analysis. The separation of scales

in the Boltzmann equation are caused by the mass disparity between the electrons and the heavy species

as well as by the level of magnetization of the different charged species. In the following, we present the
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normalized Boltzmann’s equations for electrons and heavy particles in order to illustrate the derivation

of the model. For more details, we may refer the reader to the work of Graille et al. [4].

For the normalization of Boltzmann’s equations, we introduce three parameters: ε the square root of

the electron-to-heavy-particle mass ratio, Kn the Knudsen number, and Mh the pseudo-Mach number of

the heavy particles as

ε =

√
me

mh
, Kn =

l
L ∼ ε, and Mh =

v
Vh

∼ 1. (1)

Here, me stands for the mass of electron, mh for a characteristic mass of heavy particle, l for the mean

free path, L for a macroscopic length scale, v for the reference hydrodynamic velocity and Vh for the

heavy-particle thermal speed. Note that the model assumes the Knudsen number to be small and of order

ε. Additionally, the pseudo-Mach number of the heavy particles is assumed to be of order one.

Similarly, the magnetization of the charged species is quantified by the Hall parameter, which is

defined as

βe =
qB
me

te = ε1−b, βh =
qB
mh

th = εβe, (2)

where qB/me and qB/mh are the Larmor frequencies of electrons and heavy particles, respectively, and

te and th the typical time between collisions for electrons and ions. The Hall parameter is assumed to

be proportional to a power of ε by means of an integer b that characterizes its intensity: b < 0 for

unmagnetized plasmas, b = 0, for weakly magnetized plasmas, and b = 1 for strongly magnetized

plasmas [4].

These non-dimensional quantities are then used to write the normalized Boltmann’s equations. First,

the kinetic equation of electrons reads

∂t fe +
1

εMh

(
Ce + εMhvh

) · ∂x fe + ε
−(1+b)qe

[(
Ce + εMhvh

) ∧ B
]
· ∂Ce fe

+

(
1

εMh
qeE − εMh

Dvh
Dt

)
· ∂Ce fe − (∂Ce fe ⊗ Ce) : ∂xvh =

1

ε2
Je. (3)

Second, the kinetic equation for the heavy species is given by

∂t fi +
1

Mh

(
Ci + Mhvh

) · ∂x fi + ε
1−bqi

[(
Ci + Mhvh

) ∧ B
]
· ∂Ci fi

+

(
1

Mh

qi

mi
E − Mh

Dvh
Dt

)
· ∂Ci fi −

(
∂Ci fi ⊗ Ci

)
: ∂xvh =

1

ε
Ji, i ∈ H. (4)

Here, fe and fi , i ∈ H, are respectively the distribution function of the electrons and heavy particles with

H the set of heavy particles present in the plasma. The peculiar velocities for heavy species and electrons

are Ci = ci − vh and Ce = ce − vh. The collision operators Je and Ji are defined as

Je = Jee( fe , fe ) +
∑
j∈H

Je j( fe , fj ) and Ji =
1

ε
Jie( fi , fe ) +

∑
j∈H

Ji j( fi , fj ), i ∈ H. (5)

Another important difference with standard multi-fluid models such as the one of Braginskii [16] is

that both electron and heavy peculiar velocities are expressed in the same reference frame that is moving

at the heavy particle bulk velocity vh.

Once the different scales are identified, the Chapman-Enskog method is applied. As done by

Braginskii [16], the distribution functions are assumed to be a perturbed Maxwellian, at different

temperatures for electrons and heavy particles, and the perturbation is expanded in successive orders

of ε. This leads to a hierarchy of time scales that is presented in Table 1.
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Table 1: Chapman-Enskog expansion and related hierarchy of time scales [4]

Order Time Heavy particles Electrons

ε−2 te Thermalization Te

ε−1 th Thermalization Th

ε0 t Euler Eqs. 0th-order drift-diffusion Eqs.

ε t/ε Navier-Stokes Eqs. 1st-order drift-diffusion Eqs.

Firstly, in time scale of order te, the electron population thermalizes at the temperature Te. The electron

distribution function is a Maxwellian and is obtained by solving the electron Boltzmann’s equation at the

order ε−2. At order ε−1, which corresponds to the time scale th, the heavy particle population thermalizes

at the temperature Th. At the zeroth order ε0, which corresponds to the convective time scale, Euler’s

equations for heavy particle and first-order drift diffusion for electrons are obtained. Finally, at the last

order ε investigated, corresponding to the diffusive time scale, we obtain the Navier-Stokes equations for

heavy particle and second-order drift diffusion equations for electrons.

2.2. Governing equations for multicomponent plasma
Following the hierarchy presented in Table 1, one can obtain the macroscopic set of equations by taking

moments. We stress the fact that the resulting multicomponent model is very different from the multi-

fluid model of Braginskii [16]—while still capturing the same physics—for two reasons: first, the

hierarchy of scales is different and, second, the distribution function of the electrons is a perturbed

Maxwellian that is centered at the heavy particle bulk velocity instead of considering a different bulk

velocity for the electrons. The set of macroscopic equations are presented below.

First, the mass conservation equation for the species α reads

∂t ρα + ∂x ·
(
ρα(vh + Vα)

)
= 0, α ∈ {e,H}, (6)

where ρe is the density of electron, ρi, i ∈ H, is the density of each heavy particle, vh is the heavy particle

hydrodynamic velocity that has been chosen as the velocity reference frame, Ve is the electron diffusion

velocity, Vi , i ∈ H, is the heavy diffusion velocity in the heavy hydrodynamic reference frame.

Second, one momentum equation for all the particles within plasma is considered, as follows,

∂t(ρhvh) + ∂x ·
(
ρhvh ⊗ vh + pI

)
= −∂x ·Πh + nqE + I ∧ B. (7)

Here, p = pe + ph is the total pressure which is the sum of the partial pressure of electrons pe and heavy

particles ph, Πh is the viscous stress tensor of heavy particles, ρh is the total density of heavy particles,

where n = ne + nh is the density (ne the density of electrons, and nh the total density of heavy particles

per unit volume), nq is the total charge of the system defined by nq = neqe +
∑

i∈H niqi, E is the electric

field, and I is the total current density defined as

I = nqvh + Je + Jh = nqvh + neqeVe +
∑
i∈H

niqiVi , (8)

where Jh is the heavy-particle conduction current density, Je is the electron conduction current density,

I is the total current density, and B is the magnetic field.

Third, the two equations (9) and (10) for the internal energies of electrons and ions read

∂t(ρeee) + ∂x · (ρeeevh) + pe∂x · vh + ∂x · qe = Je · E′ − ΔEh, (9)

∂t(ρheh) + ∂x · (ρhehvh
)
+ (phI +Πh) : ∂xvh + ∂x · qh = Jh · E′ + ΔEh, (10)
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where ρeee and ρheh are the internal energies of electron and heavy-particles respectively, qe and qh
are the electron and heavy particle heat fluxes, respectively, E′ = E + vh ∧ B is the electric field in the

heavy particle reference frame, ΔEh is the familiar collisional Jean’s relaxation term between the internal

energy of electrons and heavy particles, Jh · E′ and Je · E′ are respectively the power that is developed

by the heavy particles and electrons current density.

By summing up the equations of the internal energies, i.e., Eq. (9) and Eq. (10), and the equation of

kinetic energy, the equation of total energy can be obtained, as follows,

∂tE + ∂x ·
((E + p

)
vh

)
+ ∂x · (Πh · vh) + ∂x ·

(
qe + qh

)
= I · E, (11)

where E = ρeee+ρheh+1/2ρhv2
h

is the total energy and I·E is the power developed by the electromagnetic

field.

Only one momentum equation is considered in the model. Nevertheless, the different dynamics of

the species are captured by the diffusion velocities Vα, α ∈ {e,H}. For the sake of brevity, the detailed

expressions of the diffusive fluxes and the corresponding transport coefficients are not given here. In the

multicomponent case, the general expressions of the diffusion velocities and heat fluxes for electrons and

heavy particles, the corresponding second order drift diffusion terms for electrons and the viscous stress

tensor can be found respectively in Eq. (5.15) and Eq. (5.33), Eq. (5.20) and Eq. (5.39), Eq. (5.51) and

Eq. (5.52) and Eq. (5.37) in Graille et al. [4]. In the fully-ionized plasma case, simplified expressions of

the diffusive fluxes can be obtained. The latter are provided in the following Section 2.3.

The system of equations (6)-(11) is coupled to the set of Maxwell’s equations (12)

∂x · E =
nq

ε0
, ∂x · B = 0, ∂t B = −∂x ∧ E, and ∂x ∧ B = μ0I + μ0ε0∂t E (12)

where ε0 is the vacuum permittivity and μ0 the vacuum permeability. Even though the model does not

assume charge neutrality, this assumption is valid when the scales of interest are much larger than the

Debye length.

The governing equations (6)-(12) differ from the classical multi-fluid models [6, 7, 2, 3] that are

used for partially-ionized plasmas. Whereas multi-fluid models consider one hydrodynamic velocity and

one temperature for each species, the present model considers one hydrodynamic velocity for the heavy

species and two temperatures, one for the heavy species and another one for the electrons.

From a numerical point of view, this system is simpler than the multi-fluid equations as it does not

contain the stiffness that is associated to the different velocities of each species and to the collisional

relaxation terms. In particular, the electron momentum equation, which introduces very fast dynamics,

is not solved as electrons are represented by the drift-diffusion approximation. Nevertheless, the effect

of the collisions as well as the different dynamics of each species are still captured in the model through

the diffusive fluxes. Additionally, this model can be used for both partially- and fully-ionized plasmas.

On the other hand, the model of Braginskii is formally difficult to extend for partially-ionized reacting

plasmas as the collisional integrals are difficult to be solved when the masses of the particles are of the

same order and the Maxwellian distributions are shifted in different bulk velocities. Recently, Zhdanov

& Stepanenko [18, 19] have proposed a model that tackles partially-ionized reactive plasmas, that extend

the work of Braginskii. The present work can be considered complementary to the previous literature.

In conclusion, the present model has an extended range of validity for partially- and fully-

ionized, weakly- and highly-magnetized plasmas, multicomponent mixtures. Additionally, an entropy

inequality combined to Onsager reprocity relations for the transport properties, so the second law of

thermodynamics is verified [4]. Finally, the proposed model is valid in all regimes representative of

the Sun atmosphere and can be used for representing magnetic reconnection configurations under such

conditions.



6

1234567890 ‘’“”

Varenna2018 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 1125 (2018) 012021  doi :10.1088/1742-6596/1125/1/012021

2.3. Fully-ionized plasma case
We focus on a fully-ionized plasma composed of S = {e,H+}, considering scales which are much larger

than the Debye length, in a non-relativistic framework. Under these assumptions, the heavy diffusion

velocity is null Vα = 0, α ∈ H, and the global charge is nul nq = 0, so the total current density Eq. (8)

is equal to the electron current density. Then, in the momentum equation (7), the Lorentz force can be

written as a flux by using Faraday’s law leading to a conservative expression of the momentum equation.

Finally, by using Poynting’s theorem, the total energy equation from Eq. (11) can be rewritten into a

conservative form as well.

In the following, as we have only hydrogen ions as heavy particles, h is denoted as H+. We

normalize the governing equations Eqs. (6-12) with a reference length L0, reference density ρ0 equal

to the density of H+, and a reference magnetic field B0. All the reference magnitudes are computed

using a combination of these reference dimensions. For the sake of clarity, the following quantities are

written in a dimensionless form. The governing equations coupled to the set of Maxwell’s equations read

∂tρα + ∂x · (ραvh
)
= 0, α ∈ {e, h} (13)

∂t
(
ρhvh

)
+ ∂x ·

(
ρhvh ⊗ vh + (pe + ph + 1

8π |B|2)I − 1
8πB ⊗ B

)
+ ∂x ·Πh = 0, (14)

∂tE + ∂x ·
(
(E + pe + ph)vh + 1

4πE ∧ B
)
+ ∂x · (Πh · vh) + ∂x · (qe + qh) = 0, (15)

∂t(ρeee) + ∂x · (ρeeevh) + pe∂x · vh + ∂x · qe − Je · E′ + ΔEh = 0, (16)

∂x · E = 0, ∂x · B = 0, ∂t B = −∂x ∧ E, 1
4π∂x ∧ B = I = Je, (17)

where γ = 5/3, pe = (γ − 1)ρeee =
(
mh/me

)
ρeTe, and ph = (γ − 1)ρheh = ρhTh. After some algebra, the

transport fluxes and the collisional Jean’s relaxation term read

Πh = −ηh
(
∂xvh + (∂xvh)� − 2

3

(
∂x · vh

)
I

)
, ΔEh =

1
τ

(
ρeee − ρheh

)
, (18)

qe = − ¯̄λe∂xTe + 1
ωet0

(
pe ¯̄χe + ρehe

) 1
4πρe
∂x ∧ B, qh = −λh∂xTh, (19)

Ve = 1
4πρe
∂x ∧ B, (20)

where t0 = L0/v0 and ωe are respectively the reference time and the cyclotron frequency of electrons,
¯̄λe, ¯̄χe are the dimensionless electron thermal conductivity and electron thermal diffusion ratio tensors,

λh, ηh are the dimensionless heavy thermal conductivity and heavy viscosity, and τ is the dimensionless

average collision time at which the energy transfer between the internal energy of electrons and heavy

particles occurs. Then, similarly as in Wargnier et al. [13], an expression of the electric field E can be

obtained by using Ampere’s law and the definition of the current density:

E = −vh ∧ B + ¯̄ηe Je +
∂x pe
neqe

+
pe
neqe

¯̄χe∂xlnTe, (21)

where ¯̄ηe is the electron resistivity tensor. The presented transport coefficients are computed using a

spectral Galerkin method based on a third-order Laguerre-Sonine polynomials approximation, where the

general expressions can be found in Scoggins et al. [20] and have been computed in conditions related

to the Sun chromosphere in Wargnier et al. [13].

The presented model Eqs. (13)-(17) is a thermal non-equilibrium model. In this framework, the

electron heat flux is anisotropic and depends on the direction of the magnetic field whereas the heavy heat

flux and viscous stress tensor are isotropic. Source terms are involved in the equation of internal energy

of electrons that can be decomposed as nonconservative and relaxation terms. The nonconservative terms

such as pe∂x · vh or the power developed by the electromagnetic field Je · E′, are part of the thermal non-

equilibrium process which tends to change the electronic temperature with respect to the temperature of

the heavy particles. The contribution in Wargnier et al. [21], in the case of a simplified system without
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Multicomponent model
(Multicomponent plasma)

Eqs.(6-12)

Thermal non-equilibrium

Anisotropic transport

Debye length→0

S={e,H+}

Multicomponent model
(Fully ionized)

(Electroneutrality assumption)

Eqs.(13-17)

Thermal non-equilibrium

Anisotropic transport

Single-fluid MHD model
(Fully ionized)

(Highly collisional regime)

Thermal equilibrium

Isotropic transport

τ/t0 << 1

Isotropic transp.

μ	e → 0

μ⊥e = μ
‖
e

μe ∈ {λe, χe}

Figure 1: Link between the presented general multicomponent model from Eqs.(6-12), the simplified

model from Eqs.(13-17) and the single-fluid MHD model, assuming that the structure of the transport

system and the method used for computing the transport coefficients is the same between the two models.

considering electromagnetic field, has shown that the nonconservative terms play a major role in the

structure of shock waves, in particular for the jump conditions. The strategy for solving this simplified

problem can be extended to the case coupled to the electromagnetic field, and is currently being studied.

In the presented model, the source term ΔEh, present in the equation of internal energy of electron,

tends to relax the system towards a state of thermal equilibrium between the electrons and the heavy

particles. This relaxation is related to the parameter τ, which is the characteristic time of collision

between electrons and heavy particles. Physically, if this characteristic collision time is small enough

compared to the characteristic reference time, we have a thermal equilibrium state. If not, the power

generated by the electromagnetic field Je · E′ dominates the dynamic of the internal energy of electron,

the electronic temperature becomes different from the temperature of the heavy ones, we get a thermal

non-equilibrium state.

If we consider all the typically models used in solar physics applications, we have the multi-

fluid models and the single fluid MHD model [22]. In this work, we focus only on the comparison

between the multicomponent model and the single fluid MHD model. The latter is a model in thermal

equilibrium between heavy particles and electrons. Unlike the system presented previously, the system

is conservative, without source terms, in which the structure of the diffusive terms, i.e heat fluxes and

viscous stress tensor, is in general isotropic. In this framework, the system considered by Wray et al. [22]

does not depend on the characteristic collision time and does not represent regimes where there is thermal

non-equilibrium. Finally, Fig. 1 represents the link between the presented general multicomponent model

defined by Eqs.(6)-(12), the simplified model given by Eqs.(13)-(17) and the single-fluid MHD model, if

the structure of the transport systems as well as the method used for computing the transport coefficients

(spectral Galerkin method) are identical between the three models. For the sake of clarity, in this work,

we focus only on the case where the transport systems and the corresponding method used for computing

the transport coefficients is identical in both models.

Finally, on the one hand, we have a model which allows to describe all collisional regimes, in

equilibrium or thermal non-equilibrium, through source terms of relaxation type. On the other hand,

we have a conservative model valid only in thermal equilibrium cases, i.e., in highly collisional regimes.

Consequently, a comparison between the two models would be relevant to understand the difference

between each other, in several collisional regimes for magnetic reconnection under Sun atmosphere

conditions. Finally, the possibility of being able to represent all these regimes is particularly important

in the solar atmosphere, since we can find highly or weakly collisional regimes in different parts of the

solar atmosphere.
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3. Numerical strategy
Using a massively parallel code called CanoP, we implement our simplified model and the single

fluid MHD model using a second order Kurganov-Tadmor scheme [23] combined to a second order

TVD Runge-Kutta scheme for the space and time discretization. The CanoP code is coupled to a

library called p4est. This provides a parallel scalable implementation of cell-based adaptive mesh

refinement for distributed memory computing systems. For computing the presented transport properties

in both models, we use the Multicomponent Thermodynamic And Transport properties for Ionized

gases in C++ (MUTATION++) library designed to provide efficient algorithms for the computation of

various properties important also in the fields of hypersonics and combustion Computational Fluid

Dynamics (CFD) including thermodynamic properties, multicomponent transport properties, finite rate

chemistry in thermal non-equilibrium and a highly robust multiphase equilibrium solver. We verify the

implementation of the convective fluxes, divergence cleaning method through a series of classical test

cases used for MHD systems. A more detailed description of the numerical methods and performance of

the code used in 2D or 3D, in the context of Adaptive Mesh Refine (AMR), can be found in Wargnier et
al. [14].

3.1. Description of the CanoP code, p4est and MUTATION ++ libraries
The p4est library defines a mesh as a collection of interconnected adaptive octrees (hence the name

p4est). Octrees are efficiently represented and stored with a very low memory footprint; only cells’

meta-data are used in p4est. AMR mesh topology is completely decoupled from any application-

specific numerical data. Given that p4est is able to build a unique cell numbering accross all processors

using a space-filling curve technique (here the z-curve Morton order, see Fig. 2), the main features of

the library is to use this functionality to (re-)partition or re-distribute the cells meta-data over all the

MPI computing nodes, as well as to locally modify a mesh by refining or coarsening some cells, that are

identified according to a user defined constraint (that can be purely geometrical or user-data dependent).

As the p4est library is a generic cell-based AMR mesh management tool, it is completely

independent of the specific details of numerical schemes used to solve a given PDE problem. CanoP

is an applicative software layer built on top of the mesh manager library p4est, that enables to solve

systems of conservation laws with finite volume discretization schemes on 2D and 3D adaptive grids [9].

The CanoP software package has been designed to be a versatile application developpement framework.

Several finite volume-like numerical schemes have been implemented to target e.g. compressible two-

phase flows [9] (like air-water systems with high density ratio), dispersive-phase flows [10]. A second-

order Godunov finite volume scheme for single-phase flow has been used to study angular momentum

transport in hydrodynamical accretion disk setups. In the present work, we introduced a new application

to magneto-hydrodynamics by adapting a cell-centered Kurganov-Tadmor scheme in the context of cell-

based AMR.

When developping a new application, i.e., a new numerical scheme implementation, one first needs to

define a data structure holding relevant physics quantities in each cell that are used to represent the fluid

state, which are updated in time by the numerical scheme discretization. All that is left to the application

developper is to specify the computing kernels in terms of local cell-wise operators, also named callback

functions. These callback functions are passed to p4est internal routines which iterate over the AMR

mesh cells. One major advantage of using the CanoP software package is that it only needs to focus on

the numerical scheme operator, i.e. in the context of finite volume discretization, how to compute fluxes

at the cells interfaces and how to update the fluid state variables inside each cell. The CanoP framework

aims then at facilitating the integration of new finite volume applications, or new finite volume features,

such as high-order schemes, low-Mach number solvers, which are under development.

In order to perform the computation of the transport properties, we use another library called

MUTATION++[12, 20]. This library is coupled to the software CanoP [9], which gives the possibility

to compute all the transport properties of the general multicomponent model with high accuracy, for any

plasma mixture in thermal or chemical non-equilibrium. The used method is a spectral Galerkin method
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Figure 2: Left: Adaptively refined square domain. Mesh and z-order curve. Right : The corresponding

representation of the domain using a quadtree.

based on a third order Laguerre Sonine polynomial approximation. This method has been detailed in the

literature (e.g., [24, 25, 17, 26]) and used for solar physics applications in Wargnier et al. [13].

3.2. Numerical scheme
In the following, we consider a hyperbolic divergence cleaning method described in [27, 28], which is a

Generalized Lagrange Multiplier (GLM) with a mixed hyperbolic-parabolic correction to deal with the

magnetic field incompressibility condition. The considered system Eqs.(13-17) can be written as follows,

∂tU + ∂x · F (U) + ∂x · (D(U)∂xU) = S(U,∂xU), (22)

where U ∈ R11, F (U) ∈ R3×11, D(U) ∈ R3×3×11 and S(U,∂xU) ∈ R3×11 are respectively the

conservative variables, the convective fluxes, the diffusive fluxes and the source terms defined by

U =
(
ρe, ρh, ρhvT

h , E, ρeee, BT , ψ
)T
,

F (U) =
(
ρevh, ρhvh, ρhvh ⊗ vh +

(
pe + ph + 1

8π |B|2
)
I − 1

8πB ⊗ B,

(E + pe + ph
)
vh + 1

4πE ∧ B, ρeeevh, I ∧ E + ψI, c2
hB

)T
,

D(U)∂xU =
(
03, 03, Πh, Πh · vh + qe + qh, qe, 03×3, 03

)T
,

S(U,∂xU) =
(
0, 0, 0T

3 , 0, −pe∂x · vh + Je · E′ − ΔEh, 0T
3 , −

c2
h

c2
p
ψ
)T
,

(23)

where ψ is a scalar which couples the divergence constraint equation to Faraday’s law, ch is a

parameter related to the hyperbolic correction responsible for the propagation of the divergence errors,

and cp is a parabolic correction for the damping of monopoles. The value of ch and cp will be described

in the next section.

The convective fluxes are computed using a Kurganov-Tadmor scheme [23], which is a Riemann-

solver-free, second-order, high-resolution scheme that uses a Monotonic Upwind Scheme for

Conservation Laws (MUSCL) reconstruction, combined to a van Albada [29] slope limiter function. The

diffusive fluxes are computed using a central difference approximation compatible with the Kurganov-

Tadmor scheme [23]. A Total Variation Diminishing (TVD) second order Runge-Kutta scheme has been

used for the time integration. The relaxation terms are computed using a second order implicit scheme

combined to a splitting operator technique [30]. The nonconservative terms are computed as an average

at the middle of each cell where the gradients are taken as a second order central scheme.

It is important to note that in Wargnier et al. [21], it has been shown that, in the presence of strong

gradients or shock waves, a naive consistent discretization of the nonconservative terms may lead to
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additional artificial numerical jumps due to the numerical dissipation of the numerical scheme. A specific

numerical treatment of the nonconservative product may be required in order to properly capture shock

waves. It is particularly relevant if the level of resolution necessary to capture these waves is too coarse.

In [21] we have focused so far on a simplified model. It would be necessary to extend this strategy by

considering the electromagnetic field.

The single-fluid MHD model [22] has been implemented by using the same numerical scheme that is

used for the multicomponent model. In this case, no source terms need to be implemented.

3.3. Verification
In order to verify the implementation of the two models, we have run test cases that are used as

benchmarks in ideal MHD simulations. In the following, we will verify the implementation of the

convective fluxes of the two models. In the case of the multicomponent model, we do not solve for the

full system defined by Eq. (23). Alternatively, we solve for the same convective part without diffusive

and source terms (except the component that is used for the divergence free constraint). For the purpose

of the paper, we show results only for two dimensional configurations. Nevertheless, similar results have

been obtained in one and three dimensional configurations, with and without adaptive mesh refinement

[14]. A second-order time and space discretization has been verified and tested with uniform 256 × 256

cells. More details of the accuracy analysis and relevance of the presented scheme are given in [14].

We verify the ability of the proposed numerical solver to tackle MHD shocks, shock-shock

interactions, and the divergence-free constraint. In order to perform the validation, we focus on two

classical test cases: the Orszag-Tang (OT) configuration [31], and the rotor MHD problem. On the one

hand, the Orszag-Tang configuration is based on a transition to 2D supersonic MHD turbulence and is

used to validate MHD solvers. On the other hand, the rotor MHD problem is based on the evolution of

a 2D strong torsional Alfvén wave in ideal MHD, described by Balsara & Spicer [32]. The rotor MHD

problem is a high-density disk that is rotating at large velocity inside a constant pressure and constant

magnetic field in the x direction. In both cases, we consider a domain where (x, y) ∈ [0, 1] × [0, 1] with

periodic boundary conditions in both directions, with a uniform mesh 256 × 256. The initial conditions

for the Orszag-Tang test case UOT(t = 0) and the rotor MHD test case Ur(t = 0) are

UOT(t = 0) =

(
me

mh
ρh, γ

5

12π
, −ρhsin(2πy), ρhsin(2πx), EOT,

5

24π(γ − 1)
, −sin(2πy), sin(4πx), 0

)T

,

(24)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

r ≥ r0, Ur(t = 0) =
(

me

mh
ρh, 10, − 2ρh(y−yc)

r0
,

2ρh(x−xc)

r0
, Er,

1
2(γ−1)

, 5, 0, 0

)T
,

r < r0, Ur(t = 0) =
(

me

mh
ρh, 1 + 9 f (r), − 2ρh(y−yc) f (r)

r ,
2ρh(x−xc) f (r)

r , Er,
1

2(γ−1)
, 5, 0, 0

)T
,

r < r1, Ur(t = 0) =
(

me

mh
ρh, 1, 0, 0, Er,

1
2(γ−1)

, 5, 0, 0

)T
.

(25)

Here, EOT = 5/12π(γ − 1) + 1/2ρh|vh|2 + |B|2/8π and Er = 1/(γ − 1) + 1/2ρh|vh|2 + 25/8π, the adiabatic

constant is γ = 5/3, the radius is r =
√

(x − xc)2 + (y − yc)2, r0 = 0.115 and r1 = 0.1, the center of the

disk is located at yc = xc = 0.5, the ratio me/mh = 10−3. We choose a CFL = 0.7. In order to maintain

the divergence free constraint, we choose ch = CFLΔx/Δt and cp =
√

0.18ch, chosen as in [28]. The two

test cases are run until t = 0.5 for the Orszag-Tang test case and until t = 0.2 for the rotor MHD problem.

Fig. 3 shows the distribution of the density ρh at t = 0.25 and t = 0.5 for the OT test case. The

results obtained show agreement with MHD solutions from literature [34, 35]. We have obtained also

good agreement with the other conservative variables. Besides, in Fig. 4, the total pressure p distribution

along the lines y = 0.4277 and y = 0.3125 at t = 0.5 are in good agreement with the solution obtained by
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(a) Density distribution ρh at t = 0.25. (b) Density distribution ρh at t = 0.5.

Figure 3: Density ρh distribution for the Orszag-Tang test case at t = 0.25 and t = 0.5 on a uniform mesh

256 × 256.
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Figure 4: Total pressure p distribution at y = 0.3125 (left) and y = 0.4277 (right), at t = 0.5. Results

from our simulation in full line on a uniform mesh 256 × 256, and + results from Londrillo et al. [33] on

a uniform mesh 192 × 192.

(a) Total pressure distribution p at t = 0.15. (b) Magnetic energy distribution at t = 0.15.

Figure 5: Total pressure p and magnetic energy distribution in the Rotor MHD test case at t = 0.15 and

on a mesh 256 × 256.

Londrillo et al. [33] where a uniform mesh 192 × 192 has been used, and the divergence free constraint

is discretized using a reconstruction method for high order upwind schemes based on the magnetic field

potential.

In Fig. 5, we show results for the total pressure p and magnetic energy at t = 0.15 for the rotor MHD

problem. The results are showing good agreement with the common solution, presented for example in

[35]. Similar results have been obtained for the other conservative variables.

In the presented test cases, we have been able to verify the level of accuracy and ability to capture
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discontinuities of the presented scheme, the implementation of the convective fluxes, and the ability

to maintain the divergence free constraint for the multicomponent model as well as the single fluid

MHD model. After the verification performed in this section, we set a two dimensional magnetic

reconnection test case under Sun atmosphere conditions, and compare the single-fluid MHD model with

the multicomponent model.

4. Results for a 2D magnetic reconnection in a fully ionized plasma
In this section, the results are presented using two models for a fully ionized plasma S = {e,H+}: (1)

the full multicomponent plasma model from Eq. (23), which includes diffusion fluxes and source terms

and (2) a reference single-fluid MHD model with isotropic diffusive fluxes [22]. First, the comparison is

performed in a two dimensional magnetic reconnection configuration under Sun photosphere conditions.

In a second study, in order to analyze the influence of the thermal non-equilibrium process on the dynamic

of this magnetic reconnection, we will study the same test case where we will artificially change the value

of the parameter τ (mean collision time between electron and H+) in the multicomponent model, in order

to be in a weakly collisional regime. Finally, the idea is to see for this case of magnetic reconnection, the

difference between the two models in various collisional regimes.

We choose a reference length of L∗ = 100 m and characteristic properties of the Sun photosphere

such as a reference temperature T ∗ = 8000 K, a total pressure P∗ = 104 Pa, a reference density of

heavy particles H+ such as ρ∗ = 7.573 × 10−5 kg.m−3, and a strong magnitude of magnetic field such

as B∗ = 1000 G. Using MUTATION++ library, the mean collision time between electron and H+ is

found to be τ∗ = 4.81 × 10−12 s. The reference timescale t∗ is also defined as t∗ = L∗/v∗, where v∗
is the characteristic speed computed as the reference speed of sound. Under these conditions, we have

τ∗/t∗ ≈ 10−9, which implies that we are in a highly collisional regime. Then, we normalize all the

quantities with these reference values. The transport properties are computed using the MUTATION++

library and are presented in the following table 2; where the transport coefficients of the single-fluid

MHD model are shown as well as the parallel and perpendicular components of the tensor of each

electron transport coefficients.

Table 2: Transport coefficients used both in the multicomponent and single fluid MHD model

η‖e [Ω.m] ηh [Pa.s] λh
[
W.m−1.K−1

]
λ‖e

[
W.m−1.K−1

]
χ‖e[−]

3.378 × 10−4 4.45 × 10−7 0.0138 0.3514 0.644

η⊥e [Ω.m] η	e [Ω.m] λ⊥e
[
W.m−1.K−1

]
λ	e

[
W.m−1.K−1

]
χ⊥e [−] χ	e [−]

3.338 × 10−4 −2.85 × 10−6 0.3506 -0.0153 0.6429 -0.02

Initially, we consider a magnetic field configuration consisting of a double 2D Harris current sheet

[36, 2, 3]. The configuration contains a small perturbation for the magnetic field in the center of each

current sheet in order to initiate the reconnection. The total pressure is balanced by the magnetic pressure,

and the initial velocity field is set to zero. We consider a domain where (x, y) ∈ [0, 1]×[0, 1] with periodic

boundary conditions in all the directions, with a uniform mesh 256 × 256 where the current sheets are

located at y = 1/4 and y = 3/4. Thus, in the subdomain x ∈ [0, 1] and y ∈ [0, 1/2], the initial conditions

for the multicomponent model are U(t = 0) = U0

U0 =

(
me

mh
ρh,

⎛⎜⎜⎜⎜⎜⎜⎝1 +
ψ0

cosh2
(

y−1/4
δ

)
⎞⎟⎟⎟⎟⎟⎟⎠ , 0, 0,

p
γ − 1

+
|B|2
8π

,
p

2(γ − 1)
, B0 tanh

(
y − 1/4

δ

)
− B′x, B′y, 0

)
,

(26)
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Figure 6: Left and middle: Distribution of the transverse current density and density ρ distribution from

the single-fluid MHD model, right: distribution of the total density ρ = ρe + ρh from the multicomponent

model. From top to bottom: t = 0.05, 0.1 and t = 0.4 respectively.

where the width of the sheet is δ/L∗ = 0.01, the amplitude of the perturbation is ψ0 = 0.1, the magnetic

field is B0 = 1, the ratio me/mh = 10−3, the perturbed magnetic field are

B′x = ψ0π cos (2π [x − xc]) sin
(
π

[
y − yc

])
, and B′y = 2ψ0π sin (2π [x − xc]) cos

(
π

[
y − yc

])
.

Where xc = 1/2 and yc = 1/4. We choose a CFL = 0.5. In order to maintain the divergence free

constraint, similarly as in the previous section, we choose ch = CFLΔx/Δt and cp =
√

0.18ch. The two

test cases are run until t = 0.5.

Fig. 6 shows the evolution of the transverse current density and the density for the single fluid MHD

model (left and middle), and the evolution of the total density for the multicomponent model (right), at

time t = 0.05, 0.1 and t = 0.4. Fig. 7, at the top, shows the distribution of the internal energy of electron

at time t = 0.1 for the single fluid MHD model and multicomponent model in highly collisional regime.

Fig. 7, at the bottom, shows the distribution of the internal energy of electron and the ratio between the

internal energy of electron and heavy particle, for the multicomponent model, in the weakly collisional

regime, at time t = 0.1.

In Fig. 6 and Fig. 7, we clearly see the dynamics of the magnetic reconnection. In Fig. 6, if we focus

on the evolution of the transverse current, we see that the magnetic lines are changing their topology

forming a current sheet in the center of the domain and two separatrices. The results show that the density

is decreasing in the middle of the reconnection but is increasing after the reconnection process. This is

due to the mechanism of the magnetic reconnection where the particles are outflowing the reconnection

region in the y direction. We retrieve this dynamics of the reconnection, which can be found in the

literature involving different initial conditions [2]. Finally, in Fig. 6, if we focus on the evolution of

the density and compare the results from the multicomponent and single fluid MHD model (middle and

right figures), we see that the dynamics of the reconnection is similar for both models, in the highly

collisional regime. Besides, in Fig. 7, at the top, we see that the distribution of the electron internal

energy at t = 0.1 is similar for the two models (left and right snapshots). In addition, we highlight the
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Figure 7: Top: Distribution of the internal energy of electrons for the single fluid-MHD model (left),

the multicomponent model (right) in the highly collisional regime, at t = 0.1. Bottom: Distribution of

the internal energy of electron in the weakly collisional regime (left), distribution of the ratio between

internal energy of electrons and heavy particles in the weakly collisional regime (right), at t = 0.1.

low additional computing cost required to solve the multicomponent system compared to the resolution

of the single-fluid MHD model.

Under the same conditions, we have tested a configuration where the multicomponent model is in a

weakly collisional regime. In order to force the system to be in this regime, we take an artificial high

mean collision time τ∗ such as τ∗/t∗ ≈ 103, which can be representative of a weakly collisional regime.

Physically, these regimes can be found in the solar corona. Fig. 7, on the bottom left, represents the

distribution of the internal energy of electrons, and Fig. 7, on the right, represents the ratio between the

internal energy of electrons and heavy particles, at the time t = 0.1. We see that the dynamic of the

reconnection is different for the strongly collisional regime. The internal energy of electrons becomes

higher in the reconnection region as well as in the magnetic islands. From Fig. 7, we estimate that

in the reconnection region ρeee ≈ 1.85ρheh and in the magnetic islands we have ρeee ≈ 5ρheh. In

this configuration, the internal energy distribution between the electrons and heavy particles becomes

different, due to the power developped by the electromagnetic field present in the equation of internal

energy of electrons. We have an imbalance between the temperature of electrons and the temperature of

heavy particles. The impact of the thermal non-equilibrium process on the dynamics transfer is still a

work in progress.

5. Conclusion
In this contribution, we have considered a two-temperature single-momentum multicomponent diffusion

model as derived by Graille et al. [4] and is coupled to Maxwell equations in the small Debye length limit.

The model is valid for partially- and fully-ionized plasma, for unmagnetized to weakly- and strongly-

magnetized plasmas, and for general multicomponent mixtures. The model is also valid under several

collisional regimes (highly or weakly) and is relevant in solar physics applications. It is compared to the

multicomponent approach introduced with a classical thermal equilibrium single-fluid MHD model [22].

The single-fluid MHD model is written in a conservative form, and does not represent regimes where

there is thermal non-equilibrium thus only valid in highly collisional regimes.

We have also developed a numerical strategy and implemented the two models into a massively

parallel code, CanoP. It relies on the p4est library, which is a parallel scalable implementation of cell-
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based adaptive mesh refinement for distributed memory computing systems. The transport properties are

computed by another library that is called MUTATION++, which has been coupled to the CanoP code. In

order to verify the implementation of the two models, we have run several classical test cases such as

the Orszag-Tang or the rotor MHD problem. The results have shown that the level of accuracy of the

presented scheme, the implementation of the convective fluxes and the ability to maintain the divergence

free constraint have been verified for both models.

Finally, the two models have been compared in a two dimensional magnetic reconnection

configuration under Sun photosphere conditions. The chosen conditions are in a highly collisional

regime, where both models are valid. The results have shown that the dynamics of the reconnection

are very similar in both models. Thus, the presented multicomponent model has been validated in the

highly collisional regime. Then, we have artificially decreased the collisional time in order to mimic a

magnetic reconnection configuration in a weakly collisional regime under the same initial conditions. In

this configuration, the thermal non-equilibrium between electrons and heavy particles induces a change

of dynamics of the magnetic reconnection since the internal energy of electrons is increasing in the

reconnection region as well as in the formed magnetic islands, because of the power developed by the

electromagnetic field (Joule effect). We believe that these results illustrate the potential of the proposed

model and assesses the proposed numerical strategy. We are also in the process of investigating numerical

analysis of the numerical method, the parallel scalability of the code and the adaptive mesh refinement

capabilities for 3D magnetic reconnections in a subsequent paper [14].
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