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Abstract. Multiresolution provides a fundamental tool based on the wavelet theory to build adaptive numerical
schemes for Partial Differential Equations and time-adaptive meshes, allowing for error control. We have previously
introduced this strategy to construct adaptive lattice Boltzmann methods with this interesting feature. Furthermore,
these schemes allow for an effective memory compression of the solution when spatially localized phenomena (such
as shocks or fronts) are involved, to rely on the original scheme without any manipulation at the finest level of grid
and to reach a high level of accuracy on the solution. Nevertheless, the peculiar way of modeling the desired physical
phenomena in the lattice Boltzmann schemes calls, besides the possibility of controlling the error introduced by the
mesh adaptation, for a deeper and more precise understanding of how mesh adaptation alters the target equations
describing the physics. In this contribution, this issue is studied by performing the equivalent equations analysis of
the adaptive method after writing the scheme under an adapted formalism. It provides an essential tool to master
the perturbations introduced by the adaptive numerical strategy, which can thus be devised to preserve the desired
features of the reference scheme at a high order of accuracy. The theoretical considerations are corroborated by
numerical experiments in both the 1D and 2D context, showing the relevance of the analysis. In particular, we show
that our numerical method outperforms traditional approaches, whether or not the solution of the reference scheme
converges to the solution of the target equation. Furthermore, we discuss the influence of various collision strategies
for non-linear problems, showing that they have only a marginal impact on the quality of the solution, thus further
assessing the proposed strategy.

2020 Mathematics Subject Classification. 65M99, 65M50, 76M28.
Keywords. lattice Boltzmann method, adaptive mesh refinement, multiresolution analysis, equivalent equa-
tions.

1. Introduction

The lattice Boltzmann schemes are used to investigate many interesting problems for which the solu-
tions have variability unevenly distributed in space. Therefore, one can take advantage of this property
to reduce both the memory footprint (especially when deployed to solve large problems) and the com-
putational cost of each iteration by selectively adapting the computational mesh. In our previous
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contributions [3, 4], we have introduced and tested a novel way of implementing lattice Boltzmann
methods to be deployed on spatially adapted grids generated by multiresolution analysis (called LBM-
MR method). The collision phase (due to its inherent local nature) was performed only on the leaves
of the corresponding adaptive graded tree where the data are directly available by using the equi-
libria of the reference lattice Boltzmann scheme. The advection phase, which is linear but non-local,
was performed with a technique closely related to the Corner Transport Upwind scheme (CTU), see
Colella [10]. Using the multiresolution formalism, we first build a piece-wise constant reconstruction
of the particle distribution functions at the finest level of resolution, then advect the reconstruction
exactly, and finally project the new functions on the adapted grid. The finest level of the resolution
dictates the global time-step across all the mesh levels, so no adaptation of the speed of sound is
needed. This approach to time discretization has also been used by Fakhari et al. [18, 19, 20] in com-
bination with the AMR (Adaptive Mesh Refinement) technique. The method reaches the following
goals and has the following peculiarities: it reduces the memory trace of the procedure by employing
and storing the distributions only on an adaptive hybrid partition of the domain made up of leaves
of an underlying graded tree structure; being fully adaptive, thus working only on the compressed
representation of the mesh, it provides potential reductions of the computational time of the method;
the use of the multiresolution analysis, decomposing the distributions on a wavelet basis and using a
functional analysis theoretical background [12], ensures (under reasonable assumptions) that we can
control the error of the adaptive method with respect to the reference method using a unique threshold
small parameter; finally, the original lattice Boltzmann scheme on the uniform grid does not need to
be modified to handle non-uniform lattices.

Even though the previous method allows to bound the difference between the solution of the adaptive
method and that of the reference method and has proved to be highly accurate, it does not say much
about the perturbations on the target equations induced by this new lattice Boltzmann method.
The question of determining the equations approximated by the lattice Boltzmann method has to
be discussed with particular care, especially when one wants to introduce diffusion terms with a
specific structure, as commonly done in the literature. For example, when using an acoustic scaling,
the diffusive terms do not show up at leading order. Therefore, in order to build reliable methods, we
have to ensure that our adaptive approach does not alter these contributions.

Until nowadays, two main formal approaches (which consistently yield the same results) are devised
to analyze the equations simulated by lattice Boltzmann methods: the Chapman–Enskog expansion [8]
and the Taylor expansion method [13]. The former approach is based on a Hilbert-like asymptotic ex-
pansion, whereas the latter follows the tracks of the consistency analysis for Finite Difference methods
based on Taylor expansions. These methods remain formal because they assume that the derivatives
of negligible terms are also negligible.

In this contribution, we clarify how the quality of the utilized multiresolution analysis impacts
the physical model approximated by the adaptive numerical scheme. More precisely, we show that
the central tool to perform the multiresolution analysis, the so-called “prediction operator”, must
be accurate enough so that the adaptive method does not significantly alter the behavior of the
numerical scheme performed on the finest level of grid. Otherwise, large deviations from the behavior
of the reference scheme are theoretically expected and numerically observed. This pertains both to
the phenomena present in the macroscopic target model (transport and diffusion, for example) and to
higher-order terms that play a role in determining the stability of the numerical method. The latter
were generally ignored by the analyses available in the literature but may lead to unexpected behaviors
of the adaptive strategy. The analysis is conducted on locally uniform parts of the mesh at some coarser
level of resolution than the finest available mesh size. We then show, using Taylor expansions, that the
adaptive scheme acting on such group of coarse cells does not perturb the original lattice Boltzmann
algorithm up to a certain order in the space step. This accuracy result holds uniformly with respect
to the local level of the grid, thus can be applied globally to any adapted mesh.
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analysis of the LBM-MR schemes via the equivalent equations

Thanks to the particular structure of the multiresolution analysis we have utilized, the extension to
the multidimensional case is straightforward. Moreover, we observe that the conclusions of the paper
are valid both for scalar equations and systems of conservation laws. This holds because the adaptive
scheme modifies only the advection phase, which is agnostic of the number of conserved moments.

The theoretical study is thoroughly assessed numerically both in one and two spatial dimensions and
for linear and non-linear problems, showing very good agreement between the effective and expected
behavior of the adaptive scheme. This confirms the predictive power of the analysis based on the
equivalent equations. Moreover, we present a concise numerical study on the effect of different strategies
for the treatment of the collision operator on the reliability of the adaptive method. This study confirms
the relevance of the local approach, introduced in the previous works [3, 4], in which the collision phase
is performed on the leaves. This yields accuracy levels comparable to those of more computationally
expensive strategies, which are briefly introduced in this work.

The paper is structured as follows: in Section 2, we present a quick recap on the multiple-relaxation-
times lattice Boltzmann schemes, setting the ground for Section 3 which introduces the adaptive spatial
discretization and the adaptive LBM-MR method. Particular care is devoted to the presentation of
the two basic bricks of the method (called “prediction” and “reconstruction” operators) because of
their preeminent role in the subsequent analysis. With these ideas in mind, we can go to the central
sections of the work, namely Section 5 and 6, where the “reconstruction flattening” allows to deploy
the equivalent equations technique to the new LBM-MR method, by rewriting the reconstruction
operator, usually seen in a recursive fashion, in a more friendly “flattened” way. This approach is used
to analyze two of the most simple adaptive LBM-MR techniques as well as a Lax–Wendroff scheme
present in the literature [18, 19, 20] for comparison purposes. This theoretical analysis is corroborated
by 1D and 2D simulations presented in Section 7. The final conclusions are drawn in Section 8.

2. The reference lattice Boltzmann scheme

The lattice Boltzmann methods are a class of numerical schemes used to solve numerous problems
in applied mathematics and fluid mechanics. Their fundamental building blocks are a particular link
between the temporal and the spatial discretizations and a finite family of discrete velocities, a local
collision phase and a linear stream phase. The aim of this section is to provide the basic ideas and
notations about these methods as we shall employ them. Still, we do not aim at encompassing all the
possibles shades and flavors of the lattice Boltzmann method: we refer the interested reader to the
book [24] for more information.

2.1. Discretization

The lattice Boltzmann method is based on a regular lattice of fixed step ∆x > 0. The time discretiza-
tion is performed by considering a uniform time discretization of step

∆t = ∆x
λ
, (2.1)

where λ > 0 is the so-called “lattice velocity”. Another possible choice is the so-called “parabolic
scaling” ∆t ∼ ∆x2: the following analysis is still valid for this choice. Then, one introduces q ∈ N?
velocities (eα)α=q−1

α=0 ⊂ λZd compatible with the lattice, namely multiple of the lattice velocity λ. We
write cα := eα/λ ∈ Zd, α = 0, . . . , q − 1, which are the dimensionless velocities. The distribution
function of the population moving with velocity eα shall be denoted fα. It is customary to indicate
schemes with the notation DdQq, where d is the spatial dimensionality and q is the number of discrete
velocities.

163



T. Bellotti, L. Gouarin, et al.

2.2. Collide-and-stream

We now assume that t is the discrete time at which we know the solution and that we want to update
it towards time t+ ∆t, where ∆t is given by (2.1). Any lattice Boltzmann method can be resumed as
a collide-and-stream algorithm made up of the following steps:

• The collision phase is performed locally at each point of the lattice. To employ multiple relax-
ation times, it is common to set it in the space of the moments to obtain a diagonal collision
matrix [25]. It reads

m(t,x) = Mf(t,x),

f?(t,x) = M−1
(
(I − S)m(t,x) + Smeq(m0(t,x), . . . ,mqc−1(t,x))

)
, (2.2)

where the star ? denotes any post-collisional state. Vectorial notations are used: f = (fα)α=q−1
α=0

for the particle distribution functions andm = (mα)α=q−1
α=0 for the moments vector. The matrix

M ∈ Rq×q is the invertible matrix that gives the moments from the particle distribution
functions. The collide operator then behaves as a diagonal relaxation on the moments vector
associated with the singular matrix S ∈ Rq×q. The rank of the matrix S is q − qc, where qc is
the number of conserved moments. The vector of the moments at equilibrium, function of the
conserved moments1, is indicated by meq.

• The stream phase is non-local but linear and corresponds to a shift of the data along the
characteristics of each velocity field. It reads

fα(t+ ∆t,x) = fα,?(t,x− cα∆x), α = 0, . . . , q − 1. (2.3)

In order to recover the desired macroscopic equations on the conserved moments, one can act on
the choice of the relaxation matrix S and on the equilibria meq.

3. Adaptive space discretization and adaptive lattice Boltzmann scheme

The lattice Boltzmann methods introduced in the previous Section are defined on regular uniform
lattices. However, in practical applications, especially when localized structures such as propagating
fronts are present, a fine discretization of the whole spatial domain is extremely demanding in terms
of memory and computational time. This calls for the adoption of a spatial discretization with differ-
ent levels of refinement. In this Section, we summarize our adaptive approach presented in [3, 4] to
transform a method acting on a uniform mesh at the finest available scale into another working on a
spatially adaptive grid spanning many spatial scales. The adaptive grid is dynamically updated at each
time step using a regularity evaluation through the multiresolution analysis, ensuring error control.
Then, multiresolution is used to evaluate the lattice Boltzmann scheme as if we were on the finest
scale, which is the one of the reference scheme presented in the previous section. Particular attention
is paid to the way of devising the stream phase, because of its pivotal role in the forthcoming analysis.

3.1. Spatial discretization

The starting point to design the adaptive LBM-MR method is the choice of a spatial discretization,
which is performed using dyadic Cartesian grids with possibly different levels of resolution. Consider,
for the sake of a simpler presentation, a bounded domain Ω = [0, 1]d, typically for d = 1, 2, 3. Following
our previous contributions [3, 4], we can build a hybrid partition of such a domain formed by cells at

1Those with relaxation parameter equal to zero.
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Figure 3.1. Example of hybrid mesh where different colors represent different levels
of resolution spanning ` = L, . . . , L, in particular, from L = 4 (dark blue) to L = 8
(white).

different levels of resolution between L and L. An example is given in Figure 3.1. A cell of the level `,
` = L, . . . , L, is given by

C`,k =
d∏
a=1

[2−`ka, 2−`(ka + 1)], k ∈ {0, . . . , 2∆` − 1}d.

For the sake of notation, we have introduced ∆` as the distance between the current level ` and the
finest level L given by ∆` = L− `. The center of the cell C`,k is given by x`,k := 2−`(k+ 1/2) and its
Lebesgue measure is (∆x`)d, where ∆x` = 2∆`∆x with ∆x = 2−L that corresponds to the space-step
of the finest grid.

Remark that, by (2.1), the time-step is constant across all the levels and is dictated by the finest
resolution allowed for the hybrid grid, which corresponds to the resolution of reference scheme on the
uniform finest mesh. This approach complies with [18, 19, 20] and with our previous works [3, 4]. Other
choices are possible to build lattice Boltzmann methods on non-uniform grids: the predominant one
consists in taking a different time-step for each level of resolution [16, 21, 29]. The main drawbacks of
this approach are that one generally needs to modify the scheme to be consistent with the target model
and that time interpolations with storage of the solution at the previous time steps are necessary.

In this contribution, the way of constructing the hybrid partition of Ω at each time step is of little
interest for the theoretical analysis we aim at performing. We shall come back on this point later.
The interested reader may refer to our previous works [4] and [3]. Consequently, as we shall expose
in Remark 3.2, the meshes considered in this paper are mostly uniform but made up of cells at a
smaller level of refinement than the maximum allowed level L, which still dictates the time-step of
the method (2.1). We just mention that the mesh is constructed using multiresolution analysis, which
allows, given a threshold parameter 0 < ε � 1, to control the quality of the solution with respect
to the reference scheme on the uniform mesh at the finest level L. We sometimes refer to the cells
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yielding this hybrid partition of the domain as “leaves” because they can be seen as such in a binary
tree (for d = 1), a quadtree (for d = 2) or an octree (for d = 3).

In the sequel, the quantities that can be interpreted as mean values on the corresponding cell C`,k
shall be denoted with a bar. The quantities without a bar are to be intended as point-valued quantities
and are most of the time taken at the cell center x`,k.

3.2. The adaptive LBM-MR method

Based on the space/time discretizations introduced in the previous section, we can recap the basic
ingredients used to build the adaptive LBM-MR method. These are the prediction operator and
the reconstruction operator. The latter is generated by the recursive application of the former. The
special care devoted to the design of these operators is the key to achieve the error control. Then,
we adapt the two basic operations making up the lattice Boltzmann scheme, namely the collision
and the stream phase. The former is applied locally on each cell whereas the latter relies on the
reconstruction of incoming and outgoing pseudo-fluxes only close to the edges of each cell, thus used
a modest number of times. This yields a significant reduction of the number of performed operations
on adapted grids. Moreover, we are able to “break” the recursivity of the reconstruction operator as
illustrated in Section 5.2, allowing both for a cost reduction of the method and for the forthcoming
theoretical study.

3.2.1. Prediction and reconstruction operators

The prediction operator is an important ingredient both of adaptive multiresolution [9] and of our
adaptive LBM method [3]. In many applications [5], this operator for d ≥ 2 is essentially built from
the one for d = 1. For this reason, we present the case d = 1 and then we briefly sketch how the
multidimensional extension is done. The predicted value (indicated with a hat) over a cell C`+1,2k+δ
is given by

f
∧
α
`+1,2k+δ = fα`,k + (−1)δ

γ∑
τ=1

wτ
(
fα`,k+τ − fα`,k−τ

)
, (3.1)

for δ = 0, 1, where the weights (wτ )τ=γ
τ=1 are given in [4]. The parameter γ ∈ N is the size of the

prediction stencil. The predicted value is a tentative one built using information on a coarser level of
resolution. The weights are constructed as follows. The local reconstruction polynomial of degree 2γ
is written in the canonical basis

πα`,k(x) =
2γ∑
m=0

Aα,m`,k x
m,

where the coefficients (Aα,m`,k )m=2γ
m=0 are obtained by enforcing that the following linear constraints hold

1
∆x`

∫
C`,k+δ

πα`,k(x)dx = fα`,k+δ, δ = −γ, . . . , 0, . . . , γ, (3.2)

and depend on fα. This yields a linear system with invertible matrix T ∈ R(2γ+1)×(2γ+1), independent
of the data.

T (Aα,m`,k )m=2γ
m=0 = (fα`,k+δ)

δ=+γ
δ=−γ . (3.3)

This means that one requests that the averages of the local reconstruction polynomial at level ` are
exactly equal to the datum fα. Once the coefficients (Aα,m`,k )m=2γ

m=0 are known, the prediction operator
and the corresponding weights are obtained by averaging the reconstruction polynomial at level `+ 1

f
∧
α
`+1,2k+δ = 1

∆x`+1

∫
C`+1,2k+δ

πα`,k(x)dx, δ = 0, 1,
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finally giving (3.1).
In this work, we emphasize the difference between the case γ = 0, called Haar case2 or direct

evaluation, and the case γ = 1 (with w1 = −1/8).

Remark 3.1 (Polynomial exactness). The prediction operator of stencil width γ has been built in
order to exactly recover the average on the cell C`+1,2k+δ when the function fα is polynomial of degree
at most 2γ + 1. However, as we shall see, the consequence of this fact on the equivalent equations
needs a more careful discussion.

The multidimensional generalization is carried out following the path of Bihari and Harten [5] in
a tensor product fashion. It is useful to present it because it provides us with a formalism to speed
up proofs in the multidimensional framework. For d = 2, one considers a reconstruction polynomial
πα`,k(x) made up only of terms belonging to the product of two uni-dimensional polynomials πα`,kx(x)
and πα`,ky(y), one for each Cartesian direction. This yields

πα`,k(x) = πα`,k(x, y) =
2γ∑
m=0

2γ∑
n=0

Aα,m,n`,k xmyn.

It can be easily shown that, thanks to the tensor-product structure, (3.3) becomes

(T ⊗ T )(Aα,m,n`,k )m,n=2γ
m,n=0 = (fα`,k+δ)δ∈{−γ,...,+γ}2 ,

where ⊗ is the Kronecker product of matrices. A useful property of the Kronecker product is that
(T ⊗ T )−1 = T−1 ⊗ T−1, therefore we can inverse the tensor product by inverting each of its terms.

Starting from the prediction operator, we can construct the reconstruction operator, denoted by
the double hat ∧∧. This is used to recover information at the finest level L using a recursive application
of the prediction operator until reaching information stored on the considered level `. This is needed
due to the fact that, when we predict on the finest level L in (3.1), the values on the right hand side
could not be well defined, because their cell at level L − 1 could not belong to the adaptive mesh.
Therefore, their value must be approximated by another application of the prediction operator, and
so on and so forth.

3.2.2. Collide-and-stream

Once we have a reconstruction operator generated by a prediction operator for some given stencil
γ ∈ N, we are ready to devise a LBM-MR method as shown in [3, 4]. Like the standard lattice
Boltzmann method, it is made up of two different steps:

• The collision phase is performed on each cell C`,k, ` = L, . . . , L, k ∈ {0, . . . , 2∆` − 1}d, of the
hybrid mesh at time t and is completely local. It reads

m`,k(t) = Mf `,k(t),

f?`,k(t) = M−1
(
(I − S)m`,k(t) + Smeq(m0

`,k(t), . . . ,mqc−1
`,k (t))

)
. (3.4)

The equilibria and the relaxation matrix are the same as for the reference method, see (2.2).

• The stream phase at velocity eα, for α = 0, . . . , q − 1, is linear but non-local. It reads

fα`,k(t+ ∆t) = fα,?`,k (t) + 1
2d∆`

 ∑
k∈Eα

`,k

f
∧∧
α,?

L,k
(t)−

∑
k∈Aα

`,k

f
∧∧
α,?

L,k
(t)

 , (3.5)

2Because one can show that this approach can be linked with the theory of the Haar wavelet.

167



T. Bellotti, L. Gouarin, et al.

where we have taken
B`,k = {k2∆` + δ : δ ∈ {0, . . . , 2∆` − 1}d},

Eα`,k = (B`,k − cα) r B`,k, Aα`,k = B`,k r (B`,k − cα).
The idea behind the formula is to build, via the reconstruction operator ∧∧, the piece-wise
constant solution on the uniform mesh at the finest level L. This reconstruction is exactly
advected by the constant velocity field eα and then averaged on the cells of the hybrid mesh.
This procedure is really close to the so-called Corner Transport Upwind scheme [10]. Cells
indexed by elements of Eα`,k can be seen to yield an incoming pseudo-flux into the current cell
C`,k, whereas those linked with Aα`,k give an outgoing pseudo-flux. An example is given in
Figure 3.2.

Eα`,k

Aα`,kcα = (1, 1)

Figure 3.2. Example of sets involved in the stream phase for d = 2, velocity cα =
(1, 1)T and ∆` = 3. The cells yielding an incoming pseudo-flux are colored in blue
whereas those giving an out-going pseudo-flux are highlighted in green. The perimeter
of the cell C`,k is traced with a thicker black line.

Observe that the LBM-MR method on a given mesh (excluding specific considerations about bound-
ary conditions which are beyond the scope of this work) preserves the conservativity of the original
lattice Boltzmann method. This comes from the fact that the collision phase is untouched and the
stream phase is in a conservative form where the pseudo-fluxes are estimated with the reconstruction
operator, which is conservative, namely 1/2d∆`∑

k∈B`,k f
∧∧
α,?

L,k
(t) = fα,?`,k (t). The interested reader can

consult [3, 4] for more details.

3.3. Mesh adaptation

Though the mesh adaptation algorithm is not the focus of this paper (see [3, 4] for the details), we
briefly describe it. At each time-step, a cell of the hybrid mesh can be eliminated from the structure
if its associated detail, namely the difference between the actual stored average and the predicted
average via (3.1), is smaller than a given level-dependent threshold. Conversely, if the detail on the
considered cell is large, we refine it in order to ensure that abrupt changes in the solution are correctly
followed by the method. Then, the adaptation strategy reads

Coarsen C`,k if max
α

(
|f
∧
α
`,k − fα`,k|

)
≤ ε 2−d∆`,

Refine C`,k if max
α

(
|f
∧
α
`,k − fα`,k|

)
≥ ε 2−d(∆`−1)+µ,

(3.6)
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where µ ≥ 0 is a free parameter to be chosen linked to the expected regularity of the solution (see [4]).
The process is repeated until no modification of the mesh are made. Indeed, the example of hybrid
grid given in Figure 3.1 has been built using this very algorithm. Observe that the fact of using a
volumetric standpoint to perform mesh adaptation guarantees the conservativity of the procedure.

The interest of having used a rather expensive and complex operator ∧∧ to build the adaptive
stream phase (3.5) is that it ensures that if the grid is adapted at each time step using (3.6) we
are able to control the additional error introduced by the adaptive strategy with ε for any lattice
Boltzmann scheme. To the best of our knowledge, this is unprecedented in the literature concerning
mesh adaptation for lattice Boltzmann schemes and cannot be achieved with other mesh adaptation
strategies such as the cell-based AMR [17, 18, 19, 20, 29], which relies on strongly problem-dependent
heuristic criteria.
Remark 3.2 (On the use of uniform grids in the paper). The analysis that we shall develop in
Section 5 and 6 and most of the numerical tests of Section 7 are conducted, as previously stressed, on
uniform meshes at some level of refinement ` = L, . . . , L. Still, this analysis is also relevant in the case
of an adapted mesh for the following reasons:

• Given a leaf C`,k at some level `, it is surrounded by enough cells (both leaves or halo cells) at
the same level of refinement. Therefore the mesh can be considered to be locally uniform [9],
which perfectly fits the local character of the analysis.

• The theoretical analysis is based on the assumption that the distributions fα are smooth on
the whole domain at every considered time. Thus, once one fixes a small but finite tolerance ε
and the authorized level range L−L ≥ 0, letting L increase (imagine L→ +∞, thus ∆x→ 0),
even the uniform mesh at level L will allow to control errors by ε via multiresolution.

Before switching to the analysis through the theory of equivalent equations, let us come back to
several interesting variants for treating both collision and stream phases.

4. Alternative treatments of the collision and the stream phases

Clearly, the LBM-MR scheme presented in the previous section is not the only possible strategy to
adapt the reference numerical method. Therefore, the aim of this section is to present and discuss
some alternative ideas, which will also be analyzed in the following in order to shed some light on how
the various strategies behave.

4.1. Enhanced collision treatments

In the unidimensional case [4], we studied the effect of considering the collision operator only on the
leaves of the adaptive mesh (3.4) in terms of multiresolution and the possibility of recovering a control
on the additional error. When the equilibria are linear functions of the conserved moments, this does
not have any effect on the outcome of the method. In the non-linear case, the control on the additional
error is still possible except in marginal pathological cases. Even if the scope of the present work is not
to fully discuss the different approaches to build the collision operator, we present two strategies that
are eventually tested to build more reliable (though costly) collision phases. In the sequel, we shall
call LBM-MR-LC scheme the one where the collision is done locally at the level of the leaves (3.4), to
distinguish it from the other approaches.

4.1.1. Reconstructed collision

The first alternative approach we present, introduced in our previous work [4], is called “reconstructed
collision”. The resulting scheme is called LBM-MR-RC. The collision phase is done on each cell C`,k of
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the hybrid mesh at time t reconstructing the information needed in the (possibly) non-linear equilibria
using the reconstruction operator ∧∧. This is (the change of basis is understood)

f?`,k(t) = M−1
(

(I − S)m`,k(t) + 1
2d∆`S

∑
k∈B`,k

meq(m
∧∧

0
L,k

(t), . . . ,m
∧∧
qc−1
L,k

(t))
)
. (4.1)

The idea behind is to make the following approximation
1
|C`,k|

∫
C`,k

meq(m0(t,x), . . . ,mqc−1(t,x))dx ' 1
|C`,k|

∑
k∈B`,k

|CL,k|m
eq(m
∧∧

0
L,k

(t), . . . ,m
∧∧
qc−1
L,k

(t))

= 1
2d∆`

∑
k∈B`,k

meq(m
∧∧

0
L,k

(t), . . . ,m
∧∧
qc−1
L,k

(t)).

It can be shown that this way of proceeding (4.1) coincides with (3.4) whenever the moments at
the equilibrium are linear functions, because the information added by the use of the reconstruction
operator disappears once we project back onto the current level of resolution `. However, this is false
for non-linear equilibria. The notable disadvantage of this approach is that the reconstruction is needed
on every cell belonging to B`,k and not only on those close to the cell edge as for the stream phase (3.5).
This is what the next strategy tries to alleviate.

4.1.2. Predict-and-quadrate

This approach closely follows that of [23] for treating the forcing terms in Finite Volume schemes and
shall be called LBM-MR-PQC. Reminding us of Section 3.2.1, consider the reconstruction polynomials
for the moments around the cell C`,k at time t given by (µα`,k(t, · ))α=q−1

α=0 = M(πα`,k(t, · ))α=q−1
α=0 , where

πα`,k(t, · ) is the local reconstruction polynomial around C`,k for fα(t), the distribution function of the
α-th population, see Section 3.2.1. Having this continuous approximation of the solution, one performs
the following steps

1
|C`,k|

∫
C`,k

meq(m0(t,x), . . . ,mqc−1(t,x))dx ' 1
|C`,k|

∫
C`,k

meq(µ0
`,k(t,x), . . . , µqc−1

`,k (t,x))dx

' 1
|C`,k|

N∑
i=1

w̃im
eq(µα`,k(t, x̃i), . . . , µqc−1

`,k (t, x̃i)),

where one employs a quadrature formula with N ∈ N? weights (w̃i)i=Ni=1 and quadrature points (x̃i)i=Ni=1 .
Therefore, the collision phase reads

f?`,k(t) = M−1
(

(I − S)m`,k(t) + 1
|C`,k|

S
N∑
i=1

w̃im
eq(µ0

`,k(t, x̃i), . . . , µqc−1
`,k (t, x̃i))

)
. (4.2)

We point out that the weights w̃ do not have anything to do with the weights w in (3.1). This
procedure is certainly less computationally expensive than that of the LBM-MR-RC scheme (4.1)
because one utilizes only one stage of prediction (indeed, compute (µα`,k(t, · ))α=q−1

α=0 ) and the number
N is generally not so large. It relies on the fact that the solution is expected to locally behave like a low
degree polynomial, which is transformed by the equilibria into another non-linear function and hoping
that the quadrature formula is accurate enough to approximate the integral over the considered cell.

4.2. Lax–Wendroff stream phase

In our multiresolution framework, constructing the adaptive stream phase by using the reconstruction
operator was a compulsory choice since we wish to recover a control on the numerical error of the

170



analysis of the LBM-MR schemes via the equivalent equations

adaptive strategy. However, for methods based on the heuristic AMR, simpler and more physically
funded approaches are possible. Indeed, before going on with the analysis of our adaptive method,
we present, for comparison purposes, the so-called Lax–Wendroff method proposed by [18, 19, 20] for
a D2Q9 scheme to be used on adaptive grid constructed via an AMR algorithm. We may imagine
that in our framework the mesh adaptation could be done using multiresolution as presented in the
previous section. The collision phase is the same as (3.4). What changes is the stream phase coming
under the form

fα`,k(t+ ∆t) =
(

1− 1
4∆`

)
fα,?`,k (t) + 1

2∆`+1

(
1 + 1

2∆`

)
fα,?`,k−cα(t)− 1

2∆`+1

(
1− 1

2∆`

)
fα,?`,k+cα(t), (4.3)

working for schemes where maxα |cα|∞ ≤ 1, like the D2Q4, D2Q5 and D2Q9 schemes. For d = 1 and
any scheme with maxα |cα| ≤ 2, the Lax–Wendroff stream reads

fα`,k(t+ ∆t) =
(

1− |cα|
2

4∆`

)
fα,?`,k (t) + |cα|

2∆`+1

(
1 + |cα|2∆`

)
fα,?`,k−cα/|cα|(t)

− |cα|
2∆`+1

(
1− |cα|2∆`

)
fα,?`,k+cα/|cα|(t). (4.4)

It can be shown that this scheme has some link with the prediction operator (3.1) but is not a
multiresolution scheme, namely that it not built relying upon the reconstruction operator. This is the
meaning of the following.

Proposition 4.1. Let d = 1, then the Lax–Wendroff scheme given by (4.4) is obtained by approxi-
mating the pseudo-fluxes in (3.5) in the following way:

f
∧∧
α,?

L,k
(t) ' 1

∆x

∫
CL̄,k̄

πα,?`,k (t, x)dx, k ∈ Eα`,k ∪ Aα`,k, (4.5)

where πα,?`,k (t, · ) is the local reconstruction polynomial of fα,?(t) for the cell C`,k taking γ = 1.

Proof. Set γ = 1. The time variable and the collision are understood in this proof not to overcharge
the notations. After some computations, we obtain that the reconstruction polynomial comes under
the form

πα`,k(x) = Ãα,2`,k

(
x− x`,k

∆x`

)2
+ Ãα,1`,k

(
x− x`,k

∆x`

)
+ Ãα,0`,k ,

with 
Ãα,2`,k = 1

2f
α
`,k−1 − fα`,k + 1

2f
α
`,k+1,

Ãα,1`,k = −1
2f

α
`,k−1 + 1

2f
α
`,k+1,

Ãα,0`,k = − 1
24f

α
`,k−1 + 13

12f
α
`,k − 1

24f
α
`,k+1.

Taking the integrals in (4.5) and plugging into (3.5) yields the claim.

One might ask whether it could be possible to see (4.4) as a multiresolution scheme by using
prediction operators different from (3.1) for γ = 0, 1. The path would be to consider prediction
operators based on two values. These are employed, for example, in the point-wise multiresolution
analysis [22] but are not suitable to be used with volumetric representations. A symmetric prediction
operator, fulfilling (3.2), would be of the form

f
∧
α
`+1,2k+δ =

(
1
2 + (−1)δ

8

)
fα`,k−1 +

(
1
2 −

(−1)δ

8

)
fα`,k+1, δ = 0, 1,
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but it has two issues, the first one is that it is not conservative, that is, (f
∧
α
`+1,2k + f

∧
α
`+1,2k+1)/2 =

(fα`,k−1 + fα`,k+1)/2 6= fα`,k and the second one is that we might show that it cannot yield the Lax–
Wendroff scheme (4.4) when applied in a recursive fashion. On the other hand, if we look for non-
symmetric prediction operators, enforcing (3.2) necessarily gives that they are equal to the Haar
prediction γ = 0. Once more, it is not possible to recover (4.4) in this way. The previous proposition
and remark emphasize the fact that, for the Lax–Wendroff scheme, the reconstruction polynomial for
γ = 1 is not used in a recursive manner, thus it is not a multiresolution scheme. We shall study this
in terms of impact on the quality of the approximation.

5. Equivalent equations analysis on the stream phase in 1D

We now enter the core section of the present contribution, where we make the link between the
analysis of the lattice Boltzmann schemes via the equivalent equations [13, 15] and our adaptive
LBM-MR method (3.4), (3.5), for d = 1. The aim is to find the maximum order of accuracy of
our adaptive strategies according to the size of the prediction stencil γ. In particular, we study the
conditions guaranteeing that the equivalent equations for the adaptive schemes and for the reference
scheme are the same until a certain order in the space step ∆x. As one might expect, the larger γ,
the better the behavior of the adaptive scheme. This high accuracy is here quantified in terms of
numerical analysis. This analysis pertains to the way of performing the stream phase and does not
take the different models for the collision phase into account. Having left the collision phase untouched
and the time step being global across levels, this phase does not have an impact on the equivalent
Partial Differential Equations the scheme solves. This assumption is rigorously justified as long as the
equilibria are linear functions but we shall numerically verify that the results of the present study apply
to more complicated non-linear equilibria. Examples of the complete equivalent equations, taking into
account the specific collision model, are given in Section 7 for illustrative purpose.

5.1. Target expansion

As it is common in the volumetric context (see [27]), we adopt the point of view of Finite Differences,
where the discrete values are point-values at the cells centers x`,k rather that averages. This allows
us to study the scheme from the point of view of the equivalent equations, by assuming that the
underlying distribution functions are smooth in space and time. When considered the current cell is
at the finest level of resolution L, the stream phase (3.5) coincides with (2.3), yielding what we call
“reference scheme”. This is simply a translation of the datum along the characteristics of the velocity
field, since we are working at Courant number equal to |cα|1: fαL,k(t+∆t) = fα,?

L,k−cα
(t), which written

in a Finite Difference formalism and assuming to deal with d = 1, reads

fα(t+ ∆t, xL,k) = fα,?(t, xL,k−cα) = fα,?(t, xL,k − cα∆x).

Thus we can apply a Taylor expansion to both sides of the equation, yielding
+∞∑
s=0

∆ts

s! ∂
s
t f

α(t, xL,k) =
+∞∑
s=0

(−cα∆x)s

s! ∂sxf
α,?(t, xL,k) (5.1)

= fα,? − cα∆x∂xfα,? + c2
α∆x2

2 ∂xxf
α,? − c3

α∆x3

6 ∂3
xf

α,? +O(∆x4),

where the argument is omitted when understood. This expansion (possibly truncated) is the basic
brick of the equivalent equations [13, 15], which are used to study the consistency of the reference
lattice Boltzmann scheme. In our analysis, we shall only be interested in the right hand side of (5.1),
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since the left hand side is not affected by the adaptive grid3 because our algorithm is based on a
unique time step imposed by the finest resolution (2.1). Notice that, for a given discrete velocity, the
Courant number at finest level L is exactly |cα|1, whereas at a given level `, it is provided by |cα|1/2∆`.
Therefore, roughly speaking, after 2∆` time steps, information shall have traveled the same distance
that it would have traveled at finest level L, namely the size of the current cell times |cα|1, that is
2∆`|cα|1∆x. We call the development on the right hand side of (3.5) “target expansion”. Each power of
∆x has a different role in determining the equations approximated by the lattice Boltzmann scheme.
In particular:

• −cα∆x∂xfα,? is what we might call an “inertial” term, because it yields inertial contributions
in the approximated model at leading order.

• c2α∆x2

2 ∂xxf
α,? might be called “diffusive” term since it results in dissipative terms in the ap-

proximated model at order ∆x.

• − c3α∆x3

6 ∂3
xf

α,? might be called “dispersive” term in analogy with Finite Differences. Its physical
meaning is less clear than for the other terms but it can have a non-negligible impact on the
stability of the lattice Boltzmann method.

Looking at (3.5), it is not immediately clear how to apply the previous analysis, because the evo-
lution of the solution is written in term of the reconstruction operator acting on the distributions.
The connection with the previous expansion strategy shall be achieved using what we might call
“reconstruction flattening”. Intuitively, considering Remark 3.1, our method is expected to show less
discrepancies from the reference method as the width of the prediction stencil γ grows.

5.2. Reconstruction flattening

k k + 1 k + 2k − 1k − 2
`

L
Eα`,k

Figure 5.1. Example of flattening procedure for d = 1 with γ = 1 for a velocity
cα = 2. The cells in blue correspond to those belonging to Eα`,k. The prediction operator
is recursively applied (arrows) until reaching the level we are looking for, namely `.

In what follows, we assume that the stream stencil of the considered method implies at most two
neighbors in each direction, this is maxα |cα| ≤ 2. Therefore this analysis covers schemes such as the
D1Q2 [7, 22], D1Q3 [14] and even D1Q5 [4] schemes. However, the study can be extended to larger

3It would be affected for a level dependent time-step in the spirit of [21].
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stencils upon considering sums in (5.2) spanning on a larger set of integers. The generalization to
γ ≥ 2 is achieved in the same manner.

Flattening the reconstruction operator means that we are able to compute the set of weights
(Fα∆`,m)m=+2

m=−2 ⊂ R such that

fα`,k(t+ ∆t) = fα,?`,k (t) + 1
2∆`

 ∑
k∈Eα

`,k

f
∧∧
α,?

L,k
(t)−

∑
k∈Aα

`,k

f
∧∧
α,?

L,k
(t)

 = fα,?`,k (t) + 1
2∆`

+2∑
m=−2

Fα∆`,mf
α,?
`,k+m(t),

(5.2)
which corresponds to the illustration of Figure 5.1. This means that we have condensed the computa-
tion of the total pseudo-flux at the finest level L as a weighted sum of values on five neighbors at the
current level `. Recall Remark 3.2.
Remark 5.1. It is important to observe that both our multiresolution (3.5) and the Lax–Wendroff
scheme (4.4) can be put under the formalism introduced in (5.2).

The fundamental advantage of this representation is that we can safely develop (5.2) in Taylor series
around the considered cell by adopting a Finite Difference point of view. This yields

+∞∑
s=0

∆ts

s! ∂
s
t f

α(t, x`,k) = fα,?(t, x`,k) +
+∞∑
s=0

2∆`(s−1)(∆x)s

s!

 +2∑
m=−2

msFα∆`,m

 ∂sxfα,?(t, x`,k)
 (5.3)

=

1 + 1
2∆`

+2∑
m=−2

Fα∆`,m

 fα,? +

 +2∑
m=−2

mFα∆`,m

∆x∂xfα,? +

2∆`
+2∑

m=−2
m2Fα∆`,m

 ∆x2

2 ∂xxf
α,?

+

22∆`
+2∑

m=−2
m3Fα∆`,m

 ∆x3

6 ∂3
xf

α,? +O(∆x4).

The aim is to equate as most coefficients as possible between (5.1) and (5.3) in order to have an
adaptive scheme at the local level of refinement ` with approximated equations and hopefully stability
conditions (which are beyond the scope of this paper) as close as possible to that of the reference
scheme at level L. We stress that these conditions are checked locally but we request them for any
possible level. By doing the comparison term-by-term, we end up with the following definition.
Definition 5.2 (Match). Let d = 1. We say that the adaptive stream phase (5.2) matches that of the
reference scheme (2.3) at order s ∈ N? whenever

+2∑
m=−2

Fα∆`,m = 0,
+2∑

m=−2
mpFα∆`,m = (−cα)p

2∆`(p−1) , for p = 1, . . . , s. (5.4)

regardless of the level `, thus for any ∆` ≥ 0 and for every velocity α = 0, . . . , q − 1.
With this definition in mind, we study how this property holds for the most common multiresolution

schemes, namely γ = 0 and γ = 1 and for the Lax–Wendroff scheme.

5.3. Haar wavelet: γ = 0

We start by analyzing the simplest scheme, generated by the Haar wavelet for γ = 0. We provide the
weights for the correspondent reconstruction flattening (5.2) in the following statement
Proposition 5.3 (Match for γ = 0). Let d = 1, γ = 0 and ∆` > 0, then the flattened weights of the
adaptive stream phase given by (5.2) read

Fα∆`,0 = −|cα|, Fα∆`,−cα/|cα| = |cα|,
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and those not listed are equal to zero. Therefore, the adaptive stream phase matches that of the reference
scheme up to order s = 1. This also writes

+2∑
m=−2

Fα∆`,m = 0,
+2∑

m=−2
mFα∆`,m = −cα.

Proof. Looking at (3.1) with γ = 0, each stage of the reconstruction operator acts by looking for
the father of the cell we predict on. Overall, for a cell at the finest level, it returns the value on its
ancestor at level `. Therefore (consider positively moving velocity for the sake of presentation) we have
for cα = 1, Eα`,k = {2∆`k − 1}, Aα`,k = {2∆`(k + 1)− 1} and

f
∧∧
α,?

L,2∆`k−1 = fα,?`,k−1, f
∧∧
α,?

L,2∆`(k+1)−1 = fα,?`,k .

For the case cα = 2, we have Eα`,k = {2∆`k − 1, 2∆`k − 2}, Aα`,k = {2∆`(k + 1)− 1, 2∆`(k + 1)− 2} and

f
∧∧
α,?

L,2∆`k−1 = fα,?`,k−1, f
∧∧
α,?

L,2∆`k−2 = fα,?`,k−1,

f
∧∧
α,?

L,2∆`(k+1)−1 = fα,?`,k , f
∧∧
α,?

L,2∆`(k+1)−2 = fα,?`,k .

Plugging into (5.2) completes the first part of the proof, giving Fα∆`,0 = −|cα| and Fα∆`,−cα/|cα| = |cα|.
The second part is an immediate consequence of the first.

On the other hand, the term diffusive term at O(∆x2) in (5.3) does not match that of the target
expansion in (5.1). This can be easily seen by taking cα = 1. Then 2∆`∑m=+2

m=−2m
2Fα∆`,m = 2∆` 6= 1.

This has a major consequence on the applicability of the method based on the Haar wavelet, because
it correctly recovers the “inertial” terms but fails in correctly accounting for the “dissipative” terms,
yielding a wrong diffusion structure with respect to the equations targeted by the reference method.
The well-known D2Q9 scheme [25] for the incompressible Navier–Stokes system is one possible example
of lattice Boltzmann scheme which would be deeply altered by the 2D generalization of this strategy.

5.4. Third-order wavelet: γ = 1

Afterwards, we consider the case γ = 1, which has been thoroughly investigated in [3, 4]. We are going
to see that the limitations of the Haar case γ = 0 can be solved by consider a larger prediction stencil:
indeed (for most of the applications) employing γ = 1 is sufficient.

Proposition 5.4 (Match for γ = 1). Let d = 1, γ = 1 and ∆` > 0, then the flattened weights of the
stream phase (5.2) are given by the recurrence relations

Fα∆`,−2
Fα∆`,−1
Fα∆`,0
Fα∆`,1
Fα∆`,2

 =


0 −1/8 0 0 0
2 9/8 0 −1/8 0
0 9/8 2 9/8 0
0 −1/8 0 9/8 2
0 0 0 −1/8 0


︸ ︷︷ ︸

=:P


Fα∆`−1,−2
Fα∆`−1,−1
Fα∆`−1,0
Fα∆`−1,1
Fα∆`−1,2

 ,

where the initialization is given by Fα0,−cα = 1 and Fα0,0 = −1 and the remaining terms set to zero.
Therefore, the adaptive stream phase matches that of the reference scheme up to order s = 3. This
also writes

+2∑
m=−2

Fα∆`,m = 0,
+2∑

m=−2
mFα∆`,m = −cα,

+2∑
m=−2

m2Fα∆`,m = c2
α

2∆` ,
+2∑

m=−2
m3Fα∆`,m = − c3

α

4∆` .
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Proof. The initialization trivially gives the scheme (3.5). Assume to know the coefficients of the
flattened advection for level ` + 1, that is for ∆` − 1. We have (we omit the time t for the sake of
compactness)

∑
k∈Eα

`,k

f
∧∧
α,?

L,k
−

∑
k∈Aα

`,k

f
∧∧
α,?

L,k
=

 ∑
k∈Eα

`+1,2k

f
∧∧
α,?

L,k
−

∑
k∈Aα

`+1,2k

f
∧∧
α,?

L,k

+

 ∑
k∈Eα

`+1,2k+1

f
∧∧
α,?

L,k
−

∑
k∈Aα

`+1,2k+1

f
∧∧
α,?

L,k


=

+2∑
m=−2

Fα∆`−1,mf
∧
α,?
`+1,2k+m +

+2∑
m=−2

Fα∆`−1,mf
∧
α,?
`+1,2k+1+m

=
+2∑

m=−2
Fα∆`−1,mf

∧
α,?
`+1,2k+m +

+3∑
m=−1

Fα∆`−1,m−1f
∧
α,?
`+1,2k+m

=
+3∑

m=−2
F̃α∆`−1,mf

∧
α,?
`+1,2k+m,

with

F̃α∆`−1,m =


Fα∆`−1,−2, m = −2,
Fα∆`−1,m + Fα∆`−1,m−1, m = −1, 0, 1, 2,
Fα∆`−1,2, m = 3.

Using the prediction operator
+3∑

m=−2
F̃α∆`−1,mf

∧
α,?
`+1,2k+m

= F̃α∆`−1,−2

(
fα,?`,k−1 + 1

8f
α,?
`,k−2 −

1
8f

α,?
`,k

)
+ F̃α,∆`−1,−1

(
fα,?`,k−1 −

1
8f

α,?
`,k−2 + 1

8f
α,?
`,k

)
+ F̃α∆`−1,0

(
fα,?`,k + 1

8f
α,?
`,k−1 −

1
8f

α,?
`,k+1

)
+ F̃α∆`−1,1

(
fα,?`,k −

1
8f

α,?
`,k−1 + 1

8f
α,?
`,k+1

)
+ F̃α∆`−1,2

(
fα,?`,k+1 + 1

8f
α,?
`,k −

1
8f

α,?
`,k+2

)
+ F̃α∆`−1,3

(
fα,?`,k+1 −

1
8f

α,?
`,k + 1

8f
α,?
`,k+2

)
,

so that after tedious computations, we arrive at
+3∑

m=−2
F̃α∆`−1,mf

∧
α,?
`+1,2k+m

=
(
−1

8F
α
∆`−1,−1

)
fα,?`,k−2 +

(
2Fα∆`−1,−2 + 9

8F
α
∆`−1,−1 − 1

8F
α
∆`−1,1

)
fα,?`,k−1

+
(

9
8F

α
∆`−1,−1 + 2Fα∆`−1,0 + 9

8F
α
∆`−1,1

)
fα,?`,k

+
(
−1

8F
α
∆`−1,−1 + 9

8F
α
∆`−1,1 + 2Fα∆`−1,2

)
fα,?`,k+1 +

(
−1

8F
α
∆`−1,1

)
fα,?`,k+2,

concluding the first part of the proof. Then, the second one is done by recurrence on ∆`.

Again, we cannot go further in matching the target expansion (3.5), considering for example cα = 1,
we have that

∑m=+2
m=−2m

4Fα1,m = −7/8 6= 1/8. This means that the method for γ = 1 can be successfully
employed in contexts where we want to control both the “inertial” and the “diffusive” physics, like
in the D2Q9 scheme for the quasi-incompressible Navier–Stokes system [25]. Moreover, since we also
match the target expansion at order 3, the achievements accomplished on the reference scheme at
this order are also preserved by the adaptive scheme. This is a highly desirable feature for scientists
who have a good understanding of their reference scheme and who would like to employ our adaptive
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strategy as a black-box. Even if we are performing an asymptotic analysis in the limit of small space-
steps, thus corresponding to a low-frequency study of the stability, we conjecture that this feature
yields lower discrepancies in terms of stability constraints on the whole spectrum. This shall be the
object of a future contribution.

5.5. Lax–Wendroff scheme

To conclude on the one-dimensional analysis, let us analyze the consistency of the Lax–Wendroff
scheme (4.4).

Proposition 5.5 (Match for Lax–Wendroff). Let d = 1 and ∆` > 0, then the flattened weights of the
stream phase given by (4.4) are given by

Fα∆`,0 = −|cα|
2

2∆` , Fα∆`,−cα/|cα| =
|cα|
2

(
1 + |cα|2∆`

)
, Fα∆`,cα/|cα| = −

|cα|
2

(
1− |cα|2∆`

)
. (5.5)

Therefore, the adaptive stream phase matches that of the reference scheme up to order s = 2. This
also writes

+2∑
m=−2

Fα∆`,m = 0,
+2∑

m=−2
mFα∆`,m = −cα,

+2∑
m=−2

m2Fα∆`,m = c2
α

2∆` ,

Proof. The first part of the claim is true by direct inspection of (4.4). The second part comes from
the usual straightforward computations.

However as expected from such a kind of scheme, the dispersive order, namely third-order, is not
matched, because

∑+2
m=2m

3Fα∆`,m = −c3
α/|cα|2 6= −c3

α/4∆`. This is not trivial when considering Propo-
sition 4.1, because the stream phase is built using the same reconstruction polynomial as the multires-
olution scheme for γ = 1. Still, what changes is that the multiresolution approach employs the recon-
struction operator with recursive application of the prediction operator, whereas the Lax–Wendroff
scheme uses the reconstruction polynomial only once.

5.6. Conclusions

In this section, we have seen that in the case of multiresolution scheme, the prediction stencil γ has
to be taken large enough in order to match a sufficient number of desired orders. In particular, the
number of matched orders is equal to 2γ + 1. Therefore, for most of the applications, γ = 0 (Haar
wavelet) is not enough, because it modifies the second-order terms which are frequently used to model
diffusion phenomena. On the other hand, γ = 1 is often sufficient for most of the applications and
its reliability on the third-order terms is an interesting “icing on the cake”. Finally, the Lax–Wendroff
scheme, which is not a multiresolution scheme, matches sharply until order two as claimed in [20],
so it successfully handles diffusive terms but can lead to different stability constraints and oscillatory
behaviors for the scheme, due to its intrinsic dispersive nature.

The reader might have noticed that we have done half of the work compared to [13, 15], because
we perform only the Taylor expansion of the stream phase but we do not couple it with the collision
phase to recover the final expression for the equivalent Partial Differential Equations on the conserved
moments. However, since the collision phase is untouched and we have fully characterized the pertur-
bation of the original lattice Boltzmann scheme, which only affects the stream phase, the procedure
by [13, 15] can be easily implemented starting from (5.3) instead than (5.1). The computations for
the matched terms shall not be repeated since they are the same as for the reference scheme. We shall
provide an easily understandable example for a specific scheme in Section 7.1.
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6. Equivalent equations analysis on the stream phase in 2D

So far, we have analyzed our LBM-MR schemes with the help of the equivalent equations once the
reconstruction flattening is done. In this section, we succinctly show how the previous analysis can
be extended to the multidimensional case d ≥ 2 by exploiting the tensorial product structure of the
prediction operator, in order to simplify the computations. The conclusions we can draw are the same
as for d = 1, namely that the scheme for γ = 0 perturbs starting from second-order, the scheme for
γ = 1 does so from fourth-order and finally the Lax–Wendroff approach perturbs from third-order. As
for the previous section, the analysis holds as long as maxα |cα|∞ ≤ 2. For the sake of presentation,
we present the case d = 2. Therefore, the advection phase reads, in a Finite Differences formalism

fα(t+ ∆t,xL,k) = fα,?(t,xL,k−cα) = fα,?(t,xL,k − cα∆x),

thus a Taylor expansion (assuming that we are allowed to commute derivatives along different axis by
virtue of the Schwarz theorem) yields

+∞∑
s=0

∆ts

s! ∂
s
t f

α(t,xL,k) =
+∞∑
s=0

+∞∑
p=0

(∆x)s+p(−cα,x)s(−cα,y)p

s! p! ∂sx∂
p
yf

α,?(t,xL,k)

= fα,? −∆x (cα,x∂xfα,? + cα,y∂yf
α,?) + 1

2∆x2
(
c2
α,x∂xxf

α,? + 2cα,xcα,y∂xyfα,? + c2
α,y∂yyf

α,?
)

− 1
6∆x3

(
c3
α,x∂

3
xf

α,? + 3c2
α,xcα,y∂xxyf

α,? + 3cα,xc2
α,y∂xyyf

α,? + c3
α,y∂

3
yf

α,?
)

+O(∆x4).

This is the new target expansion analogous to (5.1). Now, the reconstruction flattening reads

fα`,k(t+ ∆t) = fα,?`,k (t) + 1
4∆`

+2∑
m=−2

+2∑
n=−2

Fα∆`,m,nf
α,?
`,k+mı̂+n̂(t), (6.1)

where ı̂ and ̂ are respectively the versor of the x and y Cartesian axis. Observe that the coefficients
(Fα∆`,m,n)m,n=+2

m,n=−2 are not directly linked to their equivalents for d = 1. Nevertheless, the recurrence
relations they satisfy are inherited from the one-dimensional case because of the construction of the
prediction operator by tensor product. Expanding the flattened scheme as for d = 1 provides

+∞∑
s=0

∆ts

s! ∂
s
t f

α(t,xL,k)

= fα,?(t,xL,k) +
+∞∑
s=0

+∞∑
p=0

2∆`(s+p−2)(∆x)s+p

s! p!

 +2∑
m=−2

+2∑
n=−2

msnpFα∆`,m,n

 ∂sx∂pyfα,?(t,xL,k)


=

1 + 1
4∆`

+2∑
m=−2

+2∑
n=−2

Fα∆`,m,n

 fα,?
+

 1
2∆`

+2∑
m=−2

+2∑
n=−2

mFα∆`,m,n

∆x∂xfα,? +

 1
2∆`

+2∑
m=−2

+2∑
n=−2

nFα∆`,m,n

∆x∂yfα,?

+
(∑
m,n

m2Fα∆`,m,n

)
∆x2

2 ∂xxf
α,? +

(∑
m,n

mnFα∆`,m,n

)
∆x2∂xyf

α,? +
(∑
m,n

n2Fα∆`,m,n

)
∆x2

2 ∂yyf
α,?

+O(∆x3).

Thus
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Definition 6.1 (Match). Let d = 2. We say that the adaptive stream phase (6.1) matches that of the
reference scheme (2.3) at order s ∈ N? whenever

+2∑
m,n=−2

Fα∆`,m,n = 0,
+2∑

m,n=−2
mpxnpxFα∆`,m,n = (−cα,x)px(−cα,y)py

2∆`(px+py−2) , for px + py = 1, . . . , s.

(6.2)
regardless of the level `, thus for any ∆` ≥ 0 and for every velocity α = 0, . . . , q − 1.

We focus on the case γ = 1, indeed the interesting one, and provide the following result, whose
proof is detailed in the Appendices and based on the tensorial construction of the prediction operator
for d ≥ 2.

Proposition 6.2 (Match for γ = 1). Let d = 2 and γ = 1, then the adaptive stream phase (3.5) is
such that (6.2) is fulfilled for px, py = 1, . . . , s with s = 3. Therefore, the adaptive stream phase (3.5)
matches that of the reference scheme at order s = 3.

Remark 6.3. It is interesting to notice that the method constructed by tensor product matches
crossed terms until order 6 (take px = py = 3) but cannot match pure x or y terms to orders larger
than 3.

To summarize, this shows how to generalize the study of the adaptive LBM-MR scheme when d ≥ 2
to recover the same results than the study for d = 1. Again, for most of the applications, one needs
to consider γ ≥ 1.

7. Numerical simulations

In the previous sections, the expansions we have performed were formal and valid for smooth solutions
in the limit of small ∆x` for any considered level `. The aim of the following numerical simulations is to
assess the previous approach by showing that it provides a useful tool to a priori study the behavior
of the adaptive scheme. In this section, we shall observe that the result from the actual numerical
simulations adhere to the formal expansions we have detailed in Section 5 and 6.

Table 7.1. Summary of the test cases for the analysis of the stream phase without
use of mesh adaptation within the LBM-MR-LC framework.

Number and Section d Equation Ref. scheme Configuration

1 - 7.1 1 Linear advection eq. D1Q2 Fixed L− L, increasing L
∂tu+ ∂x(V u) = 0

2 - 7.2 1 Linear advection-diffusion eq. D1Q3 Fixed L, decreasing L
∂tu+ ∂x(V u)− ν∂xxu = 0

3 - 7.3 1 Viscous Burgers eq. D1Q3 Fixed L, decreasing L
∂tu+ ∂x(u2/2)− ν∂xxu = 0

4 - 7.4 2 Linear advection-diffusion eq. D2Q9 Fixed L, decreasing L
∂tu+∇ · (V u)− ν∆u = 0

A first batch of tests (spanning Sections 7.1, 7.2, 7.3 and 7.4) is performed on uniform meshes
which are corsened until reaching the lowest authorized level L, where the adaptive scheme is utilized.
Indeed, the main focus of this work is not to evaluate the quality of the grid adaptation with respect
to the parameter ε. This has been the subject of our previous papers [3] and [4]. Besides the fact that
this setting is relevant according to Remark 3.2 and because the match properties hold uniformly in
`, it also provides a worst case scenario to undoubtedly prove the resilience of our numerical strategy.
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This could be the case when one performs mesh adaptation yet selecting a very large threshold ε, so
to that the smoothness of the solution allows to coarsen the grid everywhere. As a matter of fact,
similar scenarios can also take place when the mesh is updated using some stiff numerical solution
(for example a phase-field variable as in [18]) but we still want to achieve a good accuracy in the
coarsely meshed areas for the non-stiff variables (for example the velocity field in the incompressible
Navier–Stokes system [28]). In these tests, the “standard” leaves collision given by (3.4) is used and
the study of the different collision strategies is postponed to Section 7.6. The summary of the four
configurations we test is given on Table 7.1: they include both the 1D and the 2D framework with
linear and non-linear equations.

When the reference scheme is expected to converge as L → +∞, we consider a fixed number of
coarsening steps L−L and we increase the maximal level L to observe convergence. On the other hand,
when the reference scheme is not convergent to the solution of the target equation, the maximum level
L is fixed and the number of coarsenings L−L is increased. The first kind of study aims at evaluating
the possible “interference” of the adaptive strategy with the order of convergence of the reference
scheme and precisely show that the theoretical analysis allows to study such phenomenon. On the
other hand, the second kind of study tries to quantify the effect of the adaptive scheme compared to
the error of the reference scheme and shows that the previous analysis allows to construct a comparative
evaluation of the various methods.

We monitor the following quantities (which are all normalized `1 norms) at the final time T :

• Eref : error of the reference scheme with respect to the exact solution of the problem. This is
intrinsic to the numerical method and, depending on the specific scheme, the target model
and the scaling between space and time discretization, it can converge or not as ∆x→ 0. This
point shall be elucidated for every specific example in the following pages.

• ELadap: error of the adaptive scheme with respect to the exact solution measured at level L.

• ELadap: error of the adaptive scheme with respect to the exact solution measured at level L,
using the reconstruction operator.

• Dadap: difference between the reference and adaptive scheme, where the adaptive datum has
been reconstructed at finest level in order to compare it with the solution of the reference
scheme. It is converging as ∆`min := L− L→ 0.

The objective is to keep Dadap � Eref regardless of the fact that Eref converges, so that the error of
the adaptive scheme is largely dominated by that of the reference scheme. Generally speaking, this
is the aim of the multiresolution analysis, see [4]. By the triangle inequality, the following control on
the error of the adaptive method holds ELadap ≤ Eref + Dadap: the error of the adaptive method is the
result of two contributions, the error of the reference scheme (which in principle cannot be alleviated)
and the difference between the behavior of the adaptive and the reference scheme (to be alleviated by
increasing γ).

A second kind of test, see Section 7.5, is the only place in the paper where we actually consider
spatially dynamically adapted grids via the multiresolution procedure. The aim is twofold. On one
hand, we want to show that multiresolution is able to correctly capture the evolution of steep solutions
arising from non-linear equations, even when the mesh at the initial time is heavily coarsened due to
the regularity of the initial datum of the problem. On the other hand, we show the importance of using
time-adaptive meshes once the smoothness of the solution decreases during the simulation. Indeed,
we see that in this case the smoothness assumption to perform the theoretical analysis is no longer
valid and using uniform coarsened meshes produces unpredictable behaviors. Multiresolution strongly
alleviates the issue by following the steep zones of the solution.
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A third kind of test (Section 7.6) comes back to uniform coarsened meshes and its scope is to
compare the different collision strategies presented in Section 4.1 in a non-linear context, which is the
one where one can potentially observe discrepancies between different strategies.

Remark 7.1 (Number of conserved moments). For the sake of this work, all the schemes have only one
conserved variable u =

∑
α f

α, but all the previous study is independent of the number of conserved
variables, since it pertains to the stream phase of the method.

7.1. 1D linear advection equation

The aim of this test case is to validate our analysis in a case where, on one hand, we know that the
reference scheme converges as ∆x→ 0 because the relaxation parameters do not depend on ∆x and,
on the other hand, the equilibria are linear thus the collision strategy does not alter the quality of
the method. We expect that all the tested methods match enough terms in order to maintain the
convergence of the reference method. However, two interwoven phenomena can take place. The first
is a modification of the convergence rate because of Dadap. Second, at some point, the term Dadap can
become non-negligible with respect to Eref .

7.1.1. The problem and the reference scheme

To this end, consider the linear advection equation with constant velocity V ∈ R (see Table 7.1) with
solution

u(t, x) = 1
(4πνt0)1/2 exp

(
−|x− V t|

2

4νt0

)
. (7.1)

We simulate using the following parameters: T = 2, t0 = 1, V = 0.5, ν = 0.005. For the sake of the
computation, we consider a bounded domain [−3, 3] with copy boundary conditions. The numerical
scheme we adapt is a D1Q2 with velocities c0 = 1 and c1 = −1 with change of basis and relaxation
matrix given by

M =
(

1 1
λ −λ

)
, S = diag(0, s).

Taking m1,eq = V m0, it has been theoretically shown [11] (conditionally for the `∞ norm and uncon-
ditionally for the `2 norm) and numerically verified [22] that the scheme converges linearly towards
the solution (7.1) for s ∈]0, 2[ and quadratically for s = 2 as ∆x→ 0. In this test, we take λ = 1.

7.1.2. Results and discussion

The test is conducted fixing the difference between the maximum level L and the minimum level L,
at which we perform the computation, either at ∆`min = 2 or ∆`min = 6 for two different relaxation
parameters, namely s = 1 and s = 2. We progressively increase the maximum level L to observe
the convergence of the reference scheme towards the solution and to study how the adaptive schemes
behave in such a situation.

The results are provided on Table 7.2 and 7.3 for ∆`min = 2 and on Tables 7.4 and 7.5 for ∆`min = 6.
Moreover, they are also presented in a more effective way on Figures 7.1 and 7.2. In all of them, we
observe the expected behavior of the reference scheme, converging linearly for s = 1 and quadratically
for s = 2. Let us comment on the behavior of each adaptive strategy:

• Multiresolution scheme for γ = 0. In the case where the reference method is first-order
convergent (s = 1), we observe that ELadap is also first-order convergent but, especially for
∆`min = 6, Dadap dominates against Eref , which is the reason why the green full line and
the green dashed lines are not superposed in Figure 7.1. Moreover, this is the reason why
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Figure 7.1. Results for the test 1 with the 1D linear advection equation taking
∆`min = 2 and s = 1. As expected, Dadap = O(∆x) for γ = 0, Dadap = O(∆x3) for
γ = 1 and Dadap = O(∆x2) for Lax–Wendroff. All ELadap = O(∆x).

Table 7.2. Test 1 for the 1D linear advection equation taking ∆`min = 2 and s = 1.

Haar γ = 0 γ = 1 Lax–Wendroff

L Eref EL

adap EL
adap Dadap EL

adap EL
adap Dadap EL

adap EL
adap Dadap

3 1.20e+0 1.21e+0 1.09e+0 8.92e-1 8.41e-1 1.06e+0 8.31e-1 8.58e-1 1.07e+0 8.40e-1
4 1.01e+0 (0.25) 1.43e+0 1.41e+0 7.04e-1 (0.34) 1.07e+0 1.16e+0 2.30e-1 (1.85) 1.13e+0 1.23e+0 3.95e-1 (1.09)
5 7.93e-1 (0.35) 1.24e+0 1.29e+0 6.73e-1 (0.06) 9.27e-1 8.89e-1 1.12e-1 (1.04) 9.55e-1 9.26e-1 2.66e-1 (0.57)
6 5.67e-1 (0.48) 1.08e+0 1.09e+0 6.22e-1 (0.11) 6.21e-1 6.07e-1 5.02e-2 (1.16) 6.19e-1 6.11e-1 1.48e-1 (0.84)
7 3.71e-1 (0.61) 8.68e-1 8.66e-1 5.41e-1 (0.20) 3.86e-1 3.83e-1 1.67e-2 (1.59) 3.81e-1 3.80e-1 7.16e-2 (1.05)
8 2.22e-1 (0.74) 6.37e-1 6.37e-1 4.31e-1 (0.33) 2.26e-1 2.25e-1 4.02e-3 (2.05) 2.24e-1 2.24e-1 2.88e-2 (1.31)
9 1.24e-1 (0.84) 4.29e-1 4.29e-1 3.09e-1 (0.48) 1.25e-1 1.25e-1 7.26e-4 (2.47) 1.25e-1 1.24e-1 9.79e-3 (1.56)
10 6.61e-2 (0.91) 2.64e-1 2.64e-1 1.99e-1 (0.64) 6.62e-2 6.62e-2 1.04e-4 (2.80) 6.62e-2 6.61e-2 2.93e-3 (1.74)
11 3.42e-2 (0.95) 1.51e-1 1.51e-1 1.17e-1 (0.77) 3.42e-2 3.42e-2 1.24e-5 (3.06) 3.42e-2 3.42e-2 8.10e-4 (1.86)
12 1.74e-2 (0.97) 8.13e-2 8.13e-2 6.39e-2 (0.87) 1.74e-2 1.74e-2 2.27e-6 (2.46) 1.74e-2 1.74e-2 2.13e-4 (1.92)

for s = 2, despite the fact that Eref converges quadratically, ELadap converges only linearly
due to the limitations imposed by the convergence ratio of Dadap. In this case, we showcase
the resulting equivalent equation when utilizing the expansion (5.3) with the specific collision
phase pertaining to the present test, using the procedure detailed in [13, 15]. This is

∂tm
0 + V ∂xm

0 − ∆x
λ

(1
2 −

1
s

)
(V 2 − λ2)∂xxm0 − λ∆x

2 (2∆` − 1)∂xxm0 = O(∆x2).
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Figure 7.2. Results for the test 1 with the 1D linear advection equation taking
∆`min = 2 and s = 2. As expected, Dadap = O(∆x) for γ = 0, thus ELadap = O(∆x),
Dadap = O(∆x3) for γ = 1, thus ELadap = O(∆x2) and Dadap = O(∆x2) for Lax–
Wendroff, thus ELadap = O(∆x2).

Table 7.3. Test 1 for the 1D linear advection equation taking ∆`min = 2 and s = 2.

Haar γ = 0 γ = 1 Lax–Wendroff

L Eref EL

adap EL
adap Dadap EL

adap EL
adap Dadap EL

adap EL
adap Dadap

3 1.27e+0 1.15e+0 1.08e+0 9.96e-1 9.20e-1 1.09e+0 8.29e-1 8.56e-1 1.08e+0 9.70e-1
4 7.53e-1 (0.75) 1.37e+0 1.37e+0 1.07e+0 (-0.10) 9.20e-1 1.09e+0 8.29e-1 (0.00) 1.22e+0 1.36e+0 9.59e-1( 0.02)
5 2.03e-1 (1.89) 1.20e+0 1.23e+0 1.20e+0 (-0.16) 7.54e-1 7.09e-1 6.64e-1 (0.32) 1.09e+0 1.07e+0 9.85e-1(-0.04)
6 5.06e-2 (2.01) 1.01e+0 1.02e+0 1.02e+0 ( 0.24) 3.00e-1 3.05e-1 2.96e-1 (1.17) 6.13e-1 6.09e-1 5.84e-1( 0.75)
7 1.27e-2 (2.00) 7.91e-1 7.92e-1 7.91e-1 ( 0.36) 7.48e-2 7.27e-2 6.98e-2 (2.09) 2.23e-1 2.22e-1 2.11e-1( 1.47)
8 3.17e-3 (2.00) 5.67e-1 5.67e-1 5.67e-1 ( 0.48) 1.17e-2 1.12e-2 1.03e-2 (2.77) 5.99e-2 5.98e-2 5.67e-2( 1.90)
9 7.92e-4 (2.00) 3.71e-1 3.71e-1 3.71e-1 ( 0.61) 1.68e-3 1.54e-3 1.25e-3 (3.03) 1.52e-2 1.52e-2 1.44e-2( 1.98)
10 1.98e-4 (2.00) 2.22e-1 2.22e-1 2.22e-1 ( 0.74) 2.75e-4 2.45e-4 1.41e-4 (3.15) 3.80e-3 3.80e-3 3.60e-3( 2.00)
11 4.95e-5 (2.00) 1.24e-1 1.24e-1 1.24e-1 ( 0.84) 5.57e-5 5.09e-5 1.46e-5 (3.27) 9.49e-4 9.49e-4 9.00e-4( 2.00)
12 1.24e-5 (2.00) 6.61e-2 6.61e-2 6.61e-2 ( 0.91) 1.29e-5 1.23e-5 2.34e-6 (2.64) 2.37e-4 2.37e-4 2.25e-4( 2.00)

Once more, this shows that even for s = 2, if ∆` ≥ 1, the LBM-MR scheme is only first-order
consistent with the target equation.

• Multiresolution scheme for γ = 1. We observe that in any case the convergence rate of
Dadap is third-order. Therefore, we always obtain the same convergence rate of Eref for ELadap.
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Table 7.4. Test 1 for the 1D linear advection equation taking ∆`min = 6 and s = 1.

Haar γ = 0 γ = 1 Lax–Wendroff

L Eref EL

adap EL
adap Dadap EL

adap EL
adap Dadap EL

adap EL
adap Dadap

7 3.71e-1 1.20e+0 1.08e+0 1.05e+0 7.52e-1 1.07e+0 1.00e+0 1.22e+0 1.14e+0 1.08e+0
8 2.22e-1 (0.74) 1.44e+0 1.41e+0 1.31e+0 (-0.32) 1.03e+0 1.28e+0 1.09e+0 (-0.12) 1.83e+0 1.95e+0 1.79e+0 (-0.73)
9 1.24e-1 (0.84) 1.25e+0 1.30e+0 1.23e+0( 0.10) 7.71e-1 7.37e-1 6.23e-1( 0.81) 1.62e+0 1.65e+0 1.55e+0( 0.21)
10 6.61e-2 (0.91) 1.10e+0 1.11e+0 1.06e+0( 0.21) 2.12e-1 2.03e-1 1.53e-1( 2.03) 7.59e-1 7.61e-1 7.13e-1( 1.12)
11 3.42e-2 (0.95) 8.88e-1 8.85e-1 8.58e-1( 0.30) 4.71e-2 4.47e-2 1.89e-2( 3.01) 2.34e-1 2.33e-1 2.18e-1( 1.71)
12 1.74e-2 (0.97) 6.57e-1 6.57e-1 6.41e-1( 0.42) 1.90e-2 1.80e-2 1.94e-3( 3.28) 6.17e-2 6.16e-2 5.79e-2( 1.91)

Table 7.5. Test 1 for the 1D linear advection equation taking ∆`min = 6 and s = 2.

Haar γ = 0 γ = 1 Lax–Wendroff

L Eref EL

adap EL
adap Dadap EL

adap EL
adap Dadap EL

adap EL
adap Dadap

7 1.27e-2 1.20e+0 1.08e+0 1.08e+0 7.47e-1 1.07e+0 1.07e+0 1.22e+0 1.14e+0 1.14e+0
8 3.17e-3 (2.00) 1.44e+0 1.41e+0 1.41e+0 (-0.38) 1.05e+0 1.31e+0 1.31e+0 (-0.29) 1.86e+0 1.98e+0 1.98e+0 (-0.80)
9 7.92e-4 (2.00) 1.25e+0 1.30e+0 1.30e+0( 0.12) 7.84e-1 7.65e-1 7.65e-1( 0.77) 1.68e+0 1.72e+0 1.72e+0( 0.20)
10 1.98e-4 (2.00) 1.10e+0 1.10e+0 1.10e+0( 0.23) 2.00e-1 1.94e-1 1.94e-1( 1.98) 8.05e-1 8.07e-1 8.07e-1( 1.09)
11 4.95e-5 (2.00) 8.84e-1 8.82e-1 8.82e-1( 0.32) 2.33e-2 2.22e-2 2.22e-2( 3.13) 2.41e-1 2.41e-1 2.41e-1( 1.74)
12 1.24e-5 (2.00) 6.53e-1 6.53e-1 6.53e-1( 0.43) 2.57e-3 2.12e-3 2.12e-3( 3.39) 6.09e-2 6.11e-2 6.11e-2( 1.98)

• Lax–Wendroff scheme. Since the convergence rate of Dadap is second-order, we always ob-
serve no alteration of the convergence rate of the reference scheme by the adaptive method.

Finally, observe that for any method the convergence rates of Dadap are erratic for small L allegedly
because Taylor expansions are not fully legitimate for coarse resolutions. These numerical experiments
confirm the theoretical study and show that the adaptive method should match enough terms to avoid
alterations of the convergence rates of the reference scheme. In particular, if the reference method
converges at order s, the adaptive stream phase must match at least at order s as well.

7.2. 1D linear advection-diffusion equation

In this test case, the choice of collision phase still does not play any role because of the linearity.
However, the reference method is not longer convergent because the relaxation parameters are adjusted
to recover the right diffusion terms (see [6] for the pure diffusion equation). Despite this lack of
convergence, the aim of the simulations is to show that the LBM-MR scheme for γ = 0 is not accurate
enough to reproduce the physics of the reference algorithm. Moreover, we shall observe that the Lax–
Wendroff scheme correctly accounts for the diffusion terms but can introduce spurious oscillations due
to the lack of matching of the third-order terms. This is not the case for the LBM-MR scheme with
γ = 1.

7.2.1. The problem and the reference scheme

Consider the solution of the linear advection-diffusion equation (see Table 7.1) where V ∈ R is the
advection velocity and ν > 0 is the diffusion coefficient

u(t, x) = 1
(4πν(t0 + t))1/2 exp

(
− |x− V t|

2

4ν(t0 + t)

)
. (7.2)

The parameters of the problem and the computational domain are the same as in the previous Sec-
tion 7.1. We consider a D1Q3 scheme with velocities c0 = 0, c1 = 1 and c2 = −1 with change of basis
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and relaxation matrix given by

M =

1 1 1
0 λ −λ
0 λ2/2 λ2/2

 , S = diag(0, sv, sw).

The scheme is determined by λ = 1, the equilibria m1,eq = V m0 and m2,eq = κm0, with κ = 0.5
and sv = (1/2 + λν/(∆x(2κ − V 2)))−1 and sw = 1. It is in general not convergent, because we are
making sv → 0 as ∆x→ 0 in order to obtain the right diffusion structure.

7.2.2. Results and discussion

Since we are no longer interested in convergence, we take a fixed L = 11 and we vary the minimum
level at which we perform computations. The results are given on Table 7.6 and the solution at final
time T for some ∆`min is shown on Figure 7.3. We observe that:

• Multiresolution scheme for γ = 0. The inertial term (advection) is correctly represented
in accordance with the theoretical analysis for any ∆`min, because the packet is transported
at the right velocity until reaching the point x = 1. Nevertheless, the dissipative (diffusion)
term is not correct because we have an excess of diffusion as long as ∆`min grows. This was
predicted by the theoretical framework. Even if the dispersive term is not matched either, this
does not affect the stability of the method because of the large amount of available numerical
diffusion. As expected, Dadap is not negligible compared to Eref for any ∆`min ≥ 1.

• Multiresolution scheme for γ = 1. We observe that both the inertial (advection) and dissi-
pative (diffusion) term are correctly represented. Moreover, according to our intuition, since the
dispersive terms are untouched compared to the target expansion (5.1), the adaptive method
remains stable when the reference method is stable. Looking at the errors more carefully, we
see that the additional error Dadap is negligible compared to Eref for ∆`min < 6 or 7.

• Lax–Wendroff scheme. It correctly matches the inertial and dissipative phenomena. Nev-
ertheless, as ∆`min grows, we observe the formation of spurious oscillations and the packet is
not perfectly centered at x = 1. This is allegedly due to the modification of the third-order
dispersion as theoretically observed. For the tested case, this is not enough to induce insta-
bilities. This shows that this adaptive method can be subjected to instabilities even when the
reference method is stable because of the modification of the dispersion. The additional error
Dadap is negligible compared to Eref for ∆`min < 3 or 4.

Once again, the theoretical analysis is fully corroborated by the numerical behavior of the schemes
and show that, even in this quite simple framework, LBM-MR schemes for γ ≥ 1 are the most reliable
ones.
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Table 7.6. Test 2 for the 1D Linear advection diffusion equation taking L = 11 and
performing the computation using a mesh at level L as indicated.

Haar γ = 0 γ = 1 Lax–Wendroff

∆`min ELadap ELadap Dadap ELadap ELadap Dadap ELadap ELadap Dadap

0 1.94e-2 1.94e-2 0.00e+0 1.94e-2 1.94e-2 0.00e+0 1.94e-2 1.94e-2 0.00e+0
1 2.30e-2 2.30e-2 1.55e-2 1.94e-2 1.94e-2 7.88e-7 1.94e-2 1.94e-2 3.63e-5
2 4.68e-2 4.68e-2 4.52e-2 1.94e-2 1.94e-2 3.41e-6 1.92e-2 1.92e-2 1.82e-4
3 9.92e-2 9.92e-2 9.94e-2 1.94e-2 1.94e-2 1.31e-5 1.87e-2 1.87e-2 7.63e-4
4 1.91e-1 1.91e-1 1.92e-1 1.94e-2 1.94e-2 5.40e-5 1.65e-2 1.65e-2 3.09e-3
5 3.33e-1 3.33e-1 3.34e-1 1.93e-2 1.93e-2 2.78e-4 8.18e-3 8.32e-3 1.24e-2
6 5.25e-1 5.24e-1 5.26e-1 1.84e-2 1.84e-2 1.74e-3 3.11e-2 3.16e-2 5.03e-2
7 7.51e-1 7.47e-1 7.48e-1 1.10e-2 1.07e-2 1.89e-2 1.93e-1 1.96e-1 2.15e-1

0 1 2

x

0.0

0.5

1.0

1.5

2.0

2.5
Haar wavelet γ = 0

∆`min =4
∆`min =5
∆`min =6
∆`min =7

0 1 2

x

γ = 1

0 1 2

x

Lax-Wendroff

Figure 7.3. Solution in test 2 (on a chosen sector of the domain [−3, 3]) at the final
time T of the 1D linear advection-diffusion equation for different ∆`min and schemes.
We observe unmatched diffusivity for γ = 0, excellent agreement for γ = 1 and good
agreement but spurious oscillations for Lax–Wendroff.

7.3. 1D viscous Burgers equation

We now turn to a non-linear problem. In this case, the choice of model for the collision phase is no
longer negligible and shall be studied at the very end of the work in Section 7.6. For the moment,
we aim at proving that our previous analysis is still meaningful in this context upon verification of
the smoothness assumption. Indeed, we see that in the case of singularities the previous analysis is
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Table 7.7. Test 3 for the 1D viscous Burgers equation taking L = 11 and ν = 0.05
(large diffusion) and performing the computation using a mesh at level L as indicated.

Haar γ = 0 γ = 1 Lax–Wendroff

∆`min ELadap ELadap Dadap ELadap ELadap Dadap ELadap ELadap Dadap

0 1.23e-2 1.23e-2 0.00e+0 1.23e-2 1.23e-2 0.00e+0 1.23e-2 1.23e-2 0.00e+0
1 1.24e-2 1.24e-2 9.99e-4 1.23e-2 1.23e-2 1.88e-7 1.23e-2 1.23e-2 1.60e-6
2 1.27e-2 1.27e-2 2.99e-3 1.23e-2 1.23e-2 9.34e-7 1.23e-2 1.23e-2 8.02e-6
3 1.41e-2 1.41e-2 6.95e-3 1.23e-2 1.23e-2 3.89e-6 1.23e-2 1.23e-2 3.37e-5
4 1.94e-2 1.94e-2 1.48e-2 1.23e-2 1.23e-2 1.57e-5 1.22e-2 1.22e-2 1.36e-4
5 3.26e-2 3.25e-2 3.00e-2 1.23e-2 1.23e-2 6.30e-5 1.19e-2 1.19e-2 5.48e-4
6 6.04e-2 6.03e-2 5.90e-2 1.23e-2 1.23e-2 2.60e-4 1.08e-2 1.09e-2 2.20e-3
7 1.13e-1 1.13e-1 1.12e-1 1.22e-2 1.22e-2 1.18e-3 8.32e-3 8.62e-3 9.08e-3

Table 7.8. Test 3 for the 1D viscous Burgers equation taking L = 11 and ν = 0.005
(small diffusion) and performing the computation using a mesh at level L as indicated.

Haar γ = 0 γ = 1 Lax–Wendroff

∆`min ELadap ELadap Dadap ELadap ELadap Dadap ELadap ELadap Dadap

0 5.31e-3 5.31e-3 0.00e+0 5.31e-3 5.31e-3 0.00e+0 5.31e-3 5.31e-3 0.00e+0
1 4.96e-3 4.96e-3 1.16e-3 5.31e-3 5.31e-3 3.47e-6 5.29e-3 5.29e-3 2.72e-5
2 4.62e-3 4.61e-3 3.41e-3 5.31e-3 5.31e-3 2.34e-5 5.21e-3 5.22e-3 1.38e-4
3 6.81e-3 6.78e-3 7.76e-3 5.28e-3 5.30e-3 1.41e-4 4.90e-3 4.92e-3 6.17e-4
4 1.48e-2 1.47e-2 1.64e-2 5.28e-3 5.31e-3 8.63e-4 4.54e-3 4.58e-3 3.54e-3
5 3.23e-2 3.20e-2 3.34e-2 5.92e-3 6.14e-3 6.08e-3 1.43e-2 1.48e-2 1.70e-2
6 6.67e-2 6.49e-2 6.57e-2 2.91e-2 3.36e-2 3.37e-2 9.97e-2 1.05e-1 1.04e-1
7 1.07e-1 1.24e-1 1.25e-1 2.55e-1 2.45e-1 2.42e-1 8.03e-1 8.18e-1 8.19e-1

no longer well-grounded due to the lack of smoothness and we thus understand the strong interest of
dynamic mesh adaptation using multiresolution, discussed in Section 7.5.

7.3.1. The problem and the reference scheme

Consider the solution of the viscous Burgers equation (see Table 7.1) given by

u(t, x) =
√

4ν
t

∫+∞
−∞ η exp

[
− 1

4ν erf
(

x√
4νt0
−
√

t
t0
η
)]
e−η

2dη∫+∞
−∞ exp

[
− 1

4ν erf
(

x√
4νt0
−
√

t
t0
η
)]
e−η2dη

,

where the exact solution has been obtained following [26] and the integrals with weight e−η2 shall
be approximated by Gauss–Hermite formulæ with one hundred points. We consider T = 1, t0 = 1
and either ν = 0.05 (large diffusion) or ν = 0.005 (small diffusion) for the continuum problem. The
computational domain is [−3, 3] with copy boundary conditions. We again use a D1Q3 as in Section 7.2.
The scheme is determined by λ = 4, the equilibria m1,eq = (m0)2/2 and m2,eq = (m0)3/6 + κm0/2,
with κ = 4 (large diffusion) and κ = 1 (small diffusion) and sv = (1/2 + λν/(∆xκ))−1 and sw = 1.

7.3.2. Results and discussion

We first perform the same kind of test than in Section 7.2 and the results are on Table 7.8 and 7.7
and Figure 7.4 and 7.5. We point out the following facts:

187



T. Bellotti, L. Gouarin, et al.

−2 0 2

x

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
Haar wavelet γ = 0

∆`min =4
∆`min =5
∆`min =6
∆`min =7

−2 0 2

x

γ = 1

−2 0 2

x

Lax-Wendroff

Figure 7.4. Solution in test 3 (on a chosen sector of the domain [−3, 3]) at the final
time T of the 1D viscous Burgers equation with ν = 0.05 (large diffusion) for different
∆`min and schemes. We remark wrong diffusivity for γ = 0 and reliable results for
γ = 1 and Lax–Wendroff.

• Multiresolution scheme for γ = 0. In the case of large diffusion, we see that the method
adds much numerical diffusion yielding unreliable results. On the other hand, for the small
diffusion, the result seems good from a graphic point of view because of the secondary role of
diffusion on the shape of the solution. However, the discrepancies from the reference scheme
are important in both cases. Compared to the other strategies, the difference with respect to
the reference algorithm is larger, as expected: starting from ∆`min = 3 (for large diffusion) and
∆`min = 2 (for small diffusion), the term Dadap can no longer be neglected.

• Multiresolution scheme for γ = 1. The plots of the solution show that it agrees well with
the expected one. We can notice a slight crushing of the solution for the large diffusion which
can be considered a fourth order effect. In the case of small diffusion, despite the fact that
the reference scheme does not oscillate close to the steep zone of the solution, we see that the
adaptive method does so for large ∆`min. This cannot be due to third-order terms, since they
are matched, so one may argue that these are fifth-order effects (not likely) or the consequence
of the fact that we are no longer allowed to perform Taylor expansions either because the
spatial step is too large or because the solution is not smooth enough. Indeed, as already said,
this is the proof that using a fixed coarsened mesh is not a good approach to deal with moving
singularities. This context calls for dynamically adapted meshes and error control. Still, the
difference with the reference scheme is minimized for this choice of reconstruction and the
impact of the adaptive scheme can be neglected for any ∆`min for the large diffusion and until
∆`min = 4 for the small diffusion.
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Figure 7.5. Solution in test 3 (on a chosen sector of the domain [−3, 3]) at the final
time T of the 1D viscous Burgers equation with ν = 0.005 (small diffusion) for different
∆`min and schemes. All the methods produce spurious oscillations since the solution
lacks of smoothness. These oscillations are slightly damped for γ = 0 by virtue of the
large numerical diffusion.

• Lax–Wendroff scheme. The result for the large diffusion seems reliable, even if the method
slightly “overshoots” the exact solution allegedly due to the third-order mismatch. On the
other hand, the test with small diffusion clearly shows that the method perturbs the dispersive
terms at third order, inducing oscillations near the kinky zones of the solution. Compared to
the reference solution, the behavior of the Lax–Wendroff scheme is situated half-way between
those for γ = 0 and γ = 1, as expected. in particular, the impact of the adaptive stream is
negligible until ∆`min = 7 (for large diffusion) and ∆`min = 3 (for small diffusion).

For each stream strategy, we see that Dadap stops to be negligible compared Eref earlier for the small
diffusion than for the large. This is coherent with the fact that the solution develops more high-
frequency modes. Moreover, one limiting factor of the theoretical analysis are the implicit smoothness
assumptions on the solutions. In the case where the solution is close to singular and especially for large
∆`min, the behavior of the numerical scheme on a uniform coarsened mesh deviates from the theoretical
predictions because the smoothness assumption is not valid. From a multiresolution perspective, the
lack of smoothness translates into the fact that the details of the solution at the finest level L are not
small close to the blowup.
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7.4. 2D linear advection-diffusion equation

Before ending with a demonstration with mesh adaptation and a study on the influence of the collision
phase on the quality of the numerical solution, we repeat the test of Section 7.2 for d = 2, to corroborate
the extension of the previous analysis to the multidimensional setting done in Section 6. We selected
a quite “rich” numerical model in terms of degrees of freedom to show the generality of our analysis.

7.4.1. The problem and the reference scheme

The target equation is the same as (7.2) just taking d = 2 (see Table 7.1), therefore the solution is

u(t,x) = 1
4πν(t0 + t) exp

(
−|x− V t|

2

4ν(t0 + t)

)
.

The scheme we use is the D2Q9 with velocities given by

cα =


(0, 0), α = 0,(
cos

(
π
2 (α− 1)

)
, sin

(
π
2 (α− 1)

))
, α = 1, 2, 3, 4,(

cos
(
π
2 (α− 5) + π

4
)
, sin

(
π
2 (α− 5) + π

4
))
, α = 5, 6, 7, 8,

with the moments by Lallemand and Luo [25] relaxing with S = diag(0, s, s, 1, 1, 1, 1, 1, 1)

M =



1 1 1 1 1 1 1 1 1
0 λ 0 −λ 0 λ −λ −λ λ
0 0 λ 0 −λ λ λ −λ −λ
−4λ2 −λ2 −λ2 −λ2 −λ2 2λ2 2λ2 2λ2 2λ2

0 −2λ3 0 2λ3 0 λ3 −λ3 −λ3 λ3

0 0 −2λ3 0 2λ3 λ3 λ3 −λ3 −λ3

4λ4 −2λ4 −2λ4 −2λ4 −2λ4 λ4 λ4 λ4 λ4

0 λ2 −λ2 λ2 −λ2 0 0 0 0
0 0 0 0 0 λ2 −λ2 λ2 −λ2


,

with s = (1/2 + 3ν/(λ∆x))−1 to enforce the diffusivity. The equilibria are based on the second-order
expansion of the Maxwellian as in [18]

m1,eq = Vxm
0, m2,eq = Vym

0, m3,eq = (−2λ2 + 3|V |2)m0,

m4,eq = −λ2Vxm
0, m5,eq = −λ2Vym

0, m6,eq = (λ4 − 3λ2|V |2)m0,

m7,eq = (V 2
x − V 2

y )m0, m8,eq = VxVym
0.

The parameters of the problem are T = 0.5, t0 = 1, Vx = 0.5, Vy = 0.5, ν = 0.005, λ = 1. The
computation is done on the bounded domain [−1/2, 1]2.

7.4.2. Results and discussion

We perform the same kind of test than for the unidimensional problem, by taking L = 9 and using dif-
ferent minimum levels L. The full results are on Table 7.9 and some plots of the solution in Figures 7.6
and 7.7. We observe the following facts:

• Multiresolution scheme for γ = 0. As one expects, the diffusion term is not correctly
handled. This results in a non-negligible additional error Dadap in Table 7.9 and Figure 7.7
clearly shows that the packet is crushed way too rapidly. It is also interesting to notice that since
the most important contribution to Dadap is an additional isotropic diffusion, the structure of
Dadap (see the white contours on Figure 7.6) is essentially isotropic.
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Figure 7.6. Spatial patterns of Dadap in test 4 at the final time T with logarithmic
(to compare γ = 0, 1 and Lax–Wendroff) color-scale for each choice of ∆`min. We also
plot ten isocontours to show the main trends which are hidden behind the logarithmic
scale. We notice the isotropic behavior for γ = 0, 1, whereas Dadap is highly anisotropic
for Lax–Wendroff as consequence of the alteration of the dispersive terms.

• Multiresolution scheme for γ = 1. On the other hand, this method successfully copes with
the diffusion phenomena, being able to have a negligible Dadap until ∆`min = 5. Figure 7.7
shows a very good agreement with the expected solution and Figure 7.6 shows that the dis-
crepancies from the reference scheme are essentially isotropic, since made up of fourth-order
terms, with additional rapidly oscillatory terms when ∆`min increases. This creates the dense
amount of contours we can observe.

• Lax–Wendroff scheme. Again as expected, the method does not alter the diffusion terms but
Dadap starts to be a dominant term earlier than for γ = 1, namely around ∆`min = 3. This can
be also understood when looking at Figure 7.7, where one clearly notices the alteration of the
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Figure 7.7. Solution of test 4 on a diagonal cut at the final time T of the 2D linear
advection diffusion equation for different ∆`min and schemes. We stress the unmatched
diffusivity for γ = 0, the excellent agreement for γ = 1 and the good agreement but
the spurious oscillations for Lax–Wendroff.

Table 7.9. Test 4 for the 2D linear advection diffusion equation taking L = 9 and
performing the computation using a mesh at level L as indicated.

Haar γ = 0 γ = 1 Lax–Wendroff

∆`min ELadap ELadap Dadap ELadap ELadap Dadap ELadap ELadap Dadap

0 4.86e-2 4.86e-2 0.00e+0 4.86e-2 4.86e-2 0.00e+0 4.86e-2 4.86e-2 0.00e+0
1 4.61e-2 4.61e-2 2.79e-2 4.86e-2 4.86e-2 9.42e-5 4.80e-2 4.80e-2 8.20e-4
2 7.60e-2 7.58e-2 8.06e-2 4.86e-2 4.87e-2 3.89e-4 4.55e-2 4.56e-2 4.09e-3
3 1.65e-1 1.64e-1 1.75e-1 4.83e-2 4.87e-2 1.62e-3 3.66e-2 3.71e-2 1.71e-2
4 3.19e-1 3.16e-1 3.29e-1 4.64e-2 4.82e-2 7.49e-3 3.69e-2 4.01e-2 6.90e-2
5 5.47e-1 5.38e-1 5.51e-1 3.69e-2 4.99e-2 4.94e-2 2.27e-1 2.39e-1 2.82e-1
6 8.22e-1 8.16e-1 8.26e-1 4.44e-1 4.74e-1 5.14e-1 9.29e-1 1.00e+0 1.04e+0

third order terms which induces a dispersive effect. This can also be seen on Figure 7.6, where
the dispersive effect shows to be non-isotropic and linked with the propagation of the packet
in space at finite velocity. Once ∆`min increases, we still observe, though way less intensely
than for γ = 1, the development of high-frequency components of Dadap.

7.5. Mesh adaptation

The actual mesh adaptation by multiresolution is not the main subject of this work but we have seen
in Section 7.3 that it is really needed in some situations. In particular, we want to look at the fact
that the adaptive scheme is accurate enough to allow, even if the initial mesh is quite coarsened with
respect to the finest level L, to progressively refine the mesh when steep gradients occur, as in the
solution of the viscous Burgers equation in Section 7.3. This is the only test of this paper where mesh
adapted by multiresolution are used. To this end, we consider γ = 1 and we apply our multiresolution
algorithm (3.6) to perform mesh adaptation at each time step using ε = 0.0001 and µ = 2.

192



analysis of the LBM-MR schemes via the equivalent equations

−2 −1 0 1 2

x

0.0

0.5

1.0

u
(0
,x

)

−2 −1 0 1 2

x

0
1
2
3
4
5
6
7

∆
`(

0
,x

)

−2 −1 0 1 2

x

0.0

0.5

1.0

u
(T
,x

)

−2 −1 0 1 2

x

0
1
2
3
4
5
6
7

∆
`(
T
,x

)

Figure 7.8. Solution of test 4 at the initial and final time T of the 1D viscous Burgers
equation with ν = 0.05 (large diffusion) for γ = 1 using adaptive multiresolution with
ε = 0.0001. The exact solution is traced in black.

7.5.1. Results and discussion

Looking at the result on Figure 7.8 for the large diffusion, we observe that the finest reached level
(namely with ∆` = 4) is the same at the beginning and at the end of the simulation. This happens
because the smoothness of the solution does not change as time advances and therefore the magnitude
of the details remain essentially the same. In this case, we have already seen in Section 7.3 that a
uniform coarsened mesh is sufficient to correctly follow the dynamics and that the theoretical analysis
using Taylor expansions is legitimate.

On the other hand in the case of small diffusion, we observe on Figure 7.9 that the expectations
are met: the initial Gaussian datum is regular enough to coarsen the mesh everywhere. However,
the adaptive scheme correctly captures the dynamics of the solution and multiresolution eventually
puts more and more refined grids to correctly follow these structures. The final solution is close to be
singular, we see that we also reach the finest level L close to the steep areas of the solution, where details
have really changed order of magnitude. This demonstrates, on one side, that the numerical scheme
is reliable enough to compensate possible losses of information induced by the mesh coarsening (3.6)
via multiresolution and, on the other side, that the interest of the theoretical analysis and the use of
fixed meshes is limited to smooth solutions. For singular solutions, a dynamic refinement algorithm is
actually needed.

193



T. Bellotti, L. Gouarin, et al.

−1 0 1 2

x

0

2

4

u
(0
,x

)

−1 0 1 2

x

0
1
2
3
4
5
6
7

∆
`(

0
,x

)

−1 0 1 2

x

0.0

0.5

1.0

1.5

u
(T
,x

)

−1 0 1 2

x

0
1
2
3
4
5
6
7

∆
`(
T
,x

)

Figure 7.9. Solution of test 4 at the initial and final time T of the 1D viscous Burgers
equation with ν = 0.005 (small diffusion) for γ = 1 using adaptive multiresolution with
ε = 0.0001. The exact solution is traced in black.

7.6. Influence of the collision operator

Before concluding, we want to study the influence of the choice of collision algorithm on the quality of
the outcome of our numerical method. In particular, we want to elucidate if the collision phase must be
performed on the finest level of resolution L or not. The conclusion is that the more involved collision
strategies (LBM-MR-RC and LBM-PQC) are only marginally more accurate than the plain LBM-
MR-LC, thus not totally viable, from our understanding, due to their intensive computational cost.
We repeat the first simulation of Section 7.3, which was the only non-linear one we have done in this
work, using γ = 1, which have proved to be the most reliable stream approximation between those we
analyzed. This is coupled with the LBM-MR-LC, the LBM-MR-RC and the LBM-MR-PQC collision
techniques with a Gauss–Legendre quadrature of order five, see [1]. On the reference interval [−1, 1],
this corresponds to the quadrature points and weights (x̃1, w̃1) = (−

√
3/5, 5/9), (x̃2, w̃2) = (0, 8/9)

and (x̃3, w̃3) = (
√

3/5, 5/9).

7.6.1. Results and discussion

The result in the case of large diffusion is given in Table 7.10. We observe that for this smooth solution,
the additional error Dadap induced by the collision performed on the leaves is slightly larger (about
1.5 times) than those for the reconstructed collision and the predict-and-quadrate collision. Still, all
the errors have the same order of magnitude. On the other hand, the predict-and-quadrate method
behaves almost like the reconstructed method except for ∆`min = 0 where it does not have Dadap = 0
because the method does not perfectly coincide with the reference one.
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Table 7.10. Test 4 for the 1D viscous Burgers equation taking L = 11 and ν = 0.05
(large diffusion) and performing the computation using a mesh at level L as indicated.
This is a comparison between different collision strategies, contrarily to Table 7.7 (some
results coincide).

LBM-MR-LC LBM-MR-RC LBM-MR-PQC

∆`min ELadap ELadap Dadap ELadap ELadap Dadap ELadap ELadap Dadap

0 1.23e-2 1.23e-2 0.00e+0 1.23e-2 1.23e-2 0.00e+0 1.23e-2 1.23e-2 5.18e-8
1 1.23e-2 1.23e-2 1.88e-7 1.23e-2 1.23e-2 1.14e-7 1.23e-2 1.23e-2 1.27e-7
2 1.23e-2 1.23e-2 9.34e-7 1.23e-2 1.23e-2 5.70e-7 1.23e-2 1.23e-2 5.76e-7
3 1.23e-2 1.23e-2 3.89e-6 1.23e-2 1.23e-2 2.40e-6 1.23e-2 1.23e-2 2.41e-6
4 1.23e-2 1.23e-2 1.57e-5 1.23e-2 1.23e-2 9.78e-6 1.23e-2 1.23e-2 9.79e-6
5 1.23e-2 1.23e-2 6.30e-5 1.23e-2 1.23e-2 4.06e-5 1.23e-2 1.23e-2 4.06e-5
6 1.23e-2 1.23e-2 2.60e-4 1.23e-2 1.23e-2 1.86e-4 1.23e-2 1.23e-2 1.86e-4
7 1.22e-2 1.22e-2 1.18e-3 1.22e-2 1.23e-2 9.97e-4 1.22e-2 1.23e-2 9.98e-4

Table 7.11. Test 4 for the 1D viscous Burgers equation taking L = 11 and ν = 0.005
(small diffusion) and performing the computation using a mesh at level L as indicated.
This is a comparison between different collision strategies, contrarily to Table 7.8 (some
results coincide).

LBM-MR-LC LBM-MR-RC LBM-MR-PQC

∆`min ELadap ELadap Dadap ELadap ELadap Dadap ELadap ELadap Dadap

0 5.31e-3 5.31e-3 0.00e+0 5.31e-3 5.31e-3 0.00e+0 5.31e-3 5.31e-3 1.19e-6
1 5.31e-3 5.31e-3 3.47e-6 5.31e-3 5.31e-3 2.79e-6 5.31e-3 5.31e-3 3.02e-6
2 5.31e-3 5.31e-3 2.34e-5 5.31e-3 5.31e-3 2.28e-5 5.31e-3 5.31e-3 2.29e-5
3 5.28e-3 5.30e-3 1.41e-4 5.28e-3 5.28e-3 1.43e-4 5.28e-3 5.28e-3 1.43e-4
4 5.28e-3 5.31e-3 8.63e-4 5.29e-3 5.27e-3 8.93e-4 5.29e-3 5.27e-3 8.93e-4
5 5.92e-3 6.14e-3 6.08e-3 5.75e-3 5.83e-3 5.73e-3 5.75e-3 5.84e-3 5.76e-3
6 2.91e-2 3.36e-2 3.37e-2 2.67e-2 3.11e-2 3.14e-2 2.67e-2 3.12e-2 3.15e-2
7 2.55e-1 2.45e-1 2.42e-1 2.37e-1 2.27e-1 2.23e-1 2.32e-1 2.22e-1 2.19e-1

Regarding the case of small diffusion in Table 7.11, we obtain similar results, with the collision
performed on the leaves (LBM-MR-LC) showing marginally larger additional errors. This test shows
that the LBM-MR-LC strategy can be regarded as reliable even for functions which do not behave
polynomially, as the solution we considered, and which can present steep fronts. If one desires a slightly
more qualitative collision strategy without significantly increase the computational cost, one may
consider the predict-and-quadrate strategy. Overall, the reconstructed collision, although guaranteeing
the most accurate results, is generally not a viable choice due to its cost and the fact that it provides
performances which are marginally better than the other cheaper strategies.

8. Conclusions

In this original contribution, we have shown how to apply the classical analysis based on the equivalent
equations introduced by Dubois [13] to the LBM-MR schemes developed in [4] and [3]. This is based
on the so-called “reconstruction flattening” procedure, which is thoroughly studied in the case of d = 1
and extended to the case d = 2.

Therefore, we are able to analyze the consistency of these methods with the target equations as for
standard LBM methods and to find the maximal order of compliance of the adaptive scheme with the
desired physics. In particular, our analysis has shown that the scheme based on the Haar wavelet is
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not accurate enough to handle the typical applications for which LBM schemes are designed, namely
the simulation of models involving both transport and diffusion terms. The Lax–Wendroff scheme
by [19] provides the minimal setting to utilize the most common LBM algorithms but it could yield
unpredictable behaviors of dispersive nature, which could threaten the stability of the method. The
multiresolution scheme for γ ≥ 1 proves to be the most reliable of the schemes we have analyzed, both
in terms of consistency and (quite likely) stability.

The analysis is valid for locally smooth solutions. This assumption is always met on grids adapted
via multiresolution because it guarantees a certain level of regularity of the solution at the local grid
level.

Our analysis has been validated using numerical simulations to solve scalar conservation laws, both
linear and non-linear, in 1D and 2D, showing excellent agreement between the empirical behavior
of the schemes and our asymptotic analysis. When the smoothness assumption was no longer valid
on the uniform coarsened mesh, the adaptive setting has proved to be the right one to restore the
validity of this assumption and to conclude on the reliability of the strategy through the previous
analysis. Moreover, we compared the outcome of our method against that of well-known works in
literature [18, 19, 20], showing that, even if for a slightly larger computational cost, our method
(for γ = 1) is consistently more reliable. Eventually, we have studied the role of different collision
strategies on non-linear problems to conclude that the cheap leaves collision is in general a good
choice and accuracy is only marginally affected.

Finally, let us mention the fact that we have worked on uniform grids in the present contribution in
order to reproduce the local environment around a given cell on general dynamically adaptive grids for
smooth solutions. However, within this framework, travelling waves or shock waves leading to a lower
level of regularity usually remain propagated at the finest level of mesh as in the previous example
(see Section 7.5) and thus never experience going through level jumps. However, when the mesh is
fixed in advance and a level jump is present, the solution obtained with lattice Boltzmann methods is
known to experience artificial reflections and spurious phenomena; this is known to be a challenging
problem. In fact, the formalism proposed in the present contribution allows to tackle this issue as well
but requires a somewhat different setting which we have proposed in another short contribution [2].
We can show that the reflected part of the wave is of small amplitude and can be controlled, as it is
proportional to ∆x4, when selecting γ = 1.
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Appendices

Proof of Proposition 6.2

Thanks to the construction of the prediction operator as tensorial product, introducing the following or-
der for the coefficients Cα

∆` := (Fα∆`,−2,−2, F
α

∆`,−1,−2, . . . , F
α

∆`,2,−2, F
α

∆`,−2,−1, . . . , F
α

∆`,2,−1, . . . , F
α

∆`,2,2)T ∈
R25. Inside this vector, the element Fα∆`,m,n has place 5(n+ 2) + (m+ 2) (from now on the indices of
vectors and matrices start from zero). We obtain that

Cα
∆` = (P ⊗ P )Cα

∆`−1.

Taking A ∈ Rm×n and B ∈ Rp×q, we have that (A ⊗B)i,j = Ai�p,j�q × Bi%p,j%q, where � denotes
the integer division and % the reminder of such division. Therefore

(P ⊗ P )i,j = Pi�5,j�5 × Pi%5,j%5.

We shall make use of the following Lemma

Lemma 8.1. Let j = 0, . . . , 4, then
∑m=+2
m=−2m

sPm+2,j = 21−s(j − 2)s for s = 0, 1, 2, 3.

Proof. Use direct computations on P analogous to those at the end of Proposition 5.4.

Let px, py = 0, . . . , 3 and proceed recursively. For ∆` = 0 the thesis holds because we check that∑m=+2
m=−2

∑n=+2
n=−2m

pxnpyFα0,m,n = (−cα,x)px(−cα,y)py . Now assume that the thesis holds for ∆`− 1, thus
that

+2∑
m,n=−2

mpxnpyFα∆`,m,n = (−cα,x)px(−cα,y)py
2(∆`−1)(px+py−2) .

Then

+2∑
m=−2

+2∑
n=−2

mpxnpyFα∆`,m,n =
+2∑

m=−2

+2∑
n=−2

mpxnpy(P ⊗ P )5(n+2)+(m+2),· ·Cα
∆`−1

=
+2∑

m=−2

+2∑
n=−2

24∑
j=0

mpxnpy(P ⊗ P )5(n+2)+(m+2),j × Fα∆`−1,j%5−2,j�5−2

=
+2∑

m=−2

+2∑
n=−2

24∑
j=0

mpxnpyP[5(n+2)+(m+2)]�5,j�5 × P[5(n+2)+(m+2)]%5,j%5 × Fα∆`−1,j%5−2,j�5−2.
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We observe that form,n = −2, . . . , 2 we have [5(n+2)+(m+2)]�5 = n+2 and [5(n+1)+(m+2)]%5 =
m+ 2, so we can rewrite

+2∑
m=−2

+2∑
n=−2

mpxnpyFα∆`,m,n =
+2∑

m=−2

+2∑
n=−2

24∑
j=0

mpxnpyPn+2,j�5 × Pm+2,j%5 × Fα∆`−1,j%5−2,j�5−2

=
24∑
j=0

Fα∆`−1,j%5−2,j�5−2 ×

 +2∑
m=−2

mpxPm+2,j%5

×
 +2∑
n=−2

npyPn+2,j�5


=

24∑
j=0

Fα∆`−1,j%5−2,j�5−2 ×
1

2px−1 (j%5− 2)px × 1
2py−1 (j � 5− 2)py

= 1
2px+py−2

24∑
j=0

(j%5− 2)px(j � 5− 2)pyFα∆`−1,j%5−2,j�5−2

= 1
2px+py−2

2∑
m=−2

2∑
n=−2

mpxnpyFα∆`−1,m,n = (−cα,x)px(−cα,y)py
2∆`(px+py−2) ,

where we used Lemma 8.1, we performed a change of indices and used the recurrence hypothesis.
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