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Abstract

Let X be a smooth affine variety over a field k of characteristic
0 and T pXq be the Lie algebra of regular vector fields on X. We
compute the Lie algebra cohomology of T pXq with coefficients in k.
The answer is given in topological terms relative to any embedding
k Ă C and is analogous to the classical Gelfand-Fuks computation for
smooth vector fields on a C8-manifold. Unlike the C8-case, our setup
is purely algebraic: no topology on T pXq is present. The proof is based
on the techniques of factorization algebras, both in algebro-geometric
and topological contexts.
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Introduction

A. Description of the result. Let k be a field of characteristic 0 and
X be a smooth affine algebraic variety over k. Denote by T pXq “ Der krXs
the Lie algebra of regular vector fields on X. In this paper we determine
H‚

LiepT pXqq, the Lie algebra cohomology of T pXq with coefficients in k.

Clearly, extending the field of definition of X from k to k1 Ą k results
in extending the scalars in H‚

LiepT pXqq from k to k1. Since any X can be
defined over a field k finitely generated over Q and any such field embeds
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into the complex field C, the problem of finding H‚
LiepT pXqq reduces to the

case k “ C, when we can speak about Xan, the space of complex points of
X with the transcendental topology. In this case our main result, Theorem
6.3.2, implies that H‚

LiepT pXqq is finite-dimensional in each degree and is an
invariant of dimpXq, of the rational homotopy type of Xan and of its rational
Chern classes. More precisely, it is identified with H‚

toppSectpY X{Xanqq, the
topological cohomology of the space of continuous sections of a natural fibra-
tion Y X Ñ Xan over Xan. This allows one to easily compute H‚

LiepT pXqq in
many examples, using elementary rational homotopy type theory, cf. §6.4.

The interest and importance of this problem stems from its relation to
the algebro-geometric study of higher-dimensional analogs of vertex algebras,
in particular, of Kac-Moody [FHK] [GW] and Virasoro algebras. While the
full study eventually involves non-affine varieties (see n˝ D. below), the affine
case already presents considerable difficulties which we address in this paper.
Thus, we learned that Theorem 6.3.2 was conjectured by B. L. Feigin back
in the 1980’s but there has been no proof even in the case of curves, despite
some work for holomorphic vector fields and continuous cohomology [Ka]
[Wag1], [Wag2].

B. Relation to Gelfand-Fuchs theory. Theorem 6.3.2 is an algebro-
geometric analog of the famous results by Gelfand-Fuchs [GF] [Fu], Haefliger
[Hae2] and Bott-Segal [BS] on the cohomology of VectpMq, the Lie algebra
of smooth vector fields on a C8-manifold M . We recall the main features of
that theory.

(1) First, one considers Wn “ DerRrrz1, . . . , znss, the Lie algebra of formal
vector fields on Rn, with its adic topology. Its cohomology is identified
with the topological cohomology of a certain CW-complex Yn with
action of GLnpRq, see [Fu] §2.2.

(2) Given an n-dimensional C8-manifold M , the tangent bundle of M gives
an associated fibration Y M ÑM , and H‚

LiepVectpMqq is identified with
the topological cohomology of SectpY M{Mq, the space of continuous
sections [Hae2] [BS], [Fu] §2.4.

We notice that Yn can be realized as a complex algebraic variety acted
upon by GLnpCq Ą GLnpRq and so any complex manifold X carries the
associated fibraton Y X with fiber Yn (even though the real dimension of
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X is 2n). It is this fibration that is used in Theorem 6.3.2. While in the
C8-theory VectpMq is considered with its natural Fréchet topology and H‚

Lie

is understood accordingly (continuous cochains), in our approach T pXq is
considered purely algebraically.

C. Method of proof: factorization homology. Our proof of Theo-
rem 6.3.2 is based on the theory of factorization algebras and factorization
homology, both in topological [Lu-HA] [CoG1] [Gi] and algebro-geometric
[BD] [G] [FG] [GL] contexts. In particular, we work systematically with the
algebro-geometric version of the Ran space (§3.1).

This theory provides, first of all, a simple treatment of the C8-case. That
is, the correspondence

U ÞÑ ApUq “ CE‚pVectpUqq

(Chevalley-Eilenberg complex of continuous cochains) is a locally constant
factorization algebra A on M . As A is natural in M , it is, by Lurie’s theorem
[Lu-HA] [Gi] §6.3, determined by an en-algebra An with a homotopy action
of GLnpRq, so that H‚

LiepVectpMq is identified with
´
M
pAnq, the factorization

homology of M with coefficients in An. The Gelfand-Fuchs computation
of H‚

LiepWnq identifies An with C‚pYnq, the cochain algebra of Yn, and the
identification with the cohomology of the space of sections follows from non-
abelian Poincaré duality, see [Lu-HA] §5.5.6, [GL] [Gi] and Proposition 1.2.8
and Theorem 1.3.17 below.

Passing to the algebraic case, we find that H‚
LiepT pXqq can also be inter-

preted as the factorization homology on the algebro-geometric Ran space (cf.
[BD] §4.8 for n “ 1 and [FG] Cor. 6.4.4 in general) but the corresponding

factorization algebra qC‚ is far from being locally constant. Already for n “ 1
it corresponds to the vertex algebra Vir0 (the vacuum module over the Vira-
soro algebra with central charge 0) which gives a holomorphic but not at all
locally constant factorization algebra.

The crucial ingredient in our approach is the covariant Verdier duality
of Gaitsgory and Lurie [GL] which is a correspondence ψ between (ordinary,
or ˚-) sheaves and !-sheaves on the Ran space. For a sheaf F its covariant
Verdier dual ψpFq is the collection pi!pFqpě1 where ip is the embedding of

the pth diagonal skeleton of the Ran space. In our case ψpqC‚q is the algebro-
geometric analog of the diagonal filtration of Gelfand-Fuchs [GF]. It turns
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out that ψpqC‚q is a locally constant factorization algebra even though qC‚ itself
is not. This appearance of locally constant objects from holomorphic ones is
perhaps the most surprising phenomenon that we came across in this work.

By using non-abelian Poincaré duality we show that the factorization
homology of ψpqC‚q is identified with H‚

toppSectpY X{Xqq, and our main result

follows from comparing the factorization homology of ψpqC‚q and qC‚ for an
affine X (“completeness of the diagonal filtration”).

We find it remarkable that the classical Gelfand-Fuchs theory has antic-
ipated, in many ways, the modern theory of factorization algebras. Thus,
the Ran space appears and is used explicitly (under the name “configuration
space”) in the 1977 paper of Haefliger [Hae2] while the diagram of diagonal
embeddings of Cartesian powers M I is fundamental in the analysis of [GF].

D. Non-affine varieties and future directions. When X is an arbi-
trary (not necessarily affine) smooth variety, we can understand T pXq as a
dg-Lie algebra RΓpX,TXq and its Lie algebra cohomology is also of great
interest. If X is projective, H‚

LiepT pXqq plays a fundamental role on Derived
Deformation theory (DDT), see [F] [HS2] [Lu-DAGX] [CaG]. The corre-
sponding Chevalley-Eilenberg complex is identified

CE‚pT pXqq »
`

pO‚M,rXs, d
˘

with the commutative dg-algebra of functions on the formal germ of the de-
rived moduli spaceM of complex structures on X so H0

LiepT pXqq is the space
of formal functions on the usual moduli space. In particular, H‚

LiepT pXqq is
no longer a topological invariant of X and cipTXq.

In the case of arbitrary X we still have an interpretation of H‚
LiepT pXqq

as the factorization homology of qC‚ and ψpqC‚q is still locally constant. So
our analysis (Theorem 6.3.1) gives a canonical map

τX : H‚
toppSectpY Xq{Xq ÝÑ H‚

LiepT pXqq.

While τX may no longer be an isomorphism, it provides an interesting supply
of “topological” classes in H‚

LiepT pXqq. For example, when X is projective
of dimension n, “integration over the fundamental class of X” produces, out
of τX , a map

H2n`1
pYnq ÝÑ H1

LiepT pXqq,
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i.e., a supply of characters (1-dimensional representations) of T pXq. Coho-
mology of T pXq with coefficients in such representations should describe,
by extending the standard DDT, formal sections of natural determinantal
bundles on M, cf. [F]. We recall that

H2n`1
pYnq » Crx1, . . . , xns

Sn
deg“n`1, degpxiq “ 1

is identified with the space of symmetric polynomials in n variables of degree
n` 1, which have the meaning of polynomials in the Chern classes.

In a similar vein, for X “ An´t0u (the “n-dimensional punctured disk”),
the space H2n`1pYnq maps to H2

LiepT pXqq, i. e., we get a supply of central
extensions of T pXq, generalizing the classical Virasoro extension for n “ 1.

E. The structure of the paper. In Chapter 1 we reformulate, using
the point of view of factorization algebras, the classical Gelfand-Fuchs the-
ory. We firsr recall, in §1.1, the theory of factorization algebras and factor-
ization homology on a C8-manifold M , in the form given in [CoG1], i.e.,
as dealing with pre-cosheaves on M itself, rather than on the Ran space or
on an appropriate category of disks. In our case the factorization algebras
carry additional structures of commutative dg-algebras (cdga’s), so the the-
ory simplifies and reduces to cosheaves of cdga’s with no further structure.
This simplification is due to [Gi] (Prop. 48), and in §1.2 we review its ap-
plications. Unfortunately, we are not aware of a similar simplification in the
algebro-geometric setting.

In §1.3 we review the concept of factorization homology of G-structured
manifolds in the setting of G-equivariant cdga’s, where a self-contained treat-
ment is possible. In particular, we review non-abelian Poincaré duality which
will be our main tool in relating global objects to the cohomology of the
spaces of sections. It allows us to give a concise proof of the Haefliger-Bott-
Segal theorem in §1.4. The identifications in §1.4 are formulated in such a
way that they can be re-used later, in §6.2, with the full GLnpCq-equivariance
taken into account.

Chapter 2 is dedicated to the formalism of D-modules which we need in a
form more flexible than it is usually done. More precisely, our factorization
algebras, in their D-module incarnation, are not holonomic, but we need
functorialities that are traditionally available only for holonomic modules.
So in §2.3 we introduce two “non-standard” functorialities on the category
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of pro-objects. Thus, for a map f : Z Ñ W of varieties we introduce the
functor f rr˚ss (formal inverse image), which for f a closed embedding and
an induced D-module F bO D on W corresponds to restriction of sections
of F to the formal neighborhood of Z. We also introduce the functor frr!ss
(formal direct image with proper support) which for an induced D-module
on Z corresponds to the functor f! on pro-coherent sheaves introduced by
Deligne [De]. With such definitions we have, for instance, algebraic Serre
duality on non-proper algebraic varieties.

In Chapter 3 we review the algebro-geometric Ran space (§3.1) and define,
in §3.2, two main types of D-modules on it, corresponding to the concepts
˚-sheaves and !-sheaves. Since we understand the ˚-inverse image in the for-
mal series sense (for not necessarily holonomic modules), this understanding
propagates into the definition of D-module analogs of ˚-sheaves, which we
call rrDss-modules. We also make a distinction between lax and strict mod-
ules of both types. In practice, lax modules are more easy to construct and
are of more finitistic nature. They can be strictified which usually produces
much larger objects but with the same factorization homology. In §3.3 we
adapt to our situation the concept of covariant Verdier duality from [GL].

Chapter 4 is devoted to the theory of factorization algebras in our algebro-
geometric (and higher-dimensional) context. Here the main technical issue is
to show that covariant Verdier duality preserves factorizable objects. This is
not obvious in the standard setting when the Ran space is represented by the
diagram of the XI for all nonempty finite sets I and their surjections. In fact,
this necessitates an alternative approach to factorization algebras themselves:
defining them as collections of data not on the XI (as it is usually done and
as recalled in §4.2) but on varieties labelled by all surjective maps I Ñ J of
finite sets. This is done in Sections 4.3 and 4.4 (we need, moreover, two forms
of such a definition, each one good for a particular class of properties). This
allows us to prove, in §4.6, that covariant Verdier duality indeed preserves
factorization algebras (Theorem 4.6.1).

After these preparations, in Chapter 5 we study the factorization algebras
C‚ and qC‚ that lead, for any smooth variety X, to the (homological and
cohomological) Chevalley-Eilenberg complexes of RΓpX,Lq where L is any
local Lie algebra on X. They are introduced in §5.1 and can be considered
as natural “sheafifications” of these complexes. In §5.2 we specialize to the
case of affine X and prove Theorem 5.2.1 and Corollary 5.2.4 which imply

7



that φpqC‚q and qC‚ have the same factorization homology.

Finally, in Chapter 6 we compare the algebro-geometric theory with the
topological one. We start by outlining a general procedure of comparison
in §6.1. We make a particular emphasis the holonomic regular case, when
we can pass between de Rham cohomology on the Zariski topology (which
will eventually be related to the purely algebraic object H‚

LiepT pXqq) and the
topological cohomology on the complex topology (which will be eventually
related to the cohomology of SectpY X{Xanq). In §6.2 we specialize to the case

of the tangent bundle where, as we show, the factorization algebra ψpqC‚q is
indeed holonomic regular. This allows us to identify the corresponding locally
constant factorization algebra and in §6.3 we prove our main result, Theorem
6.3.2. The final §6.4 contains some explicit computations of H‚

LiepT pXqq
following from Theorem 6.3.2.
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0 Notations and conventions

A. Basic notations. k: a field of characteristic 0, specialized to R or C
as needed.

dgVect: the category of cochain complexes (dg-vector spaces) V “ tV i, di :
V i Ñ V i`1u over k, with its standard symmetric monoidal structure bk (ten-
sor product over k).

We use the abbreviation cdga for “commutative dg-algebra”.

CDGA: the category of cdga’s over k, i.e., of commutative algebra objects
in dgVect. It is also symmetric monoidal with respect to bk.

Top: the category of topological spaces homotopy equivalent to a CW-
complex.

∆˝C resp. ∆C: the category of simplicial, resp. cosimplicial objects in a

8



category C. In particular, we use the category ∆˝Set of simplicial sets.

Sing‚pT q: the singular simplicial set of a topological space T .

B. Categorial language. The categories dgVect, CDGA, Top, ∆˝Set
are symmetric monoidal model categories, see [Ho] [Lu-HTT] for background
on model structures. We denote by W the classes of weak equivalences
in these categories (thus W consists of quasi-isomorphisms for dgVect and
CDGA).

We will mostly use the weaker structure: that of a homotopical category
[DHKS] which is a category C with just one class W of morphisms, called
weak equivalences and satisfying suitable axioms. A homotopical category
pC,W q gives rise to a simplicially enriched category LW pCq (Dwyer-Kan lo-
calization). Taking π0 of the simplicial Hom-sets in LW pCq gives the usual
localization CrW´1s. We refer to LW pCq as the homotopy category of pC,W q
(often, this term is reserved for CrW´1s). In particular, pC,W q has standard
notions of homotopy limits and colimits which we denote holim

ÐÝÝÝ
and holim

ÝÝÝÑ
.

By an equivalence of homotopical categories pC,W q Ñ pC 1,W 1q we mean a
functor F : C Ñ C 1 such that:

(1) F pW q Ă W 1.

(2) The induced functor of simplicially enriched categories LW pCq Ñ LW 1pC 1q
is a quasi-equivalence, that is:

(2a) It gives an equivalence of the usual categories CrW´1s Ñ C 1rpW 1q´1s.

(2b) It induces weak equivalences on the simplicial Hom-sets.

We will freely use the language of 8-categories [Lu-HTT]. In particular,
any simplicially enriched category gives rise, in a standard way, to an 8-
category with the same objects, and we will simply consider it as an 8-
category. This applies to the Dwyer-Kan localizations LW pCq above. For
instances, various derived categories will be “considered as 8-categories”
when needed.

C. Thom-Sullivan cochains. We recall the Thom-Sullivan functor

Th‚ : ∆dgVect ÝÑ dgVect.
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Explicitly, for a cosimplicial dg-vector space V ‚, the dg-vector space Th‚pV ‚q
is defined as the end, in the sense of [Mac], of the simplicial-cosimplicial dg-
vector space Ω‚polp∆

‚qbV ‚ where Ω‚polp∆
‚q consists of polynomial differential

forms on the standard simplices, see [HS1] [FHT].

Note that Th‚pV ‚q is quasi-isomorphic to the naive total complex

(0.1) TotpV ‚q “

ˆ

à

V n
r´ns, dV `

ÿ

p´1qiδi

˙

,

where δi are the coface maps of V ‚. The quasi-isomorphism is given by the
Whitney forms on the ∆n, see [Get] §3.

The functor Th‚ is compatible with symmetric monoidal structures and so
sends cosimplicial cdga’s to cdga’s. It can, therefore, be used to represent the
homotopy limit of any diagram of cdga’s as an explicit cdga. In particular, we
have a cdga structure on the cohomology of any sheaf of cdga’s, a structure
of a sheaf of cdga’s in any direct images of a sheaf of cdga’s and so on. We
note some particular cases.

Let S‚ be a simplicial set. We write Th‚pS‚q “ Th‚pkS‚q, where kS‚ is the
cosimplicial cdga pkSpqpě0 (simplicial cochains). The cdga Th‚pS‚q is called
the Thom-Sullivan cochain algebra of S‚. It consists of compatible systems
of polynomial differential forms on all the geometric simplices of S‚.

Let T be a topological space. We write Th‚pT q “ Th‚pSing‚pT qq. This is
a cdga model for the cochain algebra of T with coefficients in k.

1 C8 Gelfand-Fuchs cohomology and factor-

ization algebras

1.1 Factorization algebras on C8 manifolds

A. Factorization algebras. We follow the approach of [CoG1] [Gi].

Definition 1.1.1. Let M be a C8-manifold and pC,b,1q be a symmetric
monoidal category. A pre-factorization algebra on M with values in C is a
rule A associating:

(1) To each open subset U ĂM an object ApUq P C, with ApHq “ 1.
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(2) To each finite family of open sets U0, U1, . . . , Ur, r ě 0, such that
U1, . . . , Ur are disjoint and contained in U0, a permutation invariant
morphism in C

µU0
U1,...,Ur

: ApU1q b ¨ ¨ ¨ bApUrq ÝÑ ApU0q,

these morphisms satisfying the obvious associativity conditions.

Taking r “ 1 in (2), we see that a pre-factorization algebra defines an
C-valued pre-cosheaf on M , i.e., a covariant functor from the poset of opens
in M to C.

Let now pC,b,1,W q be a symmetric monoidal homotopical category. We
assume that C has small coproducts which we denote by

š

. Let U ĂM be an
open subset and U “ pUiqiPI be an open cover of U . We write Uij “ UiXUj etc.
If F is an C-valued pre-cosheaf on M , we have then the standard simplicial
object in C (co-descent diagram)

N‚pU,Fq “
"

¨ ¨ ¨
////////
š

i,j,kPI

FpUijkq //
////
š

i,jPI

FpUijq ////
š

iPI

FpUiq
*

and a morphism

(1.1.2) γU : holim
ÝÝÝÑ

N‚pU,Fq ÝÑ FpUq.

Definition 1.1.3. Let U ĂM be an open subset and U “ pUiqiPI be an open
cover of U . We say that U is a Weiss cover, if for any finite subset S Ă U
there is i such that S Ă Ui.

As pointed out in [CoG1], Weiss covers are typically very large (consist
of infinitely many opens).

Definition 1.1.4. Let pC,b,1,W q be a symmetric monoidal homotopical
category with coproducts. A pre-factorization algebra A on M with values
in C is called a factorization algebra, if the following conditions hold:

(3) For any disjoint open U1, . . . , Ur Ă M , the morphism µU1Y¨¨¨YUr
U1,...,Ur

in (2)
is a weak equivalence.

(4) For any open U Ă M and any Weiss cover U “ pUiqiPI of U , the
morphism γU is a weak equivalence.
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For a factorization algebra A the object of global cosections will be also
denoted by ˆ

M

A “ ApMq

and called the factorization homology of M with coefficients in A.

In particular, we will use factorization algebras with values in the cate-
gories dgVect, CDGA, Top, ∆˝Set, see §0.

Definition 1.1.5. (a) By a disk in M we mean an open subset homeomorphic
to Rn for n “ dimpMq.

(b) A (pre-)factorization algebra A with values in C is called locally con-
stant, if for any embeddings U1 Ă U0 of disks in M the morphism µU0

U1
is a

weak equivalence.

1.2 Factorization algebras of cdga’s

A. Sheaves and cosheaves. We start with a more familiar sheaf-theoretic
analog of the fornalism of §1.1.

Let T be a topological space. Denote by OppT q the poset of open sets in
T considered as a category.

Definition 1.2.1. (a) Let pC,W q be a homotopical category. A C-valued
pre-cosheaf A : OppT q Ñ C on T is called a homotopy cosheaf , if, for each
U P OppT q and each cover U of U , the canonical morphism γU defined as in
(1.1.2), is a weak equivalence.

(b) By a C-valued homotopy sheaf on T we mean a homotopy cosheaf
with values in C˝.

In the sequel we will drop the word “homotopy” when discussing ho-
motopy sheaves and cosheaves. We denote by ShT pCq and CoshT pCq the
categories of C-valued sheaves and cosheaves.

Definition 1.2.2. Let M be a C8 manifold. A C-valued cosheaf A onM is
called locally constant if for any two disks U1 Ă U0 Ă M the co-restriction
mapApU1q Ñ ApU0q is a weak equivalence. C-valued locally constant sheaves
on M are defined similarly.

We denote by Shlc
MpCq and Coshlc

MpCq the homotopical categories of locally
constant C-valued sheaves and cosheaves.
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Proposition 1.2.3. The homotopical categories Shlc
MpCq and Coshlc

MpCq are
equivalent.

Proof: Let DpMq Ă OppMq be the poset of disks in M . As disks form a basis
of topology in M , any sheaf B on M is determined by its values on DpMq.
More precisely, B is the (homotopy) right Kan extension [DHKS] of B|DpMq.
This implies that Shlc

MpCq is identified with the category formed by contravari-
ant functors, DpMq Ñ C sending each morphism to a weak equivalence, i.e.,
with the category of simplicially enriched functors LpDpMq˝q ÝÑ LW pCq.
Here and below L without subscript stands for the Dwyer-Kan localization
with respect to all morphisms.

Dually, any cosheafA on M is the homotopy left Kan extension ofA|DpMq.
This means that Coshlc

MpCq is identified with the category formed by covariant
functors DpMq Ñ C sending each morphism to a weak equivalence, i.e., with
the category of simplicially enriched functors LpDpMqq ÝÑ LW pCq. Now
notice that LpDpMqq and LpDpMq˝q are canonically identified.

Definition 1.2.4. For a locally constant sheaf B we will denote by B´1 and
call the inverse of B the locally constant cosheaf corresponding to B.

B. Cosheaves of cdga’s as factorization algebras. We use the
abbreviation cdga for “commutative dg-algebra”. The category CDGA of
cdga’s over k is a symmetric monoidal homotopical category, with monoidal
operation bk (tensor product of cdga’s) and weak equivalences being quasi-
isomorphisms of cdga’s.

Proposition 1.2.5. (a) Let A be a factorization algebra on M with values
in CDGA. Then A is a cosheaf on M with values in CDGA.

(b) The construction in (a) (i.e., forgetting all the µU0
U1,...,Ur

for r ą 1)
establishes an equivalence between the category of CDGA-valued factoriza-
tion algebras on M and the category of CoshMpCDGAq. Under this equiva-
lences, locally constant factorization algebras correspond to locally constant
cosheaves.

Proof: This is proved in [Gi], Prop. 48. It is based on the fact that bk, the
monoidal operation in CDGA, is at the same time the categorical coproduct.
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Remark 1.2.6. Note that a cosheaf of cdga’s is typically not a cosheaf of
dg-vector spaces, as the coproduct in dgVect is ‘, not bk. On the other
hand, a sheaf of cdga’s is indeed a sheaf a sheaf of dg-vector spaces, as

ś

,
the product in dgVect, is also the product in CDGA.

C. Non-abelian Poincaré duality I. Let p : Z Ñ M be a Serre fibra-
tion with base a C8 manifold M and fiber Y . We then have the following
pre-sheaf and pre-cosheaf of cdga’s on M :

(1.2.7)
Rp˚pkZq : U ÞÑ Th‚pp´1

pUq,

Rpb˚ pkZq : U ÞÑ Th‚pSectpp´1
pUq{Uqq,

where Sectpp´1pUq{Uq is the space of continuous sections of the fibration
p´1pUq Ñ U . Thus Rp˚pkZq is in fact a locally constant sheaf of cdga’s,
namely the direct image of the constant sheaf kZ , made into a sheaf of cdga
by using Thom-Sullivan cochains.

Proposition 1.2.8. Suppose Y is n-connected, where n “ dimpMq. Then
Rpb˚ pkZq is a locally constant cosheaf of cdga’s. Further, Rpb˚ pkZq is inverse
to Rp˚pkZq (see Proposition 1.2.3).

Proof: The first statement is a consequence of [BS] Cor. 5.4. The second
statement is clear since for a disk U Ă X the space Sectpp´1pUq{Uq is homo-
topy equivalent to p´1pxq for any x P U .

1.3 Equivariant cdga’s and factorization homology

We first compare several notions of a Lie group acting on a cdga.

A. Classifying space approach. Let pC,W q be a homotopical cate-
gory.

Definition 1.3.1. Let T‚ be a simplicial topological space so that for each
morphism s : rps Ñ rqs in ∆ we have a morphism of topological spaces
s˚ : Tq Ñ Tp. A C-valued sheaf on T‚ is a datum F consisting of sheaves Fp
on Tp for each p and of weak equivalences of sheaves αs : ps˚q´1pFqq Ñ Fp
given for each s : rps Ñ rqs and compatible with the compositions. We denote
by ShT‚pCq the category of C-valued sheaves on T‚.
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Let G be a topological group and N‚G P ∆˝Top its simplicial nerve.
Thus BG “ |N‚G| is the classifying space of G. We denote, following [BL]
Appendix B,

(1.3.2) DGpptq “ ShN‚GpdgVectq, CDGAG “ ShN‚GpCDGAq.

Proposition 1.3.3. For any object F of DGpptq (resp. of CDGAG) we have
the following:

(a) Each Fp is a locally constant (in fact, constant) sheaf of dg-vector
spaces resp. cdga’s on NpG.

(b) F gives a locally constant sheaf |F | of dg-vector spaces (resp. cdga’s)
on BG.

Proof: (a) Consider any morphism s : r0s Ñ rqs, so s˚ : NqG Ñ N0G “ pt.
Then αs identifies Fq with the constant sheaf ps˚q´1pF0q. Part (b) follows
from (a).

Corollary 1.3.4. A morphism G1 Ñ G of topological groups which is a ho-
motopy equivalence, induces equivalences of homotopical categories DGpptq Ñ
DG1pptq and CDGAG Ñ CDGAG1.

Proof: Follows from homotopy invariance of locally constant sheaves.

Given F P DGpptq, the component V ‚ “ F0 P ShN0G is just a dg-vector
space,

Definition 1.3.5. Let V ‚ be a dg-vector space (resp. a cdga). A BL-action
of G on V ‚ is an object F in DGpptq (resp. in CDGAGq together with
identification of dg-vector spaces (resp. of cdga’s) F0 » V ‚.

For a cdga A we denote by dgModA, resp. CDGAA the category of dg-
modules over A resp. commutative differential graded A-algebras.

Let H‚pBGq be the cohomology ring of BG with coefficients in k, i.e.,
the cohomology algebra of the cdga Th‚pBGq. Any sheaf of dg-vector spaces
F on BG gives rise to the dg-space of cochains C‚pBG,Fq. We note that
C‚pBG,Fq is a kind of homotopy limit (dg-vector space associated to a
cosimplicial dg-vector space) and so we can define it using the Thom-Sullivan
construction. Thus defined, C‚pBG,Fq is a dg-module over Th‚pBGq “
C‚pBG,kBGq. Further, if F is a sheaf of cdga’s, then C‚pBG,Fq is a cdga
over Th‚pBGq.
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Proposition 1.3.6. Let G be a connected compact Lie group. Then:
(a) We have a quasi-isomorphism H‚pBGq Ñ Th‚pBGq.
(b) The functor F ÞÑ C‚pBG, |F |q defines symmetric monoidal equiva-

lences of homotopical categories

D`Gpptq
„
ÝÑ dgMod`H‚pBGq, CDGAě0

G
„
ÝÑ CDGAě0

H‚pBGq,

where the subscripts “`” signify the subcategories formed by sheaves and dg-
modules bounded below as complexes, and “ě 0” signifies the subcategories
formed by dg-algebras graded by Zě0.

Proof: Part (a) is classical (invariant forms on BG). The first equivalence
in (b) is [BL] Th. 12.7.2. The second equivalence follows from the first by
passing to commutative algebra objects.

B. Cartan-Weil approach.

Definition 1.3.7. (cf. [GS] Def. 2.3.1 and [BS] Def. 3.1.) Let G be an affine
algebraic group over k with Lie algebra g and V ‚ P dgVect be a cochain
complex. A G˚-action on V ‚ is a datum consisting of:

(1) A regular action of G on V ‚. In particular, for each ξ P g we have the
infinitesimal automorphism Lξ P End0

kpV
‚q.

(2) An k-linear map i : gÑ End´1
k pV

‚q such that;

(2a) i is G-equivariant with respect to the adjoint action of G on g and
the G-action on End´1

k pV
‚q coming from (1).

(2b) We have rd, ipξqs “ Lξ for each ξ P g.

(2c) For any ξ1, ξ2 P g we have ripξ1q, ipξ2qs “ 0.

We denote by G˚-dgVect the category of cochain complexes with G˚-
actions. This category has a symmetric monoidal structure bk with the
operators ipξq defined on the tensor products by the Leibniz rule. Commuta-
tive algebra objects in G˚-dgVect will be called G˚-cdga’s. Such an algebra
is a cdga with G acting regularly by automorphisms, so g acts by derivations
of degree 0, and with ipξq being derivations of degree p´1q. We denote by
G˚-CDGA the category of G˚-cdga’s.
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Let Ω‚regpGq be the cdga of regular differential forms on G. The group
structure on G makes Ω‚regpGq into a commutative Hopf dg-algebra over k.
We note the following.

Proposition 1.3.8. (a) A G˚-action on a cochain complex V ‚ is the same as
a structure of a comodule over the dg-coalgebra Ω‚regpGq. This identification
is compatible with tensor products.

(b) A structure of a G˚-cdga on a cdga A is the same as a coaction
AÑ Ab Ω‚regpGq from (a) which is a morphism of cdga’s.

Proof: We prove (a), since (b) follows by passing to commutative algebra
objects.

A regular action of G is by definition, a coaction of the coalgebra OpGq “
Ω0

regpGq of regular functions. More explicitly, the coaction map c0 : V ‚ Ñ
Ω0

regpGq b V ‚ is just the action map ρ : G Ñ EndkpV
‚q considered as an

element of Ω0
regpGq b EndkpV

‚q. The fact that c0 is a coaction, i.e., that ρ
is multiplicative, is equivalent to the fact that ρ is equivariant with respect
to G acting on itself by right translations and on EndkpV

‚q by the action
induced by ρ.

Let us view g as consisting of left invariant vector fields on G. The adjoint
action of G on g is the action on such vector fields by right translations. Let
ω “ g´1dg P Ω1

regpGq b g be the canonical g-valued left invariant 1-form on

G. Composing ω with i we get an element c1 P Ω1
regpGq b End´1

k pV
‚q which

is equivariant with respect to G acting on Ω1
regpGq by right translations and

on End´1
k pV

‚q by the action induced by ρ. Further, for each p ě 1 we define,
using (2c):

cp “ Λp
pc1q P Ωp

regpGq b End´pk pV
‚
q.

We claim that the

c “
ÿ

cp P
à

p

Ωp
regpGq b End´pk pV

‚
q “ Hom0

kpV
‚,Ω‚regpGq b V ‚q

is a coaction of Ω‚regpGq on V ‚. Indeed, considering c1 as a morphism of dg-
vector space V ‚ Ñ Ω1

regpGqbV ‚, we translate its equivariance property above
into saying that c1 is compatible with c0. Further compatibilities follow since
the cp are defined as exterior powers of c1.
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Given a G˚-action on V ‚, we form, in a standard way, the cobar-construction
of the Ω‚regpGq-comodule structure. This is the cosimplicial object

CobpV ‚q “

"

V ‚
c //

1b´
// Ω‚regpGq b V ‚

//
//// Ω‚regpG2q b V ‚

//////// ¨ ¨ ¨

*

.

For example, the first two coface maps are given by the coaction c and by
multiplication with 1 P Ω‚regpGq respectively.

Recall that k “ R or C. Taking k-points of G, we get a Lie group
G “ Gpkq. Let Ω‚Gp be the sheaf of smooth forms on Gp. Thus Ω‚regpGpq

maps into the global sections of this sheaf. This allows us to define a dgVect-
valued sheaf SpV ‚q on the simplicial space N‚G by “localizing CobpV ‚q”.
More precisely, we define SpV ‚qp “ Ω‚Gp b V ‚ and the compatibility maps
αs, s P Morp∆q are induced by the corresponding maps of CobpV ‚q. This
gives a symmetric monoidal functor

(1.3.9) S : G˚-dgVect ÝÑ DGpptq “ ShN‚pGqpdgVectq, V ‚ ÞÑ SpV ‚q

which we call the sheafification functor.

We now recall a version of the standard comparison between the “Weil
model” and the “classifying space model” for G-equivariant cohomology, cf.
[GS]. An element v P V ‚ is called basic, if v is G-invariant and annihilated by
the operators ipξq, ξ P g. Basic elements form a subcomplex V ‚basic . Denote
Ipgq “ S‚pg˚qg. Let also

(1.3.10) Wepgq “
`

S‚pg˚q b Λ‚pg˚q, d
˘

be the Weil algebra of g. Here the first g˚ has degree 2, while the second
g˚ has degree 1. With this grading, Wepgq is a cdga with G˚-action, quasi-
isomorphic to k. Moreover, Ipgq with trivial differential, is a dg-subalgebra
in Wepgq.

Proposition 1.3.11. Let G be reductive and assume, in the case k “ R,
that G ãÑ GpCq is a homotopy equivalence. Then:

(a) We have an isomorphism Ipgq » H‚pBG,kq.

For a dg-vector-space (resp, cdga) with a G˚-action, we have a natural
quasi-isomorphism of dg-modules (resp. cdga’s) over Ipgq “ H‚pBG,kq

C‚pBG, |SpV ‚q|q »
`

Wepgq bk V
‚
˘

basic
.
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Proof: (a) is well known. To prove (b), note, first, that we have a natural
identification

C‚pBG, |SpV ‚q|q » Th‚pCobpV ‚qq,

compatible with the symmetric monoidal structures. Indeed, this follows
from the fact that for any m, the restriction map rm : Ω‚regpGmq Ñ Ω‚pGmq

quasi-isomorphism. The target of rm calculates H‚pGm,kq by the de Rham
theorem, and the source calculates H‚pGpCqm,kq, by Grothendieck’s algebro-
geometric version.

Note next that for any dg-vector space E‚ with G˚-action

E‚basic “ Ker
 

E‚
c //

1b´
// Ω‚regpGq b E‚

(

is the kernel of the first two cofaces in CobpE‚q.
We apply this to E‚ “ Wepgq b V ‚ which is quasi-isomorphic to V ‚. For

a dg-vector space F ‚ let F 7 denote the graded vector space obtained from F ‚

by forgetting the differential. So to prove part (b), it is enough to show the
following acyclicity statement: the embedding of the constant cosimplicial
graded vector space associated to E7basic, into the cosimplicial graded vector
space CobpE7q is a weak equivalence. This is equivalent to saying that the
complex

E7 ÝÑ Ω‚regpGq b E7 ÝÑ Ω‚regpG2
q b E7 ÝÑ ¨ ¨ ¨

with differential
ř

p´1qiδi, is exact everywhere except the leftmost term.
But this complex calculates Cotor‚Ω7pGqpk, E

7q, i.e., the derived functors of

the functor β : E ÞÑ Ebasic on the category of graded Ω7pGq-comodules. So
it is enough to show that for E “ pWepgqbV ‚q7, the higher derived functors
RkβpEq vanish for k ą 0.

Now, βpEq is obtained by first, taking invariants with respect to the
abelian Lie superalgebra ipgq and then taking G-invariants. Since G is re-
ductive, taking G-invariants is an exact functor. So vanishing of Rą0βpEq
will be assured if Λ‚pgq, the enveloping algebra of ipgq, acts on E freely. This
is the case for E “ pWepgq b V ‚q7.

C. Equivariant cdga’s and factorization homology. We now fix
n ě 1 and let G Ă GLpn,Rq be a closed subgroup.

Definition 1.3.12. Let M be a C8-manifold of dimension n. By a G-
structure on M we will mean a reduction of structure group of the tangent
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bundle TM from GLnpRq to G in the homotopy sense, i.e., a homotopy class
of maps γ making the diagram

BG

��
M

γ
99

γTM
// BGLnpRq

homotopy commutative. Here γTM is the map classifying the tangent bundle
TM .

Proposition 1.3.13. Let A be a cdga with a BL-action of G. . Then, for any
n-dimensional manifold M with G-structure, one can associate to A a locally
constant cosheaf of cdga’s AM on M compatible with unramified coverings,
so that ARn is the constant cosheaf corresponding to A.

Proof: We note first that by Proposition 1.2.3 it is enough to associate to A
a locally constant sheaf of cdga’s rAsM on M , so that AM will be defined as
the inverse cosheaf prAsMq

´1. But a BL-action on A is, by definition, a sheaf
B on N‚pGq which gives a locally constant sheaf |B| on BG, and we define
rAsM “ γ´1|B|.

We will refer to AM as the cosheaf of cdga’s associated to A on a G-
structured manifold M .

Remark 1.3.14. Proposition 1.3.13 is a particular case of a result due to
Lurie [Lu-HA] which relates G-equivariant En-algebras with locally constant
factorization algebras on G-structured manifolds, see also [AF3], Prop. 3.14
and [Gi] §6.3. Our case corresponds, in virtue of Proposition 1.2.5, to fac-
torization algebras with values in CDGA, for which the En-structure reduces
to a commutative one. In this case, the (co)sheaf language leads to a simple
direct construction.

We will refer to AM as the cosheaf of cdga’s associated to A on a G-
structured manifold M .

Definition 1.3.15. Let A be a cdga with a BL-action of G, and M be a
G-structured manifold. The factorization homology of M with coefficients in
A is defined as the space of global cosections of the cosheaf AM and denoted
by ˆ

M

pAq “ AMpMq.
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D. Non-abelian Poincare’s duality II. Let G Ă GLnpRq be a closed
subgroup, M be a n-dimensional manifold with G-structure. Let Y be a CW-
complex with G-action. This G-action gives rise to the associated fibration

(1.3.16) Y M “ PM ˆG Y
p
ÝÑ Y

with fiber Y . Here PM is the principal GLnpRq-bundle of frames in the
tangent bundle TM . Continuous sections of Y M form a sheaf SectYM on M
with values in topological spaces. Taking Thom-Sullivan cochains, we get a
pre-factorization algebra

Th‚SectYM : U ÞÑ Th‚pSectpY U{Uqq

on M with values in CDGA. Note that Th‚SectYM is locally constant.
At the same time, the G-action on Y gives a fibration over N‚G with

fiber Y and so a BL-action of G on the cdga Th‚pY q.

Theorem 1.3.17 (Non-abelian Poincaré duality). Suppose Y is n-connected.
Then, the pre-factorization algebra Th‚SectYM on M is a factorization al-
gebra, i.e., a cosheaf of cdga’s. Further, it is identified with Th‚pY q

M
, the

cosheaf associated to the G-equivariant cdga Th‚pY q. Therefore

Th‚pSectpYM{Mqq »

ˆ
M

pTh‚pY qq.

Proof: Direct consequence of Proposition 1.2.8. Indeed, the locally constant
sheaf rTh‚pY qsM “ pTh‚Mq

´1 is, by construction, Rp˚pkYM q.

Remark 1.3.18. As with Proposition 1.3.13, Theorem 1.3.17 is an adapta-
tion of a result of Lurie about G-equivariant En-algebras to the much simpler
case of En-algebras being commutative. It is often formulated in a “dual” ver-
sion involving the non-commutative G-equivariant En-algebra C‚pΩ

npY, yqq,
the singular chain complex of the n-fold loop space of Y at a point y (as-
sumed G-invariant). In this case y gives rise to a distinguished section y of
Y M and we have ˆ

M

`

C‚pΩ
n
pY, yqq

˘

» C‚pSectcpY M{Mqq,

where Sectc stands for sections with compact support (those which coincide
with y outside of a compact subset of M). The relation between this formu-
lation and Theorem 1.3.17 comes from a Koszul duality quasi-isomorphism
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over the (Koszul self-dual, up to a shift) operad en (singular chains on En):

Th‚pY q!en » C‚pΩ
n
pY, y0qq,

see [AF2] [AF1].

1.4 Classical Gelfand-Fuchs theory: CE‚pWnq and C‚pYnq
as GLnpCq-cdga’s

A. The Gelfand-Fuks skeleton. Let k be either R or C. We denote by
Wnpkq “ Der krrz1, . . . , znss be the k-Lie algebra of formal vector fields on
kn, equipped with its natural adic topology. By CE‚pWnpkqq we denote the
k-linear Chevalley-Eilenberg cochain complex of Wnpkq formed by cochains
ΛppWnpkqq Ñ k which are continuous with respect to the adic topology. By
H‚

LiepWnpkqq we denote the cohomology of CE‚pWnpkqq, i.e., the continu-
ous Lie algebra cohomology of Wnpkq. We recall the classical calculation of
H‚

LiepWnpkqq, see [GF] [Fu].

Consider the infinite Grassmannian

Gpn,C8q “ lim
ÝÑ
Něn

Gpn,CN
q » BGLnpCq

as a CW-complex (union of projective algebraic variety over C. For any
n ě N let

Epn,CN
q “

 

pe1, . . . , enq P pCn
q
N
ˇ

ˇe1, . . . , en are linearly independent
(

be the Stiefel variety formed by partial (n-element) frames in CN . There is
a natural projection (principal GLnpCq-bundle)

ρ : Epn,CN
q ÝÑ Gpn,CN

q, pe1, . . . , enq ÞÑ Ce1 ` ¨ ¨ ¨ ` Cen,

which associates to each frame the n-dimensional subspace spanned by it.
Then the union

Epn,C8q “ lim
ÝÑ
Něn

Epn,CN
q » EGLnpCq

is the universal bundle over the classifying space of GLnpCq.
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The Gelfand-Fuchs skeleton Yn is defined as the fiber product

Yn

ρ

��

// EGLnpCq
ρ

��
sk2nBGLnpCq // BGLnpCq,

where sk2nBGLnpCq Ă Gpn,C2nq is1 the 2n-dimensional skeleton with re-
spect to the standard Schubert cell decomposition. Thus Yn is a quasi-
projective algebraic variety over C with a free GLnpCq-action which makes
it a principal GLnpCq-bundle over sk2nBGLnpCq. More explicitly, Yn is a
closed subvariety in Epn,C2nq which is, in its turn, a Zariski open subset
in the affine space of matrices Matpn, 2nqpCq. The following is the classical
result of Gelfand-Fuks ( [Fu] Th. 2.2.4).

Theorem 1.4.1. Recall that k is either R or C.

(a) We have an isomorphism H‚
LiepWn,kq » H‚pYn,kq with the topological

cohomology of Yn with coefficients in k. Further, the cup-product on both
sides is equal to zero, as well as all the higher Massey operations.

(b) The space Yn is 2n-connected: its first homology space is H2n`1pYn,kq.

B. The result for smooth vector fields. Let now M be an n-
dimensional C8-manifold. The group GLnpCq acts on Yn. In particular, the
action of GLnpRq Ă GLnpCq gives rise to the Gelfand-Fuchs fibration

p : Y M ÝÑM

with fiber Yn, associated to the tangent bundle of M , as in (1.3.16).

We denote by VectkpMq the Lie algebra of k-valued smooth vector fields
on M equipped with the standard Fréchet topology (as for the space of C8-
sections of any smooth vector bundle). As before, we denote by CE‚pVectkpMqq
and H‚

LiepVectkpMqq the k-linear Chevalley-Eilenberg complex of continuous
cochains of VectkpMq and its cohomology. The following is also classical
([Fu] Lemma 1 p. 152).

1Note that the 2n-skeleton in Gpn,C2nq agrees with the 2n-skeleton in Gpn,CN q for
any N ě 2n.
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Theorem 1.4.2. Let M “ D Ă Rn be the standard unit ball. Then the
homomorphism VectkpMq Ñ Wnpkq given by the Taylor series expansion at
0 induces an isomorphism H‚

LiepWnpkqq Ñ H‚
LiepVectkpDqq.

The following theorem was conjectured by Gelfand-Fuchs and proved by
Haefliger [Hae1] [Hae2] and Bott-Segal [BS].

Theorem 1.4.3. For any M we have an isomorphism H‚
LiepVectkpMqq »

H‚pSectpY M{Mq,kq.

C. Proof using factorization homology. From modern point of view,
Theorem 1.4.3 can be seen as a textbook application of the techniques of
factorization homology. In the remainder of this section we give its proof
using these techniques, as a precursor to the study of the algebro-geometric
case. We first recall [CoG1]:

Theorem 1.4.4. Let L be a C8 local Lie algebra on M , i.e., a smooth k-
vector bundle with a Lie bracket on sections given by a bi-differential operator.
For an open U Ă M let LpUq be the space of smooth sections of L over U ,
considered as a Lie algebra with its Fréchet topology, and CE‚pLpUqq be its
Chevalley-Eilenberg complex of continuous sections. Then

CE‚pLq : U ÞÑ CE‚pLpUqq

is a factorization algebra on M .

Since CE‚pLq consists of cdga’s, Proposition 1.2.5 implies:

Corollary 1.4.5. In the situation of Theorem 1.4.4, CE‚pLq is a cosheaf of
cdga’s on M .

We apply this to L “ T k
M being the tangent bundle of M for k “ R or

its complexification for k “ C. Theorem 1.4.2 implies that the factorization
algebra CE‚pT k

Mq is locally constant.

Consider the algebraic group GLn over k. It acts on krrz1, ¨ ¨ ¨ , znss and
thus on Wnpkq in a natural way. Moreover, the cdga CE˚pWnpkqq has a nat-
ural structure of GL˚n-algebra (see Definition 1.3.7). Indeed, any ξ P glnpkq
gives a linear vector field on kn, also denoted ξ, which we can consider as an
element of Wnpkq. The derivation ipξq is given by contraction of the cochains
with ξ. Now, the sheafification functor (1.3.9) gives a BL-action of GLnpkq
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on CE˚pWnpkqq. Therefore, we have the cosheaf of cdga’s CE˚pWnpkqq
M

on M associated with the BL-action of GLnpRq Ă GLnpkq on the cdga
CE˚pWnpkqq.

Proposition 1.4.6. The cosheaves of cdga’s CE˚pT k
Mq and CE˚pWnpkqq

M
are weakly equivalent.

Proof: By definition, the cosheaf CE˚pWnpkqq
M

is the inverse of the sheaf

rCE˚pWnpkqqsM . So it suffices to construct, for any disk U Ă M , a quasi-
isomorphism qU : rCE‚pWnpkqsMpUq Ñ CE‚pVectpUqq so that for any inclu-
sion of disks U1 Ă U0 we have a commutative diagram

(1.4.7) CE‚pVectpU1qq
µ
U0
U1 // CE‚pVectpU0qq

rCE‚pWnpkqsMpU1q

qU1

OO

rCE‚pWnpkqsMpU0q.
resoo

qU0

OO

In fact, it suffices to construct, for each U , not a single quasi-isomorphism
qU but a family of such parametrized by a contractible space TU , so that the
commutativity of the diagram will hold for some parameters in TU1 and TU0 .
This is what we will do.

For each x P M let Wxpkq be the Lie algebra of formal vector fields on
M at x (tensored with C, if k “ C). Let further WTxMpkq be the Lie algebra
of formal vector fields on the vector space TxM at 0 (also tensored with
C, if k “ C). Thus Wxpkq and WTxMpkq are isomorphic to Wnpkq but not
canonically. We note the following.

Proposition 1.4.8. (a) The stalk of the sheaf rCE‚pWnpkqqsM at x P M is
identified with WTxMpkq.

(b) For any disk U ĂM and any x P U the pullback map

rx : CE‚pWxpkqq ÝÑ CE‚pVectpUqq

is a quasi-isomorphism.

Proof: Part (a) follows by construction of rCE‚pWnpkqsM via the tangent
bundle. Part (b) follows from Proposition 1.4.2.

Notice that the space of formal identifications φ between pTxM, 0q and
pM,xq identical on the tangent space, is contractible. Any such identification
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defines an isomorphism φ˚ of CE‚pWTxMpkqq with CE‚pWxpkqq. Now, take
a disk U Ă M . Any choice of x P U and φ as above defines a chain of
quasi-isomorphisms

(1.4.9)
rCE‚pWnpkqsMpUq Ñ rCEpWnpkqqsM,x “ CE‚pWTxMpkqq

φ˚
ÝÑ

φ˚
ÝÑ CE‚pWxpkqq

rx
ÝÑ CE‚pVectpUqq.

By composing the above arrows we get a family of quasi-isomorphisms qU
parametrized by a contractible space TU (the total space of the family of the
identifications φ for all x P U). Now, suppose U1 Ă U0. Then we can use any
x P U1 and any identification φ to construct both qU1 and qU0 . With these
choices, the diagram (1.4.7) is trivially commutative.

Theorem 1.4.3 will now follow from Non-Abelian Poincaré Duality (The-
orem 1.3.17), if we prove:

Theorem 1.4.10. Let k “ C. There is an identification

CE‚pWnpCqq » Th‚pYnq

as cdga’s with a BL-action of GLnpCq.

Proof: Denote for short G “ GLnpCq. Since G is homotopy equivalent to a
connected compact Lie group Un, by Proposition 1.3.6 it suffices to identify
the corresponding cdga’s over

H‚
pBGq “ Cre1, . . . , ens, degpeiq “ 2i.

Now, the cdga corresponding to Th‚pYnq is the cochain algebra of the fibra-
tion over BG corresponding to the G-space Yn. This fibration is homotopy
equivalent to sk2npBGq, so the corresponding algebra is Th‚psk2npBGqq which
is, as well known, quasi-isomorphic to

H‚
psk2npBGq,Cq “ Cre1, . . . , ens{pdeg ą 2nq.

We now identify the cdga corresponding to CE‚pWnpCqq. For this we first
recall the standard material on relative Lie algebra cohomology [Fu] Ch.1

Let g be a Lie subalgebra of a Lie algebra w. The relative Chevalley-
Eilenberg complex of w modulo g (with trivial coefficients) is defined as

CE‚pw, gq “
`

Λ‚ppw{gq˚q
˘g
.
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let Ipgq, Wepgq be as in Proposition 1.3.11.
We apply this to w “ WnpCq, g “ glnpCq, so it is the Lie algebra of the

algebraic group G “ GLn,C with the grop of C-points G “ GLnpCq.
Let Ipgq, Wepgq be as in Proposition 1.3.11, so Ipgq “ H‚pBG,Cq.

Further, as a GLn,C-representation, the topological dual WnpCq˚ splits as
the direct sum of Vn,k “ Symk`1

pCnq b pCnq˚ for k ě ´1. This gives
a GLn,C-equivariant projection q : WnpCq Ñ glnpCq “ V ˚n,0. The projec-
tion q induces a GLn,C-equivariant morphism of dg-algebras (“connection”)
∇ : WepglnpCqq Ñ CE‚pWnpCqq, see [Fu]. In particular, CE‚pWnpCq, glnpCqq
becomes an algebra over IpglnpCqq “ H‚pBG,Cq.

Proposition 1.4.11. We have a canonical quasi-isomorphism of Ipgq-cdga’s

pWepgq b CE‚pwqqbasic » CE‚pwqbasic “ CE‚pw, gq.

Proof: The second equality is by definition. The first quasi-isomorphism
follows from the existence of ∇ by [GS], Thm. 4.3.1.

Theorem 1.4.10 now follows from Proposition 1.3.11 and from the quasi-
isomorphism of cdga’s over H‚pBG,Cq

CE‚pWnpCq, glnpCqq » Cre1, . . . , ens{pdeg ą 2nq.

which is the original computation of Gelfand-Fuchs, see [Fu, proof of Thm.
2.2.4].

2 D-modules and extended functoriality

2.1 D-modules and differential sheaves

A. Generalities on D-modules. For general background see [Bo]
[HTT].

Let Z a smooth algebraic variety over k. Put n “ dimpZq. We denote
by CohZ “ CohOZ and QCohZ “ QCohOZ the categories of coherent and
quasi-coherent sheaves of OZ-modules.

We denote by DZ the sheaf of rings of differential operators from OZ to
OZ . By CohDZ Ă QCohDZ we denote the categories of coherent and quasi-
coherent sheaves of right DZ-modules. By DZCoh Ă DZQCoh we denote
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similar categories for left DZ-modules. We will be mostly interested in right
D-modules.

Let DpCohDZ q, resp. DbpCohDZ q denote the full (unbounded), resp.
bounded derived categories of coherent right DZ-modules. We consider them
as dg-categories and then as stable 8-categories in the standard way. Sim-
ilarly for QCohDZ etc. Since DZ has finite homological dimension (equal to
2 dimpZq), we have the identification

DbCohDZ » PerfDZ ,

where on the right we have the category of perfect complexes.

By ωZ we denote the sheaf of volume forms on Z, a right DZ-module. We
have the standard equivalence (volume twist)

(2.1.1) DZQCoh ÝÑ QCohDZ , N ÞÑ N bOZ ωZ .

We call the Verdier duality the anti-equivalence
(2.1.2)
Db
pCohDZ q

op
Ñ Db

pCohDZ q, M ÞÑM_
“ RHomDZ pM,DZq bOZ ωZrns.

For a right DZ-module M P QCohDZ we have the de Rham complex

DRpMq “ Mb
L
DZ OZ .

For a coherent sheaf F P CohZ we have the induced right DZ-module F bOZ
DZ . We have a canonical identification

DRpF bOZ DZq » F .

For two coherent sheaves F ,G the sheaf

DiffpF ,Gq “ HomDZ pF bOZ DZ ,G bOZ DZq

consists of differential operators from F to G in the standard sense. In
particular,

DZ “ DiffpOZ ,OZq, F bOZ DZ “ DiffpOZ ,Fq

with DZ acting on the right by composition.
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For a vector bundle E on Z we denote by E_ “ ωZ b E˚ the Serre dual
vector bundle. Thus the Verdier dual of the induced D-module E bO D is
given by

`

E bOZ DZ
˘_

“ pE_q bOZ DZrns.

For two vector bundles E and F the Verdier duality gives the identification

DiffpE,F q ÝÑ DiffpF_, E_q, P ÞÑ P_

(passing to the adjoint differential operator).

B. Differential sheaves and differential complexes.

Definition 2.1.3. A right DZ-module M is called quasi-induced, if, Zariski
locally on Z, it is isomorphic to an induced D-module.

We see that for a quasi-inducedM its de Rham complex can be identified
with a single sheaf. It is convenient to introduce the following concept.

Definition 2.1.4. A differential sheaf (resp. differential bundle) on Z is a
sheaf F which is glued out of coherent sheaves (resp. vector bundles) on
Zariski open charts so that transition functions are invertible differential
operators. We consider a representation of F by such gluing a part of the
structure of a differential sheaf.

By definition, we can speak about:

• Differential operators F Ñ G where F ,G are differential sheaves.

• The Serre dual differential bundle E_ associated to a differential bundle
E.

We denote by DSZ the category formed by differential sheaves on Z and
differential operators between them.

Proposition 2.1.5. Taking the de Rham complex (which, in our case, re-
duces to the functor ´bDZ OZ) induces an equivalence of categories

 

Quasi-induced DZ-modules
( DR
ÝÑ DSZ .
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We will denote the quasi-inverse to the above equivalence by

F ÞÑ DR´1
pFq “ DiffpOZ ,Fq “ “F bOZ DZ”.

By a differential complex on Z we mean a complex F‚ formed by differ-
ential sheaves with differentials being differential operators. We denote by
CompDSZq the category of differential complexes on Z. In particular, the de
Rham complex of M P CohDZ can be quasi-isomorphically identified with a
differential complex by taking a locally induced resolution of M.

C. Analytification and holonomic differential complexes. Let k “
C. We denote Zan the space ZpCq with its standard analytic topology and
sheaf OZan of analytic functions.

Any differential sheaf (resp. complex) F has a well defined analytifica-
tion Fan which is a sheaf (resp. complex of sheaves) on Zan. In particular,
considering the de Rham complex of M P CohDZ as a differential complex
as above, we have its analytification which is simply

DRpMqan » Mb
L
DZ OZan .

The following are standard features of the Riemann-Hilbert correspondence
between holonomic D-modules and constructible complexes, see [HTT] for
instance.

Proposition 2.1.6. LetM‚ P DpCohDZ q be a complex with holonomic regu-
lar cohomology modules. Then DRpM‚qan is a constructible complex on Zan

and:

(a) We have

RΓpZZar,DRpM‚
qq » RΓpZan,DRpM‚

qanq.

(b) We also have

DRpM_
qan » DZpDRpM‚

qanq,

where DZ is the Verdier duality on the derived category of constructible com-
plexes on Zan, see [KS1].

A differential complex F‚ will be called holonomic (resp. holonomic reg-
ular), if DR´1

pF‚q, the corresponding complex of quasi-induced D-modules,
has holonomic (resp. holonomic regular) cohomology.
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Corollary 2.1.7. (a) If F‚ is a holonomic differential complex, then F‚an is
a constructible complex.

(b) If F‚ is a holonomic regular differential complex, then

RΓpXZar,F‚q » RΓpXan,F‚anq.

2.2 The standard functorialities

We now review the standard functorialities on quasi-coherent D-modules.
Our eventual interest is always in right modules.

A. Inverse image f !. Let f : Z Ñ W be a morphism of smooth algebraic
varieties. We then have the transfer bimodule

DZÑW “ OZ bf´1OW f´1DW .

It can be viewed as consisting of differential operators from f´1OW to OZ .
It is a left DZ-module (quasi-coherent but not, in general, coherent) and a
right f´1DW -module.

The inverse image is most easily defined on left D-modules in which case
it is given by f˚, the usual (derived) inverse image for underlying O-modules.
That is, we have the functor

f˚ : DWQCoh ÝÑ DZQCoh, f˚N “ OZbLf´1OW f
´1N “ DZÑWbLf´1DW f

´1N .

The corresponding functor on right D-modules is denoted

f ! : QCohDW ÝÑ QCohDZ , f !M “ ωZ bOZ
`

f˚pω´1
W bOW Mq

˘

.

B. Compatibility of f ! with DR on Zariski topology.

Proposition 2.2.1. Let F P CohW . Then

DR
`

f !
pF bOW DW q

˘

“ f !F ,

where in the right hand side the functor f ! is defined on coherent O-modules
on the Zariski topology as in [Har1].

Let us illustrate the action of functor f ! on coherent O-modules.
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Examples 2.2.2. (a) Suppose f : Z Ñ W is a smooth morphism of relative
dimension m. Then f !F “ ωZ{W b f

˚Frms.
(b) Suppose that i : Z Ñ W is a closed embedding of codimension m,

and IZ Ă OW be the ideal of Z. Let F “ E be a vector bundle on W . Then

i!E “ i´1RΓZpEq » i´1Hm
Z pEqr´ms,

where

Hm
Z pEq “ lim

ÝÑ
d

FdH
m
Z pEq, FdH

m
Z pEq “ ExtmOW pI

d
Z , Eq

is the local cohomology sheaf with its natural filtration “by the order of
poles”. We note that each FdH

m
Z pEq is a sheaf of O-modules on the dth

infinitesimal neighborhood Zpd´1q Ă W but not on Z itself. However, we
point out the following.

Proposition 2.2.3. In the situation of Example 2.2.2(b):

(a) We have a canonical identification of the quotients

FdH
m
Z pEq{Fd´1H

m
Z pEq » detpNZ{W q b Symd

pNZ{W q,

where NZ{W is the normal bundle of Z in W . In particular, each quotient is
canonically a vector bundle on Z.

(b) Each FdH
m
Z pEq has a canonical structure of a differential bundle on

Z.

Proof: (a) is well known. To see (b), it is enough to show that OZpd´1q “

OW {IdZ has a canonical structure of a differential bundle on Z. Let us show
this.

We can, locally, project Zpd´1q back to Z. That is, let z be any point
of Z. We can find a Zariski neighborhood U of z P Z and a morphism of
schemes p : U pd´1q Ñ U such that the composition of p with the embedding
U Ñ U pd´1q is the identity. This makes OZpd´1q |U into an OU -module.

A different choice of a projection will give, in general, a different OU -
module, i.e., the identity map will not be OU -linear with respect to these
structures. However, it will always be a differential operator of order ď d´1.
Therefore choosing the projections locally, we make OZpd´1q into a differential
bundle.
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C. Compatibility of f ! with DR on complex topology. Let k “ C .

Proposition 2.2.4. Let M‚ be a bounded complex of quasi-coherent right
DW -modules with cohomology modules Hj

pM‚q being holonomic regular. Then

DRpf !M‚
qan » f !

pDRpM‚
qanq,

where in the right hand side we have the usual topological functor f ! on
constructible complexes.

Because of the above compatibilities, we use the same notation f ! for the
functor on right D-modules as well as for the corresponding functors on the
de Rham complexes.

D. Direct image f˚. The direct image of right D-modules is the functor

f˚ : DpQCohDZ q ÝÑ DpQCohDW q, f˚M “ Rf‚
`

MbDZ DZÑW
˘

,

where Rf‚ is the usual topological derived direct image functor on sheaves
on the Zariski topology. In the particular case when f “ p : Z Ñ pt is the
projection to the point, DZÑpt “ OZ , and we will use the following notation:

RΓDRpZ,Mq “ p˚M “ RΓpZ,DRpMqq P DpVectkq.

Here are the standard properties of f˚.

Proposition 2.2.5. (a) If f is étale, then f˚ is right adjoint to f !.

(b) If f is proper, then f˚ takes DpCohDZ q to DpCohDW q as well as
DbpCohDZ q to DbpCohDW q etc. In this case f˚ is left adjoint to f !.

(c) Let F be a coherent sheaf of OZ-modules. then

DR
`

f˚pF bOZ DZq
˘

» Rf‚pFq

where in the right hand side Rf‚ is the topological direct image of sheaves on
the Zariski topology.

(d) Let k “ C and M‚ be a bounded complex of quasicoherent right DZ-
modules with holonomic regular cohomology modules. Then

DRpf˚M‚
qan » Rf‚pDRpM‚

qanq,

where in the right hand side Rf‚ is the topological direct image of sheaves on
the complex topology.

33



Let j : Z ãÑ W be an open embedding, with i : K ãÑ W be the closed
embedding of the complement. Let M P QCohDW .

Proposition 2.2.6. We have canonical quasi-isomorphisms

i˚i
!M » RΓKpMq, j˚j

!M » Rj‚j
´1M

where on the right hand side we have purely sheaf-theoretical operations for
sheaves on the Zariski topology. We further have the canonical triangle in
DpQCohDW q

i˚i
!M ÝÑM ÝÑ j˚j

!MÑ i˚i
!Mr1s.

Proof: For the first identification, see [S]. The second one is obvious since j is
an open embedding. After this, the triangle in question is just the standard
sheaf-theoretic triangle

RΓKpMq ÝÑM ÝÑ Rj‚j
´1M ÝÑ RΓKpMqr1s.

E. D-modules on singular varieties. The above formalism is extended,
in a standard way, to right D-modules on possibly singular varieties. Let us
briefly recall this procedure, following the treatment of [S] for the case of
analytic varieties.

Let i : Z Ñ rZ is a closed embedding of a (possibly singular) variety Z

into a smooth variety rZ. We define the categories

QCohZ,D
rZ
Ă QCohD

rZ
, CohZ,D

rZ
Ă CohD

rZ

to be the full subcategories of quasi-coherent and coherent D
rZ-modules which

are, sheaf-theoretically, supported on Z. If Z is smooth, then, as well known
(Kashiwara’s lemma), the functors

i˚ : CohDZ ÐÑ CohZ,D
rZ

: i!

are mutually quasi-inverse equivalences, and similarly for QCoh. This implies
that the categories QCohZ,D

rZ
and CohZ,D

rZ
are canonically (up to equivalence

which is unique up to a unique isomorphism) independent on the choice of
an embedding i and we denote them

QCohD,Z :“ QCohZ,D
rZ
, CohD,Z :“ CohZ,D

rZ
, @ Z

i
Ñ rZ.
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We note that
Db
pCohZ,D

rZ
q » PerfZ,D

rZ

is identified with the category of perfect complexes of rightD
rZ-modules which

are exact outside of Z. We thus define

PerfZ,D :“ Db
pCohZ,D

rZ
q » PerfZ,D

rZ
.

In particular, we have DpQCohZ,Dq » IndpPerfZ,Dq.

Given a morphism f : Z Ñ W of possibly singular varieties, we can
extend it to a commutative diagram

Z

i
��

f //W

i1��
rZ

rf

//ĂW

with i, i1 being closed embeddings into smooth varieties. After this, the
functor f˚ : DpQCohD,Zq ÝÑ DpQCohD,W q is defined to be given by the
functor

rf˚ : DpQCohZ,D
rZ
q ÝÑ DpQCohW,D

ĂW
qq.

Further, the functor f ! : DpQCohD,W q ÝÑ DpQCohD,Zq is defined to be
given by the functor

RΓZ ˝
rf ! : DpQCohW,D

ĂW
qq ÝÑ DpQCohZ,D

rZ
qq.

These definitions are canonically independent on the choices and we have:

Proposition 2.2.7. (a) The functor f˚ is left adjoint to f ! for proper f and
right adjoint to f ! for étale f.

(b) For any Cartesian square of varieties

Z12

g1
��

g2 // Z1

f1
��

Z2 f2
// Z

we have the base change identification

f !
2 ˝ pf1q˚ » pg1q˚ ˝ g

!
2.
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Further, the Verdier duality

DpQCohD,Zq
op
ÝÑ DpQCohD,Zq, M ÞÑM_

is defined to be given by the functor (Verdier duality on rZ)

DpQCohZ,D
rZ
q
op
Ñ DpQCohZ,D

rZ
q, M ÞÑ ω

rZ bO
rZ

RHomD
rZ
pM,D

rZq,

which is canonically independent on the choices.

For M‚ P DpQCohD,Zq we have the canonically defined de Rham com-

plex DRpMq of sheaves on Z. If M is represented by a complex ĂM‚ P

DpQCohZ,D
rZ
q, then DRpM‚q is represented by the de Rham complex DRpĂM‚q

which is canonically independent on the choices.

Further, we have a well defined concept of holonomic (resp. holonomic
regular) objects of CohD,Z . We denote by HolD,Z the category of holonomic
objects of CohD,Z . The corresponding derived category will be denoted by

(2.2.8) Db
holQCohD,Z » DbHolD,Z .

Here the LHS means the category of complexes with holonomic cohomology,
the RHS the category of complexes consisting of holonomic modules and the
equivalence between two derived categories thus defined is standard (see [Bo,
VI, Prop. 1.14]).

2.3 The nonstandard functorialities

A. Reminder on ind- and pro-D-modules. Let Z be a (possibly sin-
gular) variety over k. As in [De], we have identifications

QCohZ » IndpCohZq, QCohD,Z » IndpCohD,Zq.

For the derived 8-categories we have identification (see [GR] for instance):

DpQCohZq » IndpPerfZq, DpQCohD,Zq » IndpPerfD,Zqq.

where PerfZ is the category of perfect complexes of OZ-modules.
Therefore the Verdier duality gives an anti-equivalence

DpQCohD,Zq
„
ÝÑ PropPerfD,Zq, M “ “lim

ÝÑ
”Mν ÞÑ M_

“ “lim
ÐÝ

”M_
ν .
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B. Formal inverse image f rr˚ss. We keep the notation of the previous
section.

Define the functor of formal inverse image

f rr˚ss : PropPerfD,W q ÝÑ PropPerfD,Zq

by putting, for M‚ P PerfD,W

f rr˚ssM “
`

f !
pM_

q
˘_

and then extend to pro-objects in a standard way. If Z and W are smooth,
then

(2.3.1) f rr˚ssM “ RHomf´1DW pDZÑW , f
´1Mq,

where we notice that DZÑW is a quasi-coherent, i.e., ind-coherent right DZ-
module, so taking RHom from it produces a pro-object.

Proposition 2.3.2. (a) Suppose f is proper, so that f˚ takes PerfD,Z to
PerfD,W and therefore extends to a functor

f˚ : PropPerfD,Zq ÝÑ PropPerfD,W q

denoted by the same symbol. Then the functor f rr˚ss is left adjoint to f˚ thus
defined.

(b) The functor f rr˚ss takes Db
holpCohD,W q to Db

holpCohD,Zq (no pro-objects
needed).

We note that defining the ˚-inverse image on holonomic D-modules by
conjugating f ! with the Verdier duality is a standard procedure. The cor-
responding functor is usually denoted by f˚, see [Bo]. We use the notation
f rr˚ss to emphasize the pro-object structure in the general (non-holonomic)
case.

Proof: (a) In the case when Z and W are smooth, the statement follows from
(2.3.1) and from the adjunction between Hom and b. The general case is
dual to Proposition 2.2.5 (b).

Part (b) is standard, see [Bo].
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C. Compatibility of irr˚ss with DR on Zariski topology. Let i : Z Ñ
W be a closed embedding of smooth varieties of codimension m, with the
ideal IZ Ă OW . Let E be a vector bundle on W . As in Proposition 2.2.3 we
see that each E{IdZE is naturally a differential bundle on Z. We define the
formal restriction of E to Z to be the pro-differential bundle

irr˚ssE “ “lim
ÐÝ

”
d

E{IdZE “ pEZ P PropDSZq

given by the formal completion of E along Z.

Proposition 2.3.3. We have a quasi-isomorphism of sheaves on the Zariski
topology of Z:

DR
`

irr˚sspE bOW DW q
˘

» irr˚ssE.

D. Compatibility of f rr˚ss with DR on complex topology. Let k “
C.

Proposition 2.3.4. Let M‚ P DbpCohD,W q be a complex with holonomic
regular cohomology. Then

DRpf rr˚ssMqan » f´1
`

DRpM‚
qan

˘

,

where on the right we have the usual inverse image of constructible complexes
on the complex topology.

Proof: Follows from Proposition 2.2.4 by Verdier duality.

Because of these compatibilities we use the same notation f rr˚ss for the
formal inverse image functor on D-modules and differential sheaves.

E. The formal compactly supported direct image frr!ss. . We define
the functor of formal compactly supported direct image

frr!ss : PropPerfD,Zq ÝÑ PropPerfD,W q

by putting, for M‚ P PerfD,Z

frr!ssM “ pf˚M_
q
_
P PropPerfD,W q

and then extending to pro-objects in the standard way. In the particular case
when f “ p : Z Ñ pt is the projection to the point, we will use the notation

RΓ
rrcss
DR pZ,Mq :“ prr!ssM P PropPerfkq.
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Proposition 2.3.5. (a) The functor frr!ss is right adjoint to f rr˚ss if f is
proper, and left adjoint to f rr˚ss for f étale.

(b) For any Cartesian square of varieties as in Proposition 2.2.7(b), we
have a canonical identification (base change)

f
rr˚ss

2 ˝ pf1qrr!ss » pg1qrr!ss ˝ g
rr˚ss

2 .

(c) Let j : Z ãÑ W be an open embedding, with i : K ãÑ W be the closed
embedding of the complement. Then, for any M P PropPerfD,W q we have the
canonical triangle in PropDbpQCohDW qq

jrr!ssj
˚M ÝÑM ÝÑ i˚i

rr˚ssM ÝÑ jrr!ssj
˚Mr1s.

Here j˚M can be understood either as jrr˚ssM or as j!M, the two results
being the same.

(d) The functor frr!ss takes Db
holpCohD,Zq to Db

holpCohD,W q (no pro-objects
needed).

As with f rr˚ss, we note that defining the !-direct image on holonomic D-
modules by conjugating f˚ with the Verdier duality is a standard procedure.
The corresponding functor is usually denoted by f!, see [Bo]. We use the
notation frr!ss to emphasize the pro-object structure in the general (non-
holonomic) case.

Proof: Follows from the corresponding properties for f ! and f˚ by applying
Verdier duality.

F. Compatibility of frr!ss with DR on Zariski topology. The effect
of frr!ss on induced D-modules can be described directly, following [De].

First, suppose that j : Z Ñ Z is an open embedding with complement
K and ideal IK Ă OZ . Let F P CohZ be a coherent OZ-module. Choose
a coherent OZ-module F P CohZ extending F , i.e., such that j˚F “ F .
Following [De] we define

(2.3.6) ̃rr!ssF “ “lim
ÐÝ

”
d

IdKF P PropCohZq.

Proposition 2.3.7. (a) The object ̃rr!ssF is canonically (uniquely up to a
unique isomorphism) independent of the choice of F . In this way we get
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a canonically defined functor ̃rr!ss : CohZ Ñ PropCohZq which extends, in a
standard way, to a functor

̃rr!ss : PropCohZq Ñ PropCohZq.

(b) Further, suppose Z smooth. Then a differential operator P : F Ñ G
between coherent sheaves on Z gives rise to a morphism ̃rr!ssP : ̃rr!ssF Ñ

̃rr!ssG in PropDSZq, thus giving a functor

̃rr!ss : PropDSZq Ñ PropDSZq.

Proof: For part (a), see [De]. Part (b) follows since a differential operator
P : F Ñ G of order r maps ImKF to Im´rK G. .

Next, let f : Z Ñ W be any morphism of algebraic varieties over k. We
can always factor f as the composition f “ qj

Z
j

ãÑ Z
q
ÝÑ W

with j being an open embedding and q proper. We define

f̃rr!ss “ pRq‚q ˝ ̃rr!ss : PropPerfZq ÝÑ PropPerfW q.

Proposition 2.3.8. The functor f̃rr!ss is well defined (values canonically in-
dependent on the choices) and is compatible with composition of morphisms.

In particular, for W “ pt we have the functor of algebraic cohomology
with compact support, see [Har2]:
(2.3.9)

RΓrrcsspZ,Fq “ RΓpZ, ̃rr!ssFq “ “lim
ÐÝ

”
d

RΓpZ, IdKFq P PropPerfkq.

It satisfies Serre duality. That is, suppose Z is smooth and E is a vector
bundle on Z. Then we have the isomorphism

(2.3.10) RΓrrcsspZ, ωZ b E
˚
q » RΓpZ,Eq˚

(duality between objects of PropPerfkq and IndpPerfkq).

As before, the functor f̃rr!ss on coherent sheaves inherits the action of
differential operators, not just O-linear morphisms.
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Proposition 2.3.11. Suppose Z is smooth. For any coherent sheaf F on Z
we have

DR
`

frr!sspF bOZ DZq
˘

» f̃rr!ssF .

Proof: In our approach, the functor frr!ss was constructed formally to satisfy

duality, while f̃rr!ss was constructed explicitly using compactification. So the
relation between them follows from the results of [De] which establish the
duality for the functor constructed via compactification.

G. Compatibility of frr!ss with DR on complex topology.

Proposition 2.3.12. Let k “ C and let M‚ P PerfD,Z be a complex of right
DZ-modules whose cohomology modules are holonomic regular. Then we have
a quasi-isomorphism

DRpfrr!ssM‚
qan » f!pDRpM‚

qanq,

where f! is the usual functor of direct image with proper support for sheaves
on the complex topology.

Proof: Follows from the similar statement about the functor f˚ by applying
Verdier duality.

Corollary 2.3.13. Suppose Z is smooth. Let F‚ be a differential complex
on Z such that the complex DZ bOZ F‚, of induced DZ-modules has regular
holonomic cohomology sheaves. Then

pf̃rr!ssF‚qan » f!pF‚anq.

2.4 Correspondences and base change

Definition 2.4.1. We denote by Varcorr
k the following 2-category, called the

category of correspondences between k-varieties. Its objects are objects of
Vark. A morphism in Varcorr

k from X to Y is a correspondence: a third
variety Z with two morphisms of varieties X Ð Z Ñ Y . The composition of
two correspondences X Ð Z Ñ Y and Y Ð Z 1 Ñ Y 1 is the correspondence
X Ð Z ˆY Z

1 Ñ Y 1. Finally, a transformation (i.e., a 2-morphism) between
two correspondences X Ð Z Ñ Y and X Ð Z 1 Ñ Y is the datum of a
proper morphism Z Ñ Z 1 commuting with the maps to X and Y . The
vertical composition is the obvious one.
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It follows from [GR] that base change between lower-˚ and upper-! func-
tors can be encoded as an p8, 2q-functor

Dcorr : Varcorr
k ÝÑ Cat8

mapping a variety X to DpQCohD,Xq and a correspondence X
f
Ð Z

g
Ñ Y

to the functor g˚f
!. It finally maps a (proper) transformation f : Z Ñ Z 1

between two correspondences X
g
Ð Z

h
Ñ Y and X

u
Ð Z 1

v
Ñ Y to the natural

transformation
h˚g

!
“ v˚f˚f

!u!
ñ v˚u

!

induced by the adjunction counit.
Similarly, we have an p8, 2q- functor

Drrcorrss : Varcorr
k ÝÑ Cat8

that maps a variety X to PropDbCohD,Xq, a correspondence X
f
Ð Z

g
Ñ Y to

the functor grr!ssf
rr˚ss. It finally maps a (proper) transformation f : Z Ñ Z 1

between two correspondences X
g
Ð Z

h
Ñ Y and X

u
Ð Z 1

v
Ñ Y to the natural

transformation

hrr!ssg
rr˚ss

“ vrr!ssfrr!ssf
rr˚ssurr˚ss ñ vrr!ssu

rr˚ss

induced by the adjunction counit.

3 D-modules on the Ran space

3.1 The Ran space in algebraic geometry

Throughout this section, we will denote by Vark the category of varieties
over k. Let X P Vark.

A. Ran diagram and Ran space.

Definition 3.1.1. (a) Let S denote the category of non-empty finite sets
with surjective maps between them. We define the Ran diagram of X as the
contravariant functor XS : S Ñ Vark defined by:

XS : I ÞÑ XI , pg : I � Jq ÞÑ pδg : XJ
Ñ XI

q,
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where δg is the diagonal embedding associated to g.

(b) By an (algebro-geometric) space over k we will mean a sheaf of sets
on the big étale site (affine k-schemes with étale coverings). The category of
such will be denoted AGSk. We have the standard embedding Vark ãÑ AGSk

(representable functors).

(c) The Ran space of X is defined as

RanpXq “ lim
ÝÑ

XS
“ lim
ÝÑ
IPS

XI

(colimit in AGSk).

The category S is not filtering so RanpXq is not an ind-variety in the
standard sense.

B. Diagonal skeleta.

Definition 3.1.2. (a) For any I P S and q ą 0, we call the q-fold diagonal
and denote by

XI
q :“

ď

f : I�Q
|Q|“q

δf pX
Q
q

the closed subvariety of XI whose closed points are families of at most q
different points of X.

(b) We denote by XS
q the functor S Ñ Vark given by I ÞÑ XI

q . We also
denote

RanqpXq “ lim
ÝÑ

XS
q “ lim

ÝÑ
IPS

XI
q

the space corresponding to XS
q .

Let Sq be the symmetric group on q symbols . We denote by

Symq
pXq “ Xq

{Sq, Symq
‰pXq “ pX

q
´Xq

q´1q{Sq

the qth symmetric power of X (as a singular variety) and its open part given
by complement of all the diagonals.
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Proposition 3.1.3. (a) We have

XS
“ lim
ÝÑ
q

XS
q , RanpXq “ lim

ÝÑ
q

RanqpXq

(colimit in the category of functors resp. in AGSk).

(b) We have an identification

RanqpXq ´ Ranq´1pXq “ Symq
‰pXq.

In particular, Ran1pXq “ X.

C. Varieties ∆pI, Jq. We will use the following construction from [GL]
(9.4.12).

Definition 3.1.4. Let I, J be two nonempty finite sets. We denote by
∆pI, Jq Ă XIˆXJ the closed algebraic subvariety whose k-points are pairs of
tuples

`

pxiqiPI , pyjqjPJ
˘

, xi, yj P Xpkq such that the corresponding unordered
subsets

txiuiPI “
ď

iPI

txiu, tyjujPJ “
ď

jPJ

tyju

coincide. We denote

(3.1.5) XI pIJ
ÐÝ ∆pI, Jq

qIJ
ÝÑ XJ

the natural projections. They are finite morphisms.

The following is obvious,

Proposition 3.1.6. We have

∆pI, Jq “ lim
ÝÑ

Var

tI
u
�Q

v
�Ju

Im
 

pδu, δvq : XQ
ÝÑ XI

ˆXJ
(

,

where the colimit is taken over the category whose objects are pairs of surjec-

tions I
u
� Q

v
� J and morphisms are surjections Q Ñ Q1 commuting with

the arrows. The colimit reduces to the union inside XI ˆXJ .

Any surjection g : I Ñ J induces, for each finite nonempty K, a natural
morphism (closed embedding) ∆pg,Kq : ∆pJ,Kq Ñ ∆pI,Kq. The following
is clear by definition.
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Proposition 3.1.7. For any g : I Ñ J and K as above we have a commu-
tative diagram with the square being Cartesian

XI ∆pI,Kq
pIKoo qIK // XK

XJ

δg

OO

∆pJ,Kq.pJK
oo

∆pg,Kq

OO

qJK

::

An alternative way to arrive at Proposition 3.1.7 is via the next statement.

Proposition 3.1.8. The natural morphism in AGSk

ppIJ , qIJq : ∆pI, Jq ÝÑ XI
ˆRanpXq X

J

is an isomorphism.

Proof: To say that ppIJ , qIJq is an isomorphism of sheaves on the big étale
site, means that it induces a bijection on S-points for any scheme S which
is the spectrum of a strictly Henselian local ring. Let S be given and pp, qq :
S Ñ XI ˆRanpXq X

J be a morphism, i.e., p : S Ñ XI and q : S Ñ XJ are
morphisms of schemes which become equal after map to RanpXq. We need
to show that pp, qq considered as a morphism S Ñ XI ˆXJ factors through
∆pI, Jq.

By definition of RanpXq and our assumptions on S,

HompS,RanpXqq “ lim
ÝÑ

Set
IPS HompS,XI

q “
ğ

IPS

HompS,XI
q

N

”

where ” is the equivalence relation generated by the following relation ”0.
We say that p : S Ñ XI and q : S Ñ XJ satisfy p ”0 q, if there is a diagram

of surjections I
a
� L

b
� J such that δap “ δbq in HompS,XLq.

We treat the case p ”0 q, the general case follows easily. Let Q be the
coproduct, fitting in the coCartesian square of sets below left. Note that all
arrows in that square are surjections.

L

b
��

a // I

c
��

J
d
// Q

XL XIδaoo

XJ

δb

OO

XQ
δd
oo

δc

OO
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This square induces a Cartesian square of varieties (above right). So p, q
comes from a morphism S Ñ XQ and our statement follows from Proposition
3.1.6.

3.2 rrDss-modules and D!-modules

A. Reminder on lax limits. Let A be a small category and P : A Ñ

Cat8 an (8-)functor. In particular, for each object a P A we have an 8-
category Pa and for any morphism g : a Ñ a1 in A we have an 8-functor
pg : Pa Ñ Pa1 . In this setting we have the8-category known as the Cartesian

Grothendieck construction (or relative nerve) G pPq. see [Lu-HTT] Def.
3.2.5.2. Thus, in particular,

(GR0) Objects (0-simplices) ofG pPq are pairs pa, xq where a P ObpA q and
x is an object (0-simplex) in Pa.

(GR1) Morphisms (1-simplices) inG pPq from pa, xq to pa1, x1q are pairs pg, αq
where g : aÑ a1 is a morphism in A and α : x1 Ñ pgpxq is a morphism
in Pa1 ,

and so on, see loc. cit. for details. Note that there is a “dual” version, called

the coCartesian Grothendieck construction
Ę

G pPq with the same objects but
with (higher) morphisms defined in a partially dualized way, for example,

(ĘGR1) Morphisms (1-simplices) inG pPq from pa, xq to pa1, x1q are pairs pg, αq
where g : aÑ a1 is a morphism in A and α : pgpxq Ñ x1 is a morphism
in Pa1 ,

and so on. In other words,

Ę

G pPq “G pPop
q
op, Pop

“ pPop
a , p

op
g : Pop

a Ñ Pop
a1 q.

We have the natural projections

q :G pPq ÝÑ A op, q̄ :
Ę

G pPq ÝÑ A .

Definition 3.2.1. The lax limit and op-lax limit of P are the 8-categories

lax
ÐÝ
pPq “ SectpG pPq{A q, lax

ÐÝ
˝
pPq “ Sectp

Ę

G pPq{A q

formed by sections of q and q̄, i.e., by 8-functors (morphisms of simplicial

sets) s : A ÑG pPq (resp. s̄ : A Ñ
Ę

G pPq) such that qs “ Id (resp.
q̄s̄ “ Id).
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Examples 3.2.2. (a) Thus, an object of lax
ÐÝ

˝
pPq is a following set of data:

(0) For each a P ObpA q, an object xa P Pa.

(1) For each morphism g : a0 Ñ a1 in A, a morphism (not necessarily an
isomorphism) γg : pgpxa0q Ñ xa1 .

(2) For each composable pair a0
g0
Ñ a1

g1
Ñ a2 in A , a homotopy (necessarily

invertible, as we work in an p8, 1q-category) γg1 ˝ pg1pγg0q ñ γg1g0 .

(p) Similar homotopies for composable chains in A of length p for any p.

(b) Similarly, an object of lax
ÐÝ
pPq is a set of data with part (0) identical to

the above, part (1) replaced by morphisms βg : xa1 Ñ pgpxa0q and so on.

Definition 3.2.3. A morphism pa0, xa0q Ñ pa1, xa1q inG pPq is called Carte-
sian if the corresponding morphism xa0 Ñ pgpxa1q is an equivalence. Dually,

a morphism pa0, xa0q Ñ pa1, xa1q in
Ę

G pPq is called coCartesian if the corre-
sponding morphism pgpxa0q Ñ xa1 is an equivalence.

In particular, the full subcategory of lax
ÐÝ
P spanned by sections s such that

for any map g in A , spgq is Cartesian is equivalent to the limit holim
ÐÝÝÝ

P (see
[Lu-HTT, Cor. 3.3.3.2]). Dually, the full subcategory of lax

ÐÝ
˝P spanned by

sections mapping every arrow to a coCartesian one is equivalent to holim
ÐÝÝÝ

P .
Let now Q : B Ñ A be another functor. There are pullback diagrams

G pP ˝Qq //

��

G pPq

��
Bop

Q
// A op

Ę

G pP ˝Qq //

��

Ę

G pPq

��
B

Q
// A .

In particular, pulling back sections defines projections

lax
ÐÝ
P ÝÑ lax

ÐÝ
P ˝Q and lax

ÐÝ
˝P ÝÑ lax

ÐÝ
˝P ˝Q,

both compatible with the projection holim
ÐÝÝÝ

P Ñ holim
ÐÝÝÝ

P ˝Q.

47



B. Lax and strict rrDss- and D!-modules on diagrams. By a diagram
of varieties of finite type over k we mean a datum of a small category A
and a functor Y : A Ñ Vark. That is, for each object a P A we have a
(possibly singular) variety Ya and for each morphism g : aÑ b in A we have
a morphism of varieties ξg : Ya Ñ Yb.

Given a diagram Y , we have two functors A op Ñ Catst
8:

Drr˚ssY : a ÞÑ PropDbCohD,Yaq, pg : aÑ a1q ÞÑ ξrr˚ssg

D!
Y : a ÞÑ DpQCohD,Yaq, pg : aÑ a1q ÞÑ ξ!

g.

Definition 3.2.4. We define the 8-categories

ModrrDsspYq “ lax
ÐÝ

˝
pDrr˚ssY q, Mod!

DpYq “ lax
ÐÝ
pD!

Yq

whose objects will be called lax rrDss-modules and lax D!-modules on Y .

Remarks 3.2.5. (a) Thus, a lax rrDss-module F on Y can be viewed as a
family pFaq where Fa is a pro-coherent complex of left D-modules over Ya,
together with transition (compatibility) maps

γg : ξrr˚ssg Fa1 ÝÑ Fa,

given for any g : a Ñ a1 in A and further compatible under compositions
of the g’s. Because of the adjunction between ξ

rr˚ss
g and pξgq˚, we can write

transition maps of a lax rrDss-module in the dual form, as morphisms

γ:g : Fa1 ÝÑ pξgq˚Fa.

Since pξgq˚ preserves coherent D-modules, this allows us to deal with some
lax rrDss-modules without using pro-objects.

(b) Similarly, we will view a lax D!-module on Y as a family pEpaqq where
Epaq is a quasicoherent (i.e., ind-coherent) complex of right D-modules on
Ya, together with transition maps

βg : Epaq ÝÑ ξ!
gE

pa1q

given for any g : a Ñ a1 in A and further compatible under composition of
the g’s. As before, we can define the structure maps of a lax D!´module in
the dual form, as morphisms

β:g : pξgq˚E
pa1q
ÝÑ Epaq,

using the adjunction between pξgq˚ and ξ!
g.

48



Definition 3.2.6. (a) A lax rrDss-module F is called strict, if all transition
maps γg are equivalences. We denote by Mod

rrDsspYq the full 8-category of

strict rrDss-modules on Y . It embeds fully faithfully into ModrrDsspYq.
(b) A lax D!-module E on Y is called strict, if the transition maps βg

are equivalences. Let Mod!

DpYq be the 8-category of D!-modules on Y . It

embeds fully faithfully into Mod!
DpYq.

In other words

Mod
rrDsspYq “ lim

ÐÝ
pDrr˚ssY q, Mod!

DpYq “ lim
ÐÝ
pD!

Yq

are the strict (8-categorical) limits of the same functors as above, cf. [FG]
§2.1. Objects of the strict limit correspond to Cartesian sections of the
Grothendieck construction inside all sections.

C. rrDss- and D!-modules on the Ran diagram. We now specialize
to the case when A “ S op and Y “ XS is the Ran diagram. Thus, a lax
rrDss-module F on XS consists of pro-coherent complexes of D-modules FI
on XI , morphisms γg : δ

rr˚ss
g FJ Ñ FI plus coherent higher compatibilities for

the γg. A lax D!-module E on XS consists of quasi-coherent complexes of
D-modules EpIq on XI , morphisms βg : EpJq Ñ δ!

gE
pIq plus coherent higher

compatibilities for the βg.
Recall also, the Ran space RanpXq “ lim

ÝÑ
XS . It is clear that strict

modules can be defined invariantly in terms of the space RanpXq, while the
concept of a lax module is tied to the specific diagram XS representing
RanpXq. Nevertheless, most of our constructions can and will be performed
directly on XS .

D. Strictification of lax D!-modules. We have the full embedding

Mod!

DpX
S
q ãÑ Mod!

DpX
S
q.

The left adjoint functor to this embedding will be called the strictification
and will be denoted E ÞÑ E. Its existence can be guaranteed on general
grounds, see [GL] (5.2). Here we give an explicit formula for it.
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Definition 3.2.7. Let E “
`

EpIq, βg : EpJq Ñ δ!
gE

pIq
˘

be a lax D!-module E
on XS . Its strictification is the strict D!-module E on XS defined by

EpIq “ holim
ÝÝÝÑ
KPS

ppIKq˚ q
!
IKE

pKq,

where pIK and qIK are the canonical projections of the variety ∆pI,Kq, see
(3.1.5). The structure map

βg : EpJq
»
ÝÑ δ!

gE
pIq, g : I�J

comes from identification of the target with

holim
ÝÝÝÑ
K

δ!
gppIKq˚q

!
IK E

pKq
» holim
ÝÝÝÑ
K

ppJKq˚ ∆pg,Kq! q!
IK E

pKq
»

» holim
ÝÝÝÑ
K

ppJKq˚ q
!
JK E

pKq
“ EpIq,

where we used the base change theorem for the Cartesian square in Proposi-
tion 3.1.7 as well as the commutativity of the triangle there.

E. Strictification of lax rrDss-modules. The theory here is parallel to
the D!-module case.

Definition 3.2.8. Let F “
`

FI , γg : δ
rr˚ss
g FI Ñ FJ

˘

be a lax rrDss-module on
XS . Its strictification is the strict rrDss-module F on XS defined by

F I “ holim
ÐÝÝÝ
KPS

ppIKqrr!ss q
rr˚ss

IK FK ,

with the structure map

γg : δrr˚ssg F I
»
ÝÑ F J , g : I�J

induced by the base change in the square of Proposition 3.1.7

The functor F ÞÑ F is right adjoint to the embedding Mod
rrDsspX

S q ãÑ

ModrrDsspX
S q.
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F. Factorization homology.

Definition 3.2.9. (a) We call the factorization homology (resp. compactly
supported factorization homology) of a (lax) D!-module E on XS the complex
of k-vector spaces

ˆ
X

E :“ holim
ÝÝÝÑ
IPS

RΓDRpX
I , EpIqq P IndpPerfkq “ Cpkq,

ˆ rrcss

X

E :“ holim
ÝÝÝÑ
IPS

RΓ
rrcss
DR pX

I , EpIqq P IndpPropPerfkqq.

Thus
´
X
E is just a (possibly infinite-dimensional) complex of k-vector

spaces, as IndpPerfkq “ Cpkq is the category of all chain complexes over k.

On the other hand,
´ rrcss
X

E is an ind-pro-finite-dimensional complex.

Definition 3.2.10. We call the compactly supported factorization cohomol-
ogy (resp. factorization homology) of a (lax) rrDss-module F on XS the
complexes

˛ rrcss

X

F :“ holim
ÐÝÝÝ
IPS

RΓ
rrcss
DR pX

I , FIq P PropPerfkq,

˛
X

F :“ holim
ÐÝÝÝ
IPS

RΓDRpX
I , FIq P PropIndpPerfkqq.

Those constructions define exact functors between stable 8-categories:

ˆ
X

: Mod!
DpX

S
q ÝÑ Cpkq,

ˆ rrcss

X

: Mod!
DpX

S
q ÝÑ IndpPropPerfkqq,

˛ rrcss

X

: ModrrDsspX
S
q ÝÑ PropPerfkq,˛

X

: ModrrDsspX
S
q ÝÑ PropIndpPerfkqq.

Proposition 3.2.11. All four types of factorization homology are unchanged
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under strictification, i.e., we have

ˆ
X

E »

ˆ
X

E,

ˆ rrcss

X

E »

ˆ rrcss

X

E, E P Mod!
DpX

S
q,

˛ rrcss

X

F »

˛ rrcss

X

F ,

˛
X

F »

˛
X

F , F P ModrrDsspX
S
q.

Proposition 3.2.12. Verdier duality (on each XI) induces equivalences

p´q
_ : Mod!

DpX
S
q
op
» ModrrDsspX

S
q and Mod!

DpX
S
q
op
» Mod

rrDsspX
S
q,

compatible with the inclusion functors. Moreover, there are natural equiva-
lences ˛ rrcss

X

p´q
_
»

ˆˆ
X

´

˙˚

,

ˆ rrcss

X

p´q
_
»

ˆ˛
X

´

˙˚

.

3.3 Covariant Verdier duality and the diagonal filtra-
tion

The content of this section is inspired from [GL].

A. For (lax) D!-modules. We denote by Coh!
DpX

S q the full subcat-
egory of Mod!

DpX
S q spanned by lax D!-modules E “ pEpIqq such that each

EpIq is coherent as a D-module over XI .

Definition 3.3.1. We call the covariant Verdier duality the functor

φ : Coh!
DpX

S
q ÝÑ Mod

rrDsspX
S
q, pφpEqqI “ holim

ÝÝÝÑ
KPS

ppIKq˚ q
rr˚ss

IK EpKq,

where pIK nad qIK are the projections of the subvariety ∆pI,Kq Ă XIˆXK .

Let us explain the definition in more details.

The diagram to take the colimit. Let h : K 1 Ñ K be a surjection. We then
have a diagram similar to that of Proposition 3.1.7:

∆pI,K 1q

pIK1

{{

qIK1 // XK1

XI ∆pI,KqpIK
oo

∆pI,hq

OO

qIK
// XK .

δh

OO
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Consider the structure morphism βh : EpKq Ñ δ!
hE

pK1q. It corresponds to an
adjoint morphism pδhq˚E

pKq Ñ EpKq in DpCohD
XK

1 q. Applying the functor

ppIK1q˚ q
rr˚ss

IK1 we find ppIK1q˚ q
rr˚ss

IK1 pδhq˚E
pKq Ñ ppIK1q˚ q

rr˚ss

IK1 E
pKq. Using base

change for the above pullback square, we find

ppIK1q˚ q
rr˚ss

IK1 pδhq˚E
pKq
» ppIK1q˚ ∆pI, hq˚ q

rr˚ss

IK EpKq » ppIKq˚ q
rr˚ss

IK EpKq.

We get the natural morphism

ppIKq˚ q
rr˚ss

IK EpKq Ñ ppIK1q˚ q
rr˚ss

IK1 E
pKq

that is used to form the diagram over which we take the homotopy colimit.

Structure maps for φpEq and its strictness. Let g : I Ñ J be a surjection.
The structure map

γg : δrr˚ssg φpEqI “ holim
ÝÝÝÑ
K

δrr˚ssg ppIKq˚ q
rr˚ss

IK EpKq ÝÑ

ÝÑ holim
ÝÝÝÑ
K

ppJKq˚ q
rr˚ss

JK EpKq “ φpEqJ

is obtained by contemplating the diagram in Proposition 3.1.7 which gives,
for each K, the identification

δrr˚ssg ppIKq˚ q
rr˚ss

IK EpKq
BC
» ppJKq˚ ∆pg,Kqrr˚ssq

rr˚ss

IK EpKq » ppJKq˚ q
rr˚ss

JI EpKq.

Here BC is the base change identification, where we note that pIK ansd pJK
are finite morphisms so the rr!ss-direct image for them coincides with the
usual ˚-direct image.

The above identifications also show that each γg is an equivalence, and
so φpEq is a strict rrDss-module.

Remarks 3.3.2. (a) We restrict to coherent !-sheaves so that q
rr˚ss

IK EpKq is
defined in pro-coherent D-modules.

(b) Note the similarity with Definition 3.2.7 of E, the strictification of E.

B. Topological approximation and diagonal filtration. Recall the
following general fact. Let I,K be two small categories and pAIKqIPI,KPK be
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a bi-diagram in an 8-category C , i.e. an 8-functor I ˆKÑ C . Then there
is a canonical morphism

(3.3.3) can : holim
ÝÝÝÑ
KPK

holim
ÐÝÝÝ
IPI

AIK ÝÑ holim
ÐÝÝÝ
IPI

holim
ÝÝÝÑ
KPK

AIK .

We apply this to the case when I “ K “ S and C “ PropCpkqq.

Let E P Coh!
DpX

S q be a coherent lax D!-module. We then have natural
maps

(3.3.4) τ :

ˆ
X

E ÝÑ

˛
X

φpEq, τc :

ˆ rrcss

X

E ÝÑ

˛ rrcss

X

φpEq,

which we call the topological approximation maps and which are defined as
follows. Using the standard map

(3.3.5) σ : RΓDRpX
K , EpKqq ÝÑ holim

ÐÝÝÝ
I

RΓDRp∆pI,Kq, q
rr˚ss

IK EpKqq,

we first map

ˆ
X

E “ holim
ÝÝÝÑ
K

RΓDRpX
K , EpKqq Ñ holim

ÝÝÝÑ
K

holim
ÐÝÝÝ

I

RΓDRp∆pI,Kq, q
rr˚ss

IK EpKqq

and then map the target by the canonical map (3.3.3) to

holim
ÐÝÝÝ

I

holim
ÝÝÝÑ
K

RΓDRp∆pI,Kq, q
rr˚ss

IK EpKqq

» holim
ÐÝÝÝ

I

holim
ÝÝÝÑ
K

RΓDRpX
I , ppIKq˚ q

rr˚ss

IK EpKqq

» holim
ÐÝÝÝ

I

RΓDRpX
I , φpEqIq “

˛
X

φpEq.

This gives τ . The map τc is defined similarly by noticing that qIK being
finite, we have a map σc analogous to σ and featuring compactly supported
de Rham cohomology.

For any positive integer d, we denote by id the pointwise closed embedding
XS
d Ñ XS , see Definition 3.1.2.
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Definition 3.3.6. We defineˆ ďd

X

E :“ holim
ÐÝÝÝ

I

RΓDRpX
I
d , i

rr˚ss

d EpIqq P PropCpkqq,

ˆ rrcss,ďd

X

E :“ holim
ÐÝÝÝ

I

RΓ
rrcss
DR pX

I
d , i

rr˚ss

d EpIqq P PropPerfkq,

and call them the factorization homology (resp. compactly supported factor-
ization homology) of arity at most d of E.

Remark that
´ ďd
X

E (and similarly for its compactly supported analog)

can be seen as the factorization homology of a lax pro-D!-module pidq˚i
rr˚ss

d E.
As d varies, they fit into sequences

ˆ
X

E ÝÑ ¨ ¨ ¨ Ñ

ˆ ďd

X

E Ñ ¨ ¨ ¨ Ñ

ˆ ď1

X

E,

ˆ rrcss

X

E ÝÑ ¨ ¨ ¨ Ñ

ˆ rrcss,ďd

X

E Ñ ¨ ¨ ¨ Ñ

ˆ rrcss,ď1

X

E.

Lemma 3.3.7. For E P Coh!
DpX

S q, there are canonical equivalences
˛
X

φpEq » holim
ÐÝÝÝ

d

ˆ ďd

X

E,

˛ rrcss

X

φpEq » holim
ÐÝÝÝ

d

ˆ rrcss,ďd

X

E.

Proof: This is a straightforward formal computation on limits.

C. For (lax) rrDss-modules. The above constructions admit a dual
version, for rrDss-modules. We sketch it briefly, formulating statements but
omitting details.

We denote by CohrrDsspX
S q the category of lax rrDss-modules

F “
`

pFI , pγg : δrr˚ssg FI ÝÑ FJqg:I�J

˘

on XS such that each FI is coherent on XI .

Definition 3.3.8. We call the covariant Verdier duality for rrDss-modules
the functor

ψ : CohrrDsspX
S
q ÝÑ Mod!

DpX
S
q

defined by
ψpF qpIq “ holim

ÐÝÝÝ
K

ppIKq˚ q
!
IK FK .
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We have canonical topological approximation maps

(3.3.9) τ :

ˆ
X

ψpF q ÝÑ

˛
X

F, τc :

ˆ rrcss

X

ψpF q ÝÑ

˛ rrcss

X

F.

For any lax coherent rrDss-module F on XS , we denote by RΓXS
d
pF q the

lax ind-rrDss-module pidq˚i
!
dF on XS .

Definition 3.3.10. We define the (compactly supported) factorization coho-
mology of F with d-fold support as the (compactly supported) factorization
cohomology of RΓXS

d
pF q. We denote these cohomologies by

RΓXS
d ,DRpX

S , F q :“

˛
X

RΓXS
d
pF q P Cpkq,

RΓ
rrcss

XS
d ,DR

pXS , F q :“

˛ rrcss

X

RΓXS
d
pF q P IndpPropPerfkqq.

We call the sequences

RΓXS
1 ,DRpX

S , F q Ñ ¨ ¨ ¨ Ñ RΓXS
d ,DRpX

S , F q Ñ ¨ ¨ ¨ ,

RΓ
rrcss

XS
1 ,DR

pXS , F q Ñ ¨ ¨ ¨ Ñ RΓ
rrcss

XS
d ,DR

pXS , F q Ñ ¨ ¨ ¨ ,

the diagonal filtration on the (compactly supported) factorization cohomol-
ogy of F .

Lemma 3.3.11. There are canonical equivalences

holim
ÝÝÝÑ

d

RΓXS
d ,DRpX

S , F q »

ˆ
X

ψpF q,

holim
ÝÝÝÑ

d

RΓ
rrcss

XS
d ,DR

pXS , F q »

ˆ rrcss

X

ψpF q.

D. Compatibility with the usual (contravariant) Verdier duality.
We start with a lax coherent D!-module E on XS . As Verdier duality

exchanges irr˚ss and i! and commutes with i˚ for a closed immersion i, we get

Proposition 3.3.12. There are canonical equivalences

RΓ
rrcss

XS
d ,DR

pXS , E_q »

ˆˆ ďd

X

E

˙˚

, RΓXS
d ,DRpX

S , E_q »

˜ˆ rrcss,ďd

X

E

¸˚

.
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Moreover, it is compatible with the transition maps (when d varies) and with
the map to

˛ rrcss

X

E_ »

ˆˆ
X

E

˙˚

,

˛
X

E_ »

˜ˆ rrcss

X

E

¸˚

.

4 Factorization algebras

The goal of this chapter is to introduce factorization algebras in the algebro-
geometric setting (due to [BD] in the 1-dimensional case and to [FG] in
general). Those are structured (lax) D!-modules (or, in our non-holonomic
formalism, rrDss-modules). We will then prove that the covariant Verdier du-
ality introduced in the previous chapter preserves this structure. To achieve
that, we will need various equivalent definitions of factorization algebras.

4.1 Symmetric monoidal 8-categories

A. Reminders. Let S ˚ be the category of pointed finite sets of cardinal
at least 2, with pointed surjections between them. For any non-empty finite
set I, we denote by I˚ the set I > t˚u pointed at ˚. For any i P I, we denote
by pi the map I˚ Ñ tiu˚ given by

pipjq “

#

i if j “ i

˚ else.

A non-unital symmetric monoidal structure on an 8-category C is the datum
of a functor C : S ˚ Ñ Cat8 such that Cpt1u˚q » C and such that for any I,
the functor

C
´

ź

pi

¯

: CpI˚q Ñ
ź

iPI

Cptiu˚q

is an equivalence. The tensor product on C is then the functor

C ˆ C » Cpt1, 2u˚q ÝÑ Cpt1u˚q » C

induced by t1, 2u Ñ t1u mapping both elements to 1.
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As is done in [Lu-HA], we can encode monoidal categories by their Grothendieck
constructions:

Cb :“
Ę

G pCq Ñ S ˚

Cb :“G pCq Ñ pS ˚
q
op.

A monoidal functor between two (non-unital) symmetric monoidal cate-
gories C and D is a natural transformation C Ñ D. Equivalently, it corre-
sponds to a functor Cb Ñ Db over S ˚ that preserves coCartesian morphisms,
and to a functor Cb Ñ Db over pS ˚qop that preserves Cartesian morphisms.

Definition 4.1.1. A lax monoidal functor C Ñ D is a functor Cb Ñ Db over
S ˚ such that any coCartesian morphism in Cb that lies over a projection
pi : tIu

˚ Ñ tiu˚ is mapped to a coCartesian morphism in Db.
A colax monoidal functor C Ñ D is a functor Cb Ñ Db over pS ˚qop such

that any Cartesian morphism in Cb that lies over a projection pi : tIu
˚ Ñ tiu˚

is mapped to a Cartesian morphism in Db.

It follows from the above definitions that a monoidal functor is in partic-
ular both a lax and colax monoidal functor.

Informally, a functor F : C Ñ D is lax (resp. colax) monoidal if we have
functorial morphisms

F pc1q b F pc2q ÝÑ F pc1 b c2q

(resp. F pc1 b c2q ÝÑ F pc1q b F pc2q ).

It is monoidal if those morphisms are equivalences.

B. Day convolution product: Fix two (non-unital) symmetric monoidal
categories C and D. The (right) Day convolution product is a (non-unital)
symmetric monoidal structure on the category of functors C Ñ D. It is given
on two functors F and G : C Ñ D by the formula

pF bGqpcq “ holim
ÐÝÝÝ
c1bc2Ñc

F pc1q bGpc2q.

Note that the existence of the right Day convolution is not automatic and
relies on the existence of such limits. For a complete account on the Day
convolution in the context of 8-categories, we refer to [Gla].
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Remark 4.1.2. In [Gla], the author develops the left Day convolution which
is dual to the right one that we are considering. The left convolution (if it
exists) is given by the formula

pF bGqpcq “ holim
ÝÝÝÑ
cÑc1bc2

F pc1q bGpc2q.

Definition 4.1.3. Let C be a (non-unital) symmetric monoidal category. We
say that C is of finite decompositions if the following hold

(a) For any c, c1, c2 P C, any morphism c1 b c2 Ñ c factors essentially
uniquely as

c1 b c2
f1bf2
ÝÑ d1 b d2

„
ÝÑ c.

(b) For any object c P C, the number of decompositions c » d1 b d2 is
essentially finite.

Proposition 4.1.4. Let C and D be symmetric monoidal categories. Assume
that C is of finite decompositions, and that D admits finite products (resp.
coproducts). Then the right (resp. left) Day convolution on the category of
functors C Ñ D exists.

If moreover D admits finite sums (ie finite products and coproducts coin-
cide), then the left and the right Day convolution products coincide. In this
case, we call it the Day convolution.

Proof. We fix c P C and denote by C ˆ C{c the category of triples pc1, c2, fq
where c1, c2 P C and f : c1bc2 Ñ c. We denote by b´1pcq the full subcategory
of C ˆ C{c spanned by triples as above for which f is an equivalence.

Because C is of finite decompositions, the inclusion functor b´1pcq Ă
CˆC{c is cofinal and the category b´1pcq is equivalent to a finite set Spcq. In
particular, if it exists, the right Day convolution of two functors F,G : C Ñ D
is given, for every c P C, by the finite product

ź

rd1,d2sPSpcq

F pd1q bGpd2q.

The result follows.

Finally, we recall the following key property of the Day convolution.

Theorem 4.1.5 (see [Gla, Prop. 2.12]). An algebra for the left Day convo-
lution product is tantamount to a lax monoidal functor. A coalgebra for the
right Day convolution product is tantamount to a colax monoidal functor.
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C. Monoidal functors and Grothendieck constructions:

Proposition 4.1.6. Let F : C Ñ Cat8 be a non-unital lax monoidal functor.

The coCartesian Grothendieck construction
Ę

G F is endowed with a natural

non-unital symmetric monoidal structure, such that the projection
Ę

G F Ñ C
is a symmetric monoidal functor.

The Cartesian Grothendieck construction G F is also endowed with a
natural non-unital symmetric monoidal structure compatible with the projec-
tionG F Ñ Cop.

Proof. We first deal with the coCartesian case. The 8-category Cat8 is
endowed with its cartesian symmetric monoidal structure. In particular, the
8-category of lax monoidal functors C Ñ Cat8 embeds fully faithfully into
the category FunpCb,Cat8q (see [Lu-HA, Prop. 2.4.1.7]). Let F̃ denote the
image of F under this inclusion.

We can now apply the coCartesian Grothendieck construction and obtain
a coCartesian fibration

Ę

G F̃ Ñ Cb Ñ S ˚.

The fact that it defines a non-unital symmetric monoidal structure on
Ę

G F
compatible with the projection follows directly from [Lu-HA, Prop. 2.4.1.7].

We can now focus on the Cartesian case. We consider the functor Fop

mapping c P C to Fpcqop. It inherits from F the lax monoidal structure

and we can thus apply the above. We get on
Ę

G Fop a monoidal structure

compatible with the projection
Ę

G Fop Ñ C. We now observe the equivalence

G F »
´

Ę

G Fop
¯op

.

and conclude.

Corollary 4.1.7. Let F : C Ñ Cat8 be a non-unital lax-monoidal functor.
Assume that C is of finite decompositions and that for any c P C, the category
Fpcq admits finite direct sums. Then the Day convolution (either left or
right, equivalently) defines a non-unital monoidal structure on both lax

ÐÝ
F

and lax
ÐÝ

˝F .

Proof. Follows directly from Proposition 4.1.4.
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Proposition 4.1.8. Given two lax monoidal functors F ,G : C Ñ Cat8 and
a lax monoidal transformation F ñ G, the induced functors

Ę

G F ÑĘ

G G and G F ÑG G

are lax monoidal. If the natural transformation was (strictly) monoidal, then
the induced functors are too.

Sketch of proof. The lax monoidal functors F and G correspond to functors
F̃ and G̃ : Cb Ñ Cat8. The lax monoidal transformation F ñ G then corre-
spond to a lax natural transformation F̃ ñ G̃ and therefore to a commutative
diagram

Ę

G F̃ //

""

Ę

G G̃

||
Cb.

The result follows. The case of the Cartesian Grothendieck construction is
done using the duality between the Cartesian and the coCartesian construc-
tions described in [BGS].

Corollary 4.1.9. Let F ,G : C Ñ Cat8 be lax monoidal functors such that
for any c P C the categories Fpcq and Gpcq admit finite limits. Assume that
C is of finite decomposition. For any lax monoidal transformation F ñ G,
the induced functors

lax
ÐÝ

˝F Ñ lax
ÐÝ

˝ G and lax
ÐÝ
F Ñ lax

ÐÝ
G

are lax monoidal.

Proposition 4.1.10. Consider two functors F : C1 Ñ C2 and G : C2 Ñ Cat8.
Assume that F is monoidal, that G is lax monoidal and that both C1 and C2

are of finite decomposition. The restriction functor lax
ÐÝ
G ÝÑ lax

ÐÝ
G ˝F is lax

monoidal.

Proof. Recall the pullback diagram

G pG ˝ Fq F //

��

G pGq

��
C1 F

// C2.

Since F is monoidal, so is the projection F and the above diagram is a
pullback of symmetric monoidal categories. The result follows.
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4.2 Definition as modules over XS

Introduced for X a curve by Beilinson and Drinfeld [BD], factorization al-
gebras are structured D!-modules over RanpXq. Intuitively, a factorization
structure on E “ pEpIqq is the data of compatible equivalences between EpIq

and
Ò

iPI E
ptiuq once restricted to the complement of the big diagonal in XI .

In [FG], Francis and Gaitsgory generalized the definition to X of any
dimension.

Definition 4.2.1. Let α : I�J be a surjection, seen as a partition I “
š

j Ij
where Ij “ α´1pjq. We denote by Upαq the open subvariety of XI whose
points are families pxiq such that the sets txi, i P Iju indexed by j P J are
pairwise disjoint. Equivalently:

Upαq “ tpxiqiPI | @i1, i2 P I, αpi1q ‰ αpi2q ùñ xi1 ‰ xi2u.

We denote by jα : Upαq Ñ XI the open immersion.

Given two finite sets I1 and I2, we denote by γI1,I2 the surjection I1>I2 Ñ

t1, 2u mapping points of Ij to j, for j “ 1, 2.

Definition 4.2.2. (Beilinson-Drinfeld, Francis-Gaitsgory)
The category Mod!

DpX
S q admits a tensor product called the chiral tensor

product and denoted by bch, such that

ˆ

E
ch
b F

˙pIq

“
à

I“I1>I2

j˚j
˚
pEpI1q b EpI2qq

where j “ jγI1,I2 .

A factorization algebra E on X is a strict D!-module endowed with a
coalgebra structure E Ñ E bch E such that for any surjection α : I�J , the
morphism induced by the iterated comultiplication

j˚αE
pIq
Ñ j˚α

˜

ò

jPJ

EpIjq

¸

is an equivalence.

We will first extend the above definition to lax D!-modules (and to lax
rrDss-modules). Recall the functorD!

XS : S Ñ Cat8 mapping I toDpQCohD,XI q
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and a map to the associated !-pullback functor. It follows from [FG, §2.2.3]
that D!

XS is endowed with a lax monoidal structure given by

j˚j
˚
p´b´q : DpQCohD,XI1 q ˆDpQCohD,XI2 q ÝÑ DpQCohD,XI1>I2 q

for j “ jγI1,I2 .
Using Proposition 4.1.6, we get a symmetric monoidal structure on the

Grothendieck constructionG pD!
XS q compatible with the projection

p :G pD!
XS q Ñ S op.

It is given on two objects pI1, E1q and pI2, E2q inG pD!
XS q by the formula

pI1, E1q b pI2, E2q “ pI1 > I2, j˚j
˚
pE1 b E2qq.

Definition 4.2.3. A lax D!-factorization algebra (over X) is a lax D!-module
E over XS seen as a section of p, endowed with a colax monoidal structure,
such that for any surjection α : I�J , the induced morphism

j˚αE
pIq
Ñ j˚α

˜

ò

jPJ

EpIjq

¸

is an equivalence. We denote by FA!
DpXq the category of D!-factorization

algebras over X. We denote by FA!

DpXq the full subcategory of FA!
DpXq

spanned by lax !-factorization algebras on X whose underlying lax D!-module
is strict.

Remark 4.2.4. The monoidal category S is of finite decomposition (see
Definition 4.1.3 and the categories of D-modules admit finite direct sums.
It follows from Corollary 4.1.7 that the category Mod!

DpX
S q carries a Day

convolution product called the chiral tensor structure and denoted by bch.
In particular, a colax monoidal structure on a section E of p as above is
tantamount to a coalgebra structure on E for the chiral tensor structure.

Remark 4.2.5. The box-product

´b´ : DpQCohD,XI1 q ˆDpQCohD,XI2 q ÝÑ DpQCohD,XI1>I2 q

defines (by the same procedure) another tensor structure on Mod!
DpX

S q

called the ˚-product and denoted by b˚.
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Lemma 4.2.6. Let E be a strict D!-module over XS . The datum of a
factorization structure on E in the sense of Definition 4.2.2 is equivalent to
the datum of a factorization structure in the sense of Definition 4.2.3.

Proof. The chiral tensor structure on Mod!

DpX
S q corresponds to the Day

convolution product on the category of Cartesian sections of p. The result
follows.

Dually, we define (lax) rrDss-factorization algebras. The functor Drr˚ss
XS

mapping I to PropDbCohD,XI q admits a lax monoidal structure given by the
formula jrr!ssj

rr˚ssp´b´q:

PropDbCohD,XI1 q ˆ PropDbCohD,XI2 q ÝÑ PropDbCohD,XI1>I2 q

with j “ jI1>I2�t1,2u. It follows from Proposition 4.1.6 that the (coCarte-

sian) Grothendieck construction
Ę

G pDrr˚ss
XS q admits a symmetric monoidal

structure compatible with the projection

q :
Ę

G pDrr˚ss
XS q Ñ S

Definition 4.2.7. A lax rrDss-factorization algebra is a lax rrDss-module,
seen as a section of q, endowed with a lax monoidal structure, such that for
any surjection α : I�J , the induced morphism

jrr˚ssα

˜

ò

jPJ

EpIjq

¸

Ñ jrr˚ssα EpIq

is an equivalence.
We denote by FArrDsspXq (resp. FA

rrDsspXq) the category of lax (resp.

strict) rrDss-factorization algebras.

The following is obvious:

Proposition 4.2.8. Verdier duality induces equivalences

FArrDsspXq
op
» FA!

DpXq and FA
rrDsspXq

op
» FA!

DpXq

compatible with the equivalence of Proposition 3.2.12.
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4.3 Definition in terms of arrow categories

In the above definitions, factorization structures for D!- and rrDss-modules
are dual to one another. The factorization structure is in one case a coalgebra
structure, and in the other case an algebra structure. In order to prove
that covariant Verdier duality preserves the factorization structures, we will
need alternative models for factorization algebras that do not make a choice
between algebras and coalgebras.

Definition 4.3.1. We denote by S 1 the category of arrows in S . A mor-
phism σ from α : I�J to β : S�T in S 1 is a commutative diagram

I
ÝÑσ //

α
��

S

β
��

J σ
ÝÑ
// T.

σ

Disjoint union makes S 1 into a symmetric monoidal category.
A morphism σ as above is an open (resp. a closed) morphism if ÝÑσ (resp.

σ
ÝÑ

) is a bijection.

Fix a commutative diagram σ as above. We get an open immersion
Upαq Ñ Up σ

ÝÑ
αq and a closed immersion Upβq Ñ Up σ

ÝÑ
αq. We denote by

pUpfq the pullback

(4.3.2)

pUpfq
ppσq //

pıpσq

��

Upβq

��
Upαq // Up σ

ÝÑ
αq.

Note that the horizontal maps are open immersions and the vertical ones
are closed immersions. If σ is an open (resp. a closed) morphism, then pıpσq
(resp. ppσq) is an isomorphism.

If it exists, let γ be a surjection S�J such that γÝÑσ “ α. Since ÝÑσ is
surjective, such a map γ is unique if it exists, and automatically satisfies
σ
ÝÑ
γ “ β. We then have

pUpfq :“

#

Upγq if γ exists

H else.
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The assignement α ÞÑ Upαq, σ ÞÑ pUpβq Ð pUpσq Ñ Upαqq defines a
functor

pU : pS 1
q
op
Ñ Varcorr

k .

Recall the functorDcorr : Varcorr
k Ñ Cat8 mapping a variety Y toDpQCohD,Y q

and a correspondence Y1 Ð
a Z Ñb Y2 to b˚a

!.

Definition 4.3.3. We denote by Dcorr
pU

the composite functor

Dcorr
pU

:“ Dcorr
˝ pU : pS 1

q
op
Ñ Cat8.

The functor pU admits a lax-monoidal structure, given by the open im-
mersions Upα1 > α2q Ñ Upα1q ˆ Upα2q. Composed with the lax monoidal
structure on Dcorr, we get a lax monoidal structure on Dcorr

pU
and hence a

monoidal structure on
Ę

G pDcorr
pU
q.

Definition 4.3.4. We say that a section of
Ę

G pDcorr
pU
q Ñ pS 1qop is openly

coCartesian if it sends every open morphisms in S 1 to a coCartesian mor-
phism. We denote by Modcorr

D ppUq the full subcategory of lax
ÐÝ

˝Dcorr
pU

spanned
by openly coCartesian sections.

Since S 1 is of finite decomposition, Day convolution endows lax
ÐÝ

˝Dcorr
pU

with a symmetric monoidal structure (see Corollary 4.1.7). This tensor struc-
ture preserves openly coCartesian sections and thus defines a monoidal struc-
ture on Modcorr

D ppUq.

Proposition 4.3.5. Restriction along the functor η : S Ñ S 1 given by
I ÞÑ pI�˚q induces a symmetric monoidal equivalence

B : Modcorr
D ppUq » Mod!

DpX
S
q.

Proof. Denote by DXS

˚ the functor S op Ñ Cat8 mapping a finite set I
to DpQCohD,XI q and a surjection I Ñ S to the associated ˚-pushforward
functor

DpQCohD,XSq ÝÑ DpQCohD,XI q.

Since for a closed immersion δ, the functor δ! is right adjoint to δ˚, we have

G pD!
XS q »

Ę

G pDXS

˚ q. In particular

Mod!
DpX

S
q :“ lax

ÐÝ
D!
XS » lax

ÐÝ
˝DXS

˚ .
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Let s be the source functor S 1 Ñ S , mapping a surjection α to its domain.
It is a monoidal functor, and thus induces a monoidal functor (by Corollary
4.1.10)

lax
ÐÝ

˝DXS

˚ Ñ lax
ÐÝ

˝
pDXS

˚ ˝ sq.

The canonical immersions jα : Upαq Ñ XI define a monoidal natural trans-
formation j˚‚ : DXS

˚ ˝ s Ñ Dcorr
pU

. In particular, it defines a monoidal functor
(see Corollary 4.1.9)

lax
ÐÝ

˝
pDXS

˚ ˝ sq Ñ lax
ÐÝ

˝Dcorr
pU

whose image lies in Modcorr
D ppUq. We find a monoidal functor

A : Mod!
DpX

S
q » lax

ÐÝ
˝DXS

˚ Ñ lax
ÐÝ

˝
pDXS

˚ ˝ sq Ñ Modcorr
D ppUq.

The restriction along η : S Ñ S 1 gives a functor

B : Modcorr
D ppUq Ñ Mod!

DpX
S
q

which is inverse to A.

Definition 4.3.6. Let FAcorr
D ppUq denote the category of sections in Modcorr

D ppUq
endowed with symmetric monoidal structure.

Corollary 4.3.7. The functor S Ñ S 1 mapping I to I�˚ induces an
equivalence

B : FAcorr
D ppUq » FA!

DpXq.

Proof. The equivalence B of Proposition 4.3.5 being monoidal, it preserves
coalgebras. Coalgebras for the (right) Day convolution are colax monoidal

functor (see [Gla, Prop. 2.12]). Let A P FAcorr
D ppUq. It is a section with

a monoidal structure, and thus BpAq is is a colax monoidal section. The
factorizing property of BpAq corresponds to the fact that A is (strictly)
monoidal.

The dual statements obviously hold for rrDss-factorization algebras. Con-

sider the functor Drrcorrss
V : pS 1qop Ñ Cat8 mapping α to ProDbpCohD,Upαqq

and σ : α Ñ β to pıpσqrr˚ss ˝ ppσq
rr˚ss (using the notations of Eq. (4.3.2)). It

is naturally lax monoidal andG pDrrcorrss
V q inherits a symmetric monoidal

structure.
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Definition 4.3.8. A section ofG pDrrcorrss
V q Ñ S 1 is called openly Cartesian

if it maps open morphisms of S 1 to Cartesian morphisms.
Denote by FAcorr

rrDssp
pUq the category of openly Cartesian symmetric monoidal

sections ofG pDrrcorrss
V q Ñ S 1.

Proposition 4.3.9. Restriction along η induces an equivalence

FAcorr
rrDssp

pUq » FArrDsspXq

compatible through Verdier duality with the equivalence of Corollary 4.3.7.

4.4 Definition in terms of twisted arrows

Definition 4.4.1. We denote by TwpS q the category of twisted arrows in
S . Its objects are morphisms in S , and its morphisms from α : I�J to
β : S�T are commutative diagrams

I

α
��

τ

S
ÐÝτoo

β
��

J τ
ÝÑ
// T

in S . For any surjections α1 : I1 Ñ J1 and α2 : I2 Ñ J2, we set

α1 > α2 : I1 > I2�J1 > J2.

It induces on TwpS q a symmetric monoidal structure.

Definition 4.4.2. Let τ : αÑ β be a morphism in TwpS q corresponding to
a diagram as above. We say that τ is open if the map ÐÝτ is a bijection. We
say that τ is closed if the map τ

ÝÑ
is a bijection.

Consider the diagram UTw : TwpS q Ñ Vark mapping α : I Ñ J to Upαq.
It maps a commutative diagram τ as above to the natural immersion Upαq Ñ
Upβq. Note that it maps open (resp. closed) morphisms in TwpS q to open
(resp. closed) immersions of varieties. The functor D!

UTw
: TwpS qop Ñ Cat8

(recall the notation from Section 3.2 §B.) has a lax monoidal structure, given
by

j˚p´b´q : DpQCohD,Upα1q
q ˆDpQCohD,Upα2q

q Ñ DpQCohD,Upα1>α2q
q.

with j : Upα1 > α2q Ñ Upα1q ˆ Upα2q the open embedding. We get from

Proposition 4.1.6 a symmetric monoidal structure onG pD!
UTw
q.
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Definition 4.4.3. A section of G pD!
UTw
q Ñ TwpS qop is called openly

Cartesian if it maps open morphisms in TwpS q to Cartesian morphisms. We
denote by Mod!o

DpUTwq the full subcategory of lax
ÐÝ
D!
UTw

spanned by openly
Cartesian sections. Since TwpS q is of finite decomposition, Corollary 4.1.7
defines on lax

ÐÝ
D!
UTw

a Day convolution. The full subcategory Mod!o
DpUTwq

is stable by this tensor product, and thus inherits a symmetric monoidal
structure.

Definition 4.4.4. We denote by FA!
DpUTwq the category of openly Carte-

sian symmetric monoidal sections of G pD!
UTw
q. Forgetting the monoidal

structure defines a functor

FA!
DpUTwq ÝÑ Mod!o

DpUTwq.

Proposition 4.4.5. Restriction along the functor η̄ : I ÞÑ pI�˚q induces a
symmetric monoidal equivalence of categories

Mod!o
DpUTwq » Mod!

DpX
S
q.

It induces an equivalence

FA!
DpUTwq » FA!

DpX
S
q.

Proof. Let us denote by s̄ : TwpS q Ñ S op the monoidal functor mapping
a surjection to its domain. The canonical open immersions jα : Upαq Ñ XI

(for α : I�J) induce a monoidal natural transformation j!
‚ : D!

XS ˝ sÑ D!
U .

We find a monoidal functor

Mod!
DpX

S
q :“ lax

ÐÝ
D!
XS Ñ lax

ÐÝ
D!
XS ˝ s̄Ñ lax

ÐÝ
D!
UTw

whose image lie in Mod!o
DpUTwq:

C : Mod!
DpX

S
q ÝÑ Mod!o

DpUTwq.

Restriction along η̄ gives an inverse functor D : Mod!o
DpUTwq Ñ Mod!

DpX
S q

to C. This equivalence preserves the factorization structures.

4.5 Coherent factorization algebras

Recall that a coherent (lax) rrDss-modules is a lax rrDss-module pErIqq such
that EpIq is a coherent D-module over XI , for any I.
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Equivalently, a coherent rrDss-module can be seen as an object in the

oplax-limit of the functor CohX
S

˚ mapping I to CohD,XI and a surjection
α : I Ñ J to the associated pushforward functor (which preserves coherent
D-modules).

Definition 4.5.1. A coherent lax rrDss-factorization algebra is a lax rrDss-
factorization algebra whose underlying lax rrDss-module is coherent. We
denote by FACoh

rrDsspXq the full subcategory of FArrDsspXq spanned by coherent
factorization algebras.

Fix a morphism g : Y Ñ Z of varieties.

• If g is an open immersions, then the functors g˚ and grr˚ss both preserve
coherent D-modules and they coincide on coherent D-modules.

• If g is proper, then the functors g˚ and grr˚ss both preserve coherent
D-modules and coincide on coherent D-modules.

In particular, the lax monoidal functors Dcorr
pU

and Drrcorrss
pU

admit a com-

mon lax monoidal full subfunctor Cohcorr
pU

mapping a surjection α toDbpCohD,Upαqq

and a morphism σ : α Ñ β in S 1 to the functor pıpσq˚ ˝ ppσq
˚ » pıpσqrr˚ss ˝

ppσqrr˚ss:

Dcorr
pU

hkkkkkkkkikkkkkkkkj

DpQCohD,Upβqq

pıpσq˚˝ppσq˚

��

Cohcorr
pU

hkkkkkkkikkkkkkkj

Db
pCohD,Upβqq

��

oo //

//oo Drrcorrss
pU

hkkkkkkkkkkikkkkkkkkkkj

ProDb
pCohD,Upβqq

pıpσqrr˚ss˝ppσq
rr˚ss

��
DpQCohD,Upαqq DbpCohD,Upαqqoo // ProDbpCohD,Upαqq.

Applying the Grothendieck construction, we get symmetric monoidal and
fully faithful functors

G pDcorr
pU
q ÐÝG pCohcorr

pU
q ÝÑG pDrrcorrss

pU
q

over S 1. We find using Proposition 4.3.9:

Proposition 4.5.2. A coherent lax rrDss-factorization algebra is tantamount
to any of the following equivalent datum.
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1. An openly Cartesian symmetric monoidal section of G pDrrcorrss
pU

q Ñ

S 1 mapping any α P S 1 to a coherent D-module.

2. An openly Cartesian symmetric monoidal section of G pCohcorr
pU
q Ñ

S 1.

3. An openly Cartesian symmetric monoidal section ofG pDcorr
pU
q Ñ S 1

mapping any α P S 1 to a coherent D-module.

Definition 4.5.3. We denote by ĎFA
D
corrp

pUq the category of openly Cartesian

symmetric monoidal sections ofG pDcorr
pU
q. The above proposition gives a

fully faithful functor

FACoh
rrDsspXq ÝÑ

ĎFA
D
corrp

pUq.

We shall now give another model for coherent lax rrDss-factorization alge-
bras. Consider the functor DUTw

˚ : TwpS q Ñ Cat8 mapping a surjection α
to DpQCohD,Upαqq and a morphism of twisted arrows τ : αÑ β to the push-
forward functor DpQCohD,Upαqq ÝÑ DpQCohD,Upβqq. It has a lax monoidal
structure, given by

j˚p´b´q : DpQCohD,Upα1q
q ˆDpQCohD,Upα2q

q Ñ DpQCohD,Upα1>α2q
q.

with j : Upα1 > α2q Ñ Upα1q ˆ Upα2q the open embedding. Its Cartesian
Grothendieck construction thus admits a symmetric monoidal structure.

Fix a section E : TwpS qop ÑG pDUTw
˚ q and a morphism τ : α Ñ β in

TwpS q. The transition morphism Epβq Ñ UTwpτq˚Epαq induces by adjun-
tion a morphism

UTwpτq
˚Epβq Ñ Epαq.

Definition 4.5.4. Let ĘMod
D
˚ pUTwq denote the full subcategory of lax

ÐÝ
DUTw
˚

spanned by sections E such that for any open morphism τ : αÑ β in TwpS q,
the induced morphism UTwpτq

˚Epβq Ñ Epαq is an equivalence.

Let ĎFA
D
˚ pUTwq denote the category of symmetric monoidal sections of

G pDUTw
˚ q that belong to ĘMod

D
˚ pUTwq.

Arguments similar to those used in sections 4.3 and 4.4 give:

Proposition 4.5.5. The categories ĎFA
D
˚ pUTwq and ĎFA

D
corrp

pUq are equivalent.
In particular, there is a fully faithful functor

µ : FACoh
rrDsspXq ÝÑ

ĎFA
D
˚ pUTwq

whose image consists of sections mapping every α P TwpS q to a coherent
D-module.
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4.6 Covariant Verdier duality

We can now prove the following

Theorem 4.6.1. The covariant Verdier duality functor

ψ : CohrrDsspX
S
q Ñ Mod!

DpX
S
q

preserves factorization structures. In other words, it extends to a functor

ψ : FACoh
rrDsspXq Ñ FA!

DpXq.

By Propositions 4.5.5 and 4.4.5, we are reduced to building a functor

ĎFA
D
˚ pUTwq ÝÑ FA!

DpUTwq

that coincides with ψ once restricted to coherent factorization algebras. We
will start with constructing a lax monoidal functor

lax
ÐÝ
DUTw
˚ ÝÑ lax

ÐÝ
D!
UTw

whose image lies in Mod!

DpUTwq.

Recall the 2-category Varcorr
k of correspondences between k-varieties. It

naturally contains (as a non-full subcategory) a copy of (the 1-category) Vark
and a copy of Varop

k , through the functors:

Vark Ñ Varcorr
k Varop

k Ñ Varcorr
k

X ÞÑ X X ÞÑ X

pX Ñ Y q ÞÑ pX Ð
“
X Ñ Y q pX Ð Y q ÞÑ pX Ð Y Ñ

“
Y q.

Definition 4.6.2. We denote by U c
Tw and ĚU c

Tw the composite functors

U c
Tw : TwpS q

UTw
ÝÑ Vark ÝÑ Varcorr

k

ĚU c
Tw : TwpS q

op
ÝÑ
UTw

Varop
k ÝÑ Varcorr

k .

They both admit a lax monoidal structure given by the correspondences

Upα1q ˆ Upα2q ÐÝ Upα1 > α2q
“
ÝÑ Upα1 > α2q.
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For any two surjections α : I Ñ J and β : S Ñ T , we denote by ∆pα, βq
the subvariety of XIˆXS obtained by intersecting UpαqˆUpβq with ∆pI, Sq
(recall that ∆pI, Sq Ă XI ˆ XS is the closed subvariety spanned by those
families ppxiq, pxsqq such that txi, i P Iu “ txs, s P Su).

Proposition 4.6.3. The data of the ∆pα, βq’s define a lax monoidal natural
transformation

TwpS q ˆ TwpS qop

Uc
Tw˝ρ1

((

ĘUc
Tw˝ρ2

55
T

��

Varcorr
k

where ρ1 and ρ2 are the projections.

Proof. To any pair pα, βq we associate the correspondence

U c
Twpαq “ Upαq Ð ∆pα, βq Ñ Upβq “ ĚU c

Twpβq.

We start by showing it defines a natural transformation. Let τ : αÑ α1 and
ξ : β Ñ β1 be morphisms in TwpS q. Consider the following commutative
diagram:

Upαq ∆pα, β1q //oo Upβ1q

Upαq

“

OO

��

∆pα, βq //oo

OO

��
p1q

p2q

Upβq

OO

“

��
Upα1q ∆pα1, βq //oo Upβq.

It follows from Proposition 3.1.7 that the squares (1) and (2) are pullbacks.
We have thus indeed defined a natural transformation.

To show it is lax monoidal, we have to provide, for any α1, α2, β1, β2 in
TwpS q, a transformation in the 2-category Varcorr

k

Upα1q ˆ Upα2q //

��

Upβ1q ˆ Upβ2q

��
Upα1 > α2q //

qy
Upβ1 > β2q.
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Unfolding the definition of this 2-category, we have to find a commutative
diagram

Upα1q ˆ Upα2q ∆pα1, β1q ˆ∆pα2, β2q //oo Upβ1q ˆ Upβ2q

Upα1 > α2q

“

��

OO

Z //

OO

f
oo

g

��

p1q

Upβ1 > β2q

“

��

OO

Upα1 > α2q ∆pα1 > α2, β1 > β2q //oo Upβ1 > β2q

in which the square p1q is a pullback and g is proper. We therefore pick
Z such that p1q is a pullback. The image of Z into Upα1q ˆ Upα2q lies in
Upα1 > α2q and the map f is thus canonically defined. Finally, the map g
is the natural closed immersion: Z sits in ∆pα1 > α2, β1 > β2q, as a closed
subvariety of Upα1 > α2q ˆ Upβ1 > β2q. In particular, g is proper and the
above diagram indeed defines a transformation in Varcorr

k .
We then check those transformations behave coherently so that they de-

fine a lax symmetric monoidal structure on the transformation.

Proposition 4.6.4. There is a lax monoidal functor

ψTw : lax
ÐÝ
DUTw
˚ ÝÑ lax

ÐÝ
D!
UTw

that maps a section E to a section ψTwpEq such that for any α P TwpS q

ψTwpEq
pαq
“ holim
ÐÝÝÝ

β

ppαβq˚q
!
αβE

pβq

where Upαq
pαβ
ÐÝ ∆pα, βq

qαβ
ÝÑ Upβq are the projections. Moreover the image

of ψTw lies in Mod!

DpUTwq.

We will need the following straightforward lemma.

Lemma 4.6.5. Let P : A Ñ Cat8 be a lax monoidal functor. Let B be a
symmetric monoidal category and denote by π the projection A ˆB Ñ A .
Assume that for any a P A , the category Ppaq admits all limits indexed by
B. Then the (monoidal) projection

lax
ÐÝ
P Ñ lax

ÐÝ
P ˝ π
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admits a lax monoidal right adjoint mapping a section s : A op ˆ Bop Ñ

G pP ˝ πq to the section F psq : A op ÑG pPq given by

F psqpaq “ holim
ÐÝÝÝ

b

spa, bq.

Proof of Proposition 4.6.4. We first observe the equalities DUTw
˚ “ Dcorr

Uc
Tw

and

D!
UTw

“ Dcorr
ĘUc
Tw

. By composing the transformation T with the lax monoidal

functor Dcorr, we thus get a lax monoidal natural transformation

DUTw
˚ ˝ ρ1 ùñ D!

UTw
˝ ρ2.

By Corollary 4.1.9, it induces a lax monoidal functor lax
ÐÝ
pDUTw

˚ ˝ ρ1q Ñ

lax
ÐÝ
pD!

UTw
˝ρ2q. The projection ρ1 : TwpS qˆTwpS qop Ñ TwpS q is monoidal,

and thus induces a monoidal functor lax
ÐÝ
DUTw
˚ Ñ lax

ÐÝ
pDUTw

˚ ˝ ρ1q. Finally, we

also have lax monoidal functor lax
ÐÝ
pD!

UTw
˝ ρ2q Ñ lax

ÐÝ
D!
UTw

given by Lemma
4.6.5. We define ψTw as the composite functor

ψTw : lax
ÐÝ
DUTw
˚ Ñ lax

ÐÝ
pDUTw

˚ ˝ ρ1q Ñ lax
ÐÝ
pD!

UTw
˝ ρ2q Ñ lax

ÐÝ
D!
UTw

.

It is by construction lax monoidal and given by the announced formula.
Arguments similar to those of section 3.3 prove that the image of ψTw lies in
Mod!

DpUTwq.

Proof of Theorem 4.6.1. On the categories of sections lax
ÐÝ
DUTw
˚ and lax

ÐÝ
D!
UTw

,
the left and the right Day convolution products coincide (it is given by finite

sums). Therefore, any E P ĎFA
D
˚ pUTwq is in particular a commutative algebra

in lax
ÐÝ
DUTw
˚ . It follows by Proposition 4.6.4 that ψTwpEq is a commutative

algebra in lax
ÐÝ
D!
UTw

and thus corresponds to a lax-monoidal section. We only
have to check it is actually monoidal.

Let α1 : I1 Ñ J1 and α2 : I2 Ñ J2 be surjections. We set α :“ α1 >α2. We
denote by j : Upαq Ñ Upα1qˆUpα2q the open immersion. For any surjection
β : S Ñ T , the variety ∆pα, βq is the disjoint union, over all decompositions
β “ β1 > β2, of the product ∆pα1, β1q ˆ∆pα2, β2q (pulled back along j). We
get

ψTwpEq
pαq
“ lim

β
p˚q

!Epβq » j˚ lim
β1,β2

pp1˚q
!
1E

pβ1q b p2˚q
!
2E

pβ2qq

» j˚pψTwpEq
pα1q b ψTwpEq

pα2qq
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where

Upαq
p
ÐÝ ∆pα, βq

q
ÝÑ Upβq

Upα1q
p1
ÐÝ ∆pα1, β1q

q1
ÝÑ Upβ1q

Upα2q
p2
ÐÝ ∆pα2, β2q

q2
ÝÑ Upβ2q

are the projections. It follows that the lax monoidal structure is actually
monoidal.

5 Gelfand-Fuchs cohomology in algebraic ge-

ometry

Recall that X is a fixed smooth algebraic variety over k.

5.1 Chevalley-Eilenberg factorization algebras

A. Homological D!-module. Let L be a local Lie algebra on X, i.e.,
a vector bundle with a Lie algebra structure on the sheaf of sections given
by a bi-differential operator. Then the right DX-module L “ L bOX DX is
a Lie˚-algebra, see [BD] §2.5. Using the determinantal factor detpk2q, we
can write the antisymmetric Lie˚-bracket in L as a permutation equivariant
morphism of D-modules on X ˆX

(5.1.1) η : pLb Lq bk detpk2
q ÝÑ δ˚L.

Here δ : X Ñ X ˆ X is the diagonal embedding. Let us list the most
important examples.

Examples 5.1.2. (a) L “ TX is the tangent bundle of X.

(b) Let G be an algebraic group over k with Lie algebra g and P be a
principal G-bundle on X. The data of P gives rise to two local Lie algebras
on X. First, we have the OX-linear Lie algebra PAd (infinitesimal symme-
tries of P ). Second, we have the Atiyah Lie algebroid AtpP q (infinitesimal
symmetries of the pair pX,P q) fitting into a short exact sequence

0 Ñ PAd
ÝÑ AtpP q ÝÑ TX Ñ 0.
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For P “ XˆG the trivial bundle, PAd “ gbOX and AtpP q is the semi-direct
product of TX acting on gbOX via the second factor.

Given a local Lie algebra L, we have the dg-Lie algebra l “ RΓpX,Lq and
we are interested in its Lie algebra cohomology with constant coefficients. It
is calculated by the (reduced) Chevalley-Eilenberg chain complex of l which
we denote by

CE‚plq “
`

Sym‚ě1
plr1sq, dCE

˘

.

Applying the Künneth formula, we see that

CE‚plq “ Tot

"

¨ ¨ ¨ Ñ RΓpX3, Lb3
q´S3 Ñ RΓpX2, Lb2

q´S2 Ñ RΓpX,Lq

*

is the total complex of the obvious double complex with horizontal grading
ending in degree p´1q. Here Sp is the symmetric group and the subscript
“´Sp” means the space of anti-coinvariants of Sp.

Following [BD] we represent CE‚plq as the factorization homology of an
appropriate lax D!-module C‚ on XS . We first define a lax !-D-module C1 by
putting CpIq1 “ pδIq˚ L for any nonempty finite set I. Here δI : X Ñ XI is the
diagonal embedding. Given a surjection g : I Ñ J with the corresponding
diagonal embedding δg : XJ Ñ XI , we define structure map (in the dual
form) pδgq˚pδJq˚ L Ñ pδIq˚ L to be the canonical isomorphism arising from
the equality δg ˝ δJ “ δI .

Remarks 5.1.3. (a) After passing to the colimit, C1 becomes the pushfor-
ward of L under the embedding of X into RanpXq.

(b) Note that the structure maps for C1 in the form C1,J Ñ δ!
g C

pIq
1 are not,

in general, isomorphisms, so C1 is not a strict D!-module.

Recall that the category Mod!
DpX

S q has a symmetric monoidal structure
b˚ (see Remark 4.2.5 above and [BD, 4.2.5]). The fact that L is a Lie˚-
algebra means that C1 is a Lie algebra with respect to b˚.

Definition 5.1.4. We define

C‚ “
`

Sym‚ě1
b˚ pC1r1sq, dCE

˘

to be the intrinsic Chevalley-Eilenberg complex of C1 as a Lie algebra in
pMod!

DpX
S q,b˚q.
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For convenience of the reader let us describe C‚ more explicitly. First, for
each q ě 1, the lax D!-module Cq “ Λq

b˚
pC1q has

CpIqq “ holim
ÝÝÝÑ
f : I�Q
|Q|“q

pδf q˚
`

LbQ
b detpkQq

˘

.

This homotopy colimit can be simplified to

(5.1.5) CpIqq “
à

RPEqqpIq

pδRq˚
`

LbpI{Rq
b detpkI{Rq

˘

.

Here EqqpIq is the set of equivalence relations R on I with exactly q equiv-

alence classes, i.e., such that |I{R| “ q, and δR : XI{R Ñ XI is the diagonal
embedding. In particular, Cq is concentrated in degree 0.

Given a surjection g : I Ñ J and any surjection f : J Ñ Q with |Q| “ q,
we have the surjection fg : I Ñ Q with δg ˝ δf “ δfg, and so we have an
identification

pδgq˚pδf q˚pLbQ
b detpkQqq ÝÑ pδfgq˚ pLbQ

b detpkQqq

of (an arbitrary) term of the colimit for pδgq˚ CpJqq with a certain term of the

colimit for CpIqq . The structure map (in the dual form) pδgq˚ CpJqq Ñ CpIqq is
induced by these identifications.

Next, we have the differential d “ dCE : Cq Ñ Cq´1 defined as follows. Let
g : Q� S be a surjection between finite sets such that that |Q| “ |S|`1 “ q,
so g has exactly one fiber of cardinality 2, all other fibers being of cardinality
1. Applying the bracket (5.1.1) to this fiber and substituting copies of the
identity for the other fibers, we get a map

ηg : LbQ
b detpkQq ÝÑ pδgq˚

`

LbS
b detpkSq

˘

.

We define d : Cq Ñ Cq´1 by summing, as g varies, the induced maps

pδf q˚
`

pLbQ
b detpkQq

˘

Ñ pδgf q˚
`

LbS
b detpkSq

˘

.

The differential squares to zero by the Jacobi identity.

Definition 5.1.6. Let CpIq be the complex of D-modules on XI given by
CpIqq in homological degree q and the above differential. We denote by CpIqďq
its truncation

À

pďq C
pIq
p rps (with the same differential). The differential is

compatible with the transition maps, and we get lax D!-modules Cďq on XS .
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Proposition 5.1.7. We haveˆ
X

Cq » Λq
plq,

ˆ
X

Cďq » CEďqplq,

ˆ
X

C » CE‚plq.

Proof: We show the first identification, the compatibility with the differen-
tials will be clear. For any non-empty finite set I, we have, by (5.1.5):

RΓDRpX
I , CpIqq q “

à

RPEqqpIq

RΓDR

`

XI{R,LbpI{Rq
b detpkI{Rq

˘

“

“
à

RPEqqpIq

RΓ
`

XI{R, LbpI{Rq
b detpkI{Rq

˘

“
à

RPEqqpIq

Λ|I{R|plq.

Now,
´
X
Cq is the holim

ÝÝÝÑ
of this over I in S , and so is identified with Λqplq.

Proposition 5.1.8. The lax D!-module C‚ is factorizing (ie admits a factor-
ization structure).

Proof: By construction, C‚ is the symmetric algebra generated by C1r1s under
b˚, with an additional Chevalley-Eilenberg differential. So it is factorizing.

B. Strictification of C‚ and chiral envelopes. While the components
C
pIq
q of the lax D!-module C‚ are very simple DXI -modules constructed out of
Lbq, the strictification C‚ is highly non-trivial. More precisely, let pt denote

the 1-element set, so Xpt “ X. For x P X let px “ Spec pOX,x be the formal
disk around x and px˝ “ px´ txu the punctured formal disk.

Consider the left DX-module ω´1
X bOX C‚pptq and its OX-module fiber

`

ω´1
X bOX C‚pptq

˘

x
“

`

ω´1
X bOX C‚pptq

˘

bOX kx.

Proposition 5.1.9. One has a canonical identification
`

ω´1
X bOX C‚pptq

˘

x
» Ind

RΓppx˝,Lq
Γppx,Lq k

where on the right hand side we have the vacuum (dg-)module of the dg-Lie
algebra RΓppx˝, Lq. In other words, ω´1

X bOX C‚pptq is the chiral envelope of

the Lie˚-algebra L, see [G, §1.2.4] and [BD, §3.7.1].

Since we will not need this result in the present paper, we leave its proof
to the reader. In this way one can see the validity of Theorem 4.8.1.1 of [BD]
(the chiral homology of the chiral envelope is the same as HLie

‚ plq) for any
smooth variety X, not necessarily 1-dimensional or proper.
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C. Cohomological rrDss-module and diagonal filtration. Using Verdier
duality, we get rrDss-modules

qCq “ pCqq_, qCďq “ pCďqq_, qC‚ “ pC‚q_

on XS such that

˛ rrcss

X

qC‚ » CE‚plq.

This complex comes with the diagonal filtration (cf. section 3.3 or [Fu, Ch.2
§4]) which is a sequence of complexes and morphisms given by

RΓ
rrcss

XS
1 ,DR

pXS , qC‚q Ñ ¨ ¨ ¨ Ñ RΓ
rrcss

XS
d ,DR

pXS , qC‚q Ñ ¨ ¨ ¨ Ñ

˛ rrcss

X

qC‚,

where

RΓ
rrcss

XS
d ,DR

pXS , qC‚q “
˛ rrcss

X

pidq˚i
!
d
qC‚ :“ holim

ÐÝÝÝ
I

RΓ
rrcss
DR pX

I
d , i

!
d
qCpIqq

with id : XS
d Ñ XS the pointwise closed immersion.

For future use we introduce the following.

Definition 5.1.10. We call the diagonal D-module associated to L the com-
plex of D-modules qC‚∆ “ i!1

qC‚ on X:

qC‚∆ “ i!1
qC‚ :“ holim

ÐÝÝÝ
J

pi
pJq
1 q

!
qC‚J » ψpqC‚qpptq,

where i
pJq
1 : X Ñ XJ is the diagonal embedding.

The de Rham complex of qC‚∆ will be denoted by F‚∆ and called the diagonal
complex of L. We will denote its compactly supported cohomology

H‚
∆pLq “ H‚

rrcsspX,F‚∆q “ RΓ
rrcss

XS
1
pqC‚q

and call it the diagonal cohomology of l. It comes with a canonical map
H‚

∆pLq Ñ H‚
Lieplq.

Explicitly,

(5.1.11) F‚∆ “

"

L_ Ñ Hn
XppL

_
q

b2
q
Σ2 Ñ H2n

X ppL
_
q

b3
q
Σ3 Ñ ¨ ¨ ¨

*

,

with grading normalized so that L_ is in degre 1´ n.
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Remark 5.1.12. One can see F‚∆ as a sheafified, algebro-geometric version
of the diagonal complex of Gelfand-Fuchs [GF] [Fu], see also [CoG2] §4.2.
Instead of distributions supported on the diagonal X Ă Xp, as in the C8-
case, our construction involves coherent cohomology of Xp with support in
X which is a well known analog of the space of distributions (“holomorphic
hyperfunctions”).

5.2 The diagonal filtration in the affine case

In this section, we assume that X is a smooth affine variety. As before, L is a
local Lie algebra on X and l “ ΓpX,Lq. Recall that C “ CL is the factorizing
!-sheaf computing CE‚plq. We will prove the following theorem.

Theorem 5.2.1. The canonical map
´
X
C Ñ

¸
X
φpCq » holim

ÐÝÝÝd

´ ďd
X
C is an

equivalence.

Recall (see equation 5.1.5) that C comes with a natural filtration Cďq
where Cq “ hocofibpCďq´1 Ñ Cďqqr´qs is given by

CpIqq “
à

RPEqqpIq

pδRq˚
`

LbpI{Rq
b detpkI{Rq

˘

.

Lemma 5.2.2. The canonical map
´
X
Cq Ñ

¸
X
φpCqq is an equivalence.

Proof. We compute explicitly both sides and find ΛqΓpX,Lq “ Λql.

From this, we deduce by induction on q:

Lemma 5.2.3. The canonical map
´
X
Cďq Ñ

¸
X
φpCďqq is an equivalence.

Proof of Theorem 5.2.1. Since holim
ÝÝÝÑq

´
X
Cďq »

´
X
C, it is now enough to

prove that the map

holim
ÝÝÝÑ

q

˛
X

φpCďqq Ñ
˛
X

φpCq

is an equivalence. Rephrasing with the diagonal filtration, we get

holim
ÝÝÝÑ

q

holim
ÐÝÝÝ

d

ˆ ďd

X

Cďq Ñ holim
ÐÝÝÝ

d

holim
ÝÝÝÑ

q

ˆ ďd

X

Cďq.
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Fix an integer p. It is enough to prove that for q big enough (independently

of d), the map Hp
DRp
´ ďd
X
Cďqq Ñ Hp

DRp
´ ďd
X
Cďq`1q is an isomorphism. This

amounts to proving that Hp`q
DR p
´ ďd
X
Cqq vanishes for q big enough.

By definition, we have
´ ďd
X
Cq “ holim

ÝÝÝÑI
RΓDRpX

I
d , i

rr˚ss

d CpIqq q. Let us fix

I. For any positive integer s, we denote by Y psq the sth infinitesimal neigh-
borhood of XI

d in XI and by ipsq : Y psq Ñ XI the canonical inclusion. We
get

RΓDRpX
I
d , i

rr˚ss

d CpIqq q » holim
ÐÝÝÝ

s

RΓDRpY
psq, pipsqq˚CpIqq q.

Since Y psq is affine (because X is) and CpIqq is induced from a quasicoherent

sheaf concentrated in degree 0, the complex RΓDRpY
psq, pipsqq˚CpIqq q only has

cohomology in degrees lower or equal to 0. The homotopy limit indexed by
s satisfies the Mittag-Leffler condition. We deduce that the cohomology of
RΓDRpX

I
d , i

rr˚ss

d CpIqq q is concentrated in degree lower or equal to 0. It follows

thatHp`q
DR p
´ ďd
X
Cqq vanishes for q ě 1´p. This concludes the proof of Theorem

5.2.1.

Applying Verdier duality to Theorem 5.2.1, we get:

Corollary 5.2.4. For a smooth affine variety X, the diagonal filtration on
Chevalley-Eilenberg cohomology is complete, ie:

CE‚plq »

˛ rrcss

X

qC‚ »
ˆ rrcss

X

ψpqC‚q » holim
ÝÝÝÑ

d

RΓ
rrcss

XS
d ,DR

pXS , qC‚q.

6 Relation to the topological picture

6.1 From factorizing D!-modules to C8 factorization
algebras

In this section we assume k “ C. Thus Xan :“ XpCq is a complex analytic
manifold.

For any complex analytic manifold M we denote by MS the Ran diagram
of complex manifolds M I and diagonal embeddings δg : MJ ÑM I .

Let E “ pE pIq, βg : E pJq ÝÑ δ!
gE pIqq be a (right) D!-module on XS . In

particular, for I “ pt a 1-element set, we get a D-module E pptq on Xpt “ X.
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We say that E is h.r. (holonomic regular) if each E pIq is h.r. on XI (that
is, each cohomology D-module of the complex of D-modules E pIq is h.r.).

Proposition 6.1.1. Suppose E is factorizable. Then, E is h.r. if and only
if E pptq is h.r. on X.

Proof: Suppose E pptq is h.r. on X. We prove, by induction on |I|, that E pIq is
h.r. on XI . First of all, the restriction of E pIq to the open subset XI

‰ (comple-
ment to all the diagonals) is, by the factorization structure, identified with
the restriction to XI

‰ of the h.r. module pE pptqqbI . Further, the complement
XI ´XI

‰ is stratified into locally closed subvarieties isomorphic to XJ
‰ with

2 ď |J | ă |I|, or to Xpt “ X, if |J | “ 1. So our statement follows by stability
of h.r. modules under extensions.

Let E be a factorizable D!-module on XS . Fix a partition I “ I1 > ¨ ¨ ¨ >

Im of a finite set by non-empty finite subsets. We see it as a surjection
α : I�J :“ t1, . . . ,mu. Recall the open immersion

Upαq
j
ÝÑ XI1 ˆ ¨ ¨ ¨ ˆXIm a

ÝÑ XI

The factorization structure gives quasi-isomorphisms

νI1,...,Im : j!
pE pI1q b ¨ ¨ ¨b E pImqq ÝÑ pajq! E pIq

We now associate to E a pre-cosheaf A “ AE on the complex topology of
Xan as follows. Let U Ă Xan be any open set. We define

ApUq “ AEpUq “ holim
ÝÝÝÑ
IPS

RΓcpU
I ,DRpE pIqqanq,

where RΓc is the usual topological cohomology with compact support of the
constructible complex DRpE pIqqan.

Further, let U0, U1, . . . , Um Ă Xan be open sets such that U1, . . . , Um are
pairwise disjoint and contained in U0. For any partition I “ I1 > ¨ ¨ ¨ > Im
corresponding to a surjection α as above, we have the embeddings

k : U I1
1 ˆ ¨ ¨ ¨ ˆ U Im

m ÝÑ Upαqan,

l : U I1
1 ˆ ¨ ¨ ¨ ˆ U Im

m ÝÑ U I
0 .

We define the morphism

µU0
U1,...,Um

: ApU1q b ¨ ¨ ¨ bApUmq ÝÑ ApU0q
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as follows. The source is the homotopy colimit

holim
ÝÝÝÑ

I1,...,ImPS

RΓc

`

U I1
1 ,DRpE pI1qqan

˘

b ¨ ¨ ¨ bRΓc

`

U Im
m ,DRpE pImqqan

˘

» holim
ÝÝÝÑ

I1,...,ImPS

RΓc

`

U I1
1 ˆ ¨ ¨ ¨ ˆ U Im

m , k!j!DR
`

E pI1q b ¨ ¨ ¨b E pImq
˘

an

˘

» holim
ÝÝÝÑ

I1,...,ImPS

RΓc

`

U I1
1 ˆ ¨ ¨ ¨ ˆ U Im

m ,DR
`

k!j!
pE pI1q b ¨ ¨ ¨b E pImqq

˘

an

˘

,

and the pI1, . . . , Imqth term of the last colimit diagram maps by νI1,...,Im into

RΓc

`

U I1
1 ˆ ¨ ¨ ¨ ˆ U Im

m ,DRppajq!E pIqqan

˘

for I :“ I1 > ¨ ¨ ¨ > Im. This last complex then maps by l to

RΓc

`

U I
0 ,DRpE pIqqan

˘

.

These maps induce the desired map of the homotopy colimits. This makes
A into a pre-factorization algebra over Xan.

Proposition 6.1.2. Let E be a h.r. factorizing D!-module on XS . Suppose
that, in addition, each E pIq is constructible w.r.t. the diagonal stratification
of XI . Then:

(a) AE is a locally constant topological algebra on Xan in the C8 sense.

(b) We have ˆ rrcss

X

E »

ˆ
Xan

AE ,

where in the RHS we have the factorization homology of a C8 factorization
algebra.

Proof: (a) We prove the required properties.

(a1) A is a factorization algebra. By definition [CoG1], this means that:

(a11) A satisfied co-descent with respect to Weiss coverings.

(a12) If U “ U1\ ¨ ¨ ¨ \Um is a disjoint union of several opens, then the map
µUU1,...,Um

is a quasi-isomorphism.
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To prove (a11), let tUαuαPA be a Weiss covering of an open U Ă Xan, that
is, for any finite set I the family tU I

αuαPA is an open covering of U I . We can
assume that tUαu is closed under finite intersections. The indexing set A can
be then assumed to be a poset (sub-poset in the poset of all opens in U) and
considered as a category in a standard way. Under these assumptions, the
co-descent condition means that the canonical morphism

holim
ÝÝÝÑ
αPA

ApUαq ÝÑ ApUq

is a quasi-isomorphism. By definition of A this morphism can be written as

holim
ÝÝÝÑ
αPA

holim
ÝÝÝÑ
IPS

RΓcpU
I
α,DRpE pIqqanq ÝÑ holim

ÝÝÝÑ
IPS

RΓcpU
I ,DRpE pIqqanq.

We can interchange the colimits in the source. After this our statement
follows from the fact that for each I the canonical arrow

holim
ÝÝÝÑ
αPA

RΓcpU
I
α,DRpE pIqqanq ÝÑ RΓcpU

I ,DRpE pIqqanq

is a quasi-isomorphism. This last fact is just a reflection of our assumption
that tU I

αuαPA is a covering of U I .

The property (a12) follows directly from the fact that E is a factorizing
D!-module.

(a2) A is locally constant. Let U1 ãÑ U0 be an embedding of disks in Xan.
Then for each I the embedding U I

1 ãÑ U I
0 is a homotopy equivalence com-

patible with respect to the diagonal stratification (that is, the embeddings of
the corresponding strata are homotopy equivalences). By our assumptions,
DRpE pIqqan is a constructible complex on XI with respect to the diagonal
stratification. Therefore the natural arrow

RΓcpU
I
1 , DRpE pIqqanq ÝÑ RΓcpU

I
0 , DRpE pIqqanq

is a quasi-isomorphism. This means that A is locally constant. Part (a) of
the proposition is proved.

(b) Since E pIq is a holonomic regular D-module on XI , we have, for each
I, a natural quasi-isomorphism

RΓrrcsspX
I ,DRpE pIqqq uI

ÝÑ RΓcpX
I
an,DRpE pIqqanq.
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The uI combine into an arrow

ˆ rrcss

X

E “ holim
ÝÝÝÑ
IPS

RΓrrcsspX
I ,DRpE pIqq u

ÝÑ

u
ÝÑ holim

ÝÝÝÑ
IPS

RΓcpX
I
an,DRpE pIqqanq “

ˆ
Xan

A

which is a quasi-isomorphism since each uI is. The proposition is proved.

6.2 The case of the tangent bundle

We now specialize the considerations of Ch. 5 and §6.1 to E “ ψpqC‚q being
the covariant Verdier dual to the cohomological Chevalley-Eilenberg ˚-sheaf
qC‚ “ qC‚L. We further specialize the local Lie algebra to L “ TX , the tangent
bundle of X.

A. The diagonal D-module. Recall from Definition 5.1.10 the diagonal
D-module qC‚∆ on X.

Lemma 6.2.1. qC‚∆ is regular holonomic.

Proof: We first show that qC‚∆ is holonomic. Let x P X be any point with
the embedding ix : txu Ñ X. It suffices to show that for any x the !-fiber

i!x
qC‚∆ (a complex of D-modules on txu, i.e., of vector spaces) has bounded

and finite-dimensional cohomology.

Consider the Verdier dual complex to qC‚∆ and denote it C∆
‚ . Then the rr˚ss-

fiber i
rr˚ss
x C∆

‚ is dual to i!x qC‚∆ and so it suffices to prove finite-dimensionality
of the cohomology of all such fibers. Now, unravelling the definitions shows
that i

rr˚ss
x C∆

‚ “ CE‚pWxq is the homological Chevalley-Eilenberg complex of

the topological Lie algebra Wx “ Derp pOX,xq of formal vector fields near x.
Here the Chevalley-Eilenberg complex is understood in the completed sense.

Since the homology of Wx is finite-dimensional by Gelfand-Fuchs [Fu],
the holonomicity follows.

Next, we show that qC‚∆ is regular. For this, we denote this DX-module
by NX and study its dependence on X. That is, if j : X Ñ X 1 is an open
embedding of smooth algebraic varieties, then NX “ j˚NX 1 . Now, if X 1 is
compact, then NX 1 , being a local system on X 1, is regular. Embedding any
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X into a smooth proper X 1 we see that NX is also regular, being the pullback
of a regular D-module. The lemma is proved.

Remark 6.2.2. Lemma 6.2.1 shows that the diagonal complex F‚∆ “ DRpqC‚∆q
is the local system of the Gelfand-Fuchs cohomology.

B. Comparison with analytification. Recall that k “ C.

Theorem 6.2.3. (a) The factorization algebra Aψp qC‚q on Xan is locally con-
stant.

(b) The canonical map

ˆ rrcss

X

ψpqC‚q ÝÑ RΓc
pXS

an, DRpψpqC‚qqanq “

ˆ
Xan

Aψp qC‚q

is an equivalence.

Proof: We know that qC‚ is a factorizing coherent rrDss-module on XS . By

Theorem 4.6.1, ψpqC‚q is factorizable. Now Lemma 6.2.1 implies that qC‚∆ »
ψpqC‚qpptq is holonomic regular. Proposition 6.1.1 implies that ψpqC‚q is a h.r.
factorizing D!-module on XS . After this the theorem becomes an application
of Proposition 6.1.2.

Combining Corollary 5.2.4 with Theorem 6.2.3, we find:

Corollary 6.2.4. For X a smooth affine variety over k “ C, we have

CE‚pT pXqq »

ˆ
Xan

Aψp qC‚q.

C. The structure of the factorization algebra A. Denote A “ AX
the locally constant factorization algebra Aψp qC‚q. We note, first of all, that A
is naturally a factorization algebra in the category CDGA. This is because
all the steps in constructing A can be done in CDGA. So by Proposition
1.2.5, A is a cosheaf of cdga’s on Xan.

The complex manifold Xan can be seen as a C8-manifold of dimension
2n with GLnpCq-structure in the sense of Definition 1.3.12. Let GLn,C be
the algebraic group GLn with field of definiiton C. Any cdga A with a
GL˚n,C-action (Definition 1.3.7) has a BL-action of the Lie group GLnpCq
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and so gives rise to a locally constant cosheaf of cdga’s A “ AXan
on Xan, see

Proposition 1.3.13.

We recall from §1.4C that the cdga CE‚pWnpCqq has a natural GL˚n,C-
action and so we have the cosheaf of cdga’s CE‚pWnpCqq on Xan.

Proposition 6.2.5. The cosheaf of cdga’s AX on Xan is identified with
CE‚pWnpCqq. In particular,

ˆ
Xan

AX »

ˆ
Xan

pCE‚pWnpCqqq

is the factorization homology of the complex manifold Xan with coefficients
in CE‚pWnpCqq.

Proof: Let U Ă Xan be a disk. Applying Theorem 5.5.4.14 of [Lu-HA], we
see that the natural arrow

RΓc
`

U,DRpψpqC‚qpptq
an q

˘

ÝÑ ApUq :“ holim
ÝÝÝÑ
IPS

RΓc
`

U I ,DRpψpqC‚qpIqan q
˘

is a quasi-isomorphism. Further, by definition,

RΓc
`

U,DRpψpqC‚qpptq
an q

˘

“ RΓcpU,F‚∆q

is the compactly supported cohomology with coefficients in the diagonal com-
plex, see (5.1.11).

From this point on the proof proceeds similarly to that of Proposition
1.4.6. Our cosheaf CE‚pWnq is the inverse of the locally constant sheaf of
cdga’s rCE‚pWnqsXan . So we construct, for each disk U , a family (parametrized
by a contractible space TU) of quasi-isomorphisms

qU : rCE‚pWnsXanpUq ÝÑ RΓcpU,F‚∆q

so that for any inclusion of disks U1 Ă U0 we have a commutative diagram
analogous to (1.4.7).

To do this, for any point x P Xan we define the Lie C-algebras Wx and
WTxX of formal vector fields on X near x and on TxX near 0 respectively.
We have a contractible space of identifications Wx Ñ WTxX parametrized by
formal isomorpisms φ : pTxX, 0q Ñ pX, xq identical on the tangent spaces.
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Recall that F‚∆ is the (shifted) local system of Gelfand-Fuchs cohomology.
Therefore for any disk U Ă Xan and any x P U the pullback map

(6.2.6) CE‚pWxq Ñ RΓcpU,F‚∆q

is a quasi-isomorphism. Further, just like in Proposition 1.4.8(a), the sheaf
rCE‚pWnqsXan has, as the stalk at x P X, the complex CE‚pWTxXq. So our
maps qU are constructed in the same way as in (1.4.9), with RΓcpU,F‚∆q
instead of CE‚pVectpUqq and the quasi-isomorphisms (6.2.6) instead of the
maps rx of Proposition 1.4.8(b).

6.3 Main result

Let now X be a smooth variety over C of complex dimension n. Using
the GLnpCq-action on Yn, we form the holomorphic Gelfand-Fuchs fibration
Y X Ñ Xan with fiber Yn. Note that Yn is 2n-connected, and so the non-
Abelian Poincaré duality Theorem 1.3.17 applies to Y X Ñ Xan (the real
dimension of Xan is also 2n).

Combining Theorem 1.4.10 with Proposition 6.2.5 and Theorem 1.3.17,
we obtain:

Theorem 6.3.1. (a) Let X be any smooth algebraic variety over C. Then
we have identifications

ˆ rrcss

X

ψpqC‚q »
ˆ
Xan

Aψp qC‚q » H‚
toppSectpY X{Xanq,Cq,

where on the right we have the space of continuous sections of Y X over Xan

(considered as just a topological space).

(b) In particular, the canonical arrow
´ rrcss
x

ψpqC‚q Ñ
´ rrcss
x

qC‚ gives rise to
a natural morphism of commutative algebras

τX : H‚
toppSectpY X{Xanq,Cq ÝÑ H‚

LieRΓpX,TXq,

compatible with pullbacks under étale maps X 1 Ñ X.

Applying now Corollary 6.2.4, we obtain our main result:
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Theorem 6.3.2. (a) Let X be a smooth affine variety over C. Then τX is
an isomorphism, i.e., we have a commutative algebra isomorphism

H‚
LiepT pXqq » H‚

toppSectpY X{Xanq,Cq.

(b) In particular, H‚
LiepT pXqq is finite-dimensional in each degree and is

an invariant of n, of the rational homotopy type of Xan and of the Chern
classes cipTXq P H

2ipX,Qq.

Example 6.3.3. Let X be an elliptic curve. The tangent bundle TX is trivial,
so Y X “ Xan ˆ Y1. Further, Y1 is is homotopy equivalent to the 3-sphere
S3, while Xan is homeomorphic to S1 ˆ S1. So SectpY X{Xanq is homotopy
equivalent to MappS1ˆS1, S3q and has cohomology in infinitely many degrees
but finite-dimensional in each given degree. On the other hand,

RΓpX,TXq » C‘ Cr´1s

is an abelian dg-Lie algebra and so H0
LieRΓpX,TXq “ Crrqss is infinite-

dimensional pro-finite. This shows that τX cannot be an isomorphism in
general.

6.4 Examples of explicit calculations of H‚
LiepT pXqq

A. Curves: Krichever-Novikov algebras. Let X be a smooth affine
curve. Assume that X is of genus g ě 0 with m ě 1 punctures. The Lie
algebra T pXq is known as a Krichever-Novikov algebra, see [KN] [S].

Theorem 6.3.2 in this case gives the following. The Gelfand-Fuchs skele-
ton Y1 is homotopy equivalent to the 3-sphere S3. The space Xan is homotopy
equivalent to a bouquet of ν “ 2g`m´1 circles, and so the complex tangent
bundle TX is topologically trivial. Therefore the fibration Y X Ñ X is trivial,
identified, up to homotopy equivalence, with X ˆ S3. The space of sections
SectpY X{Xq is therefore identified with the mapping space MappX,S3q and
we obtain:

(6.4.1) H‚
LiepT pXqq » H‚

top

ˆ

Map
`

ν
ł

i“1

S1, S3
˘

,C
˙

.

The analytic version of this statement (involving all analytic vector fields
and their continuous cohomology) has been proved earlier in [Ka].
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B. Complexifications. An interesting class of examples is obtained by
considering n-dimensional complex affine varieties X which are in fact defined
over R so that the space of R-points M “ XpRq is a smooth compact C8-
manifold of dimension n, homotopy equivalent to Xan. In such cases the
algebro-geometric cohomology H‚

LiepT pXqq is, by Theorem 6.3.2, identified
with the C8 cohomology H‚

LiepVectpMqq bR C. Examples include:

(a) X “ A1 ´ t0u, M “ S1.

(b) X “ GLn, M “ Upnq.

(c) X is the affine quadric
řn
i“0 z

2
i “ 1, M is the sphere Sn.

C. Pn minus a hypersurface. Suppose X “ Pn´Z where Z is a smooth
hypersurface of degree d. In this case we have, first of all:

Proposition 6.4.2. The Chern classes of TX vanish rationally.

Proof: Indeed, they are the restrictions of the Chern classes of TPn which lie
in

H˚
pPnan,Cq “ Crhs{hn`1, h “ c1pOp1qq.

Now, dh “ c1pOpdqq vanishes on X since Z is the zero locus of a section
of Opdq. Therefore h|X “ 0 as well, and similarly for all powers of h.

Now, all the information about the fibration Y X Ñ Xan which we use,
is contained in the Chern classes of TX , as we are dealing with rational
homotopy types. Therefore Theorem 6.3.2 gives that

H‚
LiepT pXqq “ H‚

toppMappXan, Ynq,Cq.

Let us now identify the rational homotopy type of Xan. Let us think of Pn
as the projectivization of Cn`1 and let fpx0, . . . , xnq be the homogeneous
polynomial of degree d defining Z. Without loss of generality, we can take
f “ xd0 ` ¨ ¨ ¨ ` xdn. Let W Ă Cn`1 be given by f “ 1. We then have the
Galois covering p : W Ñ Xan with Galois group Z{d of dth roots of 1 acting
diagonally on Cn`1.

Now W is the “Milnor fiber” for the isolated singularity f “ 0. (We could
define W by f “ ε for any small ε with the same effect). Therefore by Mil-
nor’s theorem [Mi], W is homotopy equivalent to a bouquet of µ spheres Sn.
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Here µ “ pd ´ 1qn`1 is the Milnor number of the singularity. So topological
cohomology of W is Cµ in degree n and 0 elsewhere (except H0 “ C).

Further, the vanishing of the higher cohomology of the group Z{d with
coefficients in any C-module and the Leray spectral sequence of the Galois
covering p, combined with the theory of rational homotopy type, imply:

Proposition 6.4.3. The rational homotopy type of Xan is that of a bouquet of
ν spheres, where ν is the dimension of the invariant subspace HnpW qZ{d.

The number ν can be found explicitly by using the fact, standard in the
theory of singularities [Wal], that the space HnpW q (the space of vanishing
cycles for f) has the same Z{d-character as the Jacobian quotient of the
module of volume forms

Ωn`1
pAn`1

q
L`

Bf{Bxi
˘n

i“0
“ detpCn`1

q b Crx0, . . . , xns
L

pxd´1
0 , . . . , xd´1

n q.

So ν is equal to the number of monomials

xi00 ¨ ¨ ¨ x
in
n , 0 ď ik ď d´ 2,

ÿ

ik ” ´n´ 1 mod d.

We get a statement of the form similar to (6.4.1):

Corollary 6.4.4.

H‚
LiepT pXqq » H‚

ˆ

Map
`

ν
ł

i“1

Sn, Yn
˘

,C
˙

.

Example 6.4.5. Let d “ 2, i.e., Z is a smooth quadric hypersurface. Then
W (complex affine quadric) is homotopy equivalent to Sn and so Xan “

CPn ´ Zan is homotopy equivalent to RPn. The rational homotopy type of
RPn is that of a point, if n is even and is that of Sn, if n is odd. This means
that ν is equal to 0 or 1 in the correponding cases. Accordingly

H‚
LiepT pPn ´ Zqq “

#

H‚pYn,Cq, if n is even;

H‚pMappSn, Ynq,Cq, if n is odd.
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