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Abstract

Let X be a smooth affine variety over a field k of characteristic
0 and 7'(X) be the Lie algebra of regular vector fields on X. We
compute the Lie algebra cohomology of T'(X) with coefficients in k.
The answer is given in topological terms relative to any embedding
k < C and is analogous to the classical Gelfand-Fuks computation for
smooth vector fields on a C*-manifold. Unlike the C*-case, our setup
is purely algebraic: no topology on T'(X) is present. The proof is based
on the techniques of factorization algebras, both in algebro-geometric
and topological contexts.
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Introduction

A. Description of the result. Let k be a field of characteristic 0 and
X be a smooth affine algebraic variety over k. Denote by T'(X) = Der k[ X]
the Lie algebra of regular vector fields on X. In this paper we determine
H:!..(T(X)), the Lie algebra cohomology of T'(X) with coefficients in k.

Clearly, extending the field of definition of X from k to k’ o k results
in extending the scalars in H{, (T(X)) from k to k’. Since any X can be
defined over a field k finitely generated over Q and any such field embeds



into the complex field C, the problem of finding H?, (T'(X)) reduces to the
case k = C, when we can speak about X,,, the space of complex points of
X with the transcendental topology. In this case our main result, Theorem
6.3.2, implies that H}, (7'(X)) is finite-dimensional in each degree and is an
invariant of dim(X), of the rational homotopy type of X,, and of its rational
Chern classes. More precisely, it is identified with Hy, (Sect(Y x/Xan)), the
topological cohomology of the space of continuous sections of a natural fibra-
tion Y y — X, over X,,. This allows one to easily compute H7, (7(X)) in
many examples, using elementary rational homotopy type theory, cf. §6.4.

The interest and importance of this problem stems from its relation to
the algebro-geometric study of higher-dimensional analogs of vertex algebras,
in particular, of Kac-Moody [FHK] [GW] and Virasoro algebras. While the
full study eventually involves non-affine varieties (see n° D. below), the affine
case already presents considerable difficulties which we address in this paper.
Thus, we learned that Theorem 6.3.2 was conjectured by B. L. Feigin back
in the 1980’s but there has been no proof even in the case of curves, despite
some work for holomorphic vector fields and continuous cohomology [Ka]
[Wagl], [Wag?2].

B. Relation to Gelfand-Fuchs theory. Theorem 6.3.2 is an algebro-
geometric analog of the famous results by Gelfand-Fuchs [GF] [Fu], Haefliger
[Hae2] and Bott-Segal [BS] on the cohomology of Vect(M), the Lie algebra
of smooth vector fields on a C"*°-manifold M. We recall the main features of
that theory.

(1) First, one considers W,, = DerR[[z1, ..., 2,]], the Lie algebra of formal
vector fields on R”, with its adic topology. Its cohomology is identified
with the topological cohomology of a certain CW-complex Y, with

action of GL,(R), see [Fu] §2.2.

(2) Given an n-dimensional C'**-manifold M, the tangent bundle of M gives
an associated fibration Y, — M, and H}, (Vect(M)) is identified with
the topological cohomology of Sect(Y,,/M), the space of continuous
sections [Hae2] [BS], [Fu] §2.4.

We notice that Y,, can be realized as a complex algebraic variety acted
upon by GL,(C) o GL,(R) and so any complex manifold X carries the
associated fibraton Y, with fiber Y, (even though the real dimension of
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X is 2n). It is this fibration that is used in Theorem 6.3.2. While in the
C®*-theory Vect(M) is considered with its natural Fréchet topology and Hf;,
is understood accordingly (continuous cochains), in our approach T'(X) is
considered purely algebraically.

C. Method of proof: factorization homology.  Our proof of Theo-
rem 6.3.2 is based on the theory of factorization algebras and factorization
homology, both in topological [Lu-HA] [CoG1] [Gi] and algebro-geometric
[BD] [G] [FG] [GL] contexts. In particular, we work systematically with the
algebro-geometric version of the Ran space (§3.1).

This theory provides, first of all, a simple treatment of the C'*-case. That
is, the correspondence

U — A{U) = CE*(Vect(U))

(Chevalley-Eilenberg complex of continuous cochains) is a locally constant
factorization algebra A on M. As A is natural in M, it is, by Lurie’s theorem
[Lu-HA] [Gi] §6.3, determined by an e,-algebra A, with a homotopy action
of GL,(R), so that H},,(Vect(M) is identified with [, (A,), the factorization
homology of M with coefficients in A,. The Gelfand-Fuchs computation
of Hy,.(W,) identifies A,, with C*(Y,), the cochain algebra of Y,,, and the
identification with the cohomology of the space of sections follows from non-
abelian Poincaré duality, see [Lu-HA] §5.5.6, [GL] [Gi] and Proposition 1.2.8
and Theorem 1.3.17 below.

Passing to the algebraic case, we find that H}, (7(X)) can also be inter-
preted as the factorization homology on the algebro-geometric Ran space (cf.
[BD] §4.8 for n = 1 and [FG] Cor. 6.4.4 in general) but the corresponding
factorization algebra C* is far from being locally constant. Already for n =1
it corresponds to the vertex algebra Virg (the vacuum module over the Vira-
soro algebra with central charge 0) which gives a holomorphic but not at all
locally constant factorization algebra.

The crucial ingredient in our approach is the covariant Verdier duality
of Gaitsgory and Lurie [GL] which is a correspondence 9 between (ordinary,
or #-) sheaves and !-sheaves on the Ran space. For a sheaf F its covariant
Verdier dual ¢(F) is the collection (i,F),>1 where i, is the embedding of

the pth diagonal skeleton of the Ran space. In our case 1[)(5‘) is the algebro-
geometric analog of the diagonal filtration of Gelfand-Fuchs [GF]. It turns
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out that @/J(CV *) is a locally constant factorization algebra even though C* itself
is not. This appearance of locally constant objects from holomorphic ones is
perhaps the most surprising phenomenon that we came across in this work.

By using non-abelian Poincaré duality we show that the factorization
homology of ¢(C*) is identified with H (Sect(Y /X)), and our main result

top
follows from comparing the factorization homology of ¥ (C®) and C* for an
affine X (“completeness of the diagonal filtration”).

We find it remarkable that the classical Gelfand-Fuchs theory has antic-
ipated, in many ways, the modern theory of factorization algebras. Thus,
the Ran space appears and is used explicitly (under the name “configuration
space”) in the 1977 paper of Haefliger [Hae2] while the diagram of diagonal
embeddings of Cartesian powers M7 is fundamental in the analysis of [GF].

D. Non-affine varieties and future directions. When X is an arbi-
trary (not necessarily affine) smooth variety, we can understand T'(X) as a
dg-Lie algebra RI'(X,TY) and its Lie algebra cohomology is also of great
interest. If X is projective, H7,.(T(X)) plays a fundamental role on Derived
Deformation theory (DDT), see [F| [HS2] [Lu-DAGX] [CaG]. The corre-
sponding Chevalley-Eilenberg complex is identified

CE*(T(X)) ~ (O d)

with the commutative dg-algebra of functions on the formal germ of the de-
rived moduli space M of complex structures on X so HY, (T'(X)) is the space
of formal functions on the usual moduli space. In particular, Hf, (T'(X)) is
no longer a topological invariant of X and ¢;(Tx).

In the case of arbitrary X we still have an interpretation of Hf, (T'(X))
as the factorization homology of C* and ¥(C*) is still locally constant. So
our analysis (Theorem 6.3.1) gives a canonical map

7x : Hiop (Sect(Y.x )/ X) — Hio(T(X)).

While 7x may no longer be an isomorphism, it provides an interesting supply
of “topological” classes in H}, (T'(X)). For example, when X is projective
of dimension n, “integration over the fundamental class of X” produces, out

of 7x, a map
H* 1 (Y,) — Hio(T(X)),
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i.e., a supply of characters (1-dimensional representations) of 7'(X). Coho-
mology of T'(X) with coefficients in such representations should describe,

by extending the standard DDT, formal sections of natural determinantal
bundles on M, cf. [F]. We recall that

n Sn
H* N (Y,) ~ Clxy,... 7x”]deg=n+1’ deg(x;) =1
is identified with the space of symmetric polynomials in n variables of degree
n + 1, which have the meaning of polynomials in the Chern classes.

In a similar vein, for X = A™ —{0} (the “n-dimensional punctured disk”),
the space H*"*1(Y,) maps to Hf (T(X)), i. e., we get a supply of central
extensions of T'(X), generalizing the classical Virasoro extension for n = 1.

E. The structure of the paper. In Chapter 1 we reformulate, using
the point of view of factorization algebras, the classical Gelfand-Fuchs the-
ory. We firsr recall, in §1.1, the theory of factorization algebras and factor-
ization homology on a C®-manifold M, in the form given in [CoGl], i.e.,
as dealing with pre-cosheaves on M itself, rather than on the Ran space or
on an appropriate category of disks. In our case the factorization algebras
carry additional structures of commutative dg-algebras (cdga’s), so the the-
ory simplifies and reduces to cosheaves of cdga’s with no further structure.
This simplification is due to [Gi] (Prop. 48), and in §1.2 we review its ap-
plications. Unfortunately, we are not aware of a similar simplification in the
algebro-geometric setting.

In §1.3 we review the concept of factorization homology of G-structured
manifolds in the setting of G-equivariant cdga’s, where a self-contained treat-
ment is possible. In particular, we review non-abelian Poincaré duality which
will be our main tool in relating global objects to the cohomology of the
spaces of sections. It allows us to give a concise proof of the Haefliger-Bott-
Segal theorem in §1.4. The identifications in §1.4 are formulated in such a
way that they can be re-used later, in §6.2, with the full GL,,(C)-equivariance
taken into account.

Chapter 2 is dedicated to the formalism of D-modules which we need in a
form more flexible than it is usually done. More precisely, our factorization
algebras, in their D-module incarnation, are not holonomic, but we need
functorialities that are traditionally available only for holonomic modules.
So in §2.3 we introduce two “non-standard” functorialities on the category



of pro-objects. Thus, for a map f : Z — W of varieties we introduce the
functor fI*Il (formal inverse image), which for f a closed embedding and
an induced D-module F ®» D on W corresponds to restriction of sections
of F to the formal neighborhood of Z. We also introduce the functor fi
(formal direct image with proper support) which for an induced D-module
on Z corresponds to the functor f, on pro-coherent sheaves introduced by
Deligne [De|. With such definitions we have, for instance, algebraic Serre
duality on non-proper algebraic varieties.

In Chapter 3 we review the algebro-geometric Ran space (§3.1) and define,
in §3.2, two main types of D-modules on it, corresponding to the concepts
x-sheaves and !-sheaves. Since we understand the #-inverse image in the for-
mal series sense (for not necessarily holonomic modules), this understanding
propagates into the definition of D-module analogs of =-sheaves, which we
call [[D]]-modules. We also make a distinction between lax and strict mod-
ules of both types. In practice, lax modules are more easy to construct and
are of more finitistic nature. They can be strictified which usually produces
much larger objects but with the same factorization homology. In §3.3 we
adapt to our situation the concept of covariant Verdier duality from [GL].

Chapter 4 is devoted to the theory of factorization algebras in our algebro-
geometric (and higher-dimensional) context. Here the main technical issue is
to show that covariant Verdier duality preserves factorizable objects. This is
not obvious in the standard setting when the Ran space is represented by the
diagram of the X7 for all nonempty finite sets I and their surjections. In fact,
this necessitates an alternative approach to factorization algebras themselves:
defining them as collections of data not on the X’ (as it is usually done and
as recalled in §4.2) but on varieties labelled by all surjective maps I — J of
finite sets. This is done in Sections 4.3 and 4.4 (we need, moreover, two forms
of such a definition, each one good for a particular class of properties). This
allows us to prove, in §4.6, that covariant Verdier duality indeed preserves
factorization algebras (Theorem 4.6.1).

After these preparations, in Chapter 5 we study the factorization algebras
C. and C* that lead, for any smooth variety X, to the (homological and
cohomological) Chevalley-Eilenberg complexes of RI'(X, L) where L is any
local Lie algebra on X. They are introduced in §5.1 and can be considered
as natural “sheafifications” of these complexes. In §5.2 we specialize to the
case of affine X and prove Theorem 5.2.1 and Corollary 5.2.4 which imply



that gb(Cv') and C* have the same factorization homology.

Finally, in Chapter 6 we compare the algebro-geometric theory with the
topological one. We start by outlining a general procedure of comparison
in §6.1. We make a particular emphasis the holonomic regular case, when
we can pass between de Rham cohomology on the Zariski topology (which
will eventually be related to the purely algebraic object Hy,.(T(X))) and the
topological cohomology on the complex topology (which will be eventually
related to the cohomology of Sect(Y y/Xan)). In §6.2 we specialize to the case
of the tangent bundle where, as we show, the factorization algebra w(Cv') is
indeed holonomic regular. This allows us to identify the corresponding locally
constant factorization algebra and in §6.3 we prove our main result, Theorem
6.3.2. The final §6.4 contains some explicit computations of Hf (T(X))
following from Theorem 6.3.2.
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0 Notations and conventions
A. Basic notations. k: a field of characteristic 0, specialized to R or C
as needed.

dgVect: the category of cochain complexes (dg-vector spaces) V = {V* d; :
Vi — Vi1 over k, with its standard symmetric monoidal structure ®y (ten-
sor product over k).

We use the abbreviation cdga for “commutative dg-algebra”.

CDGA: the category of cdga’s over k, i.e., of commutative algebra objects
in dgVect. It is also symmetric monoidal with respect to ®j.

Top: the category of topological spaces homotopy equivalent to a CW-
complex.

A°C resp. AC: the category of simplicial, resp. cosimplicial objects in a



category C. In particular, we use the category A°Set of simplicial sets.

Sing,(T'): the singular simplicial set of a topological space T'.

B. Categorial language. The categories dgVect, CDGA, Top, A°Set
are symmetric monoidal model categories, see [Ho| [Lu-HTT] for background
on model structures. We denote by W the classes of weak equivalences
in these categories (thus W consists of quasi-isomorphisms for dgVect and

CDGA).

We will mostly use the weaker structure: that of a homotopical category
[DHKS] which is a category C with just one class W of morphisms, called
weak equivalences and satisfying suitable axioms. A homotopical category
(C,W) gives rise to a simplicially enriched category Ly (C) (Dwyer-Kan lo-
calization). Taking my of the simplicial Hom-sets in Ly, (C) gives the usual
localization C[W™!]. We refer to Ly (C) as the homotopy category of (C, W)
(often, this term is reserved for C[W~1]). In particular, (C, W) has standard
notions of homotopy limits and colimits which we denote holim and holim.
By an equivalence of homotopical categories (C,W) — (C',WW') we mean a
functor F': C — C’ such that:

(1) F(W)c W".

(2) The induced functor of simplicially enriched categories Ly (C) — Ly~ (C’)
is a quasi-equivalence, that is:

(2a) It gives an equivalence of the usual categories C[W 1] — C'[(W/)~1].

(2b) It induces weak equivalences on the simplicial Hom-sets.

We will freely use the language of co-categories [Lu-HTT]. In particular,
any simplicially enriched category gives rise, in a standard way, to an oo-
category with the same objects, and we will simply consider it as an oo-
category. This applies to the Dwyer-Kan localizations Ly (C) above. For
instances, various derived categories will be “considered as co-categories”
when needed.

C. Thom-Sullivan cochains. We recall the Thom-Sullivan functor

Th* : AdgVect — dgVect.



Explicitly, for a cosimplicial dg-vector space V'*, the dg-vector space Th®(V'*)
is defined as the end, in the sense of [Mac], of the simplicial-cosimplicial dg-
vector space 9 (A*)@V* where Q| (A®) consists of polynomial differential
forms on the standard simplices, see [HS1] [FHT].

Note that Th®(V'*) is quasi-isomorphic to the naive total complex

(0.1) Tot(V*) = (@ V[—n], dy +Z(—1)i5i>,

where d; are the coface maps of V*. The quasi-isomorphism is given by the
Whitney forms on the A", see [Get] §3.

The functor Th® is compatible with symmetric monoidal structures and so
sends cosimplicial cdga’s to cdga’s. It can, therefore, be used to represent the
homotopy limit of any diagram of cdga’s as an explicit cdga. In particular, we
have a cdga structure on the cohomology of any sheaf of cdga’s, a structure
of a sheaf of cdga’s in any direct images of a sheaf of cdga’s and so on. We
note some particular cases.

Let S, be a simplicial set. We write Th®(S,) = Th*®(k®*), where k is the
cosimplicial cdga (k*7),>¢ (simplicial cochains). The cdga Th*(S,) is called
the Thom-Sullivan cochain algebra of S,. It consists of compatible systems
of polynomial differential forms on all the geometric simplices of S,.

Let T be a topological space. We write Th*(7") = Th*(Sing,(7)). This is
a cdga model for the cochain algebra of T" with coefficients in k.

1 (% Gelfand-Fuchs cohomology and factor-
ization algebras

1.1 Factorization algebras on C'* manifolds

A. Factorization algebras. We follow the approach of [CoG1] [Gi].

Definition 1.1.1.Let M be a C*-manifold and (C,®,1) be a symmetric
monoidal category. A pre-factorization algebra on M with values in C is a
rule A associating:

(1) To each open subset U — M an object A(U) € C, with A(¢) = 1.
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(2) To each finite family of open sets Uy, Us,...,U., v = 0, such that
Uy, ..., U, are disjoint and contained in Uy, a permutation invariant
morphism in C

-----

these morphisms satisfying the obvious associativity conditions.

Taking r = 1 in (2), we see that a pre-factorization algebra defines an
C-valued pre-cosheaf on M, i.e., a covariant functor from the poset of opens
in M to C.

Let now (C,®, 1, W) be a symmetric monoidal homotopical category. We
assume that C has small coproducts which we denote by [ [. Let U < M be an
open subset and 4l = (U;);er be an open cover of U. We write U;; = U;nUj ete.
If F is an C-valued pre-cosheaf on M, we have then the standard simplicial
object in C (co-descent diagram)

N8, F) = {% [ FUp) == [ f(Ui»::uf(Ui)}

irj kel ijel il
and a morphism
(1.1.2) e+ holim N (U, F) — F(U).

Definition 1.1.3.Let U < M be an open subset and 4 = (U;);c; be an open
cover of U. We say that 4 is a Weiss cover, if for any finite subset S < U
there is ¢ such that S < Uj.

As pointed out in [CoG1], Weiss covers are typically very large (consist
of infinitely many opens).

Definition 1.1.4.Let (C,®,1,W) be a symmetric monoidal homotopical
category with coproducts. A pre-factorization algebra A on M with values

in C is called a factorization algebra, if the following conditions hold:
(3) For any disjoint open Uy,...,U, € M, the morphism ugi“,}f{r in (2)
is a weak equivalence.

(4) For any open U < M and any Weiss cover i = (U;);e; of U, the
morphism ~y is a weak equivalence.
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For a factorization algebra A the object of global cosections will be also
denoted by

AA:AM

and called the factorization homology of M with coefficients in A.

In particular, we will use factorization algebras with values in the cate-
gories dgVect, CDGA, Top, A°Set, see §0.

Definition 1.1.5. (a) By a disk in M we mean an open subset homeomorphic
to R™ for n = dim(M).

(b) A (pre-)factorization algebra A with values in C is called locally con-
stant, if for any embeddings U; < Uy of disks in M the morphism ug? is a
weak equivalence.

1.2 Factorization algebras of cdga’s

A. Sheaves and cosheaves. We start with a more familiar sheaf-theoretic
analog of the fornalism of §1.1.

Let T be a topological space. Denote by Op(7T') the poset of open sets in
T considered as a category.

Definition 1.2.1.(a) Let (C,W) be a homotopical category. A C-valued
pre-cosheaf A : Op(T) — C on T is called a homotopy cosheaf , if, for each
U € Op(T') and each cover 4 of U, the canonical morphism -y defined as in
(1.1.2), is a weak equivalence.

(b) By a C-valued homotopy sheaf on T we mean a homotopy cosheaf
with values in C°.

In the sequel we will drop the word “homotopy” when discussing ho-
motopy sheaves and cosheaves. We denote by Shy(C) and Coshr(C) the
categories of C-valued sheaves and cosheaves.

Definition 1.2.2. Let M be a C*™ manifold. A C-valued cosheaf A on M is
called locally constant if for any two disks U; < Uy € M the co-restriction
map A(U;) — A(U)) is a weak equivalence. C-valued locally constant sheaves
on M are defined similarly.

We denote by Sh'5;(C) and Cosh'f,(C) the homotopical categories of locally
constant C-valued sheaves and cosheaves.
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Proposition 1.2.3. The homotopical categories Sh',(C) and Cosh's,(C) are
equivalent.

Proof: Let D(M) < Op(M) be the poset of disks in M. As disks form a basis
of topology in M, any sheaf B on M is determined by its values on D(M).
More precisely, B is the (homotopy) right Kan extension [DHKS] of B|p(as.
This implies that Sh'¢,(C) is identified with the category formed by contravari-
ant functors, D(M) — C sending each morphism to a weak equivalence, i.e.,
with the category of simplicially enriched functors L(D(M)°) — Lw (C).
Here and below L without subscript stands for the Dwyer-Kan localization
with respect to all morphisms.

Dually, any cosheaf .4 on M is the homotopy left Kan extension of A|p).
This means that Cosh'f,(C) is identified with the category formed by covariant
functors D(M) — C sending each morphism to a weak equivalence, i.e., with
the category of simplicially enriched functors L(D(M)) — Lw(C). Now
notice that L(D(M)) and L(D(M)°) are canonically identified. O

Definition 1.2.4. For a locally constant sheaf B we will denote by B~! and
call the inverse of B the locally constant cosheaf corresponding to B.

B. Cosheaves of cdga’s as factorization algebras. We use the
abbreviation cdga for “commutative dg-algebra”. The category CDGA of
cdga’s over k is a symmetric monoidal homotopical category, with monoidal
operation ®j (tensor product of cdga’s) and weak equivalences being quasi-
isomorphisms of cdga’s.

Proposition 1.2.5. (a) Let A be a factorization algebra on M with values
in CDGA. Then A is a cosheaf on M with values in CDGA.

,,,,,

establishes an equivalence between the category of CDGA-valued factoriza-
tion algebras on M and the category of Coshp (CDGA). Under this equiva-
lences, locally constant factorization algebras correspond to locally constant
cosheaves.

Proof: This is proved in [Gi], Prop. 48. It is based on the fact that ®y, the
monoidal operation in CDGA, is at the same time the categorical coproduct.
O
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Remark 1.2.6. Note that a cosheaf of cdga’s is typically not a cosheaf of
dg-vector spaces, as the coproduct in dgVect is @, not ®y. On the other
hand, a sheaf of cdga’s is indeed a sheaf a sheaf of dg-vector spaces, as [],
the product in dgVect, is also the product in CDGA.

C. Non-abelian Poincaré duality I. Let p: Z — M be a Serre fibra-
tion with base a C® manifold M and fiber Y. We then have the following
pre-sheaf and pre-cosheaf of cdga’s on M:

. Rpu(ly) U = T (57 (U),
Rp?(kz) : U — Th*(Sect(p~" (U)/U)),

where Sect(p~'(U)/U) is the space of continuous sections of the fibration
p Y (U) — U. Thus Rp.(k,) is in fact a locally constant sheaf of cdga’s,
namely the direct image of the constant sheaf k,, made into a sheaf of cdga
by using Thom-Sullivan cochains.

Proposition 1.2.8. Suppose Y is n-connected, where n = dim(M). Then
Rp®(k,) is a locally constant cosheaf of cdga’s. Further, Rp®(k,) is inverse
to Rp.(k,) (see Proposition 1.2.3).

Proof: The first statement is a consequence of [BS] Cor. 5.4. The second
statement is clear since for a disk U < X the space Sect(p~!(U)/U) is homo-
topy equivalent to p~1(z) for any x € U. O

1.3 Equivariant cdga’s and factorization homology

We first compare several notions of a Lie group acting on a cdga.

A. Classifying space approach. Let (C,WW) be a homotopical cate-
gory.

Definition 1.3.1. Let T, be a simplicial topological space so that for each
morphism s : [p] — [¢] in A we have a morphism of topological spaces
s*: T, = T,. A C-valued sheaf on 7, is a datum F consisting of sheaves F,
on T, for each p and of weak equivalences of sheaves oy : (s*)7*(F,) — F,
given for each s : [p] — [¢] and compatible with the compositions. We denote
by Shr, (C) the category of C-valued sheaves on 7,.
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Let G be a topological group and N,G € A°Top its simplicial nerve.
Thus BG = |N,G]| is the classifying space of G. We denote, following [BL]
Appendix B,

(132) Dg(pt) = ShN.G(dgVect), CDGAG = ShN.G(CDGA>

Proposition 1.3.3. For any object F of Dg(pt) (resp. of CDGAg) we have
the following:

(a) Each F, is a locally constant (in fact, constant) sheaf of dg-vector
spaces resp. cdga’s on NpG.

(b) F gives a locally constant sheaf |F| of dg-vector spaces (resp. cdga’s)
on BG. ]

Proof: (a) Consider any morphism s : [0] — [¢], so s* : N,G — NyG = pt.
Then «y identifies F, with the constant sheaf (s*)~'(Fp). Part (b) follows
from (a). O

Corollary 1.3.4. A morphism G' — G of topological groups which is a ho-
motopy equivalence, induces equivalences of homotopical categories Dg(pt) —

DG/(pt) and CDGAG — CDGAG/.

Proof: Follows from homotopy invariance of locally constant sheaves. m

Given F € D¢ (pt), the component V* = Fy € Shy, is just a dg-vector
space,

Definition 1.3.5.Let V* be a dg-vector space (resp. a cdga). A BL-action
of G on V* is an object F in Dg(pt) (resp. in CDGAg) together with
identification of dg-vector spaces (resp. of cdga’s) Fo ~ V*.

For a cdga A we denote by dgMod 4, resp. CDGA 4 the category of dg-
modules over A resp. commutative differential graded A-algebras.

Let H*(BG) be the cohomology ring of BG with coefficients in k, i.e.,
the cohomology algebra of the cdga Th®*(BG). Any sheaf of dg-vector spaces
F on BG gives rise to the dg-space of cochains C*(BG,F). We note that
C*(BG,F) is a kind of homotopy limit (dg-vector space associated to a
cosimplicial dg-vector space) and so we can define it using the Thom-Sullivan
construction. Thus defined, C*(BG,F) is a dg-module over Th*(BG) =
C*(BG,kpq). Further, if F is a sheaf of cdga’s, then C*(BG, F) is a cdga
over Th*(BG).

15



Proposition 1.3.6. Let G be a connected compact Lie group. Then:

(a) We have a quasi-isomorphism H*(BG) — Th*(BG).

(b) The functor F — C*(BG,|F|) defines symmetric monoidal equiva-
lences of homotopical categories

D¢ (pt) — dgModf. gy, CDGAZ® = CDGAZL 4,

where the subscripts “+7 signify the subcategories formed by sheaves and dg-
modules bounded below as complexes, and “= 07 signifies the subcategories
formed by dg-algebras graded by Z.

Proof: Part (a) is classical (invariant forms on BG). The first equivalence
in (b) is [BL] Th. 12.7.2. The second equivalence follows from the first by

passing to commutative algebra objects.
]

B. Cartan-Weil approach.

Definition 1.3.7. (cf. [GS] Def. 2.3.1 and [BS] Def. 3.1.) Let G be an affine
algebraic group over k with Lie algebra g and V* € dgVect be a cochain
complex. A G*-action on V* is a datum consisting of:

(1) A regular action of G on V*. In particular, for each £ € g we have the
infinitesimal automorphism L € Endy(V'*).

(2) An k-linear map i : g — End; '(V'*) such that;

(2a) 1 is G-equivariant with respect to the adjoint action of G on g and
the G-action on End, *(V*) coming from (1).

(2b) We have [d,i(£)] = L¢ for each £ € g.
(2¢) For any &, & € g we have [i(&1), ()] = 0.

We denote by G*-dgVect the category of cochain complexes with G*-
actions. This category has a symmetric monoidal structure ®, with the
operators i(§) defined on the tensor products by the Leibniz rule. Commuta-
tive algebra objects in G*-dgVect will be called G*-cdga’s. Such an algebra
is a cdga with G acting regularly by automorphisms, so g acts by derivations
of degree 0, and with () being derivations of degree (—1). We denote by
G*-CDGA the category of G*-cdga’s.
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Let .. (G) be the cdga of regular differential forms on G. The group
structure on G makes Q¢..(G) into a commutative Hopf dg-algebra over k.

reg
We note the following.

Proposition 1.3.8. (a) A G*-action on a cochain complex V'* is the same as
a structure of a comodule over the dg-coalgebra Q3. (G). This identification
18 compatible with tensor products.

(b) A structure of a G*-cdga on a cdga A is the same as a coaction
A— AR (G) from (a) which is a morphism of cdga’s.

reg

Proof: We prove (a), since (b) follows by passing to commutative algebra
objects.

A regular action of G is by definition, a coaction of the coalgebra O(G) =
Q)4 (G) of regular functions. More explicitly, the coaction map ¢y : V* —
Q0 (G) ® V* is just the action map p : G — End(V*) considered as an
element of ), (G) ® Endy(V*). The fact that ¢, is a coaction, i.e., that p
is multiplicative, is equivalent to the fact that p is equivariant with respect
to G acting on itself by right translations and on Endy(V*) by the action
induced by p.

Let us view g as consisting of left invariant vector fields on G. The adjoint
action of G on g is the action on such vector fields by right translations. Let
w =g 'dg € 0, (G) ®g be the canonical g-valued left invariant 1-form on
G. Composing w with i we get an element ¢; € O}, (G) ® End, ' (V*) which
is equivariant with respect to G acting on Q;,,(G) by right translations and
on End, ' (V*) by the action induced by p. Further, for each p > 1 we define,
using (2¢):

¢ = N(cy) € 2 (G) ® End, " (V*).

reg

We claim that the

c= Zcp e P O, (G)®End, "(V*) = Hom{(V*, 20, (G)@ V")
p

is a coaction of Q7 (G) on V*. Indeed, considering ¢, as a morphism of dg-
vector space V* — Q@(G)@V’, we translate its equivariance property above
into saying that c¢; is compatible with ¢q. Further compatibilities follow since

the ¢, are defined as exterior powers of c;. O
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Given a G*-action on V'*, we form, in a standard way, the cobar-construction

of the 2}, (G)-comodule structure. This is the cosimplicial object

Cob(V*) = { V' — = 0y (G) @V = U (GH @ V' = }

For example, the first two coface maps are given by the coaction ¢ and by
multiplication with 1 € Q¢ (G) respectively.

reg

Recall that k = R or C. Taking k-points of G, we get a Lie group
G = G(k). Let Qf, be the sheaf of smooth forms on G?. Thus (2}, (G”)
maps into the global sections of this sheaf. This allows us to define a dgVect-
valued sheaf &G(V'*) on the simplicial space N,G by “localizing Cob(V*)”.
More precisely, we define &(V*), = Q¢, ® V* and the compatibility maps
as, s € Mor(A) are induced by the corresponding maps of Cob(V'*). This

gives a symmetric monoidal functor
(1.3.9) & :G*-dgVect — Dg(pt) = Shy, (e (dgVect), V*— &(V*)

which we call the sheafification functor.

We now recall a version of the standard comparison between the “Weil
model” and the “classifying space model” for G-equivariant cohomology, cf.
[GS]. An element v € V* is called basic, if v is G-invariant and annihilated by
the operators i(§),£ € g. Basic elements form a subcomplex V;2 . . Denote
I(g) = S*(g*)?. Let also

(1.3.10) We(g) = (S*(g") @ A*(g"),d)

be the Weil algebra of g. Here the first g* has degree 2, while the second
g* has degree 1. With this grading, We(g) is a cdga with G*-action, quasi-
isomorphic to k. Moreover, I(g) with trivial differential, is a dg-subalgebra

in We(g).

Proposition 1.3.11. Let G be reductive and assume, in the case k = R,
that G < G(C) is a homotopy equivalence. Then:
(a) We have an isomorphism 1(g) ~ H*(BG, k).

For a dg-vector-space (resp, cdga) with a G*-action, we have a natural
quasi-isomorphism of dg-modules (resp. cdga’s) over 1(g) = H*(BG, k)

C*(BG,|6(V*)]) ~ (We(g) @ V*)

basic’
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Proof: (a) is well known. To prove (b), note, first, that we have a natural
identification
C*(BG,|6(V*)|) ~ Th*(Cob(V*)),

compatible with the symmetric monoidal structures. Indeed, this follows
from the fact that for any m, the restriction map 7, : Q5. (G™) — Q*(G™)
quasi-isomorphism. The target of r, calculates H*(G™, k) by the de Rham
theorem, and the source calculates H*(G(C)™, k), by Grothendieck’s algebro-
geometric version.

Note next that for any dg-vector space E* with G*-action

El;asic = Ker{ E* @; Q;eg(G) ® E* }

is the kernel of the first two cofaces in Cob(E*).

We apply this to £* = We(g) ® V'* which is quasi-isomorphic to V*. For
a dg-vector space F* let F'* denote the graded vector space obtained from F*
by forgetting the differential. So to prove part (b), it is enough to show the
following acyclicity statement: the embedding of the constant cosimplicial
graded vector space associated to Ef)asic, into the cosimplicial graded vector
space Cob(E*) is a weak equivalence. This is equivalent to saying that the
complex

Ef—Q (G)®FE —

reg reg

(G2)®E”—>---

with differential »)(—1)%;, is exact everywhere except the leftmost term.
But this complex calculates Cotor;)u(G) (k, E%), i.e., the derived functors of
the functor 8 : E' — FEj.sic on the category of graded Qﬁ(G)-comoduleS. So
it is enough to show that for £ = (We(g) ® V'*)*, the higher derived functors
R*B(E) vanish for k > 0.

Now, [(F) is obtained by first, taking invariants with respect to the
abelian Lie superalgebra i(g) and then taking G-invariants. Since G is re-
ductive, taking G-invariants is an exact functor. So vanishing of RZS(E)
will be assured if A*(g), the enveloping algebra of i(g), acts on E freely. This
is the case for E = (We(g) @ V*)%. O

C. Equivariant cdga’s and factorization homology. We now fix
n > 1 and let G € GL(n,R) be a closed subgroup.

Definition 1.3.12.Let M be a C'*-manifold of dimension n. By a G-
structure on M we will mean a reduction of structure group of the tangent
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bundle Ty, from GL,(R) to G in the homotopy sense, i.e., a homotopy class
of maps v making the diagram

BG
N

YTM

homotopy commutative. Here vy, is the map classifying the tangent bundle

TM.

Proposition 1.3.13. Let A be a cdga with a BL-action of G. . Then, for any
n-dimensional manifold M with G-structure, one can associate to A a locally
constant cosheaf of cdga’s Ay, on M compatible with unramified coverings,
so that Agn. is the constant cosheaf corresponding to A.

Proof: We note first that by Proposition 1.2.3 it is enough to associate to A
a locally constant sheaf of cdga’s [A]y on M, so that A,, will be defined as
the inverse cosheaf ([A]yr)~!. But a BL-action on A is, by definition, a sheaf
B on N,(G) which gives a locally constant sheaf |B| on BG, and we define
[Aly =771|B]. O

We will refer to A,; as the cosheaf of cdga’s associated to A on a G-
structured manifold M.

Remark 1.3.14. Proposition 1.3.13 is a particular case of a result due to
Lurie [Lu-HA| which relates G-equivariant F,-algebras with locally constant
factorization algebras on G-structured manifolds, see also [AF3], Prop. 3.14
and [Gi] §6.3. Our case corresponds, in virtue of Proposition 1.2.5, to fac-
torization algebras with values in CDGA, for which the F,-structure reduces
to a commutative one. In this case, the (co)sheaf language leads to a simple
direct construction.

We will refer to A,, as the cosheaf of cdga’s associated to A on a G-
structured manifold M.

Definition 1.3.15.Let A be a cdga with a BL-action of G, and M be a
G-structured manifold. The factorization homology of M with coefficients in

A is defined as the space of global cosections of the cosheaf A,, and denoted
by



D. Non-abelian Poincare’s duality II. Let G < GL,(R) be a closed
subgroup, M be a n-dimensional manifold with G-structure. Let Y be a CW-
complex with G-action. This G-action gives rise to the associated fibration

(1.3.16) Y = PuxgY -25Y

with fiber Y. Here Py is the principal GL,(R)-bundle of frames in the
tangent bundle T'M. Continuous sections of Y';, form a sheaf Secty  on M
with values in topological spaces. Taking Thom-Sullivan cochains, we get a
pre-factorization algebra

Th*Secty , : U — Th*(Sect(Y;/U))

on M with values in CDGA. Note that Th*Secty , is locally constant.
At the same time, the G-action on Y gives a fibration over N,G with
fiber Y and so a BL-action of G on the cdga Th*(Y).

Theorem 1.3.17 (Non-abelian Poincaré duality). Suppose Y is n-connected.
Then, the pre-factorization algebra Th®Secty, on M is a factorization al-
gebra, i.e., a cosheaf of cdga’s. Further, it is identified with Th® (Y)M, the
cosheaf associated to the G-equivariant cdga Th®(Y'). Therefore

Th*(Sect(Yy/M)) ~ / (Th*(Y)).
M
Proof: Direct consequence of Proposition 1.2.8. Indeed, the locally constant
sheaf [Th* (V)]s = (Th®,,)" is, by construction, Rp.(ky, ). O

Remark 1.3.18. As with Proposition 1.3.13, Theorem 1.3.17 is an adapta-
tion of a result of Lurie about G-equivariant F,,-algebras to the much simpler
case of E,-algebras being commutative. It is often formulated in a “dual” ver-
sion involving the non-commutative G-equivariant E,-algebra C.(Q"(Y,y)),
the singular chain complex of the n-fold loop space of Y at a point y (as-
sumed G-invariant). In this case y gives rise to a distinguished section y of
Y ,, and we have -

/M (Co(@(Vy))) = Cu(Sectu(Y 1/M)),

where Sect, stands for sections with compact support (those which coincide
with y outside of a compact subset of M). The relation between this formu-
lation and Theorem 1.3.17 comes from a Koszul duality quasi-isomorphism
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over the (Koszul self-dual, up to a shift) operad e,, (singular chains on E,):
Th*(Y),, ~ Co(Q"(Y, 1)),

see [AF2| [AF1].

1.4 Classical Gelfand-Fuchs theory: CE*(W,) and C*(Y},)
as GL,(C)-cdga’s
A. The Gelfand-Fuks skeleton. Let k be either R or C. We denote by
W, (k) = Derk|[[z1,...,2,]] be the k-Lie algebra of formal vector fields on
k" equipped with its natural adic topology. By CE*(W,,(k)) we denote the
k-linear Chevalley-Eilenberg cochain complex of W, (k) formed by cochains
AP(W,(k)) — k which are continuous with respect to the adic topology. By
H!. (W, (k)) we denote the cohomology of CE*(W,(k)), i.e., the continu-

ous Lie algebra cohomology of W, (k). We recall the classical calculation of
H!, (W, (k)), see [GF] [Fu].

Consider the infinite Grassmannian

G(n,C*) = lim G(n,CY) ~ BGL,(C)

N=n

as a CW-complex (union of projective algebraic variety over C. For any
n = N let

E(n,CY) = {(el, o en) € (CMHY ‘el, ..., e, are linearly independent}

be the Stiefel variety formed by partial (n-element) frames in CV. There is
a natural projection (principal G L, (C)-bundle)

p:En,CY) — G(n,CY), (e1,...,en) — Cej +---+ Ce,,

which associates to each frame the n-dimensional subspace spanned by it.
Then the union

E(n,C*) = lim E(n,C") ~ EGL,(C)

N=n

is the universal bundle over the classifying space of GL,(C).
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The Gelfand-Fuchs skeleton Y,, is defined as the fiber product

Y, EGL,(C)
Pj lp
skon BGL,(C) —= BGL,(C),

where sko,, BGL,(C) = G(n,C?) is' the 2n-dimensional skeleton with re-
spect to the standard Schubert cell decomposition. Thus Y, is a quasi-
projective algebraic variety over C with a free GL,,(C)-action which makes
it a principal GL, (C)-bundle over sks, BGL,(C). More explicitly, Y,, is a
closed subvariety in E(n,C?") which is, in its turn, a Zariski open subset
in the affine space of matrices Mat(n, 2n)(C). The following is the classical
result of Gelfand-Fuks ( [Fu] Th. 2.2.4).

Theorem 1.4.1. Recall that k is either R or C.

(a) We have an isomorphism H{, (W,, k) ~ H*(Y,,k) with the topological
cohomology of Y, with coefficients in k. Further, the cup-product on both
sides 1s equal to zero, as well as all the higher Massey operations.

(b) The space Y, is 2n-connected: its first homology space is H**1(Y,,, k).

B. The result for smooth vector fields. Let now M be an n-
dimensional C*-manifold. The group GL,(C) acts on Y,,. In particular, the
action of GL,(R) < GL,(C) gives rise to the Gelfand-Fuchs fibration

p:Yy—M

with fiber Y, associated to the tangent bundle of M, as in (1.3.16).

We denote by Vecty (M) the Lie algebra of k-valued smooth vector fields
on M equipped with the standard Fréchet topology (as for the space of C®-
sections of any smooth vector bundle). As before, we denote by CE®(Vecty(M))
and H{,,(Vectx(M)) the k-linear Chevalley-Eilenberg complex of continuous
cochains of Vecty (M) and its cohomology. The following is also classical
([Fu] Lemma 1 p. 152).

!Note that the 2n-skeleton in G(n,C?") agrees with the 2n-skeleton in G(n,C") for
any N = 2n.
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Theorem 1.4.2. Let M = D < R" be the standard unit ball. Then the
homomorphism Vecty (M) — W, (k) given by the Taylor series expansion at
0 induces an isomorphism Hf; (W, (k)) — H},.(Vecty(D)).

The following theorem was conjectured by Gelfand-Fuchs and proved by
Haefliger [Hael] [Hae2] and Bott-Segal [BS].

Theorem 1.4.3. For any M we have an isomorphism Hf, (Vecty(M)) ~
H*(Sect(Y /M), k).

C. Proof using factorization homology. From modern point of view,
Theorem 1.4.3 can be seen as a textbook application of the techniques of
factorization homology. In the remainder of this section we give its proof
using these techniques, as a precursor to the study of the algebro-geometric
case. We first recall [CoG1]:

Theorem 1.4.4. Let L be a C* local Lie algebra on M, i.e., a smooth k-
vector bundle with a Lie bracket on sections given by a bi-differential operator.
For an open U < M let L(U) be the space of smooth sections of L over U,
considered as a Lie algebra with its Fréchet topology, and CE®*(L(U)) be its
Chevalley-FEilenberg complex of continuous sections. Then

CE*(L) : U — CE*(L(U))
1s a factorization algebra on M. O
Since CE*(L) consists of cdga’s, Proposition 1.2.5 implies:

Corollary 1.4.5. In the situation of Theorem 1.4.4, CE*(L) is a cosheaf of
cdga’s on M. [

We apply this to £ = T being the tangent bundle of M for k = R or
its complexification for k = C. Theorem 1.4.2 implies that the factorization
algebra CE*(TX) is locally constant.

Consider the algebraic group GL,, over k. It acts on k[[2y,--- , 2,]] and
thus on W, (k) in a natural way. Moreover, the cdga CE*(W,,(k)) has a nat-
ural structure of GL}-algebra (see Definition 1.3.7). Indeed, any ¢ € gl,, (k)
gives a linear vector field on k", also denoted &, which we can consider as an
element of W, (k). The derivation i(§) is given by contraction of the cochains
with . Now, the sheafification functor (1.3.9) gives a BL-action of GL,, (k)
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on CE*(W,(k)). Therefore, we have the cosheaf of cdga’s CE*(W, (k))
on M associated with the BL-action of GL,(R) < GL,(k) on the cdga
CE*(W,(k)).

Proposition 1.4.6. The cosheaves of cdga’s CE*(TY,) and CE*(W,(k))

M
are weakly equivalent.

Proof: By definition, the cosheaf CE*(W,(k)) —is the inverse of the sheaf

[CE*(W, (k)]s So it suffices to construct, for any disk U < M, a quasi-
isomorphism gy : [CE®*(W,,(k)]x(U) — CE*(Vect(U)) so that for any inclu-
sion of disks U; < Uy we have a commutative diagram

Uo
MUl

(1.4.7) CE*(Vect(Uy)) CE*(Vect(Uy))

qU4 T TqUO

[CE® (W (k) ]as (Ur) <= [CE® (W (k) Jas (Uo)-

In fact, it suffices to construct, for each U, not a single quasi-isomorphism
gu but a family of such parametrized by a contractible space Ty, so that the
commutativity of the diagram will hold for some parameters in 7y, and Ty, .
This is what we will do.

For each x € M let W, (k) be the Lie algebra of formal vector fields on
M at x (tensored with C, if k = C). Let further Wr, 5/(k) be the Lie algebra
of formal vector fields on the vector space T, M at 0 (also tensored with
C, if k = C). Thus W, (k) and Wy, (k) are isomorphic to W, (k) but not
canonically. We note the following.

Proposition 1.4.8. (a) The stalk of the sheaf [CE* (W, (k))]|m at x € M is
identified with W, (k).

(b) For any disk U ¢ M and any x € U the pullback map
ry : CE*(W,(k)) — CE*(Vect(U))
1S a quasi-isomorphism.

Proof: Part (a) follows by construction of [CE®*(W, (k)]s via the tangent
bundle. Part (b) follows from Proposition 1.4.2. [

Notice that the space of formal identifications ¢ between (7,,M,0) and
(M, x) identical on the tangent space, is contractible. Any such identification
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defines an isomorphism ¢, of CE*(Wr, s (k)) with CE®*(W,(k)). Now, take
a disk U < M. Any choice of x € U and ¢ as above defines a chain of
quasi-isomorphisms

[CE* (W (k)]s (U) = [CE(Wo(k))]ara = CE* (Wi, s (K)) <

1.4.9
(1.4.9) 5 CE* (W (k) > CE*(Vect(U)).

By composing the above arrows we get a family of quasi-isomorphisms ¢y
parametrized by a contractible space Ty (the total space of the family of the
identifications ¢ for all = € U). Now, suppose U; < Uy. Then we can use any
x € Uy and any identification ¢ to construct both gy, and qy,. With these
choices, the diagram (1.4.7) is trivially commutative. O

Theorem 1.4.3 will now follow from Non-Abelian Poincaré Duality (The-
orem 1.3.17), if we prove:

Theorem 1.4.10. Let k = C. There is an identification
CE*(W,(C)) ~ Th*(Y,)
as cdga’s with a BL-action of GL,(C).

Proof: Denote for short G = GL,(C). Since G is homotopy equivalent to a
connected compact Lie group U,, by Proposition 1.3.6 it suffices to identify
the corresponding cdga’s over

H*(BG) = Cley,...,e,], deg(e;) = 2i.

Now, the cdga corresponding to Th*(Y},) is the cochain algebra of the fibra-
tion over BG corresponding to the G-space Y,,. This fibration is homotopy
equivalent to sko, (BG), so the corresponding algebra is Th® (ske, (BG)) which
is, as well known, quasi-isomorphic to

H*(sko,(BG),C) = Cley,...,e,]/(deg > 2n).

We now identify the cdga corresponding to CE®*(W,,(C)). For this we first
recall the standard material on relative Lie algebra cohomology [Fu] Ch.1

Let g be a Lie subalgebra of a Lie algebra tv. The relative Chevalley-
Filenberg complex of to modulo g (with trivial coefficients) is defined as

CE*(r,g) = (A"((w/g)"))".
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let I(g), We(g) be as in Proposition 1.3.11.

We apply this to w = W, (C), g = gl,,(C), so it is the Lie algebra of the
algebraic group G = GL,, ¢ with the grop of C-points G = GL,(C).

Let I(g), We(g) be as in Proposition 1.3.11, so I(g) = H*(BG,C).
Further, as a GL, c-representation, the topological dual W, (C)* splits as
the direct sum of V,; = Sym"*'(C") ® (C")* for k > —1. This gives
a GL,, c-equivariant projection ¢ : W,(C) — gl,(C) = V;*,. The projec-
tion ¢ induces a GL,, c-equivariant morphism of dg-algebras (“connection”)
V : We(gl,,(C)) — CE*(W,,(C)), see [Fu]. In particular, CE*(W,(C), gl,,(C))
becomes an algebra over I(gl,(C)) = H*(BG,C).

Proposition 1.4.11. We have a canonical quasi-isomorphism of 1(g)-cdga’s
(We(g)®CE.(m))basic =~ CE.(m)basic = CE.(myg)
Proof:  The second equality is by definition. The first quasi-isomorphism
follows from the existence of V by [GS], Thm. 4.3.1. O
Theorem 1.4.10 now follows from Proposition 1.3.11 and from the quasi-
isomorphism of cdga’s over H*(BG,C)
CE*(W,(C), gL, (C)) ~ Cley, ..., e,]/(deg > 2n).

which is the original computation of Gelfand-Fuchs, see [Fu, proof of Thm.
2.2.4].

2 D-modules and extended functoriality

2.1 D-modules and differential sheaves

A. Generalities on D-modules. For general background see [Bo]
[HTT)].

Let Z a smooth algebraic variety over k. Put n = dim(Z). We denote
by Cohz = Cohp, and QCoh, = QCohy, the categories of coherent and
quasi-coherent sheaves of Oz-modules.

We denote by D the sheaf of rings of differential operators from Oy to
Oz. By Cohp, = QCohp, we denote the categories of coherent and quasi-
coherent sheaves of right Dz-modules. By p,Coh < p,QCoh we denote
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similar categories for left Dz-modules. We will be mostly interested in right
D-modules.

Let D(Cohp,), resp. D’(Cohp,) denote the full (unbounded), resp.
bounded derived categories of coherent right Dz-modules. We consider them
as dg-categories and then as stable co-categories in the standard way. Sim-
ilarly for QCohyp,, etc. Since Dz has finite homological dimension (equal to
2dim(Z7)), we have the identification

D’Cohp, ~ Perfp,,

where on the right we have the category of perfect complexes.

By wz we denote the sheaf of volume forms on Z, a right Dz-module. We
have the standard equivalence (volume twist)

(211) DZQCOh E— QCOhDZ, N — N@Oz Wz .

We call the Verdier duality the anti-equivalence
(2.1.2)
D*(Cohp, ) — D"(Cohp,), M +— M" = RHomy, (M,Dz)®o, wz[n].

For a right Dz-module M € QCohy, we have the de Rham complex
DR(M) = M®p, Oy.

For a coherent sheaf F € Cohz we have the induced right Dz-module F ®p,
Dz. We have a canonical identification

DR(F ®o, Dz) ~ F.
For two coherent sheaves F, G the sheaf
Dlﬁ‘(]:’ g) = I—IO_HLDZ (‘F ®Oz DZ; g ®OZ DZ)

consists of differential operators from F to G in the standard sense. In
particular,

D, = Diff(0,0;), F®o, Dy = Diff(Oz, F)

with Dy acting on the right by composition.
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For a vector bundle E on Z we denote by EY = w; ® E* the Serre dual
vector bundle. Thus the Verdier dual of the induced D-module E ®p D is
given by

(E®o, Dz)" = (EY)®o, Dz[n].

For two vector bundles E and F' the Verdier duality gives the identification
Diff(E, F) — Diff(FY,EY), P+~ PY

(passing to the adjoint differential operator).

B. Differential sheaves and differential complexes.

Definition 2.1.3. A right Dz-module M is called quasi-induced, if, Zariski
locally on Z, it is isomorphic to an induced D-module.

We see that for a quasi-induced M its de Rham complex can be identified
with a single sheaf. It is convenient to introduce the following concept.

Definition 2.1.4. A differential sheaf (resp. differential bundle) on Z is a
sheaf F which is glued out of coherent sheaves (resp. vector bundles) on
Zariski open charts so that transition functions are invertible differential
operators. We consider a representation of F by such gluing a part of the
structure of a differential sheaf.

By definition, we can speak about:
e Differential operators F — G where F, G are differential sheaves.

e The Serre dual differential bundle E'V associated to a differential bundle
E.

We denote by DSy the category formed by differential sheaves on Z and
differential operators between them.

Proposition 2.1.5. Taking the de Rham complex (which, in our case, re-
duces to the functor — ®p, Oz) induces an equivalence of categories

{Quasi—mduced Dz—modules} DR DS;. O
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We will denote the quasi-inverse to the above equivalence by
F — DRYF) = Diff(Oz, F) = “F ®o, Ds".

By a differential complex on Z we mean a complex F* formed by differ-
ential sheaves with differentials being differential operators. We denote by
Com(DSz) the category of differential complexes on Z. In particular, the de
Rham complex of M € Cohp, can be quasi-isomorphically identified with a
differential complex by taking a locally induced resolution of M.

C. Analytification and holonomic differential complexes. Let k =
C. We denote Z,, the space Z(C) with its standard analytic topology and
sheaf Oy, of analytic functions.

Any differential sheaf (resp. complex) F has a well defined analytifica-
tion F,, which is a sheaf (resp. complex of sheaves) on Z,,. In particular,
considering the de Rham complex of M € Cohp, as a differential complex
as above, we have its analytification which is simply

DR(M)an = M ®éz OZan'

The following are standard features of the Riemann-Hilbert correspondence
between holonomic D-modules and constructible complexes, see [HTT] for
instance.

Proposition 2.1.6. Let M* € D(Cohp,) be a complex with holonomic regu-
lar cohomology modules. Then DR(M?® )., is a constructible complex on Z,,
and:

(a) We have
RF(ZZaraDR(M.)) - RF<Zan7DR(M.)an)'

l

(b) We also have
DR(M")an =~ Dz(DR(M?*)a),

where Dy is the Verdier duality on the derived category of constructible com-
plexes on Z,,, see [KS1].

A differential complex F* will be called holonomic (resp. holonomic reg-
ular), if DR™*(F*), the corresponding complex of quasi-induced D-modules,
has holonomic (resp. holonomic regular) cohomology.
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Corollary 2.1.7. (a) If F* is a holonomic differential complez, then Fyr, is
a constructible complex.

(b) If F* is a holonomic regular differential complez, then

RU(Xzar, F7) >~ RI'(Xan, F3,)-

2.2 The standard functorialities

We now review the standard functorialities on quasi-coherent D-modules.
Our eventual interest is always in right modules.

A. Inverseimage f'. Let f:Z — W be amorphism of smooth algebraic
varieties. We then have the transfer bimodule

DZ—»W = OZ@f*10W f_lpw.

It can be viewed as consisting of differential operators from f~'Oy to Oy.
It is a left Dz-module (quasi-coherent but not, in general, coherent) and a
right f~'Dy-module.

The inverse image is most easily defined on left D-modules in which case
it is given by f*, the usual (derived) inverse image for underlying O-modules.
That is, we have the functor

f* 1, QCoh — p,QCoh, f*N = OZ@fcflon_lN‘ = DZ—»W@?ADWf_lN-
The corresponding functor on right D-modules is denoted
f':QCohp, —> QCohy,, [f'M = wz®0, ([*(wy' ®o, M)).
B. Compatibility of f' with DR on Zariski topology.
Proposition 2.2.1. Let F € Cohy,. Then
DR(f'(F ®oy Dw)) = ['F,

where in the right hand side the functor f' is defined on coherent O-modules
on the Zariski topology as in [Harl]. O

Let us illustrate the action of functor f' on coherent O-modules.
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Examples 2.2.2. (a) Suppose f: Z — W is a smooth morphism of relative
dimension m. Then f'F = wzw @ f*F[m].

(b) Suppose that i : Z — W is a closed embedding of codimension m,
and Iz < Oy be the ideal of Z. Let F = E be a vector bundle on W. Then

i'E = i"'RT,(E) ~ i '"HY(E)[-m],
where

HY(E) = lim F; HY(E), F;HZ(E) = Extg (I3, F)
d

is the local cohomology sheaf with its natural filtration “by the order of
poles”. We note that each F; H7(F) is a sheaf of O-modules on the dth
infinitesimal neighborhood Z@1 < W but not on Z itself. However, we
point out the following.

Proposition 2.2.3. In the situation of Example 2.2.2(b):

(a) We have a canonical identification of the quotients
FuH(E)/Fay HY (E) ~ det(Nyw) ® Sym™(Nzw),

where Nz is the normal bundle of Z i W. In particular, each quotient is
canonically a vector bundle on Z.

(b) Each FyH (E) has a canonical structure of a differential bundle on
Z.

Proof: (a) is well known. To see (b), it is enough to show that Oy =
Ow /1% has a canonical structure of a differential bundle on Z. Let us show
this.

We can, locally, project Z4=1) back to Z. That is, let z be any point
of Z. We can find a Zariski neighborhood U of z € Z and a morphism of
schemes p : U1 — U such that the composition of p with the embedding
U — U1 ig the identity. This makes O -1 |y into an Opy-module.

A different choice of a projection will give, in general, a different Op-
module, i.e., the identity map will not be Opy-linear with respect to these
structures. However, it will always be a differential operator of order < d—1.
Therefore choosing the projections locally, we make O 1) into a differential

bundle. u
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C. Compatibility of f' with DR on complex topology. Let k =C .

Proposition 2.2.4. Let M* be a bounded complex of quasi-coherent right
Dw -modules with cohomology modules H? (M?*) being holonomic regular. Then

DR(f'M®)an = f(DR(M")a),

where in the right hand side we have the usual topological functor f' on
constructible complezes. ]

Because of the above compatibilities, we use the same notation f* for the
functor on right D-modules as well as for the corresponding functors on the
de Rham complexes.

D. Direct image f.. The direct image of right D-modules is the functor
f : D(QCohy,) — D(QCohp, ), fiM = Rf.(M®p, Ds),

where Rf, is the usual topological derived direct image functor on sheaves
on the Zariski topology. In the particular case when f = p : Z — pt is the
projection to the point, Dy, = Oz, and we will use the following notation:

RFDR(Z,M) = p*M = RF(Z, DR(M)) € D(Vectk).
Here are the standard properties of f,.
Proposition 2.2.5. (a) If f is étale, then f, is right adjoint to f'.

(b) If f is proper, then f, takes D(Cohp,) to D(Cohp, ) as well as
D*(Cohp,) to D*(Cohp,,) etc. In this case fy is left adjoint to f*.

(c) Let F be a coherent sheaf of Oz-modules. then
DR(f+(F ®o, Dz)) =~ Rf.(F)

where in the right hand side Rf, is the topological direct image of sheaves on
the Zariski topology.

(d) Let k = C and M* be a bounded complezx of quasicoherent right D -
modules with holonomic reqular cohomology modules. Then

DR(fiM")an =~ Rf(DR(M®)an),

where in the right hand side R f, is the topological direct image of sheaves on
the complex topology.

33



Let 7 : Z — W be an open embedding, with ¢ : K < W be the closed
embedding of the complement. Let M € QCohyp, .

Proposition 2.2.6. We have canonical quasi-isomorphisms
ixiM =~ BL (M), juj M =~ Rjuj~'M

where on the right hand side we have purely sheaf-theoretical operations for
sheaves on the Zariski topology. We further have the canonical triangle in
D(QCohp,,)

isi M —> M — §, ' M — i M[1].

Proof: For the first identification, see [S]. The second one is obvious since j is
an open embedding. After this, the triangle in question is just the standard
sheaf-theoretic triangle

RL (M) — M — Rj.j~'M — RL, (M)[1].

E. D-modules on singular varieties. The above formalism is extended,
in a standard way, to right D-modules on possibly singular varieties. Let us
briefly recall this procedure, following the treatment of [S] for the case of
analytic varieties.

Let i : Z — Z is a closed embedding of a (possibly singular) variety Z
into a smooth variety Z. We define the categories

QCthDZ c QCohDZ, Cohzp, = Cohp,

to be the full subcategories of quasi-coherent and coherent D z-modules which
are, sheaf-theoretically, supported on Z. If Z is smooth, then, as well known
(Kashiwara’s lemma), the functors

. .|
s : Cohp, «— COhZ@Z s

are mutually quasi-inverse equivalences, and similarly for QCoh. This implies
that the categories QCthDZ and Cohyzp_ are canonically (up to equivalence

which is unique up to a unique isomorphism) independent on the choice of
an embedding ¢ and we denote them

QCohyp,; := QCohyp , Cohpy = Cohzp,, VZ -2
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We note that
Db(CthypZ) ad PeerDZ

is identified with the category of perfect complexes of right D z-modules which
are exact outside of Z. We thus define

Perfsz = Db(COhZ,DZ) o~ PeerpZ .

In particular, we have D(QCohy p) ~ Ind(Perf;p).

Given a morphism f : Z — W of possibly singular varieties, we can
extend it to a commutative diagram

| T

N

7

-

NN

ﬁW
!

with 7,7’ being closed embeddings into smooth varieties. After this, the
functor f, : D(QCohp ;) — D(QCohyp yy) is defined to be given by the
functor

~

Ju: D(QCohy 5, ) — D(QCohyp ).

Further, the functor f' : D(QCohpy) — D(QCohy ) is defined to be
given by the functor

BRI, 0 f': D(QCohy;p_)) — D(QCohyp ).
These definitions are canonically independent on the choices and we have:

Proposition 2.2.7. (a) The functor f. is left adjoint to f* for proper f and
right adjoint to f' for étale f.

(b) For any Cartesian square of varieties

92
ZlQ - Zl

| |

ZQTZ

we have the base change identification
fro(fi)e = (g1)s0gy O
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Further, the Verdier duality
D(QCohyp, ,)® — D(QCohyp ), M — MY
is defined to be given by the functor (Verdier duality on Z )
D(QCthDZ)Op - D<QCOhZ,DZ>’ M= w; o, MDZ (M, Dy),

which is canonically independent on the choices.

For M* e D(QCohyp ;) we have the canonically defined de Rham com-
plex DR(M) of sheaves on Z. If M is represented by a complex M* e

~

D(QCohyp_), then DR(M?®) is represented by the de Rham complex DR(M?*)

which is canonically independent on the choices.

Further, we have a well defined concept of holonomic (resp. holonomic
regular) objects of Cohp z. We denote by Holp ; the category of holonomic
objects of Cohp z. The corresponding derived category will be denoted by

(2.2.8) D}y QCohy, , ~ D"Holp 7.

Here the LHS means the category of complexes with holonomic cohomology,
the RHS the category of complexes consisting of holonomic modules and the

equivalence between two derived categories thus defined is standard (see [Bo,
VI, Prop. 1.14]).

2.3 The nonstandard functorialities

A. Reminder on ind- and pro-D-modules. Let Z be a (possibly sin-
gular) variety over k. As in [De], we have identifications

QCoh, =~ Ind(Cohz), QCohp, =~ Ind(Cohp z).
For the derived oo-categories we have identification (see [GR] for instance):
D(QCohy) =~ Ind(Perfz), D(QCohp,) =~ Ind(Perfpz)).

where Perf; is the category of perfect complexes of Oz-modules.
Therefore the Verdier duality gives an anti-equivalence

D(QCohy, ;) = Pro(Perfp z), M = “lim” M, > M" = “lim” M.
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B. Formal inverse image fI*ll.  We keep the notation of the previous
section.
Define the functor of formal inverse image

flT Pro(Perfp ) — Pro(Perfp z)
by putting, for M* € Perfp
FEIM = (7M7)

and then extend to pro-objects in a standard way. If Z and W are smooth,
then

(2.3.1) M = RHom g, (Dzow, f7' M),

where we notice that D,y is a quasi-coherent, i.e., ind-coherent right D-
module, so taking RHom from it produces a pro-object.

Proposition 2.3.2. (a) Suppose f is proper, so that f. takes Perfp z to
Perfp yw and therefore extends to a functor

f« : Pro(Perfp z) — Pro(Perfp )

denoted by the same symbol. Then the functor fI* is left adjoint to f. thus
defined.

b) The functor = takes Db (Cohp w) to Db (Cohp z) (no pro-objects
hol , hol ,
needed).

We note that defining the *-inverse image on holonomic D-modules by
conjugating f' with the Verdier duality is a standard procedure. The cor-
responding functor is usually denoted by f*, see [Bo]. We use the notation
fI] to emphasize the pro-object structure in the general (non-holonomic)
case.

Proof: (a) In the case when Z and W are smooth, the statement follows from
(2.3.1) and from the adjunction between Hom and ®. The general case is
dual to Proposition 2.2.5 (b).

Part (b) is standard, see [Bo]. O
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C. Compatibility of il*]l with DR on Zariski topology. Leti:Z —
W be a closed embedding of smooth varieties of codimension m, with the
ideal I; < Oy . Let E be a vector bundle on W. As in Proposition 2.2.3 we
see that each E/IZFE is naturally a differential bundle on Z. We define the
formal restriction of E to Z to be the pro-differential bundle

i E = “im” E/ILE = E, e Pro(DSy)
d

given by the formal completion of £ along Z.

Proposition 2.3.3. We have a quasi-isomorphism of sheaves on the Zariski
topology of Z :
DR(i{*N(E ®p,, Dw)) ~ i*E.

D. Compatibility of fll*]l with DR on complex topology. Let k =
C.

Proposition 2.3.4. Let M* € D"(Cohp ) be a complex with holonomic
reqular cohomology. Then

DR(fIM)pn =~ f7H(DR(M®)an),

where on the right we have the usual inverse image of constructible complezes
on the complex topology.

Proof: Follows from Proposition 2.2.4 by Verdier duality. O]

Because of these compatibilities we use the same notation fI*I for the
formal inverse image functor on D-modules and differential sheaves.

E. The formal compactly supported direct image f|;;. . We define
the functor of formal compactly supported direct image

firy : Pro(Perfp, z) — Pro(Perfpw)
by putting, for M* € Perfp »

fiigM = (feMY)" € Pro(Perfpw)

and then extending to pro-objects in the standard way. In the particular case
when f = p: Z — pt is the projection to the point, we will use the notation

RF][D[;]{](Z,M) = ppyM € Pro(Perfy).
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Proposition 2.3.5. (a) The functor finy is right adjoint to fUYGf f s
proper, and left adjoint to fIFI for f étale.

(b) For any Cartesian square of varieties as in Proposition 2.2.7(b), we
have a canonical identification (base change)

Ao (f D = (90)m o g,

(c) Let j : Z — W be an open embedding, with i : K — W be the closed
embedding of the complement. Then, for any M € Pro(Perfp y) we have the
canonical triangle in Pro(D*(QCohyp, )

Jiemd M — M — il FIM — iy M1,

Here j*M can be understood either as jHIM or as j*M, the two results
being the same.

(d) The functor fipy takes D} (Cohp z) to D} (Cohpw) (no pro-objects
needed,).

As with flI*Il we note that defining the !-direct image on holonomic D-
modules by conjugating f, with the Verdier duality is a standard procedure.
The corresponding functor is usually denoted by fi, see [Bo]. We use the
notation fyu to emphasize the pro-object structure in the general (non-
holonomic) case.

Proof: Follows from the corresponding properties for f' and f. by applying
Verdier duality. O

F. Compatibility of fi; with DR on Zariski topology. The effect
of firy on induced D-modules can be described directly, following [De].

First, suppose that j : Z — Z is an open embedding with complement
K and ideal Ix < O5. Let F € Cohy be a coherent Oz-module. Choose
a coherent Oz-module F € Cohy extending F, i.e., such that j*F = F.
Following [De| we define

(2.3.6) JmF = “lim” I;l(? € Pro(Cohy).
d

Proposition 2.3.7. (a) The object jyyF is canonically (uniquely up to a
unique isomorphism) independent of the choice of F. In this way we get
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a canonically defined functor jipy: Cohz — Pro(Cohy) which estends, in a
standard way, to a functor

iy : Pro(Cohz) — Pro(Cohy).

(b) Further, suppose Z smooth. Then a differential operator P: F — G
between coherent sheaves on Z gives rise to a morphism jyyP: jmF —
Jm@ in Pro(DS%), thus giving a functor

j[[!]] . PIO(DSZ) - PrO(DSi).
Proof: For part (a), see [De]. Part (b) follows since a differential operator
P: F — G of order r maps IgF to I/ "G. .
Next, let f: Z — W be any morphism of algebraic varieties over k. We
can always factor f as the composition f = qj
757 L w

with 7 being an open embedding and ¢ proper. We define

Jiom = (Rgs) o jipyy: Pro(Perfz) — Pro(Perfy).

Proposition 2.3.8. The functor f[[;]] is well defined (values canonically in-
dependent on the choices) and is compatible with composition of morphisms.

In particular, for W = pt we have the functor of algebraic cohomology
with compact support, see [Har2]:
(2.3.9)
RUN(Z F) = RU(Z,jyyF) = “lim” RI(Z,I4F) € Pro(Perfy).
d

It satisfies Serre duality. That is, suppose Z is smooth and E is a vector
bundle on Z. Then we have the isomorphism

(2.3.10) RN Z w, ® E*) ~ RI(Z E)*

(duality between objects of Pro(Perfy) and Ind(Perfy)).

As before, the functor f[[g]] on coherent sheaves inherits the action of
differential operators, not just O-linear morphisms.
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Proposition 2.3.11. Suppose Z is smooth. For any coherent sheaf F on Z
we have

DR(f[[!]](]:®Oz DZ)) ~ f[[g]]f.

Proof: In our approach, the functor fip was constructed formally to satisfy
duality, while f[[g]] was constructed explicitly using compactification. So the
relation between them follows from the results of [De] which establish the
duality for the functor constructed via compactification. m

G. Compatibility of fi;;) with DR on complex topology.

Proposition 2.3.12. Let k = C and let M*® € Perfp z be a complex of right
Dz-modules whose cohomology modules are holonomic regular. Then we have
a quasi-isomorphism

DR(fiiM®)an = fi(DR(M®)an),

where f is the usual functor of direct image with proper support for sheaves
on the complex topology.

Proof: Follows from the similar statement about the functor f, by applying
Verdier duality. O]

Corollary 2.3.13. Suppose Z is smooth. Let F* be a differential complex
on Z such that the complex Dy Qo, F*, of induced Dy-modules has regular
holonomic cohomology sheaves. Then

(FimFan = fi(Fa)-

2.4 Correspondences and base change

Definition 2.4.1. We denote by Var,”™" the following 2-category, called the
category of correspondences between k-varieties. Its objects are objects of
Varg. A morphism in Var™ from X to Y is a correspondence: a third
variety Z with two morphisms of varieties X < Z — Y. The composition of
two correspondences X «— Z — Y and Y «— Z' — Y’ is the correspondence
X « Z xy Z' - Y. Finally, a transformation (i.e., a 2-morphism) between
two correspondences X <« Z — Y and X « Z' — Y is the datum of a
proper morphism Z — Z’ commuting with the maps to X and Y. The

vertical composition is the obvious one.
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It follows from [GR] that base change between lower-x and upper-! func-
tors can be encoded as an (oo, 2)-functor

D Var,™ — Catq,

mapping a variety X to D(QCohp ) and a correspondence X Lz5%y
to the functor g, f'. It finally maps a (proper) transformation f: Z — Z’

between two correspondences X <& Z By and X & 7' 5 Y to the natural

transformation
! L !
heg = Ve fofU = veu

induced by the adjunction counit.
Similarly, we have an (o0, 2)- functor

pllcorll: yareorr s Cat,,

that maps a variety X to Pro(D*Cohp x), a correspondence X L7279y 0
the functor g[[;]]f[[*]]. It finally maps a (proper) transformation f: Z — Z’

between two correspondences X <& Z By and X & 7' 5 Y to the natural

transformation

induced by the adjunction counit.

3 D-modules on the Ran space

3.1 The Ran space in algebraic geometry

Throughout this section, we will denote by Vary the category of varieties
over k. Let X € Vary.

A. Ran diagram and Ran space.

Definition 3.1.1.(a) Let . denote the category of non-empty finite sets
with surjective maps between them. We define the Ran diagram of X as the
contravariant functor X : .% — Vary defined by:

X7 I X (gi I = J) = (6,: X7 — X1,
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where 9§, is the diagonal embedding associated to g.

(b) By an (algebro-geometric) space over k we will mean a sheaf of sets
on the big étale site (affine k-schemes with étale coverings). The category of
such will be denoted AGSy,. We have the standard embedding Vary, <— AGSy
(representable functors).

(¢) The Ran space of X is defined as

Ran(X) = lim X7 = lim X'
le

(colimit in AGSy).

The category . is not filtering so Ran(X) is not an ind-variety in the
standard sense.

B. Diagonal skeleta.

Definition 3.1.2.(a) For any [ € .¥ and ¢ > 0, we call the g-fold diagonal

and denote by
Xi= | 6,(x9

fI-Q
|Ql=q

the closed subvariety of X! whose closed points are families of at most ¢
different points of X.

(b) We denote by X f the functor . — Vary given by I — X[. We also
denote
Rang(X) = lim X, = lim X/
les

the space corresponding to X f .

Let S, be the symmetric group on g symbols . We denote by
Sym?(X) = X9/S;,  Symi(X) = (X?—X7,)/S,

the gth symmetric power of X (as a singular variety) and its open part given
by complement of all the diagonals.
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Proposition 3.1.3. (a) We have

X7 =lim X;”, Ran(X) = lim Ran,(X)

q q

(colimit in the category of functors resp. in AGSy).
(b) We have an identification

Ran,(X) — Ran,_1(X) = SymZ(X).

In particular, Ran; (X) = X.

C. \Varieties A(I,J). We will use the following construction from [GL]
(9.4.12).

Definition 3.1.4.Let I,J be two nonempty finite sets. We denote by
A(I,J) « XTx X7 the closed algebraic subvariety whose k-points are pairs of
tuples ((2;)ier, (¥;)jes), T, y; € X (k) such that the corresponding unordered

subsets
{Titier = U{xz}, {yjtjes = U{yg}
el jedJ
coincide. We denote
(3.1.5) XT&L A1) 2 X

the natural projections. They are finite morphisms.
The following is obvious,

Proposition 3.1.6. We have

A(I,J) = lim %, oy Im{ (6, 00) : X9 — XTx Xx73,

(I5Q<

where the colimit is taken over the category whose objects are pairs of surjec-

tions I —» Q « J and morphisms are surjections Q — Q' commuting with
the arrows. The colimit reduces to the union inside X' x X7, ]

Any surjection g : I — J induces, for each finite nonempty K, a natural
morphism (closed embedding) A(g, K) : A(J,K) — A(I, K). The following
is clear by definition.
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Proposition 3.1.7. For any g : I — J and K as above we have a commu-
tative diagram with the square being Cartesian

X] PIK A(I K) qIK XK
69 A(g7K)T

dIK

O]
An alternative way to arrive at Proposition 3.1.7 is via the next statement.

Proposition 3.1.8. The natural morphism in AGSy
(prrsqry) - AL, J) — X" XRan(x) X7
s an isomorphism.

Proof: To say that (prs,qrs) is an isomorphism of sheaves on the big étale
site, means that it induces a bijection on S-points for any scheme S which
is the spectrum of a strictly Henselian local ring. Let S be given and (p, q) :
S — X! XRan(x) X7 be a morphism, ie., p: S — X' and ¢ : S — X7 are
morphisms of schemes which become equal after map to Ran(X). We need
to show that (p, q) considered as a morphism S — X! x X factors through
A1, J).
By definition of Ran(X) and our assumptions on S,

Hom(S,Ran(X)) = h_I)H‘ISee; Hom(S, X') = |_| Hom(S,XI)/E
les
where = is the equivalence relation generated by the following relation =,.
We say that p: S — X! and q: S — X7 satisfy p = ¢, if there is a diagram
a b
of surjections I «~ L — J such that 6,p = d,q in Hom(S, XF).
We treat the case p =( ¢, the general case follows easily. Let ) be the

coproduct, fitting in the coCartesian square of sets below left. Note that all
arrows in that square are surjections.

L—"u7 XL <Oyl
bl/ lc 6bT T(;C
- Jo Y@
J—=Q X7 e X
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This square induces a Cartesian square of varieties (above right). So p,q
comes from a morphism S — X© and our statement follows from Proposition
3.1.6. O

3.2 [[DP]]-modules and D'-modules

A. Reminder on lax limits. Let o/ be a small category and P: &/ —
Caty an (co-)functor. In particular, for each object a € &/ we have an co-
category P, and for any morphism ¢: a — a’ in &/ we have an oco-functor
Dg: Po — Py . In this setting we have the oo-category known as the Cartesian
Grothendieck construction (or relative nerve) ¢ (P). see [Lu-HTT] Def.
3.2.5.2. Thus, in particular,

(GRO) Objects (0-simplices) of ¢ (P) are pairs (a,z) where a € Ob(&/) and

x is an object (0-simplex) in P,.

(GR1) Morphisms (1-simplices) in Cf(?) from (a, z) to (o, ') are pairs (g, «)
where ¢g: @ — o' is a morphism in &7 and a: 2’ — py(x) is a morphism
in Py,

and so on, see loc. cit. for details. Note that there is a “dual” version, called

the coCartesian Grothendieck construction %(P) with the same objects but
with (higher) morphisms defined in a partially dualized way, for example,

(GR1) Morphisms (1-simplices) in < (P) from (a, z) to (a’,2’) are pairs (g, @)
where ¢g: @ — o’ is a morphism in &/ and a: py(x) — 2’ is a morphism

in Py,

and so on. In other words,

C(P) = ‘C(PP)P, PP = (PP, pP: PP — PP).

a

We have the natural projections

q: C(P)— a®, § C(P)— .

Definition 3.2.1. The laz limit and op-lax limit of P are the co-categories

lax(P) = Sect(C(P)/«/), lax*(P) = Sect(‘C(P)/)
formed by sections of ¢ and g, i.e., by oo-functors (morphisms of simplicial

sets) s: A — (f;(P) (resp. §: A — g(?)) such that gs = Id (resp.
gs = 1d).
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Examples 3.2.2. (a) Thus, an object of lax°(P) is a following set of data:
(0) For each a € Ob(&7), an object z, € P,.

(1) For each morphism g : ag — a; in A, a morphism (not necessarily an
isomorphism) v, : py(Ta,) = Za,-

or each composable pair ap = a; = a9 in &7, a homotopy (necessari
2) F h ble pair ag L a1 & a, in o7, a homotopy ily
invertible, as we work in an (o0, 1)-category) v, © Pg (Yg0) = Vargo-

(p) Similar homotopies for composable chains in o7 of length p for any p.

(b) Similarly, an object of lax(P) is a set of data with part (0) identical to
the above, part (1) replaced by morphisms f;: 24, — p,(24,) and so on.

Definition 3.2.3. A morphism (ag, Z4,) — (a1, %4, ) in ?(73) is called Carte-
sian if the corresponding morphism z,, — p,(x,,) is an equivalence. Dually,
a morphism (ag, Z4,) — (a1, z,,) in ((Q/(P) is called coCartesian if the corre-
sponding morphism p,(z,,) — ., is an equivalence.

In particular, the full subcategory of lax P spanned by sections s such that
for any map g in &7, s(g) is Cartesian is equivalent to the limit holim P (see
[Lu-HTT, Cor. 3.3.3.2]). Dually, the full subcategory of lax® P spanned by
sections mapping every arrow to a coCartesian one is equivalent to holim P.

Let now Q: % — & be another functor. There are pullback diagrams

C(PoQ) — C(P) C(PoQ)— C(P)

B /P B 5 o
In particular, pulling back sections defines projections
lax P — laxP o Q and lax” P — lax" P o Q,

both compatible with the projection holim P — holim P o Q.
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B. Lax and strict [[D]]- and D'-modules on diagrams. By a diagram
of varieties of finite type over k we mean a datum of a small category .o/
and a functor )V: o/ — Varg. That is, for each object a € &/ we have a
(possibly singular) variety Y, and for each morphism ¢g: a — b in & we have
a morphism of varieties &, : Y, — Y}.

Given a diagram Y, we have two functors &/°P — Cat?;:

Dg*]] : a — Pro(D"Cohpy,), (g:a—d) 555[*]]
D!y: a— D(QCohpy.), (9:a—d)— 5;.
Definition 3.2.4. We define the oco-categories
Modipy(Y) = lax’(DyT),  Modp(¥) = lax(D))

whose objects will be called laz [[D]]-modules and lax D'-modules on Y.

Remarks 3.2.5. (a) Thus, a lax [[D]]-module F' on Y can be viewed as a
family (F,) where F, is a pro-coherent complex of left D-modules over Y,
together with transition (compatibility) maps

Yg: gg[*]]Fa’ — F,

given for any ¢g: a — d in &/ and further com atlble under compositions
of the ¢g’s. Because of the adjunction between &5 and (&) «, we can write
transition maps of a lax [[D]]-module in the dual form, as morphisms

Vi P — (&)+F,

Since (§;). preserves coherent D-modules, this allows us to deal with some
lax [[D]]-modules without using pro-objects.

(b) Similarly, we will view a lax D'-module on ) as a family (F®) where
E(@ is a quasicoherent (i.e., ind-coherent) complex of right D-modules on
Y,, together with transition maps

By Bl §;E(“/)

given for any ¢g: a — o' in & and further compatible under composition of
the g’s. As before, we can define the structure maps of a lax D'—module in
the dual form, as morphisms

5;: (59)*5](&/) - E(a)7

using the adjunction between (), and 55!].
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Definition 3.2.6. (a) A lax [[D]]-module F is called strict, if all transition
maps v, are equivalences. We denote by Mod[[D]](y) the full co-category of

strict [[D]]-modules on Y. It embeds fully faithfully into Modpy(d).

(b) A lax D'-module E on Y is called strict, if the transition maps £,
are equivalences. Let Mod' () be the co-category of D'-modules on ). It

embeds fully faithfully into Modp ().

In other words

— fim (DI L g
Mod, . (¥) = lim (Dy™),  Mod, (¥) = lim(Dy)

are the strict (co-categorical) limits of the same functors as above, cf. [FG]
§2.1. Objects of the strict limit correspond to Cartesian sections of the
Grothendieck construction inside all sections.

C. [[D]]- and D'-modules on the Ran diagram. We now specialize
to the case when A = .#°? and J) = X is the Ran diagram. Thus, a lax
[[D]]-module F on X consists of pro-coherent complexes of D-modules F;
on X! morphisms ~,: 5£[*]]F 'y — F7 plus coherent higher compatibilities for
the 7,. A lax D-module E on X consists of quasi-coherent complexes of
D-modules ED on X!, morphisms By EY) (5;E(I) plus coherent higher
compatibilities for the j3,.

Recall also, the Ran space Ran(X) = lim X, Tt is clear that strict
modules can be defined invariantly in terms of the space Ran(X), while the
concept of a lax module is tied to the specific diagram X representing
Ran(X). Nevertheless, most of our constructions can and will be performed
directly on X

D. Strictification of lax D'-modules. We have the full embedding

Mod' (X”) — Modp(X”).

The left adjoint functor to this embedding will be called the strictification
and will be denoted E — E. Its existence can be guaranteed on general
grounds, see [GL] (5.2). Here we give an explicit formula for it.
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Definition 3.2.7.Let F = (E(I),Bg: EW) - 5;E(I)) be a lax D'-module E
on X7 Its strictification is the strict D'-module Eon X 7 defined by

ED — holim(pi). gre B,

o Ke?

where p;x and ¢ are the canonical projections of the variety A(7, K), see
(3.1.5). The structure map

By BV = 0B, g1

comes from identification of the target with

holim 6, (prx )« B~ holim (pyx )« Alg, K)' qjc B~
K K
~ holim (psx)s gy B = EY,
K

where we used the base change theorem for the Cartesian square in Proposi-
tion 3.1.7 as well as the commutativity of the triangle there.

E. Strictification of lax [[D]]-modules. The theory here is parallel to
the D'-module case.

Definition 3.2.8. Let F' = (Fy,7, : 65[*]]FI — F;) be a lax [[D]]-module on
X7 Tts strictification is the strict [[D]]-module F on X defined by

F; = holim(prx ) gt Fy,

Ke?

with the structure map

Vg 5£[*]]£1 — F;, g:1-J

induced by the base change in the square of Proposition 3.1.7

The functor F' — F is right adjoint to the embedding Mod[[D]] (X7) —
Mod[[p]](Xy).
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F. Factorization homology.

Definition 3.2.9.(a) We call the factorization homology (resp. compactly
supported factorization homology) of a (lax) D'-module E on X the complex
of k-vector spaces

/ E := holim RI'pg(X!, EY) e Ind(Perfy) = C(k),
X =%

el
/ E = holim BRI (X7 ED) e Ind(Pro(Perfy)).
X Ie?

Thus [ « E is just a (possibly infinite-dimensional) complex of k-vector
spaces, as Ind(Perfy) = C'(k) is the category of all chain complexes over k.

On the other hand, [ )[([C]] E' is an ind-pro-finite-dimensional complex.

Definition 3.2.10. We call the compactly supported factorization cohomol-
ogy (resp. factorization homology) of a (lax) [[D]]-module F on X the
complexes

[[c]
515 F := holim RTUI (X' F)) e Pro(Perfy),

X Ies

yf F := holim RI'pr(X’, F;) € Pro(Ind(Perfy)).
X Ies

Those constructions define exact functors between stable co-categories:
/ - Modp,(X7) — C(k),
X
]

[[c]
/ : Mody, (X)) — Ind(Pro(Perfy)),
X

[[e]]
yg{ : Modpyy(X*) — Pro(Perfy),
) Modyp (X)) — Pro(Ind(Perfy)).

Proposition 3.2.11. All four types of factorization homology are unchanged
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under strictification, i.e., we have

[[c]] ([c]] '
/E ~ /E / E ~ / E,  EeModp(X),
X X X

X p—
[[c]] [[c]]
;5 F ~ 515 F, §1§F ~ §I§E, F e Modgpy (X7).
X X — X X

Proposition 3.2.12. Verdier duality (on each X') induces equivalences

(=) Modp(X”) =~ Modyp(X”) and Mod, (X”)® ~ Mod, . (X”),

(21 (

compatible with the inclusion functors. Moreover, there are natural equiva-

lences
yi[[c]](_)V N (/X _)*’ /X[[c]](_)v N <§é _)*‘

3.3 Covariant Verdier duality and the diagonal filtra-
tion

The content of this section is inspired from [GL].

A. For (lax) D'-modules. We denote by Cohy(X*) the full subcat-
egory of Mody, (X)) spanned by lax D'-modules E = (E")) such that each
E® is coherent as a D-module over X7

Definition 3.3.1. We call the covariant Verdier duality the functor

¢ : Cohpp(X”) — Mod, . (X7),  (¢(E)); = holim (prx) gl g,
Kes

where prx nad qrx are the projections of the subvariety A(/, K) < X! x XX,

Let us explain the definition in more details.

The diagram to take the colimit. Let h : K’ — K be a surjection. We then
have a diagram similar to that of Proposition 3.1.7:

/

A(I K XK

y TA(I,h) Tdh

PIK
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Consider the structure morphism f3;,: E) — § E&")_ It corresponds to an
adjoint morphism (&), E5) — EX) in D(Cohpr/). Applying the functor

(prr)« CJE[;]/] we find (prr)« q[K, (0n)« BV — (pre )« qE[;],]E(K). Using base

change for the above pullback square, we ﬁnd

(pric)s died (On) B ~ (pracr)uc AL D) gl BY) ~ (pric)e g BY.
We get the natural morphism

() ()

(pIK)* qrK [[*]]E(K)

- (pIK’)* qrgr

that is used to form the diagram over which we take the homotopy colimit.

Structure maps for ¢(E) and its strictness. Let g : I — J be a surjection.
The structure map

Yq : 5£[*]]¢(E)I = holim 5£[*]](pn<)* q}[;;]] EE)
K

— holim(pr )« q[J[;}]]E(K) = ¢(E);

K

is obtained by contemplating the diagram in Proposition 3.1.7 which gives,
for each K, the identification

SN (pre) gl BEO X (py0)s Alg, K) NI B~ (1), g O,

Here BC is the base change identification, where we note that p;x ansd p;x
are finite morphisms so the [[!]]-direct image for them coincides with the
usual #-direct image.

The above identifications also show that each 7, is an equivalence, and
so ¢(FE) is a strict [[D]]-module.

Remarks 3.3.2.(a) We restrict to coherent !-sheaves so that qg[;]]E(K) is
defined in pro-coherent D-modules.

(b) Note the similarity with Definition 3.2.7 of I, the strictification of E.

B. Topological approximation and diagonal filtration.  Recall the
following general fact. Let Z, K be two small categories and (Ajx)rer xex be
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a bi-diagram in an oco-category %, i.e. an oo-functor Z x K — %’. Then there
is a canonical morphism

(3.3.3) can : holim holim A;x — holim holim A;x.
KeK IeT IeT KeK

We apply this to the case when Z = K = . and € = Pro(C(k)).

Let E € Cohl,(X”) be a coherent lax D'-module. We then have natural
maps

(3.3.4) T:/XE — yg(gb(E), TC:/X[[C]]E — 54([[(:]] o(E),

which we call the topological approximation maps and which are defined as
follows. Using the standard map

(3.35) o : RTprp(XX, E®) — holim RTpr(A(I, K), ¢t B,
I

we first map

/ E = holim RTpr (X", E™)) - holim holim RIpr(A(I, K), ¢l £
X K K I

and then map the target by the canonical map (3.3.3) to

holim holim RTpr(A(I, K), ¢\B B
1 K

holim holim RFDR(X], (p[K)* q£§]]E(K))

1 K

holim ATon(X', (E)) = ¢ o(E).

2

e

This gives 7. The map 7. is defined similarly by noticing that ¢;x being
finite, we have a map o, analogous to ¢ and featuring compactly supported
de Rham cohomology.

For any positive integer d, we denote by i4 the pointwise closed embedding
X7 — X7, see Definition 3.1.2.
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Definition 3.3.6. We define
<d
E := holim RTpg(X! i ED) e Pro(C(k)),
X I

[fell<d [[c] [[+]
/ E = holim RT'pg (X1, i ED) e Pro(Perfy),
X I

and call them the factorization homology (resp. compactly supported factor-
ization homology) of arity at most d of E.

Remark that [ ; ‘B (and similarly for its compactly supported analog)

can be seen as the factorization homology of a lax pro-D'-module (id)*ig*ﬂE .
As d varies, they fit into sequences

<d <1
/E—> _,/ E—>~~-—>/ E,
X X X
[[e]] [[e]],<d [[e]],<1
/ B H/ EH...H/ E.
X X X

Lemma 3.3.7. For E € Cohiy(X”), there are canonical equivalences

<d [[e]] [[e]],<d
55 O(F) ~ holim/ E, 55 O(FE) ~ holim/ E.
X d X d X

b's
Proof: This is a straightforward formal computation on limits. O
C. For (lax) [[D]]-modules.  The above constructions admit a dual

version, for [[D]]-modules. We sketch it briefly, formulating statements but
omitting details.

We denote by Cohyppy (X)) the category of lax [[D]]-modules
F = ((Fr, (g : 1M Fy — Fj)grs)
on X such that each F} is coherent on X.

Definition 3.3.8. We call the covariant Verdier duality for [[D]]-modules
the functor
¢ : Cohyppy (X”) — Mod! (X)

defined by

Y(F)D = holim(prx )« ¢x Fr.
K
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We have canonical topological approximation maps

(3.3.9) T:/X@D(F)—>y§(F, Tc:/)([[c]]¢(F)—>§1§([[c]] F

For any lax coherent [[D]]-module F' on X, we denote by R[' x7 (F) the
lax ind-[[D]]-module (ig)4i,F on X7

Definition 3.3.10. We define the (compactly supported) factorization coho-
mology of F with d-fold support as the (compactly supported) factorization
cohomology of RI’ Xdy(F ). We denote these cohomologies by

RExon(X7\F) i= b By (F) € (k)
X

[[c]
rrl (x7 F) :=§1§ RL . (F) € Ind(Pro(Perfy)).

X7, DR Y
We call the sequences
RFXIY,DR(XyaF) - RPXdy,DR(XyaF) o

RFEEZQVDR(XyrF‘) > e —> RFE[(EQ,DR<XV7F> >,

the diagonal filtration on the (compactly supported) factorization cohomol-
ogy of F.

Lemma 3.3.11. There are canonical equivalences

holim RT y# pg (X7, F) ~ / U(F),
d X
. (]
holimy RI'{Y (X7 F) ~ / (F).
d 4 X

D. Compatibility with the usual (contravariant) Verdier duality.
We start with a lax coherent D'-module E on X*. As Verdier duality
exchanges il and 7' and commutes with i, for a closed immersion i, we get

[fell,.<d \ ™
/ B
X

Proposition 3.3.12. There are canonical equivalences

<d * )
RFE[(?,DR(XyaEV> = </X E) - Bl or(X7, BY) <
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Moreover, it is compatible with the transition maps (when d varies) and with

the map to
[[c]] * el \ ™
515 EY ~ </ E) , yg EY ~ / E
X X X X

4 Factorization algebras

The goal of this chapter is to introduce factorization algebras in the algebro-
geometric setting (due to [BD] in the 1-dimensional case and to [FG] in
general). Those are structured (lax) D'-modules (or, in our non-holonomic
formalism, [[D]]-modules). We will then prove that the covariant Verdier du-
ality introduced in the previous chapter preserves this structure. To achieve
that, we will need various equivalent definitions of factorization algebras.

4.1 Symmetric monoidal co-categories

A. Reminders. Let .#* be the category of pointed finite sets of cardinal
at least 2, with pointed surjections between them. For any non-empty finite
set I, we denote by I* the set I11{+} pointed at =. For any i € I, we denote
by p; the map I* — {i}* given by

+ else.

A non-unital symmetric monoidal structure on an co-category C is the datum
of a functor C: .¥* — Caty such that C({1}*) ~ C and such that for any I,

the functor
¢([Tn): e —TTet

el

is an equivalence. The tensor product on C is then the functor
CxC=C({1,2}") — C({1}") =C

induced by {1,2} — {1} mapping both elements to 1.
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Asis done in [Lu-HA], we can encode monoidal categories by their Grothendieck
constructions:

N

‘7~

c®:_ AGES ( ")P.

\\

A monoidal functor between two (non-unital) symmetric monoidal cate-
gories C and D is a natural transformation C — D. Equivalently, it corre-
sponds to a functor C® — D® over .#* that preserves coCartesian morphisms,
and to a functor Cgy — Dg over (#*)°P that preserves Cartesian morphisms.

Definition 4.1.1. A lax monoidal functor C — D is a functor C® — D® over
% such that any coCartesian morphism in C® that lies over a projection
pi: {I}* — {i}* is mapped to a coCartesian morphism in D®.

A colax monoidal functor C — D is a functor Cg — Dg over (#*)°P such
that any Cartesian morphism in Cg that lies over a projection p;: {I}* — {i}*
is mapped to a Cartesian morphism in Dg,.

It follows from the above definitions that a monoidal functor is in partic-
ular both a lax and colax monoidal functor.

Informally, a functor F': C — D is lax (resp. colax) monoidal if we have
functorial morphisms

F(Cl) ® F(Cg) — F(Cl ®02)
(resp. F(c1®co) — F(c1) ® F(e) ).

It is monoidal if those morphisms are equivalences.

B. Day convolution product: Fix two (non-unital) symmetric monoidal
categories C and D. The (right) Day convolution product is a (non-unital)

symmetric monoidal structure on the category of functors C — D. It is given

on two functors F' and G: C — D by the formula

(F®G)(c) = holim F(c;) ® G(ca).
c1®co—cC

Note that the existence of the right Day convolution is not automatic and
relies on the existence of such limits. For a complete account on the Day
convolution in the context of co-categories, we refer to [Glal.
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Remark 4.1.2. In [Gla], the author develops the left Day convolution which
is dual to the right one that we are considering. The left convolution (if it
exists) is given by the formula

(F®G)(c) = holim F(c1) ® G(ca).
c—c1®c2
Definition 4.1.3. Let C be a (non-unital) symmetric monoidal category. We
say that C is of finite decompositions if the following hold

(a) For any c,c1,c2 € C, any morphism ¢; ® ¢ — ¢ factors essentially
uniquely as
1 ® e 18k di ®dy — c.
(b) For any object ¢ € C, the number of decompositions ¢ ~ d; ® ds is
essentially finite.

Proposition 4.1.4. Let C and D be symmetric monoidal categories. Assume
that C is of finite decompositions, and that D admits finite products (resp.
coproducts). Then the right (resp. left) Day convolution on the category of
functors C — D exists.

If moreover D admits finite sums (ie finite products and coproducts coin-
cide), then the left and the right Day convolution products coincide. In this
case, we call it the Day convolution.

Proof. We fix ¢ € C and denote by C x C/c the category of triples (c1, ¢z, f)
where c1, ¢y € C and f: ¢;®cy — ¢. We denote by ® !(c) the full subcategory
of C x C/c spanned by triples as above for which f is an equivalence.

Because C is of finite decompositions, the inclusion functor ® '(c) <
C x C/c is cofinal and the category ® !(c) is equivalent to a finite set S(c). In
particular, if it exists, the right Day convolution of two functors F,G: C — D
is given, for every c € C, by the finite product

H F(d1) ® G(dy).

[dl,dg]ES(C)
The result follows. O
Finally, we recall the following key property of the Day convolution.

Theorem 4.1.5 (see [Gla, Prop. 2.12]). An algebra for the left Day convo-
lution product is tantamount to a lax monoidal functor. A coalgebra for the
right Day convolution product is tantamount to a colax monoidal functor.
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C. Monoidal functors and Grothendieck constructions:

Proposition 4.1.6. Let F: C — Caty, be a non-unital lax monoidal functor.

The coCartesian Grothendieck construction g}— 1s endowed with a natural

non-unital symmetric monoidal structure, such that the projection (/f}" —C
is a symmetric monoidal functor. )

The Cartesian Grothendieck construction g}" 15 also endowed with a
natural non-unital symmetric monoidal structure compatible with the projec-

tion ;5}“ — C°P,

Proof. We first deal with the coCartesian case. The oco-category Caty, is
endowed with its cartesian symmetric monoidal structure. In particular, the
oo-category of lax monoidal functors C — Cat, embeds fully faithfully into
the category Fun(C®, Caty,) (see [Lu-HA, Prop. 2.4.1.7]). Let F denote the
image of F under this inclusion.

We can now apply the coCartesian Grothendieck construction and obtain
a coCartesian fibration

CF 08— 7.

The fact that it defines a non-unital symmetric monoidal structure on g]:
compatible with the projection follows directly from [Lu-HA, Prop. 2.4.1.7].

We can now focus on the Cartesian case. We consider the functor F°P
mapping ¢ € C to F(c)°®. It inherits from F the lax monoidal structure

and we can thus apply the above. We get on gé}""p a monoidal structure
compatible with the projection (5}" °P — C. We now observe the equivalence

CF~(TFr)".
and conclude. ]

Corollary 4.1.7. Let F: C — Caty be a non-unital lax-monoidal functor.
Assume that C is of finite decompositions and that for any c € C, the category
F(c) admits finite direct sums. Then the Day convolution (either left or
right, equivalently) defines a non-unital monoidal structure on both lax F
and lax® F.

Proof. Follows directly from Proposition 4.1.4. m
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Proposition 4.1.8. Given two lax monoidal functors F,G: C — Caty, and
a lax monoidal transformation F = G, the induced functors

CF—-CG¢ ad CF- TG
are laxz monoidal. If the natural transformation was (strictly) monoidal, then
the induced functors are too.

Sketch of proof. The lax monoidal functors F and G correspond to functors
F and G: C® — Caty. The lax monoidal transformation F = G then corre-
spond to a lax natural transformation F= Q and therefore to a commutative
diagram

CF

NS

CO.
The result follows. The case of the Cartesian Grothendieck construction is

done using the duality between the Cartesian and the coCartesian construc-
tions described in [BGS]. O

Corollary 4.1.9. Let F,G: C — Caty be lax monoidal functors such that
for any c € C the categories F(c) and G(c) admit finite limits. Assume that
C is of finite decomposition. For any lax monoidal transformation F = G,
the induced functors

vq

lax® F — lax° G and lax ' — lax §
are lax monoidal.

Proposition 4.1.10. Consider two functors F: C; — Cy and G: Cy — Caty,.
Assume that F is monoidal, that G is lax monoidal and that both C; and Cq
are of finite decomposition. The restriction functor laxG — lax G o F is lax
monoidal.

Proof. Recall the pullback diagram
C(GoF) "~ C(G)

| |

Ci Co.

]:

Since F is monoidal, so is the projection F and the above diagram is a
pullback of symmetric monoidal categories. The result follows. ]
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4.2 Definition as modules over X

Introduced for X a curve by Beilinson and Drinfeld [BD], factorization al-
gebras are structured D'-modules over Ran(X). Intuitively, a factorization
structure on £ = (EW) is the data of compatible equivalences between E!)
and [X],_; EW) once restricted to the complement of the big diagonal in X7.

In [FG], Francis and Gaitsgory generalized the definition to X of any
dimension.

Definition 4.2.1. Let a: I—J be a surjection, seen as a partition [ = ]_[j I;

where I; = a~'(j). We denote by U(«a) the open subvariety of X! whose
points are families (z;) such that the sets {z;,i € I;} indexed by j € J are
pairwise disjoint. Equivalently:

U(Oé) = {(ﬁi)z’el ’ V’il,ig € ], Oé(il) #* ()é(ig) = Iy # .171'2}.
We denote by j,: U(a) — X! the open immersion.

Given two finite sets I; and I, we denote by 7y, ;, the surjection I; 1y —
{1, 2} mapping points of I; to j, for j = 1,2.

Definition 4.2.2. (Beilinson-Drinfeld, Francis-Gaitsgory)
The category Mod' (X) admits a tensor product called the chiral tensor

product and denoted by @, such that
ch (D)
(E “ F) = @ g EWRED)
I=I11115

where j = j,, -

A factorization algebra E on X is a strict D'-module endowed with a
coalgebra structure £ — F ®® E such that for any surjection a:: I—»J, the
morphism induced by the iterated comultiplication

jZE(I) N ]2 E(Ij)
jed
is an equivalence.

We will first extend the above definition to lax D*modules (and to lax
[[D]]-modules). Recall the functor DY, : . — Caty, mapping I to D(QCohy, x1)
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and a map to the associated !-pullback functor. It follows from [FG, §2.2.3]
that D’X » 1s endowed with a lax monoidal structure given by

j*j*(_ _> D(QCOhD7xl1) X D(QCOh*D7XI2) I D(QCOh/D,XllLII2)

for j = jy, 1,
Using Proposition 4.1.6, we get a symmetric monoidal structure on the
Grothendieck construction g(D'X ) compatible with the projection

p: ‘C(Dys) — P
It is given on two objects (I1, Ey) and (Is, Es) in qj(D'Xy) by the formula
(11, E1) ® (I, Bb) = (I 113, juj™ (E1 X E3)).

Definition 4.2.3. A lax D'-factorization algebra (over X) is a lax D'-module
E over X7 seen as a section of p, endowed with a colax monoidal structure,
such that for any surjection a: I—J, the induced morphism

j;E(I) N j; < EU;‘))

jed

is an equivalence. We denote by FA!D(X ) the category of D'-factorization
algebras over X. We denote by &!D(X ) the full subcategory of FAL(X)
spanned by lax !-factorization algebras on X whose underlying lax D'-module
is strict.

Remark 4.2.4. The monoidal category .# is of finite decomposition (see
Definition 4.1.3 and the categories of D-modules admit finite direct sums.
It follows from Corollary 4.1.7 that the category Mod!D(X 7 carries a Day
convolution product called the chiral tensor structure and denoted by ®%.
In particular, a colax monoidal structure on a section E of p as above is
tantamount to a coalgebra structure on E for the chiral tensor structure.

Remark 4.2.5. The box-product
- — ‘D(QCOhD,X11> X D(QCOhD,XIQ> —> D(QCOh'D7xl1L{12)

defines (by the same procedure) another tensor structure on Mody(X)
called the #-product and denoted by ®*.
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Lemma 4.2.6. Let E be a strict D'-module over X”. The datum of a
factorization structure on E in the sense of Definition 4.2.2 is equivalent to
the datum of a factorization structure in the sense of Definition 4.2.3.

Proof. The chiral tensor structure on Mod!D(X “) corresponds to the Day
convolution product on the category of Cartesian sections of p. The result
follows. [

Dually, we define (lax) [[D]]-factorization algebras. The functor DEE’X;],J
mapping I to Pro(D’Cohyp 1) admits a lax monoidal structure given by the
formula j[[!]]j[[*]]<_ —):

Pro(D"Cohyp x1,) x Pro(D’Cohyp x1,) —> Pro(D’Cohyp, ynur, )

with j = jrun-q,2;.- It follows from Proposition 4.1.6 that the (coCarte-

sian) Grothendieck construction C;(DEE’?,J

structure compatible with the projection

o o)~z

Definition 4.2.7. A lax [[D]]-factorization algebra is a lax [[D]]-module,
seen as a section of ¢, endowed with a lax monoidal structure, such that for
any surjection a: I—J, the induced morphism

) admits a symmetric monoidal

pis ( E(m) 0

jed

is an equivalence.
We denote by FApp)(X) (resp. &[[Dl] (X)) the category of lax (resp.

strict) [[D]]-factorization algebras.
The following is obvious:

Proposition 4.2.8. Verdier duality induces equivalences
op ! op !
FAGo(X) ~ FAR(X)  and  EA  (X) ~ FAL (X)

compatible with the equivalence of Proposition 3.2.12.
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4.3 Definition in terms of arrow categories

In the above definitions, factorization structures for D'- and [[D]]-modules
are dual to one another. The factorization structure is in one case a coalgebra
structure, and in the other case an algebra structure. In order to prove
that covariant Verdier duality preserves the factorization structures, we will
need alternative models for factorization algebras that do not make a choice
between algebras and coalgebras.

Definition 4.3.1. We denote by .#! the category of arrows in .. A mor-
phism o from a: I—.J to 8: S—T in .#! is a commutative diagram

—
o
- -

S
o lﬁ
—0_>T.

Q
L~

Disjoint union makes .#! into a symmetric monoidal category.
A morphism o as above is an open (resp. a closed) morphism if @ (resp.
;) is a bijection.

Fix a commutative diagram o as above. We get an open immersion
U(a) — U(o,«) and a closed immersion U(8) — U(og,«). We denote by

~

U(f) the pullback
0(f)—"~U(p)
(4.3.2) i(a)J =

Ulae) —=U(ga).
Note that the horizontal maps are open immersions and the vertical ones
are closed immersions. If ¢ is an open (resp. a closed) morphism, then 7(o)
(resp. 7(o)) is an isomorphism.

If it exists, let v be a surjection S—J such that v = «. Since 7 is
surjective, such a map v is unique if it exists, and automatically satisfies

oy = 3. We then have

U(y) if v exists
(%) else.
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A~

The assignement a +— U(a), 0 — (U(B) <« U(o) — U(a)) defines a
functor R
U: (1) — Var{™".

Recall the functor D™ : Vari™" — Cat, mapping a variety Y to D(QCohyp y)
and a correspondence Y; < Z —?Y; to b.a'.

Definition 4.3.3. We denote by Dcﬁo” the composite functor
DE™ =D o U: (L) — Cate.

The functor U admits a lax-monoidal structure, given by the open im-
mersions U(ag Tay) — U(ag) x U(az). Composed with the lax monoidal
structure on D™, we get a lax monoidal structure on D?jo” and hence a

monoidal structure on (//(Dg;”).

Definition 4.3.4. We say that a section of (;(Dcﬁo”) — (S1)°P is openly
coCartesian if it sends every open morphisms in % 1 to a coCartesian mor-
phism. We denote by Mody"™ (U) the full subcategory of Jax® D™ spanned
by openly coCartesian sections.

Since ! is of finite decomposition, Day convolution endows lax” Dcﬁ"”
with a symmetric monoidal structure (see Corollary 4.1.7). This tensor struc-

ture preserves openly coCartesian sections and thus defines a monoidal struc-
ture on Mod3™ (U).

Proposition 4.3.5. Restriction along the functor n: . — 1 given by
I — (I—=) induces a symmetric monoidal equivalence

B: Mod™(U) ~ Modh(X7).

Proof. Denote by foy the functor .#°? — Cat, mapping a finite set [
to D(QCohyp x1) and a surjection I — S to the associated x-pushforward

functor
D(QCOhD’XS> — D(Qcohpyxl ) .

Since for a closed immersion 4, the functor §' is right adjoint to d,, we have

C(D..)~ C(DX”). In particular
Modp(X”) := lax D} ~ lax* DX
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Let s be the source functor .#! — ., mapping a surjection « to its domain.
It is a monoidal functor, and thus induces a monoidal functor (by Corollary
4.1.10)
o e o &
jax' DY lax (DY o).

The canonical immersions j,: U(a) — X! define a monoidal natural trans-
formation j¥: DX T os— Dzijo”. In particular, it defines a monoidal functor
(see Corollary 4.1.9)

s
lax® (DX o 5) — lax® DL
— — U

A~

whose image lies in Mod3™ (U). We find a monoidal functor
A: Modiy(X7) ~ lax" DX — lax® (DX o 5) — Mods™ ().
The restriction along n: . — %! gives a functor
B: Mod™ (U) — Modiy (X))
which is inverse to A. O

Definition 4.3.6. Let F %’”(ﬁ) denote the category of sections in Mod%’”(ﬁ)
endowed with symmetric monoidal structure.

Corollary 4.3.7. The functor .¥ — ' mapping I to I-+ induces an
equivalence

B: FAS™(U) ~ FAL(X).

Proof. The equivalence B of Proposition 4.3.5 being monoidal, it preserves
coalgebras. Coalgebras for the (right) Day convolution are colax monoidal
functor (see [Gla, Prop. 2.12]). Let A € F %’”(ﬁ). It is a section with
a monoidal structure, and thus B(.A) is is a colax monoidal section. The
factorizing property of B(A) corresponds to the fact that A is (strictly)

monoidal. O

The dual statements obviously hold for [[D]]-factorization algebras. Con-
sider the functor D‘[/[COH]]: (1) — Caty, mapping « to Pro D*(Cohp t(a))
and o: o — S to %oy © (o) (using the notations of Eq. (4.3.2)). It
is naturally lax monoidal and g(D‘[/[COH]]) inherits a symmetric monoidal

structure.
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Definition 4.3.8. A section of Cj(D[V[F‘)“”) — 1 is called openly Cartesian
if it maps open morphisms of %’ ! to Cartesian morphisms.
Denote by Acorr]] (U ) the category of openly Cartesian symmetric monoidal

sections of ? [[eorrTly _, o1

Proposition 4.3.9. Restriction along n induces an equivalence
FAfpy (U) = FA(p) (X)
compatible through Verdier duality with the equivalence of Corollary 4.3.7.

4.4 Definition in terms of twisted arrows

Definition 4.4.1. We denote by Tw() the category of twisted arrows in
.. Its objects are morphisms in ., and its morphisms from a: I—J to
B: S—T are commutative diagrams

T 5
s
—T

e~

in .. For any surjections «ay: I — J; and ag: Iy — Jy, we set
apas: [1 11 ]2—>'>J1 11 JQ.
It induces on Tw(.¥’) a symmetric monoidal structure.

Definition 4.4.2.Let 7: a — (8 be a morphism in Tw(.¥) corresponding to
a diagram as above. We say that 7 is open if the map 7 is a bijection. We
say that 7 is closed if the map 7 is a bijection.

Consider the diagram Ury,: Tw(.¥) — Vary mapping a: I — J to U(«).
It maps a commutative diagram 7 as above to the natural immersion U(«a) —
U(pB). Note that it maps open (resp. closed) morphisms in Tw(.¥) to open
(resp. closed) immersions of varieties. The functor Dy, : Tw(.%) — Cat
(recall the notation from Section 3.2 §B.) has a lax monoidal structure, given
by

7 (=X-): D(QCOhD,U(al)) X D(QCOhD,U(ag)) - D(QCOhD,U(a1Ua2))~

with j: U(ap Hay) — U(ar) x U(az) the open embedding. We get from
Proposition 4.1.6 a symmetric monoidal structure on C//(D}]Tw).
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Definition 4.4.3. A section of g(D;]Tw) — Tw()° is called openly
Cartesian if it maps open morphisms in Tw(.¥) to Cartesian morphisms. We
denote by Mod!D"(UTW) the full subcategory of @(D!UTW spanned by openly
Cartesian sections. Since Tw(.%) is of finite decomposition, Corollary 4.1.7
defines on La_XD’UTW a Day convolution. The full subcategory Mod3(Ury)
is stable by this tensor product, and thus inherits a symmetric monoidal
structure.

Definition 4.4.4. We denote by FAL(Ury) the category of openly Carte-
sian symmetric monoidal sections of (,;(D}]TW). Forgetting the monoidal
structure defines a functor

FAL (Upy) — Mod3(Ury,).

Proposition 4.4.5. Restriction along the functor 7: I — (I—=) induces a
symmetric monoidal equivalence of categories

Mod'3(Ury) ~ Mod,(X).
It induces an equivalence
FAL (Ury) ~ FAL(XY).

Proof. Let us denote by s: Tw(.¥) — #°P the monoidal functor mapping
a surjection to its domain. The canonical open immersions j,: U(a) — X7
(for a: I—J) induce a monoidal natural transformation j.: D' ., o s — Dj,.
We find a monoidal functor

!
X7

MOd'D(Xy) = la_X'Dle — La_X'D'Xy 08§ — la_x’DbTw
whose image lie in Mod3(Ury,):
C': Mody(X”) — Mod3(Ury).

Restriction along 7 gives an inverse functor D: Modg(Upy) — Mody(X?)
to C. This equivalence preserves the factorization structures. O

4.5 Coherent factorization algebras

Recall that a coherent (lax) [[D]]-modules is a lax [[D]]-module (EY)) such
that £ is a coherent D-module over X!, for any I.
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Equivalently, a coherent [[D]]-module can be seen as an object in the

oplax-limit of the functor Cohfy mapping I to Cohp xr and a surjection

a: I — J to the associated pushforward functor (which preserves coherent
D-modules).

Definition 4.5.1. A coherent lax [[D]]-factorization algebra is a lax [[D]]-
factorization algebra whose underlying lax [[D]]-module is coherent. We
denote by FAﬁ%li] (X)) the full subcategory of FA[p)(X) spanned by coherent
factorization algebras.

Fix a morphism ¢g: Y — Z of varieties.

e If g is an open immersions, then the functors ¢* and ¢ll*l! both preserve
coherent D-modules and they coincide on coherent D-modules.

e If g is proper, then the functors g, and gy, both preserve coherent
D-modules and coincide on coherent D-modules.

corr

In particular, the lax monoidal functors D(C}O” and D[L][ I admit a com-

mon lax monoidal full subfunctor Cohz™ mapping a surjection a to Db(CthU(a))
and a morphism o: @ — 3 in " to the functor 7(c). o J(0)* ~ (o) ©
o) 121

corr corr [[corr]]
s A ~N f_/% - A ~N

D(QCohy, () <— D*(Cohp 17(5)) — Pro D’(Cohp ()
(0)x0j(0)* (o) 3070 ¥]]

D(QCOhuU(Q)) -~ Db(COhQU(Q)) — Pro Db(COhQU(a)).

Applying the Grothendieck construction, we get symmetric monoidal and
fully faithful functors

‘G (D) — G(Cohgm) — GO
over .1, We find using Proposition 4.3.9:

Proposition 4.5.2. A coherent laz [[D]]-factorization algebra is tantamount
to any of the following equivalent datum.
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[[corr]]

1. An openly Cartesian symmetric monoidal section of g(Dﬁ

) —
Y mapping any o € S to a coherent D-module.

2. An openly Cartesian symmetric monoidal section of C;(Cohg’”) —
B

3. An openly Cartesian symmetric monoidal section of (1;(1?(‘370”) — 1
mapping any o € .1 to a coherent D-module.

Definition 4.5.3. We denote by mp U ) the category of openly Cartesian
symmetric monoidal sections of %{Dg’”). The above proposition gives a

fully faithful functor

Ccorr (

corr

FAGS (X) — FAL, (D).

We shall now give another model for coherent lax [[D]]-factorization alge-
bras. Consider the functor DYt~ : Tw(.#) — Cat,, mapping a surjection a
to D(QCohp 17(,)) and a morphism of twisted arrows 7: a — 3 to the push-
forward functor D(QCohp 1)) — D(QCohp 17(5)). It has a lax monoidal
structure, given by

JH(=-): D(QCOhD,U(al)) X D(QCOhD,U(az)) - D(QCOhD,U(aluaz))'

with j: U(a; Hag) — U(ay) x U(az) the open embedding. Its Cartesian
Grothendieck construction thus admits a symmetric monoidal structure.
Fix a section E: Tw()®P — %(DETW) and a morphism 7: & — f in
Tw(). The transition morphism F(f) — Ury(7).E(«) induces by adjun-
tion a morphism
Urw(7)"E(B) = E(a).

Definition 4.5.4. Let Mod,, (Ury,) denote the full subcategory of lax DYrw
spanned by sections E such that for any open morphism 7: o« — fin Tw(.¥),
the induced morphism Ury, (7)*E(5) — E(«) is an equivalence.

Let ﬂf(UTW) denote the category of symmetric monoidal sections of
(DY) that belong to Mod_ (Ury).
Arguments similar to those used in sections 4.3 and 4.4 give:

Proposition 4.5.5. The categories ﬁf(UTw) and mzrr(f]) are equivalent.
In particular, there is a fully faithful functor

o =D
5 PAGES (X) — FAL (Ur)
whose image consists of sections mapping every a € Tw() to a coherent

D-module.
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4.6 Covariant Verdier duality

We can now prove the following
Theorem 4.6.1. The covariant Verdier duality functor
i Cohypyy(X”) — Mod' (X7)
preserves factorization structures. In other words, it extends to a functor
b1 FAGE (X) - FAL(X).
By Propositions 4.5.5 and 4.4.5, we are reduced to building a functor
FA, (Ury) — FAp(Ury)

that coincides with ¢ once restricted to coherent factorization algebras. We
will start with constructing a lax monoidal functor

Urw !
lax DY — Jax D},

whose image lies in Mod!D(UTW).

Recall the 2-category Vary™™ of correspondences between k-varieties. It

naturally contains (as a non-full subcategory) a copy of (the 1-category) Vary
and a copy of Var,”, through the functors:

Vary, — Varp™ Var,? — Varp™
X—X X—X

Definition 4.6.2. We denote by US,, and US_ the composite functors

USy: Tw(.) U Vary, — Var,™™

Us.,: Tw(<)®? — Vary? — Varp™.
Uryw

They both admit a lax monoidal structure given by the correspondences

U(ay) x U(ag) «— Ul ag) — Ulay Hag).
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For any two surjections a: [ — J and 3: S — T, we denote by A(a, )
the subvariety of X! x X obtained by intersecting U () x U(3) with A(I, S)
(recall that A(7,S) < X x X9 is the closed subvariety spanned by those
families ((z;), (z5)) such that {z;,i € I} = {x,,s € S}).

Proposition 4.6.3. The data of the A(«, 5)’s define a laz monoidal natural
transformation

UtwoP1

Tw(S) x Tw(.)P

where py and py are the projections.

Proof. To any pair («, ) we associate the correspondence

Uty (@) = Ula) < A(e, 8) = U(B) = Ug, (8)-

We start by showing it defines a natural transformation. Let 7: « — o/ and
¢: B — [ be morphisms in Tw(.#). Consider the following commutative
diagram:

Ula) =—A(a, f') —=U(5')

I e

a)<— Ala, B) —=U(p)

Lok

o) =—A(a), f) —=U(f).

U

It follows from Proposition 3.1.7 that the squares (1) and (2) are pullbacks.
We have thus indeed defined a natural transformation.

To show it is lax monoidal, we have to provide, for any aq, as, 81, B2 in
Tw(.¥), a transformation in the 2-category Vary™™

Ular) x U(az) —=U(B1) x U(B2)

P |

U(on Dag) U511 B).
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Unfolding the definition of this 2-category, we have to find a commutative
diagram

U(oy) x Ulag) == A(ay, f1) x Aag, f2) —=U(B1) x U(B2)

| o ]

Ulag T ag) Z U(B111Bs)

Lk |

Ulag M ay) Ao U, By U PBs) U(Br 11 Bs)

in which the square (1) is a pullback and ¢ is proper. We therefore pick
Z such that (1) is a pullback. The image of Z into U(ay) x U(ag) lies in
U(ay 1 ay) and the map f is thus canonically defined. Finally, the map ¢
is the natural closed immersion: Z sits in A(aq 1 g, 51 11 53), as a closed
subvariety of U(ay Il ap) x U(By1 11 33). In particular, g is proper and the
above diagram indeed defines a transformation in Vary™.

We then check those transformations behave coherently so that they de-

fine a lax symmetric monoidal structure on the transformation. O

Proposition 4.6.4. There is a lax monoidal functor
Yrwt lax DY — lax Dl
that maps a section E to a section Yy (E) such that for any a € Tw(S)

Urw(E)® = holim(pag) g B
5

where U(a) <2 Ao, ) 25 U(B) are the projections. Moreover the image
of Wy lies in Mod' (Ury).

We will need the following straightforward lemma.

Lemma 4.6.5. Let P: of — Caty, be a lax monoidal functor. Let % be a
symmetric monoidal category and denote by w the projection of x B — o .
Assume that for any a € of , the category P(a) admits all limits indexed by
. Then the (monoidal) projection

lax P — laxPom
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admits a lax monoidal right adjoint mapping a section s: AP x ABP —
(P on) to the section F(s): o/ — C(P) given by

F(s)(a) = holim s(a, b).
b
Proof of Proposition 4.6.4. We first observe the equalities DYt~ = Dg’%” and
D’UT = D . By composing the transformation 7" with the lax monoidal
w Tw
functor D™, we thus get a lax monoidal natural transformation

Ur !
D™ opr = Dy, © pe-

By Corollary 4.1.9, it induces a lax monoidal functor lax(DY™ o p;) —
lax(Dy;, op2). The projection p: Tw(.7)x Tw(#)°P — Tw() is monoidal,
and thus induces a monoidal functor lax DY™ — lax(DY™ o p;). Finally, we
also have lax monoidal functor lax(Dy, o ps) — lax Dy, given by Lemma
4.6.5. We define ¢, as the composite functor

Ury: lax DI — lax(DY™ o py) — lax(Dy, © p2) — lax Dy, .
It is by construction lax monoidal and given by the announced formula.
Arguments similar to those of section 3.3 prove that the image of iy, lies in

Mod' (Ury). O

Proof of Theorem 4.6.1. On the categories of sections La_XD;JTW and La_XD}]TW,
the left and the right Day convolution products coincide (it is given by finite
sums). Therefore, any E € ﬂf(UTw) is in particular a commutative algebra
in lax DY+ Tt follows by Proposition 4.6.4 that ¢r(E) is a commutative
algebra in La_XD!UTW and thus corresponds to a lax-monoidal section. We only
have to check it is actually monoidal.

Let ay: I} — Jy and ay: I — J be surjections. We set a := ayllay. We
denote by j: U(a) — U(ay) x U(ay) the open immersion. For any surjection
B: S — T, the variety A(c, ) is the disjoint union, over all decompositions
B = [B1 1 [y, of the product A(ay, 51) x A(az, f2) (pulled back along j). We
get

Urw(E) @ = li[gnp*q’E(ﬁ) ~ j* Bljrgz(pl*qiE(ﬁl) X pasqy E?)

= j*(q/JTW(E)(al) ¢TW(E)(02))
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where
U(a) <& A(a, B) =5 U(B)
Ulon) <= Aoy, Br) - U(B)
Ulas) < A(as, o) —2 U(Ba)

are the projections. It follows that the lax monoidal structure is actually
monoidal. ]

5 Gelfand-Fuchs cohomology in algebraic ge-
ometry

Recall that X is a fixed smooth algebraic variety over k.

5.1 Chevalley-Eilenberg factorization algebras

A. Homological D'-module. Let L be a local Lie algebra on X, i.e.,
a vector bundle with a Lie algebra structure on the sheaf of sections given
by a bi-differential operator. Then the right Dx-module £ = L ®¢, Dx is
a Lie*-algebra, see [BD] §2.5. Using the determinantal factor det(k?), we
can write the antisymmetric Lie*-bracket in £ as a permutation equivariant
morphism of D-modules on X x X

(5.1.1) n: (LK L) Ry det(k?) — 6,L.

Here 6 : X — X x X is the diagonal embedding. Let us list the most
important examples.

Examples 5.1.2.(a) L = T is the tangent bundle of X.

(b) Let G be an algebraic group over k with Lie algebra g and P be a
principal G-bundle on X. The data of P gives rise to two local Lie algebras
on X. First, we have the Ox-linear Lie algebra P24 (infinitesimal symme-
tries of P). Second, we have the Atiyah Lie algebroid At(P) (infinitesimal
symmetries of the pair (X, P)) fitting into a short exact sequence

0 — PA — At(P) — Tx — 0.
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For P = X x G the trivial bundle, PAY = g® Oy and At(P) is the semi-direct
product of T'x acting on g ® Ox via the second factor.

Given a local Lie algebra L, we have the dg-Lie algebra [ = RI'(X, L) and
we are interested in its Lie algebra cohomology with constant coefficients. It
is calculated by the (reduced) Chevalley-Eilenberg chain complex of [ which
we denote by

CE.(I) = (Sym"'(I[1]),dcr).

Applying the Kiinneth formula, we see that
CE.(l) = Tot{- = RI(X?, L) g, — RT(X? M) _g, —» RI(X, L)}

is the total complex of the obvious double complex with horizontal grading
ending in degree (—1). Here S, is the symmetric group and the subscript
“—S,” means the space of anti-coinvariants of S,,.

Following [BD] we represent CE,(l) as the factorization homology of an
appropriate lax D'-module C, on X*. We first define a lax -D-module C; by
putting CfI) = (1)« L for any nonempty finite set I. Here 67 : X — X7 is the
diagonal embedding. Given a surjection g : I — J with the corresponding
diagonal embedding &, : X7 — X! we define structure map (in the dual
form) (94)«(0s)« £ — (01)« £ to be the canonical isomorphism arising from
the equality 0400, = d;.

Remarks 5.1.3. (a) After passing to the colimit, C; becomes the pushfor-
ward of £ under the embedding of X into Ran(X).

(b) Note that the structure maps for Cy in the form Cy ; — 4, CfI) are not,
in general, isomorphisms, so C; is not a strict D'-module.

Recall that the category Mody,(X*) has a symmetric monoidal structure
®* (see Remark 4.2.5 above and [BD, 4.2.5]). The fact that £ is a Lie*-
algebra means that C; is a Lie algebra with respect to ®™*.

Definition 5.1.4. We define
Ce = (Symg*l(cl [1]), dCE)

to be the intrinsic Chevalley-Eilenberg complex of C; as a Lie algebra in

(Modh (X)), ®*).
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For convenience of the reader let us describe C, more explicitly. First, for
each ¢ > 1, the lax D'module C, = A&« (C1) has

C{" = holim (J7) (L9 @ det(k?)) .

f:I-Q
|Ql=q

This homotopy colimit can be simplified to

(5.1.5) Ch = @ (6r)(L2M @ det(k"H)).

ReEq,(I)

Here qu(I ) is the set of equivalence relations R on I with exactly ¢ equiv-
alence classes, i.e., such that [I/R| = ¢, and 6z : X"/® — X7 is the diagonal
embedding. In particular, C, is concentrated in degree 0.

Given a surjection g : [ — J and any surjection f : J — @ with |Q| = ¢,
we have the surjection fg : I — @ with d, 0y = 044, and so we have an
identification

(39)+(37)+ (L9 @ det(k?)) — (379) (L9 @ det(k?))

of (an arbitrary) term of the colimit for (d;). C(g‘]) with a certain term of the

colimit for C{”. The structure map (in the dual form) (d,)s el — i s
induced by these identifications.

Next, we have the differential d = dcg : C; — C,—1 defined as follows. Let
g: Q — S be a surjection between finite sets such that that |Q| = |S|+1 = ¢,
so g has exactly one fiber of cardinality 2, all other fibers being of cardinality
1. Applying the bracket (5.1.1) to this fiber and substituting copies of the
identity for the other fibers, we get a map

n?: L9 @ det(k?) — (6,)x (L% @ det(k?)).
We define d: C; — C,—1 by summing, as g varies, the induced maps
(0f) (([,Q ®det(kQ)) — (0gf) (ES ®det(k5)) .
The differential squares to zero by the Jacobi identity.

Definition 5.1.6.Let CY) be the complex of D-modules on X! given by

C(g]) in homological degree ¢ and the above differential. We denote by ng)
its truncation @, ch [p] (with the same differential). The differential is

compatible with the transition maps, and we get lax D'-modules C<, on X~
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Proposition 5.1.7. We have

[, [ e cpg. [ o~ on

Proof: We show the first identification, the compatibility with the differen-
tials will be clear. For any non-empty finite set I, we have, by (5.1.5):

RTpr(X1,C) = @  RUpr(XVE LBV @ det (k7)) =
ReEq, (1)
= @ Rr(XVE B @det(k) = P AT,

ReEq, (1) ReEq, (1)
Now, [, C,is the holim of this over I in ., and so is identified with A4(l). O

Proposition 5.1.8. The lax D'-module C, is factorizing (ie admits a factor-
ization structure).

Proof: By construction, C, is the symmetric algebra generated by C;[1] under
®*, with an additional Chevalley-Eilenberg differential. So it is factorizing.
O

B. Strictification of C, and chiral envelopes. While the components
Cy) of the lax D'-module C, are very simple Dyr-modules constructed out of
L4 the strictification C, is highly non-trivial. More precisely, let pt denote

the 1-element set, so XP* = X. For x € X let 7 = Spec @X,x be the formal
disk around x and z° = ¥ — {z} the punctured formal disk.
Consider the left Dy-module wy' ®o, C.*" and its Ox-module fiber

(W' ®oy &), = (wx' ®oy &) ®oy ki
Proposition 5.1.9. One has a canonical identification

(wi' ®ox C.™), =~ Indﬁgg’”k

where on the right hand side we have the vacuum (dg-)module of the dg-Lie
algebra RT(z°,L). In other words, wy" oy Q(pt) is the chiral envelope of
the Lie*-algebra L, see [G, §1.2.4] and [BD, §3.7.1].

Since we will not need this result in the present paper, we leave its proof
to the reader. In this way one can see the validity of Theorem 4.8.1.1 of [BD]

(the chiral homology of the chiral envelope is the same as HM(I)) for any
smooth variety X, not necessarily 1-dimensional or proper.
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C. Cohomological [[D]]-module and diagonal filtration. Using Verdier
duality, we get [[D]]-modules

Cl=(C,)", C1=(Cs)¥, C°=(C)"

<

on X such that

(le]l]
35 é* ~ CE(1).

X
This complex comes with the diagonal filtration (cf. section 3.3 or [Fu, Ch.2
§4]) which is a sequence of complexes and morphisms given by

s . [l _
R (x7 ¢ — .. > RO (x7 0% - Hyg c*,
X

X{,DR X7, DR
where
[[e] 7 5 el s onllell T ot S
RFX;’,DR(X ,C*) = é (ia)«i;C® := holim RTiy (X1, i, CD)
I
with iq: X7 — X the pointwise closed immersion.
For future use we introduce the following.

Definition 5.1.10. We call the diagonal D-module associated to L the com-
plex of D-modules Ci = i,C* on X:

Ch = 1'15. = holim(ig‘]))! v}2¢(5.)(pt)v
J

where z'g‘]): X — X7 is the diagonal embedding.
The de Rham complex of C{ will be denoted by F} and called the diagonal
complex of L. We will denote its compactly supported cohomology

HA(L) = Hiig)(X. F4) = RUYD(CY)

and call it the diagonal cohomology of I. It comes with a canonical map
HA(L) — Hyo (D).

Explicitly,
(G-L11)  Fi - {LV — HY (L) — HR(L)P)™ }
with grading normalized so that LV is in degre 1 — n.
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Remark 5.1.12. One can see F} as a sheafified, algebro-geometric version
of the diagonal complex of Gelfand-Fuchs [GF] [Fu], see also [CoG2| §4.2.
Instead of distributions supported on the diagonal X < XP  as in the C*-
case, our construction involves coherent cohomology of X? with support in
X which is a well known analog of the space of distributions (“holomorphic
hyperfunctions”).

5.2 The diagonal filtration in the affine case

In this section, we assume that X is a smooth affine variety. As before, L is a
local Lie algebra on X and [ = I'(X, L). Recall that C = Cy, is the factorizing
I-sheaf computing CE,(l). We will prove the following theorem.

Theorem 5.2.1. The canonical map [, C — ¢, ¢(C) ~ holim f§dc is an
equivalence.

Recall (see equation 5.1.5) that C comes with a natural filtration Cg,
where C, = hocofib(C<,—1 — C<,)[—¢] is given by

Ch = @ (6r)(L2M @ det(k"H)).

ReEq,(I)

Lemma 5.2.2. The canonical map [, Cq — $, #(Cy) is an equivalence.

Proof. We compute explicitly both sides and find AT (X, L) = AL ]
From this, we deduce by induction on g¢:

Lemma 5.2.3. The canonical map [, C<q — $y #(C<q) is an equivalence.

Proof of Theorem 5.2.1. Since holimq JxC<q = [ C, it is now enough to
prove that the map

holiny b 9(C=,) — ¢ 9(C)

is an equivalence. Rephrasing with the diagonal filtration, we get

<d <d
holim holim / C<q — holim holim / C<q
q d X d q X

81



Fix an integer p. It is enough to prove that for ¢ big enough (independently
of d), the map HPg( ;d C<q) — HPR( ;d C<g+1) is an isomorphism. This
amounts to proving that HE!( [ ; d C,) vanishes for ¢ big enough.

By definition, we have [ ;d Cy = holim RFDR(Xé,z'El[*”CéI)). Let us fix
I. For any positive integer s, we denote by Y the st infinitesimal neigh-
borhood of X7 in X! and by i®): Y®) — X7 the canonical inclusion. We
get

RUpr (X1, ey ~ holim RUpr(Y®), (i) *C(D).

Since Y*) is affine (because X is) and CéI) is induced from a quasicoherent

sheaf concentrated in degree 0, the complex RI'pr(Y (), (i(s))*Cél)) only has
cohomology in degrees lower or equal to 0. The homotopy limit indexed by
s satisfies the Mittag-Leffler condition. We deduce that the cohomology of
RTpr(X}, i([i[*]]CéI)) is concentrated in degree lower or equal to 0. It follows

that HER( ; d C,) vanishes for ¢ = 1—p. This concludes the proof of Theorem
5.2.1. ]

Applying Verdier duality to Theorem 5.2.1, we get:

Corollary 5.2.4. For a smooth affine variety X, the diagonal filtration on
Chevalley-Eilenberg cohomology is complete, te:

7
XZ,DR

(el e ;s
CE*(I) ~ }15 C* ~ / #(C*) ~ holim R (X7 %),
X X d

6 Relation to the topological picture

6.1 From factorizing D'-modules to C* factorization
algebras

In this section we assume k = C. Thus X,, := X (C) is a complex analytic

manifold.

For any complex analytic manifold M we denote by M* the Ran diagram
of complex manifolds M! and diagonal embeddings d, : M7 — M.

Let £ = (€D, B, : EY) — §.EW) be a (right) D'-module on X7 In
particular, for I = pt a 1-element set, we get a D-module £PY on XP' = X
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We say that &€ is h.r. (holonomic regular) if each €% is h.r. on X7 (that
is, each cohomology D-module of the complex of D-modules €D is h.r.).

Proposition 6.1.1. Suppose &€ is factorizable. Then, £ is h.r. if and only
if E®Y s h.r. on X.

Proof: Suppose £ is h.r. on X. We prove, by induction on |I|, that £/ is
h.r. on X'. First of all, the restriction of £ to the open subset X i (comple-
ment to all the diagonals) is, by the factorization structure, identified with
the restriction to X% of the h.r. module (£®Y)¥. Further, the complement
X1 — X1 is stratified into locally closed subvarieties isomorphic to X with
2 < |J| < |I], or to XP' = X if |.J| = 1. So our statement follows by stability
of h.r. modules under extensions. 0

Let € be a factorizable D'-module on X Fix a partition I = I; 11 ---1I
I, of a finite set by non-empty finite subsets. We see it as a surjection
a: I—-J:={1,...,m}. Recall the open immersion

Ule) =L X7 x +oox XTm 2 T
The factorization structure gives quasi-isomorphisms
VN j!<g(l1) .. g(fm)) N (a]’)! P{)

We now associate to £ a pre-cosheaf A = A¢ on the complex topology of
X as follows. Let U < X,, be any open set. We define

A(U) = Ag(U) = holimp RTo(UT, DR(ED),y),
Ies

where RI'. is the usual topological cohomology with compact support of the
constructible complex DR(ED),,,.

Further, let Uy, Uy, ..., U,, € X., be open sets such that Uy,...,U,, are
pairwise disjoint and contained in Uy. For any partition [ = [ 11---11 [,
corresponding to a surjection « as above, we have the embeddings

BLUR X UB s U(0)an,

UM x - x U — Ul
We define the morphism

PP AU ® - ® A(U) — A(U)
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as follows. The source is the homotopy colimit

holiy R (U",DR(E),) ® -+ - @ RL (UL, DR(ET™),00)

I,..., Inmes
~ hohm RI‘C(U{I X ++0 X Uglm’ k'j'DR(E(Il)S(Im))an)
I,..., Imes

~ holim RFC(Ulh N Urlnmv DR(k!j!(g(Il) . S(Im)))an)’

and the (Iy, ..., I,)th term of the last colimit diagram maps by vy, 1, into
RT(U{* x -+ x Ul DR((a5)'€")an)
for I := I;10---111,. This last complex then maps by [ to
RT.(U§, DR(ED),).

These maps induce the desired map of the homotopy colimits. This makes
A into a pre-factorization algebra over X,,.

Proposition 6.1.2. Let £ be a h.r. factorizing D'-module on X'. Suppose
that, in addition, each EY) is constructible w.r.t. the diagonal stratification
of XI. Then:

(a) Ag is a locally constant topological algebra on X, in the C* sense.

(b) We have
[[c]]
/ & ~ Ag?
X Xan

where in the RHS we have the factorization homology of a C* factorization
algebra.

Proof: (a) We prove the required properties.
(al) A is a factorization algebra. By definition [CoG1], this means that:

(all) A satisfied co-descent with respect to Weiss coverings.

(al2) fU = U, u---u U, is a disjoint union of several opens, then the map
Ko, v, 18 @ quasi-isomorphism.
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To prove (all), let {U,}aca be a Weiss covering of an open U < X, that
is, for any finite set I the family {U!},c4 is an open covering of U!. We can
assume that {U,} is closed under finite intersections. The indexing set A can
be then assumed to be a poset (sub-poset in the poset of all opens in U) and
considered as a category in a standard way. Under these assumptions, the
co-descent condition means that the canonical morphism

holim A(U,) — A(U)

acA

is a quasi-isomorphism. By definition of A this morphism can be written as

holim holim RT.(UZ, DR(ED),,) — holim RT.(U, DR(EW),,).
acA les le”

We can interchange the colimits in the source. After this our statement
follows from the fact that for each I the canonical arrow

holimy RT(U!, DR(ED),,) — RT(UT, DR(ED),,)

acA

is a quasi-isomorphism. This last fact is just a reflection of our assumption
that {Ul},c4 is a covering of U'.

The property (al2) follows directly from the fact that £ is a factorizing
D'-module.

(a2) A is locally constant. Let U; < Uy be an embedding of disks in X,,,.
Then for each I the embedding U] < U{ is a homotopy equivalence com-
patible with respect to the diagonal stratification (that is, the embeddings of
the corresponding strata are homotopy equivalences). By our assumptions,
DR(ED),, is a constructible complex on X! with respect to the diagonal
stratification. Therefore the natural arrow

RT(UL, DR(EW) ) — RT(UL, DR(EW) )

is a quasi-isomorphism. This means that A is locally constant. Part (a) of
the proposition is proved.

(b) Since £D) is a holonomic regular D-module on X!, we have, for each
I, a natural quasi-isomorphism

R (X", DR(EW)) 5 RI(XL, DR(ED)a).

an’
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The u; combine into an arrow

[[e]
/ £ = holim RT(X?,DR(EP) —

X Ies
> holim RT(X. ,DR(ED),,) = A
Ies Xan

which is a quasi-isomorphism since each uy is. The proposition is proved.

6.2 The case of the tangent bundle

We now specialize the considerations of Ch. 5 and §6.1 to £ = 9(C*) being
the covariant Verdier dual to the cohomological Chevalley-Eilenberg #sheaf

C* = C;. We further specialize the local Lie algebra to L = T, the tangent
bundle of X.

A. The diagonal D-module. Recall from Definition 5.1.10 the diagonal
D-module C} on X.

Lemma 6.2.1. CVA s reqular holonomic.

Proof: We first show that (\Z/A is holonomic. Let x € X be any point with
the embedding i, : {r} — X. It suffices to show that for any x the !-fiber
iLC% (a complex of D-modules on {z}, i.e., of vector spaces) has bounded
and finite-dimensional cohomology.

Consider the Verdier dual complex to C% and denote it C2. Then the [[+]]-
fiber igs[*]]C,A is dual to iferA and so it suffices to prove finite-dimensionality
of the cohomology of all such fibers. Now, unravelling the definitions shows
that i:[E[*]]C.A = CE,(W,) is the homological Chevalley-Eilenberg complex of
the topological Lie algebra W, = Der(@xyx) of formal vector fields near z.
Here the Chevalley-Eilenberg complex is understood in the completed sense.

Since the homology of W, is finite-dimensional by Gelfand-Fuchs [Fu],
the holonomicity follows.

Next, we show that CV'A is regular. For this, we denote this Dx-module
by Nx and study its dependence on X. That is, if 7 : X — X’ is an open
embedding of smooth algebraic varieties, then Nx = j*Nx:,. Now, if X' is
compact, then Ny, being a local system on X', is regular. Embedding any
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X into a smooth proper X’ we see that Nx is also regular, being the pullback
of a regular D-module. The lemma is proved. O]

Remark 6.2.2. Lemma 6.2.1 shows that the diagonal complex F} = DR((?A)
is the local system of the Gelfand-Fuchs cohomology.

B. Comparison with analytification. Recall that k = C.

Theorem 6.2.3. (a) The factorization algebra Aw(é-) on Xan 18 locally con-
stant.

(b) The canonical map

el _ , -
/X Y(C*) — RT(X7 DR(Y(C*))an) = Ay

Xan
s an equivalence.

Proof: We know that C* is a factorizing coherent [[D]]-module on X*. By
Theorem 4.6.1, w(Cv') is factorizable. Now Lemma 6.2.1 implies that CVA ~
¥(C*)® is holonomic regular. Proposition 6.1.1 implies that ¥(C*) is a h.r.
factorizing D'-module on X, After this the theorem becomes an application
of Proposition 6.1.2. O]

Combining Corollary 5.2.4 with Theorem 6.2.3, we find:

Corollary 6.2.4. For X a smooth affine variety over k = C, we have

CENT(X)) ~ | Ay

Xan

C. The structure of the factorization algebra A. Denote A = Ay
the locally constant factorization algebra Aw(é-)' We note, first of all, that 4
is naturally a factorization algebra in the category CDGA. This is because
all the steps in constructing A can be done in CDGA. So by Proposition
1.2.5, A is a cosheaf of cdga’s on X,,.

The complex manifold X,, can be seen as a C*-manifold of dimension
2n with GL,(C)-structure in the sense of Definition 1.3.12. Let GL, ¢ be
the algebraic group GL, with field of definiiton C. Any cdga A with a
GL;, c-action (Definition 1.3.7) has a BL-action of the Lie group GL,(C)
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and so gives rise to a locally constant cosheaf of cdga’s A = Ay on X,,, see
Proposition 1.3.13.

We recall from §1.4C that the cdga CE*(W,,(C)) has a natural GL; -
action and so we have the cosheaf of cdga’s CE*(W,,(C)) on X,,.

Proposition 6.2.5. The cosheaf of cdga’s Ax on X., is identified with
CE*(W,(C)). In particular,

Ay = / (CE*(W,(C)))

Xan

1s the factorization homology of the complex manifold X., with coefficients

in CE*(W,(C)).

Proof: Let U < X,, be a disk. Applying Theorem 5.5.4.14 of [Lu-HA], we
see that the natural arrow

RT.(U,DR(4(C*)EY)) — A(U) := holim RT..(U’, DR(4(C*){1)))
e

is a quasi-isomorphism. Further, by definition,
RL(U.DR((C)EY)) = RIe(U, F3)

is the compactly supported cohomology with coefficients in the diagonal com-
plex, see (5.1.11).

From this point on the proof proceeds similarly to that of Proposition
1.4.6. Our cosheaf CE*(W,,) is the inverse of the locally constant sheaf of
cdga’s [CE*(W,,)]x... So we construct, for each disk U, a family (parametrized
by a contractible space Ty;) of quasi-isomorphisms

qu : [CE*(Wa]x..(U) — RI.(U, F})

so that for any inclusion of disks U; < Uy we have a commutative diagram
analogous to (1.4.7).

To do this, for any point z € X,, we define the Lie C-algebras W, and
W, x of formal vector fields on X near x and on 7, X near 0 respectively.
We have a contractible space of identifications W,, — Wy, x parametrized by
formal isomorpisms ¢ : (7, X,0) — (X, x) identical on the tangent spaces.
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Recall that FR is the (shifted) local system of Gelfand-Fuchs cohomology.
Therefore for any disk U < X,,, and any x € U the pullback map

(6.2.6) CE*(W,) — RI.(U, F3)

is a quasi-isomorphism. Further, just like in Proposition 1.4.8(a), the sheaf
[CE*(W,,)]x., has, as the stalk at = € X, the complex CE*(Wr,x). So our
maps gy are constructed in the same way as in (1.4.9), with RI.(U, FR)
instead of CE*(Vect(U)) and the quasi-isomorphisms (6.2.6) instead of the
maps r, of Proposition 1.4.8(b). O

6.3 Main result

Let now X be a smooth variety over C of complex dimension n. Using
the G L, (C)-action on Y,,, we form the holomorphic Gelfand-Fuchs fibration
Y — X,, with fiber Y,,. Note that Y,, is 2n-connected, and so the non-
Abelian Poincaré duality Theorem 1.3.17 applies to Yy — X, (the real
dimension of X, is also 2n).

Combining Theorem 1.4.10 with Proposition 6.2.5 and Theorem 1.3.17,
we obtain:

Theorem 6.3.1. (a) Let X be any smooth algebraic variety over C. Then
we have identifications

[[c]] o
/X $(E) :/X Ay = Hiyp(Sect(Y /X o), C).

where on the right we have the space of continuous sections of Y x over Xy
(considered as just a topological space).

(b) In particular, the canonical arrow fx[[c]] W(C*) — fx[[c]] C* gives rise to
a natural morphism of commutative algebras

TX - Ht.op(seCt(XX/Xaﬂ)7 (C) - HI:ieRF(Xa TX)a
compatible with pullbacks under étale maps X' — X.

Applying now Corollary 6.2.4, we obtain our main result:
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Theorem 6.3.2. (a) Let X be a smooth affine variety over C. Then 7x is
an 1somorphism, i.e., we have a commutative algebra isomorphism

Hl:le(T(X)) = Ht.op(seCt(XX/XaH>’C)'

(b) In particular, H},,(T(X)) is finite-dimensional in each degree and is
an invariant of n, of the rational homotopy type of X, and of the Chern
classes ¢;(Tx) € H*(X,Q). O

Example 6.3.3. Let X be an elliptic curve. The tangent bundle T is trivial,
so Yy = Xan x Y7, Further, Y; is is homotopy equivalent to the 3-sphere
S3, while X,, is homeomorphic to S* x S'. So Sect(Y y/Xan) is homotopy
equivalent to Map(S! xS*, S) and has cohomology in infinitely many degrees
but finite-dimensional in each given degree. On the other hand,

RT(X,Ty) ~ C®C[-1]

is an abelian dg-Lie algebra and so H{, RT'(X,Tx) = C[[q]] is infinite-
dimensional pro-finite. This shows that 7x cannot be an isomorphism in
general.

6.4 Examples of explicit calculations of H{, (T(X))

A. Curves: Krichever-Novikov algebras. Let X be a smooth affine
curve. Assume that X is of genus g > 0 with m > 1 punctures. The Lie
algebra T'(X) is known as a Krichever-Novikov algebra, see [KN] [S].

Theorem 6.3.2 in this case gives the following. The Gelfand-Fuchs skele-
ton Y; is homotopy equivalent to the 3-sphere S3. The space X, is homotopy
equivalent to a bouquet of v = 2g+m — 1 circles, and so the complex tangent
bundle Tx is topologically trivial. Therefore the fibration Y y — X is trivial,
identified, up to homotopy equivalence, with X x S3. The space of sections
Sect(Y y/X) is therefore identified with the mapping space Map(X, S?) and
we obtain:

(6.4.1) HyW(T(X)) ~ Hy, (Map(\/ St 53),@).

i=1

The analytic version of this statement (involving all analytic vector fields
and their continuous cohomology) has been proved earlier in [Ka].
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B. Complexifications. An interesting class of examples is obtained by
considering n-dimensional complex affine varieties X which are in fact defined
over R so that the space of R-points M = X (R) is a smooth compact C*-
manifold of dimension n, homotopy equivalent to X,,. In such cases the
algebro-geometric cohomology Hf, (T(X)) is, by Theorem 6.3.2, identified
with the C* cohomology Hf,,(Vect(M)) ®z C. Examples include:

(a) X = Al — {0}, M = S
(b) X = GLy,, M = U(n).

(¢) X is the affine quadric > 27 = 1, M is the sphere S™.

C. P" minus a hypersurface. Suppose X = P"—Z where Z is a smooth
hypersurface of degree d. In this case we have, first of all:

Proposition 6.4.2. The Chern classes of T'x vanish rationally.

Proof: Indeed, they are the restrictions of the Chern classes of Tpr which lie
in
H*(P,,.C) = C[a]/h""", h = c1(O(1)).

Now, dh = ¢1(O(d)) vanishes on X since Z is the zero locus of a section
of O(d). Therefore h|x = 0 as well, and similarly for all powers of h. ]

Now, all the information about the fibration Yy — X,, which we use,
is contained in the Chern classes of Tx, as we are dealing with rational
homotopy types. Therefore Theorem 6.3.2 gives that

Hyo(T(X)) = H

top

(Map(Xan, ¥y), C).

Let us now identify the rational homotopy type of X,,. Let us think of P"
as the projectivization of C"*! and let f(zo,...,2,) be the homogeneous
polynomial of degree d defining Z. Without loss of generality, we can take
f=al+ - +a2% Let W < C"! be given by f = 1. We then have the
Galois covering p : W — X, with Galois group Z/d of dth roots of 1 acting
diagonally on C"*!.

Now W is the “Milnor fiber” for the isolated singularity f = 0. (We could
define W by f = e for any small £ with the same effect). Therefore by Mil-
nor’s theorem [Mi], W is homotopy equivalent to a bouquet of u spheres S™.
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Here 1 = (d — 1)"! is the Milnor number of the singularity. So topological
cohomology of W is C* in degree n and 0 elsewhere (except H° = C).
Further, the vanishing of the higher cohomology of the group Z/d with
coefficients in any C-module and the Leray spectral sequence of the Galois
covering p, combined with the theory of rational homotopy type, imply:

Proposition 6.4.3. The rational homotopy type of X., is that of a bouquet of
v spheres, where v is the dimension of the invariant subspace H™(W)%. [

The number v can be found explicitly by using the fact, standard in the
theory of singularities [Wal|, that the space H"(W) (the space of vanishing
cycles for f) has the same Z/d-character as the Jacobian quotient of the
module of volume forms

Q"“(A"H)/(o’f/&xi)?zo = det(C""") @ Clxo, ..., zn]/(xg ", ..., 2d7H).
So v is equal to the number of monomials

xé()...gpin7 0<i,<d-—2, Zikz—n—l mod d.

We get a statement of the form similar to (6.4.1):

Corollary 6.4.4.
HLT(0) = 1 (Man(\/57%,).€),
i=1

Example 6.4.5.Let d = 2, i.e., Z is a smooth quadric hypersurface. Then
W (complex affine quadric) is homotopy equivalent to S™ and so X,, =
CP" — Z,, is homotopy equivalent to RP™. The rational homotopy type of
RIP™ is that of a point, if n is even and is that of S™, if n is odd. This means
that v is equal to 0 or 1 in the correponding cases. Accordingly

H*(Y,,C), if n is even;

H (T(P"—2)) =
Lie(T'( ) {H'(Map(S“, Y,),C), if nis odd.
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