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Abstract

If M is a symplectic manifold then the space of smooth loops C8pS1,Mq inherits of a quasi-
symplectic form. We will focus in this article on an algebraic analogue of that result. In their
article [KV1], Kapranov and Vasserot introduced and studied the formal loop space of a scheme
X. It is an algebraic version of the space of smooth loops in a di�erentiable manifold.

We generalize their construction to higher dimensional loops. To any scheme X � not neces-
sarily smooth � we associate Ld

pXq, the space of loops of dimension d. We prove it has a structure
of (derived) Tate scheme � ie its tangent is a Tate module: it is in�nite dimensional but behaves
nicely enough regarding duality. We also de�ne the bubble space Bd

pXq, a variation of the loop
space. We prove that Bd

pXq is endowed with a natural symplectic form as soon as X has one (in
the sense of [PTVV]).

Throughout this paper, we will use the tools of p8, 1q-categories and symplectic derived alge-
braic geometry.
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Introduction

Considering a di�erential manifold M , one can build the space of smooth loops LpMq in M . It is
a central object of string theory. Moreover, if M is symplectic then so is LpMq � more precisely
quasi-symplectic since it is not of �nite dimension � see for instance [MP]. We will be interested here
in an algebraic analogue of that result.

The �rst question is then the following: what is an algebraic analogue of the space of smooth
loops? An answer appeared in 1994 in Carlos Contou-Carrère's work (see [CC]). He studies there
GmpCpptqqq, some sort of holomorphic functions in the multiplicative group scheme, and de�nes the
famous Contou-Carrère symbol. This is the �rst occurrence of a formal loop space known to the author.
This idea was then generalised to algebraic groups as the a�ne grassmanian GrG “ GpCpptqqq{GpCrrtssq
showed up and got involved in the geometric Langlands program. In their paper [KV1], Mikhail
Kapranov and Éric Vasserot introduced and studied the formal loop space of a smooth scheme X. It
is an ind-scheme LpXq which we can think of as the space of maps SpecCpptqq Ñ X. This construction
strongly inspired the one presented in this article.

There are at least two ways to build higher dimensional formal loops. The most studied one
consists in using higher dimensional local �elds kppt1qq . . . pptdqq and is linked to Beilinson's adèles. There
is also a generalisation of Contou-Carrère symbol in higher dimensions using those higher dimensional
local �elds � see [OZ] and [BGW1]. If we had adopted this angle, we would have considered maps
from some torus1 Specpkppt1qq . . . pptdqqq to X.

The approach we will follow in this work is di�erent. We generalize here the de�nition of Kapranov
and Vasserot to higher dimensional loops in the following way. For X a scheme of �nite presentation,
not necessarily smooth, we de�ne LdpXq, the space of formal loops of dimension d in X. We de�ne
LdV pXq the space of maps from the formal neighbourhood of 0 in Ad to X. This is a higher dimensional
version of the space of germs of arcs as studied by Jan Denef and François Loeser in [DL]. Let also
LdU pXq denote the space of maps from a punctured formal neighbourhood of 0 in Ad to X. The formal
loop space LdpXq is the formal completion of LdV pXq in LdU pXq. Understanding those three items is
the main goal of this work. The problem is mainly to give a meaningful de�nition of the punctured
formal neighbourhood of dimension d. We can describe what its cohomology should be:

Hn
pÂd r t0uq “

$

’

&

’

%

krrX1, . . . , Xdss if n “ 0

pX1 . . . Xdq
´1krX´1

1 , . . . , X´1
d s if n “ d´ 1

0 otherwise

but de�ning this punctured formal neighbourhood with all its structure is actually not an easy task.
Nevertheless, we can describe what maps out of it are, hence the de�nition of LdU pXq and the formal

1The variable t1, . . . , td are actually ordered. The author likes to think of Specpkppt1qq . . . pptdqqq as a formal torus

equipped with a �ag representing this order.
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loop space. This geometric object is of in�nite dimension, and part of this study is aimed at identifying
some structure. Here comes the �rst result in that direction.

Theorem 1 (see proposition 4.3.4). The formal loop space of dimension d in a scheme X is rep-
resented by a derived ind-pro-scheme. Moreover, the functor X ÞÑ LdpXq satis�es the étale descent
condition.

We use here methods from derived algebraic geometry as developed by Bertrand Toën and
Gabriele Vezzosi in [HAG2]. The author would like to emphasize here that the derived structure
is necessary since, when X is a scheme, the underlying schemes of LdpXq, LdU pXq and LdV pXq are
isomorphic as soon as d ě 2. Let us also note that derived algebraic geometry allowed us to de�ne
LdpXq for more general X's, namely any derived stack. In this case, the formal loop space LdpXq is
no longer a derived ind-pro-scheme but an ind-pro-stack. It for instance work for X a classifying stack
BG of an algebraic group. The cohomology of the tangent TLdpBGq can then be thought an higher
dimensional Kac-Moody algebra. In dimension 1, it is up to a shift the Lie algebra gpptqq where g is
the tangent of G.

The case d “ 1 andX is a smooth scheme gives a derived enhancement of Kapranov and Vasserot's
de�nition. This derived enhancement is conjectured to be trivial when X is a smooth a�ne scheme
in [GR, 9.2.10]. Gaitsgory and Rozenblyum also prove in loc. cit. their conjecture holds when X is
an algebraic group.

The proof of theorem 1 is based on an important lemma. We identify a full sub-category C of the
category of ind-pro-stacks such that the realisation functor C Ñ dStk is fully faithful. We then prove
that whenever X is a derived a�ne scheme, the stack LdpXq is in the essential image of C and is thus
endowed with an essentially unique ind-pro-structure satisfying some properties. The generalisation
to any X is made using a descent argument. Note that for general X's, the ind-pro-structure is not
known to satisfy nice properties one could want to have, for instance on the transition maps of the
diagrams.

We then focus on the following problem: can we build a symplectic form on LdpXq when X is
symplectic? Again, this question requires the tools of derived algebraic geometry and shifted symplectic
structures as in [PTVV]. A key feature of derived algebraic geometry is the cotangent complex LX
of any geometric object X. A (n-shifted) symplectic structure on X is a closed 2-form OX r´ns Ñ
LX ^ LX which is non degenerate � ie induces an equivalence

TX Ñ LX rns

Because LdpXq is not �nite, linking its cotangent to its dual � through an alleged symplectic form �
requires to identify once more some structure. We already know that it is an ind-pro-scheme but the
proper context seems to be what we call Tate stacks.

Before saying what a Tate stack is, let us talk about Tate modules. They de�ne a convenient
context for in�nite dimensional vector spaces. They where studied by Lefschetz, Beilinson and Drin-
feld, among others, and more recently by Bräunling, Gröchenig and Wolfson [BGW2]. We will use
here the notion of Tate objects in the context of stable p8, 1q-categories as developed in [Hen2]. If C
is a stable p8, 1q-category � playing the role of the category of �nite dimensional vector spaces, the
category TatepCq is the full subcategory of the p8, 1q-category of pro-ind-objects Pro IndpCq in C
containing both IndpCq and PropCq and stable by extensions and retracts.

We will de�ne the derived category of Tate modules on a scheme � and more generally on a
derived ind-pro-stack. An Artin ind-pro-stack X � meaning an ind-pro-object in derived Artin stacks
� is then gifted with a cotangent complex LX . This cotangent complex inherits a natural structure of
pro-ind-module on X. This allows us to de�ne a Tate stack as an Artin ind-pro-stack whose cotangent
complex is a Tate module. The formal loop space LdpXq is then a Tate stack as soon as X is a �nitely
presented derived a�ne scheme. For a more general X, what precedes makes LdpXq some kind of
locally Tate stack. This structure su�ces to de�ne a determinantal anomaly

“

DetLdpXq
‰

P H2
´

LdpXq,OˆLdpXq
¯
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for any quasi-compact quasi-separated (derived) scheme X � this construction also works for slightly
more general X's, namely Deligne-Mumford stacks with algebraisable diagonal, see de�nition 3.1.3.
Kapranov and Vasserot proved in [KV3] that in dimension 1, the determinantal anomaly governs the
existence of sheaves of chiral di�erential operators on X. One could expect to have a similar result
in higher dimensions, with higher dimensional analogues of chiral operators and vertex algebras. The
author plans on studying this in a future work.

Another feature of Tate modules is duality. It makes perfect sense and behaves properly. Using
the theory of symplectic derived stacks developed by Pantev, Toën, Vaquié and Vezzosi in [PTVV], we
are then able to build a notion of symplectic Tate stack: a Tate stack Z equipped with a (n-shifted)
closed 2-form which induces an equivalence

TZ
„
Ñ LZrns

of Tate modules over Z between the tangent and (shifted) cotangent complexes of Z.
To make a step toward proving that LdpXq is a symplectic Tate stack, we actually study the

bubble space Bd
pXq � see de�nition 5.2.3. When X is a�ne, we get an equivalence

Bd
pXq » LdV pXq ˆ

LdU pXq
LdV pXq

Note that the �bre product above is a derived intersection. We then prove the following result

Theorem 2 (see theorem 5.4.1). If X is an n-shifted symplectic stack then the bubble space Bd
pXq

is endowed with a structure of pn´ dq-shifted symplectic Tate stack.

The proof of this result is based on a classical method. The bubble space is in fact, as an ind-
pro-stack, the mapping stack from what we call the formal sphere Ŝd of dimension d to X. There are
therefore two maps

Bd
pXq Bd

pXq ˆ Ŝd
ev //proo X

The symplectic form on Bd
pXq is then

ş

Ŝd
ev˚ ωX , where ωX is the symplectic form on X. The key

argument is the construction of this integration on the formal sphere, ie on an oriented pro-ind-stack
of dimension d. The orientation is given by a residue map. On the level of cohomology, it is the
morphism

Hd
pŜdq » pX1 . . . Xdq

´1krX´1
1 , . . . , X´1

d s Ñ k

mapping pX1 . . . Xdq
´1 to 1.

This integration method would not work on LdpXq, since the punctured formal neighbourhood
does not have as much structure as the formal sphere: it is not known to be a pro-ind-scheme.
Nevertheless, theorem 2 is a �rst step toward proving that LdpXq is symplectic. We can consider the
nerve Z‚ of the map LdV pXq Ñ LdU pXq. It is a groupoid object in ind-pro-stacks whose space of maps
is Bd

pXq. The author expects that this groupoid is compatible in some sense with the symplectic
structure so that LdU pXq would inherit a symplectic form from realising this groupoid. One the other
hand, if LdU pXq was proven to be symplectic, then the �bre product de�ning Bd

pXq should be a
Lagrangian intersection. The bubble space would then inherit a symplectic structure from that on
LdpXq.

Techniques and conventions

Throughout this work, we will use the techniques of p8, 1q-category theory. We will once in a while
use explicitly the model of quasi-categories developed by Joyal and Lurie (see [HTT]). That being
said, the results should be true with any equivalent model. Let us �x now two universes U P V to deal
with size issues. Every algebra, module or so will implicitly be U-small. The �rst part will consist of
reminders about p8, 1q-categories. We will �x there some notations.

4



We will also use derived algebraic geometry, as introduced in [HAG2]. We refer to [Toë3] for a
recent survey of this theory. We will denote by k a base �eld and by dStk the p8, 1q-category of
(U-small) derived stacks over k. In the �rst section, we will dedicate a few page to introduce derived
algebraic geometry.

Outline

This article begins with a few paragraphs, recalling some notions we will use. Among them are p8, 1q-
categories and derived algebraic geometry. In section 1, we develop some more p8, 1q-categorical
tools we will need later on. In section 2, we set up a theory of geometric ind-pro-stacks. We then
de�ne in section 3 symplectic Tate stacks and give a few properties, including the construction of
the determinantal anomaly (see de�nition 3.1.3). Comes section 4 where we �nally de�ne higher
dimensional loop spaces and prove theorem 1 (see proposition 4.3.4). We �nally introduce the bubble
space and prove theorem 2 (see theorem 5.4.1) in section 5.
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Preliminaries

In this part, we recall some results and de�nitions from p8, 1q-category theory and derived algebraic
geometry.

0.1 A few tools from higher category theory

In the last decades, theory of p8, 1q-categories has tremendously grown. The core idea is to consider
categories enriched over spaces, so that every object or morphism is considered up to higher homotopy.
The typical example of such a category is the category of topological spaces itself: for any topological
spaces X and Y , the set of maps X Ñ Y inherits a topology. It is often useful to talk about topological
spaces up to homotopy equivalences. Doing so, one must also consider maps up to homotopy. To do
so, one can of course formally invert every homotopy equivalence and get a set of morphisms rX,Y s.
This process loses information and mathematicians tried to keep trace of the space of morphisms.

The �rst fully equipped theory handy enough to work with such examples, called model categories,
was introduced by Quillen. A model category is a category with three collections of maps � weak
equivalences (typically homotopy equivalences), �brations and co�brations � satisfying a bunch of
conditions. The datum of such collections allows us to compute limits and colimits up to homotopy.
We refer to [Hov] for a comprehensive review of the subject.

Using model categories, several mathematicians developed theories of p8, 1q-categories. Let us
name here Joyal's quasi-categories, complete Segal spaces or simplicial categories. Each one of those
theories is actually a model category and they are all equivalent one to another � see [Ber] for a review.

In [HTT], Lurie developed the theory of quasi-categories. In this book, he builds everything
necessary so that we can think of p8, 1q-categories as we do usual categories. To prove something
in this context still requires extra care though. We will use throughout this work the language as
developed by Lurie, but we will try to keep in mind the 1-categorical intuition.

In this section, we will �x a few notations and recall some results to which we will often refer.
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Notations: Let us �rst �x a few notations, borrowed from [HTT].

• We will denote by CatU8 the p8, 1q-category of U-small p8, 1q-categories � see [HTT, 3.0.0.1];

• Let PrL,U
8 denote the p8, 1q-category of U-presentable (and thus V-small) p8, 1q-categories with

left adjoint functors � see [HTT, 5.5.3.1];

• The symbol sSets will denote the p8, 1q-category of U-small spaces;

• For any p8, 1q-categories C and D we will write FctpC,Dq for the p8, 1q-category of functors from
C to D (see [HTT, 1.2.7.3]). The category of presheaves will be denoted PpCq “ FctpCop, sSetsq.

• For any p8, 1q-category C and any objects c and d in C, we will denote by MapCpc, dq the space
of maps from c to d.

• For any simplicial set K, we will denote by KŹ the simplicial set obtained from K by formally
adding a �nal object. This �nal object will be called the cone point of KŹ.

The following theorem is a concatenation of results from Lurie.

Theorem 0.1.1 (Lurie). Let C be a V-small p8, 1q-category. There is an p8, 1q-category IndU
pCq

and a functor j : C Ñ IndU
pCq such that

(i) The p8, 1q-category IndU
pCq is V-small;

(ii) The p8, 1q-category IndU
pCq admits U-small �ltered colimits and is generated by U-small �ltered

colimits of objects in jpCq;

(iii) The functor j is fully faithful and preserves �nite limits and �nite colimits which exist in C;

(iv) For any c P C, its image jpcq is U-small compact in IndU
pCq;

(v) For every p8, 1q-category D with every U-small �ltered colimits, the functor j induces an equiv-
alence

FctU´c
pIndU

pCq,Dq „Ñ FctpC,Dq

where FctU´c
pIndU

pCq,Dq denote the full subcategory of FctpIndU
pCq,Dq spanned by functors

preserving U-small �ltered colimits.

(vi) If C is U-small and admits all �nite colimits then IndU
pCq is U-presentable;

(vii) If C is endowed with a symmetric monoidal structure then there exists such a structure on
IndU

pCq such that the monoidal product preserves U-small �ltered colimits in each variable.

Proof. Let us use the notations of [HTT, 5.3.6.2]. Let K denote the collection of U-small �ltered
simplicial sets. We then set IndU

pCq “ PK
HpCq. It satis�es the required properties because of loc. cit.

5.3.6.2 and 5.5.1.1. We also need tiny modi�cations of the proofs of loc. cit. 5.3.5.14 and 5.3.5.5. The
last item is proved in [HAlg, 6.3.1.10].

Remark 0.1.2. Note that when C admits �nite colimits then the category IndU
pCq embeds in the

V-presentable category IndV
pCq.

De�nition 0.1.3. Let C be a V-small 8-category. We de�ne ProU
pCq as the p8, 1q-category

ProU
pCq “

´

IndU
pCopq

¯op

It satis�es properties dual to those of IndU
pCq.
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De�nition 0.1.4. Let C be a V-small p8, 1q-category. Let

i : FctpC,CatV8q Ñ FctpIndU
pCq,CatV8q

denote the left Kan extension functor. We will denote by IndU
C the composite functor

FctpC,CatV8q
i // FctpIndU

pCq,CatV8q
IndU

˝´ // FctpIndU
pCq,CatV8q

We will denote by ProU
C the composite functor

FctpC,CatV8q
ProU

˝´ // FctpC,CatV8q
// FctpProU

pCq,CatV8q

We de�ne the same way

IndV
C : FctpC,CatV8q Ñ FctpIndV

pCq,Cat8q

ProV
C : FctpC,CatV8q Ñ FctpProV

pCq,Cat8q

Remark 0.1.5. The de�nition 0.1.4 can be expanded as follows. To any functor f : C Ñ CatV8 and
any ind-object c colimit of a diagram

K
c̄ // C // IndU

pCq

we construct an p8, 1q-category

IndU
C pfqpcq » IndU

pcolim fpc̄qq

To any pro-object d limit of a diagram

Kop d̄ // C // ProU
pCq

we associate an p8, 1q-category

ProU
C pfqpdq » lim ProU

pfpd̄qq

De�nition 0.1.6. Let CatV,st8 denote the subcategory of CatV8 spanned by stable categories with
exact functors between them � see [HAlg, 1.1.4]. Let CatV,st,id8 denote the full subcategory of CatV,st8

spanned by idempotent complete stable categories.

Remark 0.1.7. It follows from [HAlg, 1.1.4.6, 1.1.3.6, 1.1.1.13 and 1.1.4.4] that the functors IndU
C and

ProU
C restricts to functors

IndU
C : FctpC,CatV,st8 q Ñ FctpIndU

pCq,CatV,st8 q

ProU
C : FctpC,CatV,st8 q Ñ FctpProU

pCq,CatV,st8 q

Symmetric monoidal p8, 1q-categories: We will make use in the last chapter of the theory of
symmetric monoidal p8, 1q-categories as developed in [HAlg]. Let us give a (very) quick review of
those objects.

De�nition 0.1.8. Let Fin˚ denote the category of pointed �nite sets. For any n P N, we will denote
by xny the set t˚, 1, . . . , nu pointed at ˚. For any n and i ď n, the Segal map δi : xny Ñ x1y is de�ned
by δipjq “ 1 if j “ i and δipjq “ ˚ otherwise.
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De�nition 0.1.9. (see [HAlg, 2.0.0.7]) Let C be an p8, 1q-category. A symmetric monoidal structure
on C is the datum of a coCartesian �bration p : Cb Ñ Fin˚ such that

• The �bre category Cb
x1y is equivalent to C and

• For any n, the Segal maps induce an equivalence Cb
xny Ñ pCb

x1yq
n » Cn.

where Cb
xny denote the �bre of p at xny. We will denote by Catb,V8 the p8, 1q-category of V-small

symmetric monoidal p8, 1q-categories � see [HAlg, 2.1.4.13].

Such a coCartesian �bration is classi�ed by a functor φ : Fin˚ Ñ CatV8 � see [HTT, 3.3.2.2] � such
that φpxnyq » Cn. The tensor product on C is induced by the map of pointed �nite sets µ : x2y Ñ x1y
mapping both 1 and 2 to 1

b “ φpµq : C2 Ñ C

Remark 0.1.10. The forgetful functor Catb,V8 Ñ CatV8 preserves all limits as well as �ltered colimits
� see [HAlg, 3.2.2.4 and 3.2.3.2]. Moreover, it follows from theorem 0.1.1 - (vii) that the functor IndU

induces a functor
IndU : Catb,V8 Ñ Catb,V8

The same holds for ProU. The constructions IndU and ProU therefore restrict to

IndU
C : FctpC,Catb,V8 q Ñ FctpIndU

pCq,Catb,V8 q

ProU
C : FctpC,Catb,V8 q Ñ FctpProU

pCq,Catb,V8 q

Tate objects: We now recall the de�nition and a few properties of Tate objects in a stable and
idempotent complete p8, 1q-category. The content of this paragraph comes from [Hen2]. See also
[Hen1].

De�nition 0.1.11. Let C be a stable and idempotent complete p8, 1q-category. Let TateU
pCq denote

the smallest full subcategory of ProU IndU
pCq containing IndU

pCq and ProU
pCq, and both stable and

idempotent complete.

The category TateU
pCq naturally embeds into IndU ProU

pCq as well.

Proposition 0.1.12. If moreover C is endowed with a duality equivalence Cop „
Ñ C then the induced

functor

ProU IndU
pCq Ñ

´

ProU IndU
pCq

¯op

» IndU ProU
pCq

preserves Tate objects and induces an equivalence TateU
pCq » TateU

pCqop.

De�nition 0.1.13. Let C be a V-small p8, 1q-category. We de�ne the functor

TateU : FctpC,CatV,st8 q
i //FctpIndU

pCq,CatV,st8 q
TateU

˝´ //FctpIndU
pCq,CatV,st,id8 q

0.2 Derived algebraic geometry

We present here some background results about derived algebraic geometry. Let us assume k is a �eld
of characteristic 0. First introduced by Toën and Vezzosi in [HAG2], derived algebraic geometry is a
generalisation of algebraic geometry in which we replace commutative algebras over k by commutative
di�erential graded algebras (or cdga's). We refer to [Toë3] for a recent survey of this theory.
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Generalities on derived stacks: We will denote by cdgaď0
k the p8, 1q-category of cdga's over k

concentrated in non-positive cohomological degree. It is the p8, 1q-localisation of a model category
along weak equivalences. Let us denote dAffk the opposite p8, 1q-category of cdgaď0

k . It is the
category of derived a�ne schemes over k. In this work, we will adopt a cohomological convention for
cdga's.

A derived prestack is a presheaf dAffop
k » cdgaď0

k Ñ sSets. We will thus write PpdAffkq for
the p8, 1q-category of derived prestacks. A derived stack is a prestack with a descent condition. We
will denote by dStk the p8, 1q-category of derived stacks. It comes with an adjunction

p´q` : PpdAffkq Õ dStk

where the left adjoint p´q` is called the stacki�cation functor.

Remark 0.2.1. The categories of varieties, schemes or (non derived) stacks embed into dStk.

De�nition 0.2.2. The p8, 1q-category of derived stacks admits an internal hom MappX,Y q between
two stacks X and Y . It is the functor cdgaď0

k Ñ sSets de�ned by

A ÞÑ MapdStk
pX ˆ SpecA, Y q

We will call it the mapping stack from X to Y .

There is a derived version of Artin stacks of which we �rst give a recursive de�nition.

De�nition 0.2.3. (see for instance [Toë1, 5.2.2]) Let X be a derived stack.

• We say that X is a derived 0-Artin stack if it is a derived a�ne scheme ;

• We say that X is a derived n-Artin stack if there is a family pTαq of derived a�ne schemes and
a smooth atlas

u :
ž

Tα Ñ X

such that the nerve of u has values in derived pn´ 1q-Artin stacks ;

• We say that X is a derived Artin stack if it is an n-Artin stack for some n.

We will denote by dStArt
k the full subcategory of dStk spanned by derived Artin stacks.

To any cdga A we associate the category dgModA of dg-modules over A. Similarly, to any derived
stack X we can associate a derived category QcohpXq of quasicoherent sheaves. It is a U-presentable
p8, 1q-category given by the formula

QcohpXq » lim
SpecAÑX

dgModA

Moreover, for any map f : X Ñ Y , there is a natural pull back functor f˚ : QcohpY q Ñ QcohpXq.
This functor admits a right adjoint, which we will denote by f˚. This construction is actually a functor
of p8, 1q-categories.

De�nition 0.2.4. Let us denote by Qcoh the functor

Qcoh : dStop
k Ñ PrL,U

8

For any X we can identify a full subcategory PerfpXq Ă QcohpXq of perfect complexes. This de�nes
a functor

Perf : dStop
k Ñ CatU8

Remark 0.2.5. For any derived stack X the categories QcohpXq and PerfpXq are actually stable and
idempotent complete p8, 1q-categories. The inclusion PerfpXq Ñ QcohpXq is exact. Moreover, for
any map f : X Ñ Y the pull back functor f˚ preserves perfect modules and is also exact.

Any derived Artin stack X over a basis S admits a cotangent complex LX{S P QcohpXq. If X is
locally of �nite presentation, then the its cotangent complex is perfect

LX{S P PerfpXq
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Symplectic structures: Following [PTVV], to any derived stack X we associate two complexes
AppXq and Ap,clpXq in dgModk, respectively of p-forms and closed p-forms on X. They come with
a natural morphism Ap,clpXq Ñ AppXq forgetting the lock closing the forms2. This actually glues
into a natural transformation

dStk

Ap,cl

''

Ap

55��
dgModk

Let us emphasize that the complex A2pXq is canonically equivalent to the global section complex
of LX ^ LX . In particular, any n-shifted 2-forms kr´ns Ñ AppXq induces a morphism OX r´ns Ñ
LX ^LX in QcohpXq. If X is locally of �nite presentation, the cotangent LX is perfect and we then
get a map

TX r´ns Ñ LX

De�nition 0.2.6. Let X be a derived stack locally of �nite presentation.

• An n-shifted 2-form ωX : kr´ns Ñ A2pXq is called non-degenerated if the induced morphism
TX r´ns Ñ LX is an equivalence;

• An n-shifted symplectic form on X is a non-degenerated n-shifted closed 2-form.

Obstruction theory: Let A P cdgaď0
k and let M P dgModď´1

A be an A-module concentrated in
negative cohomological degrees. Let d be a derivation AÑ A‘M and s : AÑ A‘M be the trivial
derivation. The square zero extension of A by M r´1s twisted by d is the �bre product

A‘dM r´1s
p //

��

A

d

��
A

s // A‘M

Let now X be a derived stack and M P QcohpXqď´1. We will denote by XrM s the trivial square
zero extension of X by M . Let also d : XrM s Ñ X be a derivation � ie a retract of the natural map
X Ñ XrM s. We de�ne the square zero extension of X by M r´1s twisted by d as the colimit

XdrM r´1ss “ colim
f : SpecAÑX

SpecpA‘f˚d f
˚M r´1sq

It is endowed with a natural morphism X Ñ XdrM r´1ss induced by the projections p as above.

Proposition 0.2.7 (Obstruction theory on stacks). Let F Ñ G be an algebraic morphism of derived
stacks. Let X be a derived stack and let M P QcohpXqď´1. Let d be a derivation

d P MapX{´pXrM s, Xq

We consider the map of simplicial sets

ψ : MappXdrM r´1ss, F q Ñ MappX,F q ˆ
MappX,Gq

MappXdrM r´1ss, Gq

Let y P MappX,F q ˆMappX,Gq MappXdrM r´1ss, Gq and let x P MappX,F q be the induced map. There
exists a point αpyq P Mappx˚LF {G,Mq such that the �bre ψy of ψ at y is equivalent to the space of
paths from 0 to αpyq in Mappx˚LF {G,Mq

ψy » Ω0,αpyqMappx˚LF {G,Mq
2This lock is a structure on the form: being closed in not a property in this context.
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Proof. This is a simple generalisation of [HAG2, 1.4.2.6]. The proof is very similar. We have a
natural commutative square

XrM s
d //

��

X

��
X // XdrM r´1ss

It induces a map

α : MappX,F q ˆ
MappX,Gq

MappXdrM r´1ss, Gq Ñ MapX{´{GpXrM s, F q » Mappx˚LF {G,Mq

Let Ω0,αpyqMapX{´{GpXrM s, F q denote the space of paths from 0 to αpyq. It is the �bre product

Ω0,αpyqMapX{´{GpXrM s, F q
//

��

˚

αpyq

��
˚

0 // MapX{´{GpXrM s, F q

The composite map αψ is by de�nition homotopic to the 0 map. This de�nes a morphism

f : Ω0,αpyqMapX{´{GpXrM s, F q Ñ ψy

It now su�ces to see that the category of X's for which f is an equivalence contains every derived
a�ne scheme and is stable by colimits. The �rst assertion is exactly [HAG2, 1.4.2.6] and the second
one is trivial.

Algebraisable stacks: Let X be a derived stack and A be a cdga. Let a “ pa1, . . . , apq be a
sequence of elements of A0 forming a regular sequence in H0

pAq. Let A{an1 , . . . , a
n
p
denote the Kozsul

complex associated with the regular sequence pan1 , . . . , a
n
p q. It is endowed with a cdga structure. There

is a canonical map

ψpAqa : colim
n

X
´

A{an1 , . . . , a
n
p

¯

Ñ X
´

lim
n
A{an1 , . . . , a

n
p

¯

This map is usually not an equivalence.

De�nition 0.2.8. A derived stack X is called algebraisable if for any A and any regular sequence a
the map ψpAqa is an equivalence.

A map f : X Ñ Y is called algebraisable if for any derived a�ne scheme T and any map T Ñ Y ,
the �bre product X ˆY T is algebraisable.

We will say that a derived stackX has algebraisable diagonal if the diagonal morphismX Ñ XˆX
is algebraisable.

Remark 0.2.9. A derived stack X has algebraisable diagonal if for any A and a the map ψpAqa is
fully faithful. One could also rephrase the de�nition of being algebraisable as follows. A stack is
algebraisable if it does not detect the di�erence between

colim
n

Spec
´

A{an1 , . . . , a
n
p

¯

and Spec
´

lim
n
A{an1 , . . . , a

n
p

¯

Example 0.2.10. Any derived a�ne scheme is algebraisable. Another important example of algebrais-
able stack is the stack of perfect complexes. In [Bha], Bhargav Bhatt gives some more examples of
algebraisable (non-derived) stacks � although our de�nition slightly di�ers from his. He proves that
any quasi-compact quasi-separated algebraic space is algebraisable and also provides with examples
of non-algebraisable stacks. Let us name KpGm, 2q � the Eilenberg-Maclane classifying stack of Gm �
as an example of non-algebraisable stack. Algebraisability of Deligne-Mumford stacks is also look at
in [DAG-XII].
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1 Categorical results

This hole section contains general results in higher category theory. We will refer to them throughout
this article. On �rst read, the reader could skip this part and come back when required.

1.1 Adjunction and unit transformation

We prove here results about adjunction units between p8, 1q-categories. They deal with quite technical
questions for which the author did not �nd any reference in the literature. A trustful reader could
skip this part and refer to the results when needed.

Let C be a U-small p8, 1q-category. Let s : C{CatU8 Ñ CatV8 denote the constant functor C and
t the target functor pC Ñ Dq ÞÑ D � composed with the inclusion CatU8 Ñ CatV8. The evaluation
map

pCatU8q
∆1

ˆ∆1 Ñ CatU8 Ñ CatV8

de�ne a natural transformation e : sÑ t. Let
ş

tÑ C{CatU8 denote the coCartesian �bration classfying
t. The one classifying s is the projection

ş

s “ CˆC{CatU8 Ñ C{CatU8. We can thus consider the map
E :

ş

sÑ
ş

t induced by e.

De�nition 1.1.1. Let us denote by FC the functor

Cop ˆ
ş

t
ψ // Cop ˆ

´

C{CatU8

¯op

ˆ
ş

t
E // `ş t

˘op
ˆ
ş

t
Mapş

t // sSets

where ψ is induced by the initial object of C{CatU8.

Lemma 1.1.2. Let f be a functor C Ñ D between U-small p8, 1q-categories. It induces a map
D Ñ

ş

t. Moreover the functor

Cop ˆD // Cop ˆ
ş

t
FC // sSets

is equivalent to the functor

Cop ˆD
fop,id // Dop ˆD

MapD // sSets

Proof. There is by de�nition a natural transformation θ between the two functors at hand. To any
pair pc, dq P Cop ˆD, it associates the natural map

MapDpfpcq, dq » Mapş

tC ppf, fpcqq, pf, dqq Ñ Mapş

tC ppidC , cq, pf, dqq

which is an equivalence (see [HTT, 2.4.4.2]).

We will denote by CatU,L8 the sub-category of CatU8 of all categories but only left adjoint functors
between them.

Proposition 1.1.3. Let C be a U-small p8, 1q-category. There exists a functor

MC : C{CatU8 Ñ
MapCp´,´q{FctpC ˆ Cop, sSetsq

mapping a functor f : C Ñ D to the functor MapDpfp´q, fp´qq. It restricts to a functor

εC : C{CatU,L8 Ñ id{FctpC, Cq

mapping a functor f : C Ñ D with a right adjoint g the unit transformation of the adjunction id Ñ gf .
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Proof. We consider the composition

Cop ˆ C ˆ C{CatU8
E // Cop ˆ

ş

t
FC // sSets

It induces a functor
C{CatU8 Ñ FctpC ˆ Cop, sSetsq

The image of the initial object idC is the functor MapCp´,´q. We get the required

MC : C{CatU8 Ñ
MapCp´,´q{FctpC ˆ Cop, sSetsq

Let i denote the fully faithful functor

FctpC, Cq Ñ FctpC,PpCqq » FctpC ˆ Cop, sSetsq

The restriction of MC to C{CatU,L8 has image in the category of right representable functors CˆCop Ñ

sSets. It therefore factors through i and induces the functor

εC : C{CatU,L8 Ñ id{FctpC, Cq

Remark 1.1.4. There is a dual statement to proposition 1.1.3. Namely, there exists a functor

CatU8{C Ñ FctpC ˆ Cop, sSetsq{MapCp´,´q

which restricts to a functor
ηC : CatU,L8 {C Ñ FctpC, Cq{idC

mapping a left adjoint f to the counit transformation fg Ñ idC � where g is the right adjoint of f .

Proposition 1.1.5. Let K be a U-small �ltered simplicial set. Let D̄ : pKŹqop Ñ CatV,L8 be a diagram.
Let D be a limit of Kop Ñ pKŹqop Ñ CatV,L8 . Let also C P Cat8 be the cone point of D̄. If the
category C admits Kop-indexed limits then the canonical functor f : C Ñ D admits a right adjoint g.
This right adjoint g is the limit in FctpD, Cq

g “ lim
kPK

gkpk

where pk is the projection D Ñ D̄pkq and gk is the right adjoint to the functor fk : C Ñ D̄pkq.

Proof. The diagram D̄ corresponds to a diagram D̃ : Kop Ñ C{CatU8. Let us consider the pullback
diagram

ş

ptC ˝ D̃q //

��

ş

t

��
Kop D̃ // C{CatU8

The category D being a limit of D̃, there is a canonical natural transformation from the constant
diagram D : Kop Ñ CatU8 to t ˝ D̃. It induces a map p : Kop ˆD Ñ

ş

t ˝ D̃. Let us then consider the
composite functor

Cop ˆKop ˆD
p // Cop ˆ

ş

t ˝ D̃ // Cop ˆ
ş

t
FC // sSets

We get a functor ψ P FctpKop,FctpD ˆ Cop, sSetsqq. It maps a vertex k P K to the functor
MapDkpfkp´q, pkp´qq � where fk : C Ñ Dk is D̃pkq and pk : D Ñ Dk is the projection. For every k,
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the functor fk admits right adjoint. It follows that ψ has values in the full sub-category FctpD, Cq of
FctpD ˆ Cop, sSetsq spanned by right representable functors:

ψ : Kop Ñ FctpD, Cq

Let g be a limit of ψ. We will prove that g is indeed a right adjoint of f : C Ñ D. We can build, using
the same process as for ψ, a diagram

pKŹqop Ñ FctpC, Cq

which corresponds to a diagram µ : Kop Ñ idC{FctpC, Cq. The composition

Kop Ñ idC{FctpC, Cq Ñ FctpC, Cq

is moreover equivalent to

Kop ψ
Ñ FctpD, Cq ´˝fÑ FctpC, Cq

The limit of µ therefore de�nes a natural transformation idC Ñ fg. It exhibits g as a right adjoint to
f .

Lemma 1.1.6. Let K be a �ltered simplicial set and let C̄ : K Ñ Cat8 be a diagram. For any k P K
we will write Ck instead of C̄pkq. We will also write C for a colimit of C̄. Every object of C is in the
essential image of at least one of the canonical functors fk : Ck Ñ C. For any pair of objects in C, we
can assume they are the images of x and y in Ck for some k, and we have

MapCpfkpxq, fkpyqq » colim
φ : kÑl

MapClpC̄pφqpxq, C̄pφqpyqq

Proof. This is a simple computation, using that �nite simplicial sets are compact in Cat8.

MapCpfkpxq, fkpyqq » Mapp∆1, Cq ˆ
Mapp˚>˚,Cq

tpfkpxq, fkpyqqu

» colim
φ : kÑl

˜

Mapp∆1, Clq ˆ
Mapp˚>˚,Clq

tpC̄pφqpxq, C̄pφqpyqqu

¸

» colim
φ : kÑl

MapClpC̄pφqpxq, C̄pφqpyqq

Lemma 1.1.7. Let K be a V-small �ltered simplicial set and let C̄ : K Ñ CatV8 be a diagram of
V-small categories. Let us assume that for each vertex k P K the category Ck “ C̄pkq admits �nite
colimits and that the transition maps in the diagram C̄ preserve �nite colimits. For any k Ñ l P K,
let us �x the following notations

colim C̄ i // IndV
pcolim C̄q

Cl Ck
φkloo

uk

OO

jk
// IndV

pCkq

ak

OO

fkl //
IndV

pClq
gkl

oo

where the functor ak is IndV
pukq. The functor φkl is the transition map C̄pk Ñ lq, the functor fkl is

IndV
pφklq and gkl is its right adjoint.

(i) (Lurie) The category colim C̄ admits �nite colimits and for any k the functor uk preserves such
colimits. It follows that ak admits a right adjoint bk.
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(ii) (Lurie) The natural functor IndV
pcolim C̄q Ñ colim IndV

pC̄q P PrL,V
8 is an equivalence. Those

two categories are also equivalent to the limit of the diagram IndV
pC̄qR of right adjoints

IndV
pC̄qR : K

IndV
pC̄q //PrL,V

8 »

´

PrR,V
8

¯op

(iii) For any k P K, the adjunction transformation jk Ñ bkakjk is a colimit of the diagram

µk : k{K
IndV

pC̄q // IndV
pCkq{CatV,L8

ε ˝jk // jk{FctpCk, IndV
pCkqq

If moreover K is U-small and if for any k Ñ l P K, the map gkl : IndV
pClq Ñ IndV

pCkq restricts to
a map g̃kl : IndU

pClq Ñ IndU
pCkq then

(iv) For any k P K the functor bk restricts to a functor b̃k : IndU
pCq Ñ IndU

pCkq, right adjoint to
ãk “ IndU

pukq. Moreover for any k Ñ l the map g̃kl is a right adjoint to f̃kl “ IndU
pφklq.

(v) There exists a diagram IndU
pC̄qR : Kop Ñ Cat8 mapping k Ñ l to g̃kl whose limit satis�es

lim IndU
pC̄qR » IndU

pcolim C̄q

(vi) For any k P K, the adjunction transformation ̃k Ñ b̃kãk ̃k is a colimit of the diagram

µ̃k : k{K
IndU

pC̄q // IndU
pCkq{CatV,L8

ε ˝̃k // ̃k{FctpCk, IndU
pCkqq

where ̃k is the canonical map Ck Ñ IndU
pCkq.

Proof. The �rst item is [HTT, 5.5.7.11]. The second is a combination of [HTT, 5.5.7.10, 5.5.3.4 and
5.5.3.18] and [HAlg, 6.3.7.9]. Concerning (iii), we consider the colimit of the diagram

k{K
µk // jk{FctpCk, IndV

pCkqq // MapCkp´,´q{FctpCk ˆ Cop
k , sSetsq

This diagram is equivalent to

θ : k{K
C̄ // Ck{CatU8

MCk // MapCkp´,´q{FctpCk ˆ Cop
k , sSetsq

From lemma 1.1.6, the colimit of θ is the functor

MapCpukp´q, ukp´qq »MapIndVpCqpiukp´q, iukp´qq

»MapIndVpCqpakjkp´q, akjkp´qq

where C denotes a colimit of C̄. This concludes the proof of (iii) and we now focus on (iv).
Let k Ñ l P K and let id Ñ gklfkl denote a unit for the adjunction. It restricts to a natural

transformation id Ñ g̃klf̃kl which exhibits g̃kl as a right adjoint to f̃kl. Using the same mechanism,
if the functor bk restricts to b̃k as promised then b̃k is indeed a right adjoint to ãk. It thus su�ces to
prove that the functor bki factors through the canonical inclusion tk : IndU

pCkq Ñ IndV
pCkq. Every

object of C is in the essential image of ul for some k Ñ l P K. It is therefore enough to see that for
any k Ñ l, the functor bkiul factors through tk. We compute

bkiul » bkaljl » gklblaljl » gklpcolimµlq

The diagram µl : l{K Ñ jl{FctpCl, IndV
pClqq factors into

l{K
µ̃l // ̃l{FctpCl, IndU

pClqq
tl // jl{FctpCl, IndV

pClqq
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Because gkl, g̃kl and tl preserve U-small �ltered colimits, the functor bkiul is the colimit of the diagram

l{K
µ̃l // ̃l{FctpCl, IndU

pClqq
tkg̃kl // tkg̃kl̃l{FctpCl, IndV

pCkqq

The functor tk also preserves U-small �ltered colimits and we have

bkiul » tkpcolim g̃kl ˝ µ̃lq

To prove (v), we use [HAlg, 6.2.3.18] to de�ne the diagram IndU
pC̄qR. It then follows that the

equivalence of (ii)
lim IndV

pC̄qR » IndV
pcolim C̄q

restricts to the required equivalence. We �nally deduce (vi) from the (iii).

Corollary 1.1.8. Let C be an p8, 1q-category and let F : C Ñ CatV,L8 be a functor. For any c P C
and any f : cÑ d P IndU

pCq, the functor

IndU
C pF qpfq : IndU

pF pcqq » IndU
C pF qpcq Ñ IndU

C pF qpdq

admits a right adjoint.

1.2 Computation techniques

We will now establish a few computational rules for the functors IndU and ProU. A trustful reader
not interested in p8, 1q-category theory could skip this subsection and come back for the results when
needed. We tried to keep an eye on the (1-)categorical intuition.

Let us start with a V-small 8-category C. Let sC : C∆1

Ñ C denote the source functor while
tC : C∆1

Ñ C denote the target functor. Using [HTT, 2.4.7.11 and 2.4.7.5] we see that sC is a Cartesian
�bration and tC is a coCartesian �bration.

De�nition 1.2.1. let C be a V-small p8, 1q-category. Let us denote by UC : Cop Ñ CatV8 the functor
classi�ed by sC . Let us denote by OC : C Ñ CatV8 the functor classi�ed by tC .

Remark 1.2.2. The functor UC map an object c P C to the comma category c{C and an arrow c Ñ d
to the forgetful functor

d{C Ñ c{C
The functor OC map an object c P C to the comma category C{c and an arrow cÑ d to the forgetful
functor

C{cÑ C{d
Lemma 1.2.3. Let C be a V-small p8, 1q-category. There is a natural equivalence

IndV
C pOCq » OIndVpCq

It induces an equivalence
IndU

C pOCq » OIndUpCq

Remark 1.2.4. Because of (ii) in lemma 1.1.7, if the category C admits all �nite colimits then we have

lim
k

IndV
pCq{ck » IndV

ˆ

colim
k
C{ck

˙

» IndV
pCq{c

where the limit on the left hand side is computed using base change functors. If K is U-small and if
IndU

pCq admits pullbacks then it restricts to an equivalence

lim
k

IndU
pCq{ck » IndU

pCq{c

Let us also note that there is a dual statement to lemma 1.2.3 involving ProU:

ProU
C pOCq » OProUpCq
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Proof. Let us �rst consider the pullback category

C{IndV
pCq //

q

��

IndV
pCq∆1

source,target

��
C ˆ IndV

pCq // IndV
pCq ˆ IndV

pCq

The functor q : C{IndV
pCq Ñ C ˆ IndV

pCq Ñ IndV
pCq is a coCartesian �bration. Let p denote the

coCartesian �bration p : E Ñ IndV
pCq classi�ed by the extension of OC

ÕC : IndV
pCq Ñ CatV8

There is a natural morphism functor g : E Ñ C{IndV
pCq over IndV

pCq. It induces an equivalence
�berwise and therefore g is an equivalence. Let D Ñ IndV

pCq denote a coCartesian �bration classifying
the functor

IndV
C pOCq » IndV

˝

´

ÕC

¯

: IndV
pCq Ñ Cat8

We have a diagram of coCartesian �bration over IndV
pCq

D Ð E » C{IndV
pCq Ñ IndV

pCq∆
1

We consider the relative Kan extension D Ñ IndV
pDq∆1

of C{IndV
pCq Ñ IndV

pCq∆1

. We thus have
the required natural transformation T : IndV

C pOCq Ñ OIndVpCq.

Let now c P IndV
pCq. Let c : K Ñ C be a V-small �ltered diagram whose colimit in IndV

pCq is c.
The map

T pcq : IndV
ˆ

colim
k
C{ck

˙

Ñ IndV
pCq{c

is equivalent to the ind-extension of the universal map

f : colim
k
C{ck Ñ IndV

pCq{c

For every k P K, let us denote by fk the natural functor

fk : C{ck Ñ IndV
pCq{c

Using [HTT, 5.3.5.11], to prove T pcq is an equivalence, it su�ces to see that :

• the functors fk have values in compact objects,

• the functor f is fully faithful,

• and the functor T pcq is essentially surjective.

Those three items are straightforwardly proved. We will still expand the third one. Let thus d P
IndV

pCq with a map d Ñ c in IndV
pCq. There exists a V-small �ltered diagram d : L Ñ C whose

colimit in IndV
pCq is d. For every l P L there exists an kplq such that the map dl Ñ c factors through

ckplq Ñ c. This implies that d is in the essential image of T pcq.

The construction of a natural transformation S : IndU
C pOCq Ñ OIndUpCq is similar to that of T . If

c : K Ñ C is U-small then the equivalence

T pcq : IndV
ˆ

colim
k
C{ck

˙

„
Ñ IndV

pCq{c

restricts to the equivalence

Spcq : IndU
ˆ

colim
k
C{ck

˙

„
Ñ IndU

pCq{c
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Lemma 1.2.5. Let C be a V-small p8, 1q-category with all pushouts. The Cartesian �bration

sC : C∆1

Ñ C

is then also a coCartesian �bration.

Proof. This is a consequence of [HTT, 5.2.2.5].

Remark 1.2.6. If C is an p8, 1q-category with all pullbacks, then the target functor

tC : C∆1

Ñ C

is also a Cartesian �bration.

De�nition 1.2.7. Let C be an p8, 1q-category. If C admits all pushouts, we will denote by U>C the
functor classifying the coCartesian �bration sC :

U>C : C Ñ CatV8

If C admits all pullbacks, we will denote by OˆC the functor classifying the Cartesian �bration tC :

OˆC : Cop Ñ CatV8

Note that those two constructions are of course linked : the functor OˆC is the composition of U>Cop

with the functor p´qop : CatV8 Ñ CatV8.

Remark 1.2.8. The functor U>C map an object c to the comma category c{C and a map c Ñ d to the
functor

´ >
c
d : c{C Ñ d{C

The functor OˆC maps a morphism cÑ d to the pullback functor

´ˆ
d
c : C{dÑ C{c

Lemma 1.2.9. Let C be a V-small 8-category with all pushouts. There is a natural equivalence

IndV
C pU

>
Cq » U>IndVpCq

It induces an equivalence
IndU

C pU
>
Cq » U>IndUpCq

Remark 1.2.10. Unwinding the de�nition, we can stated the above lemma as follows. Let c̄ : K Ñ C
be a �ltered diagram. The canonical functor

IndU
ˆ

colim
k

c̄k{C
˙

Ñ c{IndU
pCq

is an equivalence � where c is a colimit of c̄ in IndU
pCq. Using remark 1.2.4, we can shows the following

similar statement. If C admits pullbacks then there is an equivalence

ProU
CoppU>Copq » U>ProUpCopq

Proof. This is very similar to the proof of lemma 1.2.3. Let us �rst form the pullback category

IndV
pCq{C

π //

��

IndV
pCq∆1

source,target

��
IndV

pCq ˆ C // IndV
pCq ˆ IndV

pCq

18



The induced map q : IndV
pCq{C Ñ IndV

pCq ˆ C Ñ IndV
pCq is a coCartesian �bration. We can show

the same way we did in the proof of lemma 1.2.3 that it is classi�ed by the extension of U>C

Ũ
>

C : IndV
pCq Ñ CatV8

The functor π preserves coCartesian morphisms and therefore induces a natural transformation Ũ
>

C Ñ

U>IndVpCq. This transformation extends to a natural transformation

T : IndV
C pU

>
Cq Ñ U>IndVpCq

To prove that T is an equivalence, it su�ces to prove that for every c P IndV
pCq and any V-small

�ltered diagram c : K Ñ C whose colimit is c, the induced functor

T pcq : IndV
ˆ

colim
k

ck{C
˙

„
Ñ c{IndV

pCq

is an equivalence.
Let us �rst assume that K is a point and thus that c belong to C. The canonical functor

c{C Ñ c{IndV
pCq is fully faithful and its image is contained in the category of compact objects of

c{IndV
pCq. The induced functor

T pcq : IndV
´

c{C
¯

Ñ c{IndV
pCq

is therefore fully faithful (see [HTT, 5.3.5.11]). Let d P IndV
pCq with a map c Ñ d. Let d : L Ñ C

be a V-small �ltered diagram whose colimit in IndV
pCq is d. There exist some l0 P L such that the

map c Ñ d factors through dl0 Ñ d. The diagram l0{L Ñ C is in the image of F and its colimit in
IndV

pCq is d. The functor F is also essentially surjective and thus an equivalence. It restricts to an
equivalence

IndU
´

c{C
¯

Ñ c{IndU
pCq

Let us go back to the general case c P IndV
pCq. The targeted equivalence is

IndV
ˆ

colim
k

ck{C
˙

» lim
k

ck{IndV
pCq » c{IndV

pCq

where the limit is computed using the forgetful functors. The same argument works when replacing
V by U, using lemma 1.1.7, item (iv).

Lemma 1.2.11. Let C be an p8, 1q-category with all pullbacks. Let us denote by j the inclusion
IndU

pCq Ñ IPpCq “ IndU ProU
pCq. There is a fully faithful natural transformation

ΥC : ProU
CoppOˆC q Ñ OˆIPpCq ˝pj

opq

between functors pIndU
pCqqop Ñ CatU8

Remark 1.2.12. To state this lemma more informally, for any �ltered diagram c̄ : K Ñ C, we have a
fully faithful functor

lim
k

ProU
´

C{̄ck
¯

Ñ IPpCq{jpcq

where c is a colimit of c̄ in IndU
pCq. This lemma has an ind-version, actually easier to prove. If

d̄ : Kop Ñ C is now a co�ltered diagram, then there is a fully faithful functor

IndU
ˆ

colim
k
C{d̄k

˙

Ñ IPpCq{ipdq
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where d is a limit of d̄ in ProU
pCq. To state that last fact formally, if C be an p8, 1q-category with all

pullbacks then there is a fully faithful natural transformation

ΞC : IndU
CoppOˆC q Ñ OˆIPpCq ˝pi

opq

where i is the canonical inclusion ProU
pCq Ñ IPpCq.

Proof. Let us �rst consider the functor ProU
˝OˆC : Cop Ñ CatV8. It classi�es the Cartesian �bration

F de�ned as the pullback

ProU
pCq{C

F

��

// ProU
pCq∆1

tProUpCq

��
C // ProU

pCq

The canonical inclusion ProU
pCq Ñ IPpCq de�nes a functor f �tting in the commutative diagram

ProU
pCq{C

f //

F

%%

IPpCq{C //

��

IPpCq∆1

tIPpCq

��
C // IPpCq

From [HTT, 2.4.7.12] we deduce that f preserves Cartesian morphisms. It therefore de�nes a natural
transformation uC from ProU

˝OˆC to the restriction to Cop of OˆIPpCq. Since Oˆ
ProUpCq ˝pj

opq is the

right Kan extension of its restriction to Cop (see remark 1.2.4), this de�nes the required natural
transformation

ΥC : ProU
CoppOˆC q Ñ OˆIPpCq ˝pj

opq

To see that for any c P ProU
pCq, the induced functor ΥC

c is fully faithful, it su�ces to see that for any
c P C the functor uCc is fully faithful, which is obvious.

Lemma 1.2.13. Let C be a simplicial set. If C is a quasi-category then the map ∆1 Ñ ∆2

‚
f // ‚ Ñ ‚

f //
''

‚

‚

77

induces an inner �bration p : C∆2

Ñ C∆1

. If moreover C admits pullbacks then p is a Cartesian
�bration.

De�nition 1.2.14. Let C be an p8, 1q-category with pullbacks. Let us denote by

BˆC :
´

C∆1
¯op

Ñ Cat8

the functor classi�ed by the Cartesian �bration p of lemma 1.2.13. If D is an p8, 1q-category with
pushouts, we de�ne similarly

B>D : D∆1

Ñ Cat8

Remark 1.2.15. Let C be an 8-category with pullbacks. The functor BˆC maps a morphism f : xÑ y
to the category f{

`

C{y
˘

of factorisations of f . It maps a commutative square

x
f
//

��

y

��
z

g // t
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seen as a morphism f Ñ g in C∆1

to the base change functor

pz Ñ aÑ tq ÞÑ pxÑ aˆ
t
y Ñ yq

Proof (of lemma 1.2.13). For every 0 ă i ă n and every commutative diagram

Λni
//

��

C∆2

p

��

∆n // C∆1

we must build a lift ∆n Ñ C∆2

. The datum of such a lift is equivalent to that of a lift φ in the induced
commutative diagram

∆2 ˆ Λni
ž

∆1ˆΛni

∆1 ˆ∆n //

��

C

��
∆n ˆ∆2 //

φ

88

˚

The existence of φ then follows from the fact that C is a quasi-category.
Let us now assume that C admits pullbacks. The functor p is a Cartesian �bration if and only if

every commutative diagram

∆2 ˆ t1u
ž

∆1ˆt1u

∆1 ˆ∆1 f //

��

C

��
∆2 ˆ∆1 // ˚

admits a lift ∆2 ˆ ∆1 Ñ C which corresponds to a Cartesian morphism of C∆2

. Let us �x such a
diagram. It corresponds to a diagram in C

y

!!
x //

==

z

a //

==OO

c

OO

Because C is a quasi-category, we can complete the diagram above with an arrow aÑ y, faces and a
tetrahedron ra, x, y, zs. Let g denote the map

g : Λ2
2 ãÑ ∆2 ˆ t1u

ž

∆1ˆt1u

∆1 ˆ∆1 f
Ñ C

corresponding to the sub-diagram y Ñ z Ð c. By assumption, there exists a limit diagram b̄ : ˚‹Λ2
2 Ñ

C � where ‹ denotes the joint construction, see [HTT, 1.2.8 ]. Note that the plain square

y

!!
x //

==

z

a //

==OO

II

c

OO
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forms a map ā : t0u ‹ Λ2
2 Ñ C. Because b̄ is a limit diagram, there exists a map ∆1 ‹ Λ2

2 Ñ C whose
restriction to t0u ‹Λ2

2 is ā and whose restriction to t1u ‹Λ2
2 is b̄. This de�nes two tetrahedra ra, b, c, zs

and ra, b, y, zs represented here
y

��
x //

77 OO

z

b

��

GG

a //

??OO

GG

77

c

OO

Completing with the doted tetrahedron ra, x, y, zs we built above, we at last get the required map
φ : ∆2 ˆ∆1 Ñ C. To prove that the underlying morphism of C∆2

is a Cartesian morphism, we have
to see that for every commutative diagram

∆tn´1,nu ˆ∆2

��

φ

&&
∆n ˆ∆1

ž

Λnnˆ∆1

Λnn ˆ∆2 //

��

C

∆n ˆ∆2

there exists a lift ∆n ˆ∆2 Ñ C. Let A denote the sub-simplicial set of

∆n ˆ∆1
ž

Λnnˆ∆1

Λnn ˆ∆2

de�ned by cutting out the vertex x. Let B denote the sub-simplicial set of ∆nˆ∆2 de�ned by cutting
out the vertex x. We get a commutative diagram

∆1 ‹ Λ2
2

//

��

∆tn´1,nu ˆ∆2

��

φ

&&
A //

��

∆n ˆ∆1
ž

Λnnˆ∆1

Λnn ˆ∆2 //

��

C

B // ∆n ˆ∆2

Let also E be the sub-simplicial set of A de�ned by cutting out Λ2
2 and F the sub-simplicial set of B

obtained by cutting out Λ2
2. We now have A » E ‹ Λ2

2 and B » F ‹ Λ2
2 and a commutative diagram

∆1

  ��
E //

��

C{g

F
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The map E Ñ F is surjective on vertices. Adding cell after cell using the �nality of b̄, we build a lift
F Ñ C{g. We therefore have a lift B Ñ C. Using now that fact that C is a quasi-category, this lifts
again to a suitable map ∆n ˆ∆2 Ñ C

Let D be a �ltered poset, which we see as a 1-category. Let us de�ne D{DŹ the category whose
set of objects is the disjoint union of the set of objects and the set of morphisms of D � ie the set of
pairs x ď y. For any object x P D, we will denote by x ď 8 the corresponding object of D{DŹ. A
morphism pa : x ď yq Ñ pb : z ď tq in D{DŹ is by de�nition a commutative square in D

x a
//

��

y

��
z

b // t

which therefore corresponds to inequalities x ď z and y ď t. A morphism px ď yq Ñ pz ď 8q or
px ď 8q Ñ pz ď 8q is an inequality x ď z in D. There are no morphisms px ď 8q Ñ pz ď tq. The
functor

θ :
DÑ D{DŹ

x ÞÑ px ď 8q

is fully faithful. Using Quillen's theorem A and the fact that D is �ltered (so that its nerve is
contractible), we see θ is co�nal. There is also a fully faithful functor

D∆1

Ñ D{DŹ

Let L be the nerve of the category D{DŹ and K the nerve of D. For any object x P D we also de�ne
Kx Ă K∆1

to be the nerve of the full subcategory of D∆1

spanned by the objects y ď z where y ď x.

Lemma 1.2.16 (Lurie). Let C be an 8-category. Let φ : K∆1

Ñ C be a diagram. For any vertex
k P K, let φk denote a colimit diagram for the induced map

Kk Ñ K∆1 φ
Ñ C

Then the diagram φ factors through some map κ

K∆1

Ñ L
κ
Ñ C

such that

(i) The induced functor Cκ{ Ñ Cφ{ is a trivial �bration.

(ii) For any vertex k P K, the induced map pk{KqŹ Ñ LÑ C is a colimit diagram.

Remark 1.2.17. The above lemma can be informally stated as an equivalence

colim
kÑl

φpk Ñ lq » colim
kPK

colim
lPk{K

φpk Ñ lq

where for any k Ñ k1, the induced morphism colimlPk{K φpk Ñ lq Ñ colim
lPk

1
{K
φpk1 Ñ lq is given by

colim
lPk{K

φpk Ñ lq
„
Ð colim

lPk
1
{K

φpk Ñ k1 Ñ lq Ñ colim
lPk

1
{K

φpk1 Ñ lq

Proof. The existence of the diagram and the �rst item follows from [HTT, 4.2.3.4] applied to the
functor

DÑ sSets{K
x ÞÑ Kx

For the second item, we simply observe that the inclusion x{K Ñ Kx is co�nal.
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Proposition 1.2.18. Let C be a V-small8-category with �nite colimits. There is a natural equivalence

IndV
C∆1 pB>Cq » B>

IndVpCq∆1

It induces an equivalence
IndU

C∆1 pB>Cq » B>
IndUpCq∆1

Remark 1.2.19. There is a "pro" counterpart of proposition 1.2.18. If C is an 8-category which admits
all pullbacks then

ProU
pCopq∆

1 pB>Copq » B>ProUpCopq

Remark 1.2.20. We can state informally proposition 1.2.18 as follows. For any morphism f : xÑ y in
IndV

pCq and any diagram f̄ : K ˆ∆1 Ñ C whose colimit is f , the canonical functor

IndV
ˆ

colim
k

x̄pkq{C{ȳpkq

˙

Ñ x{IndV
pCq{y

is an equivalence � where x̄ “ f̄p´, 0q and ȳ “ f̄p´, 1q. The proof is based on the following informal
computation:

IndV
ˆ

colim
k

x̄pkq{C{ȳpkq

˙

» IndV
ˆ

colim
kÑl

x̄pkq{C{ȳplq

˙

» IndV
ˆ

colim
k

colim
lPk{K

x̄pkq{C{ȳplq

˙

» lim
k

x̄pkq{IndV
ˆ

colim
lPk{K

C{yplq

˙

» lim
k

x̄pkq{IndV
pCq{y »

x{IndV
pCq{y

Proof. Let us deal with the case of IndV. The case of IndU is very similar. Let us consider the
pullback category

IndV
pCq{C{IndV

pCq
ψ //

��

IndV
pCq∆2

p,q

��
IndV

pCq∆1

ˆ C // IndV
pCq∆1

ˆ IndV
pCq

where p is as in lemma 1.2.13 and q is induces by the inclusion t1u Ñ ∆2. The induced map

IndV
pCq{C{IndV

pCq Ñ IndV
pCq∆

1

is a cocartesian �bration classi�ed by the extension of B>C

B̃
>

C : IndV
´

C∆1
¯

» IndV
pCq∆

1

Ñ CatV8

The map ψ therefore induces a natural transformation B̃
>

C Ñ B>
IndVpCq∆1 . This naturally extends to

the required transformation

T : IndV
pB>Cq » IndV

˝

´

B̃
>

C

¯

Ñ B>
IndVpCq∆1

Let now f : c Ñ d be a morphism in IndV
pCq. Let K be a V-small �ltered simplicial set and let

f̄ : K Ñ C∆1

such that f is a colimit of f̄ in

IndV
´

C∆1
¯

Let φ : Kˆ∆1 Ñ C be induced by f̄ . Let us denote by j : C Ñ IndV
pCq the Yoneda embedding. Let p̄

denote a colimit diagram pKˆ∆1qŹ Ñ IndV
pCq extending i˝φ. The inclusion K » Kˆt1u Ñ Kˆ∆1
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is co�nal and the cone point of p̄ is thus equivalent to d. The restriction of p̄ to KŹ » pK ˆ t0uqŹ

de�nes a diagram c̄ : K Ñ IndV
pCq{d whose colimit is f . Let us denote by c̃ the composite diagram

c̃ : K
c̄ //IndV

pCq{d //IndV
pCq∆1

» IndV
´

C∆1
¯

It comes with a natural transformation α : f̄ Ñ c̃ induced by p̄. Let us record for further use that the
diagram c̄ factors through

C{d “ IndV
pCq∆

1

ˆ
IndV

pCqˆIndV
pCq

pC ˆ tduq

We now consider the map

γ : K∆1

ˆ∆1
ev,pr //K ˆ∆1

φ //C

and denote ḡ the induced map K∆1

Ñ C∆1

. Note that the composition

K
id´ // K∆1 ḡ // C∆1

equals f̄ . We de�ne the functor

h̄ : K∆1 ḡ //C∆1 B>C //CatV,fc8

IndV
//PrL,V

8

where CatV,fc8 is the category of V-small p8, 1q-categories with all �nite colimits. We can assume that
K is the nerve of a �ltered 1-category D. Using lemma 1.2.16 (and its notations) we get a diagram
κ : LÑ PrL,V

8 such that we have categorical equivalences
´

PrL,V
8

¯

κ˝θ{
»

´

PrL,V
8

¯

κ{
»

´

PrL,V
8

¯

h̄{
»

´

PrL,V
8

¯

h̄˝id´ {

The natural transformation α de�ned above induces an object of
´

PrL,V
8

¯

h̄˝id´ {
»

´

PrL,V
8

¯

κ˝θ{

It de�nes a natural transformation of functors K Ñ PrL,V
8

A : κ ˝ θ Ñ IndV
˝U>C{dpc̄q

Let k be a vertex of K. Using lemma 1.2.3, we deduce that the functor Ak is an equivalence and
the natural transformation A is thus an equivalence too. Now using lemma 1.2.9, we see that T pfq is
equivalent to the colimit of the diagram induced by A

K Ñ

´

PrL,V
8

¯∆1

It follows that T is an equivalence.

We will �nish this section with one more result. Let C be a V-small p8, 1q-category with �nite
colimits and D be any p8, 1q-category. Let g be a functor D Ñ C{CatV,L8 and let g̃ denote the
composition of g with the natural functor C{CatV,L8 Ñ CatV8. We assume that for any object x P D,
the category g̃pxq admits �nite colimits. Let also α : OD Ñ g̃ be a natural transformation. We
consider the diagram

D∆1

ş

α //

tD

��

ż

g̃

~~

C ˆDFoo

pr

vvD
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where the map F is induced by g. The functor F admits a relative right adjoint G over D (see [HAlg,
8.3.3]). The source functor tD admits a section id´ induced by the map ∆1 Ñ ˚. It induces a functor
h : D Ñ C

h : D
id´ // D∆1 //

ż

g̃
G // C ˆD // C

We de�ne the same way H : IndU
pDq Ñ IndU

pCq, using corollary 1.1.8

H : IndU
pDq

id´ // IndU
pDq∆1 //

ż

IndU
Dpg̃q

// IndU
pCq ˆ IndU

pDq // IndU
pCq

Let also I : ProU
pDq Ñ ProU

pCq be de�ned similarly, but using proposition 1.1.5:

I : ProU
pDq

id´ //ProU
pDq∆1 //

ż

ProU
Dpg̃q

//ProU
pCq ˆProU

pDq //ProU
pCq

Lemma 1.2.21. The two functors H and IndU
phq : IndU

pDq Ñ IndU
pCq are equivalent. The functors

I and ProU
phq : ProU

pDq Ñ ProU
pCq are equivalent.

Remark 1.2.22. For an enlightening example of this construction, we invite the reader to look at
remark 2.1.22 or proposition 2.2.20.

Proof. Let us deal with the case of H and IndU
phq, the other one is similar. We will prove the

following su�cient conditions

(i) The restrictions of both IndU
phq and H to D are equivalent ;

(ii) The functor H preserves U-small �ltered colimits.

To prove item (i), we consider the commutative diagram

C ˆD //

��

IndU
pCq ˆ IndU

pDq

��
ş

g̃ //

��

ş

IndU
Dpg̃q

��
D // IndU

pDq

The sections D Ñ
ş

g̃ and IndU
pDq Ñ

ş

IndU
Dpg̃q are compatible: the induced diagram commutes

ş

g̃ // ş IndU
Dpg̃q

D

OO

// IndU
pDq

OO

Moreover the right adjoints
ş

g̃ Ñ CˆD and
ş

IndU
Dpg̃q Ñ IndU

pCqˆ IndU
pDq are weakly compatible:

there is a natural transformation

C ˆD //

#+

IndU
pCq ˆ IndU

pDq

ş

g̃ //

OO

ş

IndU
Dpg̃q

OO
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It follows that we have a natural transformation between the functors

D h
Ñ C Ñ IndU

pCq and D Ñ IndU
pDq HÑ IndV

pCq

For any x P D, the induced map hpxq Ñ Hpxq in IndU
pCq is an equivalence. This concludes the proof

of item (i).
Let us now prove the item (ii). It su�ces to look at a U-small �ltered diagram x̄ : K Ñ D. Let

x denote a colimit of x̄ in IndU
pDq. Let us denote by A the natural transformation

A “ IndU
Dpαq : OIndUpDq Ñ IndU

Dpg̃q “ G

between functors IndU
pDq Ñ Cat8. Let us also denote by π˚ the right adjoint Gpxq Ñ IndU

pCq. By
de�nition, we have Hpxq » π˚Axpidxq. The functors π˚ and Ax preserve U-small �ltered colimits and
Hpxq is therefore the colimit of the diagram

Ā : K
x̄
Ñ IndU

pDq{x
Ax
Ñ Gpxq

π˚
Ñ IndU

pCq

We consider the functor

H̄x : K∆1 x̄∆1

// D∆1 //
ż

g̃ // C ˆD // C // IndU
pCq

We can assume that K is the nerve of a �ltered 1-category. Using lemma 1.2.16 and its notations, we
extend H̄x to a map

ζ : LÑ IndU
pCq

and equivalences

IndU
pCqζ˝θ{ » IndU

pCqζ{ » IndU
pCqH̄x{ » IndU

pCqH̄x˝id´ {

Using the proof of (i), we have a natural transformation H̄x ˝ id´ Ñ Ā. It induces a natural trans-
formation ζ ˝ θ Ñ Ā. Using lemma 1.1.7 we see that it is an equivalence. It follows that Hpxq is a
colimit of the diagram

K Ñ K∆1 H̄x
Ñ IndU

pCq

which equals K x̄
Ñ D h

Ñ C Ñ IndU
pCq. We now conclude using item (i).

2 Ind-pro-stacks

Throughout this section, we will denote by S a derived stack over some base �eld k and by dStS the
category of derived stack over the base S.

2.1 Cotangent complex of a pro-stack

De�nition 2.1.1. A pro-stack over S an object of ProU dStS .

Remark 2.1.2. Note that the category ProU dStS is equivalent to the category of pro-stacks over k
with a morphism to S.

De�nition 2.1.3. Let Perf : dStop
S Ñ CatU8 denote the functor mapping a stack to its category of

perfect complexes. We will denote by IPerf the functor

IPerf “ IndU
dStop

S
pPerfq : pProU dStSq

op Ñ PrL
8

where IndU was de�ned in de�nition 0.1.4. Whenever X is a pro-stack, we will call IPerfpXq the
derived category of ind-complexes on X. It is U-presentable. If f : X Ñ Y is a map of pro-stacks,
then the functor

IPerfpfq : IPerfpY q Ñ IPerfpXq

admits a right adjoint. We will denote f˚I “ IPerfpfq and f I
˚ its right adjoint.
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Remark 2.1.4. Let X be a pro-stack and let X̄ : Kop Ñ dStS denote a U-small co�ltered diagram of
whom X is a limit in ProU dStS . The derived category of ind-perfect complexes on X is by de�nition
the category

IPerfpXq “ IndU
pcolim PerfpX̄qq

It thus follows from [HAlg, 1.1.4.6 and 1.1.3.6] that IPerfpXq is stable. Note that it is also equivalent
to the colimit

IPerfpXq “ colim IPerfpX̄q P PrL,V
8

It is therefore equivalent to the limit of the diagram

IPerf˚pX̄q : K Ñ dStop
S Ñ PrL,V

8 » pPrR,V
8 qop

An object E in IPerfpXq is therefore the datum of an object pk˚E of IPerfpXkq for each k P K �
where Xk “ X̄pkq and pk : X Ñ Xk is the natural projection � and of some compatibilities between
them.

De�nition 2.1.5. Let X be a pro-stack. We de�ne its derived category of pro-perfect complexes

PPerfpXq “ pIPerfpXqq
op

The duality Perfp´q
„
Ñ pPerfp´qqop implies the equivalence

PPerfpXq » ProU
pcolim PerfpX̄qq

whenever X̄ : Kop
Ñ dStS is a co�ltered diagram of whom X is a limit in ProU dStS .

De�nition 2.1.6. Let us de�ne the functor TateU
P : pProU dStSq

op Ñ CatV,st,id8

TateU
P “ TateU

dStop
S
pPerfq

Remark 2.1.7. The functor TateU
P maps a pro-stack X given by a diagram X̄ : Kop Ñ dStS to the

stable p8, 1q-category
TateU

PpXq “ TateU
pcolim PerfpX̄qq

There is a canonical fully faithful natural transformation

TateU
P Ñ ProU

˝ IPerf

We also get a fully faithful
TateU

P Ñ IndU
˝PPerf

De�nition 2.1.8. Let Qcoh : dStop
S Ñ CatV8 denote the functor mapping a derived stack to its

derived category of quasi-coherent sheaves. It maps a morphism between stacks to the appropriate
pullback functor. We will denote by IQcoh the functor

IQcoh “ IndU
dStop

S
pQcohq : pProU dStSq

op Ñ CatV8

If f : X Ñ Y is a map of pro-stacks, we will denote by f˚I the functor IQcohpfq. We also de�ne

IQcohď0
“ IndU

dStop
S
pQcohď0

q

the functor of connective modules.
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Remark 2.1.9. There is a fully faithful natural transformation IPerf Ñ IQcoh ; for any map f : X Ñ

Y of pro-stacks, there is therefore a commutative diagram

IPerfpY q //

f˚I
��

IQcohpY q

f˚I
��

IPerfpXq // IQcohpXq

The two functors denoted by f˚I are thus compatible. Let us also say that the functor

f˚I : IQcohpY q Ñ IQcohpXq

does not need to have a right adjoint. We next show that it sometimes has one.

Proposition 2.1.10. Let f : X Ñ Y be a map of pro-stacks. If Y is actually a stack then the functor
f˚I : IQcohpY q Ñ IQcohpXq admits a right adjoint.

Proof. It follows from corollary 1.1.8.

De�nition 2.1.11. Let f : X Ñ Y be a map of pro-stacks. We will denote by f IQ
˚ the right adjoint

to f˚I : IQcohpY q Ñ IQcohpXq if it exists.

Remark 2.1.12. In the situation of proposition 2.1.10, there is a natural transformation

IPerfpXq //

#+

IQcohpXq

IPerfpY q

fI
˚

OO

// IQcohpY q

fIQ
˚

OO

It does not need to be an equivalence.

De�nition 2.1.13. Let X be a pro-stack over S. The structural sheaf OX of X is the pull-back of
OS along the structural map X Ñ S.

Example 2.1.14. Let X be a pro-stack over S and X̄ : Kop Ñ dStS be a U-small co�ltered diagram
of whom X is a limit in ProU dStS . Let k be a vertex of K, let Xk denote X̄pkq and let pk denote
the induced map of pro-stacks X Ñ Xk. If f : k Ñ l is an arrow in K, we will also denote by f the
map of stacks X̄pfq. We have

ppkq
IQ
˚ pOXq » colim

f : kÑl
f˚OXl

One can see this using lemma 1.1.7

ppkq
IQ
˚ pOXq » ppkqIQ˚ ppkq˚I pOXkq » colim

f : kÑl
f˚f

˚pOXkq » colim
f : kÑl

f˚OXl

De�nition 2.1.15. Let T be a stack over S. Let us consider the functor

QcohpT qď0 Ñ B>dStop
S
pidT q »

´

T {dStT

¯op

mapping a quasi-coherent sheaf E to the square zero extension T Ñ T rEs Ñ T . This construction is
functorial in T and actually comes from a natural transformation

Ex: Qcohď0
Ñ B>dStop

S
pid´q

of functors dStop
S Ñ CatV8 � recall notation B> from de�nition 1.2.14. We will denote by ExPro the

natural transformation

ExPro
“ IndU

dStop
S
pExq : IQcohď0

Ñ IndU
dStop

S
pB>dStop

S
pid´qq » B>

pProU dStSqoppid´q

between functors pProU dStSq
op Ñ Cat8. The equivalence on the right is the one from proposi-

tion 1.2.18. If X is a pro-stack and E P IQcohpXqď0 then we will denote by X Ñ XrEs Ñ X the
image of E by the functor ExPro

pXq.
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Remark 2.1.16. Let us give a description of this functor. Let X be a pro-stack and let X̄ : Kop Ñ dStS
denote a U-small co�ltered diagram of whom X is a limit in ProU dStS . For every k P K we can
compose the functor mentioned above with the base change functor

pQcohpXkqq
op

Xkr´s // Xk{dStXk
´ˆXk

X
// X{ProU dStX

This is functorial in k and we get a functor
`

colim QcohpX̄q
˘op

Ñ X{ProU dStX which we extend
and obtain a more explicit description of the square zero extension functor

Xr´s : pIQcohpXqqop Ñ X{ProU dStX

De�nition 2.1.17. Let X be a pro-stack.

• We �nally de�ne the functor of derivations over X :

DerpX,´q “ MapX{´{SpXr´s, Xq : IQcohpXqď0 Ñ sSets

• We say that X admits a cotangent complex if the functor DerpX,´q is corepresentable � ie there
exists a LX{S P IQcohpXq such that for any E P IQcohpXqď0

DerpX,Eq » MappLX{S , Eq

De�nition 2.1.18. Let dStArt
S denote the full sub-category of dStS spanned by derived Artin stacks

over S. An Artin pro-stack is an object of ProU dStArt
S . Let dStArt,lfp

S the full sub-category of dStArt
S

spanned by derived Artin stacks locally of �nite presentation over S. An Artin pro-stack locally of
�nite presentation is an object of ProU dStArt,lfp

S

Proposition 2.1.19. Any Artin pro-stack X over S admits a cotangent complex LX{S. Let us assume

that X̄ : Kop Ñ dStArt
S is a U-small co�ltered diagram of whom X is a limit in ProU dStArt

S . When
k is a vertex of K, let us denote by Xk the derived Artin stack X̄pkq. If f : k Ñ l is an arrow in K,
we will also denote by f : Xl Ñ Xk the map of stacks X̄pfq. The cotangent complex is given by the
formula

LX{S “ colim
k

p˚kLXk{S P IndU`colim QcohpX̄q
˘

» IQcohpXq

where pk is the canonical map X Ñ Xk. The following formula stands

pk
IQ
˚ LX{S » colim

f : kÑl
f˚LXl{S

If X is moreover locally of �nite presentation over S, then its cotangent complex belongs to IPerfpXq.

Before proving this proposition, let us �x the following notation

De�nition 2.1.20. Let C be a full sub-category of an8-category D. There is a natural transformation
from OD : d ÞÑ D{d to the constant functor D : D Ñ Cat8. We denote by OC

D the �ber product

OC
D “ OD ˆ

D
C : D Ñ Cat8

Remark 2.1.21. The functor OC
D : D Ñ Cat8 maps an object d P D to the comma category of objects

in C over d
C{d “ pC ˆ tduq ˆ

DˆD
D∆1

The lemma 1.2.3 still holds when replacing OC by OC
D.
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Proof (of the proposition). The cotangent complex de�nes a natural transformation

λ : O
pdStArt

S q
op

dStop
S

Ñ Qcohp´q

To any stack T and any Artin stack U over S with a map f : T Ñ U , it associates the quasi-coherent
complex f˚LU{S on T . Applying the functor IndU

dStop
S

we get a natural transformation λPro

λPro “ IndU
dStop

S
pλq : O

pProU dStArt
S q

op

pProU dStSqop Ñ IQcohp´q

Specifying it to X we get a functor

λPro
X :

´

X{ProU dStArt
S

¯op

Ñ IQcohpXq

Let us set LX{S “ λPro
X pXq P IQcohpXq. We have by de�nition the equivalence

LX{S » colim
k

p˚kLXk{S

Let us now check that it satis�es the required universal property. The functor DerpX,´q is the limit
of the diagram Kop Ñ FctpIQcohpXqď0, sSetsq

MapX{´{SpXr´s, X̄q

This diagram factors by de�nition through a diagram

δ : Kop Ñ Fct
`

colim QcohpX̄qď0, sSets
˘

» lim FctpQcohpX̄qď0, sSetsq

On the other hand, the functor MappLX{S ,´q is the limit of a diagram

Kop
µ // lim FctpQcohpX̄qď0, sSetsq // FctpIQcohpXqď0, sSetsq

The universal property of the natural transformation λ de�nes an equivalence between δ and µ. The
formula for pk

IQ
˚ LX{S is a direct consequence of lemma 1.2.21 and the last statement is obvious.

Remark 2.1.22 (about lemma 1.2.21). There are two ways of constructing the underlying complex of
the cotangent complex of a pro-stack. One could �rst consider the functor

L1 : dStArt
S

op
Ñ QcohpSq

mapping a derived Artin stack π : Y Ñ S to the quasi-coherent module π˚LY {S and extend it

IndU
pL1q : ProU dStArt

S

op
Ñ IndU QcohpSq “ IQcohpSq

The second method consists in building the cotangent complex of a pro-stack $ : X Ñ S as above

LX{S P IQcohpXq

and considering $IQ
˚ LX{S P IQcohpSq. This de�nes a functor

L2 :
ProU dStArt

S

op
Ñ IQcohpSq

pX
$
Ñ Sq ÞÑ $IQ

˚ LX{S

Comparing those two approaches is precisely the role of lemma 1.2.21. It shows indeed that the
functors IndU

pL1q and L2 are equivalent.
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Remark 2.1.23. The de�nition of the derived category of ind-quasi-coherent modules on a pro-stack
is build for the above proposition and remark to hold.

Remark 2.1.24. We have actually proven that for any pro-stack X, the two functors

IQcohpXqď0 ˆX{dStArt
S Ñ sSets

de�ned by

pE, Y q ÞÑ MapX{´{SpXrEs, Y q

pE, Y q ÞÑ MapIQcohpXqpλ
Pro
X pY q, Eq

are equivalent.

2.2 Cotangent complex of an ind-pro-stack

De�nition 2.2.1. An ind-pro-stack is an object of the category

IPdStS “ IndU ProU dStS

De�nition 2.2.2. Let us de�ne the functor PIPerf : pIPdStSq
op Ñ CatV8 as

PIPerf “ ProU
pProU dStSqoppIPerfq

where ProU was de�ned in de�nition 0.1.4. Whenever we have a morphism f : X Ñ Y of ind-pro-
stacks, we will denote by f˚PI the functor

f˚PI “ PIPerfpfq : PIPerfpY q Ñ PIPerfpXq

Remark 2.2.3. Let X be an ind-pro-stack. Let X̄ : K Ñ ProU dStS denote a U-small �ltered diagram
of whom X is a colimit in IPdStS . We have by de�nition

PIPerfpXq » lim ProU
pIPerfpX̄qq

admits a right adjoint fPI
˚ . It is the pro-extension of the right adjoint f I

˚ to f˚I . This result extends
to any map f of ind-pro-stacks since the limit of adjunctions is still an adjunction.

Proposition 2.2.4. Let f : X Ñ Y be a map of ind-pro-stacks. If Y is a pro-stack then the functor
f˚PI : PIPerfpY q Ñ PIPerfpXq admits a right adjoint.

De�nition 2.2.5. Let f : X Ñ Y be a map of ind-pro-stacks. If the functor

f˚PI : PIPerfpY q Ñ PIPerfpXq

admits a right adjoint, we will denote it by fPI
˚ .

Proof (of the proposition). If both X and Y are pro-stacks, then fPI
˚ “ ProU

pf I
˚q is right adjoint

to f˚PI “ ProU
pf˚I q. Let now X be an ind-pro-stack and let X̄ : K Ñ ProU dStS denote a U-small

�ltered diagram of whom X is a colimit in IPdStS . We then have

f˚PI : PIPerfpY q Ñ PIPerfpXq » lim PIPerfpX̄q

The existence of a right adjoint fPI
˚ then follows from proposition 1.1.5.
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De�nition 2.2.6. Let X P IPdStS . We de�ne IPPerfpXq “ pPIPerfpXqqop. If X is the colimit in
IPdStS of a �ltered diagram K Ñ ProU dStS then we have

IPPerfpXq » limpIndU
˝PPerf ˝X̄q

There is therefore a fully faithful functor TateU
IPpXq Ñ IPPerfpXq. We will denote by

p´q
_

: IPPerfpXq Ñ pPIPerfpXqqop

the duality functor.

De�nition 2.2.7. Let us de�ne the functor TateU
IP : pIPdStSq

op Ñ CatV,st,id8 as the right Kan
extension of TateU

P along the inclusion pProU dStSq
op Ñ pIPdStSq

op. It is by de�nition endowed
with a canonical fully faithful natural transformation

TateU
IP Ñ PIPerf

For any X P IPdStS , an object of TateU
IPpXq will be called a Tate module on X.

Remark 2.2.8. We can characterise Tate objects: a module E P PIPerfpXq is a Tate module if
and only if for any pro-stack U and any morphism f : U Ñ X P IPdStS , the pullback f˚IPpEq is in
TateU

PpUq.
Let us also remark here that

Lemma 2.2.9. Let X be an ind-pro-stack over S. The fully faithful functors

TateU
IPpXq

// PIPerfpXq
p´q

_

pIPPerfpXqqop
´

TateU
IPpXq

¯op
oo

have the same essential image. We thus have an equivalence

p´q
_

: TateU
IPpXq »

´

TateU
IPpXq

¯op

Proof. This is a corollary of proposition 0.1.12.

De�nition 2.2.10. Let us de�ne PIQcoh : pIPdStSq
op Ñ CatV8 to be the functor

PIQcoh “ ProU
pProU dStSqoppIQcohq

From remark 0.1.10, for any ind-pro-stack X, the category PIQcohpXq admits a natural monoidal
structure. We also de�ne the subfunctor

PIQcohď0
“ ProU

pProU dStSqoppIQcohď0
q

Remark 2.2.11. Let us give an informal description of the above de�nition. To an ind-pro-stack
X “ colimα limβ Xαβ we associate the category

PIQcohpXq “ lim
α

ProU IndU
ˆ

colim
β

PerfpXαβq

˙

De�nition 2.2.12. Let f : X Ñ Y be a map of ind-pro-stacks. We will denote by f˚PI the functor
PIQcohpfq. Whenever it exists, we will denote by fPIQ

˚ the right adjoint to f˚PI.

Proposition 2.2.13. Let f : X Ñ Y be a map of ind-pro-stacks. If Y is actually a stack, then the
induced functor f˚PI admits a right adjoint.

Proof. This is very similar to the proof of proposition 2.2.4 but using proposition 2.1.10.
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Remark 2.2.14. There is a fully faithful natural transformation PIPerf Ñ PIQcoh. Using the same
notation f˚PI for the images of a map f : X Ñ Y is therefore only a small abuse. Moreover, for any
such map f : X Ñ Y , for which the right adjoints drawn below exist, there is a natural tranformation

PIPerfpY q //

fPI
˚

��

PIQcohpY q

fPIQ
˚

��
PIPerfpXq //

3;

PIQcohpXq

It is generally not an equivalence.

De�nition 2.2.15. Let ExIP denote the natural transformation ProU
pProU dStSqoppExPro

q

ExIP : PIQcohď0
Ñ ProU

pProU dStSqop

´

B>
pProU dStSqoppid´q

¯

» B>pIPdStSqoppid´q

of functors pIPdStSq
op Ñ Cat8. The equivalence on the right hand side is the one of remark 1.2.19.

If X is an ind-pro-stack and E P PIQcohpXqď0 then we will denote by X Ñ XrEs Ñ X the image
of E by the functor

ExIP
pXq : PIQcohpXqď0 Ñ

´

X{IPdStX

¯op

Remark 2.2.16. Let us decipher the above de�nition. Let X “ colimα limβ Xαβ be an ind-pro-stack
and let E be a pro-ind-module over it. By de�nition E is the datum, for every α, of a pro-ind-object
Eα in the category colimβ Qcohď0

pXαβq. Let us denote Eα “ limγ colimδ E
α
γδ. For any γ and δ, there

is a β0pγ, δq such that Eαγδ is in the essential image of Qcohď0 ccccccvcpXαβ0pγ,δqq. We then have

XrEs “ colim
α,γ

lim
δ

lim
βěβ0pγ,δq

XαβrEγδs P IPdStS

De�nition 2.2.17. Let X be an ind-pro-stack.

• We de�ne the functor of derivations on X

DerpX,´q “ MapX{´{SpXr´s, Xq

• We say that X admits a cotangent complex if there exists LX{S P PIQcohpXq such that for
any E P PIQcohpXqď0

DerpX,Eq » MappLX{S , Eq

• Let us assume that f : X Ñ Y is a map of ind-pro-stacks and that Y admits a cotangent
complex. We say that f is formally étale if X admits a cotangent complex and the natural map
f˚LY {S Ñ LX{S is an equivalence.

De�nition 2.2.18. An Artin ind-pro-stack over S is an object in the category

IPdStArt
S “ IndU ProU dStArt

S

An Artin ind-pro-stack locally of �nite presentation is an object of

IPdStArt,lfp
S “ IndU ProU dStArt,lfp

S

Proposition 2.2.19. Any Artin ind-pro-stack X admits a cotangent complex

LX{S P PIQcohpXq

Let us assume that X̄ : K Ñ Pro dStArt
S is a U-small �ltered diagram of whom X is a colimit in

IPdStArt
S . For any vertex k P K we will denote by Xk the pro-stack X̄pkq and by ik the structural

map Xk Ñ X. For any f : k Ñ l in K, let us also denote by f the induced map Xk Ñ Xl. We have
for all k P K

i˚k,PILX{S » lim
f : kÑl

f˚I LXl{S P PIQcohpXkq

If moreover X is locally of �nite presentation then LX{S belongs to PIPerfpXq.
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Proof. Let us recall the natural transformation λPro from the proof of proposition 2.1.19

λPro “ IndU
dStop

S
pλq : O

pProU dStArt
S q

op

pProU dStSqop Ñ IQcohp´q

of functors pProU dStSq
op Ñ Cat8. Applying the functor ProU

pProU dStSqop we de�ne the natural

transformation λIP

λIP “ ProU
pProU dStSqop

`

λPro
˘

: O
pIPdStArt

S q
op

pIPdStSqop Ñ PIQcohp´q

between functors pIPdStSq
op Ñ Cat8. Specifying to X we get a functor

λIP
X :

´

X{IPdStArt
S

¯op

Ñ PIQcohpXq

We now de�ne LX{S “ λIP
X pXq. By de�nition we have

i˚k,PILX{S » limλPro
Xk
pX̄q » lim

f : kÑl
f˚I LXl{S

for every k P K. Let us now prove that it satis�es the expected universal property. It su�ces to
compare for every k P K the functors

MapXk{´{SpXkr´s, Xq and MapPIQcohpXkq
pi˚k,PILX{S ,´q

de�ned on PIQcohpXkq
ď0. They are both pro-extensions to PIQcohpXkq

ď0 of their restrictions
IQcohpXkq

ď0 Ñ sSets. The restricted functor MapXk{´{SpXkr´s, Xq is a colimit of the diagram

MapXk{´{SpXkr´s, X̄q :
´

k{K
¯op

Ñ FctpIQcohpXkq
ď0, sSetsq

while MapPIQcohpXkq
pi˚k,PILX{S ,´q is a colimit to the diagram

MapIQcohpXkq
pλPro
Xk
pX̄q,´q :

´

k{K
¯op

Ñ FctpIQcohpXkq
ď0, sSetsq

We �nish the proof with remark 2.1.24.

Proposition 2.2.20. Let X P IPdStArt
S . Let us denote by π : X Ñ S the structural map. Let also

L̃IP denote the functor
´

IPdStArt
S

¯op

Ñ ProU IndU QcohpSq

obtained by extending the functor pdStArt
S qop Ñ QcohpSq mapping f : T Ñ S to f˚LT {S. Then we

have πPIQ
˚ LX{S » L̃IPpXq

Proof. The existence of πPIQ
˚ is deduced from proposition 2.2.13. The result then follows by applying

lemma 1.2.21 twice.

De�nition 2.2.21. Let X by an Artin ind-pro-stack locally of �nite presentation over S. We will
call the tangent complex of X the ind-pro-perfect complex on X

TX{S “ L_X{S P IPPerfpXq
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2.3 Uniqueness of pro-structure

Lemma 2.3.1. Let Y and Z be derived Artin stacks. The following is true

(i) The canonical map
MappZ, Y q Ñ lim

n
MappτďnZ, Y q

is an equivalence;

(ii) If Y is q-Artin and Z is m-truncated then the mapping space MappZ, Y q is pm` qq-truncated.

Proof. We prove both items recursively on the Artin degree of Z. The case of Z a�ne is proved in
[HAG2, C.0.10 and 2.2.4.6]. We assume that the result is true for n-Artin stacks. Let Z be pn ` 1q-
Artin. There is an atlas u : U Ñ Z. Let us remark that for k P N the truncation τďku : τďkU Ñ τďkZ
is also a smooth atlas � indeed we have τďkU » U ˆZ τďkZ. Let us denote by U‚ the nerve of u and
by τďkU‚ the nerve of τďku. Because k-truncated stacks are stable by �at pullbacks, the groupoid
τďkU‚ is equivalent to τďkpU‚q. We have

MappZ, Y q » lim
rpsP∆

MappUp, Y q » lim
rpsP∆

lim
k

MappτďkUp, Y q » lim
k

MappτďkZ, Y q

That proves item (i). If moreover Z is m-truncated, then we can replace U by τďmU . If follows that
MappZ, Y q is a limit of pm` qq-truncated spaces. This �nishes the proof of (ii).

We will use this well known lemma:

Lemma 2.3.2. Let S : ∆ Ñ sSets be a cosimplicial object in simplicial sets. Let us assume that for
any rps P ∆ the simplicial set Sp is n-coconnective. Then the natural morphism

lim
rpsP∆

Sp Ñ lim
rpsP∆

pďn`1

Sp

is an equivalence.

Lemma 2.3.3. Let X̄ : Nop Ñ dStS be a diagram such that

(i) There exists m P N and n P N such that for any k P K the stack X̄pkq is n-Artin, m-truncated
and of �nite presentation;

(ii) There exists a diagram ū : Nˆ∆1 Ñ dStS such that the restriction of ū to Nˆt1u is equivalent
to X̄, every map ūpkq : ūpkqp0q Ñ ūpkqp1q » X̄pkq is a smooth atlas and the limit limk ūpkq is
an epimorphism.

If Y is an algebraic derived stack of �nite presentation then the canonical morphism

colim Map
`

X̄, Y
˘

Ñ Map
`

lim X̄, Y
˘

is an equivalence.

Proof. Let us prove the statement recursively on the Artin degree n. If n equals 0, this is a simple
reformulation of the �nite presentation of Y . Let us assume that the statement at hand is true for
some n and let X̄p0q be pn ` 1q-Artin. Considering the nerves of the epimorphisms ūpkq, we get a
diagram

Z̄ : Nop ˆ∆op Ñ dStS

Note that Z̄ has values in n-Artin stacks. The limit limk ūpkq is also an atlas and the natural map

colim
rpsP∆

lim
kPN

Z̄pkqp Ñ lim
kPN

colim
rpsP∆

Z̄pkqp » lim X̄
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is therefore an equivalence. We now write

Map
`

lim X̄, Y
˘

» Map

ˆ

colim
rpsP∆

lim
kPN

Z̄pkqp, Y

˙

» lim
rpsP∆

Map

ˆ

lim
kPN

Z̄pkqp, Y

˙

» lim
rpsP∆

colim
kPN

Map
`

Z̄pkqp, Y
˘

We also have
colim Map

`

X̄, Y
˘

» colim
kPN

lim
rpsP∆

Map
`

Z̄pkqp, Y
˘

It thus su�ces to prove that the canonical morphism of simplicial sets

colim
kPN

lim
rpsP∆

Map
`

Z̄pkqp, Y
˘

Ñ lim
rpsP∆

colim
kPN

Map
`

Z̄pkqp, Y
˘

is an equivalence. Let us notice that each Z̄pkqp is m-truncated. It is indeed a �bre product of m-
truncated derived stacks along �at maps. Let q be an integer such that Y is q-Artin. The simplicial
set MappZ̄pkqp, Y q is then pm` qq-coconnective (lemma 2.3.1). It follows from lemma 2.3.2 that the
limit at hand is in fact �nite and we have the required equivalence.

Lemma 2.3.4. Let M̄ : Nop Ñ sSets be a diagram. For any i P N and any point x “ pxnq P lim M̄ ,
we have the following exact sequence

0 // lim
n

1πi`1pM̄pnq, xnq // πi
´

lim
n
M̄pnq, x

¯

// lim
n
πipM̄pnq, xnq // 0

A proof of that lemma can be found for instance in [Hir].

Lemma 2.3.5. Let M : Nop ˆ K Ñ sSets denote a diagram, where K is a �ltered simplicial set.
If for any i P N there exists Ni such that for any n ě Ni and any k P K the induced morphism
Mpn, kq ÑMpn´ 1, kq is an i-equivalence then the canonical map

φ : colim
kPK

lim
nPN

Mpn, kq Ñ lim
nPN

colim
kPK

Mpn, kq

is an equivalence. We recall that an i-equivalence of simplicial sets is a morphism which induces
isomorphisms on the homotopy groups of dimension lower or equal to i.

Proof. We can assume that K admits an initial object k0. Let us write Mnk instead of Mpn, kq.
Let us �x i P N. If i ě 1, we also �x a base point x P limnMnk0

. Every homotopy group below is
computed at x or at the natural point induced by x. We will omit the reference to the base point.
We have a morphism of short exact sequences

0 // colim
k

lim
n

1πi`1pMnkq
//

��

colim
k

πi

´

lim
n
Mnk

¯

//

��

colim
k

lim
n
πipMnkq

��

// 0

0 // lim
n

1 colim
k

πi`1pMnkq
// πi

ˆ

lim
n

colim
k

Mnk

˙

// lim
n

colim
k

πipMnkq
// 0

We can restrict every limit to n ě Ni`1. Using the assumption we see that the limits on the right
hand side are then constant and so are the 1-limits on the left. If follows that the vertical maps on
the sides are isomorphisms, and so is the middle map. This begin true for any i, we conclude that φ
is an equivalence.
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De�nition 2.3.6. Let X̄ : Nop Ñ dStS be a diagram. We say that X̄ is a shy diagram if

(i) For any k P N the stack X̄pkq is algebraic and of �nite presentation;

(ii) For any k P N the map X̄pk Ñ k ` 1q : X̄pk ` 1q Ñ X̄pkq is a�ne;

(iii) The stack X̄p0q is of �nite cohomological dimension.

If X is the limit of X̄ in the category of prostacks, we will also say that X̄ is a shy diagram for X.

Proposition 2.3.7. Let X̄ : Nop Ñ dStS be a shy diagram. If Y is an algebraic derived stack of �nite
presentation then the canonical morphism

colim Map
`

X̄, Y
˘

Ñ Map
`

lim X̄, Y
˘

is an equivalence.

Proof. Since for any n, the truncation functor τďn preserves shy diagrams, let us use lemma 2.3.1
and lemma 2.3.3

Mapplim X̄, Y q » lim
n

Mappτďnplim X̄q, Y q

» lim
n

Mapplim τďnX̄, Y q » lim
n

colim MappτďnX̄, Y q

On the other hand we have

colim MappX̄, Y q » colim lim
n

MappτďnX̄, Y q

and we are to study the canonical map

φ : colim lim
n

MappτďnX̄, Y q Ñ lim
n

colim MappτďnX̄, Y q

Because of lemma 2.3.5, it su�ces to prove the assertion

(1) For any i P N there exists Ni P N such that for any n ě Ni and any k P N the map

pn,k : Map
`

τďnX̄pkq, Y
˘

Ñ Map
`

τďn´1X̄pkq, Y
˘

induces an equivalence on the πj 's for any j ď i.

For any map f : τďn´1X̄pkq Ñ Y we will denote by Fn,kpfq the �bre of pn,k at f . We have to prove
that for any such f the simplicial set Fn,kpfq is i-connective. Let thus f be one of those maps. The
derived stack τďnX̄pkq is a square zero extension of τďn´1X̄pkq by a module M rns, where

M “ ker
´

OτďnX̄pkq Ñ Oτďn´1X̄pkq

¯

r´ns

Note that M is concentrated in degree 0. It follows from the obstruction theory of Y �see proposi-
tion 0.2.7 � that Fn,kpfq is not empty if and only if the obstruction class

αpfq P Gn,kpfq “ MapOτďn´1X̄pkq
pf˚LY ,M rn` 1sq

of f vanishes. Moreover, if αpfq vanishes, then we have an equivalence

Fn,kpfq » MapOτďn´1X̄pkq
pf˚LY ,M rnsq

Using assumptions (iii) and (ii) we have that X̄pkq � and therefore its truncation too � is of �nite
cohomological dimension d. Let us denote by ra, bs the Tor-amplitude of LY . We get that Gn,kpfq is
ps` 1q-connective for s “ a` n´ d and that Fn,kpfq is s-connective if αpfq vanishes. Let us remark
here that d and a do not depend on either k or f and thus neither does Ni “ i` d´ a (we set Ni “ 0
if this quantity is negative). For any n ě Ni and any f as above, the simplicial set Gn,kpfq is at least
1-connective. The obstruction class αpfq therefore vanishes and Fn,kpfq is indeed i-connective. This
proves (1) and concludes this proof.
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De�nition 2.3.8. Let PdStshy
S denote the full subcategory of ProU dStS spanned by the prostacks

which admit shy diagrams. Every object X in PdStshy
S is thus the limit of a shy diagram X̄ : Nop Ñ

dStS .
We will say that X is of cotangent tor-amplitude in ra, bs if there exists a shy diagram X̄ : Nop Ñ

dStS for X such that every cotangent LX̄pnq is of tor-amplitude in ra, bs. We will also say that X
is of cohomological dimension at most d if there is a shy diagram X̄ with values in derived stacks of
cohomological dimension at most d. The pro-stack X will be called q-Artin if there is a shy diagram
for it, with values in q-Artin derived stacks. Let us denote by Cra,bsd,q the full subcategory of PdStshy

S

spanned by objects of cotangent tor-amplitude in ra, bs, of cohomological dimension at most d and
q-Artin.

Theorem 2.3.9. The limit functor ishy : PdStshy
S Ñ dStS is fully faithful and has values in Artin

stacks.

Proof. This follows directly from proposition 2.3.7.

De�nition 2.3.10. A map of pro-stacks f : X Ñ Y if an open immersion if there exists a diagram

f̄ : Nop ˆ∆1 Ñ dStk

such that

• The limit of f̄ in maps of pro-stacks is f ;

• The restriction Nopˆt0u Ñ dStk of f̄ is a shy diagram forX and the restriction Nopˆt1u Ñ dStk
is a shy diagram for Y ;

• For any n, the induced map of stacks tnu ˆ∆1 Ñ dStk is an open immersion.

2.4 Uniqueness of ind-pro-structures

De�nition 2.4.1. Let IPdStshy,b
S denote the full subcategory of IndU

pPdStshy
S q spanned by colimits

of U-small �ltered diagrams K Ñ PdStshy
S which factors through Cra,bsd,q for some 4-uplet a, b, d, q. For

any X P IPdStshy,b
S we will say that X is of cotangent tor-amplitude in ra, bs and of cohomological

dimension at most d if it is the colimit (in IndU
pPdStshy

S q) of a diagram K Ñ Cra,bsd,q .

Theorem 2.4.2. The colimit functor IndU
pPdStshy

S q Ñ dStS restricts to a full faithful embedding

IPdStshy,b
S Ñ dStS.

Lemma 2.4.3. Let a, b, d, q be integers with a ď b. Let T P PdStshy
S and X̄ : K Ñ Cra,bsd,q be a U-small

�ltered diagram. For any i P N there exists Ni such that for any n ě Ni and any k P K, the induced
map

MappτďnT, X̄pkqq Ñ Mappτďn´1T, X̄pkqq

is an i-equivalence.

Remark 2.4.4. For the proof of this lemma, we actually do not need the integer q.

Proof. Let us �x i P N. Let k P K and T̄ : NÑ dStS be a shy diagram for T . We observe here that
τďnT̄ is a shy diagram whose limit is τďnT . Let also Ȳk : NÑ dStS be a shy diagram for X̄pkq. The
map at hand

ψnk : MappτďnT, X̄pkqq Ñ Mappτďn´1T, X̄pkqq

is then the limit of the colimits

lim
pPN

colim
qPN

MappτďnT̄ pqq, Ȳkppqq Ñ lim
pPN

colim
qPN

Mappτďn´1T̄ pqq, Ȳkppqq
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Let now f be a map τďn´1T Ñ X̄pkq. It corresponds to a family of morphisms

fp : ˚ Ñ colim
qPN

Mappτďn´1T̄ pqq, Ȳkppqq

Moreover, the �bre Fnkpfq of ψnk over f is the limit of the �bres F pnkpfq of the maps

ψpnk : colim
qPN

MappτďnT̄ pqq, Ȳkppqq Ñ colim
qPN

Mappτďn´1T̄ pqq, Ȳkppqq

over the points fp. Using the exact sequence of lemma 2.3.4, it su�ces to prove that F pnkpfq is pi`1q-
connective for any f and any p. For such an f and such a p, there exists q0 P N such that the map fp
factors through the canonical map

Mappτďn´1T̄ pq0q, Ȳkppqq Ñ colim
qPN

Mappτďn´1T̄ pqq, Ȳkppqq

We deduce that F pnkpfq is equivalent to the colimit

F pnkpfq » colim
qěq0

Gpqnkpfq

where Gpqnkpfq is the �bre at the point induced by fp of the map

MappτďnT̄ pqq, Ȳkppqq Ñ Mappτďn´1T̄ pqq, Ȳkppqq

The interval ra, bs contains the tor-amplitude of LȲkppq and d is an integer greater than the cohomo-
logical dimension of T̄ pqq. We saw in the proof of proposition 2.3.7 that Gpqnkpfq is then pa ` n ´ dq-
connective. We set Ni “ i` d´ a` 1.

Proof (of theorem 2.4.2). We will prove the su�cient following assertions

(1) The colimit functor IndU
pPdStshy

S q Ñ PpdAffSq restricts to a fully faithful functor

η : IPdStshy,b
S Ñ PpdAffSq

(2) The functor η has values in the full subcategory of stacks.

Let us focus on assertion (1) �rst. We consider two U-small �ltered diagrams X̄ : K Ñ PdStshy
S and

Ȳ : LÑ PdStshy
S . We have

MapIndUpPdStshy
S q

`

colim X̄, colim Ȳ
˘

» lim
k

MapIndUpPdStshy
S q
pX̄pkq, colim Ȳ q

and
MapPpdAffq

`

colim ishyX̄, colim ishyȲ
˘

» lim
k

MapPpdAffq

`

ishyX̄pkq, colim ishyȲ
˘

We can thus replace the diagram X̄ in PdStshy
S by a simple object X P PdStshy

S . We now assume that

Ȳ factors through Cra,bsd,q for some a, b, d, q. We have to prove that the following canonical morphism
is an equivalence

φ : colim
lPL

MappishyX, ishyȲ plqq Ñ Map
`

ishyX, colim ishyȲ
˘

where the mapping spaces are computed in prestacks. If ishyX is a�ne then φ is an equivalence because
colimits in PpdAffSq are computed pointwise. Let us assume that φ is an equivalence whenever ishyX
is pq´1q-Artin and let us assume that ishyX is q-Artin. Let u : U Ñ ishyX be an atlas of ishyX and let
Z‚ be the nerve of u in dStS . We saw in the proof of lemma 2.3.3 that Z‚ factors through PdStshy

S .
The map φ is now equivalent to the natural map

colim
lPL

MappishyX, ishyȲ plqq Ñ lim
rpsP∆

colim
lPL

MappZp, ishyȲ plqq

» lim
rpsP∆

Map
`

Zp, colim ishyȲ
˘

» MappishyX, colim ishyȲ q
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Remembering lemma 2.3.1, it su�ces to study the map

colim
lPL

lim
n

MappτďnishyX, ishyȲ plqq Ñ lim
rpsP∆

colim
lPL

lim
n

MappτďnZp, ishyȲ plqq

Applying lemma 2.4.3 and then lemma 2.3.5, we see that φ is an equivalence if the natural morphism

lim
n

colim
lPL

lim
rpsP∆

MappτďnZp, ishyȲ plqq Ñ lim
n

lim
rpsP∆

colim
lPL

MappτďnZp, ishyȲ plqq

is an equivalence. The stack ishyȲ plq is by assumption q-Artin, where q does not depend on l. Now
using lemma 2.3.1 and lemma 2.3.2, we conclude that φ is an equivalence. This proves (1). We now
focus on assertion (2). If su�ces to see that the colimit in PpdAffSq of the diagram ishyȲ as above
is actually a stack. Let H‚ : ∆op Y t´1u Ñ dAffS be an hypercovering of an a�ne SpecpAq “ H´1.
We have to prove the following equivalence

colim
l

lim
rpsP∆

MappHp, ishyȲ plqq Ñ lim
rpsP∆

colim
l

MappHp, ishyȲ plqq

Using the same arguments as for the proof of (1), we have

colim
l

lim
rpsP∆

MappHp, ishyȲ plqq » colim
l

lim
rpsP∆

lim
n

MappτďnHp, ishyȲ plqq

» lim
n

colim
l

lim
rpsP∆

MappτďnHp, ishyȲ plqq

» lim
n

lim
rpsP∆

colim
l

MappτďnHp, ishyȲ plqq

» lim
rpsP∆

colim
l

lim
n

MappτďnHp, ishyȲ plqq

» lim
rpsP∆

colim
l

MappHp, ishyȲ plqq

We will need one last lemma about that category IPdStshy,b
S .

Lemma 2.4.5. The fully faithful functor IPdStshy,b
S X IPdAffS Ñ IPdStS Ñ dStS preserves �nite

limits.

Proof. The case of an empty limit is obvious. Let then X Ñ Y Ð Z be a diagram in IPdStshy,b
S X

IPdAffS . There exist a and b and a diagram

σ : K Ñ Fct
´

Λ2
1, C

ra,bs
0,0

¯

such that K is a U-small �ltered simplicial set and the colimit in IPdStS is X Ñ Y Ð Z. We
can moreover assume that σ has values in FctpΛ2

1,ProU
pdAffSqq » ProU

pFctpΛ2
1,dAffSqq. We

deduce that the �bre product X ˆY Z is the realisation of the ind-pro-diagram in derived a�ne
stacks with cotangent complex of tor amplitude in ra ´ 1, b ` 1s. It follows that X ˆY Z is again in
IPdStshy,b

S X IPdAffS .

3 Symplectic Tate stacks

3.1 Tate stacks: de�nition and �rst properties

We can now de�ne what a Tate stack is.

De�nition 3.1.1. A Tate stack is a derived Artin ind-pro-stack locally of �nite presentation whose
cotangent complex � see proposition 2.2.19 � is a Tate module. Equivalently, an Artin ind-pro-stack
locally of �nite presentation is Tate if its tangent complex is a Tate module. We will denote by dStTate

k

the full subcategory of IPdStk spanned by Tate stacks.
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This notion has several good properties. For instance, using lemma 2.2.9, if a X is a Tate stack
then comparing its tangent TX and its cotangent LX makes sense, in the category of Tate modules
over X. We will explore that path below, de�ning symplectic Tate stacks.

Another consequence of Tatity3 is the existence of a determinantal anomaly as de�ned in [KV2].
Let us consider the natural morphism of prestacks

θ : TateU
Ñ KTate

where TateU denote the prestack A ÞÑ TateU
pPerfpAqq and KTate : A ÞÑ KpTateU

pPerfpAqqq � K
denoting the connective K-theory functor. From [Hen2, Section 5] we have a determinant

KTate Ñ KpGm, 2q

where KpGm, 2q is the Eilenberg-Maclane classifying stack.

De�nition 3.1.2. We de�ne the Tate determinantal map as the composite map

TateU
Ñ KpGm, 2q

To any derived stack X with a Tate module E, we associate the determinantal anomaly rdetEs P
H2
pX,OˆXq, image of E by the morphism

MappX,TateU
q Ñ MappX,KpGm, 2qq

Let now X be an ind-pro-stack. Let also R denote the realisation functor ProU dStk Ñ dStk.
Let �nally X̄ : K Ñ ProU dStk denote a U-small �ltered diagram whose colimit in IPdStk is X. We
have a canonical functor

FX : lim TateU
PpX̄q » TateU

IPpXq Ñ lim TateU
pRX̄q

De�nition 3.1.3. Let X be an ind-pro-stack and E be a Tate module on X. Let X 1 be the realisation
of X in IndU dStk and X2 be its image in dStk. We de�ne the determinantal anomaly of E the image
of FXpEq by the map

MapIndU dStk
pX 1,TateU

q Ñ MapIndU dStk
pX 1,KpGm, 2qq » MapdStk

pX2,KpGm, 2qq

In particular if X is a Tate stack, we will denote by rdetX s P H2
pX2,OˆX2q the determinantal anomaly

associated to its tangent TX P TateU
IPpXq.

The author plans on studying more deeply this determinantal class in future work. For now, let
us conclude this section with following

Lemma 3.1.4. The inclusion dStTate
k Ñ IPdStk preserves �nite limits.

Proof. Let us �rst notice that a �nite limit of Artin ind-pro-stacks is again an Artin ind-pro-stack.
Let now X Ñ Y Ð Z be a diagram of Tate stacks. The �bre product

X ˆY Z

pZ

��

pX // X

g

��
Z // Y

is an Artin ind-pro-stack. It thus su�ces to test if its tangent TXˆY Z is a Tate module. The following
cartesian square concludes

TXˆY Z //

��

p˚XTX

��
p˚ZTZ // p˚Xg

˚TY

3or Tateness or Tatitude
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3.2 Shifted symplectic Tate stacks

We assume now that the basis S is the spectrum of a ring k of characteristic zero. Recall from [PTVV]
the stack in graded complexes DR mapping a cdga over k to its graded complex of forms. It actually
comes with a mixed structure induced by the de Rham di�erential. The authors also de�ned there
the stack in graded complexes NCw mapping a cdga to its graded complex of closed forms. Those two
stacks are linked by a morphism NCw Ñ DR forgetting the closure.

We will denote by Ap,Ap,cl : cdgaď0
k Ñ dgModk the complexes of weight p in DRr´ps and

NCwr´ps respectively. The stack Ap will therefore map a cdga to its complexes of p-forms while Ap,cl

will map it to its closed p-forms. For any cdga A, a cocycle of degree n of AppAq is an n-shifted
p-forms on SpecA. The functors Ap,cl and Ap extend to functors

Ap,cl, Ap : dStop
k Ñ dgModk

De�nition 3.2.1. Let us denote by Ap
IP and Ap,cl

IP the extensions

pIPdStkq
op Ñ ProU IndU dgModk

of Ap and Ap,cl, respectively. They come with a natural projection Ap,cl
IP Ñ Ap

IP.
Let X P IPdStk. An n-shifted (closed) p-form on X is a morphism kr´ns Ñ Ap

IPpXq (resp.
Ap,cl

IP pXq). For any closed form ω : kr´ns Ñ Ap,cl
IP pXq, the induced map kr´ns Ñ Ap,cl

IP pXq Ñ Ap
IPpXq

is called the underlying form of ω.

Remark 3.2.2. In the above de�nition, we associate to any ind-pro-stack X “ colimα limβ Xαβ its
complex of forms

Ap
IPpXq “ lim

α
colim
β

AppXαβq P ProU IndU dgModk

For any ind-pro-stack X, the derived category PIQcohpXq is endowed with a canonical monoidal
structure. In particular, one de�nes a symmetric product E ÞÑ Sym2

PIpEq as well as an antisymmetric
product

E ^
PI
E “ Sym2

PIpEr´1sqr2s

Theorem 3.2.3. Let X be an Artin ind-pro-stack over k. The push-forward functor

πPIQ
˚ : PIQcohpXq Ñ ProV IndV

pdgModkq

exists (see proposition 2.2.13) and maps LX ^PI LX to A2
IPpXq. In particular, any 2-form kr´ns Ñ

A2
IPpXq corresponds to a morphism OX r´ns Ñ LX ^PI LX in PIQcohpXq.

Proof. This follows from [PTVV, 1.14], from proposition 2.2.20 and from the equivalence

λIP ^
PI
λIP “ ProU IndU

pλq ^
PI

ProU IndU
pλq » ProU IndU

pλ^ λq

where λIP is de�ned in the proof of proposition 2.2.19.

De�nition 3.2.4. Let X be a Tate stack. Let ω : kr´ns Ñ A2
IPpXq be an n-shifted 2-form on X. It

induces a map in the category of Tate modules on X

ω : TX Ñ LX rns

We say that ω is non-degenerate if the map ω is an equivalence. A closed 2-form is non-degenerate if
the underlying form is.

De�nition 3.2.5. A symplectic form on a Tate stack is a non-degenerate closed 2-form. A symplectic
Tate stack is a Tate stack equipped with a symplectic form.
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3.3 Mapping stacks admit closed forms

In this section, we will extend the proof from [PTVV] to ind-pro-stacks. Note that if X is a pro-
ind-stack and Y is a stack, then MappX,Y q is an ind-pro-stack. We will then need an evaluation
functor MappX,Y q ˆ X Ñ Y . It appears that this evaluation map only lives in the category of
ind-pro-ind-pro-stacks

colim
α

lim
β

colim
ξ

lim
ζ

MappXαζ , Y q ˆXβξ Ñ Y

To build this map properly, we will need the following remark.

De�nition 3.3.1. Let C be a category. There is one natural fully faithful functor

φ : PIpCq Ñ pIPq2pCq

but three IPpCq Ñ pIPq2pCq. We will only consider the functor

ψ : IPpCq Ñ pIPq2pCq

induced by the Yoneda embedding PropCq Ñ PIpPropCqq. Let us also denote by ξ the natural fully
faithful functor C Ñ pIPq2pCq.

We can now construct the required evaluation map. We will work for now on a more general
basis. Let therefore X be a pro-ind-stack over a stack S. Let also Y be a stack. Whenever T is a
stack over S, the symbol MapSpT, Y q will denote the internal hom from X to Y ˆS in dStS . It comes
with an evaluation map ev : MapSpT, Y q ˆS T Ñ Y ˆ S P dStS .

Let y : dStS Ñ dStS denote the functor T ÞÑ Y ˆ T There exists a natural transformation

EV: OdStop
S
Ñ OˆdStS

˝yop

between functors dStop
S Ñ Cat8. For a stack X over S, the functor

EVX :
´

X{dStS

¯op

Ñ dStYˆX

maps a morphism X Ñ T to the map

MapSpT, Y q ˆ
S
X //MapSpX,Y q ˆ

S
X

evˆ pr//Y ˆX

Let us consider the natural transformation

ProU
dStop

S
pEVq : OpIndU dStSqop Ñ ProU

dStop
S

`

OˆdStS
˝yop

˘

of functors pIndU dStSq
op Ñ Cat8. We de�ne EVInd to be the natural transformation

EVInd
“ ΥdStop

S ˝ProU
dStop

S
pEVq

where ΥdStop
S is de�ned as in lemma 1.2.11. To any X P IndU dStS it associates a functor

EVInd
X :

´

X{IndU dStS

¯op

Ñ IPdStYˆX

De�nition 3.3.2. Let Y be a stack. We de�ne the natural transformation EVPI

EVPI
“ ΞIndU dStop

S ˝ IndU
pInd dStSqoppEVInd

q : OPIdStS Ñ Oˆ
IP2dStS

˝yop

where ΞIndU dStop
S is de�ned in remark 1.2.12. To any X P PIdStS it associates a functor

EVPI
X :

´

X{PIdStS

¯op

Ñ IP2dStS{Y ˆX
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We then de�ne the evaluation map in IP2dStS

evX,Y : ψMapSpX,Y q ˆ
S
φX

EVPI
X pXq //ξY ˆ φX //ξY

We assume now that S “ Spec k. Let us recall the following de�nition from [PTVV, 2.1]

De�nition 3.3.3. A derived stack X is O-compact if for any derived a�ne scheme T the following
conditions hold

• The quasi-coherent sheaf OXˆT is compact in QcohpX ˆ T q ;

• Pushing forward along the projection X ˆ T Ñ T preserves perfect complexes.

Let us denote by dStOk the full subcategory of dStk spanned by O-compact derived stacks.

De�nition 3.3.4. An O-compact pro-ind-stack is a pro-ind-object in the category of O-compact
derived stacks. We will denote by PIdStOk their category.

Lemma 3.3.5. There is a functor

PIdStOk Ñ Fct
`

IPdStk ˆ∆1 ˆ∆1, pIPq2pdgModkq
op
˘

de�ning for any O-compact pro-ind-stack X and any ind-pro-stack F a commutative square

Ap,cl
IP2pψF ˆ φXq //

��

Ap,cl
IP pψF q bk φOX

��
Ap

IP2pψF ˆ φXq // Ap
IPpψF q bk φOX

where Ap,cl
IP2 and Ap

IP2 are the extensions of Ap,cl
IP and Ap

IP to

pIPq2dStk Ñ pIPq2pdgModop
k q

Proof. Recall in [PTVV, part 2.1] the construction for any O-compact stack X and any stack F of
a commutative diagram:

NCwpF ˆXq //

��

NCwpF q bk OX

��
DRpF ˆXq // DRpF q bk OX

Taking the part of weight p and shifting, we get

Ap,clpF ˆXq //

��

Ap,clpF q bk OX

��
AppF ˆXq // AppF q bk OX

This construction is functorial in both F and X so it corresponds to a functor

dStOk Ñ FctpdStk ˆ∆1 ˆ∆1,dgModop
k q

We can now form the functor

PIdStOk Ñ PI Fct
`

Pro dStk ˆ∆1 ˆ∆1,PropdgModop
k q

˘

Ñ Fct
`

Pro dStk ˆ∆1 ˆ∆1,PI PropdgModop
k q

˘

Ñ Fct
`

IPdStk ˆ∆1 ˆ∆1, pIPq2pdgModop
k q

˘
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By construction, for any ind-pro-stack F and anyO-compact pro-ind-stack, it induces the commutative
diagram

Ap,cl
IP2pψF ˆ φXq //

��

ψAp,cl
IP pF q bk φOX

��
Ap

IP2pψF ˆ φXq // ψAp
IPpF q bk φOX

Remark 3.3.6. Let us remark that we can informally describe the horizontal maps using the maps
from [PTVV]:

ΘIP2pψF ˆ φXq “ lim
α

colim
β

lim
γ

colim
δ

ΘpFαδ ˆXβγq

Ñ lim
α

colim
β

lim
γ

colim
δ

ΘpFαδq b pOXβγ q “ ψΘIPpF q b φOX

where Θ is either Ap,cl or Ap.

De�nition 3.3.7. Let F be an ind-pro-stack and let X be an O-compact pro-ind-stack. Let η : OX Ñ
kr´ds be a map of ind-pro-k-modules. Let �nally Θ be either Ap,cl or Ap. We de�ne the integration
map

ż

η

: ΘIP2pψF ˆ φXq //ψΘIPpF q b φOX
idbφη //ψΘIPpF qr´ds

Theorem 3.3.8. Let Y be a derived stack and ωY be an n-shifted closed 2-form on Y . Let X be an O-
compact pro-ind-stack and let also η : OX Ñ kr´ds be a map. The mapping ind-pro-stack MappX,Y q
admits an pn´ dq-shifted closed 2-form.

Proof. Let us denote by Z the mapping ind-pro-stack MappX,Y q. We consider the diagram

χkr´ns
ωY //χA2,clpY q

ev˚ //A2,cl
IP2pX ˆ Zq

ş

η //ψA2,cl
IP pZqr´ds

where χ : dgModk
ξ
Ñ IPpdgModop

k q
ψ
Ñ pIPq2pdgModop

k q is the canonical inclusion. Note that since
the functor ψ is fully faithful, this induces a map in IPpdgModop

k q

ξk //A2,cl
IP pZqrn´ ds

and therefore a an pn´ dq-shifted closed 2-form on Z “ MappX,Y q. The underlying form is given by
the composition

χkr´ns
ωY //χA2pY q

ev˚ //A2
IP2pX ˆ Zq

ş

η //ψA2
IPpZqr´ds

Remark 3.3.9. Let us describe the form issued by theorem 3.3.8. We set the notationsX “ limα colimβ Xαβ

and Zαβ “ MappXαβ , Y q. By assumption, we have a map

η : colim
α

lim
β
OXαβ Ñ kr´ds

For any α, there exists therefore βpαq and a map ηαβpαq : OXαβpαq Ñ kr´ds in dgModpkq. Unwinding
the de�nitions, we see that the induced form

ş

η
ωY

ξk //A2
IPpMappX,Y qqrn´ ds » limα colimβ A2pZαβqrn´ ds
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is the universal map obtained from the maps

k
ωαβpαq //A2pZαβpαqqrn´ ds //colimβ A2pZαβqrn´ ds

where ωαβpαq is built using ηαβpαq and the procedure of [PTVV]. Note that ωαβpαq can be seen as a
map TXαβpαq b TXαβpαq Ñ OXαβpαq . We also know from theorem 3.2.3 that the form

ş

η
ωY induces a

map
TZ b TZ Ñ OZrn´ ds

in IPPpZq. Let us �x α0 and pull back the map above to Zα0
. We get

colim
αěα0

lim
β
g˚α0αp

˚
αβpTZαβ b TZαβ q » i˚α0

pTZ b TZq Ñ OZα0
rn´ ds

This map is the universal map obtained from the maps

lim
β
g˚α0αp

˚
αβpTZαβ b TZαβ q Ñ g˚α0αp

˚
αβpαqpTZαβpαq b TZαβpαqq

Ñ g˚α0αp
˚
αβpαqpOXαβpαqqrn´ ds » OXα0

rn´ ds

where gα0α is the structural map Zα0
Ñ Zα and pαβ is the projection Zα “ limβ Zαβ Ñ Zαβ .

3.4 Mapping stacks have a Tate structure

De�nition 3.4.1. Let S be an O-compact pro-ind-stack. We say that S is an O-Tate stack if there
exist a poset K and a diagram S̄ : Kop Ñ IndU dStk such that

(i) The limit of S̄ in PIdStk is equivalent to S ;

(ii) For any i ď j P K the pro-module over S̄piq

coker
`

OS̄piq Ñ S̄pi ď jq˚OS̄pjq
˘

is trivial in the pro-direction � ie belong to QcohpS̄piqq.

(iii) For any i ď j P K the induced map S̄pi ď jq is represented by a diagram

f̄ : Lˆ∆1 Ñ dStk

such that

• For any l P L the projections f̄pl, 0q Ñ ˚ and f̄pl, 1q Ñ ˚ satisfy the base change formula ;

• For any l P L the map f̄plq satis�es the base change and projection formulae ;

• For any m ď l P L the induced map f̄pm ď l, 0q satis�es the base change and projection
formulae.

Remark 3.4.2. We will usually work with pro-ind-stacks S given by an explicit diagram already
satisfying those assumptions.

Proposition 3.4.3. Let us assume that Y is a derived Artin stack locally of �nite presentation. Let
S be an O-compact pro-ind-stack. If S is an O-Tate stack then the ind-pro-stack MappS, Y q is a Tate
stack.

Proof. Let Z “ MappS, Y q as an ind-pro-stack. Let S̄ : Kop Ñ IndU dStk be as in de�nition 3.4.1.
We will denote by Z̄ : K Ñ ProU dStk the induced diagram and for any i P K by si : Z̄piq Ñ Z̄ the
induced map.
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Let us �rst remark that Z is an Artin ind-pro-stack locally of �nite presentation. It su�ces to
prove that s˚i LZ is a Tate module on Z̄piq, for any i P K. Let us �x such an i and denote by Zi the
pro-stack Z̄piq.

We consider the di�erential map
s˚i LZ Ñ LZi

It is by de�nition equivalent to the natural map

limλPro
Zi pZ̄|Kěiq

f
Ñ λPro

Zi pZiq

where Kěi is the comma category i{K and Z̄|Kěi is the induced diagram

Kěi Ñ Zi{ProU dStS

Let φi denote the diagram
φi :

`

Kěi
˘op

Ñ IPerfpZiq

obtained as the kernel of f . It is now enough to prove that φi factors through PerfpZiq.
Let j ě i in K and let us denote by gij the induced map Zi Ñ Zj of pro-stacks. Let f̄ : Lˆ∆1 Ñ

dStk represents the map S̄pi ď jq : S̄pjq Ñ S̄piq P IndU dStk as in assumption (i) in de�nition 3.4.1.
Up to a change of L through a co�nal map, we can assume that the induced diagram

coker
`

OS̄piq Ñ S̄pi ď jq˚OS̄pjq
˘

is essentially constant � see assumption (ii). We denote by h̄ : Lopˆ∆1 Ñ dStk the induced diagram,
so that gij is the limit of h̄ in ProU dStk. For any l P L we will denote by hl : Zil Ñ Zjl the map h̄plq.
Let us denote by Z̄i the induced diagram l ÞÑ Zil and by Z̄j the diagram l ÞÑ Zjl. Let also pl denote
the projection Zi Ñ Zil

We have an exact sequence

φipjq Ñ colim
l

p˚l h
˚
l LZjl Ñ colim

l
p˚l LZil

Let us denote by ψij the diagram obtained as the kernel

ψij Ñ λPro
Zi pZ̄jq Ñ λPro

Zi pZ̄iq

so that φipjq is the colimit colimψij in IPerfpZiq. It su�ces to prove that the diagram ψij : L Ñ
PerfpZiq is essentially constant (up to a co�nal change of posets). By de�nition, we have

ψijplq » p˚l LZil{Zjlr´1s

Let m Ñ l be a map in L and t the induced map Zil Ñ Zim. The map ψijpm Ñ lq is equivalent to
the map p˚l ξ where ξ �ts in the �bre sequence in PerfpZilq

t˚LZim{Zjmr´1s //

ξ

��

t˚h˚mLZjm

��

// t˚LZim

��
LZil{Zjlr´1s // h˚l LZjl // LZil

We consider the dual diagram

t˚TZim{Zjmr1s ooOO
t˚h˚mTZjmOO

oo t˚TZimOO

TZil{Zjlr1s oo h˚l TZjl oo TZil

pσq
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Using base change along the maps from Sim, Sjm and Sjl to the point, we get that the square pσq is
equivalent to

π˚pidˆsfmq˚pidˆsfmq
˚E π˚pidˆsq˚pidˆsq

˚Eoo

π˚pidˆflq˚pidˆflq
˚E

OO

π˚Eoo

OO

where π : Zil ˆ Sil Ñ Zil is the projection, where s : Sim Ñ Sil is the map induced by m Ñ l and
where E » ev˚ TY with ev : Zil ˆSil Ñ Y the evaluation map. Note that we use here the well known
fact TMappX,Y q » pr˚ ev˚ TY where

MappX,Y q MappX,Y q ˆX
ev //proo Y

are the canonical maps.
Now using the projection and base change formulae along the morphisms s, fl and fm we get

that pσq is equivalent to the image by π˚ of the square

E b p˚s˚fm˚OSjm E b p˚s˚OSimoo

E b p˚fl˚OSjl

OO

E b p˚OSil

OO

oo

We therefore focus on the diagram

s˚fm˚OSjm s˚OSimoo

fl˚OSjl

OO

OSiloo

OO

The map induced between the co�bres is an equivalence, using assumption (ii). It follows that the
diagram ψij is essentially constant, and thus that Z is a Tate stack.

4 Formal loops

In this part, we will at last de�ne and study the higher dimensional formal loop spaces. We will prove
it admits a local Tate structure.

4.1 Dehydrated algebras and de Rham stacks

In this part, we de�ne a re�nement of the reduced algebra associated to a cdga. This allows us to
de�ne a well behaved de Rham stack associated to an in�nite stack. Indeed, without any noetherian
assumption, the nilradical of a ring � the ideal of nilpotent elements � is a priori not nilpotent itself.
The construction below gives an alternative de�nition of the reduced algebra � which we call the
dehydrated algebra � associated to any cdga A, so that A is, in some sense, a nilpotent extension of
its dehydrated algebra. Whenever A is �nitely presented, this construction coincides with the usual
reduced algebra.

De�nition 4.1.1. Let A P cdgaď0
k . We de�ne its dehydrated algebra as the ind-algebra Adeh “

colimI H0
pAq{I where the colimit is taken over the �ltered poset of nilpotent ideals of H0

pAq. The
case I “ 0 gives a canonical map AÑ Adeh in ind-cdga's. This construction is functorial in A.
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Remark 4.1.2. Whenever A is of �nite presentation, then Adeh is equivalent to the reduced algebra
associated to A. In that case, the nilradical

?
A of A is nilpotent. Moreover, if A is any cdga, it is a

�ltered colimits of cdga's Aα of �nite presentation. We then have Adeh » colimpAαqred in ind-algebras.

Lemma 4.1.3. The realisation B of Adeh in the category of algebras is equivalent to the reduced
algebra Ared.

Proof. Let us �rst remark that B is reduced. Indeed any nilpotent element x of B comes from a
nilpotent element of A. It therefore belongs to a nilpotent ideal pxq. This de�ne a natural map of
algebras Ared Ñ B. To see that it is an isomorphism, it su�ces to say that

?
A is the union of all

nilpotent ideals.

De�nition 4.1.4. Let X be a prestack. We de�ne its de Rham prestack XdR as the composition

cdgaď0
k

p´qdeh // IndU
pcdgaď0

k q
IndU

pXq// IndU
psSetsq

colim // sSets

This de�nes an endofunctor of p8, 1q-category PpdAffkq. We have by de�nition

XdRpAq “ colim
I

X
´

H0
pAq{I

¯

Remark 4.1.5. If X is a stack of �nite presentation, then it is determined by the images of the cdga's
of �nite presentation. The prestack XdR is then the left Kan extension of the functor

cdgaď0,fp
k Ñ sSets
A ÞÑXpAredq

De�nition 4.1.6. Let f : X Ñ Y be a functor of prestacks. We de�ne the formal completion X̂Y of
X in Y as the �bre product

X̂Y
//

��

XdR

��
Y // YdR

This construction obviously de�nes a functor FC: PpdAffkq
∆1

Ñ PpdAffkq.

Remark 4.1.7. The natural map X̂Y Ñ Y is formally étale, in the sense that for any A P cdgaď0
k and

any nilpotent ideal I Ă H0
pAq the morphism

X̂Y pAq Ñ X̂Y

`

H0
pAq{I

˘

ˆ

Y pH0
pAq{Iq

Y pAq

is an equivalence.

4.2 Higher dimensional formal loop spaces

Here we �nally de�ne the higher dimensional formal loop spaces. To any cdga A we associate the
formal completion V dA of 0 in AdA. We see it as a derived a�ne scheme whose ring of functions ArrX1...dss

is the algebra of formal series in d variables X1, . . . , Xd. Let us denote by UdA the open subscheme of
V dA complementary of the point 0. We then consider the functors dStk ˆ cdgaď0

k Ñ sSets

L̃dV : pX,Aq ÞÑ MapdStk
pV dA , Xq

L̃dU : pX,Aq ÞÑ MapdStk
pUdA, Xq
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De�nition 4.2.1. Let us consider the functors L̃dU and L̃dV as functors dStk Ñ PpdAffq. They come
with a natural morphism L̃dV Ñ L̃dU . We de�ne L̃d to be the pointwise formal completion of L̃dV into
L̃dU :

L̃dpXq “ FC
´

L̃dV pXq Ñ L̃dU pXq
¯

We also de�ne Ld, LdU and LdV as the stacki�ed version of L̃d, L̃dU and L̃dV respectively. We will call
LdpXq the formal loop stack in X.

Remark 4.2.2. The stack LdV pXq is a higher dimensional analogue to the stack of germs in X, as
studied for instance by Denef and Loeser in [DL].

Remark 4.2.3. By de�nition, the derived scheme UdA is the (�nite) colimit in derived stacks

UdA “ colim
q

colim
i1,...,iq

Spec
´

ArrX1...dssrX
´1
i1...iq

s

¯

where ArrX1...dssrX
´1
i1...iq

s denote the algebra of formal series localized at the generators X´1
i1
, . . . , X´1

iq
.

It follows that the space of A-points of LdpXq is equivalent to the simplicial set

LdpXqpAq » colim
IĂH0pAq

lim
q

lim
i1,...,iq

Map
´

Spec
´

ArrX1...dssrX
´1
i1...iq

s
?
I
¯

, X
¯

where ArrX1...dssrX
´1
i1...iq

s
?
I is the sub-cdga of ArrX1...dssrX

´1
i1...iq

s consisting of series
ÿ

n1,...,nd

an1,...,ndX
n1
1 . . . Xnd

d

where an1,...,nd is in the kernel of the map AÑ H0
pAq{I as soon as at least one of the ni's is negative.

Recall that in the colimit above, the symbol I denotes a nilpotent ideal of H0
pAq.

Lemma 4.2.4. Let X be a derived Artin stack of �nite presentation with algebraisable diagonal (see
de�nition 0.2.8) and let t : T “ SpecpAq Ñ X be a smooth atlas. The induced map LdV pT q Ñ LdV pXq
is an epimorphism of stacks.

Proof. It su�ces to study the map L̃dV pT q Ñ L̃dV pXq. Let B be a cdga. Let us consider a B-point
x : SpecB Ñ L̃dV pXq. It induces a B-point of X

SpecB Ñ SpecpBrrX1...dssq
x
Ñ X

Because t is an epimorphism, there exist an étale map f : SpecC Ñ SpecB and a commutative
diagram

SpecC
c //

f

��

T

t

��
SpecB // X

It corresponds to a C-point of SpecBˆX T . For any n P N, let us denote by Sn the spectrum SpecCn,
by Xn the spectrum SpecBn and by Tn the pullback T ˆXXn. We will also consider the natural fully
faithful functor ∆n » t0, . . . , nu Ñ N. We have a natural diagram

α0 : Λ2,2 ˆ N >
Λ2,2ˆ∆0

∆2 ˆ∆0 Ñ dStk

informally drown has a commutative diagram

S0

��

!!

// . . . // Sn //

��

. . .

X0
// . . . // Xn

// . . .

T0

OO

// . . . // Tn //

OO

. . .
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Let n P N and let us assume we have built a diagram

αn : pΛ2,2 ˆ Nq >
Λ2,2ˆ∆n

∆2 ˆ∆n Ñ dStk

extending αn´1. There is a sub-diagram of αn

Sn //

��

Sn`1

Tn // Tn`1

tn`1

��
Xn`1

Since the map tn`1 is smooth (it is a pullback of t), we can complete this diagram with a map
Sn`1 Ñ Tn`1 and a commutative square. Using the composition in dStk, we get a diagram αn`1

extending αn. We get recursively a diagram α : ∆2 ˆ NÑ dStk. Taking the colimit along N, we get
a commutative diagram

SpecC

f

��

// colimn SpecCn

��

// T

t

��
SpecB // colimn SpecBn // SpecpBrrX1...dssq

// X

This de�nes a map φ : colim SpecpCnq Ñ SpecpBrrX1...dssq ˆX T . We have the cartesian diagram

SpecpBrrX1...dssq ˆX T //

��

X

��
SpecpBrrX1...dssq ˆ T // X ˆX

The diagonal of X is algebraisable and thus so is the stack SpecpBrrX1...dssq ˆX T . The morphism φ
therefore de�nes the required map

SpecpCrrX1...dssq Ñ SpecpBrrX1...dssq ˆ
X
T

Remark 4.2.5. Let us remark here that if X is an algebraisable stack, then L̃dV pXq is a stack, hence
the natural map is an equivalence

L̃dV pXq » LdV pXq

Lemma 4.2.6. Let f : X Ñ Y be an étale map of derived Artin stacks. For any cdga A P cdgaď0
k

and any nilpotent ideal I Ă H0
pAq, the induced map

θ : L̃dU pXqpAq // L̃dU pXq
`

H0
pAq{I

˘

ˆ

L̃dU pY qpH
0
pAq{Iq

L̃dU pY qpAq

is an equivalence.

Proof. The map θ is a �nite limit of maps

µ : XpξAq // X
`

ξ
`

H0
pAq{I

˘˘

ˆ

Y pξpH0
pAq{Iqq

Y pξAq
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where ξA “ ArrX1...dssrX
´1
i1...ip

s and ξpH0
pAq{Iq is de�ned similarly. The natural map ξpH0

pAqq Ñ

ξpH0
pAq{Iq is also a nilpotent extension. We deduce from the étaleness of f that the map

XpξpH0
pAqqq // X

`

ξ
`

H0
pAq{I

˘˘

ˆ

Y pξpH0
pAq{Iqq

Y pξpH0
pAqqq

is an equivalence. Let now n P N. We assume that the natural map

XpξpAďnqq // X
`

ξ
`

H0
pAq{I

˘˘

ˆ

Y pξpH0
pAq{Iqq

Y pξpAďnqq

is an equivalence. The cdga ξpAďn`1q » pξAqďn`1 is a square zero extension of ξpAďnq by H´n´1
pξAq.

We thus have the equivalence

XpξpAďn`1qq
„ // XpξpAďnqq ˆ

Y pξpAďnqq

Y pξpAďn`1qq

The natural map
XpξpAďn`1qq

// X
`

ξ
`

H0
pAq{I

˘˘

ˆ

Y pξpH0
pAq{Iqq

Y pξpAďn`1qq

is thus an equivalence too. The stacks X and Y are nilcomplete, hence µ is also an equivalence �
recall that a derived stack X is nilcomplete if for any cdga B we have

XpBq » lim
n
XpBďnq

It follows that θ is an equivalence.

Corollary 4.2.7. Let f : X Ñ Y be an étale map of derived Artin stacks. For any cdga A P cdgaď0
k

and any nilpotent ideal I Ă H0
pAq, the induced map

θ : L̃dpXqpAq // L̃dpXq
`

H0
pAq{I

˘

ˆ

L̃dpY qpH0
pAq{Iq

L̃dpY qpAq

is an equivalence.

Proposition 4.2.8. Let X be a derived Deligne-Mumford stack of �nite presentation with algebraisable
diagonal. Let t : T Ñ X be an étale atlas. The induced map LdpT q Ñ LdpXq is an epimorphism of
stacks.

Proof. We can work on the map of prestacks L̃dpT q Ñ L̃dpXq. Let A P cdgaď0
k . Let x be an A-point

of L̃dpXq. It corresponds to a vertex in the simplicial set

colim
I
L̃dV pXq

`

H0
pAq{I

˘

ˆ

L̃dU pXqpH
0
pAq{Iq

L̃dU pXqpAq

There exists therefore a nilpotent ideal I such that x comes from a commutative diagram

Ud
H0
pAq{I

��

// UdA

��
VH0

pAq{I v
// X
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Using lemma 4.2.4 we get an étale morphism ψ : AÑ B such that the map v lifts to a map u : VB{J Ñ T
where J is the image of I by ψ. This de�nes a point in

L̃dU pT q
`

H0
pBq{J

˘

ˆ

L̃dU pXqpH
0
pBq{Jq

L̃dU pXqpBq

Because of lemma 4.2.6, we get a point of L̃dpT qpBq. We now observe that this point is compatible
with x.

In the case of dimension d “ 1, lemma 4.2.6 can be modi�ed in the following way. Let f : X Ñ Y
be a smooth map of derived Artin stacks. For any cdga A P cdgaď0

k and any nilpotent ideal I Ă H0
pAq,

the induced map

θ : L̃1
U pXqpAq

// L̃1
U pXq

`

H0
pAq{I

˘

ˆ

L̃1
U pY qpH

0
pAq{Iq

L̃1
U pY qpAq

is essentially surjective. The following proposition follows.

Proposition 4.2.9. Let X be an Artin derived stack of �nite presentation and with algebraisable
diagonal. Let t : T Ñ X be a smooth atlas. The induced map L1pT q Ñ L1pXq is an epimorphism of
stacks.

Example 4.2.10. The proposition above implies for instance that L1pBGq » BL1pGq for any algebraic
group G � where BG is the classifying stack of G-bundles.

4.3 Tate structure and determinantal anomaly

We saw in subsection 3.1 that to any Tate stack X, we can associate a determinantal anomaly. It a
class in H2

pX,OˆXq. We will prove in this subsection that the stack LdpXq is endowed with a structure
of Tate stack as soon as X is a�ne. We will moreover build a determinantal anomaly on LdpXq for
any quasi-compact and separated scheme X.

Lemma 4.3.1. For any B P cdgaď0
k of �nite presentation, the functors

L̃dU pSpecBq, L̃dpSpecBq : cdgaď0
k Ñ sSets

are in the essential image of the fully faithful functor

IPdStshy,b
k X IPdAffk Ñ IPdStk Ñ dStk Ñ PpdAffq

(see de�nition 2.4.1). It follows that L̃dU pSpecBq » LdU pSpecBq and L̃dpSpecBq » LdpSpecBq.

Proof. Let us �rst remark that SpecB is a retract of a �nite limit of copies of the a�ne line A1. It
follows that the functor L̃dU pSpecBq is, up to a retract, a �nite limit of functors

ZdE : A ÞÑ Map
´

krY s, ArrX1...dssrX
´1
i1...iq

s

¯

where E “ ti1, . . . , iqu Ă F “ t1, . . . , du. The functor ZdE is the realisation of an a�ne ind-pro-scheme

ZdE » colim
n

lim
p

Specpkraα1,...,αd ,´nδi ď αi ď psq

where δi “ 1 if i P E and δi “ 0 otherwise. The variable aα1,...,αd corresponds to the coe�cient
of Xα1

1 . . . Xαd
d . The functor ZdE is thus in the category IPdStshy,b

X IPdAffk. The result about
L̃dU pSpecBq then follows from lemma 2.4.5. The case of L̃dpSpecBq is similar: we decompose it into
a �nite limit of functors

GdE : A ÞÑ colim
IĂH0pAq

Map
´

krY s, ArrX1...dssrX
´1
i1...iq

s
?
I
¯
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where I is a nilpotent ideal of H0
pAq. We then observe that GdE is the realisation of the ind-pro-scheme

GdE » colim
n,m

lim
p

Spec
´

kraα1,...,αd ,´nδi ď αi ď ps{J

¯

where J is the ideal generated by the symbols amα1,...,αd
with at least one of the αi's negative.

Remark 4.3.2. Let n and p be integers and let kpE,n, pq denote the number of families pα1, . . . , αdq
such that ´nδi ď αi ď p for all i. We have

ZdE » colim
n

lim
p
pA1qkpE,n,pq

De�nition 4.3.3. From lemma 4.3.1, we get a functor Ld : dAff fp
k Ñ IPdStk. It follows from

proposition 4.2.8 that Ld is a costack in ind-pro-stacks. We thus de�ne

Ld : dStlfp
k Ñ IPdStk

to be its left Kan extension along the inclusion dAff fp
k Ñ dStlfp

k � where dStlfp
k is p8, 1q-category of

derived stacks locally of �nite presentation. This new functor Ld preserves small colimits by de�nition.

Proposition 4.3.4. There is a natural transformation θ from the composite functor

dStlfp
k

Ld // IPdStk
|´|

IP

// dStk

to the functor Ld. Moreover, the restriction of θ to derived Deligne-Mumford stacks of �nite presen-
tation with algebraisable diagonal is an equivalence.

Proof. There is by de�nition a natural transformation

θ : |Ldp´q|IP Ñ Ldp´q

Moreover, the restriction of θ to a�ne derived scheme of �nite presentation is an equivalence � see
lemma 4.3.1. The fact that θX is an equivalence for any Deligne-Mumford stack X follows from
proposition 4.2.8.

Lemma 4.3.5. Let F be a non-empty �nite set. For any family pMDq of complexes over k indexed
by subsets D of F , we have

colim
H‰EĂF

à

H‰DĂE

MD »MF rd´ 1s

where d is the cardinal of F (the maps in the colimit diagram are the canonical projections).

Proof. We can and do assume that F is the �nite set t1, . . . , du and we proceed recursively on d.
The case d “ 1 is obvious. Let now d ě 2 and let us assume the statement is true for F r tdu. Let
pMDq be a family as above. We have a cocartesian diagram

colim
tduĹEĂF

à

H‰DĂE

MD
//

��

colim
H‰EĂFrtdu

à

H‰DĂE

MD

��
Mtdu

// colim
H‰EĂF

à

H‰DĂE

MD

We have by assumption
colim

H‰EĂFrtdu

à

H‰DĂE

MD »MFrtdurd´ 2s

55



and

colim
tduĹEĂF

à

H‰DĂE

MD »Mtdu ‘

˜

colim
tduĹEĂF

à

tduĹDĂE

MD

¸

‘

˜

colim
tduĹEĂF

à

H‰DĂErtdu
MD

¸

»Mtdu ‘MF rd´ 2s ‘MFrtdurd´ 2s

The result follows.

Lemma 4.3.6. For any B P cdgaď0
k of �nite presentation, the ind-pro-stack LdU pSpecBq is a Tate

stack.

Proof. Let us �rst focus on the case of the a�ne line A1. We have to prove that the cotangent
complex LLdU pA1q is a Tate module. For any subset D Ă F we de�ne Mp,n

D to be the free k-complex
generated by the symbols

taα1,...,αd ,´n ď αi ă 0 if i P D, 0 ď αi ď p otherwiseu

in degree 0. From the proof of lemma 4.3.1, we have

ZdE » colim
n

lim
p

Specpkr
À

DĂEM
p,n
D sq and LdU pA1q » lim

H‰EĂF
ZdE

where F “ t1, . . . , du. If we denote by π the projection LdU pA1q Ñ Spec k, we get

LLdU pA1q » π˚

˜

colim
H‰EĂF

lim
n

colim
p

à

DĂE

Mp,n
D

¸

» π˚

˜

lim
n

colim
p

colim
H‰EĂF

à

DĂE

Mp,n
D

¸

Using lemma 4.3.5 we have

LLdU pA1q » π˚
ˆ

lim
n

colim
p

Mp,n
H ‘Mp,n

F rd´ 1s

˙

Moreover, we have Mp,n
H » Mp,0

H and Mp,n
F » M0,n

F . It follows that LLdU pA1q is a Tate module

on the ind-pro-stack LdU pA1q. The case of LdU pSpecBq then follows from lemma 2.4.5 and from
lemma 3.1.4.

Lemma 4.3.7. Let B Ñ C be an étale map between cdga's of �nite presentation. The induced map
f : LdU pSpecCq Ñ LdU pSpecBq is formally étale � see de�nition 2.2.17.

Proof. Let us denote X “ SpecB and Y “ SpecC. We have to prove that the induced map

j : MapLdU pY q{´

´

LdU pY qr´s,L
d
U pY q

¯

Ñ MapLdU pY q{´

´

LdU pY qr´s,L
d
U pXq

¯

is an equivalence of functors PIQcohpLdpY qqď0 Ñ sSets. Since LdU pY q is ind-pro-a�ne, we can
restrict to the study of the morphism

jZ : MapZ{´

´

Zr´s,LdU pY q
¯

Ñ MapZ{´

´

Zr´s,LdU pXq
¯

of functors IQcohpZqď0 Ñ sSets, for any pro-a�ne scheme Z and any map Z Ñ LdU pY q. Let us �x
E P IQcohpZqď0. The pro-stack ZrEs is in fact an a�ne pro-scheme. Recall that both LdU pY q and
LdU pXq belong to IPdStshy,b

k . It follows from the proof of theorem 2.4.2 that the morphism jZpEq is
equivalent to

|jZpEq| : Map|Z|{´
`

|ZrEs|,LdU pY q
˘

Ñ Map|Z|{´
`

|ZrEs|,LdU pXq
˘

where | ´ | is the realisation functor and the mapping spaces are computed in dStk. It now su�ces
to see that |ZrEs| is a trivial square zero extension of the derived a�ne scheme |Z| and to use
lemma 4.2.6.
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Proposition 4.3.8. Let SpecB be a derived a�ne scheme of �nite presentation. The ind-pro-stack
LdpSpecBq admits a cotangent complex. This cotangent complex is moreover a Tate module. For
any étale map B Ñ C the induced map f : LdpSpecCq Ñ LdpSpecBq is formally étale � see de�ni-
tion 2.2.17.

Proof. Let us write Y “ SpecB. Let us denote by i : LdpY q Ñ LdU pY q the natural map. We will
prove that the map i is formally étale, the result will then follow from lemma 4.3.6 and lemma 4.3.7.
To do so, we consider the natural map

j : MapLdpY q{´

´

LdpY qr´s,LdpY q
¯

Ñ MapLdpY q{´

´

LdpY qr´s,LdU pY q
¯

of functors PIQcohpLdpY qqď0 Ñ sSets. To prove that j is an equivalence, we can consider for every
a�ne pro-scheme X Ñ LdpY q the morphism of functors IQcohpXqď0 Ñ sSets

jX : MapX{´

´

Xr´s,LdpY q
¯

Ñ MapX{´

´

Xr´s,LdU pY q
¯

Let us �x E P IQcohpXqď0. The morphism jXpEq is equivalent to

|jXpEq| : Map|X|{´
`

|XrEs|,LdpY q
˘

Ñ Map|X|{´
`

|XrEs|,LdU pY q
˘

where the mapping space are computed in dStk. The map |jXpEq| is a pullback of the map

f : Map|X|{´
`

|XrEs|,LdV pY qdR

˘

Ñ Map|X|{´
`

|XrEs|,LdU pY qdR

˘

It now su�ces to see that |XrEs| is a trivial square zero extension of the derived a�ne scheme |X|
and thus f is an equivalence (both of its ends are actually contractible).

Let us recall from de�nition 3.1.3 the determinantal anomaly

rDetLdpSpecAqs P H2
´

LdpSpecAq,OˆLdpSpecAq

¯

It is associated to the tangent TLdpSpecAq P TateU
IPpL

d
pSpecAqq through the determinant map. Using

proposition 4.3.8, we see that this construction is functorial in A, and from proposition 4.2.8 we get
that it satis�es étale descent. Thus, for any quasi-compact and quasi-separated (derived) scheme (or
Deligne-Mumford stack with algebraisable diagonal), we have a well-de�ned determinantal anomaly

rDetLdpXqs P H2
´

LdpXq,OˆLdpXq
¯

Remark 4.3.9. It is known since [KV3] that in dimension d “ 1, if rDetL1pXqs vanishes, then there are
essentially no non-trivial automorphisms of sheaves of chiral di�erential operators on X.

5 Bubble spaces

In this section, we study the bubble space, an object closely related to the formal loop space. We will
then prove the bubble space to admit a symplectic structure.

5.1 Local cohomology

This subsection is inspired by a result from [SGA2, Éxposé 2], giving a formula for local cohomology
� see remark 5.1.6. We will �rst develop two duality results we will need afterwards, and then prove
the formula.

Let A P cdgaď0
k be a cdga over a �eld k. Let pf1, . . . , fpq be points of A0 whose images in H0

pAq
form a regular sequence.
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Let us denote by An,k the Kozsul complex associated to the regular sequence pfn1 , . . . , f
n
k q for

k ď p. We set An,0 “ A and An “ An,p for any n. If k ă p, the multiplication by fnk`1 induces an
endomorphism ϕnk`1 of An,k. Recall that An,k`1 is isomorphic to the cone of ϕnk`1:

An,k
ϕnk`1 //

��

An,k

��
0 // An,k`1

Let us now remark that for any couple pn, kq, the A-module An,k is perfect.

Lemma 5.1.1. Let k ď p. The A-linear dual A
_{A
n,k “ RHomApAn,k, Aq of An,k is equivalent to

An,kr´ks;

Proof. We will prove the statement recursively on the number k. When k “ 0, the result is trivial.
Let k ě 0 and let us assume that A

_{A
n,k is equivalent to An,kr´ks. Let us also assume that for any

a P A, the diagram induced by multiplication by a commutes

A
_{A
n,k

„

a_

��

An,kr´ks

a

��
A
_{A
n,k

„
An,kr´ks

We obtain the following equivalence of exact sequences

An,k`1r´k ´ 1s //

„

An,kr´ks

„

ϕnk`1 // An,kr´ks

„

A
_{A
n,k`1

// A
_{A
n,k

pϕnk`1q
_

// A
_{A
n,k

The statement about multiplication is straightforward.

Lemma 5.1.2. Let us assume A is a formal series ring over A1:

A “ A1rrf1, . . . , fpss

It follows that for any n, the A1-module An is free of �nite type and that there is map rn : An Ñ A1

mapping fn1 . . . f
n
p to 1 and any other generator to zero. We deduce an equivalence

An
„
Ñ A

_{A1
n “ RHomA1

pAn, A1q

given by the pairing

An bA1 An
ˆ // An

rn // A1

Remark 5.1.3. Note that we can express the inverse A
_{A1
n Ñ An of the equivalence above: it map a

function α : An Ñ A1 to the serie
ÿ

i

αpf iqfn´1´i

where i varies through the uplets pi1, . . . , ipq and where f i “ f i11 . . . f
ip
p .
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We can now focus on the announced formula. Let X be a quasi-compact and quasi-separated
derived scheme and let i : Z Ñ X be a closed embedding de�ned be a �nitely generated ideal I Ă OX .
Let j : U Ñ X denote the complementary open subscheme.

Let us denote by Ȳ the diagram NÑ dStX de�ned by

Ȳ pnq “ Yn “ SpecX

´

OX{In
¯

For any n P N, we will denote by in : Yn Ñ X the inclusion. Let us �x the notation

Qcoh˚ : dStk
Qcohop

//
´

PrL,V
8

¯op

» PrR,V
8

It maps every morphism φ : S Ñ T to the forgetful functor φ˚ : QcohpSq Ñ QcohpT q. This functor
also admit a right adjoint, denoted by φ!. We denote by

Qcoh! : dStop
k Ñ PrR,V

8

the corresponding diagram. It will also be handy to denote Qcoh by Qcoh˚. We �nally set the
following notations

QcohpX̂q “ lim Qcoh˚pȲ q
ı̂˚

// QcohpXq
ı̂˚oo j˚ //

QcohpUq
j˚
oo

QcohZpXq

g

OO

��
f

Gaitsgory has proven the functors f ı̂˚ and ı̂˚g to be equivalences. The functor f then corresponds to
ı̂˚ through this equivalence. We can also form the adjunction

lim Qcoh!
pȲ q

ı̃˚ //oo
ı̃!

QcohpXq

Lemma 5.1.4 (Gaitsgory-Rozenblyum). Let A P cdgaď0
k and let p be a positive integer. The natural

morphism induced by the multiplication Ap bA Ap Ñ Ap is an equivalence

colim
n

RHomA

ˆ

An b
A
Ap,´

˙

» colim
něp

RHomA

ˆ

An b
A
Ap,´

˙

„
Ð RHomApAp,´q

Proof. See [GR, 7.1.5].

Proposition 5.1.5. The functor T “ ı̃˚ ı̃
! is the colimit of the diagram

N Ȳ //dStX
Qcoh˚ //PrL,V

8 {QcohpXq

ηQcohpXq //FctpQcohpXq,QcohpXqq{id

It is moreover a right localisation equivalent to the local cohomology functor gf . This induces an
equivalence

lim Qcoh!
pȲ q Ñ QcohZpXq

commuting with the functors to QcohpXq.

Remark 5.1.6. Let us denote by HomOX p´,´q the internal hom of the category QcohpXq. It
corresponds to a functor QcohpXqop Ñ FctpQcohpXq,QcohpXqq. There is moreover a functor
O˚ : dStX Ñ QcohpXqop mapping a morphism φ : S Ñ X to φ˚OS . The composite functor

HomOX pO˚p´q,´q : dStX Ñ FctpQcohpXq,QcohpXqq
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is then equivalent to ηQcohpXq ˝Qcoh˚, using the uniqueness of right adjoints.
It follows that for any quasi-coherent module M P QcohpXq, we have an exact sequence

colim
n

HomOX pOYn ,Mq ÑM Ñ j˚j
˚M

and thus gives a (functorial) formula for local cohomology

HZpMq » colim
n

HomOX pOYn ,Mq

It is a generalisation to derived schemes of [SGA2, Exposé 2, Théorème 6].

Proof (of the proposition). The �rst statement follows from the proof of proposition 1.1.5, applied
to the opposite adjunction. Let us consider the adjunction morphism α : T “ ı̃˚ ı̃

! Ñ id. We must
prove that both the induced maps

T 2 Ñ T

are equivalences. We can restrict to the a�ne case which follows from lemma 5.1.4. The functor T is
therefore a right localisation. We will denote by QcohT pXq the category of T -local objects; it comes
with functors:

QcohT pXq
u //

QcohpXq
v
oo

such that vu » id and uv » T . Using now the vanishing of j˚ ı̃˚, we get a canonical fully faithful
functor ψ : QcohT pXq Ñ QcohY pXq such that u “ gψ. It follows that ψ admits a right adjoint ξ
and that

ψ “ fu and ξ “ vg

We will now prove that the functor ξ is conservative. Let therefore E P QcohY pXq such that ξE “ 0.
We need to prove that E is equivalent to zero. We have TgE “ 0 and i1˚i

!
1TgE » RHomOX pOZ , gEq.

Because OZ is a compact generator of QcohY pXq � see [Toë2, 3.7] �, this implies that gE is
supported on U . It therefore vanishes.

The vanishing of j˚ ı̃˚ implies the existence of a functor

lim Qcoh!
pȲ q

γ //QcohY pXq

such that gγ » ı̃˚. The functor ε “ ı̃!g is right adjoint to γ. The computation

gγε » ı̃˚ ı̃
!g “ Tg » g

proves that ε is fully faithful. We now have to prove that γ is conservative. Is it enough to prove that
ı̃˚ is conservative. Let pEnq P lim Qcoh!

pȲ q. The colimit

colim
n

in˚En

vanishes if and only if for any n, any p P Z and any e : OYnrps Ñ En, there exist N ě n such that the
natural morphism f : hnN˚OYnrps Ñ hnN˚En Ñ EN vanishes. The symbol hnN stands for the map
Ȳ pn ď Nq. We know that e is the composite map

OYnrps // h!
nNhnN˚Onrps

h!
nNf // h!

nNEN “ En

The point e is therefore zero and En is contractible.

60



5.2 De�nition and properties

We de�ne here the bubble space, obtained from the formal loop space. We will prove in the next
sections it admits a structure of symplectic Tate stack.

De�nition 5.2.1. The formal sphere of dimension d is the pro-ind-stack

Ŝd “ lim
n

colim
pěn

SpecpAp ‘HomApAn, Aqq » lim
n

colim
pěn

SpecpAp ‘Anr´dsq

where A “ krx1, . . . , xds and An “ A{pxn1 , . . . , x
n
d q
.

Remark 5.2.2. The notation SpecpAp ‘ Anr´dsq is slightly abusive. The cdga Ap ‘ Anr´ds is not
concentrated in non positive degrees. In particular, the derived stack SpecpAp ‘ Anr´dsq is not a
derived a�ne scheme. It behaves like one though, regarding its derived category:

QcohpSpecpAp ‘Anr´dsqq » dgModAp‘Anr´ds

Let us de�ne the ind-pro-algebra

OŜd “ colim
n

lim
pěn

Ap ‘Anr´ds

where Ap ‘Anr´ds is the trivial square zero extension of Ap by the module Anr´ds. For any m P N,
let us denote by Ŝdm the ind-stack

Ŝdm “ colim
pěm

SpecpAp ‘Amr´dsq

De�nition 5.2.3. Let T be a derived Artin stack. We de�ne the d-bubble stack of T as the mapping
ind-pro-stack

BpT q “ MappŜd, T q : SpecB ÞÑ colim
n

lim
pěn

T pB b pAp ‘Anr´dsqq

Again, the cdga Ap‘Anr´ds is not concentrated in non positive degree. This notation is thus slightly
abusive and by T pB b pAp ‘Anr´dsqq we mean

MappSpecpAp ‘Anr´dsq ˆ SpecB,Xq

We will denote by B̄pT q the diagram NÑ ProU dStk of whom BpT q is a colimit in IPdStk. Let us
also denote by BmpT q the mapping pro-stack

BmpT q “ MappŜdm, T q : SpecB ÞÑ lim
pěm

T pB b pAp ‘Amr´dsqq

and B̄mpT q : tp P N|p ě muop Ñ dStS the corresponding diagram. In particular

B0pT q “ MappŜd0, T q : SpecB ÞÑ lim
p
T pB bApq

Those stacks come with natural maps

B0pT q
s0 // BpT q

r // B0pT q

BmpT q
sm // BpT q

Proposition 5.2.4. If T is an a�ne scheme of �nite type, the bubble stack BpT q is the product in
ind-pro-stacks

BpT q //

��

LdV pT q

��
LdV pT q // LdU pT q
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Proof. There is a natural map V dk Ñ Ŝd induced by the morphism

colim
n

lim
pěn

Ap ‘Anr´ds Ñ lim
p
Ap

Because T is algebraisable, it induces a map BpT q Ñ LdV pT q and thus a diagonal morphism

δ : BpT q Ñ LdV pT q ˆ
LdU pT q
LdV pT q

We will prove that δ is an equivalence. Note that because T is a (retract of a) �nite limit of copies of A1,
we can restrict to the case T “ A1. Let us �rst compute the �bre product Z “ LdV pA1qˆLdU pA1qLdV pA1q.
It is the pullback of ind-pro-stacks

Z //

��

lim
p

Specpkraα1,...,αd , 0 ď αi ď psq

��
lim
p

Specpkraα1,...,αd , 0 ď αi ď psq // colim
n

lim
p

lim
IĂJ

Specpkraα1,...,αd ,´nδiPI ď αi ď psq

where J “ t1, . . . , du and δiPI “ 1 if i P I and 0 otherwise. For any subset K Ă J we de�ne Mp,n
K to

be the free complex generated by the symbols

taα1,...,αd ,´n ď αi ă 0 if i P K, 0 ď αi ď p otherwiseu

We then have the cartesian diagram

Z //

��

limp Spec
´

krMp,0
H s

¯

��
limp Spec

´

krMp,0
H s

¯

// colimn limp limIĂJ Specpkr
À

KĂIM
p,n
K sq

Using lemma 4.3.5 we get

Z » colim
n

lim
p

Spec
´

k
”

Mp,0
H ‘M0,n

J rds
ı¯

Remark 5.2.5. Let us consider the map limpAp Ñ A0 » k mapping a formal serie to its coe�cient
of degree 0. The plimApq-ind-module colimAnr´ds is endowed with a natural map to kr´ds. This
induces a morphism OŜd Ñ k ‘ kr´ds and hence a map Sd Ñ Ŝd, where Sd is the topological sphere
of dimension d. We then have a rather natural morphism

Bd
pXq Ñ MappSd, Xq

5.3 Its tangent is a Tate module

We already know from proposition 3.4.3 that the bubble stack is a Tate stack. We give here another
decomposition of its tangent complex. We will need it when proving Bd

pT q is symplectic.

Proposition 5.3.1. Let us assume that the Artin stack T is locally of �nite presentation. The ind-
pro-stack Bd

pT q is then a Tate stack. Moreover for any m P N we have an exact sequence

s˚mr
˚LBdpT q0

// s˚mLBdpT q
// s˚mLBdpT q{BdpT q0

where the left hand side is an ind-perfect module and the right hand side is a pro-perfect module.
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Proof. Throughout this proof, we will write B instead of Bd
pT q and Bm instead of Bd

pT qm for
any m. Let us �rst remark that B is an Artin ind-pro-stack locally of �nite presentation. It su�ces
to prove that s˚mLB is a Tate module on Bm, for any m P N. We will actually prove that it is an
elementary Tate module. We consider the map

s˚mr
˚LB0

Ñ s˚mLB

It is by de�nition equivalent to the natural map

λPro
Bm
pB0q

f
Ñ limλPro

Bm
pB̄ěmpT qq

where B̄ěmpT q is the restriction of B̄pT q to tn ě mu Ă N. Let φ denote the diagram

φ : tn P N|n ě muop Ñ IPerfpBmpT qq

obtained as the cokernel of f . It is now enough to prove that φ factors through PerfpBmpT qq. Let
n ě m be an integer and let gmn denote the induced map BmpT q Ñ BnpT q. We have an exact
sequence

s˚mr
˚LB0pT q

» g˚mns
˚
nr
˚LB0pT q

Ñ g˚m,nLBnpT q
Ñ φpnq

Let us denote by ψpnq the co�ber

s˚nr
˚LB0pT q

Ñ LBnpT q
Ñ ψpnq

so that φpnq » g˚mnψpnq. This sequence is equivalent to the colimit (in IPerfpBnpT qq) of a co�ber
sequence of diagrams tp P N|p ě nuop Ñ PerfpBnpT qq

λPro
BnpT q

pB̄0pT qq Ñ λPro
BnpT q

pB̄npT qq Ñ ψ̄pnq

It su�ces to prove that the diagram ψ̄pnq : tp P N|p ě nuop Ñ PerfpBnpT qq is (essentially) constant.
Let p P N, p ě n. The perfect complex ψ̄pnqppq �ts in the exact sequence

t˚npε
˚
npLB0,ppT q

Ñ π˚n,pLBn,ppT q
Ñ ψ̄pnqppq

where tnp : BnpT q Ñ Bn,ppT q is the canonical projection and εnp : Bn,ppT q Ñ B0,ppT q is induced by
the augmentation OSn,p Ñ OS0,p

. It follows that ψ̄pnqppq is equivalent to

t˚npLBn,ppT q{B0,ppT q

Moreover, for any q ě p ě n, the induced map ψ̄pnqppq Ñ ψ̄pnqpqq is obtained (through t˚nq) from the
co�ber, in PerfpBn,qpT qq

α˚npqε
˚
npLB0,ppT q

//

pσq

α˚npqLBn,ppT q

��

// α˚npqLBn,ppT q{B0,ppT q

��

ε˚nqα
˚
0pqLB0,ppT q

��
ε˚nqLB0,qpT q

// LBn,qpT q
// LBn,qpT q{B0,qpT q
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where αnpq is the map Bn,qpT q Ñ Bn,ppT q. Let us denote by pσq the square on the left hand side
above. Let us �x a few more notations

Bn,ppT q ˆ S0,p

ϕnp

��

a0p

xx

Bn,qpT q ˆ S0,p

ψnpq

��

oo // Bn,qpT q ˆ S0,q

ϕnq

��

S0,p

ξnp

��

Bn,ppT q ˆ Sn,p

anpxx

Bn,qpT q ˆ Sn,p
oo bnpq //

yy

Bn,qpT q ˆ Sn,q

anqyy
$nq

��

evnq

%%
Sn,p

$np

��

Sn,p
“

��

Sn,q
βnpqoo T

Bn,ppT q Bn,qpT q
αnpqoo

“ Bn,qpT q

The diagram pσq is then dual to the diagram

α˚npqε
˚
np$0p˚ ev˚0p TT α˚npq$np˚ ev˚np TToo

ε˚nq$0q˚ ev˚0q TT

OO

$nq˚ ev˚nq TToo

OO

Moreover, the functor $np (for any n and p) satis�es the base change formula. This square is thus
equivalent to the image by $nq˚ of the square

ψnpq˚bnpq˚b
˚
npqψ

˚
npq ev˚nq TT bnpq˚b

˚
npq ev˚nq TToo

ϕnq˚ϕ
˚
nq ev˚nq TT

OO

ev˚nq TToo

OO

Using now the projection and base change formulae along the morphisms ϕnq, bnpq and ψnpq, we see
that this last square is again equivalent to

pa˚nqβnpq˚ξnp˚OS0,pq b pev˚nq TT q pa˚nqβnpq˚OSn,pq b pev˚nq TT qoo

pa˚nqξnq˚OS0,q q b pev˚nq TT q

OO

pa˚nqOSn,q q b pev˚nq TT qoo

OO

We therefore focus on the diagram

OSn,q //

��

ξnq˚OS0,q

��
βnpq˚OSn,p // βnpq˚ξnp˚OS0,p

By de�nition, the �bres of the horizontal maps are both equivalent to Anr´ds and the map induced
by the diagram above is an equivalence. We have proven that for any q ě p ě n the induced map
ψ̄pnqppq Ñ ψ̄pnqpqq is an equivalence. It implies that LBpT q is a Tate module.

64



5.4 A symplectic structure (shifted by d)

In this subsection, we will prove the following

Theorem 5.4.1. Assume T is q-shifted symplectic. The ind-pro-stack Bd
pT q admits a symplectic

Tate structure shifted by q ´ d. Moreover, for any m P N we have an exact sequence

s˚mr
˚LBdpT q0 Ñ s˚mLBdpT q Ñ s˚mr

˚TBdpT q0rq ´ ds

Proof. Let us start with the following remark: the residue map rn : An Ñ k “ A1 de�ned in
lemma 5.1.2 de�nes a map OŜd Ñ kr´ds. From theorem 3.3.8, we have a pq ´ dq-shifted closed
2-form on Bd

pT q. We have a morphism from theorem 3.2.3

OBdpT qrq ´ ds Ñ LBdpT q b LBdpT q

in PIPerfpBd
pT qq. Let m P N. We get a map

OBdpT qmrq ´ ds Ñ s˚mLBdpT q b s
˚
mLBdpT q

and then
s˚mTBdpT q b s

˚
mTBdpT q Ñ OBdpT qmrq ´ ds

in IPPerfpBd
pT qmq. We consider the composite map

θ : s˚mTBdpT q{BdpT q0 b s
˚
mTBdpT q{BdpT q0 Ñ s˚mTBdpT q b s

˚
mTBdpT q Ñ OBdpT qmrq ´ ds

Using the remark 3.3.9 and the proof of proposition 5.3.1 we see that θ is induced by the morphisms
(varying n and p)

$np˚

`

E b E b ev˚nppTT b TT q
˘ A // $np˚pE b Erqsq

B // $np˚

´

OBdpT qnpˆSn,prqs
¯

where E “ a˚npξnp˚hnp˚γ
!
nOAd and the map A is induced by the symplectic form on T . The map B

is induced by the multiplication in OSn,p . This sheaf of functions is a trivial square zero extension of
augmentation ideal ξnp˚hnp˚γ

!
nOAd and B therefore vanishes. It follows that the morphism

s˚mTBdpT q b s
˚
mTBdpT q{BdpT q0 Ñ s˚mTBdpT q b s

˚
mTBdpT q Ñ OBdpT qmrq ´ ds

factors through s˚mTBdpT q0 b s˚mTBdpT q{BdpT q0 . Now using proposition 5.3.1 we get a map of exact

sequences in the category of Tate modules over Bd
pT qm

s˚mTBdpT q{BdpT q0
//

τm

��

s˚mTBdpT q
//

��

s˚mr
˚TBdpT q0

��
s˚mr

˚LBdpT q0rd´ qs
// s˚mLBdpT qrd´ qs

// s˚mLBdpT q{BdpT q0rd´ qs

where the maps on the sides are dual one to another. It therefore su�ces to see that the map
τm : s˚mTBdpT q{BdpT q0 Ñ s˚mr

˚LBdpT q0rd´ qs is an equivalence. We now observe that τm is a colimit
indexed by p ě m of maps

g˚pmt
˚
pp

´

ε˚ppLBdpT q0p Ñ TBdpT qpp{BdpT q0p

¯
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Let us �x p ě m and G “ a˚ppξpp˚OS0p . The map Fp : TBdpT qpp{BdpT q0p Ñ ε˚ppLBdpT q0p at hand is
induced by the pairing

TBdpT qpp{BdpT q0p b ε
˚
ppTBdpT q0p » $pp˚

`

E b ev˚pp TT
˘

b$pp˚

`

Gb ev˚pp TT
˘

��
$pp˚

`

E b ev˚pp TT bGb ev˚pp TT
˘

��
$pp˚pE bGqrqs

��

$pp˚

´

OBdpT qppˆSpp

¯

rqs

��
OBdpT qpprq ´ ds

We can now conclude using lemma 5.1.2.
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