Higher dimensional formal loop spaces

Benjamin Hennion*

March 3, 2015

Abstract

If M is a symplectic manifold then the space of smooth loops C*(S*, M) inherits of a quasi-
symplectic form. We will focus in this article on an algebraic analogue of that result. In their
article [KV1], Kapranov and Vasserot introduced and studied the formal loop space of a scheme
X. It is an algebraic version of the space of smooth loops in a differentiable manifold.

We generalize their construction to higher dimensional loops. To any scheme X — not neces-
sarily smooth — we associate £¢ (X), the space of loops of dimension d. We prove it has a structure
of (derived) Tate scheme — ie its tangent is a Tate module: it is infinite dimensional but behaves
nicely enough regarding duality. We also define the bubble space $5%(X), a variation of the loop
space. We prove that B%(X) is endowed with a natural symplectic form as soon as X has one (in
the sense of [PTVV]).

Throughout this paper, we will use the tools of (o0, 1)-categories and symplectic derived alge-
braic geometry.
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Introduction

Considering a differential manifold M, one can build the space of smooth loops L(M) in M. It is
a central object of string theory. Moreover, if M is symplectic then so is L(M) — more precisely
quasi-symplectic since it is not of finite dimension — see for instance [MP]. We will be interested here
in an algebraic analogue of that result.

The first question is then the following: what is an algebraic analogue of the space of smooth
loops? An answer appeared in 1994 in Carlos Contou-Carrére’s work (see [CC|). He studies there
G (C((t), some sort of holomorphic functions in the multiplicative group scheme, and defines the
famous Contou-Carrére symbol. This is the first occurrence of a formal loop space known to the author.
This idea was then generalised to algebraic groups as the affine grassmanian &vg = G(C((1))/G(C[¢])
showed up and got involved in the geometric Langlands program. In their paper [KV1], Mikhail
Kapranov and Eric Vasserot introduced and studied the formal loop space of a smooth scheme X. It
is an ind-scheme £(X) which we can think of as the space of maps Spec C((t)) — X. This construction
strongly inspired the one presented in this article.

There are at least two ways to build higher dimensional formal loops. The most studied one
consists in using higher dimensional local fields k((t1)) . . . (t4)) and is linked to Beilinson’s adéles. There
is also a generalisation of Contou-Carrére symbol in higher dimensions using those higher dimensional
local fields — see [OZ] and [BGW1]. If we had adopted this angle, we would have considered maps
from some torus! Spec(k((t1)) ... (ts)) to X.

The approach we will follow in this work is different. We generalize here the definition of Kapranov
and Vasserot to higher dimensional loops in the following way. For X a scheme of finite presentation,
not necessarily smooth, we define £¢(X), the space of formal loops of dimension d in X. We define
L{,(X) the space of maps from the formal neighbourhood of 0 in A? to X. This is a higher dimensional
version of the space of germs of arcs as studied by Jan Denef and Francois Loeser in [DL]. Let also
[%(X) denote the space of maps from a punctured formal neighbourhood of 0 in A? to X. The formal
loop space £4(X) is the formal completion of £ (X) in £&(X). Understanding those three items is
the main goal of this work. The problem is mainly to give a meaningful definition of the punctured
formal neighbourhood of dimension d. We can describe what its cohomology should be:

E[X1,..., Xd4] if n=0
H"(AY{0}) = { (X1... Xa) "k[XTY, .., XY ifn=d—1
0 otherwise

but defining this punctured formal neighbourhood with all its structure is actually not an easy task.
Nevertheless, we can describe what maps out of it are, hence the definition of £dU(X ) and the formal

IThe variable t1,...,tqy are actually ordered. The author likes to think of Spec(k((t1)) ... ((tq))) as a formal torus
equipped with a flag representing this order.



loop space. This geometric object is of infinite dimension, and part of this study is aimed at identifying
some structure. Here comes the first result in that direction.

Theorem 1 (see proposition 4.3.4). The formal loop space of dimension d in a scheme X is rep-
resented by a derived ind-pro-scheme. Moreover, the functor X — L%(X) satisfies the étale descent
condition.

We use here methods from derived algebraic geometry as developed by Bertrand Toén and
Gabriele Vezzosi in [HAG2]. The author would like to emphasize here that the derived structure
is necessary since, when X is a scheme, the underlying schemes of £4(X), £&(X) and £¢(X) are
isomorphic as soon as d > 2. Let us also note that derived algebraic geometry allowed us to define
L4(X) for more general X’s, namely any derived stack. In this case, the formal loop space £¢(X) is
no longer a derived ind-pro-scheme but an ind-pro-stack. It for instance work for X a classifying stack
BG of an algebraic group. The cohomology of the tangent T, a ) can then be thought an higher
dimensional Kac-Moody algebra. In dimension 1, it is up to a shift the Lie algebra g((¢)) where g is
the tangent of G.

The case d = 1 and X is a smooth scheme gives a derived enhancement of Kapranov and Vasserot’s
definition. This derived enhancement is conjectured to be trivial when X is a smooth affine scheme
in [GR, 9.2.10]. Gaitsgory and Rozenblyum also prove in loc. cit. their conjecture holds when X is
an algebraic group.

The proof of theorem 1 is based on an important lemma. We identify a full sub-category C of the
category of ind-pro-stacks such that the realisation functor C — dSty, is fully faithful. We then prove
that whenever X is a derived affine scheme, the stack £¢(X) is in the essential image of C and is thus
endowed with an essentially unique ind-pro-structure satisfying some properties. The generalisation
to any X is made using a descent argument. Note that for general X’s, the ind-pro-structure is not
known to satisfy nice properties one could want to have, for instance on the transition maps of the
diagrams.

We then focus on the following problem: can we build a symplectic form on £¢(X) when X is
symplectic? Again, this question requires the tools of derived algebraic geometry and shifted symplectic
structures as in [PTVV]. A key feature of derived algebraic geometry is the cotangent complex Lx
of any geometric object X. A (n-shifted) symplectic structure on X is a closed 2-form Ox[—n] —
Lx A Lx which is non degenerate — ie induces an equivalence

TX — Lx[n]

Because £4(X) is not finite, linking its cotangent to its dual — through an alleged symplectic form —
requires to identify once more some structure. We already know that it is an ind-pro-scheme but the
proper context seems to be what we call Tate stacks.

Before saying what a Tate stack is, let us talk about Tate modules. They define a convenient
context for infinite dimensional vector spaces. They where studied by Lefschetz, Beilinson and Drin-
feld, among others, and more recently by Briunling, Grochenig and Wolfson [BGW2]. We will use
here the notion of Tate objects in the context of stable (o0, 1)-categories as developed in [Hen2]. If C
is a stable (o0, 1)-category — playing the role of the category of finite dimensional vector spaces, the
category Tate(C) is the full subcategory of the (oo, 1)-category of pro-ind-objects ProInd(C) in C
containing both Ind(C) and Pro(C) and stable by extensions and retracts.

We will define the derived category of Tate modules on a scheme — and more generally on a
derived ind-pro-stack. An Artin ind-pro-stack X — meaning an ind-pro-object in derived Artin stacks
— is then gifted with a cotangent complex L. This cotangent complex inherits a natural structure of
pro-ind-module on X. This allows us to define a Tate stack as an Artin ind-pro-stack whose cotangent
complex is a Tate module. The formal loop space £¢(X) is then a Tate stack as soon as X is a finitely
presented derived affine scheme. For a more general X, what precedes makes £¢(X) some kind of
locally Tate stack. This structure suffices to define a determinantal anomaly

[Deteacx)] € H2(£9(X), 0% )



for any quasi-compact quasi-separated (derived) scheme X — this construction also works for slightly
more general X’s, namely Deligne-Mumford stacks with algebraisable diagonal, see definition 3.1.3.
Kapranov and Vasserot proved in [KV3] that in dimension 1, the determinantal anomaly governs the
existence of sheaves of chiral differential operators on X. One could expect to have a similar result
in higher dimensions, with higher dimensional analogues of chiral operators and vertex algebras. The
author plans on studying this in a future work.

Another feature of Tate modules is duality. It makes perfect sense and behaves properly. Using
the theory of symplectic derived stacks developed by Pantev, Toén, Vaquié and Vezzosi in [PTVV], we
are then able to build a notion of symplectic Tate stack: a Tate stack Z equipped with a (n-shifted)
closed 2-form which induces an equivalence

TZ S ]Lz[n]

of Tate modules over Z between the tangent and (shifted) cotangent complexes of Z.
To make a step toward proving that £¢(X) is a symplectic Tate stack, we actually study the
bubble space B(X) — see definition 5.2.3. When X is affine, we get an equivalence

BYUX) ~ LE(X) x LL(X)
LE(X)

Note that the fibre product above is a derived intersection. We then prove the following result

Theorem 2 (see theorem 5.4.1). If X is an n-shifted symplectic stack then the bubble space %d(X)
is endowed with a structure of (n — d)-shifted symplectic Tate stack.

The proof of this result is based on a classical method. The bubble space is in fact, as an ind-
pro-stack, the mapping stack from what we call the formal sphere S of dimension d to X. There are

therefore two maps
B(X) ~—— BUX) x § > X
The symplectic form on B%(X) is then Ss%i ev* wx, where wx is the symplectic form on X. The key
argument is the construction of this integration on the formal sphere, ie on an oriented pro-ind-stack
of dimension d. The orientation is given by a residue map. On the level of cohomology, it is the
morphism R
HY (S ~ (X ... Xg) k[XTh . X =k

mapping (X;...X4) ! to 1.

This integration method would not work on £¢(X), since the punctured formal neighbourhood
does not have as much structure as the formal sphere: it is not known to be a pro-ind-scheme.
Nevertheless, theorem 2 is a first step toward proving that £¢(X) is symplectic. We can consider the
nerve Z, of the map E‘{l, (X) — E‘lj] (X). Tt is a groupoid object in ind-pro-stacks whose space of maps
is ‘Bd(X). The author expects that this groupoid is compatible in some sense with the symplectic
structure so that E‘lj] (X) would inherit a symplectic form from realising this groupoid. One the other
hand, if £&(X) was proven to be symplectic, then the fibre product defining SBd(X) should be a
Lagrangian intersection. The bubble space would then inherit a symplectic structure from that on

L£4(X).

Techniques and conventions

Throughout this work, we will use the techniques of (o0, 1)-category theory. We will once in a while
use explicitly the model of quasi-categories developed by Joyal and Lurie (see [HTT]). That being
said, the results should be true with any equivalent model. Let us fix now two universes U € V to deal
with size issues. Every algebra, module or so will implicitly be U-small. The first part will consist of
reminders about (00, 1)-categories. We will fix there some notations.



We will also use derived algebraic geometry, as introduced in [HAG2]. We refer to [Tog3] for a
recent survey of this theory. We will denote by %k a base field and by dSt; the (oo, 1)-category of
(U-small) derived stacks over k. In the first section, we will dedicate a few page to introduce derived
algebraic geometry.

Outline

This article begins with a few paragraphs, recalling some notions we will use. Among them are (o0, 1)-
categories and derived algebraic geometry. In section 1, we develop some more (o0, 1)-categorical
tools we will need later on. In section 2, we set up a theory of geometric ind-pro-stacks. We then
define in section 3 symplectic Tate stacks and give a few properties, including the construction of
the determinantal anomaly (see definition 3.1.3). Comes section 4 where we finally define higher
dimensional loop spaces and prove theorem 1 (see proposition 4.3.4). We finally introduce the bubble
space and prove theorem 2 (see theorem 5.4.1) in section 5.
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Preliminaries

In this part, we recall some results and definitions from (oo, 1)-category theory and derived algebraic
geometry.

0.1 A few tools from higher category theory

In the last decades, theory of (o0, 1)-categories has tremendously grown. The core idea is to consider
categories enriched over spaces, so that every object or morphism is considered up to higher homotopy.
The typical example of such a category is the category of topological spaces itself: for any topological
spaces X and Y, the set of maps X — Y inherits a topology. It is often useful to talk about topological
spaces up to homotopy equivalences. Doing so, one must also consider maps up to homotopy. To do
s0, one can of course formally invert every homotopy equivalence and get a set of morphisms [X,YT].
This process loses information and mathematicians tried to keep trace of the space of morphisms.

The first fully equipped theory handy enough to work with such examples, called model categories,
was introduced by Quillen. A model category is a category with three collections of maps — weak
equivalences (typically homotopy equivalences), fibrations and cofibrations — satisfying a bunch of
conditions. The datum of such collections allows us to compute limits and colimits up to homotopy.
We refer to [Hov]| for a comprehensive review of the subject.

Using model categories, several mathematicians developed theories of (o0, 1)-categories. Let us
name here Joyal’s quasi-categories, complete Segal spaces or simplicial categories. Each one of those
theories is actually a model category and they are all equivalent one to another — see [Ber] for a review.

In [HTT], Lurie developed the theory of quasi-categories. In this book, he builds everything
necessary so that we can think of (oo, 1)-categories as we do usual categories. To prove something
in this context still requires extra care though. We will use throughout this work the language as
developed by Lurie, but we will try to keep in mind the 1-categorical intuition.

In this section, we will fix a few notations and recall some results to which we will often refer.



Notations: Let us first fix a few notations, borrowed from [HTT].

We will denote by Cat> the (o0, 1)-category of U-small (o0, 1)-categories — see [HTT, 3.0.0.1];

Let Pr:Y denote the (o0, 1)-category of U-presentable (and thus V-small) (00, 1)-categories with
left adjoint functors — see [HTT, 5.5.3.1];

The symbol sSets will denote the (oo, 1)-category of U-small spaces;

For any (oo, 1)-categories C and D we will write Fet(C, D) for the (o0, 1)-category of functors from
C to D (see [HTT, 1.2.7.3]). The category of presheaves will be denoted P(C) = Fct(CP, sSets).

For any (oo, 1)-category C and any objects ¢ and d in C, we will denote by Map.(c, d) the space
of maps from c to d.

For any simplicial set K, we will denote by K= the simplicial set obtained from K by formally
adding a final object. This final object will be called the cone point of K.

The following theorem is a concatenation of results from Lurie.

Theorem 0.1.1 (Lurie). Let C be a V-small (c0,1)-category. There is an (c0,1)-category Ind"(C)
and a functor j: C — Ind”(C) such that

The (o0, 1)-category Ind" (C) is V-small;

The (o0, 1)-category IndU(C) admits U-small filtered colimits and is generated by U-small filtered
colimits of objects in j(C);

The functor j is fully faithful and preserves finite limits and finite colimits which exist in C;
For any c € C, its image j(c) is U-small compact in IndU(C);

For every (w0, 1)-category D with every U-small filtered colimits, the functor j induces an equiv-

alence
FetU=¢(Ind"(C), D) > Fet(C, D)

where Fcthc(IndU(C),D) denote the full subcategory of Fct(IndU(C),D) spanned by functors
preserving U-small filtered colimits.

If C is U-small and admits all finite colimits then IndU(C) 1s U-presentable;

If C is endowed with a symmetric monoidal structure then there exists such a structure on
IndU(C) such that the monoidal product preserves U-small filtered colimits in each variable.

Proof. Let us use the notations of [HTT, 5.3.6.2]. Let K denote the collection of U-small filtered
simplicial sets. We then set Ind"(C) = Pg(C). It satisfies the required properties because of loc. cit.
5.3.6.2 and 5.5.1.1. We also need tiny modifications of the proofs of loc. cit. 5.3.5.14 and 5.3.5.5. The
last item is proved in [HAlg, 6.3.1.10]. O

Remark 0.1.2. Note that when C admits finite colimits then the category Ind”(C) embeds in the
V-presentable category IndV(C).

Definition 0.1.3. Let C be a V-small co-category. We define Pro"”(C) as the (00, 1)-category

Pro’(C) = (IndU(C°p)>op

It satisfies properties dual to those of Ind”(C).



Definition 0.1.4. Let C be a V-small (oo, 1)-category. Let
i: Fct(C, Cat) ) — Fet(IndV(C), Cat,.)
denote the left Kan extension functor. We will denote by IndUC the composite functor

IndV o—

Fet(C, Cat” ) —— Fet(Ind"(C), Cat?) Fet(Ind(C), Cat?)

We will denote by ProIéJ the composite functor

Proo—

Fct(C, Cat))) Fct(C, Cat)) — Fet(Pro”(C), Cat.)

We define the same way

Ind} : Fct(C,Cat’) — Fct(Ind"(C), Cat,,)
Pro/,: Fct(C,Cat)) — Fct(Pro'(C), Cat.,)

Remark 0.1.5. The definition 0.1.4 can be expanded as follows. To any functor f: C — Cat}.’O and
any ind-object ¢ colimit of a diagram

K —°>C——>1Ind"(C)

we construct an (oo, 1)-category

dY(/)(c) = Ind” (colim /()
To any pro-object d limit of a diagram

d U
K% ——(C ——Pro (C)

we associate an (o0, 1)-category

Prog (f)(d) =~ lim Pro”(f(d))

Definition 0.1.6. Let Cat?.;’St denote the subcategory of Cati’o spanned by stable categories with
exact functors between them — see [HAlg, 1.1.4]. Let Cat’-*"'¢ denote the full subcategory of Cat**
spanned by idempotent complete stable categories.

Remark 0.1.7. It follows from [HAlg, 1.1.4.6, 1.1.3.6, 1.1.1.13 and 1.1.4.4] that the functors IndUc and
Prog restricts to functors

IndY: Fet(C, Cat’*") — Fet(Ind”(C), Cat;™)
Prol: Fet(C,Cat’*") — Fet(Pro”(C), Cat’:™)

Symmetric monoidal (o0, 1)-categories: We will make use in the last chapter of the theory of
symmetric monoidal (oo, 1)-categories as developed in [HAlg]. Let us give a (very) quick review of
those objects.

Definition 0.1.8. Let Fin* denote the category of pointed finite sets. For any n € N, we will denote
by (n) the set {*,1,...,n} pointed at *. For any n and i < n, the Segal map §": (n) — (1) is defined
by ¢6*(j) = 1if j =i and §*(j) = = otherwise.



Definition 0.1.9. (see [HAlg, 2.0.0.7]) Let C be an (0, 1)-category. A symmetric monoidal structure
on C is the datum of a coCartesian fibration p: C® — Fin* such that

e The fibre category C<®1> is equivalent to C and
e For any n, the Segal maps induce an equivalence CS%> — (C’?D)" ~ C".

where C%D denote the fibre of p at (n). We will denote by Cat®" the (o0, 1)-category of V-small
symmetric monoidal (o0, 1)-categories — see [HAlg, 2.1.4.13].

Such a coCartesian fibration is classified by a functor ¢: Fin* — Ca\tg’O —see [HTT, 3.3.2.2] — such
that ¢({n)) ~ C™. The tensor product on C is induced by the map of pointed finite sets p: (2) — (1)
mapping both 1 and 2 to 1

®=¢(n):C* = C

Remark 0.1.10. The forgetful functor Cat®" — Cat}, preserves all limits as well as filtered colimits
— see [HAlg, 3.2.2.4 and 3.2.3.2]. Moreover, it follows from theorem 0.1.1 - (vii) that the functor Ind"
induces a functor

Ind”: Cat®’ — Cat®"

The same holds for Pro?. The constructions Ind” and Pro" therefore restrict to

IndY: Fet(C, Cat®") — Fet(Ind”(C), Cat®")
ProIg: Fet(C, Cat%’v) — FC‘E(PPOU(C)7 Cat?o’v)

Tate objects: We now recall the definition and a few properties of Tate objects in a stable and
idempotent complete (o0, 1)-category. The content of this paragraph comes from [Hen2]. See also
[Henl].

Definition 0.1.11. Let C be a stable and idempotent complete (o0, 1)-category. Let Tate”(C) denote
the smallest full subcategory of Pro” Ind”(C) containing Ind”(C) and Pro"”(C), and both stable and
idempotent complete.

The category Tate" (C) naturally embeds into Ind” Pro”(C) as well,

Proposition 0.1.12. If moreover C is endowed with a duality equivalence C°° = C then the induced
functor

op
Pro” Ind”(C) — (ProtU IndU(C)) ~ Ind" Pro"(C)
preserves Tate objects and induces an equivalence Tate” (C) ~ Tate" (C)°P.

Definition 0.1.13. Let C be a V-small (o, 1)-category. We define the functor

Tate” o—

Tate”: Fct(C, Cat’™) 4i>Fct(Ind[U (C), Cat ") Fct(Ind"(C), Cat;*4)

0.2 Derived algebraic geometry

We present here some background results about derived algebraic geometry. Let us assume k is a field
of characteristic 0. First introduced by Toén and Vezzosi in [HAG2], derived algebraic geometry is a
generalisation of algebraic geometry in which we replace commutative algebras over k by commutative
differential graded algebras (or cdga’s). We refer to [Toé3] for a recent survey of this theory.



Generalities on derived stacks: We will denote by cdga,f0 the (o0, 1)-category of cdga’s over k
concentrated in non-positive cohomological degree. It is the (oo, 1)-localisation of a model category
along weak equivalences. Let us denote dAff; the opposite (o0, 1)-category of cdga,fo. It is the
category of derived affine schemes over k. In this work, we will adopt a cohomological convention for
cdga’s.

A derived prestack is a presheaf dAff;” ~ cdga,f0 — sSets. We will thus write P(dAff;) for
the (o0, 1)-category of derived prestacks. A derived stack is a prestack with a descent condition. We
will denote by dSty the (o0, 1)-category of derived stacks. It comes with an adjunction

(—)Jr: P(dAﬁk) = dSt,

where the left adjoint (—)% is called the stackification functor.

Remark 0.2.1. The categories of varieties, schemes or (non derived) stacks embed into dSty.

Definition 0.2.2. The (o0, 1)-category of derived stacks admits an internal hom Map(X,Y") between
two stacks X and Y. It is the functor cdga,f0 — sSets defined by

A — Mapgg, (X x Spec A,Y)
We will call it the mapping stack from X to Y.
There is a derived version of Artin stacks of which we first give a recursive definition.
Definition 0.2.3. (see for instance [Toél, 5.2.2]) Let X be a derived stack.

e We say that X is a derived 0-Artin stack if it is a derived affine scheme ;

e We say that X is a derived n-Artin stack if there is a family (T,) of derived affine schemes and
a smooth atlas

u: HTO‘ — X
such that the nerve of u has values in derived (n — 1)-Artin stacks ;

e We say that X is a derived Artin stack if it is an n-Artin stack for some n.
We will denote by dStﬁ’rt the full subcategory of dSt; spanned by derived Artin stacks.

To any cdga A we associate the category dgMod 4 of dg-modules over A. Similarly, to any derived
stack X we can associate a derived category Qcoh(X) of quasicoherent sheaves. It is a U-presentable
(00, 1)-category given by the formula

Qcoh(X) ~ SpClC1AmHX dgMod 4,

Moreover, for any map f: X — Y, there is a natural pull back functor f*: Qcoh(Y) — Qcoh(X).
This functor admits a right adjoint, which we will denote by f,. This construction is actually a functor
of (o0, 1)-categories.

Definition 0.2.4. Let us denote by Qcoh the functor
o L,U
Qcoh: dSt® — Pry;

For any X we can identify a full subcategory Perf(X) c Qcoh(X) of perfect complexes. This defines
a functor
Perf: dSt;”> — Catl,

Remark 0.2.5. For any derived stack X the categories Qcoh(X) and Perf(X) are actually stable and
idempotent complete (o0, 1)-categories. The inclusion Perf(X) — Qcoh(X) is exact. Moreover, for
any map f: X — Y the pull back functor f* preserves perfect modules and is also exact.

Any derived Artin stack X over a basis S admits a cotangent complex Lx,g € Qcoh(X). If X is
locally of finite presentation, then the its cotangent complex is perfect

LX/S € Perf(X)



Symplectic structures: Following [PTVV], to any derived stack X we associate two complexes
AP(X) and AP (X) in dgMod,, respectively of p-forms and closed p-forms on X. They come with
a natural morphism AP(X) — AP(X) forgetting the lock closing the forms®. This actually glues

into a natural transformation
AP:cl

/_\
dSt; ﬂ dgMod,
~ =
AP
Let us emphasize that the complex A%(X) is canonically equivalent to the global section complex
of Lx A Lx. In particular, any n-shifted 2-forms k[—n] — AP(X) induces a morphism Ox[—n] —
Lx ALx in Qecoh(X). If X is locally of finite presentation, the cotangent Ly is perfect and we then
get a map
TX [—n] i ]LX

Definition 0.2.6. Let X be a derived stack locally of finite presentation.

e An n-shifted 2-form wx : k[-n] — A2(X) is called non-degenerated if the induced morphism
Tx[—n] — Lx is an equivalence;

e An n-shifted symplectic form on X is a non-degenerated n-shifted closed 2-form.
Obstruction theory: Let A€ cdga,f0 and let M € dgModj_1 be an A-module concentrated in

negative cohomological degrees. Let d be a derivation A - A® M and s: A - A® M be the trivial
derivation. The square zero extension of A by M[—1] twisted by d is the fibre product

A@y M[-1] —— A

2,k

A 2 A®M

Let now X be a derived stack and M € Qcoh(X)S~!. We will denote by X[M] the trivial square
zero extension of X by M. Let also d: X[M] — X be a derivation — ie a retract of the natural map
X — X[M]. We define the square zero extension of X by M[—1] twisted by d as the colimit

XM[-1)] = colim_ Spec(A@yeq f*M[-1])

It is endowed with a natural morphism X — X [M[—1]] induced by the projections p as above.

Proposition 0.2.7 (Obstruction theory on stacks). Let ' — G be an algebraic morphism of derived
stacks. Let X be a derived stack and let M € Qcoh(X)S™1. Let d be a derivation

d e Mapy,_(X[M], X)
We consider the map of simplicial sets

0 Map(XM[-1ILF) = Map(X, F) < Map(Xa[M[-1]],G)

Let y € Map(X, F) X\jap(x,q) Map(X4[M[—1]], G) and let x € Map(X, F) be the induced map. There
exists a point a(y) € Map(x*Lp/q, M) such that the fibre v, of ¢ at y is equivalent to the space of
paths from 0 to a(y) in Map(x*Lp/q, M)

Yy =~ Qg a(y) Map(z*Lp/c, M)

2This lock is a structure on the form: being closed in not a property in this context.
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Proof. This is a simple generalisation of [HAG2, 1.4.2.6]. The proof is very similar. We have a
natural commutative square
X

— Xa[M[-1]]

X
It induces a map

a: Map(X, F') N Z<X o Map(Xg[M[-1]],G) — Mapy,_,(X[M], F) ~ Map(z*Lg,q, M)
ap(A,

Let Qg o(y) Mapy,_ (X [M], F) denote the space of paths from 0 to a(y). It is the fibre product

QO,oz(y) MapX/—/G(X[M]aF) *

|

* Mapy, q(X[M], F)

a(y)

The composite map a1 is by definition homotopic to the 0 map. This defines a morphism

[ Q0,0 Mapx /) (X[M], F) — 9,

It now suffices to see that the category of X’s for which f is an equivalence contains every derived
affine scheme and is stable by colimits. The first assertion is exactly [HAG2, 1.4.2.6] and the second
one is trivial. O

Algebraisable stacks: Let X be a derived stack and A be a cdga. Let a = (a1,...,a,) be a

sequence of elements of A° forming a regular sequence in H(A). Let A/a?’ Lal denote the Kozsul
complex associated with the regular sequence (af, ..., ay). It is endowed with a cdga structure. There

is a canonical map

P(A)g: CO}LimX(A/a?’ e az) - X<lirlln Alar ... ,a;})

This map is usually not an equivalence.

Definition 0.2.8. A derived stack X is called algebraisable if for any A and any regular sequence a
the map ©(A), is an equivalence.

A map f: X — Y is called algebraisable if for any derived affine scheme T and any map T' — Y,
the fibre product X xy T is algebraisable.

We will say that a derived stack X has algebraisable diagonal if the diagonal morphism X — X x X
is algebraisable.

Remark 0.2.9. A derived stack X has algebraisable diagonal if for any A and a the map ¥(A), is
fully faithful. One could also rephrase the definition of being algebraisable as follows. A stack is
algebraisable if it does not detect the difference between

colim Spec (A/a?7 o ,GZ) and Spec (lim A/a?7 o ,GZ)

Example 0.2.10. Any derived affine scheme is algebraisable. Another important example of algebrais-
able stack is the stack of perfect complexes. In [Bha], Bhargav Bhatt gives some more examples of
algebraisable (non-derived) stacks — although our definition slightly differs from his. He proves that
any quasi-compact quasi-separated algebraic space is algebraisable and also provides with examples
of non-algebraisable stacks. Let us name K(G,,, 2) — the Eilenberg-Maclane classifying stack of G,,, —
as an example of non-algebraisable stack. Algebraisability of Deligne-Mumford stacks is also look at
in [DAG-XTI].
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1 Categorical results

This hole section contains general results in higher category theory. We will refer to them throughout
this article. On first read, the reader could skip this part and come back when required.

1.1 Adjunction and unit transformation

We prove here results about adjunction units between (oo, 1)-categories. They deal with quite technical
questions for which the author did not find any reference in the literature. A trustful reader could
skip this part and refer to the results when needed.
Let C be a U-small (o0, 1)-category. Let s: C/Cat — Cat_. denote the constant functor C and
t the target functor (C — D) — D — composed with the inclusion Cat’, — Cat,. The evaluation
map
(Cat?)2" x A' - Catl — Cat!,

define a natural transformation e: s — t. Let {¢ — C/Catgj denote the coCartesian fibration classfying
t. The one classifying s is the projection {s = C x C/Cat}, — C/CatZ,. We can thus consider the map
E: {s— {t induced by e.

Definition 1.1.1. Let us denote by F¢ the functor
o P o C U \°P E op Mapy,
Cpxgt—>cpx( /Catoc> x §t——({t)"" x §t — sSets

where ¢ is induced by the initial object of C/Catuojo.

Lemma 1.1.2. Let f be a functor C — D between U-small (00,1)-categories. It induces a map
D — {t. Moreover the functor

F,
CP x D — (% x [t — > sSets
is equivalent to the functor
foP.id Mapp
C°P x D —— D x D —— sSets

Proof. There is by definition a natural transformation 6 between the two functors at hand. To any
pair (c¢,d) € C°P x D, it associates the natural map

Mapp,(f(c), d) =~ Mapy,. ((f, f(c)), (f,d)) = Mapy, ((ide, ¢), (f, d))
which is an equivalence (see [HTT, 2.4.4.2]). O

We will denote by Catlgc’L the sub-category of CatgJ of all categories but only left adjoint functors
between them.

Proposition 1.1.3. Let C be a U-small (00, 1)-category. There exists a functor
Mc: C/Catg) —, Mape(—, 7)/Fct(C x C°P sSets)
mapping a functor f: C — D to the functor Mapp(f(—), f(=)). It restricts to a functor
ec: CloatVt - id/pet(c, 0)

mapping a functor f: C — D with a right adjoint g the unit transformation of the adjunction id — gf.
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Proof. We consider the composition

C°P x C x C/CattU Ccor x (t e sSets

It induces a functor
C/Catgj — Fct(C x C°P, sSets)

The image of the initial object ide¢ is the functor Map,(—, —). We get the required
Me: C/Catg) —, Mape(—, _)/Fct(C x C°P, sSets)

Let i denote the fully faithful functor
Fct(C,C) — Fet(C,P(C)) =~ Fet(C x CP, sSets)

The restriction of Mc to € /C:at[go’L has image in the category of right representable functors C x C°P —
sSets. It therefore factors through i and induces the functor

ee: C/Catgj’L — id/Fct(C,C)

Remark 1.1.4. There is a dual statement to proposition 1.1.3. Namely, there exists a functor
U o
Cat, o — Fct(C x C, sSe’cs)/MapC(_7 )

which restricts to a functor
ne: CatEJC’L/C - Fct(C,C)/idC
mapping a left adjoint f to the counit transformation fg — ide — where g is the right adjoint of f.

Proposition 1.1.5. Let K be a U-small filtered simplicial set. Let D: (K*)°° — Cat 2" be a diagram.
Let D be a limit of K — (K®)°P — Cat ™. Let also C € Caty, be the cone point of D. If the
category C admits K°P-indexed limits then the canonical functor f: C — D admits a right adjoint g.
This right adjoint g is the limit in Fct(D,C)

— i
g kg}% 9kDPk
where py, is the projection D — D(k) and gy, is the right adjoint to the functor fr: C — D(k).

Proof. The diagram D corresponds to a diagram D: K — C/Catg. Let us consider the pullback
diagram

{(tc o D) §t
I
Koo — D ¢ /Cat?,

The category D being a limit of D, there is a canonical natural transformation from the constant
diagram D: K°P — Cat[U to to D. It induces a map p: K°? x D — {to D. Let us then consider the
composite functor

CoP % K°P x D —2—s (Cop xStOﬁHCOP X SthSets

We get a functor ¢ € Fet(K°P,Fct(D x CP,sSets)). It maps a vertex k € K to the functor
Mapp, (fr(—=), pe(—)) — where fr: C — Dy, is D(k) and py: D — Dy is the projection. For every k,
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the functor f; admits right adjoint. It follows that ¢ has values in the full sub-category Fet(D,C) of
Fet(D x C°P,sSets) spanned by right representable functors:

P: K — Fet(D,C)

Let g be a limit of ¢. We will prove that ¢ is indeed a right adjoint of f: C — D. We can build, using
the same process as for ¥, a diagram

(K7)°P - Fet(C,C)
which corresponds to a diagram p: K°P — ide/Fet(C,C). The composition
K°P —1de/Fet(c, C) — Fet(C,C)
is moreover equivalent to
K°P % Fet(D,C) =¥ Fet(C,C)

The limit of p therefore defines a natural transformation ide — fg. It exhibits g as a right adjoint to
I O

Lemma 1.1.6. Let K be a filtered simplicial set and let C: K — Caty, be a diagram. For any ke K
we will write Cy, instead of C(k). We will also write C for a colimit of C. Every object of C is in the
essential image of at least one of the canonical functors fi,: C, — C. For any pair of objects in C, we
can assume they are the images of x and y in Cy for some k, and we have

Mape (fi(x), fi(y)) ~ colim Mapc, (C(6)(z), C(9) (1))
Proof. This is a simple computation, using that finite simplicial sets are compact in Cat.

MapC(fk(x)afk(y)) = Map(Al,C) x {(fk(ﬁ)vfk(y))}

Map (*11%,C)

~ colim (Map(Al,Cz) x {(C(¢)($)7C(¢)(y))})

Map (11%,C;)

~ (g:oggl)l Mape, (C(¢)(x),C(4)(y))

O

Lemma 1.1.7. Let K be a V-small filtered simplicial set and let C: K — CatX) be a diagram of
V-small categories. Let us assume that for each vertex k € K the category C, = C(k) admits finite
colimits and that the transition maps in the diagram C preserve finite colimits. For any k — | € K,
let us fix the following notations

colim € —— Ind" (colim C)

Uk T ag T
k1

. v St v
C Cy, . Ind (Ck) ?Ind (Cl)

where the functor ay, 1s Indv(uk). The functor ¢y, is the transition map C(k — 1), the functor fy is
IndV((;Skl) and gy 18 its right adjoint.

(i) (Lurie) The category colimC admits finite colimits and for any k the functor u, preserves such
colimits. It follows that ai admits a right adjoint by.
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(ii) (Lurie) The natural functor Ind" (colimC) — colimInd’(C) € Pr:Y is an equivalence. Those
two categories are also equivalent to the limit of the diagram Ind" ( 2)R of right adjoints

Ind”(C)%: KL\/(CLPI‘L v (PI‘R V)
(iii) For any k € K, the adjunction transformation ji, — brayji is a colimit of the diagram
s R/ O Ind" (Co) joag? =5 i fpet(Cy, Tnd (Ch)
If moreover K is U-small and if for any k — 1 € K, the map gi;: IndV(Cl) — IndV(Ck) restricts to

a map Gu: Ind”(C;) — Ind”(Cy) then

(iv) For any k € K the functor by, restricts to a functor by: Ind”(C) — IndU(Ck) mght adjoint to
ar = IndY(uy). Moreover for any k — 1 the map gr1 is a right adjoint to fr; = Ind" (¢r).

(v) There exists a diagram IndU(@)R: K°P — Cato, mapping k — [ to gx; whose limit satisfies
lim Ind”(C)® ~ Ind"(colim C)

(vi) For any k € K, the adjunction transformation ji — Z;kdkjk is a colimit of the diagram

Ind"(C)

e R/ Ind”(Ck) /Cat™ " =% Jk/Pet(Cy, Ind (Ch))

where Jj, is the canonical map Cy, — Ind”(Cy).

Proof. The first item is [HTT, 5.5.7.11]. The second is a combination of [HTT, 5.5.7.10, 5.5.3.4 and
5.5.3.18] and [HAlg, 6.3.7.9]. Concerning (i), we consider the colimit of the diagram

kK % i fPet(Cr, Ind” (Cr)) — Mape, (= =) Fet(C, x COP, sSets)

This diagram is equivalent to

- M
0: kK S~ Clc/CatIgO ok Mape, (-, _)/Fct(Ck x C;P, sSets)
From lemma 1.1.6, the colimit of € is the functor
Mape (uk (=), uk(—)) >~ Mapngy(c)(iuk(—), iuk(—))
~ Maprnqv(c) (akjr (=), arjr(—))

where C denotes a colimit of C. This concludes the proof of (%) and we now focus on (iv).

Let K - [ € K and let id — gi; fr; denote a unit for the adJunctlon It restricts to a natural
transformation id — gy fkl which exhibits gx; as a right adjoint to fkl Using the same mechanism,
if the functor by, restricts to by as promised then by is indeed a right adjoint to ax. It thus suffices to
prove that the functor byi factors through the canonical inclusion #;: Ind”(C;) — Ind"(Cy). Every
object of C is in the essential image of u; for some k — [ € K. It is therefore enough to see that for
any k — [, the functor byiu; factors through t5. We compute

briw; ~ brayj; ~ gribiarji >~ gri(colim py)

The diagram p;: [/K — jl/Fct(Cl,IndV(Cl)) factors into
UK~ Ji/Ret(Cy, Ind?(C))) —== Ji/Fet(C, Ind” (C)))
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Because g, gr; and t; preserve U-small filtered colimits, the functor bgiu; is the colimit of the diagram

tr gkl

Uk s ifRet(Cy, Ind (C)) 2% TGkt fRet(C,, Ind” (Ci))
The functor ¢; also preserves U-small filtered colimits and we have
briug = ty.(colim gr; o i)

To prove (v), we use [HAlg, 6.2.3.18] to define the diagram Ind”(C)®. It then follows that the
equivalence of (ii) B -
limInd” (C)® ~ Ind" (colim C)

restricts to the required equivalence. We finally deduce (vi) from the (4ii). O

Corollary 1.1.8. Let C be an (o0, 1)-category and let F: C — CatYO’L be a functor. For any c € C
and any f:c— de IndU(C’), the functor

Ind¢ (F)(f): Ind”(F(c)) ~ Ind¢ (F)(c) — Ind¢(F)(d)

admits a right adjoint.

1.2 Computation techniques

We will now establish a few computational rules for the functors Ind” and Pro”. A trustful reader
not interested in (oo, 1)-category theory could skip this subsection and come back for the results when
needed. We tried to keep an eye on the (1-)categorical intuition.

Let us start with a V-small co-category C. Let s¢: CA" = C denote the source functor while
te: CA" — C denote the target functor. Using [HTT, 2.4.7.11 and 2.4.7.5] we see that s¢ is a Cartesian
fibration and t¢ is a coCartesian fibration.

Definition 1.2.1. let C be a V-small (o0, 1)-category. Let us denote by Ue: C%° — Cat ), the functor
classified by s¢. Let us denote by O¢: C — CatXJ the functor classified by t¢.

Remark 1.2.2. The functor Ue map an object ¢ € C to the comma category ¢/C and an arrow ¢ — d
to the forgetful functor

die . ¢/e

The functor O¢c map an object ¢ € C to the comma category C/c and an arrow ¢ — d to the forgetful
functor

Cle =y
Lemma 1.2.3. Let C be a V-small (0, 1)-category. There is a natural equivalence

Ind;(Oc¢) ~ Opnav(c)

It induces an equivalence
Ind;(Oc¢) ~ Oppav(e)

Remark 1.2.4. Because of (i) in lemma 1.1.7, if the category C admits all finite colimits then we have
: v - v : - v
hin Ind (C)/Qk ~ Ind (co}clm C/Ck> ~ Ind"(C)/.

where the limit on the left hand side is computed using base change functors. If K is U-small and if
IndU(C) admits pullbacks then it restricts to an equivalence

. U U
h]gnInd (C)/Qk ~Ind"(C)/,

Let us also note that there is a dual statement to lemma 1.2.3 involving Pro":

M(OC) = OProU(C)
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Proof. Let us first consider the pullback category
C/ind"(C) ———Ind" ()~
- i
q source,target

C x Ind"(C) —Ind"(C) x Ind"(C)
The functor ¢: C/Ind”(C) — € x Ind"(C) — Ind”(C) is a coCartesian fibration. Let p denote the
coCartesian fibration p: £ — Ind" (C) classified by the extension of O¢
Oc: Ind’(C) — Cat,

There is a natural morphism functor g: £ — C/Ind”(C) over Ind"(C). It induces an equivalence
fiberwise and therefore g is an equivalence. Let D — IndV(C) denote a coCartesian fibration classifying
the functor

IndY(O¢) ~ Ind” o(()c) . Ind"(C) — Caty,

We have a diagram of coCartesian fibration over IndV(C)
D« & ~%/Ind"(C) - Ind"(C)*

We consider the relative Kan extension D — Indv(D)Al of C/Ind"(C) — IndV(C)Al. We thus have
the required natural transformation 7: Ind}(O¢) — Otnav(c)-

Let now ¢ € Ind”(C). Let ¢: K — C be a V-small filtered diagram whose colimit in Ind" (C) is .
The map

) \% : \%
T(c): Ind <co}€1mC/ck> — Ind"(C)/,
is equivalent to the ind-extension of the universal map

. ol v
f: co}clmC/Qk — Ind"(C)/,

For every k € K, let us denote by f; the natural functor
) \%
fi: C/Qk — Ind"(C)/.
Using [HTT, 5.3.5.11], to prove T'(c) is an equivalence, it suffices to see that :
e the functors fj have values in compact objects,
e the functor f is fully faithful,

e and the functor T'(c) is essentially surjective.

Those three items are straightforwardly proved. We will still expand the third one. Let thus d €
Ind”(C) with a map d — ¢ in Ind"(C). There exists a V-small filtered diagram d: L — C whose
colimit in Ind”(C) is d. For every I € L there exists an k(I) such that the map d; — c factors through
¢gy — ¢- This implies that d is in the essential image of T'(c).

The construction of a natural transformation S: Indg(O¢) — Otnav(c) is similar to that of T If
c¢: K — C is U-small then the equivalence

T(c): Ind’ <co}€imC/ck> = IndV(C)/

c
restricts to the equivalence

C

S(c): Ind" (co}fim C/Ck) = IndU(C)/
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Lemma 1.2.5. Let C be a V-small (00, 1)-category with all pushouts. The Cartesian fibration
sc: A L
is then also a coCartesian fibration.
Proof. This is a consequence of [HTT, 5.2.2.5]. O
Remark 1.2.6. If C is an (o0, 1)-category with all pullbacks, then the target functor
te:CA ¢
is also a Cartesian fibration.

Definition 1.2.7. Let C be an (o0, 1)-category. If C admits all pushouts, we will denote by Uz the
functor classifying the coCartesian fibration s¢ :

Ul: C — Cat),
If C admits all pullbacks, we will denote by Oj the functor classifying the Cartesian fibration ¢¢ :
Op : C°P — Cat,

Note that those two constructions are of course linked : the functor Of is the composition of Ugey
with the functor (—)°P: Cat}, — Cat.,..

Remark 1.2.8. The functor Uz map an object ¢ to the comma category ¢/C and a map ¢ — d to the
functor

—ud: ¢c - e
The functor O maps a morphism ¢ — d to the pullback functor
o ; ¢ C/d - C/c
Lemma 1.2.9. Let C be a V-small co-category with all pushouts. There is a natural equivalence
Ind¢(Ug) > Upyqo ()

It induces an equivalence
Ind(U¢) =~ Upyau (o)

Remark 1.2.10. Unwinding the definition, we can stated the above lemma as follows. Let ¢: K — C
be a filtered diagram. The canonical functor

Ind" (co}cim E’*’/C) — ¢Ind?(C)

is an equivalence — where ¢ is a colimit of ¢ in Ind”(C). Using remark 1.2.4, we can shows the following
similar statement. If C admits pullbacks then there is an equivalence

U 11 11
mcf)p (UCOP) ~ Pro?(Cop)

Proof. This is very similar to the proof of lemma 1.2.3. Let us first form the pullback category

Ind" (C)jc ——Ind"(C)*'
\L J lsourcc,targct

Ind"(C) x ¢ —1Ind"(C) x Ind"(C)
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The induced map g: IndV(C)/c — Ind"(C) x C — Ind"(C) is a coCartesian fibration. We can show
the same way we did in the proof of lemma 1.2.3 that it is classified by the extension of Ug

U: Ind’(C) — Cat”,

. . . .
The functor 7 preserves coCartesian morphisms and therefore induces a natural transformation U, —
Ii[ndV(C)' This transformation extends to a natural transformation

T: Ind;(Ug) — Ind"(C)

To prove that T is an equivalence, it suffices to prove that for every c € IndV(C) and any V-small
filtered diagram c¢: K — C whose colimit is ¢, the induced functor

T(c): Ind” <co}€imck/C> = ¢Ind"(0)

is an equivalence.

Let us first assume that K is a point and thus that ¢ belong to C. The canonical functor
clC — C/TndV(C) is fully faithful and its image is contained in the category of compact objects of
¢/Ind” (C). The induced functor

T(c): Ind" (C/c) — ¢/Ind"(C)

is therefore fully faithful (see [HTT, 5.3.5.11]). Let d € Ind"(C) with a map ¢ — d. Let d: L — C
be a V-small filtered diagram whose colimit in Ind"(C) is d. There exist some Iy € L such that the
map ¢ — d factors through d; — d. The diagram lo/L — C is in the image of F and its colimit in

IndV(C) is d. The functor F' is also essentially surjective and thus an equivalence. It restricts to an
equivalence

Ind” (C/c) ~ ¢/Ind"(C)

Let us go back to the general case c € IndV(C). The targeted equivalence is
Ind” (co}cimck/C) ~ lilgn C/Ind" (C) ~ “/Ind" (C)

where the limit is computed using the forgetful functors. The same argument works when replacing
V by U, using lemma 1.1.7, item (iv). O

Lemma 1.2.11. Let C be an (0, 1)-category with all pullbacks. Let us denote by j the inclusion
Ind"(C) — IP(C) = Ind” Pro”(C). There is a fully faithful natural transformation

¢! mucjop(ocx) - OIXP(C) o(j°P)
between functors (Ind"(C))°P — Cat2

Remark 1.2.12. To state this lemma more informally, for any filtered diagram ¢: K — C, we have a
fully faithful functor

lilgn Pro” (C/E;) - IP(C)/j(c)

where ¢ is a colimit of ¢ in IndU(C). This lemma has an ind-version, actually easier to prove. If

d: K°? — C is now a cofiltered diagram, then there is a fully faithful functor
U : -
Ind (coEmC/dk> — IP(C)/i(d)
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where d is a limit of d in Pro”(C). To state that last fact formally, if C be an (0, 1)-category with all
pullbacks then there is a fully faithful natural transformation

=°: Indgar (0f) = Ofp () ©(iP)
where i is the canonical inclusion Pro”(C) — IP(C).

Proof. Let us first consider the functor Pro” o 0% : C°° — Cat... It classifies the Cartesian fibration
F' defined as the pullback

Pro" ©Cjec——= Pro" (C)Al
Fl lthU(c)
C Pro”(C)

The canonical inclusion Pro”(C) — IP(C) defines a functor f fitting in the commutative diagram

Pro’(C)/c ) —=TP(C)A
\ l ltlp(c)
C IP(C)

From [HTT, 2.4.7.12] we deduce that f preserves Cartesian morphisms. It therefore defines a natural
transformation u¢ from Pro” o O} to the restriction to C°P of OIP(C) Since lenroU(C) o(j°P) is the
right Kan extension of its restriction to C°P (see remark 1.2.4), this defines the required natural

transformation
T¢: Proge,(0¢) = Ofpc) (5°)

To see that for any ¢ € Pro”(C), the induced functor Y¢ is fully faithful, it suffices to see that for any
c € C the functor uS is fully faithful, which is obvious. O

Lemma 1.2.13. Let C be a simplicial set. If C is a quasi-category then the map A — A?

f /

e —=> 0 —> e —=>= @

induces an inner fibration p: cA* o oA, If moreover C admits pullbacks then p is a Cartesian

fibration.

Definition 1.2.14. Let C be an (o0, 1)-category with pullbacks. Let us denote by
1\ °P
B : (CA ) - Cat.,

the functor classified by the Cartesian fibration p of lemma 1.2.13. If D is an (o0, 1)-category with
pushouts, we define similarly
BS: DA — Cat,,

Remark 1.2.15. Let C be an oo-category with pullbacks. The functor B maps a morphism f: z — y
to the category f/(C/y) of factorisations of f. It maps a commutative square



seen as a morphism f — g in CA' to the base change functor

(z—a—-t)—(x—>axy—y)
t
Proof (of lemma 1.2.13). For every 0 < i < n and every commutative diagram

A ——

|k

A" S CAI

we must build a lift A™ — C2”. The datum of such a lift is equivalent to that of a lift ¢ in the induced
commutative diagram
AP AT [] A'xAa"—=cC
ALx AT P
IS

-~

A" x A?

*

The existence of ¢ then follows from the fact that C is a quasi-category.
Let us now assume that C admits pullbacks. The functor p is a Cartesian fibration if and only if
every commutative diagram
AZx 1} [] alxal—tsc
Alx{1}

!

AZx A —————

admits a lift A2 x A — C which corresponds to a Cartesian morphism of CA”. Let us fix such a
diagram. It corresponds to a diagram in C

Y

a
Because C is a quasi-category, we can complete the diagram above with an arrow a — y, faces and a
tetrahedron [a, z,y, z]. Let g denote the map

AN

O—=>

g A3 A%x {1y [] atxatde
Alx{1}

corresponding to the sub-diagram y — z < c. By assumption, there exists a limit diagram b: ** A2 —
C — where * denotes the joint construction, see [HTT, 1.2.8 |. Note that the plain square

Y

>

@\>H.
oO—>
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forms a map a: {0} » A3 — C. Because b is a limit diagram, there exists a map A' x A3 — C whose
restriction to {0} A3 is @ and whose restriction to {1} * A3 is b. This defines two tetrahedra [a, b, c, 2]

and [a, b, y, z] represented here

Y

A
\
£
Y

U

Completing with the doted tetrahedron [a,z,y, z] we built above, we at last get the required map
¢: A% x Al — C. To prove that the underlying morphism of CA” is a Cartesian morphism, we have

to see that for every commutative diagram
A{nfl,n} % A2
l ,
A" x AV T ApxA?—=cC

A x Al
A" x A?
there exists a lift A” x A2 — C. Let A denote the sub-simplicial set of

A" x AT AR x A
AT x AL

defined by cutting out the vertex x. Let B denote the sub-simplicial set of A" x A? defined by cutting
out the vertex z. We get a commutative diagram

A{Tl—lﬂ’L} x A2

Al % A3

A———=A"x Al [] AxA?—=¢C

AP x AL

!

B——————— A" x A?

Let also E be the sub-simplicial set of A defined by cutting out A2 and F the sub-simplicial set of B
obtained by cutting out A3. We now have A ~ E x A3 and B ~ F « A and a commutative diagram

Al

I\

E——Cy,

|

F
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The map E — F is surjective on vertices. Adding cell after cell using the finality of b, we build a lift
F — C/,. We therefore have a lift B — C. Using now that fact that C is a quasi-category, this lifts
again to a suitable map A" x A2 - C O

Let D be a filtered poset, which we see as a 1-category. Let us define D/D> the category whose
set of objects is the disjoint union of the set of objects and the set of morphisms of D — ie the set of
pairs # < y. For any object « € D, we will denote by z < o the corresponding object of D/D>. A
morphism (a: z < y) — (b: z < t) in D/D> is by definition a commutative square in D

which therefore corresponds to inequalities © < z and y < ¢t. A morphism (z < y) —
(r < 0) » (2 < ) is an inequality < z in D. There are no morphisms (z < ) —

functor
D— D/p=

0: z — (z < 0)

is fully faithful. Using Quillen’s theorem A and the fact that D is filtered (so that its nerve is
contractible), we see 6 is cofinal. There is also a fully faithful functor

DAl — D/D>
Let L be the nerve of the category /D> and K the nerve of D. For any object x € D we also define
K, c K® to be the nerve of the full subcategory of D spanned by the objects y < z where y < z.

Lemma 1.2.16 (Lurie). Let C be an co-category. Let ¢: KA S Cbea diagram. For any vertex
ke K, let ¢ denote a colimit diagram for the induced map

K, - K2 %¢

Then the diagram ¢ factors through some map k
KA >1L5¢
such that

(i) The induced functor C,; — Cy, is a trivial fibration.

(ii) For any vertex k € K, the induced map (F/K)> — L — C is a colimit diagram.

Remark 1.2.17. The above lemma can be informally stated as an equivalence

CSLHZH ok —1) ~ c](c);lén ?é)]ll/lr? ok —1)

where for any k — &', the induced morphism colim,_y ;. ¢(k — 1) — colim o(kK' — 1) is given by

1ek’ /K

colim ¢(k — 1) < colim¢p(k — k' — 1) — colim ¢p(k' — 1)
1ek/K 1ek' /K 1k’ /K¢

Proof. The existence of the diagram and the first item follows from [HTT, 4.2.3.4] applied to the

functor
D — sSets/K

z— K,

For the second item, we simply observe that the inclusion /K — K, is cofinal. O
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Proposition 1.2.18. Let C be a V-small co-category with finite colimits. There is a natural equivalence

Ind/si (BE) ~ By, gv(e)ar

It induces an equivalence
MHCJAI (Bg) = B]IlndU(C)Al

Remark 1.2.19. There is a "pro" counterpart of proposition 1.2.18. If C is an co-category which admits
all pullbacks then
U
PI‘O(COP)Al (Blélop) >~ B%rol](cop)

Remark 1.2.20. We can state informally proposition 1.2.18 as follows. For any morphism f: z — y in
Ind"(C) and any diagram f: K x A' — C whose colimit is f, the canonical functor

Ind" (cogmx(k)/C/y(m) - x/IndV(C)/y

is an equivalence — where & = f(—,0) and § = f(—,1). The proof is based on the following informal
computation:

Ind” (Cogmi(k) e /y(k)> ~ Ind" (Cgli?lj(k)/%(l)) ~ Ind” (Cogmg}?f(k)/c/y(lo

w1k : o 1: Z(k T
~ lim (k) /1ng” (?311/?%(5)) ~ lim )/ind” (c)), ~ */ind"(C)),

Proof. Let us deal with the case of Ind”. The case of Ind” is very similar. Let us consider the
pullback category

Ind"(C)/C/ing" () ——— Ind” (€)*°
E X
Ind’(C)A" x ¢ —1Ind"(C)2" x Ind"(C)
where p is as in lemma 1.2.13 and ¢ is induces by the inclusion {1} — AZ2. The induced map

v 1
is a cocartesian fibration classified by the extension of Bg

Bp: Ind" (cAl) ~ Ind"(C)2" - Cat!,

The map 1 therefore induces a natural transformation BE — BY

Ind"(C)A! - This naturally extends to

the required transformation
~ 11
T: Ind”(BY) ~ Ind" o(Bc) = B vyt

Let now f: ¢ — d be a morphism in Ind”(C). Let K be a V-small filtered simplicial set and let
f: K— €A such that f is a colimit of f in

Ind” (CAl)

Let ¢: K x A — C be induced by f. Let us denote by j: C — IndV(C) the Yoneda embedding. Let p
denote a colimit, diagram (K x A')> — Ind"(C) extending io¢. The inclusion K ~ K x {1} — K x Al
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is cofinal and the cone point of p is thus equivalent to d. The restriction of p to K= ~ (K x {0})~
defines a diagram ¢: K — IndV(C)/d whose colimit is f. Let us denote by ¢ the composite diagram

& K—">Ind"(C)jg—=Ind"(C)*" ~ IndV(CAI)

It comes with a natural transformation o: f — ¢ induced by p. Let us record for further use that the
diagram ¢ factors through

C/y=Mnd" (0 x (Cx {d})
Ind"(C)xInd"(C)

We now consider the map
v KA ) AT e AP e
and denote g the induced map KA' - ¢A'. Note that the composition

id_ g
K——> KA 2. et

equals f. We define the functor

_ g BY v
h: KA LA s catlfe 24 pylV

where Catyo’fC is the category of V-small (oo, 1)-categories with all finite colimits. We can assume that
K is the nerve of a filtered 1-category D. Using lemma 1.2.16 (and its notations) we get a diagram
r: L — Pry" such that we have categorical equivalences

P L,V) ~ (P L,V) ~ (P L,V) ~ (P L,V)
( Too r08)/ Teo %/ Too R/ Too hoid_ /

The natural transformation « defined above induces an object of

P L,V) ~ (P L,V)
( oo }_zoid,/ Yo Kkof/

It defines a natural transformation of functors K — Prk"”
A kof — IndVOUg/d(E)

Let k£ be a vertex of K. Using lemma 1.2.3, we deduce that the functor Aj is an equivalence and
the natural transformation A is thus an equivalence too. Now using lemma 1.2.9, we see that T'(f) is
equivalent to the colimit of the diagram induced by A

Al
K — (PrL7)
It follows that 7" is an equivalence. O

We will finish this section with one more result. Let C be a V-small (o0, 1)-category with finite
colimits and D be any (oo, 1)-category. Let g be a functor D — C/CatX;L and let g denote the
composition of g with the natural functor C/Cat’"" — Cat’. We assume that for any object x € D,
the category g(z) admits finite colimits. Let also «: Op — § be a natural transformation. We
consider the diagram

pat 1%, f§<—F CxD

|

D
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where the map F is induced by g. The functor F' admits a relative right adjoint G over D (see [HAlg,
8.3.3]). The source functor tp admits a section id_ induced by the map A — . It induces a functor
h:D—C
id_
h: D DA fg “sCcxD—>cC

We define the same way H: Ind”(D) — Ind"(C), using corollary 1.1.8
H: Ind"(D) LlndU(D)AI — J Ind}(j) — Ind”(C) x IndY(D) —— Ind"(C)
Let also I: Pro”(D) — Pro”(C) be defined similarly, but using proposition 1.1.5:
I: ProU(D)LPrOU(D)NHJ Pro%(j)—=Pro"(C) x Pro’(D)——=Pro"(C)
Lemma 1.2.21. The two functors H and Ind” (h): Ind"(D) — Ind"(C) are equivalent. The functors
I and Pro”(h): Pro” (D) — Pro”(C) are equivalent.

Remark 1.2.22. For an enlightening example of this construction, we invite the reader to look at
remark 2.1.22 or proposition 2.2.20.

Proof. Let us deal with the case of H and Ind"(h), the other one is similar. We will prove the
following sufficient conditions

(i) The restrictions of both Ind” (k) and H to D are equivalent ;
(7i) The functor H preserves U-small filtered colimits.

To prove item (i), we consider the commutative diagram

C x D——1Ind"(C) x Ind" (D)

| |

§§ —— §Ind7(9)

| |

D————Ind"(D)
The sections D — {§ and Ind”(D) — {Ind}(§) are compatible: the induced diagram commutes

§g— {Ind7(9)

]

D —— Ind"(D)

Moreover the right adjoints { g — C x D and SInd% (§) — Ind"(C) x Ind"(D) are weakly compatible:
there is a natural transformation

C x D —Ind"(C) x Ind”(D)

| T~

§§ ——— §Ind7(9)
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It follows that we have a natural transformation between the functors
D ¢ - Ind’(C) and D — Ind”(D) 5 Ind"(C)
For any x € D, the induced map h(z) — H(z) in Ind" (C) is an equivalence. This concludes the proof
of item (7).
Let us now prove the item (7). It suffices to look at a U-small filtered diagram z: K — D. Let
2 denote a colimit of Z in Ind”(D). Let us denote by A the natural transformation

A = Ind}(a): Onav(py — Indy,(j) = G

between functors Ind” (D) — Cat.,. Let us also denote by 7y the right adjoint G(z) — Ind”(C). By
definition, we have H(z) ~ 7, A, (id;). The functors 7, and A, preserve U-small filtered colimits and
H(x) is therefore the colimit of the diagram

A: K 5 1nd"(D)), % G(x) ™% Ind"(C)

We consider the functor

_ ~al

H,: KA DA Jg CxD c Ind"(C)

We can assume that K is the nerve of a filtered 1-category. Using lemma 1.2.16 and its notations, we
extend H, to a map
¢: L - Ind"(C)

and equivalences
Ind"(C)¢op ~ Ind”(C)¢) ~ Ind”(C) 7. ) ~ Ind"(C) ;7 ia_
Using the proof of (i), we have a natural transformation H,oid_ — A. It induces a natural trans-

formation ¢ 0 8 — A. Using lemma 1.1.7 we see that it is an equivalence. It follows that H(x) is a
colimit of the diagram

K — K2 5 1mdv(c)
which equals K 5D 5 ¢ — Ind”(C). We now conclude using item (). O

2 Ind-pro-stacks

Throughout this section, we will denote by S a derived stack over some base field k& and by dStg the
category of derived stack over the base S.

2.1 Cotangent complex of a pro-stack

Definition 2.1.1. A pro-stack over S an object of Pro” dStg.

Remark 2.1.2. Note that the category Pro” dStg is equivalent to the category of pro-stacks over k
with a morphism to S.

Definition 2.1.3. Let Perf: dStJ" — Cat[gO denote the functor mapping a stack to its category of
perfect complexes. We will denote by IPerf the functor

IPerf = mgsgg (Perf): (Pro” dStg)°? — Prk,

where IndV was defined in definition 0.1.4. Whenever X is a pro-stack, we will call IPerf(X) the
derived category of ind-complexes on X. It is U-presentable. If f: X — Y is a map of pro-stacks,
then the functor

IPerf(f): IPerf(Y) — IPerf(X)
admits a right adjoint. We will denote f;* = IPerf(f) and f} its right adjoint.
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Remark 2.1.4. Let X be a pro-stack and let X: K°P — dStg denote a U-small cofiltered diagram of
whom X is a limit in Pro” dStg. The derived category of ind-perfect complexes on X is by definition

the category -
IPerf(X) = Ind"(colim Perf(X))

It thus follows from [HAlg, 1.1.4.6 and 1.1.3.6] that IPerf(X) is stable. Note that it is also equivalent
to the colimit B
IPerf(X) = colim IPerf(X) € Pr"

It is therefore equivalent to the limit of the diagram
IPerf* (X) K — dstg’p N PI'I;’V ~ (Prljo,V)op

0

An object E in IPerf(X) is therefore the datum of an object py, F of IPerf(X}) for each k € K —
where Xj, = X (k) and pi: X — X}, is the natural projection — and of some compatibilities between
them.

Definition 2.1.5. Let X be a pro-stack. We define its derived category of pro-perfect complexes
PPerf(X) = (IPerf(X))?
The duality Perf(—) = (Perf(—))°P implies the equivalence
PPerf(X) ~ Pro”(colim Perf(X))
whenever X : K°P — dStg is a cofiltered diagram of whom X is a limit in Pro? dStg.
Definition 2.1.6. Let us define the functor Tatep: (Pro” dStg)°® — Cat_;*"

Tatep = TategStgp (Perf)

Remark 2.1.7. The functor Tatep maps a pro-stack X given by a diagram X: K°° — dStg to the
stable (o0, 1)-category B
Tatep (X) = Tate!(colim Perf (X))

There is a canonical fully faithful natural transformation
Tatep — Pro” o IPerf

We also get a fully faithful
Tatep — Ind" o PPerf

Definition 2.1.8. Let Qcoh: dStJ" — Cat}./O denote the functor mapping a derived stack to its
derived category of quasi-coherent sheaves. It maps a morphism between stacks to the appropriate
pullback functor. We will denote by IQcoh the functor
IQcoh = Indggor (Qeoh): (Pro” dSts)* — Caty,
If f: X — Y is a map of pro-stacks, we will denote by fi* the functor IQcoh(f). We also define
<0 _ U <0
IQcoh™" = Indjgor (Qecoh ™)

the functor of connective modules.
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Remark 2.1.9. There is a fully faithful natural transformation IPerf — IQcoh ; for any map f: X —
Y of pro-stacks, there is therefore a commutative diagram

IPerf(Y) —— IQcoh(Y)

fI* l \Lfl*

IPerf(X) — IQcoh(X)

The two functors denoted by fi* are thus compatible. Let us also say that the functor
fi': IQcoh(Y) — IQcoh(X)

does not need to have a right adjoint. We next show that it sometimes has one.

Proposition 2.1.10. Let f: X — Y be a map of pro-stacks. If Y is actually a stack then the functor
fi: IQcoh(Y) — IQcoh(X) admits a right adjoint.

Proof. It follows from corollary 1.1.8. O

Definition 2.1.11. Let f: X — Y be a map of pro-stacks. We will denote by fiQ the right adjoint
to fi': IQcoh(Y) — IQcoh(X) if it exists.

Remark 2.1.12. In the situation of proposition 2.1.10, there is a natural transformation

IPerf(X) — IQcoh(X)

A4~ I

IPerf(Y) —— IQcoh(Y)
It does not need to be an equivalence.

Definition 2.1.13. Let X be a pro-stack over S. The structural sheaf Ox of X is the pull-back of
Og along the structural map X — S.

Example 2.1.14. Let X be a pro-stack over S and X: K°° — dStg be a U-small cofiltered diagram
of whom X is a limit in Pro” dStg. Let k be a vertex of K, let X}, denote X (k) and let p; denote
the induced map of pro-stacks X — X. If f: kK — [ is an arrow in K, we will also denote by f the

map of stacks X (f). We have
(p1)3*(Ox) = colim f,Ox,

One can see this using lemma 1.1.7
(P (Ox) = ()3 (PR)T (Ox,) = colim fuf*(Ox,) = golim f,Ox,
Definition 2.1.15. Let T be a stack over S. Let us consider the functor
Qeoh(T)=" — Bljger (idr) ~ (T/dStT)Op

mapping a quasi-coherent sheaf F to the square zero extension T'— T[FE] — T'. This construction is
functorial in 7" and actually comes from a natural transformation
Ex: Qcoh=" — Byggor (id-)
of functors dSt2> — Cat,, — recall notation B" from definition 1.2.14. We will denote by Ex"*® the
natural transformation
Ex®™® = Ind ggqor (Ex): 1Qeoh=" — Indggor (Biggor (id-)) = Bip,oo asgqes (id-)
between functors (ProrU dStg)°? — Caty. The equivalence on the right is the one from proposi-

tion 1.2.18. If X is a pro-stack and E € IQcoh(X)<C then we will denote by X — X[FE] — X the
image of E by the functor Ex®™(X).
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Remark 2.1.16. Let us give a description of this functor. Let X be a pro-stack and let X : K°? — dStg
denote a U-small cofiltered diagram of whom X is a limit in Pro” dStg. For every k € K we can
compose the functor mentioned above with the base change functor

X [— —xx, X
(Qcoh(Xy))oP i} X /dSty, — = X /Pro” dSt

This is functorial in k& and we get a functor (colim Qcoh(X'))Op — X/Pro"” dStx which we extend
and obtain a more explicit description of the square zero extension functor

X[-]: (IQecoh(X))°P — X /Pro” dStx
Definition 2.1.17. Let X be a pro-stack.

e We finally define the functor of derivations over X :

Der(X, —) = Mapy, /s(X[—], X): IQcoh(X)<" — sSets

e We say that X admits a cotangent complex if the functor Der(X, —) is corepresentable — ie there
exists a Ly, € IQcoh(X) such that for any E € IQcoh(X)<"

Der(X, E) ~ Map(Lx s, E)

Definition 2.1.18. Let dSt?rt denote the full sub-category of dStg spanned by derived Artin stacks
over S. An Artin pro-stack is an object of Pro” dSt5™. Let dSt?rt’lfp the full sub-category of dStg"™

spanned by derived Artin stacks locally of finite presentation over S. An Artin pro-stack locally of

finite presentation is an object of Pro" dStgrt"lfp

Proposition 2.1.19. Any Artin pro-stack X over S admits a cotangent complex Lxs. Let us assume

that X : K°P — dSt/;]rt is a U-small cofiltered diagram of whom X is a limit in Pro” dStgrt. When
k is a verter of K, let us denote by Xy the derived Artin stack X (k). If f: k — [ is an arrow in K,
we will also denote by f: X; — X}, the map of stacks X (f). The cotangent complex is given by the
formula

Lx/s = co}eimpz]LXk/S € Ind” (colim Qcoh(X)) ~ IQcoh(X)

where py, is the canonical map X — Xy. The following formula stands
Q .
Prs Lx/s ~ 199}3311 J«Llx,/s
If X is moreover locally of finite presentation over S, then its cotangent complez belongs to IPerf(X).

Before proving this proposition, let us fix the following notation

Definition 2.1.20. Let C be a full sub-category of an co-category D. There is a natural transformation
from Op: d — D/q to the constant functor D: D — Caty. We denote by O% the fiber product

0% = Op ;C: D — Cato,

Remark 2.1.21. The functor O%: D — Caty, maps an object d € D to the comma category of objects
in C over d

Clg=(Cx {d}z):gﬂl

The lemma 1.2.3 still holds when replacing O¢ by 0%.
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Proof (of the proposition). The cotangent complex defines a natural transformation

\: O(dStgrt)Op N QCOh(—)

dst’

To any stack T and any Artin stack U over S with a map f: T — U, it associates the quasi-coherent
complex f*IL s on T. Applying the functor Inngtgp we get a natural transformation AFre

A\Pro _ mgst? (\): O(P!z'oU dst4rt)ep — IQcoh(-)

© Y (ProVdSts)ep
Specifying it to X we get a functor
Ngre: (X /pro® dSté“)op — IQcoh(X)
Let us set Ly /s = A (X) € IQcoh(X). We have by definition the equivalence
Lx/s ~ COEmPZLXk/S

Let us now check that it satisfies the required universal property. The functor Der(X, —) is the limit
of the diagram K°P — Fct(IQcoh(X)<Y sSets)

MapX/,/S (X[-1, X)
This diagram factors by definition through a diagram
§: K° — Fct(colim Qeoh(X)<", sSets) ~ lim Fct(Qcoh(X)<’, sSets)

On the other hand, the functor Map(Lx g, —) is the limit of a diagram

K°P —2 > lim Fet (Qeoh(X)<0, sSets) — Fet (IQcoh(X)<C, sSets)

The universal property of the natural transformation A defines an equivalence between § and p. The
formula for pkka}L x/s is a direct consequence of lemma 1.2.21 and the last statement is obvious. [

Remark 2.1.22 (about lemma 1.2.21). There are two ways of constructing the underlying complex of
the cotangent complex of a pro-stack. One could first consider the functor

L': dSt5™” — Qcoh(9)
mapping a derived Artin stack 7: Y — S to the quasi-coherent module 74y /5 and extend it
Ind”(L"): Pro” dSt4™*"” — Ind" Qcoh(S) = IQcoh(S)
The second method consists in building the cotangent complex of a pro-stack @w: X — S as above
Lx/s € IQcoh(X)
and considering w,IkQ]LX/S € IQcoh(S). This defines a functor

Pro” dSt5™” — IQcoh(S)

L2: 1
(X =58 — W*Q]LX/S

Comparing those two approaches is precisely the role of lemma 1.2.21. It shows indeed that the
functors Ind”(IL!) and L2 are equivalent.
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Remark 2.1.23. The definition of the derived category of ind-quasi-coherent modules on a pro-stack
is build for the above proposition and remark to hold.

Remark 2.1.24. We have actually proven that for any pro-stack X, the two functors
IQcoh(X)<Y x X/dStjgrt — sSets
defined by

(E,Y) — Mapy,_/s(X[E]Y)
(E)Y) — MapIQcoh(X) ()\fcm(y)a E)

are equivalent.

2.2 Cotangent complex of an ind-pro-stack

Definition 2.2.1. An ind-pro-stack is an object of the category
IPdSts = Ind” Pro? dStg
Definition 2.2.2. Let us define the functor PIPerf: (IPdStg)°® — Cat, as

PIPerf = ProIéijU dSts)or (IPerf)

where Pro"” was defined in definition 0.1.4. Whenever we have a morphism f: X — Y of ind-pro-
stacks, we will denote by fg; the functor

/b1 = PIPerf(f): PIPerf(Y) — PIPerf(X)

Remark 2.2.3. Let X be an ind-pro-stack. Let X: K — Pro"” dStg denote a U-small filtered diagram
of whom X is a colimit in IPdSts. We have by definition

PIPerf(X) ~ lim Pro”(IPerf (X))

admits a right adjoint fPI. Tt is the pro-extension of the right adjoint fI to fi. This result extends
to any map f of ind-pro-stacks since the limit of adjunctions is still an adjunction.

Proposition 2.2.4. Let f: X — Y be a map of ind-pro-stacks. If Y is a pro-stack then the functor
fpp: PIPerf(Y) — PIPerf(X) admits a right adjoint.

Definition 2.2.5. Let f: X — Y be a map of ind-pro-stacks. If the functor
fp1: PIPerf(Y) — PIPerf(X)
admits a right adjoint, we will denote it by fFI.

Proof (of the proposition). If both X and Y are pro-stacks, then PI _ Pro”(fL) is right adjoint
to fii; = Pro”(ff). Let now X be an ind-pro-stack and let X: K — Pro"” dStg denote a U-small
filtered diagram of whom X is a colimit in IPdSts. We then have

for: PIPerf(Y) — PIPerf(X) ~ lim PIPerf(X)

The existence of a right adjoint fFT then follows from proposition 1.1.5. O
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Definition 2.2.6. Let X € IPdStg. We define IPPerf(X) = (PIPerf(X))°P. If X is the colimit in
IPdStg of a filtered diagram K — Pro” dStg then we have

IPPerf(X) ~ lim(Ind” o PPerf o X)

There is therefore a fully faithful functor Tatefp(X) — IPPerf(X). We will denote by
(=)Y: IPPerf(X) — (PIPerf(X))°P

the duality functor.

Definition 2.2.7. Let us define the functor Tatefp: (IPdStg)°® — Cat’*“'? as the right Kan
extension of Tatep along the inclusion (Pro” dStg)°® — (IPdStg)°P. It is by definition endowed
with a canonical fully faithful natural transformation

Tate;p — PIPerf

For any X € IPdStg, an object of Tatefp(X) will be called a Tate module on X.

Remark 2.2.8. We can characterise Tate objects: a module E € PIPerf(X) is a Tate module if
and only if for any pro-stack U and any morphism f: U — X e IPdStg, the pullback f{p(E) is in
Tatep (U).

Let us also remark here that

Lemma 2.2.9. Let X be an ind-pro-stack over S. The fully faithful functors

="

Tatels (X) — > PIPerf(X) (IPPerf(X))°P < (Tate}JP(X))Op

have the same essential image. We thus have an equivalence
v U U op
(=) : Tatels(X) ~ <TateIP(X))
Proof. This is a corollary of proposition 0.1.12. O
Definition 2.2.10. Let us define PIQcoh: (IPdStg)°® — Cat’, to be the functor
PIQcoh = Pro(p,qv gst)or (IQcoh)

From remark 0.1.10, for any ind-pro-stack X, the category PIQcoh(X) admits a natural monoidal
structure. We also define the subfunctor

PIQcoh=" = Pro(p,qv ast)or (IQcOh™’)
Remark 2.2.11. Let us give an informal description of the above definition. To an ind-pro-stack
X = colim, limg X, 3 we associate the category
PIQcoh(X) = lim Pro” Ind" (colﬁim Perf(Xag)>
Definition 2.2.12. Let f: X — Y be a map of ind-pro-stacks. We will denote by fg; the functor
PIQcoh(f). Whenever it exists, we will denote by ff Q the right adjoint to fp;.

Proposition 2.2.13. Let f: X — Y be a map of ind-pro-stacks. If Y is actually a stack, then the
induced functor fp; admits a right adjoint.

Proof. This is very similar to the proof of proposition 2.2.4 but using proposition 2.1.10. O
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Remark 2.2.14. There is a fully faithful natural transformation PIPerf — PIQcoh. Using the same
notation f3; for the images of a map f: X — Y is therefore only a small abuse. Moreover, for any
such map f: X — Y, for which the right adjoints drawn below exist, there is a natural tranformation

PIPerf(Y) —— PIQcoh(Y)

gl |

PIPerf(X) — PIQcoh(X)

It is generally not an equivalence.

Definition 2.2.15. Let Ex'® denote the natural transformation Prot(UPmU dSts)or (ExFT)

ExP; PIQcoh= — Pro%h, . 4spyon (B;‘Pmu dSteyr (id_)) ~ Blipase.yer (id-)

of functors (IPdStg)°? — Cat.,. The equivalence on the right hand side is the one of remark 1.2.19.
If X is an ind-pro-stack and E € PIQcoh(X)<? then we will denote by X — X[FE] — X the image

of E by the functor
op

Ex®(X): PIQcoh(X)<0 - (X/IPdStX)

Remark 2.2.16. Let us decipher the above definition. Let X = colim, limg X3 be an ind-pro-stack
and let E be a pro-ind-module over it. By definition E is the datum, for every «, of a pro-ind-object
E“ in the category colimg Qcoh<’ (Xap). Let us denote E“ = lim, colims EZs. For any v and d, there

is a Bo(7,0) such that ES; is in the essential image of Qcoh~’ ccccccve(X g, (+,5))- We then have

X|[F] =colimlim lim X,g|F.s|€ IPdSt
[B] = cqlimlin _he, ) FoelEv] °

Definition 2.2.17. Let X be an ind-pro-stack.

e We define the functor of derivations on X
Der(Xv _) = MapX/f/S(X[_]v X)

e We say that X admits a cotangent complex if there exists Lx/g € PIQcoh(X) such that for
any E € PIQcoh(X)<?
Der(X, E) ~ Map(Ly/s, E)

e Let us assume that f: X — Y is a map of ind-pro-stacks and that Y admits a cotangent
complex. We say that f is formally étale if X admits a cotangent complex and the natural map
[*Ly,s — Lx/s is an equivalence.

Definition 2.2.18. An Artin ind-pro-stack over S is an object in the category
IPdSt4™ = Ind” Pro” dSt4™
An Artin ind-pro-stack locally of finite presentation is an object of
IPdSty™ '™ = Ind” Pro dst§™ '™
Proposition 2.2.19. Any Artin ind-pro-stack X admits a cotangent complex
Ly/s € PIQcoh(X)

Let us assume that X: K — Pro dStért is a U-small filtered diagram of whom X is a colimit in
IPdStgrt. For any vertex k € K we will denote by X}, the pro-stack X (k) and by i;, the structural
map X — X. For any f: k — | in K, let us also denote by f the induced map Xy — X;. We have
forallke K

it prlxys = lim ffLx,s € PIQcoh(X;)

If moreover X is locally of finite presentation then Lx g belongs to PIPerf(X).
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Proof. Let us recall the natural transformation AP from the proof of proposition 2.1.19

PI‘OU ds Artyop
APre — Ind{gior (A): Ofprey gacyen —> 1Qeoh(-)

of functors (Pro” dSts)°? — Cat.,. Applying the functor Pro[(UProru dstg)er We define the natural
transformation AP

Artyop
NP = L)roIéjProU dStgs)op (Ar): Oltpases o

© Y(1Pdstg)or — PIQcoh(-)

between functors (IPdStg)°® — Cat. Specifying to X we get a functor
N (X /IPdStQ“)Op — PIQcoh(X)
We now define Ly /g = A} (X). By definition we have
ik prlxys ~ Hm AR (X) ~ Slim fi'lx,s

for every k € K. Let us now prove that it satisfies the expected universal property. It suffices to
compare for every k € K the functors

Mapy, ,_/s(Xik[-], X) and Mappiqeon(x;) (f,p1lx /s, =)

defined on PIQcoh(X};)SC. They are both pro-extensions to PIQcoh(X})<" of their restrictions
IQcoh(X};)SY — sSets. The restricted functor Mapy, _/s(Xk[—], X) is a colimit of the diagram

_ op
Mapy, ,_s(Xi[~], X): (k/K) — Fet(IQeoh(X,)<°, sSets)
while Mapprqeon(x,) (% prlx/s: —) is a colimit to the diagram

Maprqean () ARi2(X), =) (M/K)™ = Fet(1Qeoh(X,)<°, sSets)

We finish the proof with remark 2.1.24. L]

Proposition 2.2.20. Let X € IPdStg”. Let us denote by w: X — S the structural map. Let also
L™ denote the functor

(IPdSté“) » L ProYInd’ Qcoh(S)

obtained by extending the functor (dSté“)Op — Qcoh(S) mapping f: T — S to fillp/s. Then we
have wfIQILX/S ~ ]I:IP(X)

Proof. The existence of wfIQ is deduced from proposition 2.2.13. The result then follows by applying
lemma 1.2.21 twice. O

Definition 2.2.21. Let X by an Artin ind-pro-stack locally of finite presentation over S. We will
call the tangent complex of X the ind-pro-perfect complex on X

Ty/s = LY,s € IPPerf(X)
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2.3 Uniqueness of pro-structure
Lemma 2.3.1. Let Y and Z be derived Artin stacks. The following is true

(i) The canonical map
Map(Z,Y) — limMap(7<,Z,Y)

18 an equivalence;
(il) If Y is q-Artin and Z is m-truncated then the mapping space Map(Z,Y") is (m + q)-truncated.

Proof. We prove both items recursively on the Artin degree of Z. The case of Z affine is proved in
[HAG2, C.0.10 and 2.2.4.6]. We assume that the result is true for n-Artin stacks. Let Z be (n + 1)-
Artin. There is an atlas u: U — Z. Let us remark that for k € N the truncation 7<xu: 7<xU — 7<1Z
is also a smooth atlas — indeed we have 7< U ~ U x z 7<;Z. Let us denote by U, the nerve of v and
by 7<xrU. the nerve of 7<xu. Because k-truncated stacks are stable by flat pullbacks, the groupoid
T<kU. is equivalent to 7<;(U,). We have

Map(Z,Y) ~ [Zl)i]rEnA Map(U,,Y) ~ []lji]renA lilgn Map(7<xU,,Y) ~ lillgnMap(TskZ, Y)

That proves item (7). If moreover Z is m-truncated, then we can replace U by 7<,,U. If follows that
Map(Z,Y) is a limit of (m + ¢)-truncated spaces. This finishes the proof of (7). O

We will use this well known lemma:

Lemma 2.3.2. Let S: A — sSets be a cosimplicial object in simplicial sets. Let us assume that for
any [p] € A the simplicial set S, is n-coconnective. Then the natural morphism

lim S, — lim S,
[plea [plea
p<n+1
is an equivalence.
Lemma 2.3.3. Let X: N°° — dStg be a diagram such that

(i) There exists m € N and n € N such that for any k € K the stack X (k) is n-Artin, m-truncated
and of finite presentation;

(i) There exists a diagram u: N x A' — dStg such that the restriction of @ to N x {1} is equivalent
to X, every map u(k): u(k)(0) — a(k)(1) ~ X (k) is a smooth atlas and the limit limy, (k) is
an epimorphism.

If Y is an algebraic derived stack of finite presentation then the canonical morphism
colim Map (X, Y) — Map (lim X, Y)
is an equivalence.

Proof. Let us prove the statement recursively on the Artin degree n. If n equals 0, this is a simple
reformulation of the finite presentation of Y. Let us assume that the statement at hand is true for
some n and let X(0) be (n + 1)-Artin. Considering the nerves of the epimorphisms w(k), we get a
diagram

Z:N°P x A°P — dStg

Note that Z has values in n-Artin stacks. The limit limj @(k) is also an atlas and the natural map

colimlim Z(k),, — lim colim Z(k), ~ lim X
[pleA keN keN [pleA
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is therefore an equivalence. We now write

Map (lim X,Y) ~ M lim lim Z(k),, Y
ap(lim X, Y') ap((ﬁg]églljég (k)p, )

~ lim M lim Z(k),,Y
[pl]IEnA ap<klgNl ()p7 >

~ 1 ()1 M Z k Y
plm Ck 11m ap( ( )p, )

we alS() llaVe
]. II }_T jr ~ ]. ]. I[ Z_ ]{} jr

It thus suffices to prove that the canonical morphism of simplicial sets

c%lgikrln []})i]rgnA Map(Z(k),,Y) — [Zl)i]renA C(ngm Map(Z(k)p,Y)

is an equivalence. Let us notice that each Z(k), is m-truncated. It is indeed a fibre product of m-
truncated derived stacks along flat maps. Let ¢ be an integer such that Y is g-Artin. The simplicial

set Map(Z(k),,Y) is then (m + g)-coconnective (lemma 2.3.1). It follows from lemma 2.3.2 that the
limit at hand is in fact finite and we have the required equivalence. O

Lemma 2.3.4. Let M: N°? — sSets be a diagram. For any i € N and any point v = (z,,) € lim M,
we have the following exact sequence

0 —=lim'm; 1 (M (n), z,) — = (lim M(n), x) — lim7;(M(n),z,) —>0

A proof of that lemma can be found for instance in [Hir].

Lemma 2.3.5. Let M: N°P x K — sSets denote a diagram, where K is a filtered simplicial set.
If for any i € N there exists N; such that for any n > N; and any k € K the induced morphism
M(n, k) - M(n —1,k) is an i-equivalence then the canonical map

¢: colimlim M (n, k) — lim colim M (n, k)
ke K neN neN keK
is an equivalence. We recall that an i-equivalence of simplicial sets is a morphism which induces
isomorphisms on the homotopy groups of dimension lower or equal to i.

Proof. We can assume that K admits an initial object ko. Let us write M, instead of M(n,k).
Let us fix i € N. If 4 > 1, we also fix a base point x € lim,, M,x,. Every homotopy group below is
computed at = or at the natural point induced by x. We will omit the reference to the base point.
We have a morphism of short exact sequences

0—— co}gim lim 744 (M) — co}ﬁim T (lim Mnk) — co}gim lim 7r; (M) —0

| i |

0 — lim! co}cim i1 (Mpg) —— m; <lim co}cim Mnk) —lim co}cim mi(Mpy) —=0

We can restrict every limit to n > N;;;. Using the assumption we see that the limits on the right
hand side are then constant and so are the 1-limits on the left. If follows that the vertical maps on
the sides are isomorphisms, and so is the middle map. This begin true for any 7, we conclude that ¢
is an equivalence. O
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Definition 2.3.6. Let X: N°° — dStg be a diagram. We say that X is a shy diagram if
(i) For any k € N the stack X (k) is algebraic and of finite presentation;
(ii) For any k € N the map X(k — k +1): X(k + 1) — X(k) is affine;
(i4i) The stack X (0) is of finite cohomological dimension.
If X is the limit of X in the category of prostacks, we will also say that X is a shy diagram for X.

Proposition 2.3.7. Let X : N°® — dStg be a shy diagram. IfY is an algebraic derived stack of finite
presentation then the canonical morphism

colim Map (X, Y) — Map (lim X, Y)
is an equivalence.

Proof. Since for any n, the truncation functor 7, preserves shy diagrams, let us use lemma 2.3.1
and lemma 2.3.3

Map(lim X,Y) ~ liin Map(7<, (lim X),Y)
~ liTILn Map(lim 7<,, X,Y) ~ lirrln colim Map(r<, X,Y)
On the other hand we have
colim Map(X,Y) ~ colim li7rln Map (1<, X,Y)
and we are to study the canonical map
¢: colim livrln Map(7<, X,Y) — li7rln colim Map(7<, X,Y)
Because of lemma 2.3.5, it suffices to prove the assertion
(1) For any ¢ € N there exists NV; € N such that for any n > N; and any k € N the map
Dk Map(Tan'(k), Y) — Map(Tgn,lX(k),Y)
induces an equivalence on the 7;’s for any j < 1.

For any map f: 7<,—1X (k) — Y we will denote by F), x(f) the fibre of p,  at f. We have to prove
that for any such f the simplicial set Fok(f) is i-connective. Let thus f be one of those maps. The
derived stack 7<, X (k) is a square zero extension of 7<,_1 X (k) by a module M[n], where

M = ker(OT@X(k) - 07@,1)’((1@) [—n]

Note that M is concentrated in degree 0. It follows from the obstruction theory of Y —see proposi-
tion 0.2.7 — that F), x(f) is not empty if and only if the obstruction class

a(f) € Gni(f) = Mapo__

of f vanishes. Moreover, if a(f) vanishes, then we have an equivalence

Fn,k(f) =~ N[apOTS f*]LY7 M[TL])

(f*Ly, M[n + 1])

n—1X(k)

n,—1X(k)(

Using assumptions (7ii) and (%) we have that X (k) — and therefore its truncation too — is of finite
cohomological dimension d. Let us denote by [a, b] the Tor-amplitude of Ly. We get that Gy, x(f) is
(s + 1)-connective for s = a + n — d and that F,, (f) is s-connective if a(f) vanishes. Let us remark
here that d and a do not depend on either k or f and thus neither does N; =i+ d —a (we set N; =0
if this quantity is negative). For any n > N; and any f as above, the simplicial set G, 1 (f) is at least
1-connective. The obstruction class a(f) therefore vanishes and F), ;(f) is indeed i-connective. This
proves (1) and concludes this proof. O
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Definition 2.3.8. Let PdStSS][1y denote the full subcategory of Pro” dStg spanned by the prostacks
which admit shy diagrams. Every object X in PdStShy
dSts.

We will say that X is of cotangent tor-amplitude in [a, b] if there exists a shy diagram X : N°P —
dStg for X such that every cotangent Ly, is of tor-amplitude in [a,b]. We will also say that X
is of cohomological dimension at most d if there is a shy diagram X with values in derived stacks of
cohomological dimension at most d. The pro-stack X will be called g-Artin if there is a shy diagram
for it, with values in g-Artin derived stacks. Let us denote by C g *I the full subcategory of PdStShy
spanned by objects of cotangent tor-amplitude in [a,b], of cohomologlcal dimension at most d and
g-Artin.

is thus the limit of a shy diagram X : N°P —

Theorem 2.3.9. The limit functor igy : PdStSShy — dStg is fully faithful and has values in Artin
stacks.

Proof. This follows directly from proposition 2.3.7. O
Definition 2.3.10. A map of pro-stacks f: X — Y if an open immersion if there exists a diagram
f: NP x Al — dSty,
such that
e The limit of f in maps of pro-stacks is f;

e The restriction N°P x {0} — dSty, of f is a shy diagram for X and the restriction N°P x {1} — dSt;,
is a shy diagram for Y7

e For any n, the induced map of stacks {n} x A' — dSty, is an open immersion.

2.4 Uniqueness of ind-pro-structures

Definition 2.4.1. Let IPdSchy’b denote the full subcategory of IndU(PdStShV) spanned by colimits
of U-small filtered diagrams K — PdStb]{1y which factors through C' 1 for some 4-uplet a, b, d, q. For
any X € IPdStSShy P we will say that X is of cotangent tor- amphtude in [a,b] and of cohomological
dimension at most d if it is the colimit (in Ind”(PdSt3Y)) of a diagram K — C([;éb].

Theorem 2.4.2. The colimit functor IndU(PdSt?y) — dStg restricts to a full faithful embedding
IPdSt3Y" — dStg.

Lemma 2.4.3. Let a,b,d,q be integers with a < b. Let T € PdStZhy and X: K — C[ dq be a U-small
filtered diagram. For any i € N there exists N; such that for any n = N; and any k € K, the induced
map

Map(re, T, X (k)) — Map(r<n1T, X (k))

s an i-equivalence.
Remark 2.4.4. For the proof of this lemma, we actually do not need the integer q.

Proof. Let us fix i e N. Let k€ K and T: N — dStg be a shy diagram for 7. We observe here that
T<nT is a shy diagram whose limit is 7, 7. Let also Yj: N — dStg be a shy diagram for X (k). The
map at hand

Unk: Map(r<, T, X (k)) > Map(r<n—1T, X (k))

is then the limit of the colimits

lim colim Map(7<,T(q), Y (p)) — lim colim Map(7<,,—1T(q), Yx(p))

peN  ¢eN peN  ¢geN
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Let now f be a map 7<,,_1T — X (k). It corresponds to a family of morphisms
fp: * = colimMap(r<,—17(q), Yi(p))
Moreover, the fibre Fy,i(f) of ¢, over f is the limit of the fibres F?, (f) of the maps
Ynye: colim Map(r<nT(9), Y(p)) — colim Map(r<n-1T(9), Y(p))

over the points f,. Using the exact sequence of lemma 2.3.4, it suffices to prove that F?, (f)is (i +1)-
connective for any f and any p. For such an f and such a p, there exists gy € N such that the map f,
factors through the canonical map

Map(t<n-1T(q0), Y (p)) — colit Map(7<n—17(q), Yi(p))

We deduce that F”, (f) is equivalent to the colimit
Fop(f) = colim G114 (f)
where G?9(f) is the fibre at the point induced by f, of the map

Map(7<,T(q), Yi(p)) = Map(r<n—1T(q), Y (p))

The interval [a, b] contains the tor-amplitude of Ly, (») and d is an integer greater than the cohomo-
logical dimension of T'(q). We saw in the proof of proposition 2.3.7 that G4 (f) is then (a +n — d)-
connective. Weset N; =i +d—a + 1. O

Proof (of theorem 2.4.2). We will prove the sufficient following assertions

(1) The colimit functor IndU(PdStSShy) — P(dAffg) restricts to a fully faithful functor
n: IPAStSY"" — P(dAffg)

(2) The functor n has values in the full subcategory of stacks.

Let us focus on assertion (1) first. We consider two U-small filtered diagrams X: K — PdStSShy and
V: L — PdSt3Y. We have

MaplndU(PdStsShy) (colim X, colimY’) ~ lillcn MaplndU(PdStsShy) (X (k), colimY")

and
Mapp(dAﬂ) (Colim ishyXa colim isth) >~ h]l;ﬂ Mapp(dAﬁ) (ishyX(k)y colim isth)

We can thus replace the diagram X in PdStsS]‘1y by a simple object X € PdSchy. We now assume that

Y factors through C([;Zb] for some a,b,d,q. We have to prove that the following canonical morphism
is an equivalence - -
o: C(l)liLm Map(isny X, tsny Y (1)) — Map(z’shyX, colim isth)
€

where the mapping spaces are computed in prestacks. If sy X is affine then ¢ is an equivalence because
colimits in P(dAffg) are computed pointwise. Let us assume that ¢ is an equivalence whenever ig,y X
is (¢—1)-Artin and let us assume that ighy X is ¢-Artin. Let u: U — isny X be an atlas of ishy X and let
Zo be the nerve of u in dStg. We saw in the proof of lemma 2.3.3 that Z, factors through PdStSShy.
The map ¢ is now equivalent to the natural map

c?gle Map(isny X, tsny Y (1)) — [11)1]r€nA C(l)ehLm Map(Z,, ishy Y (1))

~ [li]mA Map(Zp,colim ishyf/) ~ Map(isny X, colim isth)
pPlE
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Remembering lemma 2.3.1, it suffices to study the map

c?eliLm h},,n Map(T<nishy X, ishy Y (1)) — [Ilji]renA C(l)eliLm 1i£n Map(T<nZp, ishy Y (1))

Applying lemma 2.4.3 and then lemma 2.3.5, we see that ¢ is an equivalence if the natural morphism

hmc(l)hltn[h]mA Map(T<nZp, isny Y (1)) — hm[h]m cohm Map(T<n Zp, ishy Y (1))
n eL n |ple

is an equivalence. The stack ishyf/(l) is by assumption ¢-Artin, where ¢ does not depend on [. Now
using lemma 2.3.1 and lemma 2.3.2, we conclude that ¢ is an equivalence. This proves (1). We now
focus on assertion (2). If suffices to see that the colimit in P(dAffg) of the diagram is,yY as above
is actually a stack. Let H,: A°? U {—1} — dAffs be an hypercovering of an affine Spec(A4) = H_;.
We have to prove the following equivalence

colim lim Map(H,,isnyY (1)) — lim colim Map(H,, ishy Y (1))
I [plea [plea 1

Using the same arguments as for the proof of (1), we have

colim lim Map(H,,isnyY (1)) ~ colim lim lim Map

U plea L [plea ¥ (1)

(1<

~ hm colllm [h]m Map(T<nHp, ishy Y (1))

~ lim lim colim Map(7<,Hp, ishyY (1))
n [pleA 1

~ lim cohmhm Map(T<nHp, ishy Y (1))
[plea 1

~ lim cohmMap(Hszth(l))
[plea

We will need one last lemma about that category IPdStbhy’

Lemma 2.4.5. The fully faithful functor IPdStséhy’b NIPdAffg — IPdStgs — dStg preserves finite
limats.

Proof. The case of an empty limit is obvious. Let then X — Y <« Z be a diagram in IPdStShy’

IPdAffs. There exist a and b and a diagram
o K — Fct(Af,c @ ”])

such that K is a U-small filtered simplicial set and the colimit in IPdStg is X — Y «— Z. We
can moreover assume that o has values in Fct(A?, Pro”(dAffg)) ~ Pro”(Fct(A?, dAffg)). We
deduce that the fibre product X xy Z is the realisation of the ind-pro-diagram in derived affine
stacks with cotangent complex of tor amplitude in [a — 1,0 + 1]. It follows that X xy Z is again in
IPdStEY" A IPAffs. O

3 Symplectic Tate stacks

3.1 Tate stacks: definition and first properties
We can now define what a Tate stack is.

Definition 3.1.1. A Tate stack is a derived Artin ind-pro-stack locally of finite presentation whose
cotangent complex — see proposition 2.2.19 — is a Tate module. Equivalently, an Artin ind-pro-stack
locally of finite presentation is Tate if its tangent complex is a Tate module. We will denote by dStTatc
the full subcategory of IPdSt, spanned by Tate stacks.
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This notion has several good properties. For instance, using lemma 2.2.9, if a X is a Tate stack
then comparing its tangent Tx and its cotangent ILx makes sense, in the category of Tate modules
over X. We will explore that path below, defining symplectic Tate stacks.

Another consequence of Tatity® is the existence of a determinantal anomaly as defined in [KV2].
Let us consider the natural morphism of prestacks

0: Tate” — KTate

where Tate denote the prestack A — Tate”(Perf(A4)) and KT2t: A — K(Tate”(Perf(4))) - K
denoting the connective K-theory functor. From [Hen2, Section 5] we have a determinant

K2t _, K(G,n, 2)
where K(G,,, 2) is the Eilenberg-Maclane classifying stack.
Definition 3.1.2. We define the Tate determinantal map as the composite map
Tate” — K(G,,,2)
To any derived stack X with a Tate module E, we associate the determinantal anomaly [detg] €
H?(X,0%), image of E by the morphism
Map(X, Tate”) — Map(X,K(G,,,2))
Let now X be an ind-pro-stack. Let also R denote the realisation functor Pro” dSt;, — dSt.

Let finally X: K — Pro” dSt; denote a U-small filtered diagram whose colimit in IPdSty is X. We
have a canonical functor

Fx: lim Tatep (X) ~ Tatefp(X) — lim Tate” (RX)

Definition 3.1.3. Let X be an ind-pro-stack and E be a Tate module on X. Let X’ be the realisation
of X in Ind"” dSt;, and X” be its image in dStj. We define the determinantal anomaly of E the image
of Fx(F) by the map

Mapyuqv dSty, (X7, TateU) — Mapyyqu dSty, (X", K(Gp,2)) ~ ManStk (X", K(Gn, 2))
In particular if X is a Tate stack, we will denote by [detx] € H*(X”,0%.,) the determinantal anomaly

associated to its tangent Tx € Tatefp(X).

The author plans on studying more deeply this determinantal class in future work. For now, let
us conclude this section with following

Lemma 3.1.4. The inclusion dSt}**° — IPdSt; preserves finite limits.
Proof. Let us first notice that a finite limit of Artin ind-pro-stacks is again an Artin ind-pro-stack.

Let now X — Y « Z be a diagram of Tate stacks. The fibre product

X xy 22 X

prz i J lg
Z ——Y
is an Artin ind-pro-stack. It thus suffices to test if its tangent Tx . z is a Tate module. The following

cartesian square concludes
*
Txvx,z —p%Tx

-

Py Tz ——=pkg*Ty

3or Tateness or Tatitude
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3.2 Shifted symplectic Tate stacks

We assume now that the basis S is the spectrum of a ring k of characteristic zero. Recall from [PTVV]
the stack in graded complexes DR mapping a cdga over k to its graded complex of forms. It actually
comes with a mixed structure induced by the de Rham differential. The authors also defined there
the stack in graded complexes NCV mapping a cdga to its graded complex of closed forms. Those two
stacks are linked by a morphism NC% — DR forgetting the closure.

We will denote by AP, AP': cdgas® — dgMod,, the complexes of weight p in DR[—p] and
NC¥[—p] respectively. The stack AP will therefore map a cdga to its complexes of p-forms while AP-c!
will map it to its closed p-forms. For any cdga A, a cocycle of degree n of AP(A) is an n-shifted
p-forms on Spec A. The functors AP and AP extend to functors

APl AP dSt)? — dgMod,,
Definition 3.2.1. Let us denote by AL and Ai’l’fl the extensions
IPdSt;)°° — Pro” Ind” dgMod
k

of AP and AP, respectively. They come with a natural projection A’I’ffl — Alp.
Let X € IPdSt;. An n-shifted (closed) p-form on X is a morphism k[—n] — Ap(X) (resp.

AZSN(X). For any closed form w: k[—n] — APSY(X), the induced map k[—n] — AZS'(X) — AZL(X)
is called the underlying form of w.

Remark 3.2.2. In the above definition, we associate to any ind-pro-stack X = colim, limg X,z its
complex of forms
Afp(X) = lim colim A?(X,p) € Pro” Ind” dgMod,

For any ind-pro-stack X, the derived category PIQcoh(X) is endowed with a canonical monoidal
structure. In particular, one defines a symmetric product £ — Symsz(E) as well as an antisymmetric
product

B p B = Sy (E[-1))[2]

Theorem 3.2.3. Let X be an Artin ind-pro-stack over k. The push-forward functor
To1Q: PIQcoh(X) — Pro' Ind"(dgMod,)

exists (see proposition 2.2.13) and maps Lx rprLx to Ajp(X). In particular, any 2-form k[—n] —
A2 (X) corresponds to a morphism Ox|[—n] — Lx AprLx in PIQcoh(X).

Proof. This follows from [PTVV, 1.14], from proposition 2.2.20 and from the equivalence

AP o AP — Pro”Ind"()) 2 Pro”Ind"(\) ~ Pro” Ind”(\ A \)

where AP is defined in the proof of proposition 2.2.19. O

Definition 3.2.4. Let X be a Tate stack. Let w: k[—n] — Afp(X) be an n-shifted 2-form on X. It
induces a map in the category of Tate modules on X

w: Tx — Lx[n]

We say that w is non-degenerate if the map w is an equivalence. A closed 2-form is non-degenerate if
the underlying form is.

Definition 3.2.5. A symplectic form on a Tate stack is a non-degenerate closed 2-form. A symplectic
Tate stack is a Tate stack equipped with a symplectic form.
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3.3 Mapping stacks admit closed forms

In this section, we will extend the proof from [PTVV] to ind-pro-stacks. Note that if X is a pro-
ind-stack and Y is a stack, then Map(X,Y) is an ind-pro-stack. We will then need an evaluation
functor Map(X,Y) x X — Y. It appears that this evaluation map only lives in the category of
ind-pro-ind-pro-stacks

COEHI lién colgim lién@p(Xag, Y)x Xge =Y

To build this map properly, we will need the following remark.
Definition 3.3.1. Let C be a category. There is one natural fully faithful functor
¢: PI(C) — (IP)*(C)
but three IP(C) — (IP)?(C). We will only consider the functor
: IP(C) — (IP)*(C)

induced by the Yoneda embedding Pro(C) — PI(Pro(C)). Let us also denote by ¢ the natural fully
faithful functor C — (IP)?(C).

We can now construct the required evaluation map. We will work for now on a more general
basis. Let therefore X be a pro-ind-stack over a stack S. Let also Y be a stack. Whenever T is a
stack over .S, the symbol Mapg¢(7,Y") will denote the internal hom from X to Y xS in dStg. It comes
with an evaluation map ev: Mapg(T,Y) xsT — Y x S € dStg.

Let y: dStg — dStg denote the functor T'+— Y x T There exists a natural transformation

EV: OdSt‘;p — O<>i<St5 Oyop
between functors dSt¢’ — Cat,,. For a stack X over S, the functor
op
EVy: (X/dSts) — dSty«x

maps a morphism X — T to the map

ev X pr

Mapg(T,Y) . X——Mapg(X,Y) x X—Y x X
Let us consider the natural transformation
Projseor (EV): Ornav asts)er — Progseer (Ojse, oy)
of functors (Ind” dStg)°? — Cat,. We define EV™? to be the natural transformation
Eyind _ pdsSty mgstgp(EV)
where T95%5" is defined as in lemma 1.2.11. To any X € Ind” dStg it associates a functor
EViPd: (X/ind” ast S)Op — IPdStyxx

Definition 3.3.2. Let Y be a stack. We define the natural transformation EVF!

PI _ —Ind"dSt%® U Ind) . x op
EV* =E S o m(lnd dStg)or (EV ) OPIdSts - OIPZdStS oy

where ZInd”dStS ig defined in remark 1.2.12. To any X € PIdStg it associates a functor

EVET. (X/PIdStS)Op — IP%dSts)y o x
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We then define the evaluation map in IP?dStg

BV (X)

ev Y1 ¢ Mapg(X,Y) x oX Y x X —=E€Y

We assume now that S = Speck. Let us recall the following definition from [PTVV, 2.1]

Definition 3.3.3. A derived stack X is O-compact if for any derived affine scheme T the following
conditions hold

e The quasi-coherent sheaf Ox 7 is compact in Qcoh(X x T) ;
e Pushing forward along the projection X x T — T preserves perfect complexes.
Let us denote by dStkO the full subcategory of dSt; spanned by O-compact derived stacks.

Definition 3.3.4. An O-compact pro-ind-stack is a pro-ind-object in the category of O-compact
derived stacks. We will denote by PIdStkO their category.

Lemma 3.3.5. There is a functor
PIdSt{ — Fct(IPdSt; x A x Al (IP)*(dgMod,,)°")

defining for any O-compact pro-ind-stack X and any ind-pro-stack F a commutative square

APS(YF x ¢X) —= Al (VF) ®k ¢Ox

" |

Alp: (VF x ¢X) —— Afp(VF) @k ¢Ox

p,cl P ; p,cl P
where AIP2 and AIPZ are the extensions of Ajp and Alp to

(IP)2dSt; — (IP)?*(dgMod;P)

Proof. Recall in [PTVV, part 2.1] the construction for any O-compact stack X and any stack F' of
a commutative diagram:
NCW(F X X) —_— NCW(F) ®r Ox

| l

DR(F X X) E—— DR(F) Rk Ox
Taking the part of weight p and shifting, we get

AP’CI(F X X) AP’CI(F) Rk Ox

| |

AP(FXX) AP(F)®kOX

This construction is functorial in both F' and X so it corresponds to a functor
dSty — Fct(dSty, x A x Al dgMod)
We can now form the functor
PIdSt{ — PIFct(ProdSt, x A! x A, Pro(dgMod;"))
— Fet(ProdSty, x A' x A', PIPro(dgMod;"))
— Fet (IPdSt, x A' x A, (IP)*(dgMod;”))
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By construction, for any ind-pro-stack F' and any O-compact pro-ind-stack, it induces the commutative
diagram

Azlgffl‘ (VF x ¢X) — ZZJAII}?(F) ®r 9Ox

| |

AlL:(VF x ¢X) ——= ¢ Alp(F) @ ¢Ox
O

Remark 3.3.6. Let us remark that we can informally describe the horizontal maps using the maps
from [PTVV]:

O1p2 (VF x ¢X) = lim colﬁim lim co%im O(Fas x Xpy)
a B!

— lim colim lim colim ©(Fus5) ® (Ox,.) = ¥O1p(F) ® ¢Ox

«@ B y é

where © is either APl or AP,

Definition 3.3.7. Let F be an ind-pro-stack and let X be an O-compact pro-ind-stack. Let : Ox —
k[—d] be a map of ind-pro-k-modules. Let finally © be either A”! or AP. We define the integration
map

f O (UF x X )— =01 (F) ® $Ox 2L @yp (F)[—d]
n

Theorem 3.3.8. Let Y be a derived stack and wy be an n-shifted closed 2-form on'Y . Let X be an O-
compact pro-ind-stack and let also n: Ox — k[—d] be a map. The mapping ind-pro-stack Map(X,Y)
admits an (n — d)-shifted closed 2-form.

Proof. Let us denote by Z the mapping ind-pro-stack Map(X,Y). We consider the diagram

w ev SVI
k]2 A2 (V)2 A2 (X x 2)— = AR (2)[—d]

P2

where x: dgMod, 5 IP(dgMod;") 5 (IP)?(dgMod;") is the canonical inclusion. Note that since
the functor ¢ is fully faithful, this induces a map in IP(dgMod,")
Eh—=A (2)[n — d]

and therefore a an (n — d)-shifted closed 2-form on Z = Map(X,Y’). The underlying form is given by
the composition

wy ev¥ Sn
Xk[—n]—xAX(Y)—=Afp: (X x Z)——¢Afp(Z)[—d]

O

Remark 3.3.9. Let us describe the form issued by theorem 3.3.8. We set the notations X = lim, colimg Xqg
and Z,3 = Map(Xag,Y). By assumption, we have a map

n: colimlim Ox,, — k[—d]
a B

For any «, there exists therefore 5(a) and a map 7,530y Ox
the definitions, we see that the induced form Sn wy

, = k[—d] in dgMod(k). Unwinding

af(a

¢k—A% (Map(X,Y))[n — d] ~ lim,, colimg A%(Zap)[n — d]
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is the universal map obtained from the maps

Wag(a)

kHAQ(Zaﬁ(a))[n — d]——colimg A%(Zp)[n —d]

where wqg(q) is built using 7,43(,) and the procedure of [PTVV]. Note that w,g(q) can be seen as a
map TX&B(Q) ® TXaB(oc) OXaB(a) We also know from theorem 3.2.3 that the form Sn wy induces a
map

TZ ®TZ i Oz[n - d]

in IPP(Z). Let us fix ap and pull back the map above to Z,,. We get

cohmhénga apaB(TZQﬁ ®Tz,,) ~ izo (Tz®Tz) — Oz., [n—d]

a=og

This map is the universal map obtained from the maps

hglg;oapzﬁ(jrzaﬂ ®Tz,,) — gioapliﬁ(a) (Tzuﬂ(a) ® TZuﬂ(ﬂ))
- gzgang(a)(oxag(m)[” - d] = OXQO [n - d]

where gqo,q is the structural map Z,, — Z, and p,gs is the projection Z, = limg Z,g — Zyg3.

3.4 Mapping stacks have a Tate structure

Definition 3.4.1. Let S be an O-compact pro-ind-stack. We say that S is an O-Tate stack if there
exist a poset K and a diagram S: K°° — Ind” dSty, such that

(i) The limit of S in PIdSty, is equivalent to S ;

(ii) For any i < j € K the pro-module over S(i)
coker(Og;) — S(i < )+ O05(;)
is trivial in the pro-direction — ie belong to Qcoh(S(4)).
(iii) For any i < j € K the induced map S(i < j) is represented by a diagram
f: L x At — dSty,
such that

e For any [ € L the projections f(I,0) — % and f(I,1) — * satisfy the base change formula ;
e For any [ € L the map f(I) satisfies the base change and projection formulae ;

e For any m < | € L the induced map f(m < [,0) satisfies the base change and projection
formulae.

Remark 3.4.2. We will usually work with pro-ind-stacks S given by an explicit diagram already
satisfying those assumptions.

Proposition 3.4.3. Let us assume that Y is a derived Artin stack locally of finite presentation. Let
S be an O-compact pro-ind-stack. If S is an O-Tate stack then the ind-pro-stack Map(S,Y) is a Tate
stack.

Proof. Let Z = Map(S,Y) as an ind-pro-stack. Let S: K — Ind” dSt;, be as in definition 3.4.1.

We will denote by Z: K — Pro"” dSt;, the induced diagram and for any i € K by s;: Z(i) — Z the
induced map.
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Let us first remark that Z is an Artin ind-pro-stack locally of finite presentation. It suffices to
prove that s¥Lyz is a Tate module on Z(i), for any i € K. Let us fix such an i and denote by Z; the
pro-stack Z ().

We consider the differential map

S;k]LZ — LZi

It is by definition equivalent to the natural map
: ro/rz f ro
Hm AL (Z|g=:) > A5T(Z;)
where K>’ is the comma category ¢/K and Z|x=: is the induced diagram
K> — Zi/Pro” dSts

Let ¢; denote the diagram ,
¢i: (K>')” — IPerf(Z;)

obtained as the kernel of f. It is now enough to prove that ¢; factors through Perf(Z;).

Let j > i in K and let us denote by g¢;; the induced map Z; — Z; of pro-stacks. Let f:LxA' -
dSt;, represents the map S(i < j): S(j) — S(i) € Ind” dSt;, as in assumption (i) in definition 3.4.1.
Up to a change of L through a cofinal map, we can assume that the induced diagram

coker(@g(i) — S‘(i < j)*(’)g(j))

is essentially constant — see assumption (ii). We denote by h: L°P x A’ — dSt;, the induced diagram,
so that g;; is the limit of A in Pro” dSt;. For any [ € L we will denote by h;: Z;; — Zj; the map h(l).
Let us denote by Z; the induced diagram [ — Z;; and by Z; the diagram [ — Z;;. Let also p; denote
the projection Z; — Z;
We have an exact sequence
oi(7) — collimp;"hl*ILZﬂ — collimpZ“LZ“
Let us denote by 1;; the diagram obtained as the kernel
bij = Ngr°(Zy) — Ngr°(Zi)

so that ¢;(j) is the colimit colim);; in IPerf(Z;). It suffices to prove that the diagram ;;: L —
Perf(Z;) is essentially constant (up to a cofinal change of posets). By definition, we have

Vij(1) =~ pf Lz, z,[-1]

Let m — [ be a map in L and ¢ the induced map Z;; — Z;,,,. The map v;;(m — 1) is equivalent to
the map p;*{ where ¢ fits in the fibre sequence in Perf(Z;;)

t*]LZim/ij [71] t*h;ﬁ@Lij t*H"Zqzm

| o

]LZil/Zjl [71] h?‘]Lij ]]-‘Zu
We consider the dual diagram

t*T g, 2 [ <——t*h} Tz, <—t*Tz,,

| ]

T2u/2; 1] =—— hl*Tij ~— Tz,
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Using base change along the maps from S;,,, Sj, and Sj; to the point, we get that the square (o) is
equivalent to
s (id X8 fpn) 5 (id X8 fn) ¥ E <—— 7, (id x8)4 (id x8)*FE

s (id X 1)« (id x fi)* B =<——————m

where w: Z;; x S;; — Z;; is the projection, where s: S;,, — S;; is the map induced by m — [ and
where F ~ ev* Ty with ev: Z; x S;; — Y the evaluation map. Note that we use here the well known
fact Taap(x,y) = pry ev® Ty where

Map(X,Y) <—— Map(X,Y) x X —<>Y
are the canonical maps.
Now using the projection and base change formulae along the morphisms s, f; and f,, we get

that (o) is equivalent to the image by 7, of the square

E®p*3*fm*osj‘m <~ E®p*5*081m

| |

E®p*fl*OSjL E®p*oszl

We therefore focus on the diagram

S*fm*OSjm <~— 5405,

| |

J140s, =— Og,

The map induced between the cofibres is an equivalence, using assumption (). It follows that the
diagram 1);; is essentially constant, and thus that Z is a Tate stack. O

4 Formal loops

In this part, we will at last define and study the higher dimensional formal loop spaces. We will prove
it admits a local Tate structure.

4.1 Dehydrated algebras and de Rham stacks

In this part, we define a refinement of the reduced algebra associated to a cdga. This allows us to
define a well behaved de Rham stack associated to an infinite stack. Indeed, without any noetherian
assumption, the nilradical of a ring — the ideal of nilpotent elements — is a priori not nilpotent itself.
The construction below gives an alternative definition of the reduced algebra — which we call the
dehydrated algebra — associated to any cdga A, so that A is, in some sense, a nilpotent extension of
its dehydrated algebra. Whenever A is finitely presented, this construction coincides with the usual
reduced algebra.

Definition 4.1.1. Let A € cdgalfo. We define its dehydrated algebra as the ind-algebra Agen =
colim; H’(A)/1 where the colimit is taken over the filtered poset of nilpotent ideals of H’(A). The
case I = 0 gives a canonical map A — Agep in ind-cdga’s. This construction is functorial in A.
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Remark 4.1.2. Whenever A is of finite presentation, then Ag.p, is equivalent to the reduced algebra
associated to A. In that case, the nilradical v/A of A is nilpotent. Moreover, if A is any cdga, it is a
filtered colimits of cdga’s A,, of finite presentation. We then have Agen ~ colim(A, )req in ind-algebras.

Lemma 4.1.3. The realisation B of Agen in the category of algebras is equivalent to the reduced
algebra Aieq.

Proof. Let us first remark that B is reduced. Indeed any nilpotent element x of B comes from a
nilpotent element of A. It therefore belongs to a nilpotent ideal (x). This define a natural map of
algebras Ayeq — B. To see that it is an isomorphism, it suffices to say that v/A is the union of all
nilpotent ideals. O

Definition 4.1.4. Let X be a prestack. We define its de Rham prestack X4r as the composition

<0 (=)den U <0 Ind"(X) U colim
cdgay” —— Ind (cdga;”) ——'Ind" (sSets) —— sSets

This defines an endofunctor of (o0, 1)-category P(dAff;). We have by definition
o 0
Xar(A) = colllmX(H (A)/I)

Remark 4.1.5. If X is a stack of finite presentation, then it is determined by the images of the cdga’s
of finite presentation. The prestack X4gr is then the left Kan extension of the functor

cdga,fo’fp — sSets
A — X (Ared)

Definition 4.1.6. Let f: X — Y be a functor of prestacks. We define the formal completion Xy of
X in Y as the fibre product

Xy — Xar
Y —— YdR
This construction obviously defines a functor FC: 77(dAﬁ";€)Al — P(dAffy).

Remark 4.1.7. The natural map Xy — Y is formally étale, in the sense that for any A € cdga,f0 and
any nilpotent ideal I = H(A) the morphism

Xy (A) — Xy (H(A))1) x Y (A)
Y (H(A)r)

is an equivalence.

4.2 Higher dimensional formal loop spaces

Here we finally define the higher dimensional formal loop spaces. To any cdga A we associate the
formal completion Vj of 0in Aff‘. We see it as a derived affine scheme whose ring of functions A[ X7, 4]
is the algebra of formal series in d variables X7, ..., Xy4. Let us denote by Uf1 the open subscheme of
V¢ complementary of the point 0. We then consider the functors dSt;, x cdga;’ — sSets

E(li/ : (X7 A) — NIapdSt;c (Vg7 X)

£% : (X7 A) = N[apdSt;c (Ui, X)
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Definition 4.2.1. Let us consider the functors £{; and £¢. as functors dStj, — P(dAfF). They come
with a natural morphism £{. — £¢. We define [ld to be the pointwise formal completion of £ into
Ed .

£U(X) = FC(£4(X) - £5(X))
We also define £¢, E‘g, and [,“i/ as the stackified version of £, ﬁ‘,ij and Z‘{, respectively. We will call
L4(X) the formal loop stack in X.

Remark 4.2.2. The stack E‘{,(X) is a higher dimensional analogue to the stack of germs in X, as
studied for instance by Denef and Loeser in [DL].
Remark 4.2.3. By definition, the derived scheme U¢ is the (finite) colimit in derived stacks

Ud = cohm colim Spec (A[[X1 alx;t ])

“7 'Lq 11 Zq
where A[[X1. 4] [Xz_lllq] denote the algebra of formal series localized at the generators Xi_ll, X
It follows that the space of A-points of £4(X) is equivalent to the simplicial set

[ZdXAwlllMSAX V) x
(X)(4) > colim Tim Tim Map(Spec(A[X1.al1X; 1, ]¥7), X)

where A[X;. 4]I[X 1

i1..0g

]ﬁ is the sub-cdga of A[[X1.. 4] [X;llzq] consisting of series

ni ng
Dt X7 X

N1y..yNg

where ay, .. n, is in the kernel of the map A — H° (A)/r as soon as at least one of the n;’s is negative.
Recall that in the colimit above, the symbol I denotes a nilpotent ideal of H° (4).
Lemma 4.2.4. Let X be a derived Artin stack of finite presentation with algebraisable diagonal (see

definition 0.2.8) and let t: T = Spec(A) — X be a smooth atlas. The induced map L (T) — LL(X)
is an epimorphism of stacks.

Proof. It suffices to study the map £ (T) — L (X). Let B be a cdga. Let us consider a B-point
z: Spec B — L{(X). It induces a B-point of X
Spec B — Spec(B[X1. 4]) > X

Because ¢ is an epimorphism, there exist an étale map f: SpecC — SpecB and a commutative
diagram

SpecC ——=T

| |

SpecB ——= X

It corresponds to a C-point of Spec B x x T'. For any n € N, let us denote by S,, the spectrum Spec C,,,

by X, the spectrum Spec B,, and by T}, the pullback 7" x x X,,. We will also consider the natural fully
faithful functor A™ ~ {0,...,n} — N. We have a natural diagram

ap: A2 xN 11 A?x A” - dSt,
A2:2x AO

informally drown has a commutative diagram

So Sn
| |
X X,
{ !
TO Tn
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Let n € N and let us assume we have built a diagram

an: (A2 xN) 11 A? x A" — dSt;,
A

2,2 AR

extending «,,_1. There is a sub-diagram of «,,

Sp ——> Snt1

l

7% 4444%>iTh+1

ltn+1

)(n+1

Since the map t,41 is smooth (it is a pullback of ¢), we can complete this diagram with a map
Sn+1 — T,41 and a commutative square. Using the composition in dSt;, we get a diagram ay, 1
extending a,,. We get recursively a diagram a: A% x N — dSty,. Taking the colimit along N, we get
a commutative diagram

Spec C —— colim,, Spec C,, T

| | |

Spec B —— colim,, Spec B, — Spec(B[X; .. 4]]) —= X
This defines a map ¢: colim Spec(C,,) — Spec(B[X1..4]]) xx T. We have the cartesian diagram

Spec(B[X1. 4])) xx T — X

| i
Spec(B[ X1 4]) x T ——= X x X

The diagonal of X is algebraisable and thus so is the stack Spec(B[[X1.. 4]]) xx T. The morphism ¢
therefore defines the required map

Spec(C[[X1..all) — Spec(B[X:...a]l) o T

O

Remark 4.2.5. Let us remark here that if X is an algebraisable stack, then EN‘{/(X) is a stack, hence
the natural map is an equivalence }

FL(X) ~ L (X)
Lemma 4.2.6. Let f: X — Y be an étale map of derived Artin stacks. For any cdga A € (:dga,f0
and any nilpotent ideal I HO(A), the induced map

0: LEH(X)(A) —= LEX) B (A)r) x LEHY)(A)
L (YV)(HO(A)r)

s an equivalence.

Proof. The map 6 is a finite limit of maps

pe X(6A) —= X (E(H(A)1)) x Y(£A)
Y (s(H°(Ayr))
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where €A = A[Xy _qJ[X;,",; ] and £(H"(A)/1) is defined similarly. The natural map £(H°(A)) —
€(H°(A)/1) is also a nilpotent extension. We deduce from the étaleness of f that the map

X(EH"(A))) —= X (€(H°(A)/1)) * Y (E(H(4)))
Y (s(H(Ayn))

is an equivalence. Let now n € N. We assume that the natural map

Y(( ( )/1))

is an equivalence. The cdga £(A<py1) > (EA)<ny1 is asquare zero extension of (A<, ) by HT" 1 (£A).
We thus have the equivalence

X(§(A<nt1)) — X(€(A<n)) x Y(§(Agnt1))
Y (£(A<n))

The natural map

X(§(A<ns1)) — X (E(H(A)/1)) x Y(§(A<ni1))
Y (¢(H%(A)r))

is thus an equivalence too. The stacks X and Y are nilcomplete, hence p is also an equivalence —
recall that a derived stack X is nilcomplete if for any cdga B we have

X(B) ~ lim X (B<y)

It follows that 6 is an equivalence. O

Corollary 4.2.7. Let f: X — Y be an étale map of derived Artin stacks. For any cdga A € cdga,f0
and any nilpotent ideal I « H°(A), the induced map

0: Ed(X)(A) —_— /jd(X)(HO(A)/[) X Ed(Y)(A)
LYY)(HO(A)r)
is an equivalence.

Proposition 4.2.8. Let X be a derived Deligne-Mumford stack of finite presentation with algebraisable
diagonal. Let t: T — X be an étale atlas. The induced map LY(T) — L4(X) is an epimorphism of
stacks.

Proof. We can work on the map of prestacks £4(T) — £4(X). Let A € cdgaj;’. Let = be an A-point
of £L4(X). Tt corresponds to a vertex in the simplicial set

colim £ (X) (' (A)/1) x £§(X)(A)
LE(X) (H°(A)r)

There exists therefore a nilpotent ideal I such that x comes from a commutative diagram

d
UH"(A/

|

VHO(A)/ > X

—Uj
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Using lemma 4.2.4 we get an étale morphism ¢: A — B such that the map v lifts to a map u: Vi), =T
where J is the image of I by ¥. This defines a point in

L(T)(H(B)/g) % £4,(X)(B)
LE(X)(HO(B)y)

Because of lemma 4.2.6, we get a point of £¢(T)(B). We now observe that this point is compatible
with z. O

In the case of dimension d = 1, lemma 4.2.6 can be modified in the following way. Let f: X - Y
be a smooth map of derived Artin stacks. For any cdga A € cdga,fO and any nilpotent ideal I = HY(A),
the induced map

0: LiH(X)(A) — Ly(X)(H(A)/1) x L (Y)(A)
Ly (Y)(H(A)r)
is essentially surjective. The following proposition follows.

Proposition 4.2.9. Let X be an Artin derived stack of finite presentation and with algebraisable
diagonal. Let t: T — X be a smooth atlas. The induced map L' (T) — L1 (X) is an epimorphism of
stacks.

Example 4.2.10. The proposition above implies for instance that £!(BG) ~ B L!(G) for any algebraic
group G — where B G is the classifying stack of G-bundles.

4.3 Tate structure and determinantal anomaly

We saw in subsection 3.1 that to any Tate stack X, we can associate a determinantal anomaly. It a
class in H?(X, 0% ). We will prove in this subsection that the stack £¢(X) is endowed with a structure
of Tate stack as soon as X is affine. We will moreover build a determinantal anomaly on £¢(X) for
any quasi-compact and separated scheme X.

Lemma 4.3.1. For any B € cdga,fO of finite presentation, the functors

L (Spec B), L%(Spec B): cdgai” — sSets
are in the essential image of the fully faithful functor

IPdSt™" A IPAAff;, — IPdSt;, — dSt;, — P(dAfF)

(see definition 2.4.1). It follows that L} (Spec B) ~ L& (Spec B) and L%(Spec B) ~ L%(Spec B).
Proof. Let us first remark that Spec B is a retract of a finite limit of copies of the affine line Al Tt
follows that the functor L£¢ (Spec B) is, up to a retract, a finite limit of functors

Z: A > Map (K[Y], ALX 1 al[X; 1)
where E = {i1,...,i,} € F = {1,...,d}. The functor Z¢ is the realisation of an affine ind-pro-scheme

Z ~ colim lim Spec(k[aa, ....oy> —10; < o <))
nop

where §; = 1if i € F and §; = 0 otherwise. The variable aq,,.. o, corresponds to the coefficient
of X{"...X$%. The functor Z¢ is thus in the category IPdSt™™"" A IPdAff,. The result about

L¢ (Spec B) then follows from lemma 2.4.5. The case of £%(Spec B) is similar: we decompose it into
a finite limit of functors

d. — i ,_14 VI
Gd: A Ig%lér(rfll)Map(k[Y],A[[Xln_d]][X“_“lq] )
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where [ is a nilpotent ideal of H”(A). We then observe that G4 is the realisation of the ind-pro-scheme

GdE ~ colim lim Spec <k[aa17___7ad, —nd; < a; < p]/J)

n,m p

where J is the ideal generated by the symbols ayp with at least one of the «;’s negative. O

5 Qd
Remark 4.3.2. Let n and p be integers and let k(E,n,p) denote the number of families (a1, ..., aq)
such that —nd; < a; < p for all i. We have

Z% ~ colim lim(A®)k(F-m-p)
np

Definition 4.3.3. From lemma 4.3.1, we get a functor L dAffffp — IPdSt,. It follows from
proposition 4.2.8 that £? is a costack in ind-pro-stacks. We thus define

£4: dSt)? — IPdSt;
to be its left Kan extension along the inclusion dAﬁ";p — dStlkfp — where dStiﬁfp is (00, 1)-category of
derived stacks locally of finite presentation. This new functor £¢ preserves small colimits by definition.
Proposition 4.3.4. There is a natural transformation 6 from the composite functor

rd |- |*P
dSt;? —— IPdSt;, — dSt;,

to the functor L%. Moreover, the restriction of 0 to derived Deligne-Mumford stacks of finite presen-
tation with algebraisable diagonal is an equivalence.
Proof. There is by definition a natural transformation

0: L) — £(-)

Moreover, the restriction of # to affine derived scheme of finite presentation is an equivalence — see
lemma 4.3.1. The fact that 0x is an equivalence for any Deligne-Mumford stack X follows from
proposition 4.2.8. O

Lemma 4.3.5. Let F' be a non-empty finite set. For any family (Mp) of complezes over k indezed
by subsets D of F', we have

colim @ MDZMF[d—l]

G#ECF 5 5
where d is the cardinal of F (the maps in the colimit diagram are the canonical projections).

Proof. We can and do assume that F' is the finite set {1,...,d} and we proceed recursively on d.
The case d = 1 is obvious. Let now d > 2 and let us assume the statement is true for F' \ {d}. Let
(Mp) be a family as above. We have a cocartesian diagram

colim (—B Mp ——  colim @ Mp
(JSECF o 5 i BEECF{d} o D

| n

My ——— > colim M
{d} g#+EcCF Q;ée[?CE b

We have by assumption

colim Mp ~ Mg _qy|d — 2
@#EcF\{d}gg,?cE b rtay ]
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and

colim Mp ~ My ® colim M &) colim M
(d)SECF @S?CE v @ <{d}9ECF {d}g_BCE D) (”EECF @#D@E\{d} D)

~ M{d} (&) Mp[d - 2] @MF\{d}[d - 2]
The result follows. O

Lemma 4.3.6. For any B € cdga,fO of finite presentation, the ind-pro-stack LdU(Spec B) is a Tate
stack.

Proof. Let us first focus on the case of the affine line A'. We have to prove that the cotangent
complex L 4 (41 is a Tate module. For any subset D < F' we define MPZ"™ to be the free k-complex
generated by the symbols

{aa, .0y~ <o; <0if i€ D,0 < a; < p otherwise}
in degree 0. From the proof of lemma 4.3.1, we have

Z% ~ colim lim Spec(k[@ p.p ME"])  and  LFH(AY) ~ Qlim z4,
nop

where F' = {1,...,d}. If we denote by 7 the projection L‘g](Al) — Speck, we get

~ ¥ P} O ooF p,n
LL?J(N) ~T (@cggranllycongC—?EM > ~ T (hmcoymézglblrcn (—D My >

Using lemma 4.3.5 we have

Lérz](Al) ~ ¥ (h};ﬂCO})lmM%’n @M}%n[d — 1])

Moreover, we have MJ" ~ Mg’o and ME™ ~ Mp™. Tt follows that Lpa a1y is a Tate module
on the ind-pro-stack £&(A'). The case of L% (Spec B) then follows from lemma 2.4.5 and from
lemma 3.1.4. O
Lemma 4.3.7. Let B — C be an étale map between cdga’s of finite presentation. The induced map
f: LE(SpecC) — L (Spec B) is formally étale — see definition 2.2.17.

Proof. Let us denote X = Spec B and Y = Spec C. We have to prove that the induced map
Jt Mapgg - (L5 OD[=1£5()) = Map g vy (L50N)[-1, £5(X))

is an equivalence of functors PIQcoh(L%(Y))<? — sSets. Since L{,(Y) is ind-pro-affine, we can
restrict to the study of the morphism

jz: Mapg,(Z[-).L§(Y)) = Mapz, (2[-1, L (X))

of functors IQcoh(Z)<" — sSets, for any pro-affine scheme Z and any map Z — é‘li] (Y). Let us fix
E € IQcoh(Z)<°. The pro-stack Z[E] is in fact an affine pro-scheme. Recall that both £{ (V) and
LE(X) belong to IPdStShy’b It follows from the proof of theorem 2.4.2 that the morphism jz(FE) is
equivalent to

liz(B)|: Map,z,_(IZ[E]|, £G(Y)) — Mapz,_ (|1 Z[E]|, £§;(X))

where | — | is the realisation functor and the mapping spaces are computed in dSty. It now suffices
to see that |Z[F]| is a trivial square zero extension of the derived affine scheme |Z| and to use
lemma 4.2.6. O
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Proposition 4.3.8. Let Spec B be a derived affine scheme of finite presentation. The ind-pro-stack
éd(Spec B) admits a cotangent complex. This cotangent complex is moreover a Tate module. For
any étale map B — C' the induced map f: LY(SpecC) — L (Spec B) is formally étale — see defini-
tion 2.2.17.

Proof. Let us write Y = Spec B. Let us denote by i: £L4(Y) — £(Y) the natural map. We will
prove that the map i is formally étale, the result will then follow from lemma 4.3.6 and lemma 4.3.7.
To do so, we consider the natural map

j+ Mapgayy— (L)1, £1(V)) = Mapgay - (L)1 L5 (V)

of functors PIQcoh(L£%(Y))<? — sSets. To prove that j is an equivalence, we can consider for every
affine pro-scheme X — £4(Y') the morphism of functors IQcoh(X)<? — sSets

jxc: Mapy,_ (X[-],L'(Y)) — Mapy_ (X[-]. LE(Y))
Let us fix E € IQcoh(X)<% The morphism jx (FE) is equivalent to
lix ()| Mapx|,— (IX[E]|, £9(Y)) — Map,x,_ (| X[E]], £{(Y))
where the mapping space are computed in dSty. The map |jx (E)| is a pullback of the map
f: Mapx - (IX[E]l, £3(Y)ar) — Map)x),— (IX[E]|, £ (Y )ar)

It now suffices to see that | X[FE]| is a trivial square zero extension of the derived affine scheme |X]|
and thus f is an equivalence (both of its ends are actually contractible). O

Let us recall from definition 3.1.3 the determinantal anomaly

[Det o spec ay] € H2(£9(Spec A), 0Fuig e )

It is associated to the tangent Tpa(gpec 4) € Tatepp (L%(Spec A)) through the determinant map. Using
proposition 4.3.8, we see that this construction is functorial in A, and from proposition 4.2.8 we get
that it satisfies étale descent. Thus, for any quasi-compact and quasi-separated (derived) scheme (or
Deligne-Mumford stack with algebraisable diagonal), we have a well-defined determinantal anomaly

[Detpax)] € H? (Cd(X), o;d(X))

Remark 4.3.9. 1t is known since [KV3] that in dimension d = 1, if [Det,1(x)] vanishes, then there are
essentially no non-trivial automorphisms of sheaves of chiral differential operators on X.

5 Bubble spaces

In this section, we study the bubble space, an object closely related to the formal loop space. We will
then prove the bubble space to admit a symplectic structure.

5.1 Local cohomology

This subsection is inspired by a result from [SGA2, Exposé 2], giving a formula for local cohomology
see remark 5.1.6. We will first develop two duality results we will need afterwards, and then prove
the formula.
Let A€ cdga,f0 be a cdga over a field k. Let (fi,..., f,) be points of A° whose images in H(A)
form a regular sequence.
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Let us denote by A, ; the Kozsul complex associated to the regular sequence (f7,..., fi) for
k<p Weset A,o = A and A, = A, for any n. If k < p, the multiplication by f;*., induces an
endomorphism ¢j!, ; of A, . Recall that A, ;1 is isomorphic to the cone of ¢, ;:

Pht1
An,k > An,k

Ll

0 > A?L,k+1

Let us now remark that for any couple (n, k), the A-module A, j is perfect.

Lemma 5.1.1. Let k < p. The A-linear dual A:L{,? = RHom 4 (Ank, A) of Apk is equivalent to
An,k[_k];

Proof. We will prove the statement recursively on the number k. When k = 0, the result is trivial.
Let £ > 0 and let us assume that A:L/Z‘ is equivalent to A, x[—k]. Let us also assume that for any
a € A, the diagram induced by multiplication by a commutes

AV Ak

AV = A [k

We obtain the following equivalence of exact sequences
Phi1

Appr1[—k = 1] —— A p[—k] —— A i[—K]

~ ~ ~

V/A V/A (‘pg+1)v V/A
ATLJH—l An,k An,k
The statement about multiplication is straightforward. O

Lemma 5.1.2. Let us assume A is a formal series ring over Ay:

A=A f1, -, [l

It follows that for any n, the Ai-module A, is free of finite type and that there is map r,: A, — A;
mapping fi'... [, to 1 and any other generator to zero. We deduce an equivalence

A, > A" = RHom , (A, Ay)
given by the pairing

An ®A1 An *X> An g’ Al

Remark 5.1.3. Note that we can express the inverse AZ/AI — A, of the equivalence above: it map a
function a: A,, — A; to the serie ‘ ‘
ET

2

where i varies through the uplets (i1,...,i,) and where ft= fli1 - f;”.
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We can now focus on the announced formula. Let X be a quasi-compact and quasi-separated
derived scheme and let i: Z — X be a closed embedding defined be a finitely generated ideal Z < Ox.
Let j: U — X denote the complementary open subscheme.

Let us denote by Y the diagram N — dStx defined by

Y(n) =Y, = Specy (Ox/In>

For any n € N, we will denote by i, : Y,, — X the inclusion. Let us fix the notation
hoP op
Qcoh,,: dSthi> (Prl(;o’v) ~ PritY

It maps every morphism ¢: S — T to the forgetful functor ¢,: Qcoh(S) — Qcoh(T). This functor
also admit a right adjoint, denoted by ¢'. We denote by

Qcoh': dSt;? — Pri?

the corresponding diagram. It will also be handy to denote Qcoh by Qcoh™. We finally set the
following notations

¥ j*

Qcoh(X) = lim Qcoh* (¥') =—= Qcoh(X) =—= Qcoh(U/)

Tk VS
g”f

Qcoh,(X)

Gaitsgory has proven the functors fi, and 7*g to be equivalences. The functor f then corresponds to
i* through this equivalence. We can also form the adjunction

lim Qcoh'(Y) ;’T Qcoh(X)

Lemma 5.1.4 (Gaitsgory-Rozenblyum). Let A € cdga,f0 and let p be a positive integer. The natural
morphism induced by the multiplication A, ®4 Ay, — A, is an equivalence

nzp

colim RHom 4 (An %) Ay, ) ~ colim RHom 4 (An §>‘<‘) Ay, > < RHom 4 (4,, —)

Proof. See [GR, 7.1.5]. O

Proposition 5.1.5. The functor T =i, is the colimit of the diagram

1Qcoh(X)

. Qcoh,, PrIOgV/QCOh(X)—>Fct(QCOh(X)7 QCOh(X))/id

N dStx

It is moreover a right localisation equivalent to the local cohomology functor gf. This induces an
equivalence -
lim Qcoh'(Y) — Qcoh,, (X)

commuting with the functors to Qcoh(X).

Remark 5.1.6. Let us denote by Homg (—,—) the internal hom of the category Qcoh(X). It
corresponds to a functor Qcoh(X)°? — Fct(Qcoh(X),Qcoh(X)). There is moreover a functor
O, : dStx — Qcoh(X)°P mapping a morphism ¢: S — X to ¢,Og. The composite functor

Homy  (Ox(—),—): dStx — Fct(Qcoh(X), Qcoh(X))
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is then equivalent to 7qcon(x) © Qcoh,, using the uniqueness of right adjoints.
It follows that for any quasi-coherent module M € Qcoh(X), we have an exact sequence

colim Hom, (Oy,, M) — M — jyj*M

n

and thus gives a (functorial) formula for local cohomology
Hz(M) ~ colim Hom, (Oy,, M)

It is a generalisation to derived schemes of [SGA2, Exposé 2, Théoréme 6].

Proof (of the proposition). The first statement follows from the proof of proposition 1.1.5, applied
to the opposite adjunction. Let us consider the adjunction morphism o: T = 7,7 — id. We must
prove that both the induced maps

T ->T

are equivalences. We can restrict to the affine case which follows from lemma 5.1.4. The functor 7" is
therefore a right localisation. We will denote by QcohT(X ) the category of T-local objects; it comes
with functors:

Qcoh” (X) == Qcoh(X)

such that vu ~ id and wv ~ T. Using now the vanishing of j*7,, we get a canonical fully faithful
functor ¥: Qcoh” (X) — Qcohy (X) such that u = gip. It follows that 1 admits a right adjoint &
and that

v = fu and E=wg

We will now prove that the functor £ is conservative. Let therefore E' € Qcohy (X) such that £E = 0.
We need to prove that E is equivalent to zero. We have TgE = 0 and i1, TgFE ~ RHomy,, (Oz,gE).
Because Oz is a compact generator of Qcohy (X) — see [Toé2, 3.7] —, this implies that gF is
supported on U. It therefore vanishes.

The vanishing of j*7, implies the existence of a functor

lim Qcoh'(V)——>Qcohy (X)
such that gy ~ 7x. The functor ¢ = 7'g is right adjoint to 7. The computation

gre~ixig=Tg~g

proves that ¢ is fully faithful. We now have to prove that ~ is conservative. Is it enough to prove that
ix is conservative. Let (E,) € lim Qcoh'(Y). The colimit

colim i, F,
n

vanishes if and only if for any n, any p € Z and any e: Oy, [p] — E,, there exist N > n such that the
natural morphism f: hyn.Oy, [p] = hnnyFn — En vanishes. The symbol h,y stands for the map

Y (n < N). We know that e is the composite map

Ronf
Oy, [p] — h!nNhnN*On [p] — h!nNEN = E,

The point e is therefore zero and F,, is contractible. O
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5.2 Definition and properties

We define here the bubble space, obtained from the formal loop space. We will prove in the next
sections it admits a structure of symplectic Tate stack.

Definition 5.2.1. The formal sphere of dimension d is the pro-ind-stack

S? = lim colim Spec(A4, ® Hom 4 (A, A)) ~ lim colim Spec(A, ® A,[—d])

n p=n n p=n
where A = k[21,...,2q] and A, = A/(gn, . ,x)-

Remark 5.2.2. The notation Spec(A, @ A,[—d]) is slightly abusive. The cdga A, ® A,[—d] is not
concentrated in non positive degrees. In particular, the derived stack Spec(A, @ A,[—d]) is not a
derived affine scheme. It behaves like one though, regarding its derived category:

Qcoh(Spec(4, ® An[—d])) ~ dgMod 4 g4, [—a
Let us define the ind-pro-algebra
Oga = colim lim A, ® A,[—d]

p=n

where A, @ A,,[—d] is the trivial square zero extension of A, by the module A,[—d]. For any m € N,
let us denote by S¢ the ind-stack

S¢ = colim Spec(A, @ A,,[—d])

p=m

Definition 5.2.3. Let T be a derived Artin stack. We define the d-bubble stack of T' as the mapping
ind-pro-stack R
B(T) = Map(S%,T): Spec B — colim lim T(B ® (4, ® 4,[~d]))
n p=n
Again, the cdga A, ® A, [—d] is not concentrated in non positive degree. This notation is thus slightly
abusive and by T(B ® (4, ® A,[—d])) we mean
Map(Spec(4, ® A,[—d]) x Spec B, X)

We will denote by B(T') the diagram N — Pro"” dSt;, of whom B(T) is a colimit in IPdSt. Let us
also denote by 3B, (T') the mapping pro-stack

B, (T) = Map(S2,,T): Spec B — lim T(B® (A, ® An[—d]))

p=m
and B,,(T): {p € N|p = m}°°? — dSts the corresponding diagram. In particular
B, (T) = Map(SZ,T): Spec B — limT(B® A,)
P

Those stacks come with natural maps

Proposition 5.2.4. If T is an affine scheme of finite type, the bubble stack B(T') is the product in
ind-pro-stacks

B(T) —= LV(T)

|

LY(T) — LE(T)
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Proof. There is a natural map de — S% induced by the morphism

colimlim A, ® A, [—d] — lim A,
2

n p=zn
Because T is algebraisable, it induces a map B(T) — L% (T) and thus a diagonal morphism

§: B(T) — gé(T)dx LE(T)
LL(T)

We will prove that ¢ is an equivalence. Note that because T is a (retract of a) finite limit of copies of A!,
we can restrict to the case T = A!. Let us first compute the fibre product Z = L (A?) X (Al)g‘i,(Al).
It is the pullback of ind-pro-stacks

Z lim Spec(k[aa, ....au: 0 < a; < p))
3 ; -
lim Spec(k[aq,.....0u,0 < o < p]) — colimlim}in} Spec(k[aa,....aq, —Moier < o < pl)
P c

n p

where J = {1,...,d} and ey = 1 if ¢ € I and 0 otherwise. For any subset K < J we define M};" to
be the free complex generated by the symbols

{tay....an,—n < a; <0if i€ K,0 < a; < p otherwise}

We then have the cartesian diagram

TJ lim,, Spec (k[M%OD
lim,, Spec (k[Mgo]) —— colim,, lim, lim;c ; Spec(k[@ x; ME"])

Using lemma 4.3.5 we get
Z ~ colim lim Spec(k[Mp’O @ MS’"[d]D
n p Z

O

Remark 5.2.5. Let us consider the map lim, A, — Ap ~ k mapping a formal serie to its coeflicient
of degree 0. The (lim A,)-ind-module colim A,[—d] is endowed with a natural map to k[—d]. This
induces a morphism Og, — k @ k[—d] and hence a map St — Sd, where S? is the topological sphere
of dimension d. We then have a rather natural morphism

B9(X) — Map(S?, X)

5.3 Its tangent is a Tate module

We already know from proposition 3.4.3 that the bubble stack is a Tate stack. We give here another
decomposition of its tangent complex. We will need it when proving §d(T ) is symplectic.

Proposition 5.3.1. Let us assume that the Artin stack T is locally of finite presentation. The ind-
pro-stack B (T) is then a Tate stack. Moreover for any m € N we have an ezact sequence

S;T*Lgd(T)o —— S:{and(T) —_— Szngd(T)/gd(T)o

where the left hand side is an ind-perfect module and the right hand side is a pro-perfect module.
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Proof. Throughout this proof, we will write B instead of B%(T) and B, instead of B4 (T),, for
any m. Let us first remark that 9B is an Artin ind-pro-stack locally of finite presentation. It suffices
to prove that s’ Ly is a Tate module on %B,,, for any m € N. We will actually prove that it is an
elementary Tate module. We consider the map

* %k *
ST ]L§D — 5, Los

It is by definition equivalent to the natural map

ART°(Bg) % lim AR™°(B..,,(T)
where B, (T) is the restriction of B(T) to {n > m} = N. Let ¢ denote the diagram
¢: {ne€Nln =m}°® - IPerf(B,,(T))

obtained as the cokernel of f. It is now enough to prove that ¢ factors through Perf($8,,(T)). Let
n = m be an integer and let g, denote the induced map B,,(T) — B,(T). We have an exact
sequence

st L (1) = GmnSnr " Las (1) = gLl (1) — 6(n)

Let us denote by % (n) the cofiber

spr* L (1) = L (1) = ¥(n)

so that ¢(n) ~ ¢* (n). This sequence is equivalent to the colimit (in IPerf(8,,(T))) of a cofiber
sequence of diagrams {p € N|p = n}°? — Perf (3B, (7))

)‘EZO(T) (QO(T)) - AEZT) (2n(T)) - QZ(”)

It suffices to prove that the diagram t(n): {p € N|p > n}°? — Perf(%,, (T)) is (essentially) constant.
Let pe N, p > n. The perfect complex ¢ (n)(p) fits in the exact sequence

trpenplas, (1) = Tyl () = ¥(n)(p)

where t,,,: B, (T) — B, ,(T) is the canonical projection and &,,: B,, (T') — B, ,(T) is induced by

the augmentation Og, , — Og, . It follows that 1(n)(p) is equivalent to

n

tnpls | (1)/3, ,(T)

Moreover, for any ¢ = p > n, the induced map ¢ (n)(p) — 1(n)(q) is obtained (through ¢} ) from the
cofiber, in Perf(B,, ,(T))

WGpgnples, (1) — anpelly () ——= g L (ry/m, (1)

=n,p
Il

* *
EnqQ0pq B, ,(T)
o

E* L§

ng (r) — > L

=n,q

Ly @)ys,, 1
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where ay,, is the map B, (T) — B, (7). Let us denote by (o) the square on the left hand side
above. Let us fix a few more notations

§n,p(T‘) X SO»P §n,q(T‘) X SO,P §n,q(T‘) x So,q
aop
So,p Pnp Ynpq $nq
bnpq
Enp gn,p(T‘) X Sn,P §n,q(T') X Sn,p §n,q(T‘) X Sn,q
a / a Nq
np nq
= Bnpq .
Snip Sn,p Sn,q nq T
B, ,(T) = B, (T) = B, (T)

The diagram (o) is then dual to the diagram

* * * * *
QpgEnpT0py €V0p LT < Qe Wipy, €Vy, T

| |

Emq@0qy V0 T <————— wWpg, evh Tt
Moreover, the functor w,, (for any n and p) satisfies the base change formula. This square is thus

equivalent to the image by w,,, of the square

% * * < % *
wnpq % bnpq % bnpq npq €Vng Tr bnpq % bnpq Vg Tt

T T

% % %
OngyPrg©ng I <———evy, Tr

Using now the projection and base change formulae along the morphisms @54, bnpq and ¥y, We see
that this last square is again equivalent to

(@71Bnpas&np s Oso,) ® (€Vig Tr) <—— (474 5npg, Os,. ) ® (evig Tr)

| |

(@74€nq5Os0,,) ® (evig Tr) (0740s,.,) ® (eviy Tr)

We therefore focus on the diagram

Os

_—
n,q E"Q*OSOM

ﬁnPQ*OSn,p /Bnpq*fnp*oso,p
By definition, the fibres of the horizontal maps are both equivalent to A,[—d] and the map induced

by the diagram above is an equivalence. We have proven that for any ¢ > p > n the induced map
Y(n)(p) — ¥(n)(q) is an equivalence. It implies that L) is a Tate module. O
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5.4 A symplectic structure (shifted by d)
In this subsection, we will prove the following

Theorem 5.4.1. Assume T is q-shifted symplectic. The ind-pro-stack ﬁd(T) admits a symplectic
Tate structure shifted by g — d. Moreover, for any m € N we have an exact sequence

St Laga(ry, = Splagacr) = i Tgacr),[q — d]

Proof. Let us start with the following remark: the residue map r,: A, — k = A; defined in
lemma 5.1.2 defines a map Og. — k[—d]. From theorem 3.3.8, we have a (¢ — d)-shifted closed

2-form on B%(T). We have a morphism from theorem 3.2.3
Owaeryla = d] = Lygacry @ Logacr)
in PIPerf(B%(T)). Let m € N. We get a map
Oy, [q—dl = spLaecr) ® s Lage(r)

and then
SmTpa(r) ® 53, Tpa(r) = Oo(r), [ — d]

in IPPerf(B%(T),,). We consider the composite map
0: anTﬁd(T)/ﬁd(T)o ® S;knTﬁd(T)/ﬁd(T)o i S;kn’]rﬁd(T) ® an’]rgd(T) - Oﬁd(T)m [q - d]

Using the remark 3.3.9 and the proof of proposition 5.3.1 we see that @ is induced by the morphisms
(varying n and p)

A B
Dap(E® E@evs, (Tr @ Tr)) — > @np, (B ® Elg]) —> @np, (O (ry,, w5, [41)

where E = ajipgnp*hnp*%!l(’)m and the map A is induced by the symplectic form on 7. The map B
is induced by the multiplication in Og, ,. This sheaf of functions is a trivial square zero extension of
augmentation ideal &, finp *’}/,,!.LOAd and B therefore vanishes. It follows that the morphism

anTﬁd(T) ® S:'Lng(T)/ﬁd(T)o - S:‘nT§d(T) ® S;ng(T) — O§d(T)m [q — d]

factors through s}, Tga(r), ® 85, Tega(r) s (r),- Now using proposition 5.3.1 we get a map of exact

sequences in the category of Tate modules over gd(T)m

SmTspa(ry sy, > SpTpar)y ————> 55,7 Tgar),

") | |

sy *Lga(r), [d — q] — sy Lgary)[d — gl — s} Lga(r) sar),[d — 4]
where the maps on the sides are dual one to another. It therefore suffices to see that the map
Tm: St Tga(ry ma(ry, = Sm7* Laga(r),[d — ¢ is an equivalence. We now observe that 7, is a colimit

indexed by p = m of maps

Gt (ShpLasa(ryo, = Tass(r),, w4730, )
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Let us fix p > m and G = a},§p, Os,,- The map Fy: Tga(p), /w1y, = Epplemi(r)o,

induced by the pairing

Ta(r),,/B2(T)0, @ EppTa(T)y, =

We can now conclude using lemma 5.1.2.

Wpp 4 (E ® ev;p 'JTT) ® Tppye (G ® ev;p TT)

Tpp (EQevi Tr ® G®evi, Tr)

Wpp 4 (B

®G)lq]

Wppy (Ogd (T) pp X Spp ) [q]

Og(r),,la —d
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