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Résumé

L’espace des lacets lisses C*(S!, M) associé & une variété symplectique M se voit doté d’une structure
(quasi-)symplectique induite par celle de M. Nous traiterons dans cette thése d’un analogue algébrique
de cet énoncé. Dans leur article [KV1], Kapranov et Vasserot ont introduit 'espace des lacets formels
associé & un schéma. Il s’agit d’un analogue algébrique a l'espace des lacets lisses.

Nous généralisons ici leur construction a des lacets de dimension supérieure. Nous associons a
tout schéma X — pas forcément lisse — I'espace L£4(X) de ses lacets formels de dimension d. Nous
démontrerons que ce dernier admet une structure de schéma (dérivé) de Tate : son espace tangent est
de Tate, c’est-a-dire de dimension infinie mais suffisamment structuré pour se soumettre a la dualité.
Nous définirons également, ’espace ‘,Bd(X ) des bulles de X, une variante de ’espace des lacets, et nous
montrerons que le cas échéant, il hérite de la structure symplectique de X. Notons que ces résultats
sont toujours valides dans des cas plus généraux : X peut étre un champ d’Artin dérivé.

Pour démontrer nos résultats, nous définirons ce que sont les objets de Tate dans une (oo, 1)-
catégorie C stable et compléte par idempotence. Nous prouverons au passage que le spectre de K-
théorie non-connective de Tate(C) est équivalent a la suspension de celui de C, donnant une version
oo-catégorique d’un résultat de [Sai].

Dans le dernier chapitre, nous traiterons d’un probléme différent. Nous démontrerons I’existence
d’une structure d’algébre de Lie sur le tangent décalé de n’importe quel champ d’Artin dérivé X. Qui
plus est, ce tangent agit sur tout quasi-cohérent F, action étant donnée par la classe d’Atiyah de E.
Ces résultats sont par exemple valides dans le cas d’un schéma X sans hypothése de lissité.

Dans cette thése, nous utiliserons les théories des (00, 1)-catégories et des structures symplectiques
dérivées.

Abstract

If M is a symplectic manifold then the space of smooth loops C*(S!, M) inherits of a quasi-symplectic
form. We will focus in this thesis on an algebraic analogue of that result. In their article [KV1],
Kapranov and Vasserot introduced and studied the formal loop space of a scheme X. It is an algebraic
version of the space of smooth loops in a differentiable manifold.

We generalize their construction to higher dimensional loops. To any scheme X — not necessarily
smooth — we associate £?(X), the space of loops of dimension d. We prove it has a structure of
(derived) Tate scheme — ie its tangent is a Tate module: it is infinite dimensional but behaves nicely
enough regarding duality. We also define the bubble space ‘Bd(X ), a variation of the loop space. We
prove that B%(X) is endowed with a natural symplectic form as soon as X has one (in the sense of
[PTVV]).

To prove our results, we develop a theory of Tate objects in a stable (oo, 1)-category C. We
also prove that the non-connective K-theory of Tate(C) is the suspension of that of C, giving an
oo-categorical version of a result of [Sai].

The last chapter is aimed at a different problem: we prove there the existence of a Lie structure
on the tangent of a derived Artin stack X. Moreover, any quasi-coherent module ¥ on X is endowed
with an action of this tangent Lie algebra through the Atiyah class of E. This in particular applies
to not necessarily smooth schemes X.

Throughout this thesis, we will use the tools of (o0, 1)-categories and symplectic derived algebraic
geometry.
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Saurez-vous attribuer 4 chaque auteur sa citation

« Il avait fait alors une grande démonstration
de sa découverte a un congrés international
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comme ¢a. »
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pincettes. Il n’a plus devant lui qu’un morceau
de bois charbonneux, qui cesse aussitot de
flamber. »

« Il devint donc de plus en plus savant, et en
méme temps, par une conséquence naturelle,
de plus en plus rigide comme prétre, de plus
en plus triste comme homme. »

« Prenez un cercle, caressez le, il deviendra
vicieux ! »

LGive every author his quote back. T won’t translate the quotes, though.

Notre-Dame de Paris, Victor
Hugo

La cantatrice chauve, Eugéne
Ionesco

Hommage a Alexander
Grothendieck, Agora des
savoirs, Bertrand Toén

Le petit prince, Antoine de

Saint-Exupéry

Les fauz-monnayeurs, André
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Introduction

En francais

Contexte

A une variété différentielle M, on associe son espace des lacets lisses C*(S, M). Cet objet central &
la théorie des cordes hérite d’une forme symplectique sitot que 'on dote M d’une telle forme. Plus
précisément, I’espace des lacets lisses devient quasi-symplectique (il n’est pas de dimension finie), voir
par exemple [MP]. Nous nous intéresserons ici & un analogue algébrique de ce résultat.

La premiére question & laquelle 'on fait face est la définition d’un analogue a ’espace des lacets
lisses dans le cadre algébrique. Une réponse apparut en 1994 dans les travaux de Carlos Contou-Carrére
|CC|. I y étudie le groupe G,,,(C((t))) des fonctions en quelque sorte holomorphes dans le groupe
multiplicatif. Il s’agit, & ma connaissance, de la premiére incarnation des espaces de lacets formels.
C’est également dans cette étude qu’apparait le fameux symbole de Contou-Carrére. L’idée de lacets
formels a ensuite été généralisée a tout groupe algébrique, avec I'implication de la grassmanienne
affine &g = G(C((t)))/G(C[[t]) dans le programme de Langlands. Dans leur article [KV1], Mikhail

Kapranov et Eric Vasserot introduisirent I’espace des lacets formels d’un schéma lisse X . Il s’agit d’un
ind-schéma L£(X) correspondant peu ou prou a ’espace des morphismes Spec C((t)) — X. Nous nous
inspirerons fortement de leur construction dans la suite de cette thése. Kapranov et Vasserot ont de
plus muni I'espace des lacets formels d’une structure de factorisation et ont établi un lien fort avec les
algébres vertex, puis dans [KV3], avec les opérateurs différentiels chiraux.

Nous nous intéresserons dans cette thése a des lacets formels de dimension supérieure. On compte
au moins deux maniéres d’imaginer de tels objets. La premiére consiste a remplacer C((t)) par un corps
local de dimension supérieure C((¢1)) ... (t4))- Cette méthode est au coeur de la construction des adéles
de Beilinson, ou encore des symboles de Contou-Carrére supérieurs (voir [OZ2] pour la dimension 2 et
[BGW1] en toute dimension). Cette démarche trés fructueuse demande cependant de choisir un ordre
dans les coordonnées locales t1,...,ts. L’auteur se plait & penser aux adéles comme des morphismes
partant d’un tore de dimension d muni d’un drapeau (correspondant  ’ordre des coordonnées) plutot
que partant d’une véritable sphére. Nous aborderons ici la seconde méthode. Elle consiste & voir
I’espace des lacets formels comme un objet dérivé. L’auteur a appris aprés la rédaction de cette thése
Iexistence d’un document non-publié dans lequel Mikhail Kapranov s’était intéressé a cette approche
dérivée. L’auteur remercie Kapranov de ’avoir laissé lire ces notes trés enrichissantes.

La géométrie algébrique dérivée est apparue par a-coups. Son existence a d’abord été prédite
par Maxim Kontsevich in [Kon]. Ionut Ciocan-Fontanine et Mikhail Kapranov ont ensuite introduit
la premiére définition formelle d’un objet géométrique dérivé : les dg-schémas et dg-variétés (voir
[CFK]). Bertrand Toén et Gabriele Vezzosi ont alors développé dans [HAG2] une théorie pleinement
fonctionnelle des champs (supérieurs) dérivés, a l'aide des catégories de modéles. Le domaine a pu
s’étendre en grande partie grace au travail de Jacob Lurie et & sa série de papiers DAG. Il a également
modernisé la théorie en utilisant les (00, 1)-catégories (voir [HTT] et [HAlg]).

Une fois les espaces de lacets formels (dérivés) définis, la seconde question est enfin & portée
de main : les espaces de lacets formels sont de dimension infinie, comment alors parler de formes
symplectiques ? Les formes symplectiques (décalées) dans un contexte dérivé ont été introduites par
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Tony Pantev, Bertrand Toén, Michel Vaquié et Gabriele Vezzosi dans [PTVV]. Elles reposent sur le
complexe cotangent, objet central de la géométrie dérivée. En tant que complexe, il n’est en général
plus concentré en degré 0. Pour le mettre en relation avec son dual, il faut donc avoir recourt a un
décalage, permettant de faire coincider les amplitudes. Une forme symplectique est donc une 2-forme
fermée décalée et non-dégénérée. Dans notre cas, ’espace des lacets formels est non seulement dérivé,
mais également de dimension infinie. Pour contourner ce probléme, nous structurerons le cotangent
afin qu’il se plie sans histoire & la dualité : le cotangent est alors un module de Tate.

Les espaces vectoriels de Tate sont apparus chez bien des auteurs. On nommera par exemple
Lefschetz, Tate, Beilinson ou encore Drinfeld (voir [Dri]). L’idée est la suivante : un espace vectoriel V'
de dimension infinie peut étre considéré comme un espace vectoriel topologique discret. Son dual V* est
alors muni d’une topologie dite linéairement compacte. De plus, le dual topologique de V* n’est autre
que V. Un espace vectoriel de Tate est enfin I’extension d’un espace discret par un espace linéairement
compact. Cela permet d’identifier une famille d’espaces vectoriels qui, bien que de dimension infinie,
se comportent bien par rapport & la dualité. Plus récemment, Oliver Braunling, Michael Grochenig
et Jesse Wolfson (voir [BGW2]) ont développé une théorie générale pour les objets de Tate & valeur
dans une catégorie exacte.

Dans cette thése

Dans cette thése, nous définirons les espaces de lacets de dimension supérieure, en généralisant la
définition de Kapranov et Vasserot. Nous approcherons ensuite la question symplectique. Soit X un
schéma de présentation finie (sans hypothése de lissité). On définit Pespace £¢(X) des lacets formels
de dimension d dans X comme suit. Soit d’abord £{(X) l'espace des morphismes entre le voisinage
formel de 0 dans A? et X. Il s’agit d’une version supérieure des espaces d’arcs formels étudiés par
exemple par Jan Denef et Frangois Loeser dans [DL]. Soit ensuite E‘,iJ(X) I’espace des morphismes
depuis le voisinage formel épointé de 0 dans A? vers X. L’espace des lacets formels £4(X) est alors le
voisinage formel de £{,(X) dans £ (X).

La compréhension de ces trois objets est au coeur de ces travaux. Le principal probléme est
de donner une définition sensée du voisinage formel épointé de 0 dans A?. Il est aisé de décrire sa
cohomologie

E[X1,..., Xd4] if n=0
H"(AY{0}) =< (X1 ... Xo) k(XL XY ifn=d—1
0 otherwise

mais le définir avec toute sa structure n’est pas aussi aisé. Nous pouvons néanmoins décrire les mor-
phismes depuis ce voisinage formel épointé. Cela permet une définition de ﬁ%(X ) puis de I’espace des
lacets formels.

Cet objet géométrique est de dimension infinie. Une partie de cette étude est tournée vers ’identi-
fication de structure supplémentaire afin d’améliorer son comportement. Voici donc le premier résultat
dans cette direction.

Théoréme 1 (voir proposition 3.1.3.4). L’espace des lacets formels de dimension d dans un schéma
X est représenté par un ind-pro-schéma dérivé. De plus, le foncteur X — LX) satisfait la descente
étale.

Soulignons ici la nécessité de la structure dérivée : dés lors que X est un schéma, les parties
non-dérivées de £4(X), L& (X) et £¢(X) sont isomorphes si d > 2. La géométrie dérivée nous permet
également de définir I’espace des lacets formels pour des objets X plus généraux : les champs (dérivés).
En particulier, le cas d’'un champ classifiant X = B G est couvert par notre définition. Bien sir, dans
un tel cas, 'espace des lacets formels n’est plus un ind-pro-schéma dérivé, mais plutdt un ind-pro-
champ dérivé. Enfin, dans le cas oit d = 1 et X est un schéma lisse, on munit ’espace des lacets formels
de Kapranov et Vasserot d’une structure dérivée. Il a toutefois été conjecturé dans [GR, 9.2.10] que
cette structure dérivée serait triviale lorsque X est schéma affine lisse. Gaitsgory et Rozenblyum ont
prouvé leur conjecture dans le cas o X est un groupe algébrique.



La démonstration du théoréme 1 est fondée sur un lemme important. Dans celui-ci, nous identi-
fions une sous-catégorie pleine C de celle des ind-pro-champs dérivés de telle sorte que le foncteur de
réalisation de C dans les champs dérivés soit pleinement fidéle. Le champ dérivé £¢(X) est alors dans
I'image essentielle de C dés lors que X est un schéma (dérivé) affine. il est donc muni d’une unique
structure d’ind-pro-champ satisfaisant des conditions. Pour généraliser a tout X, il suffit d’utiliser la
descente étale. Remarquons que dans le cas général, la structure ind-pro- ne satisfait pas nécessaire-
ment les conditions auxquelles on serait en droit de s’attendre, par exemple sur les morphismes de
transition dans les diagrammes.

Nous concentrons ensuite nos efforts sur la question symplectique : si X est muni d’une forme
symplectique, I'ind-pro-champ £¢(X) hérite-t-il d’une telle forme? Ce probléme utilise une fois de
plus les techniques issues de la géométrie dérivée, et les structures symplectiques dérivées définies
dans [PTVV]. 1l nous faut cependant structurer le tangent de £?(X) afin que, malgré sa dimension
infinie, il puisse étre comparé a son dual, grace & une forme symplectique hypothétique. Le contexte
adapté pour répondre & ce probléme semble étre celui des champs de Tate.

Avant de définir les champs de Tate, il faut parler de modules de Tate. Ils permettent, par un
formalisme simple, d’étudier certains espaces vectoriels de dimension infinie. Ils ont été utilisés entre
autres par Lefschetz, Beilinson, Drinfeld, et plus récemment, par Previdi [Pre] mais également par
Braunling, Grochenig et Wolfson [BGW2]. Comme nous ’avons dit plus haut, un espace vectoriel de
Tate est une extension d’un espace discret par un espace linéairement compact. Les espaces discrets
peuvent étre vus comme les ind-objets dans les espaces de dimension finie. Leurs duaux, les espaces
linéairement compacts, sont alors identifiés aux pro-objets. Cette catégorification, tirée de [BGW2],
nous permettra la définition qui suit.

Nous introduirons la notion d’objets de Tate dans une (oo, 1)-catégorie stable (telle qu’étudiée
dans [HAlg]). Soit C une telle catégorie. Elle jouera le role de la catégorie des espaces vectoriels de
dimension finie. Nous définissons Tate(C), la plus petite sous-catégorie pleine de 1’(c0, 1) catégorie des
pro-ind-objets ProInd(C) dans C, contenant les ind- comme les pro-objets et stable par extension et
retract. Remarquons que dans un contexte général, il est important de demander que Tate(C) soit
stable par retract. Le prochain résultat identifie une propriété universelle pour la catégorie des objets
de Tate :

Théoréme 2 (voir théoréme 1.1.0.4 et corollaire 1.1.0.8). Soit D une (o0, 1)-catégorie stable et com-
pléte par idempotence. Pour tout diagramme commutatif

¢ —'—1Ind(C)

]i |

Pro(C) —;—D
dans lequel i et j sont les inclusions canoniques, dans lequel f et g sont exacts et dans lequel f préserve
les colimites filtrantes tandis que g préserve les limites cofiltrantes, il existe un foncteur essentiellement
unique ¢: Tate(C) — D tel que f et g se factorise par ¢. En particulier, la catégorie Tate(C) est
canoniquement équivalente & la plus petite sous-catégorie pleine, stable et compléte par idempotence
de Ind Pro(C) contenant a la fois Ind(C) et Pro(C). Enfin, le spectre de K-théorie non-connectif de
Tate(C) est équivalent & la suspension de celui de C :

K(Tate(C)) ~ XK(C)

La démonstration du théoréme 2 est basée sur les résultats et techniques de [HAlg]. Une fois
définis les objets de Tate dans une (oo, 1)-catégorie stable, les difficultés sont inhérentes a la théorie
des (o0, 1)-catégories. 1l s’agit d’exprimer efficacement 'infinité de cohérences nécessaires. La derniére
partie de ce théoréme est une version co-catégorique d’un résultat de Saito (voir [Sai]) conjecturé par
Kapranov et Previdi. Elle est démontrée en calculant les quotients Ind(C)/c et Tate(C)/Pro(C) en tant
qu’(oo, 1)-catégories stables et complétes par idempotence. On démontre alors que ces deux catégories
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sont naturellement équivalentes. On y utilise les résultats de Blumberg, Gepner and Tabuada (voir
[BGT]). Cette approche est fortement inspirée par celle de Saito dans le cadre des catégories exactes.

On définit alors la catégorie dérivée des modules de Tate sur un schéma (ou plus généralement
sur un ind-pro-champ derivé). Un ind-pro-champ d’Artin X (c’est-a-dire un ind-pro-objet dans les
champs d’Artin dérivés) est alors un champ de Tate si son cotangent Lx est un module de Tate
sur X. Le cotangent d’un ind-pro-champ d’Artin est en effet naturellement un pro-ind-complexe de
modules quasi-cohérents et la définition ci-dessus fait sens.

L’espace des lacets formels £¢(X) est un champ de Tate dés lors que X est un schéma affine
dérivé de présentation finie. Pour X un champ dérivé, d’aprés ce qui précéde, I’ind-pro-champ £4(X)
est localement de Tate. Cette structure suffit & définir une classe déterminante

[Deteucx)] € B2 (£7(X), O, )

pour tout schéma dérivé quasi-compact et quasi-séparé X. Cette construction est en fait valide dans
un cadre plus général : X peut étre un champ de Deligne-Mumford & diagonale algébrisable (voir
définition 2.2.1.5). Dans [KV3], Kapranov et Vasserot ont montré qu’en dimension 1, la classe déter-
minante controlait ’existence de faisceaux différentiels chiraux sur X. L’auteur s’attend a un résultat
similaire en dimension supérieure, impliquant un analogue aux opérateurs chiraux et aux algébres
vertex en dimension supérieure. L’auteur compte se pencher sur cette question dans ’avenir.
Comme nous l’avons signalé plus haut, les modules de Tate sont compatibles avec la dualité.
En utilisant la géométrie symplectique dérivée introduite par Pantev, Toén, Vaquié et Vezzosi dans
[PTVV], on définit alors la notion de champ de Tate symplectique. Dans un premier temps, on géné-
ralise la définition des formes fermées (décalées) au contexte des ind-pro-champs. Une forme symplec-
tique sur un champ de Tate Z est une 2-forme fermée non-dégénérée, c’est-a-dire qu’elle induit une

équivalence
TZ :> LZ [n]

entre les modules de Tate que sont les complexes tangent et cotangent (décalé) de Z.
On s’intéresse ensuite a ’espace des bulles SBd(X), objet proche de I'espace des lacets formels.
On a par exemple lorsque X est un schéma dérivé affine de présentation finie :

BYX) ~ LE(X) x LG (X)
L£H(X)

Nous démontrons ensuite le résultat suivant :

Théoréme 3 (voir théoréme 3.2.4.1). Soit X un champ dérivé muni d’une forme symplectique n-
décalée. Lespace des bulles B (X) est alors un champ de Tate muni d’une forme symplectique (n—d)-
décalée.

La démonstration de ce théoréme suit une méthode bien connue. L’espace des bulles est en fait,
en tant qu’ind-pro-champ, le champ des morphismes de la sphére formelle S de dimension d dans X.
On a donc deux morphismes

pr

BIX) <—— BI(X) x §4 = X

La forme symplectique induite sur ‘Bd(X) est alors Sgd ev*wx, oll wx est la forme symplectique de
X. La principal difficulté réside dans la construction de 'intégration le long de la sphére formelle S,
Celle-ci est un pro-ind-champ muni d’une orientation de dimension d.

Remarquons que la méthode décrite ci-dessus ne fonctionnerait pas dans le cas de £¢(X). Nous
ne savons en effet pas munir le voisinage formel épointé d’une structure de pro-ind-schéma comme la
sphére formelle. Notre théoréme 3 est toutefois une premiére étape vers une structure symplectique
sur £4(X). On peut considérer le nerf Z, de morphisme naturel £ (X) — L& (X). C’est un objet en
groupoide dont I'ind-pro-champ des morphismes n’est autre que %d(X ) lorsque X est affine. L’auteur
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s'attend & ce que le quotient | Z,| dans une catégorie idoine soit équivalent 4 £¢(X). De plus, la forme
fermée de %d(X ) serait compatible avec le groupoide de telle sorte que le quotient hérite d’une forme
fermée. Réciproquement, s’il était su que £¢(X) était symplectique, la forme symplectique de %d(X )
apparaitrait comme une intersection lagrangienne dans £4(X).

Le dernier chapitre traitera d’un probléme distinct. Si X désigne une variété ou méme un schéma
lisse, on a longtemps suspecté la classe d’Atiyah de munir le tangent décalé Tx[—1] d’un crochet de Lie
(& homotopies prés). Dans son article [Kap], Kapranov démontra cet énoncé dans le cas d’une variété
lisse. Il a également montré que tout module quasi-cohérent sur X admettait une action canonique de
cette algebre de Lie.

Dans notre chapitre 4, nous démontrerons le théoréme suivant.

Théoréme 4. Soit X un champ d’Artin dérivé localement de présentation finie, sur un corps k
de caractéristique nulle. Le compleze tangent décalé Tx[—1] est muni d’une structure d’algébre de
Lie (théoréme 4.2.0.1). De plus, le foncteur d’oubli dgRepx(Tx[—1]) — Qcoh(X) — entre I’(c0,1)-
catégorie des représentations de Tx[—1] et la catégorie dérivée des modules quasi-cohérents sur X —
admet une section (théoréme 4.2.8.1). L’action de Tx[—1] sur un faisceau E est donnée par sa classe
d’Atiyah Tx[-1]|® E — E.

Ce résultat s’applique en particulier aux variétés singuliéres, aux schémas ou encore aux champs
classifiants. La démonstration du théoréme 4 demande d’introduire une (oo, 1)-catégorie dStE( des
champs dits formels au dessus d’'un champ X. Nous construisons ensuite une adjonction

Fx: dgLiey < dSt : £x

La structure de Lie de T'x [—1] est alors I'image par £x du voisinage formel de la diagonale X — X x X.
Soulignons que l'adjonction sus-mentionnée n’est en général pas une équivalence. C’en est une en
revanche lorsque X est un schéma (dérivé) affine et noethérien.

La seconde partie du théoréme 4 est démontrée en construisant une action du tangent décalé sur
le foncteur A*: Qcoh(X x X) — Qcoh(X) de restriction le long de la diagonale. Cette action est
en fait définie par la classe d’Atiyah universelle de X. On en déduit que Tx|[—1] agit sur le foncteur
idQeon(x) = A*¢*, olt ¢: X x X — X est I'une des projections.

Perspectives :

Dans ce paragraphe, nous développerons quelques pistes de recherche, dans la lignée de cette thése.

11 est connu depuis [KV1] que I’espace des lacets formels, en dimension 1, peut étre défini relative-
ment & une courbe C. Il admet alors une structure de monoide de factorisation au-dessus de C. Cette
structure a permis & Kapranov et Vasserot d’utiliser un argument du type local-vers-global afin de
démontrer leurs résultats. Cette technique est également utilisée pour les lacets formels & valeurs dans
un champ classifiant B G dans un récent article de Gaitsgory et Lurie [GL]. En dimension supérieure,
I’espace des lacets formels relatifs & une variété n’est pas encore défini. La définition et I’étude de cet
espace (incluant une probable structure factorisante) feront ’objet de travaux ultérieurs.

Dans les autres articles de leur série sur les espaces de lacets formels, Kapranov et Vasserot
établirent un lien fort entre ’espace des lacets formels de dimension 1 & valeur dans un schéma X et
Iexistence de faisceaux d’opérateurs chiraux sur X. La définition d’espace des lacets formels supérieurs
que nous fournissons permet d’espérer un résultat analogue en dimension supérieure. La premiére étape
serait ainsi de trouver une définition adéquate d’algébres chirales et vertex en dimension supérieure.
L’auteur compte étudier cette question, en collaboration avec Giovannin Faonte et Mikhail Kapranov.

Une troisiéme direction suscitant l'intérét de l'auteur est le développement d’une géométrie que
I'on pourrait qualifier de locale, en référence aux corps locaux. L’exemple principal motivant cette
géomeétrie est le corps des séries de Laurent k((¢)). Nous verrons dans cette thése que le principal
probléme est de trouver une définition du voisinage formel épointé conservant toute la structure.
On voit par exemple que k((t)) est naturellement une algébre dans la catégorie des ind-pro-espaces
vectoriels mais pas une ind-pro-algébre. L’idée de la géométrie locale est précisément de remplacer les
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ind-pro-champs que nous développerons dans cette thése par des objets géométriques sur le site des
algébres commutatives dans la catégorie monoidale des ind-pro-espaces vectoriels.

Techniques et conventions :

Tout au long de cette thése, nous utiliserons la théorie des (o0, 1)-catégories. Nous utiliserons quel-
quefois explicitement le modéle des quasi-catégories développé par Joyal et Lurie (voir [HTT]) Cela
étant dit, les résultats ne dépendent vraisemblablement pas du modéle.

Nous utiliserons également la géométrie algébrique dérivée, telle qu’introduite dans [HAG2]. Nous
renvoyons le lecteur & [Toé3] pour un panorama récent du domaine.

Fixons dés a présent deux univers U € V. Les ensembles, modules, algébres ou autres seront
implicitement supposés U-petits.

La premiére partie de cette thése est constituée de rappels sur les (o0, 1)-catégories et la géométrie
algébrique dérivée. Nous y fixerons bon nombre de notations. Le lecteur est également invité a consulter
le glossaire des notations a la fin de ce document.

Plan :

Cette thése commence par une partie rappelant certaines notions qui nous seront utiles. Dans le cha-
pitre 1, nous développerons quelques outils co-catégoriques supplémentaires. Nous y démontrerons
également le théoréme 2 (voir théoréme 1.1.0.4 et corollaire 1.1.0.8). Dans le chapitre 2, nous mettons
en place la théorie des ind-pro-champs géométriques. Nous définirons de plus les champs de Tate
symplectiques et montrerons quelques-unes de leurs propriétés. Nous construirons en particulier la
classe déterminante (voir définition 2.2.1.5). Nous en venons au chapitre 3 dans lequel nous définis-
sons enfin les espaces de lacets formels de dimension supérieure et démontrons le théoréme 1 (voir
proposition 3.1.3.4). Nous y introduirons I’espace des bulles et montrerons le théoréme 3 (voir théo-
réme 3.2.4.1). Dans le chapitre 4, nous nous concentrerons sur la démonstration du théoréme 4 (voir
théoréme 4.2.0.1 et théoréme 4.2.3.1). Enfin, dans le dernier chapitre, nous développerons les pistes
de recherche par lesquelles 'auteur est intéressé.
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Interlude

Saurez-vous trouver la solution (essentiellement unique) de cette énigme® ? Elle est cachée
dans cette thése.
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3Find the essentially unique answer to this riddle. Tt is hidden in this thesis.
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In english

Context

Considering a differential manifold M, one can build the space of smooth loops L(M) in M. It is
a central object of string theory. Moreover, if M is symplectic then so is L(M) — more precisely
quasi-symplectic since it is not of finite dimension — see for instance [MP]. We will be interested here
in an algebraic analogue of that result.

The first question is then the following: what is an algebraic analogue of the space of smooth loops?
An answer appeared in 1994 in Carlos Contou-Carrére’s work (see [CC]). He studies there G, (C((t))),
some sort of holomorphic functions in the multiplicative group scheme, and uses it to define the famous
Contou-Carrére symbol. This is the first occurrence of a formal loop space known to the author. This
idea was then generalised to algebraic groups as the affine grassmanian Grg = G(C((t)) )/G((C[[t]]) show
up and got involved in the geometric Langlands program. In their paper [KV1], Mikhail Kapranov
and Eric Vasserot introduced and studied the formal loop space of a smooth scheme X. It is an
ind-scheme £(X) which we can think of as the space of functions Spec C((¢)) — X. This construction
strongly inspired the one presented in this thesis. Kapranov and Vasserot moreover endow the formal
loop space with a factorisation structure and link it with vertex algebras and, in [KV3], with chiral
differential operators.

We will focus on higher dimensional formal loops. There are at least two ways of considering
them. The first one consists in replacing C((¢)) with some d-dimensional function field C((¢1)). .. (ta)),
as was done for Beilinson’s adéles as well as higher Contou-Carrére symbols — see [0Z2] for dimension
2 and [BGW1] for higher dimensions. This very fruitful idea requires a choice in ordering the local
coordinates t,...,ts. The author likes to think of adéles as maps out of some formal torus of dimension
d — with a given flag, corresponding to the ordering of the variables ¢, ..., ¢, — but not out of a formal
sphere. The second way is the one we will use in this thesis. It consists in considering the formal
loop space as a derived geometrical object. The author learned after writing down this thesis that
Mikhail Kapranov had an unpublished document in which this derived approach was developed. He his
grateful to Kapranov for letting him read those notes, both inspired and inspiring. Derived algebraic
geometry appeared in several steps. First Maxim Kontsevich somehow predicted their existence in
[Kon]|. Ionut Ciocan-Fontanine and Mikhail Kapranov then introduced the first formal definition of a
derived geometrical object: dg-schemes and dg-manifolds — see [CFK]. Bertrand Toén and Gabriele
Vezzosi then developed a fully equipped theory of derived (higher) stacks using model categories in
[HAG2|. The subject then expanded tremendously with the work of Jacob Lurie and his series of
DAG papers, of which we will only use [DAG-X]. He also modernized the theory by developing and
using (o, 1)-category theory — see [HTT] and [HAlg].

Once the (higher dimensional) formal loop space defined, the second question finally comes up:
the formal loop space is an infinite dimensional derived geometric object, how can we then talk
about symplectic forms? The formalism for (shifted) symplectic forms over finite derived stacks was
developed by Tony Pantev, Bertrand Toén, Michel Vaquié and Gabriele Vezzosi in [PTVV]. One
core feature of derived algebraic geometry is the cotangent complex, derived version of the usual
cotangent. For a 2-form to be non-degenerated, one should introduce a shift so that the amplitudes
of the cotangent complex and its shifted dual coincide. In our situation, the formal loop space is
not finitely presented. To deal with its infinite dimensional (co)tangent, we will identify some more
structure: it is a Tate module.

Tate vector spaces appeared in John Tate’s thesis, and were then used and generalised by several
authors. Let us cite here Alexander Beilinson or Vladimir Drinfeld (see [Dri]). The core idea is to
consider an infinite dimensional vector space V as a discrete topological space. Its dual V* is then
considered as a topological vector space. Dualising once more on gets V' back. Tate vector spaces are
then the extensions of a discrete topological vector space by the dual of one. One gets a family of
dualisable — although infinite dimensional — vector spaces. More recently, Oliver Briaunling, Michael
Grochenig and Jesse Wolfson (see [BGW2]) developed a general theory for Tate objects in exact
categories.
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In this thesis

In this thesis, we generalize the definition of Kapranov and Vasserot to higher dimensional loops —
which do not have an equivalent in differentiable geometry — and approach the symplectic question.
For X a scheme of finite presentation, not necessarily smooth, we define £%(X), the space of formal
loops of dimension d in X. We define £“i/(X) the space of maps from the formal neighbourhood of
0 in A? to X. This is a higher dimensional version of the space of germs of arcs as studied by Jan
Denef and Frangois Loeser in [DL]. Let also £&(X) denote the space of maps from a punctured formal
neighbourhood of 0 in A% to X. The formal loop space £4(X) is the formal completion of £ (X) in
L(X). Understanding those three items is the main goal of this work. The problem is mainly to
give a meaningful definition of the punctured formal neighbourhood of dimension d. We can describe
what its cohomology should be:

E[X1,...,Xd4] ifn=0
H"(AY{0}) =< (X1 ... Xa) k(XY XY ifn=d—1
0 otherwise

but defining this punctured formal neighbourhood with all its structure is actually not an easy task.
Nevertheless, we can describe what maps out of it are, hence the definition of E”Ll,(X ) and the formal
loop space. This geometric object is of infinite dimension, and part of this study is aimed at identifying
some structure. Here comes the first result in that direction.

Theorem 1 (see proposition 3.1.3.4). The formal loop space of dimension d in a scheme X is rep-
resented by a derived ind-pro-scheme. Moreover, the functor X — L4(X) satisfies the étale descent
condition.

We use here methods from derived algebraic geometry as developed by Bertrand Toén and
Gabriele Vezzosi in [HAG2]. The author would like to emphasize here that the derived structure
is necessary since, when X is a scheme, the underlying schemes of £¢(X), £&(X) and L (X) are
isomorphic as soon as d = 2. Let us also note that derived algebraic geometry allowed us to define
L£4(X) for more general X’s, namely any derived stack. It for instance work for X a classifying stack
B G of an algebraic group. In those cases, the formal loop space £(X) is no longer a derived ind-pro-
scheme but an ind-pro-stack. The case d = 1 and X is a smooth scheme gives a derived enhancement
of Kapranov and Vasserot’s definition. This derived enhancement is conjectured to be trivial when
X is a smooth affine scheme in [GR, 9.2.10]. Gaitsgory and Rozenblyum also prove in loc. cit. their
conjecture holds when X is an algebraic group.

The proof of theorem 1 is based on an important lemma. We identify a full sub-category C of the
category of ind-pro-stacks such that the realisation functor C — dSty, is fully faithful. We then prove
that whenever X is a derived affine scheme, the stack £¢(X) is in the essential image of C and is thus
endowed with an essentially unique ind-pro-structure satisfying some properties. The generalisation
to any X is made using a descent argument. Note that for general X’s, the ind-pro-structure is not
known to satisfy nice properties one could want to have, for instance on the transition maps of the
diagrams.

We then focus on the following problem: can we build a symplectic form on £4(X) when X is
symplectic? Again, this question requires the tools of derived algebraic geometry and shifted symplectic
structures as in [PTVV].

Because £4(X) is not finite, linking its tangent to its dual — through an alleged symplectic form
— requires to identify once more some structure. We already know that it is an ind-pro-scheme but
the proper context seems to be what we call Tate stacks.

Before saying what a Tate stack is, let us talk about Tate modules. They define a convenient con-
text for infinite dimensional vector spaces. They where studied by Drinfeld, Beilinson and Lefschetz,
among others, and more recently by Previdi [Pre| and Braunling, Gréchenig and Wolfson [BGW2].

As discussed above, a Tate module is an extension of a so-called discrete module with the dual of
one. We can think of discrete modules as ind-objects in the category of finite dimensional modules.
Their duals then naturally live in the category of pro-objects.
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We will here introduce the notion of Tate objects in the context of stable (oo, 1)-categories as
studied by Lurie in [HAlg]. If C is a stable (o0, 1)-category — playing the role of the category of
finite dimensional vector spaces, we define Tate(C) as the full subcategory of the (oo, 1)-category of
pro-ind-objects ProInd(C) in C containing both Ind(C) and Pro(C) and stable by extensions and
retracts. The category Ind(C) plays the role of the category of discrete modules while Pro(C) contains
their duals. Note that in a general setting, one must ask Tate(C) to be stable by retracts as well as
extensions. We then have the following universal property

Theorem 2 (see theorem 1.1.0.4 and corollary 1.1.0.8). For any (oo, 1)-category D both stable and
idempotent complete, and any commutative diagram

¢ —'—1Ind(C)

]i |

PI‘O(C) 4‘9) D
such that i and j are the canonical inclusions, f and g are exact, f preserves filtered colimits and g
preserves cofiltered limits, there exist an essentially unique functor ¢: Tate(C) — D such that both f
and g factor through ¢. As a consequence, the category Tate(C) is equivalent to the smallest stable
and idempotent complete subcategory of Ind Pro(C) generated by both ind- and pro-objects. Moreover,
the non-connective K-theory spectrum of Tate(C) is the suspension of that of C

K(Tate(C)) ~ XK(C)

Note that the last part of this theorem is an co-categorical version of a result of Saito in [Sai].
To prove theorem 2 we use tools from [HAlg]. Once defined Tate objects in a stable (oo, 1)-category,
the arising complication is inherent to (oo, 1)-categories and the infinitely many coherences one has
to check. We have to find a way of expressing them concisely. The last part of theorem 2 is proven
by computing the quotients Ind(C)/c and Tate(C) ro(C) in stable and idempotent complete (00, 1)-
categories and by showing those two categories are equivalent. This proof strategy is strongly inspired
by Saito’s proof in [Sai] and uses tools developed by Blumberg, Gepner and Tabuada in [BGT].

We also define the derived category of Tate modules on a scheme — and more generally on a
derived ind-pro-stack. An Artin ind-pro-stack X — meaning an ind-pro-object in derived Artin stacks
— is then gifted with a cotangent complex L. This cotangent complex inherits a natural structure of
pro-ind-module on X. This allows us to define a Tate stack as an Artin ind-pro-stack whose cotangent
complex is a Tate module. The formal loop space £¢(X) is then a Tate stack as soon as X is a finitely
presented derived affine scheme. For a more general X, what precedes makes £¢(X) some kind of
locally Tate stack. This structure suffices to define a determinantal anomaly

[Detﬁd(x)] € H2 (,Cd(X), OZd(x))

for any quasi-compact quasi-separated (derived) scheme X — this construction also works for slightly
more general X’s, namely Deligne-Mumford stacks with algebraisable diagonal, see definition 2.2.1.5.
Kapranov and Vasserot proved in [KV3] that in dimension 1, the determinantal anomaly governs the
existence of sheaves of chiral differential operators on X. One could expect to have a similar result in
higher dimensions, with higher dimensional analogues of chiral operators and vertex algebras. This
author plans on studying this in a future work.

Another feature of Tate modules is duality. It makes perfect sense and behaves properly. Using
the theory of symplectic derived stacks developed by Pantev, Toén, Vaquié and Vezzosi in [PTVV], we
are then able to build a notion of symplectic Tate stack: a Tate stack Z equipped with a (n-shifted)
closed 2-form which induces an equivalence

TZ g ]Lz[n]
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of Tate modules over Z between the tangent and (shifted) cotangent complexes of Z.
To make a step toward proving that £¢(X) is a symplectic Tate stack, we actually study the
bubble space B¢(X) — see definition 3.2.2.3. When X is affine, we get an equivalence

BYUX) ~ LE(X) x LL(X)
LL(X)

We then prove the following result

Theorem 3 (see theorem 3.2.4.1). If X is an n-shifted symplectic stack then the bubble space B(X)
is endowed with a structure of (n — d)-shifted symplectic Tate stack.

The proof of this result is based on a classical method. The bubble space is in fact, as an ind-
pro-stack, the mapping stack from what we call the formal sphere S of dimension d to X. There are
therefore two maps

pr

BUX) <— BUX) x §7 "= X

The symplectic form on ‘Bd(X) is then Sﬁd ev* wy, where wy is the symplectic form on X. The key
argument is the construction of this integration on the formal sphere, ie on an oriented pro-ind-stack
of dimension d.

This method would not work on £¢(X), since the punctured formal neighbourhood does not
have as much structure as the formal sphere: it is not known to be a pro-ind-scheme. Nevertheless,
theorem 3 is a first step toward proving that £¢(X) is symplectic. We can consider the nerve Z, of
the map £{(X) — L&(X). It is a groupoid object in ind-pro-stacks whose space of maps is B%(X).
The author expects that this groupoid is compatible in some sense with the symplectic structure so
that £ (X) would inherit a symplectic form from realising this groupoid. One the other hand, if
L$(X) was proven to be symplectic, then the fibre product defining SB‘JI(X) should be a Lagrangian
intersection. The bubble space would then inherit a symplectic structure from that on £4(X).

In the last chapter, we will focus on a different problem. Whenever X is a variety or a scheme,
its shifted tangent complex T x[—1] has long been suspected of having a (weak) Lie bracket, given by
the Atiyah class. In [Kap], Kapranov proved that statement for X a smooth variety. He moreover
showed that any quasi-coherent module over X is endowed with a natural Lie action of Tx[—1]. We
will prove in chapter 4 the following

Theorem 4. Let X be an algebraic derived stack locally of finite presentation over a field k of
characteristic zero. The shifted tangent complex Tx[—1] € Qcoh(X) admits a Lie structure (the-
orem 4.2.0.1). Moreover, the forgetful functor dgRepx(Tx[—1]) — Qcoh(X) — from the (o0,1)-
category of Lie representations of Tx[—1] to the derived category of quasi-coherent modules over
X - admits a section (theorem 4.2.3.1). The action on a sheaf E is given by its Atiyah class
Tx[-1]® E — E.

This in particular applies to non-smooth varieties, schemes or classifying stacks. To prove the-
orem 4, we will introduce the category dSth of so called formal stacks over a stack X and build an
adjunction

Fx:dgLiey < dSt, : £x

The Lie structure on Tx[—1] is then the image through £x of the formal completion of the diagonal
embedding X — X x X. Let us emphasize here that the adjunction above is usually not an equivalence.
It is though, when X is both affine and noetherian.

The second part of theorem 4 is proved by constructing an action of Tx[—1] on the pullback
functor A*: Qcoh(X x X) — Qcoh(X), where A is the diagonal of X. This action is given by the so-
called universal Atiyah class of X. It then follows that Tx[—1] acts on the functor idgeon(x) ~ A%¢*,
where ¢ is one of the projections X x X — X.
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Perspectives:

To go further down the road of higher dimensional formal loop spaces, we give here a few research
paths the author hopes to follow in the future.

It is known since [KV1] that in dimension 1, the formal loop space can be defined over a curve
C' and has a structure of factorisation monoid over C. It allowed Kapranov and Vasserot to use some
local-to-global principle to prove their results. This technique is also used on formal loops with values
in a classifying stack BG in a very recent paper of Gaitsgory and Lurie — see [GL]. In the case of
higher dimension, the formal loop space over a variety V is still to be defined. It should also have a
natural factorisation structure.

In their series of articles about formal loops, Kapranov and Vasserot link the 1-dimensional formal
loop space in a scheme X with sheaves of chiral differential operators on X. With the definition of
higher dimensional formal loop spaces we provide, finding an analogue of their result in higher dimen-
sion becomes a very natural question. The first step would be to find a suitable definition of higher
dimensional chiral and vertex algebras. The author wishes to studying this point, in collaboration
with Giovanni Faonte and Mikhail Kapranov.

Another direction the author is interested in is the development of a so-called local geometry —
named after local fields. The main motivating example of an object in the alleged geometry is the
algebra of Laurent series k((¢)). We will see in this thesis that one of the main problem is to define the
punctured formal neighbourhood with all its structure. For instance k((¢)) is naturally an algebra in
ind-pro-vector spaces of finite dimension but it is not an ind-pro-algebra in vector spaces. The idea of
local geometry is precisely to replace the site of algebras (or cdga’s) by a site of commutative algebras
in the symmetric monoidal category of ind-pro-vector spaces.

Techniques and conventions:

Throughout this thesis, we will use the techniques of (o0, 1)-category theory. We will once in a while
use explicitly the model of quasi-categories developed by Joyal and Lurie (see [HTT]). That being
said, the results should be true with any equivalent model. Let us fix now two universes U € V to
deal with size issues. Every algebra, module or so will implicitly be U-small. The first part of this
thesis will consist of reminders about (o0, 1)-categories and derived algebraic geometry. We will fix
then some notations. The reader will find a notations glossary at the end of this document.

We will also use derived algebraic geometry, as introduced in [HAG2]|. We refer to [Toé3] for a
recent survey of this theory. We will denote by &k a base field and by dStj the (oo, 1)-category of
(U-small) derived stacks over k.

Outline:

This thesis begins with a few paragraphs, recalling some notions we will use. Among them are
(monoidal) (o0, 1)-categories and derived algebraic geometry. In chapter 1, we develop some more
(o0, 1)-categorical tools. We also prove theorem 2 (see theorem 1.1.0.4 and corollary 1.1.0.8). In
chapter 2, we set up a theory of geometric ind-pro-stacks. We also define symplectic Tate stacks and
give a few properties, including the construction of the determinantal anomaly (see definition 2.2.1.5).
Comes chapter 3 where we finally define higher dimensional loop spaces and prove theorem 1 (see
proposition 3.1.3.4). We introduce the bubble space and prove theorem 3 (see theorem 3.2.4.1). In
chapter 4, we will prove theorem 4 (see theorem 4.2.0.1 and theorem 4.2.3.1). Finally, in the last
chapter, we will describe a few perspectives the author will, hopefully, someday follow.
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Preliminaries

In this part, we recall some results and definitions from (oo, 1)-category theory and derived algebraic
geometry.

0.1 A few tools from higher category theory

In the last decades, theory of (o0, 1)-categories has tremendously grown. The core idea is to consider
categories enriched over spaces, so that every object or morphism is considered up to higher homotopy.
The typical example of such a category is the category of topological spaces itself: for any topological
spaces X and Y, the set of maps X — Y inherits a topology. It is often useful to talk about topological
spaces up to homotopy equivalences. Doing so, one must also consider maps up to homotopy. To do
s0, one can of course formally invert every homotopy equivalence and get a set of morphisms [X,Y].
This process loses information and mathematicians tried to keep trace of the space of morphisms.

The first fully equipped theory handy enough to work with such examples, called model categories,
was introduced by Quillen. A model category is a category with three collections of maps — weak
equivalences (typically homotopy equivalences), fibrations and cofibrations — satisfying a bunch of
conditions. The datum of such collections allows us to compute limits and colimits up to homotopy.
We refer to [Hov] for a comprehensive review of the subject.

Using model categories, several mathematicians developed theories of (o0, 1)-categories. Let us
name here Joyal’s quasi-categories, complete Segal spaces or simplicial categories. Each one of those
theories is actually a model category and they are all equivalent one to another — see [Ber] for a review.

In [HTT], Lurie developed the theory of quasi-categories. In this book, he builds everything
necessary so that we can think of (oo, 1)-categories as we do usual categories. To prove something
in this context still requires extra care though. We will use throughout this thesis the language as
developed by Lurie, but we will try to keep in mind the 1-categorical intuition.

In this section, we will fix a few notations and recall some results to which we will often refer.

Notations: Let us first fix a few notations, borrowed from [HTT].
e We will denote by CatY, the (00, 1)-category of U-small (o0, 1)-categories — see [HTT, 3.0.0.1];

e Let PriY denote the (o0, 1)-category of U-presentable (and thus V-small) (oo, 1)-categories with
left adjoint functors — see [HTT, 5.5.3.1];

e The symbol sSets will denote the (oo, 1)-category of U-small spaces;

e For any (00, 1)-categories C and D we will write Fct(C, D) for the (oo, 1)-category of functors from
C to D (see [HTT, 1.2.7.3]). The category of presheaves will be denoted P(C) = Fct(CP, sSets).

e For any (0, 1)-category C and any objects ¢ and d in C, we will denote by Map,(c, d) the space
of maps from c to d.

The following theorem is a concatenation of results from Lurie.



Theorem 0.1.0.1 (Lurie). Let C be a V-small (0, 1)-category. There is an (o0, 1)-category Ind" (C)
and a functor j: C — Ind"(C) such that

(i) The (c0,1)-category Ind”(C) is V-small;

(ii) The (0, 1)-category Ind"(C) admits U-small filtered colimits and is generated by U-small filtered
colimits of objects in j(C);

(iii) The functor j is fully faithful and preserves finite limits and finite colimits which exist in C;
(iv) For any c € C, its image j(c) is U-small compact in Ind” (C);

(v) For every (o, 1)-category D with every U-small filtered colimits, the functor j induces an equiv-

alence
Fct?=¢(Ind”(C), D) S Fet(C, D)

where Fet"=¢(Ind" (C), D) denote the full subcategory of Fet(Ind"(C), D) spanned by functors
preserving U-small filtered colimits.

(vi) If C is U-small and admits all finite colimits then Ind"(C) is U-presentable;

(vii) If C is endowed with a symmetric monoidal structure then there exists such a structure on
Ind"(C) such that the monoidal product preserves U-small filtered colimits in each variable.

Proof. Let us use the notations of [HTT, 5.3.6.2]. Let K denote the collection of U-small filtered
simplicial sets. We then set Ind"(C) = ’Pg (C). It satisfies the required properties because of loc. cit.
5.3.6.2 and 5.5.1.1. We also need tiny modifications of the proofs of loc. cit. 5.3.5.14 and 5.3.5.5. The
last item is proved in [HAlg, 6.3.1.10]. O

Lurie proved in [HTT, 5.3.5.15] that any map ¢ — d € Ind”(C) is a colimit of a U-small filtered
diagram K — Fct(A!,C). We will need afterwards the following small refinement of this statement,
inspired by [BGW2, 3.9]

Proposition 0.1.0.2 (Strictifying maps). Let C be a V-small (00, 1)-category and let f: ¢ — d be a
morphism in IndU(C). Leté: K — C and d: L — C be U-small filtered diagrams of whom respectively
¢ and d are colimits in Ind”(C). There exists a U-small filtered diagram f: .J — Fct(A',C) and a
commutative diagram

K PK J prL I
.
¢ <" Fet(Al,C) —>

such that both maps px and pyr, are cofinal, and such that f is the colimit of f.

Proof. Using [HTT, 4.3.2.14] we can assume that both K and L are filtered partially ordered sets.
Let us denote by J’ the fibre product

J’ Fct(Al,Ind(C))
N l /f

K x Fct(A,C) x L — Fct(A!,C) — Fet(A', Ind?(C))
C C

Let us first prove that J' is filtered. Let P be a partially ordered finite set and P™ denote the
partially ordered set P u {00}, where oo is a maximal element. A morphism P — J’ is the datum of



a commutative diagram

P x {0}

S,
l |

{0} x Al ——= P x Al ——> Tnd"(C)

K

Let us denote by P, the partially ordered set P u {+} where + is a maximal element. Because K is
filtered, the map « extends to a morphism ’: P, x {0} — K. There exists [ € L such that the induced
map ¢&(x'(+)) — ¢ — d factors through d(I) — d. Since L is filtered, there is a map \': P, x {1} — L
extending A. We can moreover chose X' (+) greater than [ (ie with a map I — X (+) in L). Using
the map &(k/(+)) — d(I) — d(N'(+)), we get a morphism ¢': Py x A — C extending v, which by
construction extends to Py x A! — where we set o0 > +. This defines a morphism P, — J/, proving
that J’ is filtered. Using [HTT, 4.3.2.14] we define J to be a filtered partially ordered set with a
cofinal map J — J'. Proving that the maps J — K and J — L are cofinal is now straightforward.
This also implies that the induced diagram f: J — Fct(A',C) has colimit f in Ind”(C). O

Remark 0.1.0.3. Note that when C admits finite colimits then the category Ind”(C) embeds in the
V-presentable category Ind" (C).

Definition 0.1.0.4. Let C be a V-small oo-category. We define Pro”(C) as the (o0, 1)-category
Pro’(C) = (Tnd"(c?)) "

It satisfies properties dual to those of Ind"(C).

Definition 0.1.0.5 (see [HTT, 1.2.8.4]). Let K be a simplicial set. We will denote by K™ the
simplicial set obtained from K by formally adding a final object. This final object will be called the
cone point of K.

The following lemma is a direct consequence of results from Lurie’s [HTT].

Lemma 0.1.0.6 (Stabilisation). Let C be a V-small pointed category with all suspensions. Let us
assume that the suspension functor C — C is an equivalence. There exists an (o0, 1)-category C* with
a map j: C — C such that

(i) The category C** is V-small and stable.
(ii) The functor j is fully faithful and preserves all limits and finite colimits which exist in C.
(iii) For any stable (00, 1)-category D the induced map
Fct™(CS*, D) — Fct'™(C, D)
between exact functors and left exact functors is an equivalence.

(iv) For any stable category D with a fully faithful functor C — D preserving finite colimits and limits
which exist in C, the smallest stable subcategory of D containing the image of C is equivalent to
cst.

Proof. Let us denote by K the simplicial set corresponding to a diagram e < ¢ — e. Let R denote
the collection of all cocartesian diagrams K= — C and the zero ¢ = e — C in C. We then set



st = P%K’Q}(C) using the notation of [HTT, 5.3.6.2]. Note that (iii) is proven in loc. cit.. The
category C' is pointed and it comes with two natural fully faithful maps

¢ —1=ct ——P(C)
whose composite is the Yoneda functor and therefore preserves limits which exist in C. It follows that
j also preserves those limits. By definition, the functor j preserves finite colimits which exist in C.

Any object of C%* is a finite colimit of objects in C. Tts suspension is therefore the colimit of
the suspensions of those objects. The suspension functor C3' — Ct is thus an equivalence. Corollary
[HAlg, 1.4.2.27] implies that C5' is stable.

We now focus on the assertion (iv). Let f: C — D be as required. Because of the third point,
there is an essentially unique functor g: C5* — D lifting f. Every object in C** can be written as both
a colimit and a limit of objects of C. It follows that g is fully faithful and then that C' contains the
smallest full and stable subcategory D’ of D extending C. There is also a universal map C* — D’
which is easily seen to be an inverse to the inclusion. O

Lemma 0.1.0.7. Let C be an idempotent complete V-small (00, 1)-category. We consider the natural
embeddings i: Pro’(C) — Pro”Ind”(C) and j: IndY(C) — Pro”Ind"(C). We will also denote by
k the embedding C — Pro” Ind"(C). If an object of Pro” Ind"(C) is in both the essential images of
© and j, then it is in the essential image of k.

Proof. Let x € IndU(C). Let us assume there exists a pro-object y € ProU(C) and an equivalence
f:x —y. Let §: K°° — C be a cofiltered diagram of whom y is a limit in Pro”(C). The equivalence
f induces a morphism from the constant diagram z: K°° — Ind”(C) to : K°» — Ind"(C). An
inverse g: y — x of f then induces a map y; = §(k) — z for some k € K such that the composite
morphism z — y; — « is homotopic to the identity. Idempotent completeness and [HTT, 5.4.2.4]
finish the proof. O

Definition 0.1.0.8. Let C be a V-small (o0, 1)-category. Let
i: Fet(C,Caty) — Fet(Ind"(C), Cat)
denote the left Kan extension functor. We will denote by IndUc the composite functor

IndV o—

Fet(C, Cat” ) —— Fet(Ind"(C), Cat?) Fet(Ind(C), Cat?)
We will denote by Prog the composite functor

ProVo—

Fct(C, Cat})) Fct(C, Cat),) — Fct(Pro”(C), Cat,)
We define the same way

Ind/;: Fet(C,Cat)) — Fet(Ind”(C), Caty,)
Pro/,: Fct(C, Cat,) — Fct(Pro’(C), Cat,,)

Remark 0.1.0.9. The definition 0.1.0.8 can be expanded as follows. To any functor f: C — Catg’O and
any ind-object ¢ colimit of a diagram

K —%>C——>1Ind"(C)
we construct an (oo, 1)-category

Ind(f)(c) ~ Ind” (colim f(2))



To any pro-object d limit of a diagram

K —tec—» Pro”(C)

we associate an (o0, 1)-category

Prog(f)(d) ~ limPro”(f(d))

Definition 0.1.0.10. Let Cati’o’St denote the subcategory of _CatyO spanned by stable categories with
exact functors between them — see [HAlg, 1.1.4]. Let Cat’:*"'¢ denote the full subcategory of Cat*"
spanned by idempotent complete stable categories.

Remark 0.1.0.11. Tt follows from [HAlg, 1.1.4.6, 1.1.3.6, 1.1.1.13 and 1.1.4.4] that the functors Ind,
and Prog restricts to functors

Indy: Fct(C, Cat;®') — Fet(IndY(C), Catl™!)
Prog: Fet(C,Cat);™) — Fet(Pro”(C), Cat ")
Definition 0.1.0.12. Given an (o0, 1)-category C with all finite coproducts, we will denote by Px(C)

its completion under sifted colimits. Recall (see [HTT], part 5.5.8) that this is the (oo, 1)-category
Fet™ (C°P, sSets) of (o0, 1)-functors preserving finite products.

Symmetric monoidal (o0, 1)-categories: We will make use in the last chapter of the theory of
symmetric monoidal (oo, 1)-categories as developed in [HAlg]. Let us give a (very) quick review of
those objects.

Definition 0.1.0.13. Let Fin* denote the category of pointed finite sets. For any n € N, we will
denote by (n) the set {*,1,...,n} pointed at *. For any n and i < n, the Segal map ¢": (n) — (1) is
defined by 6°(j) = 1 if j = i and §(j) = * otherwise.

Definition 0.1.0.14. (see [HAlg, 2.0.0.7]) Let C be an (o0, 1)-category. A symmetric monoidal struc-
ture on C is the datum of a coCartesian fibration p: C® — Fin* such that

e The fibre category C<®1> is equivalent to C and
e For any n, the Segal maps induce an equivalence C% — (C<®1>)" ~ C".

where C<®n> denote the fibre of p at (n). We will denote by Cat®" the (o0, 1)-category of V-small
symmetric monoidal (o0, 1)-categories — see [HAlg, 2.1.4.13].

Such a coCartesian fibration is classified by a functor ¢: Fin* — Ca\tg’O —see [HTT, 3.3.2.2] — such
that ¢({n)) ~ C™. The tensor product on C is induced by the map of pointed finite sets u: (2) — (1)
mapping both 1 and 2 to 1

®=¢(u): C*>C

Remark 0.1.0.15. The forgetful functor Cat®" — Cat}, preserves all limits as well as filtered colimits
— see [HAlg, 3.2.2.4 and 3.2.3.2]. Moreover, it follows from theorem 0.1.0.1 - (vii) that the functor
Ind” induces a functor

Ind”: Cat®" — Cat®"

The same holds for Pro®. The constructions Ind¥ and Pro" therefore restrict to

Ind;: Fet(C,Cat®") — Fct(Ind”(C), Cat®")
Prol: Fct(C,Cat®") — Fet(Pro”(C), Cat®")



0.2 Derived algebraic geometry

We present here some background results about derived algebraic geometry. Let us assume k is a field
of characteristic 0. First introduced by Toén and Vezzosi in [HAG2], derived algebraic geometry is a
generalisation of algebraic geometry in which we replace commutative algebras over k by commutative
differential graded algebras (or cdga’s). We refer to [Toé3] for a recent survey of this theory.

Generalities on derived stacks : We will denote by cdgafO the (00, 1)-category of cdga’s over k
concentrated in non-positive cohomological degree. It is the (o0, 1)-localisation of a model category
along weak equivalences. Let us denote dAff; the opposite (o0, 1)-category of cdga,fo. It is the
category of derived affine schemes over k. In this thesis, we will adopt a cohomological convention for
cdga’s.

A derived prestack is a presheaf dAff}" ~ cdga,f0 — sSets. We will thus write P(dAffy) for
the (o0, 1)-category of derived prestacks. A derived stack is a prestack with a descent condition. We
will denote by dStj, the (oo, 1)-category of derived stacks. It comes with an adjunction

(—)": P(dAfF;) = dSt;,
where the left adjoint (—)7 is called the stackification functor.
Remark 0.2.0.1. The categories of varieties, schemes or (non derived) stacks embed into dSty.

Definition 0.2.0.2. The (o0, 1)-category of derived stacks admits an internal hom Map(X,Y’) between
two stacks X and Y. It is the functor cdga,f0 — sSets defined by

A — Mapgg, (X x Spec A4,Y)
We will call it the mapping stack from X to Y.
There is a derived version of Artin stacks of which we first give a recursive definition.
Definition 0.2.0.3. (see for instance [Toél, 5.2.2]) Let X be a derived stack.
e We say that X is a derived 0-Artin stack if it is a derived affine scheme ;

e We say that X is a derived n-Artin stack if there is a family (T,) of derived affine schemes and
a smooth atlas

u: HTQ — X
such that the nerve of u has values in derived (n — 1)-Artin stacks ;
e We say that X is a derived Artin stack if it is an n-Artin stack for some n.

We will denote by dStﬁrt the full subcategory of dSt; spanned by derived Artin stacks.

To any cdga A we associate the category dgMod 4 of dg-modules over A. Similarly, to any derived
stack X we can associate a derived category Qcoh(X) of quasicoherent sheaves. It is a U-presentable
(o0, 1)-category given by the formula

Qcoh(X) ~ Spelc1HLX dgMod 4
Moreover, for any map f: X — Y, there is a natural pull back functor f*: Qcoh(Y) — Qcoh(X).

This functor admits a right adjoint, which we will denote by f,. This construction is actually a functor
of (o0, 1)-categories.



Definition 0.2.0.4. Let us denote by Qcoh the functor
L,U
Qcoh: dSt;® — Pr;

For any X we can identify a full subcategory Perf(X) c Qcoh(X) of perfect complexes. This defines
a functor
Perf: dSt;”> — Cat!,

Remark 0.2.0.5. For any derived stack X the categories Qcoh(X) and Perf(X) are actually stable
and idempotent complete (o0, 1)-categories. The inclusion Perf(X) — Qcoh(X) is exact. Moreover,
for any map f: X — Y the pull back functor f* preserves perfect modules and is also exact.

Any derived Artin stack X over a basis S admits a cotangent complex Lx /s € Qcoh(X). If X if
locally of finite presentation, then the its cotangent complex is perfect

Ly,s € Perf(X)
Obstruction theory : Let A€ cdga,f0 and let M € dgModj_1 be an A-module concentrated in
negative cohomological degrees. Let d be a derivation A - A® M and s: A - A@® M be the trivial
derivation. The square zero extension of A by M[—1] twisted by d is the fibre product
A@y M[-1] —— A
o

A u A M

Let now X be a derived stack and M € Qcoh(X)S~!. We will denote by X[M] the trivial square
zero extension of X by M. Let also d: X[M] — X be a derivation — ie a retract of the natural map
X — X[M]. We define the square zero extension of X by M[—1] twisted by d as the colimit

Xa[M[-1]] = colim _ Spec(A@pxq f*M[~1])

f: Spec A—
It is endowed with a natural morphism X — X4[M[—1]] induced by the projections p as above.

Proposition 0.2.0.6 (Obstruction theory on stacks). Let F' — G be an algebraic morphism of derived
stacks. Let X be a derived stack and let M € Qcoh(X)S™1. Let d be a derivation

d e Mapy,_(X[M], X)
We consider the map of simplicial sets

0 Map(X[M[-1]L.F) = Map(X, F) < Map(Xa[M[-1]},G)

Let y € Map(X, F) X\jap(x,q) Map(X4[M[—1]], G) and let x € Map(X, F) be the induced map. There
exists a point a(y) € Map(x*Lp/q, M) such that the fibre 1, of ¢ at y is equivalent to the space of
paths from 0 to a(y) in Map(x*Lp/q, M)

~ *
- saly )
'L/Jy QO ( )Map(x LF/G M)

Proof. This is a simple generalisation of [HAG2, 1.4.2.6]. The proof is very similar. We have a
natural commutative square
X

— Xa[M[-1]]

i



It induces a map

a: Map(Xa F) M Z<X o) Map(Xd[M[_l:l]a G) - MapX/f/G(X[M]aF) = Map(x*}LF/Ga M)
ap(4A,

Let Qg o(y) Mapy,_ (X [M], F) denote the space of paths from 0 to a(y). It is the fibre product

QO,oz(y) MapX/—/G(X[M]aF) *

|

* Mapy, q(X[M], F)

a(y)

The composite map 1) is by definition homotopic to the 0 map. This defines a morphism
f: Q0.0 Mapx,_jo(X[M], F) — 1y,

It now suffices to see that the category of X’s for which f is an equivalence contains every derived
affine scheme and is stable by colimits. The first assertion is exactly [HAG2, 1.4.2.6] and the second
one is trivial. O

Algebraisable stacks : Let X be a derived stack and A be a cdga. Let a = (ai,...,a,) be a
sequence of elements of A° forming a regular sequence in H(A). Let Afar ... ,an denote the Kozsul

complex associated with the regular sequence (af, ... ,ag). It is endowed with a cdga structure. There
is a canonical map

(A)a: colim X (Afgp, . ar) — X (tm Ay o)

p p
This map is usually not an equivalence.

Definition 0.2.0.7. A derived stack X is called algebraisable if for any A and any regular sequence
a the map ¢ (A4), is an equivalence.

A map f: X — Y is called algebraisable if for any derived affine scheme T" and any map T' — Y,
the fibre product X xy T is algebraisable.

We will say that a derived stack X has algebraisable diagonal if the diagonal morphism X — X x X
is algebraisable.

Remark 0.2.0.8. A derived stack X has algebraisable diagonal if for any A and a the map ¥(A),
is fully faithful. One could also rephrase the definition of being algebraisable as follows. A stack is
algebraisable if it does not detect the difference between

colim Spec (A/a?7 L ,az) and Spec (lim A/a?7 . ,a;l)

Example 0.2.0.9. Any derived affine scheme is algebraisable. Another important example of algebrais-
able stack is the stack of perfect complexes. In [Bha], Bhargav Bhatt gives some more examples of
algebraisable (non-derived) stacks — although our definition slightly differs from his. He proves that
any quasi-compact quasi-separated algebraic space is algebraisable and also provides with examples
of non-algebraisable stacks. Let us name K(G,,,2) — the Eilenberg-Maclane classifying stack of G,, —
as an example of non-algebraisable stack. Algebraisability of Deligne-Mumford stacks is also look at
in [DAG-XII].



Chapter 1

Categorical results

1.1 Tate objects

In this subsection we define the category of Tate objects in a stable (oo, 1)-category. We prove
theorem 2 claimed in the introduction.

Definition 1.1.0.1. Let C be a V-small stable (o0, 1)-category. We define the category Tate( (C) of
pure Tate objects in C as the full sub-category of Pro" Ind"(C) spanned by the images of Ind”(C) and
Pro”(C) through the canonical functors. The category Tateg (C) obviously satisfies the conditions of
lemma 0.1.0.6 and we define the category Tategl (C) of elementary Tate objects in C as the completion

Tatel)(C) = (TategJ (C)) N

We also define the category Tate” (C) of Tate objects in C as the idempotent completion of Tatey(C).
We have fully faithful exact functors between stable (oo, 1)-categories

Tate’)(C) — Tate”(C) — Pro” Ind"(C)
Remark 1.1.0.2. Note that Tate”(C) is V-small. The construction Tate"”(—) defines a functor
Cati{;st — CatX;St’id

It comes with a fully faithful — ie pointwise fully faithful — natural transformation

Vst Tate" V,st,id
Cat Cat
) / V
Cat, T Cat,,

Remark 1.1.0.3. We can immediately see that the functor Tate” map any fully faithful and exact
functor C — D between stable categories to a fully faithful (and exact) functor Tate”(C) — Tate(D).

Let us now give a universal property for the category of pure Tate objects. The next theorem
states that for any (oo, 1)-category D and any commutative diagram

¢ ——1nd"(C)

L)

Pro”(C) D




such that f preserves U-small filtered colimits and g preserves U-small cofiltered limits there exists
an essentially unique functor TateE(C) — D such that f and g are respectively equivalent to the
composite functors

Ind”(C) — Tateg (C) — D
Pro’(C) — Tatey (C) — D

This universal property was discovered during a discussion with Michael Grochenig, whom the author
thanks greatly. To state formally this property, let us fix some notations. Let i: IndU(C) — Tateg(C)
and p: Pro”(C) — Tateg (C) denote the canonical inclusions. Let also Fet,(Tate (C), D) denote the
full subcategory of Fct(Tateg (C), D) spanned by those functors & such that

e The composite functor i maps filtered colimit diagrams to colimit diagrams.
e The composite functor {p maps cofiltered limit diagrams to limit diagrams.
Let also Fct,,,(C, D) denote the category of functors g: C — D such that
e For any filtered diagram K — C, the composite diagram K — C — D admits a colimit in D.

e For any cofiltered diagram K°P — C, the composite diagram K°? — C — D admits a limit in
D.

Theorem 1.1.0.4. Let C be a V-small stable (00, 1)-category. For any (00, 1)-category D, the restric-
tion functor induces an equivalence

Fct,(Tateg (C), D) — Fct,, (C, D)
Proof. Let us shorten the notations:
IC = Ind"(C) PC = Pro”(C) T = Tate; (C) PIC = Pro”(Ind”(C))

Recall that P(D) denotes the (oo, 1)-category of simplicial presheaves on D. The restriction functor
Fct(PIC,P(D)) — Fct(TC,P(D)) admits a left adjoint given by the left Kan extension. The restriction
functor Fct(PIC, P(D)) — Fct(IC, P(D)) admits a right adjoint, given by the right Kan extension.
Let us fix their notation

Fet (TC, P(D)) #» Fet (PIC, P(D)) <i:> Fet(IC, P(D))

the left adjoints being represented above their right adjoint. Note that both « and § are fully faithful.
Let also 7 denote the fully faithful functor

Fct,, (C, D) ~ Fet®(IC, D) x Fet'(PC, D) —— Fet(IC, P(D)) x Fet'(PC, P(D)) ~ Fet(IC, P(D))
Fct(C,D) Fct(C,P(D))

where Fct® (resp. Fctl) denotes the category of functors preserving filtered colimits (resp. cofiltered
limits) which exist in the source. We use here that the Yoneda embedding D — P(D) preserves limits.
Let 6 be the fully faithful functor

Fety(TC, D) —— Fet(TC, P(D))

The composite functor 3§ is nothing but the restriction along the canonical inclusion IC — TC. It
follows that S0 has image in the essential image of 7. On the other hand, the functor yar has image
in the essential image of . We hence get an adjunction

f: Fety(TC, D) 2 Fet, (C,D) : g

10



where f is left adjoint to g. The functor g is equivalent to the restriction functor and the unit
transformation fg — idx is then an equivalence. Moreover, as objects of TC are either pro-objects
or ind-objects, the restriction functor f is conservative. It follows that the above adjunction is an
equivalence. O

Corollary 1.1.0.5. The category of Tate objects is equivalent to the smallest stable and idempotent
complete full subcategory of IndV Pro"(C) generated by the images of Ind”(C) and Pro"(C).

Proof. This follows from theorem 1.1.0.4 and lemma 0.1.0.6. O

Remark 1.1.0.6. The fully faithful functor j: Tate] (C) — Pro” Ind"(C) preserves both the limits
and colimits which exist in Tatej (C). Let indeed Z: K — Tateg (C) be a diagram which admits a
colimit 2 € Tate (C). Let us denote by z’ a colimit of j Z in Pro” Ind"(C). We have, for any cofiltered
diagram y 7 L°° — Ind"(C)

N[apProU IndY(C) (-rla lim g) = COllim COEm NIapP!z‘oU IndV(C) (.] z, g) = COllim CO}Cim MapTateg(C) (‘i’7 g)
= COllim MapTate[g(C) (37, g) = COllim Mapp,qu Ind¥(C) (x’ g)
= COlliHl Mapp, v IndY(C) (z,9) ~ Mapp,qu IndY(C) (CC, lim )
We show symmetrically that the inclusion Tate] (C) — Ind” Pro”(C) preserves limits. It follows that
limits and colimits that exist in Tateg (C) are exactly those coming from diagram in either Ind"(C)

or ProU(D). We can hence reformulate the universal property from theorem 1.1.0.4 as follows: The
datum of a commutative square

¢ ——1nd"(C)

.

Pro”(C) D

such that f preserves filtered colimits and g preserves cofiltered limits is equivalent to that of a functor
Tate, (C) — D preserving both filtered colimits and cofiltered limits which exist in Tate; (C)-

Proposition 1.1.0.7. Let C be a V-small stable and idempotent complete (o0, 1)-category. There is
a stable and idempotent complete (00, 1)-category IndU(C)/C who fits in a commutative diagram

¢ ——1nd"(C) — Ind"(C)c

.

Pro”(C) — Tate”(C) —Ind"(C)/c

such that the two horizontal lines are cofibre sequences in the category of stable and idempotent complete
(00, 1)-categories.

Proof. Let us fix the following notations
1'C = Ind” (C) 1IC = Ind" Ind"(C)
1'PC = Ind” Pro”(C) 1YTC = Ind" Tate"(C)

The commutative square
¢ ——1Ind"(C)

_

Pro”(C) —— Tate"(C)

11



induces the square (1) of adjunctions between presentable stable (oo, 1)-categories

1'c ic &

| I

IPC ; IVTC ] &

which we complete on the right such that the two lines, from left to right, are exact sequences. We
have represented here the left adjoints on top or on the left of their right adjoint. From [BGT, 5.12
and 5.13] we see that is suffices to prove that p and ¢ are equivalences. We will prove the sufficient
assertions

(a) The functor p is fully faithful.
(b) The functor ¢ is conservative.

Let us start with assertion (a). Using [BGT, 5.5], we deduce that both a and « are fully faithful. It
thus suffices to prove the equivalence ap ~ fa. To do so, we will show that for any object 2 € IVIC,
if £(z) vanishes, then so does ef(z). Let Z: K — Ind”(C) denote a V-small filtered diagram whose
colimit in IVIC is x. Let also 3j: L°? — C be a U-small cofiltered diagram. We denote by y its limit in
Pro”(C). The image ef(x) is the functor Pro”(C) — sSets mapping y to the simplicial set

colim colim Mapyy,gu(c) ((1), Z(k)) = colim colim Maprnqu(c) (5(1), 7(k))

On the other hand, the assumption () = 0 implies that for any c € C, the space

colim Mapyaqu(c) (¢, )

is contractible. It follows that ef(z) vanishes. We can now focus on assertion (b). Since g preserves
exact sequences and a is fully faithful, it suffices to prove that if z € IVTC is such that both f(z)
and e(z) vanish, then so does z. We can see z as a functor Tate”(C)° — sSets preserving finite
limits while f(z) and e(z) are its restriction respectively to Ind”(C)°? and Pro”(C). As Tate"(C) is
generated by ind- and pro-objects under finite limits and retracts, we deduce that z is equivalent to
0. O

Corollary 1.1.0.8. Let C be a V-small stable and idempotent complete (0, 1)-category. The spectrum
of non-connective K-theory of TateU(C) is the suspension of the non-connective K -theory of C:

K(Tate”(C)) ~ ZK(C)

Remark 1.1.0.9. This corollary is an oo-categorical version of a theorem of Sho Saito in exact 1-
categories in [Sai].

Proof. Let us use the notations IC = Ind"(C), PC = Pro”(C) and TC = Tate”(C). Because the
K-theory functor preserves cofibre sequences of stable categories (see [BGT, sect. 9]), we get two exact
sequences in the (00, 1)-category of spectra

K(C) — K(IC) — K(IndU(C)/C>

K(PC) — K(TC) — K(IndU(C)/C)

The vanishing of K(PC) and K(IC) — since those categories contain countable sums — concludes the
proof. O
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Lemma 1.1.0.10. Let C be a V-small stable (0, 1)-category with a functor f: C°? — C. The functor
f induces a functor

~ op
F: (ProV IndU(C)) — Pro’ Ind”(C)
which maps (elementary) U-Tate objects to (elementary) U-Tate objects.
If moreover the functor f is an equivalence, then f induces an equivalence

(TateU(C)> . Tate!(C)

Proof. The category Pro” IndU(C) has all V-small limits and colimits — it is the opposite category
of a V-presentable category. We define the functor f as the extension of the composition

C°? - C — Pro’ Ind"(C)

It maps objects of Ind”(C) to objects of Pro”(C) c Pro”(C) and vice-versa and therefore preserves
pure Tate objects. The functor f also preserves finite limits. It follows that it preserves Tate objects.
O

Remark 1.1.0.11. Assume that the category C in a closed symmetric monoidal category in which every
object is dualisable. We have seen that Pro" IndU(C) is also symmetric monoidal. Let f: C°? — C
be the functor defined through the internal hom

f(_) = @C(_’ 1)

The functor f of the previous lemma is then satisfies the equivalence

Map(f (z),y) ~ Map(1, 2 ®y)
functorially in z,y € Pro’ Ind"(C).

Definition 1.1.0.12. Let C be a V-small (0, 1)-category. We define the functor

Tate” o—

Tate”: Fet(C, Cat?*)——>Fet(Ind”(C), Cat?™) Fet(Ind?(C), Cat/tid)
Proposition 1.1.0.13. Let C be a V-small stable (o0, IZ—category. For any elementary Tate objects
X € Tatel|(C) there exists a U-small cofiltered diagram X : K°° — Ind"(C) such that

e The object X is a limit of X in Pro” Ind"(C) and

e For any k € K the diagram ker (X — X (k)): k/Kop — Ind"(C) has values in the essential image
of C.

Remark 1.1.0.14. To state the above proposition in an informal way, any elementary Tate object
X can be represented by a diagram lim, colimg X,z such that for any ag, the kernel of canonical
projection X — colimg X, is actually a pro-object. It implies that any elementary Tate object X
fits into an exact sequence

XP - X - X*

where X? € Pro”(C) and X’ € Ind”(C). Such an exact sequence is called a lattice for X. The
existence of lattices characterises elementary Tate objects. We can moreover define an oo-categorical
version of Sato’s Grassmannian: a functor mapping a Tate object to its category of lattices.

Definition 1.1.0.15. Let C be a V-small stable (o0, 1)-category. For any elementary Tate object
X € Tate]](C), we will call a Tate diagram for X any U-small cofiltered diagram X : K°? — Ind"(C)
as in proposition 1.1.0.13.
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Proof (of proposition 1.1.0.13). Let D denote the full subcategory of Pro” Ind”(C) spanned by those
objects X satisfying the conclusion of the proposition. The category D obviously contains both the
essential images of Ind”(C) and Pro”(C). It suffices to prove that D is stable by extension. We see
that it is stable by shifts and we can thus consider an exact sequence X — Xy — X L in Pro"” IndU(C)
such that both Xy and X; are in D. Let Xo: K°P — IndU(C) and X;: L — Ind"(C) be a U-small
cofiltered diagrams of whom Xy and X; are limits in Pro” IndU(C'). Using proposition 0.1.0.2, we
can assume K = L and that we have a diagram K°P — Fct(Al, IndU(C)) of whom the map Xy — X
is a limit. Considering the pointwise kernel, we get a diagram X : K°° — Ind"(C) of whom X is a
limit. It obviously satisfies the required property. O

1.2 Adjunction and unit transformation

We prove here a result about adjunction units between (00, 1)-categories. A trustful reader could skip
this part and refer to the results when needed.

Let C be a U-small (o0, 1)-category. Let s: C/Cat}, — Cat), denote the constant functor C and
t the target functor (C — D) — D — composed with the inclusion Catg) — Cati’o. The evaluation
map

(Caltg))Al x A! - CatY — Cat),

define a natural transformation e: s — t. Let ¢ — C/Catgj denote the coCartesian fibration classfying
t. The one classifying s is the projection {s = C x C/Cat}, — C/Caty,. We can thus consider the map
E: {s— {tinduced by e.

Definition 1.2.0.1. Let us denote by F¢ the functor
° % ° C U\ °P E op Mapy,
e x ft ——cP x (C/Catl]) " x [t —"= (§1)™ x {t —> sSets

where ¢ is induced by the initial object of C/Cat[go.

Lemma 1.2.0.2. Let f be a functor C — D between U-small (00,1)-categories. It induces a map
D — St. Moreover the functor

C°P x D ——=(C°P x Sti>sSets

is equivalent to the functor
C°P x D DOP x D Mopg. sSets

Proof. There is by definition a natural transformation 6 between the two functors at hand. To any
pair (¢, d) € C°P x D, it associates the natural map

Mapp (£(),d) = Mapy,, ((f, £()), (f, d)) = Mapy, ((ide ), (f. d))
which is an equivalence (see [HTT, 2.4.4.2]). O

We will denote by Catlgo’L the sub-category of Cat]gO of all categories but only left adjoint functors
between them.

Proposition 1.2.0.3. Let C be a U-small (00, 1)-category. There exists a functor
Mc: C/Catg) —, Mape(—, 7)/Fct(C' x C°P sSets)
mapping a functor f: C — D to the functor Mapp(f(—), f(=)). It restricts to a functor
ec: CloatVt - id/pet(c, 0)

mapping a functor f: C — D with a right adjoint g the unit transformation of the adjunction id — gf.
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Proof. We consider the composition
C U E o Fe
C°P x C x C/Cat,, — C°P x [t — sSets

It induces a functor
C/Catgj — Fct(C x C°P, sSets)

The image of the initial object idc is the functor Map,(—, —). We get the required
Mc: C/Catg — Mape(—, _)/Fct(C x C°P sSets)

Let i denote the fully faithful functor
Fct(C,C) — Fct(C,P(C)) ~ Fct(C x CP, sSets)

The restriction of M¢ to € /Catuojo’L has image in the category of right representable functors C x C°P —
sSets. It therefore factors through 7 and induces the functor

et C/Cath’L — id/Fct(C,C)

Remark 1.2.0.4. There is a dual statement to proposition 1.2.0.3. Namely, there exists a functor
U
Cat, o — Fct(C x C, sSe’cs)/MapC(_7 )
which restricts to a functor
ne: CatIgo’L/C - FCt(C’C)/idC
mapping a left adjoint f to the counit transformation fg — ide — where g is the right adjoint of f.

Proposition 1.2.0.5. Let K be a U-small filtered simplicial set. Let D: (K®)°? — Cat;" be a
diagram. Let D be a limit of K°° — (K*)°° — Cat;". Let also C € Cat, be the cone point of D. If
the category C admits K°P-indexed limits then the natural functor f: C — D admits a right adjoint.
This right adjoint is the limit in Fct(D,C) of a K°P-diagram induced by D.

Proof. The diagram D corresponds to a diagram D: K°P — C/Catgj. Let us consider the pullback
diagram

{(tc o D) (it
I
Koo — 2 . C/cat?,

The category D being a limit 0f~D, there is a canonical natural transformation from the constant
diagram D: K°P — CatIgO toto D. It induces a map p: K°° x D — {to D. Let us then consider the
composite functor

CoP x K°P x D ——> (P x {toD——=C x Sti>sSets
We get a functor ¢ € Fet(K°P, Fet(D x C°P,sSets)). It maps a vertex k € K to the functor
Mapp, (fr(—),px(—)) — where fr: C — Dy, is D(k) and py: D — Dy is the projection. For every k,

the functor fi admits right adjoint. It follows that ¢ has values in the full sub-category Fct(D,C) of
Fet(D x C°P, sSets) spanned by right representable functors:

2 K°P — Fet(D,C)
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Let g be a limit of v. We will prove that g is indeed a right adjoint of f: C — D. We can build, using
the same process as for ¥, a diagram

(K%)°P > Fet(C,C)
which corresponds to a diagram p: K°P — idc/Fet(C,C). The composition
K°» - ide/pet(c, ) - Fet(C,C)
is moreover equivalent to
K° % Fet(D,C) = Fet(C,0)

The limit of u therefore defines a natural transformation ide — fg. It exhibits g as a right adjoint to
[ O

Lemma 1.2.0.6. Let K be a filtered simplicial set and let C: K — Caty, be a diagram. For any
k € K we will write Cy, instead of C(k). We will also write C for a colimit of C. Every object of C is
in the essential image of at least one of the canonical functors fy: Cp, — C. For any pair of objects in
C, we can assume they are the images of x and y in Cy, for some k, and we have

Mape (fi (@), fi(y)) > colim Mapc, (C(6)(), C(9)(1))
Proof. This is a simple computation, using that finite simplicial sets are compact in Cat,.

Mape (fi(2), fr(y)) ~ Map(A',C) x {(fe(z), fe(y))}

Map (L1%,C)

~ colim (Map(Al,Cz) X {(C(¢)($)7C(¢)(y))}>

b: Map (11%,C;)

= colim Map, (C(9)(x),C(e)(y))

O
Lemma 1.2.0.7. Let K be a V-small filtered simplicial set and let C: K — Catg; be a diagram of

V-small categories. Let us assume that for each vertex k € K the category C, = C(k) admits finite
colimits and that the transition maps in the diagram C preserve finite colimits. For any k — | € K,

let us fix the following notations

colim € —— Ind" (colim C)

ukT akT
DKl

v frt v
Cl Ck - Ind (Ck) ~————1Ind (Cl)
Jk 9kl

where the functor ay, is IndV(uk). The functor ¢y is the transition map C(k — 1), the functor fy is
Indv(qﬁkl) and gy 18 its right adjoint.

(i) (Lurie) The category colimC admits finite colimits and for any k the functor uy preserves such
colimits. It follows that ai, admits a right adjoint by.

(ii) (Lurie) The natural functor Ind’ (colimC) — colimInd”(C) € Pr{jc’jj is an equivalence. Those
two categories are also equivalent to the limit of the diagram IndV(C)R of right adjoints

nd" (C o
Ind"(C)®: KO pLy (Prg’g") Y

o]
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(iii) For any k € K, the adjunction transformation ji — brarjr is a colimit of the diagram
Ind"(C v o +
j: W/ € Ind (Cr) [Catl =225 JkfPet(Ch, Ind” (Cy))

If moreover K is U-small and if for any k — 1 € K, the map gr;: Ind”(C;) — Ind"(Cy) restricts to
a map g IndU(Cl) — IndU(Ck) then

(iv) For any k € K the functor by restricts to a functor by: Ind”(C) — IndU(Ck) rzght adjoint to
ay = IndU( k). Moreover for any k — 1 the map Jr; is a right adjoint to fi; = Ind" (Pri1)-

(v) There exists a diagram Ind”(C)®: K°P — Caty, mapping k — I to Gi whose limit satisfies

lim Ind”(C)® ~ Ind"(colim C)

(vi) For any k € K, the adjunction transformation ji — Bkdkjk is a colimit of the diagram

fin: B/ O Ind"(Co) joag ¥t S Gk fret(Cy, nd (C)

where jj, is the canonical map Cp, — Ind”(Cy).

Proof. The first item is [HTT, 5.5.7.11]. The second is a combination of [HTT, 5.5.7.10, 5.5.3.4 and
5.5.3.18] and [HAlg, 6.3.7.9]. Concerning (iii), we consider the colimit of the diagram

k/K H]k/Fct(Ck, Ind" (C;)) — Mape, (= =) [Fet(Cp x CP,sSets)

This diagram is equivalent to

5 M
0: kK S~ Clc/CatIgO i Mape, (-, _)/Fct(Ck x C;P, sSets)
From lemma 1.2.0.6, the colimit of # is the functor

Mape (ur (=), ur(—)) ~Mapraqgv ey (fur(—), iuk(—))
~ Mapynqv(c) (akjk (=), arjr(—))

where C denotes a colimit of C. This concludes the proof of (%) and we now focus on (iv).

Let k — [ € K and let id — g fr denote a unit for the adjunction. It restricts to a natural
transformation id — gy fkl which exhibits gx; as a right adjoint to fi;. Using the same mechanism,
if the functor by restricts to bk as promised then bk is indeed a right adjoint to ax. It thus suffices to
prove that the functor byi factors through the canonical inclusion #;: Ind”(C;) — Ind"(C;). Every
object of C is in the essential image of w; for some k — [ € K. It is therefore enough to see that for
any k — [, the functor byiu; factors through ¢;. We compute

briwg =~ brayj; ~ gribiayji ~ gri(colim 1)

The diagram p;: [/K — jl/Fct(Cl,IndV(Cl)) factors into

UK~ i/Fet(Cy, Ind" (C))) —== Ji/Fet(C, Ind” ()

Because gy, gri and t; preserve U-small filtered colimits, the functor byiu; is the colimit of the diagram
Uk s D1 /Fet(C), TndY () —24 kKT fBet(Cy, Tnd (C))
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The functor ¢ also preserves U-small filtered colimits and we have
briug = ty.(colim gr; o fi;)

To prove (v), we use [HAlg, 6.2.3.18] to define the diagram Ind”(C)®. It then follows that the
equivalence of (ii) - -
limInd” (C)® ~ Ind" (colim C)

restricts to the required equivalence. We finally deduce (vi) from the (7). O

Corollary 1.2.0.8. Let C be an (0, 1)-category and let F': C — CatYO’L be a functor. For any ce€ C
and any f:c— de IndU(C), the functor

Ind; (F)(f): Ind”(F(c)) ~ Ind¢ (F)(c) — Ind¢ (F)(d)

admits a right adjoint.

1.3 Computation techniques

We will now establish a few computational rules for the functors Ind” and Pro”. A trustful reader
not interested in (0o, 1)-category theory could skip this subsection and come back for the results when

neededl. Let us start with a V-small co-category C. Let sc: CA" - C denote the source functor while
te: C® — C denote the target functor. Using [HTT, 2.4.7.11 and 2.4.7.5] we see that s is a Cartesian
fibration and t¢ is a coCartesian fibration.

Definition 1.3.0.1. let C be a V-small (o0, 1)-category. Let us denote by Ug: C°P — CatXJ the
functor classified by s¢. Let us denote by O¢: C — Cat}fO the functor classified by tc.

Remark 1.3.0.2. The functor Ue map an object ¢ € C to the comma category ¢/C and an arrow ¢ — d
to the forgetful functor

die e

The functor O¢ map an object ¢ € C to the comma category C/c and an arrow ¢ — d to the forgetful
functor

Cle = Ca
Lemma 1.3.0.3. Let C be a V-small (0, 1)-category. There is a natural equivalence

Ind;(Oc) ~ Opaav(c)

It induces an equivalence
Ind¢(O¢) =~ Oppgr(c)

Remark 1.3.0.4. Because of (i) in lemma 1.2.0.7, if the category C admits all finite colimits then we
have

. v v o v
11]£Illl’ld (C)/Qk ~ Ind (co}ij/Ck> ~ Ind"(C)/.

where the limit on the left hand side is computed using base change functors. If K is U-small and if
IndU(C) admits pullbacks then it restricts to an equivalence

. U U
hlﬁnlnd (C)/Qk ~ Ind"(C)/.

Let us also note that there is a dual statement to lemma 1.3.0.3 involving Pro":

M(OC) = OPrOU(C)
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Proof. Let us first consider the pullback category
C/ind"(C) ———Ind" ()~
- i
q source,target

C x Ind"(C) —Ind"(C) x Ind"(C)
The functor ¢: C/Ind”(C) — € x Ind"(C) — Ind”(C) is a coCartesian fibration. Let p denote the
coCartesian fibration p: £ — Ind" (C) classified by the extension of O¢
Oc: Ind’(C) — Cat,

There is a natural morphism functor g: £ — C/Ind”(C) over Ind"(C). It induces an equivalence
fiberwise and therefore g is an equivalence. Let D — IndV(C) denote a coCartesian fibration classifying
the functor

IndY(O¢) ~ Ind” o(()c) . Ind"(C) — Caty,

We have a diagram of coCartesian fibration over IndV(C)
D« & ~%/Ind"(C) - Ind"(C)*

We consider the relative Kan extension D — Indv(D)Al of C/Ind"(C) — IndV(C)Al. We thus have
the required natural transformation 7: Ind}(O¢) — Otnav(c)-

Let now ¢ € Ind”(C). Let ¢: K — C be a V-small filtered diagram whose colimit in Ind" (C) is .
The map

) \% : \%
T(c): Ind <co}€1mC/ck> — Ind"(C)/,
is equivalent to the ind-extension of the universal map

. ol v
f: co}clmC/Qk — Ind"(C)/,

For every k € K, let us denote by f; the natural functor
) \%
fi: C/Qk — Ind"(C)/.
Using [HTT, 5.3.5.11], to prove T'(c) is an equivalence, it suffices to see that :
e the functors fj have values in compact objects,
e the functor f is fully faithful,

e and the functor T'(c) is essentially surjective.

Those three items are straightforwardly proved. We will still expand the third one. Let thus d €
Ind”(C) with a map d — ¢ in Ind"(C). There exists a V-small filtered diagram d: L — C whose
colimit in Ind”(C) is d. For every I € L there exists an k(I) such that the map d; — c factors through
¢gy — ¢- This implies that d is in the essential image of T'(c).

The construction of a natural transformation S: Indg(O¢) — Otnav(c) is similar to that of T If
c¢: K — C is U-small then the equivalence

T(c): Ind’ <co}€imC/ck> = IndV(C)/

c
restricts to the equivalence

C

S(c): Ind" (co}fim C/Ck) = IndU(C)/
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Lemma 1.83.0.5. Let C be a V-small (00, 1)-category with all pushouts. The Cartesian fibration
sc: A L
is then also a coCartesian fibration.
Proof. This is a consequence of [HTT, 5.2.2.5]. O
Remark 1.3.0.6. If C is an (0, 1)-category with all pullbacks, then the target functor
te:CA ¢
is also a Cartesian fibration.

Definition 1.3.0.7. Let C be an (00, 1)-category. If C admits all pushouts, we will denote by Ug the
functor classifying the coCartesian fibration s¢ :

UY: C — Cat),
If C admits all pullbacks, we will denote by Oj the functor classifying the Cartesian fibration ¢¢ :
Op : C°P — Cat,

Note that those two constructions are of course linked : the functor Of is the composition of Ugey
with the functor (—)°P: Cat}, — Cat.,..

Remark 1.3.0.8. The functor Uz map an object ¢ to the comma category ¢/C and a map ¢ — d to the
functor

—ud: ¢c - e
The functor O maps a morphism ¢ — d to the pullback functor
o ; ¢ C/d - C/c
Lemma 1.3.0.9. Let C be a V-small co-category with all pushouts. There is a natural equivalence
Ind¢(Ug) > Upygv ()

It induces an equivalence
Ind(U¢) =~ Upyau (o)

Remark 1.3.0.10. Unwinding the definition, we can stated the above lemma as follows. Let ¢: K — C
be a filtered diagram. The canonical functor

Ind" (co}ﬁim Ek/C) — ¢Ind?(C)

is an equivalence — where ¢ is a colimit of ¢ in Ind”(C). Using remark 1.3.0.4, we can shows the
following similar statement. If C admits pullbacks then there is an equivalence

U 11 11
mcop (UCOP) = ProY(cep)

Proof. This is very similar to the proof of lemma 1.3.0.3. Let us first form the pullback category

Ind" (C)jc ——Ind"(C)*'
\L J lsourcc,targct

Ind’(C) x C —Ind"(C) x Ind"(C)
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The induced map g: IndV(C)/c — Ind"(C) x C — Ind"(C) is a coCartesian fibration. We can show
the same way we did in the proof of lemma 1.3.0.3 that it is classified by the extension of Ug

U: Ind’(C) — Cat”,

. . . .
The functor 7 preserves coCartesian morphisms and therefore induces a natural transformation U, —
Ii[ndV(C)' This transformation extends to a natural transformation

T: Ind;(Ug) — Ind"(C)

To prove that T is an equivalence, it suffices to prove that for every c € IndV(C) and any V-small
filtered diagram c¢: K — C whose colimit is ¢, the induced functor

T(c): Ind” <co}€imck/C> = ¢Ind"(0)

is an equivalence.

Let us first assume that K is a point and thus that ¢ belong to C. The canonical functor
clC — C/TndV(C) is fully faithful and its image is contained in the category of compact objects of
¢/Ind” (C). The induced functor

T(c): Ind" (C/c) — ¢/Ind"(C)

is therefore fully faithful (see [HTT, 5.3.5.11]). Let d € Ind"(C) with a map ¢ — d. Let d: L — C
be a V-small filtered diagram whose colimit in Ind"(C) is d. There exist some Iy € L such that the
map ¢ — d factors through d; — d. The diagram lo/L — C is in the image of F and its colimit in

IndV(C) is d. The functor F' is also essentially surjective and thus an equivalence. It restricts to an
equivalence

Ind” (C/c) ~ ¢/Ind"(C)

Let us go back to the general case c € IndV(C). The targeted equivalence is
Ind” (co}cimck/C) ~ lilgn C/Ind" (C) ~ “/Ind" (C)

where the limit is computed using the forgetful functors. The same argument works when replacing
V by U, using lemma 1.2.0.7, item (iv). O

Lemma 1.3.0.11. Let C be an (0, 1)-category with all pullbacks. Let us denote by j the inclusion
Ind"(C) — IP(C) = Ind” Pro”(C). There is a fully faithful natural transformation

¢! mucjop(ocx) - OIXP(C) o(j°P)
between functors (Ind"(C))°P — Cat2

Remark 1.3.0.12. To state this lemma more informally, for any filtered diagram ¢: K — C, we have a
fully faithful functor

lilgn Pro” (C/E;) - IP(C)/j(c)

where ¢ is a colimit of ¢ in IndU(C). This lemma has an ind-version, actually easier to prove. If

d: K°? — C is now a cofiltered diagram, then there is a fully faithful functor
U : -
Ind (coEmC/dk> — IP(C)/i(d)
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where d is a limit of d in Pro”(C). To state that last fact formally, if C be an (o0, 1)-category with all
pullbacks then there is a fully faithful natural transformation

2% Indge, (OF) — Ojp(e) ©(i)
where i is the canonical inclusion Pro”(C) — IP(C).

Proof. Let us first consider the functor Pro” o O} : C°° — Cat... It classifies the Cartesian fibration
F' defined as the pullback

ProU(C)/C — ProU(C)Al
Fl ithU(@
C Pro”(C)

The canonical inclusion Pro”(C) — IP(C) defines a functor f fitting in the commutative diagram

Pro”(C)/c ) —=TP(C)A
\ l ltlp(c)
C IP(C)

From [HTT, 2.4.7.12] we deduce that f preserves Cartesian morphisms. It therefore defines a natural
transformation u¢ from Pro” c O} to the restriction to C°P of OIXP(C). Since lenroU(C) o(j°P) is the
right Kan extension of its restriction to C°P (see remark 1.3.0.4), this defines the required natural

transformation
T¢: Proge (0¢) = Ofpc) ©(5°)

To see that for any ¢ € Pro"”(C), the induced functor Y¢ is fully faithful, it suffices to see that for any
c € C the functor uS is fully faithful, which is obvious. O

Lemma 1.3.0.13. Let C be a simplicial set. If C is a quasi-category then the map Al — A2
f f

e —> @ —> e —=>= @

. . . 2 1
induces an inner fibration p: C® — C2 .

fibration.

If moreover C admits pullbacks then p is a Cartesian

Definition 1.3.0.14. Let C be an (o0, 1)-category with pullbacks. Let us denote by
X AT\ P
B : (c ) — Cat.,

the functor classified by the Cartesian fibration p of lemma 1.3.0.13. If D is an (o0, 1)-category with
pushouts, we define similarly
BS: DA — Cat,,

Remark 1.3.0.15. Let C be an co-category with pullbacks. The functor B maps a morphism f: z — y
to the category f/(C/y) of factorisations of f. It maps a commutative square



seen as a morphism f — g in CA' to the base change functor

(z—a—-t)—(x—>axy—y)
t
Proof (of lemma 1.3.0.13). For every 0 < ¢ < n and every commutative diagram

Ap ——

|k

A" S CAI

we must build a lift A™ — C2”. The datum of such a lift is equivalent to that of a lift ¢ in the induced
commutative diagram
AP AT [] A'xAa"—=cC
ALx AT P
IS

-~

A" x A?

*

The existence of ¢ then follows from the fact that C is a quasi-category.
Let us now assume that C admits pullbacks. The functor p is a Cartesian fibration if and only if
every commutative diagram
AZx 1} [] alxal—tsc
Alx{1}

!

AZx A —————

admits a lift A2 x A — C which corresponds to a Cartesian morphism of CA”. Let us fix such a
diagram. It corresponds to a diagram in C

Y

a
Because C is a quasi-category, we can complete the diagram above with an arrow a — y, faces and a
tetrahedron [a, z,y, z]. Let g denote the map

AN

O—=>

g A3 A%x {1y [] atxatde
Alx{1}

corresponding to the sub-diagram y — z < c. By assumption, there exists a limit diagram b: ** A2 —
C — where * denotes the joint construction, see [HTT, 1.2.8 |. Note that the plain square

Y

>

@\>H.
oO—>
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forms a map a: {0} » A3 — C. Because b is a limit diagram, there exists a map A' x A3 — C whose
restriction to {0} A3 is @ and whose restriction to {1} * A3 is b. This defines two tetrahedra [a, b, c, 2]

and [a, b, y, z] represented here

Y

A
\
L
B

V4

Completing with the doted tetrahedron [a,z,y, z] we built above, we at last get the required map
¢: A% x A — C. To prove that the underlying morphism of €A% is a Cartesian morphism, we have

to see that for every commutative diagram

A{nfl,n} % A2

i ¢
Arx Al ] Apxa*——=c
A x Al

AN £ A2
there exists a lift A” x A? — C. Let A denote the sub-simplicial set of
A" x AT AR x A
Anx Al
defined by cutting out the vertex x. Let B denote the sub-simplicial set of A" x A? defined by cutting

out the vertex z. We get a commutative diagram

A{n—lm} x A2

Al % A3

A———=A"xA' [] AxA*—=¢C

A7 x AL

!

B——————— A" x A?

Let also E be the sub-simplicial set of A defined by cutting out A2 and F the sub-simplicial set of B
obtained by cutting out A3. We now have A ~ E x A2 and B ~ F x A and a commutative diagram

Al

I\

E——Cy,

|

F
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The map E — F is surjective on vertices. Adding cell after cell using the finality of b, we build a lift
F — C/,. We therefore have a lift B — C. Using now that fact that C is a quasi-category, this lifts
again to a suitable map A" x A2 - C O

Let D be a filtered poset, which we see as a 1-category. Let us define D/D> the category whose
set of objects is the disjoint union of the set of objects and the set of morphisms of D — ie the set of
pairs # < y. For any object « € D, we will denote by z < o the corresponding object of D/D>. A
morphism (a: z < y) — (b: z < t) in D/D> is by definition a commutative square in D

which therefore corresponds to inequalities © < z and y < ¢t. A morphism (z < y) —
(r < 0) » (2 < ) is an inequality < z in D. There are no morphisms (z < ) —

functor
D— D/p=

0: z — (z < 0)

is fully faithful. Using Quillen’s theorem A and the fact that D is filtered (so that its nerve is
contractible), we see 6 is cofinal. There is also a fully faithful functor

DAl — D/D>
Let L be the nerve of the category /D> and K the nerve of D. For any object x € D we also define
K, c K® to be the nerve of the full subcategory of D spanned by the objects y < z where y < z.

Lemma 1.3.0.16 (Lurie). Let C be an oo-category. Let ¢: KA S Chea diagram. For any vertex
ke K, let ¢ denote a colimit diagram for the induced map

K, > K2 %¢

Then the diagram ¢ factors through some map k
KA >1L5¢
such that

(i) The induced functor C,; — Cy, is a trivial fibration.

(ii) For any vertex k € K, the induced map (K/K)> — L — C is a colimit diagram.

Remark 1.3.0.17. The above lemma can be informally stated as an equivalence

CSLHZH ok —1) ~ c](c);lén ?é)]ll/lr? ok —1)

where for any k — &', the induced morphism colim,_y ;- ¢(k — 1) — colim o(k' — 1) is given by

1ek’ /K

colim ¢(k — 1) < colim ¢p(k — k' — ) — colim ¢p(k' — 1)
1ek/K 1ek’ /K 1ek' /K¢

Proof. The existence of the diagram and the first item follows from [HTT, 4.2.3.4] applied to the

functor
D — sSets/K

z— K,

For the second item, we simply observe that the inclusion /K — K, is cofinal. O
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Proposition 1.3.0.18. Let C be a V-small co-category with finite colimits. There is a natural equiv-
alence
\%
Ind ;. (Bp) ~ Blndv(c)Al
It induces an equivalence

Ind i (BE) ~ By 4o (c)ar

Remark 1.3.0.19. There is a "pro" counterpart of proposition 1.3.0.18. If C is an co-category which
admits all pullbacks then

PI‘O(CUP)A1 (Bgop) ~ B%rOU(Cop)

Remark 1.3.0.20. We can state informally proposition 1.3.0.18 as follows. For any morphism f: z — y
in Ind”(C) and any diagram f: K x A! — C whose colimit is f, the canonical functor

Ind” (cohm z(k )/C/y( )) am/IndV(C)/y

is an equivalence — where Z = f(—,0) and § = f(—,1). The proof is based on the following informal
computation:

Ind" (cohm z(k )/c/y( )) Ind" <cohm z(k )/c/y( )) ~ Ind’ (co}}mco%imx(k)/C/g(l)>

lek/K

~ lim?® z(k )/Ind <coth/
k lek/K y(l

()> ~ lim (k) /fma” (¢ ¢y, = “/md’(c),

Proof. Let us deal with the case of Ind”. The case of Ind" is very similar. Let us consider the
pullback category

Ind"(C)/C/ina" () — = Ind” (€)4
E X
Ind’(C)A" x ¢ ——1Ind" ()2 x Ind"(C)
where p is as in lemma 1.3.0.13 and ¢ is induces by the inclusion {1} — AZ. The induced map

Ind"(0)/e v — Ind” (€)*

is a cocartesian fibration classified by the extension of Bg
Bp: Ind’ (cAl) ~ Ind"(C)2" - Cat!,

The map 1 therefore induces a natural transformation BC — BY . This naturally extends to

Ind¥(C)A!
the required transformation

~ 11
T: Ind”(BY) ~ Ind” O<Bc) - B?ndV(C)Al

Let now f: ¢ — d be a morphism in IndV(C). Let K be a V-small filtered simplicial set and let
f: K — C2' such that f is a colimit of f in

Ind” (CAI)

Let ¢: K x A — C be induced by f. Let us denote by j: C — IndV(C) the Yoneda embedding. Let p
denote a colimit, diagram (K x A')> — Ind"(C) extending io¢. The inclusion K ~ K x {1} — K x Al
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is cofinal and the cone point of p is thus equivalent to d. The restriction of p to K= ~ (K x {0})~
defines a diagram ¢: K — IndV(C)/d whose colimit is f. Let us denote by ¢ the composite diagram

& K—">Ind"(C)jg—=Ind"(C)*" ~ IndV(CAI)

It comes with a natural transformation o: f — ¢ induced by p. Let us record for further use that the
diagram ¢ factors through

C/y=Mnd" (0 x (Cx {d})
Ind"(C)xInd"(C)

We now consider the map

ev,pr

v KA < AL Al g
and denote g the induced map KA' - ¢A'. Note that the composition

id_ g
K——> KA 2. et

equals f. We define the functor

_ g BY v
h: KA LA s catlfe 24 pylV

where Catyo’fC is the category of V-small (oo, 1)-categories with all finite colimits. We can assume that
K is the nerve of a filtered 1-category D. Using lemma 1.3.0.16 (and its notations) we get a diagram
r: L — Pry" such that we have categorical equivalences

P L,V) ~ (P L,V) ~ (P L,V) ~ (P L,V)
( Too r08)/ Teo %/ Too R/ Too hoid_ /

The natural transformation « defined above induces an object of

P L,V) ~ (P L,V)
( Too hoid_ / Too Kkof/

It defines a natural transformation of functors K — Prk"”
A kof — IndVOUg/d(E)

Let k be a vertex of K. Using lemma 1.3.0.3, we deduce that the functor Ay is an equivalence and
the natural transformation A is thus an equivalence too. Now using lemma 1.3.0.9, we see that T'(f)
is equivalent to the colimit of the diagram induced by A

Al
K — (PrL7)
It follows that 7" is an equivalence. O

We will finish this section with one more result. Let C be a V-small (o0, 1)-category with finite
colimits and D be any (oo, 1)-category. Let g be a functor D — C/CatX;L and let g denote the
composition of g with the natural functor C/Cat’"" — Cat’. We assume that for any object x € D,
the category g(z) admits finite colimits. Let also «: Op — § be a natural transformation. We
consider the diagram

pat % f§<—F CxD

|

D
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where the map F is induced by g. The functor F' admits a relative right adjoint G over D (see [HAlg,
8.3.3]). The source functor tp admits a section id_ induced by the map A — . It induces a functor
h:D—C

h: D DA fg “sCcxD—>cC

We define the same way H: Ind”(D) — IndY(C), using corollary 1.2.0.8
H: Ind”(D) LlndU(D)AI — J Ind}(j) — Ind”(C) x IndY(D) —— Ind"(C)
Let also I: Pro”(D) — Pro”(C) be defined similarly, but using proposition 1.2.0.5:
I: ProU(D)LProU(D)NHJ Pro%(j)—=Pro"(C) x Pro’(D)—=Pro"(C)
Lemma 1.3.0.21. The two functors H and Ind”(h): Ind"(D) — Ind”(C) are equivalent. The
functors I and Pro”(h): Pro”(D) — Pro”(C) are equivalent.

Remark 1.3.0.22. For an enlightening example of this construction, we invite the reader to look at
remark 2.1.1.22 or proposition 2.1.2.20.

Proof. Let us deal with the case of H and Ind"(h), the other one is similar. We will prove the
following sufficient conditions

(i) The restrictions of both Ind” (k) and H to D are equivalent ;
(7i) The functor H preserves U-small filtered colimits.

To prove item (i), we consider the commutative diagram

C x D——Ind"(C) x Ind" (D)

| |

§§—— §Ind7(9)

| |

D IndY(D)

The sections D — {§ and Ind”(D) — {Ind}(§) are compatible: the induced diagram commutes

§g— {Ind7(9)

]

D —— Ind"(D)

Moreover the right adjoints { g — C x D and SIndg (3) — Ind"(C) x Ind"(D) are weakly compatible:
there is a natural transformation

C x D —=Ind"(C) x Ind” (D)

| T~ |

§§—— §Ind7 ()
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It follows that we have a natural transformation between the functors
D ¢ - Ind’(C) and D — Ind”(D) 5 Ind" (C)

For any x € D, the induced map h(z) — H(z) in Ind"(C) is an equivalence. This concludes the proof
of item ().

Let us now prove the item (7). It suffices to look at a U-small filtered diagram z: K — D. Let
2 denote a colimit of Z in Ind”(D). Let us denote by A the natural transformation

A = Ind}(): Opnav(p) — Indp(5) = G

between functors Ind”(D) — Cat... Let us also denote by 7, the right adjoint G(z) — Ind"(C). By
definition, we have H(z) ~ 7, A, (id;). The functors 7, and A, preserve U-small filtered colimits and
H(x) is therefore the colimit of the diagram

Ag

A: K 5 Ind"(D)/, % G(z) ™ Ind”(C)

We consider the functor

H,: KA 2 DA Jg CxD c Ind”(C)

We can assume that K is the nerve of a filtered 1-category. Using lemma 1.3.0.16 and its notations,
we extend H, to a map
¢: L —1Ind"(C)

and equivalences

Ind”(C)¢op; ~ Ind”(C)¢) ~ Ind”(C) ., ~ Ind”(C) g, 0,

Using the proof of (z), we have a natural transformation H, oid_ — A. It induces a natural trans-
formation ¢ o § — A. Using lemma 1.2.0.7 we see that it is an equivalence. It follows that H(x) is a
colimit of the diagram

K — K2 5 1mdY ()

which equals K 5D % ¢ — Ind"”(C). We now conclude using item (i). O
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Chapter 2

Ind-pro-stacks and Tate stacks

In this chapter, we will develop the theory of Tate stacks. Those are infinite dimensional geometric
objects whose tangent complex is a Tate module. With the setting we are then able to define symplectic
forms on infinite dimensional algebraic stacks.

2.1 Ind-pro-stacks

Throughout this section, we will denote by S a derived stack over some base field k& and by dStg the
category of derived stack over the base S.

2.1.1 Cotangent complex of a pro-stack

Definition 2.1.1.1. A pro-stack over S an object of Pro’ dStg.

Remark 2.1.1.2. Note that the category Pro” dStg is equivalent to the category of pro-stacks over R
with a morphism to S.

Definition 2.1.1.3. Let Perf: dSt%’ — Cat[gO denote the functor mapping a stack to its category
of perfect complexes. We will denote by IPerf the functor

IPerf = Indggor (Perf): (Pro” dSts) — Pry,

where Ind” was defined in definition 0.1.0.8. Whenever X is a pro-stack, we will call TPerf(X) the
derived category of ind-complexes on X. It is U-presentable. If f: X — Y is a map of pro-stacks,
then the functor

IPerf(f): IPerf(Y) — IPerf(X)

admits a right adjoint. We will denote f;* = IPerf(f) and fI its right adjoint.

Remark 2.1.1.4. Let X be a pro-stack and let X : K°? — dStg denote a U-small cofiltered diagram of
whom X is a limit in Pro” dStg. The derived category of ind-perfect complexes on X is by definition

the category
IPerf(X) = Ind"(colim Perf(X))

It thus follows from [HAlg, 1.1.4.6 and 1.1.3.6] that IPerf(X) is stable. Note that it is also equivalent
to the colimit B
IPerf(X) = colim IPerf(X) e Pr"

It is therefore equivalent to the limit of the diagram

IPerf . (X) K — dstgp N PI'IOSV ~ (PI‘}}O’V)OP
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An object E in IPerf(X) is therefore the datum of an object py, E of IPerf(Xy) for each k € K —

where X}, = X (k) and pr: X — X}, is the natural projection — and of some compatibilities between
them.

Definition 2.1.1.5. Let X be a pro-stack. We define its derived category of pro-perfect complexes
PPerf(X) = (IPerf(X))?
The duality Perf(—) = (Perf(—))°P implies the equivalence
PPerf(X) ~ Pro”(colim Perf(X))
whenever X : K°? — dStg is a cofiltered diagram of whom X is a limit in Pro? dStg.
Definition 2.1.1.6. Let us define the functor Tatep : (Pro” dStg)°° — Cat "

Tatep — Tategs,%p (Perf)

Remark 2.1.1.7. The functor Tatep maps a pro-stack X given by a diagram X : K°° — dStg to the
stable (o0, 1)-category B
Tatep(X) = Tate" (colim Perf(X))

There is a canonical fully faithful natural transformation
Tatep — Pro” o IPerf
From lemma 1.1.0.10 we also get a fully faithful
Tatep — Ind" o PPerf

Definition 2.1.1.8. Let Qcoh: dStY’ — Ca‘c},’c denote the functor mapping a derived stack to its
derived category of quasi-coherent sheaves. It maps a morphism between stacks to the appropriate
pullback functor. We will denote by IQcoh the functor

IQcoh = Indgger (Qeoh): (Pro” dSts)® — Caty
If f: X — Y is a map of pro-stacks, we will denote by f;* the functor IQcoh(f). We also define
IQcoh=’ = Ind 4g;or (Qeoh=’)
the functor of connective modules.

Remark 2.1.1.9. There is a fully faithful natural transformation IPerf — IQcoh ; for any map
f: X =Y of pro-stacks, there is therefore a commutative diagram

IPerf(Y) —— IQcoh(Y)
fl*l lfl*
IPerf(X) — IQcoh(X)
The two functors denoted by fi* are thus compatible. Let us also say that the functor
/i IQcoh(Y) — IQcoh(X)
does not need to have a right adjoint. We next show that it sometimes has one.

Proposition 2.1.1.10. Let f: X — Y be a map of pro-stacks. If Y is actually a stack then the
functor fi: IQcoh(Y) — IQcoh(X) admits a right adjoint.

32



Proof. It follows from corollary 1.2.0.8. O

Definition 2.1.1.11. Let f: X — Y be a map of pro-stacks. We will denote by fﬂ{Q the right adjoint
to fi': IQcoh(Y) — IQcoh(X) if it exists.

Remark 2.1.1.12. In the situation of proposition 2.1.1.10, there is a natural transformation

IPerf(X) — IQcoh(X)

Al SN [

IPerf(Y) —— IQcoh(Y)

It does not need to be an equivalence.

Definition 2.1.1.13. Let X be a pro-stack over S. The structural sheaf Oy of X is the pull-back of
Og along the structural map X — S.

Exzample 2.1.1.14. Let X be a pro-stack over S and X : K°° — dStg be a U-small cofiltered diagram
of whom X is a limit in Pro? dStg. Let k be a vertex of K, let X denote X(k) and let pi denote
the induced map of pro-stacks X — Xj. If f: k — [ is an arrow in K, we will also denote by f the
map of stacks X (f). We have

(pr)i(Ox) = }:O}clglz [+0x,
One can see this using lemma 1.2.0.7
(pr)(Ox) = () (PR)T (Ox,) = colim fuf*(Ox,) = golim f,Ox,
Definition 2.1.1.15. Let T be a stack over S. Let us consider the functor
Qeoh(T)=" — Bljgyer (idr) ~ (T/dStT)°p

mapping a quasi-coherent sheaf F to the square zero extension T' — T[E]| — T'. This construction is
functorial in T" and actually comes from a natural transformation

Ex: Qecoh=" — Bygyer (id-)

of functors dSt2> — Cat, — recall notation B" from definition 1.3.0.14. We will denote by Ex* ™ the
natural transformation

ExPre = @gsﬁgﬁ (Ex): IQcoh=’ — mgsﬁg’ (Bﬁsﬂg’ (id-)) ~ B?Pro“ astg)er (1)

between functors (Pro” dStg)°® — Cat,. The equivalence on the right is the one from proposi-
tion 1.3.0.18. If X is a pro-stack and E € IQcoh(X)<" then we will denote by X — X[E] — X the
image of F by the functor ExF™°(X).

Remark 2.1.1.16. Let us give a description of this functor. Let X be a pro-stack and let X : K°P —
dStg denote a U-small cofiltered diagram of whom X is a limit in ProY dStg. For every k € K we
can compose the functor mentioned above with the base change functor

[— —Xx, X
(Qeoh (X)) L X1 /dsty, 2 X /Pro” dSt

This is functorial in k and we get a functor (colim Qecoh(X))” — X /Pro” dSty which we extend
and obtain a more explicit description of the square zero extension functor

X[-]: (IQecoh(X))°P — X /Pro” dStx
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Definition 2.1.1.17. Let X be a pro-stack.

e We finally define the functor of derivations over X :

Der(X,—) = Mapy, /s(X[—], X): IQcoh(X)=" — sSets

e We say that X admits a cotangent complex if the functor Der(X, —) is corepresentable — ie there
exists a Ly, € IQcoh(X) such that for any E € IQcoh(X)<"

Der(X, E) ~ Map(Ly s, E)

Definition 2.1.1.18. Let dSt%™ denote the full sub-category of dStg spanned by derived Artin
stacks over S. An Artin pro-stack is an object of Pro” dStgrt. Let dSt?rt’lfp the full sub-category
of dSt?rt spanned by derived Artin stacks locally of finite presentation over S. An Artin pro-stack

locally of finite presentation is an object of Pro” dStgrt’lfp

Proposition 2.1.1.19. Any Artin pro-stack X over S admits a cotangent complex Lx s. Let us

assume that X : K°P — dSt/grt is a U-small cofiltered diagram of whom X is a limit in ProY dSt‘grt.
When k is a vertex of K, let us denote by X, the derived Artin stack X (k). If f: k — 1 is an arrow
in K, we will also denote by f: X; — X}, the map of stacks X (f). The cotangent complex is given by
the formula

Lx/s = COEszka/S € Ind" (colim Qcoh(X)) ~ IQcoh(X)

where py, is the canonical map X — Xy. The following formula stands
Py s ~ colim fulx,/s

If X is moreover locally of finite presentation over S, then its cotangent complex belongs to IPerf(X).
Before proving this proposition, let us fix the following notation

Definition 2.1.1.20. Let C be a full sub-category of an co-category D. There is a natural trans-
formation from Op: d — D/q to the constant functor D: D — Caty. We denote by 0% the fiber
product

0% = Op xC: D — Caty,

Remark 2.1.1.21. The functor O%: D — Caty maps an object d € D to the comma category of
objects in C over d

Cly=(Cx {d}gjippﬁl

The lemma 1.3.0.3 still holds when replacing O¢ by O%.
Proof (of the proposition). The cotangent complex defines a natural transformation
yop

A: oldses™

dSt‘;" i QCOh(—>

To any stack T and any Artin stack U over S with a map f: T — U, it associates the quasi-coherent
complex f*ILy/s on T. Applying the functor IndEStgp we get a natural transformation APre

. U Prol dStArt)op
APre — Indigior (A): Ofprey qayen —> 1Qcoh(-)
Specifying it to X we get a functor

AEre. <X/PI‘OU dSt?“)Op — IQcoh(X)

34



Let us set Ly /s = A (X) € IQcoh(X). We have by definition the equivalence
Ly/s ~ CO}ﬁimpZka/s

Let us now check that it satisfies the required universal property. The functor Der(X, —) is the limit
of the diagram K°P — Fct(IQcoh(X)<Y sSets)

Mapy,_s(X[~], X)
This diagram factors by definition through a diagram
§: K° — Fct(colim Qeoh(X)<", sSets) ~ lim Fct(Qcoh(X)<’, sSets)

On the other hand, the functor Map(Lx g, —) is the limit of a diagram

K°° —" 5 lim Fet(Qcoh(X)<?, sSets) —— Fct(IQcoh(X)<’, sSets)

The universal property of the natural transformation A defines an equivalence between § and p. The
formula for pkiQ]L x/s is a direct consequence of lemma 1.3.0.21 and the last statement is obvious. [J

Remark 2.1.1.22 (about lemma 1.3.0.21). There are two ways of constructing the underlying complex
of the cotangent complex of a pro-stack. One could first consider the functor

L': dSt5™” — Qcoh(S)
mapping a derived Artin stack 7: Y — S to the quasi-coherent module 7.y /5 and extend it
Ind”(L"): Pro” dSt5™”” — Ind" Qcoh(S) = IQcoh(S)
The second method consists in building the cotangent complex of a pro-stack w: X — S as above
Lx/s € IQcoh(X)
and considering w,IkQ]LX/S € IQcoh(S). This defines a functor

Pro” dSt4"” — IQcoh(S)

L2: 1
(X =58 — w*QLX/S

Comparing those two approaches is precisely the role of lemma 1.3.0.21. It shows indeed that the
functors Ind”(IL!) and L2 are equivalent.

Remark 2.1.1.23. The definition of the derived category of ind-quasi-coherent modules on a pro-stack
is build for the above proposition and remark to hold.

Remark 2.1.1.24. We have actually proven that for any pro-stack X, the two functors
IQcoh(X)<% x X/dStlgrt — sSets
defined by

(E7 Y) - MapX/f/S(X[E]v Y)
(B,Y) — MapIQcoh(X)(A};{ro(Y)v E)

are equivalent.
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2.1.2 Cotangent complex of an ind-pro-stack

Definition 2.1.2.1. An ind-pro-stack is an object of the category
IPdStg = Ind” Pro” dStg
Definition 2.1.2.2. Let us define the functor PIPerf: (IPdStg)°® — Cat), as

PIPerf = ProIéJPrOU dSts)or (IPerf)

where Pro” was defined in definition 0.1.0.8. Whenever we have a morphism f: X — Y of ind-pro-
stacks, we will denote by fp; the functor

f&; = PIPerf(f): PIPerf(Y) — PIPerf(X)

Remark 2.1.2.3. Let X be an ind-pro-stack. Let X: K — Pro” dStg denote a U-small filtered
diagram of whom X is a colimit in IPdStgs. We have by definition

PIPerf(X) ~ lim Pro"” (IPerf (X))

admits a right adjoint fFT. It is the pro-extension of the right adjoint fI to f;f. This result extends
to any map f of ind-pro-stacks since the limit of adjunctions is still an adjunction.

Proposition 2.1.2.4. Let f: X — Y be a map of ind-pro-stacks. If Y is a pro-stack then the functor
fip: PIPerf(Y) — PIPerf(X) admits a right adjoint.

Definition 2.1.2.5. Let f: X — Y be a map of ind-pro-stacks. If the functor
fp1: PIPerf(Y) — PIPerf(X)
admits a right adjoint, we will denote it by fFI.

Proof (of the proposition). If both X and Y are pro-stacks, then fFT = Pro"(fI) is right adjoint
to fi; = Pro”(f;f). Let now X be an ind-pro-stack and let X: K — Pro” dSts denote a U-small
filtered diagram of whom X is a colimit in IPdStgs. We then have

fir: PIPerf(Y) — PIPerf(X) ~ lim PIPerf(X)
The existence of a right adjoint ff! then follows from proposition 1.2.0.5. O

Definition 2.1.2.6. Let X € IPdSts. We define IPPerf(X) = (PIPerf(X))°P. If X is the colimit
in IPdStg of a filtered diagram K — Pro” dStg then we have

IPPerf(X) ~ lim(Ind” o PPerf o X)

There is therefore a fully faithful functor Tatefp(X) — IPPerf(X). We will denote by
(—)": IPPerf(X) — (PIPerf(X))?

the duality functor.

Definition 2.1.2.7. Let us define the functor Tatejp: (IPdStg)°® — Cat'*"' as the right Kan
extension of Tatep along the inclusion (Pro” dStg)°? — (IPdStg)°P. It is by definition endowed
with a canonical fully faithful natural transformation

Tate[p — PIPerf

For any X € IPdStg, an object of Tatefp(X) will be called a Tate module on X.
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Remark 2.1.2.8. We can characterise Tate objects: a module E € PIPerf(X) is a Tate module if
and only if for any pro-stack U and any morphism f: U — X € IPdStg, the pullback fip(E) is in
Tatep (U).

Let us also remark here that

Lemma 2.1.2.9. Let X be an ind-pro-stack over S. The fully faithful functors

="

Tatels (X) — > PIPerf(X) (IPPerf(X))°P < (Tate}JP(X))Op

have the same essential image. We thus have an equivalence

(-)": Tatefp(X) = (Tatefp(X)) "
Proof. This is a corollary of lemma 1.1.0.10. O
Definition 2.1.2.10. Let us define PIQcoh: (IPdStg)°® — Cat, to be the functor

PIQcoh = Pro(p,,v ast)er (IQcoh)

From remark 0.1.0.15, for any ind-pro-stack X, the category PIQcoh(X) admits a natural monoidal
structure. We also define the subfunctor

PIQcoh™~’ = Pro p,ov st (IQcoh=’)

Remark 2.1.2.11. Let us give an informal description of the above definition. To an ind-pro-stack
X = colim, limg X3 we associate the category

PIQcoh(X) = lim Pro” Ind" <cogm Perf(XaB)>

Definition 2.1.2.12. Let f: X — Y be a map of ind-pro-stacks. We will denote by f3; the functor

PIQcoh(f). Whenever it exists, we will denote by P19 the right adjoint to o1

Proposition 2.1.2.13. Let f: X — Y be a map of ind-pro-stacks. If Y is actually a stack, then the
induced functor fp; admits a right adjoint.

Proof. This is very similar to the proof of proposition 2.1.2.4 but using proposition 2.1.1.10. O

Remark 2.1.2.14. There is a fully faithful natural transformation PIPerf — PIQcoh. Using the same
notation f3; for the images of a map f: X — Y is therefore only a small abuse. Moreover, for any
such map f: X — Y, for which the right adjoints drawn below exist, there is a natural tranformation

PIPerf(Y) —— PIQcoh(Y)

o e

PIPerf(X) — PIQcoh(X)

It is generally not an equivalence.

Definition 2.1.2.15. Let Ex'® denote the natural transformation Pro?PmU dSts)or (ExFT)

Ex™®: PIQeoh=" - Profp,q aste)or (Bleret aseayes (14-)) = Blipase.o (id-)

of functors (IPdStg)°? — Caty,. The equivalence on the right hand side is the one of remark 1.3.0.19.
If X is an ind-pro-stack and E € PIQcoh(X)<Y then we will denote by X — X[E] — X the image

of F by the functor
op

Ex'P(X): PIQcoh(X)<0 - (X/IPdStX)
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Remark 2.1.2.16. Let us decipher the above definition. Let X = colim, limg X, be an ind-pro-stack
and let E be a pro-ind-module over it. By definition E is the datum, for every «, of a pro-ind-object
E® in the category colimg Qcoh="(X,3). Let us denote E* = lim, colims Efs. For any v and 4,

there is a fBy(7, d) such that EJs is in the essential image of Qcoth(XaBO(W;)). We then have

X|F| =colimlim lim X,g|FE.s|€cIPdSt
LE] @y & B=Po(v,9) 4 76] 5

Definition 2.1.2.17. Let X be an ind-pro-stack.

o We define the functor of derivations on X

Der(Xv _) = MapX/f/S(X[_]v X)

e We say that X admits a cotangent complex if there exists Ly, € PIQcoh(X) such that for
any E € PIQcoh(X)<?
Der(X, E) ~ Map(Lx g, E)

e Let us assume that f: X — Y is a map of ind-pro-stacks and that Y admits a cotangent
complex. We say that f is formally étale if X admits a cotangent complex and the natural map
[*Ly,s — Lx/s is an equivalence.

Definition 2.1.2.18. An Artin ind-pro-stack over S is an object in the category
IPdSt5™ = Ind” Pro” dStg"™
An Artin ind-pro-stack locally of finite presentation is an object of
IPdSts™'™ — IndY Pro” dst4 ™'
Proposition 2.1.2.19. Any Artin ind-pro-stack X admits a cotangent complex
Lx,s € PIQcoh(X)

Let us assume that X: K — PI"odStf.;rt is a U-small filtered diagram of whom X 1is a colimit in
IPAStS™. For any vertez k € K we will denote by Xy, the pro-stack X (k) and by iy the structural
map X — X. For any f: k — 1 in K, let us also denote by f the induced map X — X;. We have
forallke K

it prlocss = lim ffly, s € PIQeoh(Xj)
If moreover X is locally of finite presentation then Lx/s belongs to PIPerf(X).

Proof. Let us recall the natural transformation AP from the proof of proposition 2.1.1.19

ro ProV dStArtyop
APre — Indgier (A): Ofpre 45,70 — IQcoh(-)

of functors (Pro” dSts)°? — Cat... Applying the functor Pro?PmU dste)or We define the natural

transformation AP

r IPdSt3™)P
AP = mlEJPmU dSts)OP()‘P °): OEIPdSt:z)O)P — PIQcoh(-)
between functors (IPdStg)°® — Cat. Specifying to X we get a functor

AP (X/IPdStg“)op — PIQcoh(X)
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We now define Ly /g = A} (X). By definition we have
if prllx/s = im ART(X) ~ f:ligil filx,s

for every k € K. Let us now prove that it satisfies the expected universal property. It suffices to
compare for every k € K the functors

Mapy, /—/s(Xik[-], X) and Mappiqeon(x;) (fr,p1lx /s, —)

defined on PIQcoh(X;)S?. They are both pro-extensions to PIQcoh(X})SY of their restrictions
IQcoh(X};)SY — sSets. The restricted functor Mapy, /_/s(Xk[—], X) is a colimit of the diagram

op

MapXk/_/S(Xk[—],)_(): (k/K) — Fct(IQcoh(X;)<?, sSets)
while Mapprgeon(x,) (% prlx/s: —) is a colimit to the diagram

_ op
Maprqeon(x,) N2 (X), —): (’f/K) —» Fet(IQeoh(X;)<0, sSets)
We finish the proof with remark 2.1.1.24. O

Proposition 2.1.2.20. Let X € IPdStért. Let us denote by m: X — S the structural map. Let also
L™ denote the functor

(IPdStgft)op — Pro” Ind” Qcoh(S)
obtained by extending the functor (dSt5™)°P — Qcoh(S) mapping f: T — S to J+«llp/s. Then we
have wfIQLX/S ~ L™P(X)
PIQ

Proof. The existence of m, ~ is deduced from proposition 2.1.2.13. The result then follows by
applying lemma 1.3.0.21 twice. O

Definition 2.1.2.21. Let X by an Artin ind-pro-stack locally of finite presentation over S. We will
call the tangent complex of X the ind-pro-perfect complex on X

Tx/s = LY,s € IPPerf(X)

2.1.3 Uniqueness of pro-structure
Lemma 2.1.3.1. Let Y and Z be derived Artin stacks. The following is true

(i) The canonical map
Map(Z,Y) — limMap(7<, Z,Y)

is an equivalence;
(ii) If Y is g-Artin and Z is m-truncated then the mapping space Map(Z,Y") is (m + q)-truncated.

Proof. We prove both items recursively on the Artin degree of Z. The case of Z affine is proved in
[HAG2, C.0.10 and 2.2.4.6]. We assume that the result is true for n-Artin stacks. Let Z be (n + 1)-
Artin. There is an atlas u: U — Z. Let us remark that for k£ € N the truncation 7<xu: 7<xU — 7<1Z
is also a smooth atlas — indeed we have 7< U ~ U x z 7<;Z. Let us denote by U, the nerve of u and
by 7<xrU. the nerve of 7<,u. Because k-truncated stacks are stable by flat pullbacks, the groupoid
T<kU, is equivalent to 7<x(U,). We have
Map(Z,Y) ~ lim Map(U,,Y) ~ lim limMap(r<xUp,,Y) ~ lim Map(r<,Z,Y)
[plea [plea k k

That proves item (i). If moreover Z is m-truncated, then we can replace U by 7¢,,,U. If follows that
Map(Z,Y) is a limit of (m + g)-truncated spaces. This finishes the proof of (ii). O
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We will use this well known lemma:

Lemma 2.1.3.2. Let S: A — sSets be a cosimplicial object in simplicial sets. Let us assume that
for any [p] € A the simplicial set S, is n-coconnective. Then the natural morphism

lim S, — lim S,
[plea [plea
p<n+l

is an equivalence.
Lemma 2.1.3.3. Let X: N°® — dStg be a diagram such that

(i) There exists m € N and n € N such that for any k € K the stack X (k) is n-Artin, m-truncated
and of finite presentation;

(ii) There exists a diagram u: N x A' — dStg such that the restriction of @ to N x {1} is equivalent
to X, every map u(k): u(k)(0) — u(k)(1) ~ X (k) is a smooth atlas and the limit limy, (k) is
an epimorphism.

If Y is an algebraic derived stack of finite presentation then the canonical morphism
colim Map (X, Y) — Map (lim X, Y)
s an equivalence.

Proof. Let us prove the statement recursively on the Artin degree n. If n equals 0, this is a simple
reformulation of the finite presentation of Y. Let us assume that the statement at hand is true for
some n and let X(0) be (n + 1)-Artin. Considering the nerves of the epimorphisms w(k), we get a
diagram

Z:N°P x A°P — dStg

Note that Z has values in n-Artin stacks. The limit limy @(k) is also an atlas and the natural map

colimlim Z(k),, — lim colim Z(k), ~ lim X
[pleA keN keN [pleA

is therefore an equivalence. We now write

Map (lim X, V) ~ M lim lim Z (k),, Y
ap (lim X,Y") ap((fg]églkg} (k)ps )

~ lim Map(lim Z(k),,Y
N ap(;gNl (k)p, >

~ i lim Map(Z(k),, Y
i ol Map(Z(8),. Y)

We also have

ColimMap(X,Y) ~ C(Izgrln [Zl)i]renA Map(Z(k)p,Y)

It thus suffices to prove that the canonical morphism of simplicial sets

cggén [Iljl]renA Map(Z(k),,Y) — [11)1]1612 cggNm Map(Z(k),,Y)

is an equivalence. Let us notice that each Z(k), is m-truncated. It is indeed a fibre product of m-
truncated derived stacks along flat maps. Let ¢ be an integer such that Y is g-Artin. The simplicial

set Map(Z(k),,Y) is then (m + ¢)-coconnective (lemma 2.1.3.1). It follows from lemma 2.1.3.2 that
the limit at hand is in fact finite and we have the required equivalence. O
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Lemma 2.1.3.4. Let M : N°P — sSets be a diagram. For any i€ N and any point x = (z,,) € lim M,
we have the following exact sequence

0 —— lim'm; 11 (M(n), z,) — 7 (lim M(n), x) ——limm;(M(n), z,) —=0

A proof of that lemma can be found for instance in [Hir].

Lemma 2.1.3.5. Let M: N°P x K — sSets denote a diagram, where K is a filtered simplicial set.
If for any i € N there exists N; such that for any n = N; and any k € K the induced morphism
M(n,k) — M(n —1,k) is an i-equivalence then the canonical map

¢: colimlim M (n, k) — lim colim M (n, k)
keK neN neN keK

is an equivalence. We recall that an i-equivalence of simplicial sets is a morphism which induces
isomorphisms on the homotopy groups of dimension lower or equal to i.

Proof. We can assume that K admits an initial object ko. Let us write M, instead of M(n,k).
Let us fix i e N. If 4 > 1, we also fix a base point x € lim,, M,,x,. Every homotopy group below is
computed at = or at the natural point induced by . We will omit the reference to the base point.
We have a morphism of short exact sequences

0 — colim lim'7r; 1 (M) — co}cim T (lim Mnk:) — co}vim lim 7; (M) —=0
n n n

| i |

0 — lim* co}cim Tir1(Mpg) —— m; (hm co}cim Mnk) — lim co}jm mi(Mpx) —=0

We can restrict every limit to n > N;;;. Using the assumption we see that the limits on the right
hand side are then constant and so are the 1-limits on the left. If follows that the vertical maps on
the sides are isomorphisms, and so is the middle map. This begin true for any i, we conclude that ¢
is an equivalence. O

Definition 2.1.3.6. Let X: N°® — dStg be a diagram. We say that X is a shy diagram if
(i) For any k € N the stack X (k) is algebraic and of finite presentation;
(ii) For any k € N the map X(k — k +1): X(k + 1) — X(k) is affine;
(i4i) The stack X (0) is of finite cohomological dimension.
If X is the limit of X in the category of prostacks, we will also say that X is a shy diagram for X.

Proposition 2.1.3.7. Let X: N°P — dStg be a shy diagram. If Y is an algebraic derived stack of
finite presentation then the canonical morphism

colim Map (X, Y) — Map (lim X, Y)
s an equivalence.

Proof. Since for any n, the truncation functor r¢,, preserves shy diagrams, let us use lemma 2.1.3.1
and lemma 2.1.3.3

Map(lim X, Y) ~lim Map(7<,, (lim X),Y)

~ lim Map(lim 7<,, X, Y') ~ lim colim Map(7<,, X,Y")
n n
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On the other hand we have
colim Map(X,Y) ~ colim li7rln Map(7<, X,Y)

and we are to study the canonical map

¢: colim liﬁn Map(7<, X,Y) — liyrln colim Map(7<, X,Y)
Because of lemma 2.1.3.5, it suffices to prove the assertion
(1) For any ¢ € N there exists NV; € N such that for any n > N; and any k € N the map
Dk Map(Tan(k), Y) — Map(Tgn,lX(k),Y)
induces an equivalence on the ;’s for any j < <.

For any map f: 7<,_1X(k) — Y we will denote by F}, x(f) the fibre of p,  at f. We have to prove
that for any such f the simplicial set Fok(f) is i-connective. Let thus f be one of those maps. The
derived stack 7<, X (k) is a square zero extension of 7,1 X (k) by a module M[n], where

M = ker(OT@X(k) — Or@,l)’((k)) [—n]

Note that M is concentrated in degree 0. It follows from the obstruction theory of Y —see proposi-
tion 0.2.0.6 — that F), ;(f) is not empty if and only if the obstruction class

a(f) e Gni(f) = Mape__ (f*Ly, M[n +1])

of f vanishes. Moreover, if a(f) vanishes, then we have an equivalence

n—1X(k)

Fn,k(f) =~ Ma'p(’)_,_< (f*LY7 M[?’L])

<n—1X(k)
Using assumptions (44) and (ii) we have that X (k) — and therefore its truncation too — is of finite
cohomological dimension d. Let us denote by [a, b] the Tor-amplitude of Ly . We get that G,, (f) is
(s 4+ 1)-connective for s = a + n — d and that F, (f) is s-connective if a(f) vanishes. Let us remark
here that d and a do not depend on either k or f and thus neither does N; =i+ d —a (we set N; =0
if this quantity is negative). For any n > N; and any f as above, the simplicial set G,, ,(f) is at least
1-connective. The obstruction class a(f) therefore vanishes and F;, 1(f) is indeed i-connective. This
proves (1) and concludes this proof. O

Definition 2.1.3.8. Let PdStSShy denote the full subcategory of Pro" dStg spanned by the prostacks
which admit shy diagrams. Every object X in PdSt;hy is thus the limit of a shy diagram X : N°P —
dStg.

We will say that X is of cotangent tor-amplitude in [a, b] if there exists a shy diagram X : N°P —
dStg for X such that every cotangent Lg,) is of tor-amplitude in [a,b]. We will also say that X
is of cohomological dimension at most d if there is a shy diagram X with values in derived stacks of
cohomological dimension at most d. The pro-stack X will be called g-Artin if there is a shy diagram
for it, with values in ¢-Artin derived stacks. Let us denote by Cg’féb] the full subcategory of PdStss.hy
spanned by objects of cotangent tor-amplitude in [a, b], of cohomological dimension at most d and
g-Artin.

Theorem 2.1.3.9. The limit functor igpy : PdStZ][1y — dStg is fully faithful and has values in Artin
stacks.

Proof. This follows directly from proposition 2.1.3.7. O
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Definition 2.1.3.10. A map of pro-stacks f: X — Y if an open immersion if there exists a diagram
f: NP x Al — dSt,,
such that
e The limit of f in maps of pro-stacks is f;

e The restriction N°P x {0} — dSty, of f is a shy diagram for X and the restriction N°P x {1} — dSt;,
is a shy diagram for Y

e For any n, the induced map of stacks {n} x Al — dSt; is an open immersion.

2.1.4 Uniqueness of ind-pro-structures

Definition 2.1.4.1. Let IPdSchV’b denote the full subcategory of IndU(PdStShy) spanned by colim-
its of U-small filtered diagrams K — PdStSShy which factors through ng | for some 4-uplet a,b,d,q.

For any X € IPdStghy’ we will say that X is of cotangent tor-amplitude in [a, b] and of cohomological
[a b]

dimension at most d if it is the colimit (in IndU(PdStghy)) of a diagram K — C; ™.
Theorem 2.1.4.2. The colimit functor IndU(PdSchy) — dStg restricts to a full faithful embedding
IPdStYY"” — dStg.

Lemma 2.1.4.3. Let a,b,d,q be integers with a < b. Let T € PdStf'ghy and X: K — C[a "I e a
U-small filtered diagram. For any i € N there exists N; such that for any n = N; and any k € K the
induced map

Map(7<, T, X (k)) — Map(7<n_1T, X (k))

s an i-equivalence.

Remark 2.1.4.4. For the proof of this lemma, we actually do not need the integer q.

Proof. Let us fix i e N. Let k€ K and T: N — dStg be a shy diagram for 7. We observe here that
T<nT is a shy diagram whose limit is 7<,, 7. Let also Yj: N — dStg be a shy diagram for X (k). The
map at hand

Yk Map(TSHTv X(k)) - Map(TSn—lTv X(k))

is then the limit of the colimits

lim colim Map(7<,T(q), Yx(p)) — lim colim Map(7<,,—1T(q), Yx(p))
peN  geN peN  geN

Let now f be a map 7<, 1T — X (k). It corresponds to a family of morphisms

fprx— C(;g\IInMap(7—<n 1T(q), Yi(p))

Moreover, the fibre F,;(f) of i over f is the limit of the fibres F?, (f) of the maps

Yne: colimMap(r<nT(9), Yu(p)) — colim Map(r<n—17T(q), Ya(p))

over the points f,. Using the exact sequence of lemma 2.1.3.4, it suffices to prove that F?, (f) is
(i + 1)-connective for any f and any p. For such an f and such a p, there exists ¢y € N such that the
map f, factors through the canonical map

Map(7<n—1T(q0), Yi(p)) — colim Map(t<n—1T(q), Ye(p))
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We deduce that F?, (f) is equivalent to the colimit

Fi(f) = colim GFE(f)

9=qo

where G?%(f) is the fibre at the point induced by f, of the map

Map(7<nT(q), Y (p)) = Map(r<n—1T(q), Yr(p))

The interval [a, b] contains the tor-amplitude of Ly, (p) and d is an integer greater than the cohomo-
logical dimension of T'(g). We saw in the proof of proposition 2.1.3.7 that G?%4(f) is then (a +n — d)-
connective. Weset N, =71+d—a + 1. O

Proof (of theorem 2.1.4.2). We will prove the sufficient following assertions

(1) The colimit functor Ind”(PdSt%”) — P(dAffg) restricts to a fully faithful functor

n: IPAStSY"” — P(dAffg)

(2) The functor n has values in the full subcategory of stacks.

Let us focus on assertion (1) first. We consider two U-small filtered diagrams X: K — PdStZhy and

V: L — PdSt3Y. We have

MaplndU(PdStsShy) (colim X, colimY') ~ li}gn MaplndU(PdStsShy) (X (k),colimY")

and
Mapp qas) (colim igny X, colim gy Y') ~ lilgn Mapp qasr) (ishy X (k), colim gy Y')

We can thus replace the diagram X in PdStsShy by a simple object X € PdStSShy. We now assume that

Y factors through Cc[féb] for some a,b,d,q. We have to prove that the following canonical morphism
is an equivalence B )
o: c?liLm Map (ishy X, ishy Y (1)) = Map (ispy X, colim igpy Y')
€

where the mapping spaces are computed in prestacks. If ¢sn, X is affine then ¢ is an equivalence because
colimits in P(dAffg) are computed pointwise. Let us assume that ¢ is an equivalence whenever ig,, X
is (¢ — 1)-Artin and let us assume that ighy X is ¢-Artin. Let u: U — ighy X be an atlas of igy X
and let Z, be the nerve of u in dStg. We saw in the proof of lemma 2.1.3.3 that Z, factors through
PdStSShy. The map ¢ is now equivalent to the natural map

C(l)gle Map(ishy X, isny Y (1)) — [Iljl]renA C(l)éle Map(Z,, isny Y (1))

~ [li]mA Map(Zp7 colim ishyi_/) ~ Map(isny X, colim ishy}_/)
ple

Remembering lemma 2.1.3.1, it suffices to study the map

C(l);iLm 1111111 Map(T<nishy X, ishy Y (1)) — [;l}]IenA ccl)eliLm lirrln Map(T<nZp, isny Y (1))

Applying lemma 2.1.4.3 and then lemma 2.1.3.5, we see that ¢ is an equivalence if the natural morphism

lirlln C(l)eliLm [ii]lerlA Map(T<n Zp, isny Y (1)) — lirrln []lgi]lenA c?eliLm Map(T<nZp, ishy Y (1))

is an equivalence. The stack isnyY (1) is by assumption g-Artin, where ¢ does not depend on I. Now
using lemma 2.1.3.1 and lemma 2.1.3.2, we conclude that ¢ is an equivalence. This proves (1_) We now
focus on assertion (2). If suffices to see that the colimit in P(dAffg) of the diagram ig,, Y as above
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is actually a stack. Let Hq: AP U {—1} — dAffs be an hypercovering of an affine Spec(A) = H_;.
We have to prove the following equivalence

colim lim Map(Hp,isnyY (1)) — lim colim Map(Hp, isnyY (1))
L [plea [plea 1

Using the same arguments as for the proof of (1), we have
collim [Il)i]renA Map(H,, ishy Y (1)) ~ colllm [lel]renA hrrln Map(T<nHp, ishy Y (1))

~ lim colim lim Map(T<,Hp, isnyY (1))
n L [pleA

(
(

~ lim lim Cohm Map(7<n p,zbth(l))
(T<

n [plea

~ lim cohmhm Map p,lshyya))
[plea 1

~ lim colimMap(Hp,isth(l))
[plea 1

We will need one last lemma about that category IPdStShy b
Lemma 2.1.4.5. The fully faithful functor IPdStShyb N IPdAffs — IPdStg — dStg preserves
finite limits.

Proof. The case of an empty limit is obvious. Let then X — Y «— Z be a diagram in IPdStf;hy’b
IPdAffs. There exist a and b and a diagram

o K — Fct(Af,CO“ b])

such that K is a U-small filtered simplicial set and the colimit in IPdStg is X — Y « Z. We
can moreover assume that o has values in Fct(A?, Pro”(dAffg)) ~ Pro”(Fct(A? dAffg)). We
deduce that the fibre product X xy Z is the realisation of the ind-pro-diagram in derived affine
stacks with cotangent complex of tor amplitude in [a — 1,b + 1]. It follows that X xy Z is again in
IPdStYY" A IPdAffs. O

2.2 Symplectic Tate stacks

2.2.1 Tate stacks: definition and first properties

We can now define what a Tate stack is.

Definition 2.2.1.1. A Tate stack is a derived Artin ind-pro-stack locally of finite presentation whose
cotangent complex — see proposition 2.1.2.19 — is a Tate module. Equivalently, an Artin ind-pro-stack
locally of finite presentation is Tate if its tangent complex is a Tate module. We will denote by dStEate

the full subcategory of IPdSt; spanned by Tate stacks.

This notion has several good properties. For instance, using lemma 2.1.2.9, if a X is a Tate stack
then comparing its tangent Tx and its cotangent ILx makes sense, in the category of Tate modules
over X. We will explore that path below, defining symplectic Tate stacks.

Another consequence of Tatity' is the existence of a determinantal anomaly as defined in [KV2].
If X is a Tate stack, then using the determinant map K — B G,,, — see [STV] for its formal definition
— we get a class [det x] € H*(0%) : the determinantal anomaly — see definition 2.2.1.5.

Lor Tateness or Tatitude
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Let us consider the natural morphism of prestacks
0: Tate? — KTate

where Tate" denote the prestack A — Tate”(Perf(A)) and KTate: 4 — K(Tate”(Perf(4))) - K
denoting the connective K-theory functor. From corollary 1.1.0.8 we get an exact sequence

BK S KTate S KOTate
Lemma 2.2.1.2. The prestack KI2* vanishes Nisnevich-locally. It follows that the map 9~, obtained
from 6 by stackifying both ends, factors through the stack associated to BK.
Proof. Is suffices to prove that for any Henselian cdga A, we have
K_(Perf(A) ~ Kq(Tate” (Perf(A))) ~ 0

A cdga A is Henselian if and only if H(A) is. Using the Bass exact sequences, we get

Ko(Aft]) ® Ko(A[t™]) ————Ko(A[t,t7']) ———=K_1(4) ——0

g lg |

Ko(H(A)[t]) ® Ko(H*(A)[t™1]) — Ko(H*(A)[t,t71]) — K_1(H"(4)) —=0

Since Kg only depends on the non-derived part of an affine scheme (see [Wal, 2.3.2]), both f and g are
isomorphisms and hence so is h. We can thus restrict to the non-derived case — which can be found
in [Dri, theorem 3.7]. O

Definition 2.2.1.3. We define the Tate determinantal map as the composite map
Tate” - 7 - BK — K(G,,,2)

where T is the stack associated to Tate” and K(G,,2) is the Eilenberg-Maclane classifying stack.
To any derived stack X with a Tate module E, we associate the determinantal anomaly [detg] €
H?(X,0%), image of E by the morphism

Map(X, Tate”) — Map(X, K(G,,,2))

Remark 2.2.1.4. We built here some determinant map for Tate objects. Those kind of determinant
maps already appeared in [OZ1].

Let now X be an ind-pro-stack. Let also R denote the realisation functor ProV dSt, — dSt,.
Let finally X: K — Pro” dSt;, denote a U-small filtered diagram whose colimit in IPdSt; is X. We
have a canonical functor

Fx: lim Tatep (X) ~ Tatefp(X) — lim Tate”(RX)

Definition 2.2.1.5. Let X be an ind-pro-stack and E be a Tate module on X. Let X’ be the
realisation of X in Ind” dSt; and X” be its image in dSt;. We define the determinantal anomaly of
E the image of F'x(FE) by the map

Mapinqav ast, (X', T) — Mapqv dStk(X/v K(Gm,2)) ~ MapdStk(X”7 K(Gm,2))

In particular if X is a Tate stack, we will denote by [detx] € H*(X”, 0%.,) the determinantal anomaly
associated to its tangent Tx € Tatepp (X).

Let us conclude this section with following
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Lemma 2.2.1.6. The inclusion dSt}™° — IPdSt,, preserves finite limits.

Proof. Let us first notice that a finite limit of Artin ind-pro-stacks is again an Artin ind-pro-stack.
Let now X —» Y « Z be a diagram of Tate stacks. The fibre product

X xy Z 25X

Z——=Y

is an Artin ind-pro-stack. It thus suffices to test if its tangent Tx .z is a Tate module. The following
cartesian square concludes

Txxyz —p%Tx
-

Py Tz ——p%g*Ty

2.2.2 Shifted symplectic Tate stacks

We assume now that the basis S is the spectrum of a ring k of characteristic zero. Recall from [PTVV]
the stack in graded complexes DR mapping a cdga over k to its graded complex of forms. It actually
comes with a mixed structure induced by the de Rham differential. The authors also defined there
the stack in graded complexes NCY mapping a cdga to its graded complex of closed forms. Those two
stacks are linked by a morphism NC% — DR forgetting the closure.

We will denote by AP, APl: cdgas’ — dgMod, the complexes of weight p in DR[—p] and
NCY[—p] respectively. The stack AP will therefore map a cdga to its complexes of p-forms while AP-!
will map it to its closed p-forms. For any cdga A, a cocycle of degree n of AP(A) is an n-shifted
p-forms on Spec A. The functors AP-° and AP extend to functors

AP AP dSt)? — dgMod,,

Definition 2.2.2.1. Let us denote by AT, and Afl’fl the extensions
(IPdSt;,)°? — Pro” Ind” dgMod,,

of AP and AP, respectively. They come with a natural projection ALs' — AP,

Let X € IPdSt;. An n-shifted (closed) p-form on X is a morphism k[—n] — AJp(X) (resp.
APS(X)). For any closed form w: k[—n] — APS(X), the induced map k[—n] — ALS (X) — AP, (X)
is called the underlying form of w.

Remark 2.2.2.2. In the above definition, we associate to any ind-pro-stack X = colim, limg X,z its
complex of forms
Alp(X) = lig(n co/l@im AP(X,3) € Pro” Ind"” dgMod,

For any ind-pro-stack X, the derived category PIQcoh(X) is endowed with a canonical monoidal
structure. In particular, one defines a symmetric product E — Sympy(E) as well as an antisymmetric
product

2
E s E = Sympy(E[-1])[2]
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Theorem 2.2.2.3. Let X be an Artin ind-pro-stack over k. The push-forward functor
19 PIQcoh(X) — Pro' Ind"(dgMod,)

ezists (see proposition 2.1.2.13) and maps Lx npiLx to Ap(X). In particular, any 2-form k[—n] —
A% (X) corresponds to a morphism Ox[—n] — Lx Ap1 Ly in PIQcoh(X).

Proof. This follows from [PTVV, 1.14], from proposition 2.1.2.20 and from the equivalence

AP 2 AP — Pro” Ind"()) o Pro”Ind"(\) ~ Pro” Ind”(\ A \)

where AP is defined in the proof of proposition 2.1.2.19. O

Definition 2.2.2.4. Let X be a Tate stack. Let w: k[-n] — A}p(X) be an n-shifted 2-form on X.
It induces a map in the category of Tate modules on X

w: TX — ]Lx[n]

We say that w is non-degenerate if the map w is an equivalence. A closed 2-form is non-degenerate if
the underlying form is.

Definition 2.2.2.5. A symplectic form on a Tate stack is a non-degenerate closed 2-form. A sym-

plectic Tate stack is a Tate stack equipped with a symplectic form.

2.2.3 Mapping stacks admit closed forms

In this section, we will extend the proof from [PTVV] to ind-pro-stacks. Note that if X is a pro-
ind-stack and Y is a stack, then Map(X,Y) is an ind-pro-stack. We will then need an evaluation
functor Map(X,Y) x X — Y. It appears that this evaluation map only lives in the category of
ind-pro-ind-pro-stacks

co(llim li[gn colgim lién@p(Xac, Y)x Xge > Y

To build this map properly, we will need the following remark.
Definition 2.2.3.1. Let C be a category. There is one natural fully faithful functor
¢: PI(C) — (IP)*(C)
but three IP(C) — (IP)?(C). We will only consider the functor
2 IP(C) — (IP)*(C)

induced by the Yoneda embedding Pro(C) — PI(Pro(C)). Let us also denote by £ the natural fully
faithful functor C — (IP)?(C).

We can now construct the required evaluation map. We will work for now on a more general
basis. Let therefore X be a pro-ind-stack over a stack S. Let also Y be a stack. Whenever T is a
stack over S, the symbol Mapg¢(7,Y") will denote the internal hom from X to Y xS in dStg. It comes
with an evaluation map ev: Mapg(T,Y) xsT — Y x S € dStg.

Let y: dStg — dStg denote the functor T'+— Y x T There exists a natural transformation

EV: OdSt‘;p — O<>1<Sts Oy0p
between functors dSt¢’ — Cat,,. For a stack X over S, the functor

EVy: (X/dStS)Op —» dSty . x
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maps a morphism X — T to the map

ev X pr

Mapg(T,Y) x X——=Mapg(X,Y) x X——=Y x X
s 5

Let us consider the natural transformation
U U
Progggor (EV): O(rnavases)or — Progseer (Ogse, y™")
of functors (Ind” dStg)°? — Cat.,. We define EV™? to be the natural transformation

BV = 7955 o Progg,or (EV)
where T95%5" is defined as in lemma 1.3.0.11. To any X € Ind" dStg it associates a functor
op
Evind. (X/IndIU dStS) — TPdSty , x

Definition 2.2.3.2. Let Y be a stack. We define the natural transformation EVF!
e —
EVPI _ :Ind dSts ° Ind(lnd dSts) Op( VInd) OPIdSts — OI><P2dSts oyOP

':'Ind dst??

where = s is defined in remark 1.3.0.12. To any X € PIdStg it associates a functor

EVEL. (X/PIdSts) Y LIPSty x
We then define the evaluation map in IP?dStg

Y. ¢y Mapg(X,Y) x qbXLfY x pX —LY

We assume now that S = Spec k. Let us recall the following definition from [PTVV, 2.1]

Definition 2.2.3.3. A derived stack X is O-compact if for any derived affine scheme T' the following
conditions hold

e The quasi-coherent sheaf Ox 7 is compact in Qcoh(X x T) ;
e Pushing forward along the projection X x T' — T preserves perfect complexes.
Let us denote by dStkO the full subcategory of dSt; spanned by O-compact derived stacks.

Definition 2.2.3.4. An O-compact pro-ind-stack is a pro-ind-object in the category of O-compact
derived stacks. We will denote by PIdStkO their category.

Lemma 2.2.3.5. There is a functor
PIdSt;, — Fct(IPdSt, x A' x Al (IP)*(dgMod,,)°?)

defining for any O-compact pro-ind-stack X and any ind-pro-stack F' a commutative square

ATSL(WF x ¢X) —= ALS (U F) @, ¢Ox

| |

ATL:(YF x ¢X) — Afp(VF) @, ¢Ox

where AT} é and Alp. are the extensions of AP and AP, to

(IP)2dSt; — (IP)%*(dgMod;P)
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Proof. Recall in [PTVV, part 2.1] the construction for any O-compact stack X and any stack F' of
a commutative diagram:
NC¥(F x X) — NC¥(F) ®, Ox

DR(F x X) ——DR(F) ®x Ox
Taking the part of weight p and shifting, we get

AP(F x X) —= APY(F) @, Ox

| |

AP(F x X) — AP(F) ®i Ox
This construction is functorial in both F' and X so it corresponds to a functor
dSt{ — Fet(dSt, x A x A!, dgMod;P)
We can now form the functor
PIdSt{ — PIFct(ProdSt, x A! x A, Pro(dgMod;"))

— Fet(ProdSt;, x A' x A', PIPro(dgMod}"))
— Fet(IPdSt, x A' x Al (IP)?*(dgMod;”))

By construction, for any ind-pro-stack F' and any O-compact pro-ind-stack, it induces the commutative
diagram

AP (WF x ¢X) —= AL (F) ©, ¢Ox

AlL:(VF x ¢X) ——= ¢ Alp(F) ® ¢Ox
O

Remark 2.2.3.6. Let us remark that we can informally describe the horizontal maps using the maps
from [PTVV]:

O1p2(VF x ¢X) = lim co}gim lim co%im O(Fas x Xpy)
a B!

— lim CO}gim lim CO}Sim @(Fm;) ® (OXZM) = ’(ﬂ@IP(F) ® ¢OX
« Y

where © is either AP or AP.

Definition 2.2.3.7. Let F' be an ind-pro-stack and let X be an O-compact pro-ind-stack. Let
n: Ox — k[—d] be a map of ind-pro-k-modules. Let finally © be either AP! or AP. We define the
integration map

J t Op2 (VF x ¢X)—1O1p(F) ®¢OXM¢91P(F)[—<1]
n

Theorem 2.2.3.8. Let Y be a derived stack and wy be an n-shifted closed 2-form on Y. Let X

be an O-compact pro-ind-stack and let also n: Ox — k[—d] be a map. The mapping ind-pro-stack
Map(X,Y) admits an (n — d)-shifted closed 2-form.
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Proof. Let us denote by Z the mapping ind-pro-stack Map(X,Y’). We consider the diagram

wy ev C S" c
N[ 1]~ A2 (V)25 A2 (X % 2)— > %S (2)[d]

where x: dgMod, 5 IP(dgMod,") i (IP)?(dgMod;") is the canonical inclusion. Note that since
the functor ¢ is fully faithful, this induces a map in IP(dgMod,")

eh—=A35 (Z)[n — d]

and therefore a an (n — d)-shifted closed 2-form on Z = Map(X,Y’). The underlying form is given by
the composition

wy ev¥ §
xk[—n]—=xA*(Y)—>=Afp: (X x Z2)—=9A{p(Z)[~d]

O

Remark 2.2.3.9. Let us describe informally the form issued by theorem 2.2.3.8. We set the notations
X = lim, colimg X, and Z,3 = Map(X,z,Y). By assumption, we have a map

n: cogmliénoxaﬂ — k[—d]

For any «, there exists therefore 5(a) and a map 7,00y Ox — k[—d] in dgMod (k). Unwinding

the definitions, we see that the induced form Sn wy

aB(a)

¢k—A3 (Map(X,Y))[n — d] ~ lim,, colimg A%(Zap)[n — d]
is the universal map obtained from the maps

Wa B ()

k——=A2(Z, (a))[n — d]——colimg A%(Zup)[n —d]

where wqg(q) is built using 7,3(,) and the procedure of [PTVV]. Note that wqg(q) can be seen as a
map Tx_ ., ®Tx, 5. = OX,p.,- We also know from theorem 2.2.2.3 that the form Sn wy induces
a map

T, Ty, — Oz[n — d]

in IPP(Z). Let us fix ag and pull back the map above to Z,,. We get

colimliéngzo(ﬂo(’iﬁ('ﬂ‘za[j ®Tz,,) ~ i3 (Tz®Tz) — Oz, [n—d]

a=ag

This map is the universal map obtained from the maps
1iéngzoaP25(TZa5 ® Tzaa) - gioap:c,é’(a) (Tzaﬁ(a) ® Tzaﬁ(a))
- gzgapziﬁ(a)(OXaa(a))[n —d] ~ OXQO [n—d]

where go,q is the structural map Z,, — Z, and p.g is the projection Z, = limg Z,3 — Zn3-

2.2.4 Mapping stacks have a Tate structure

Definition 2.2.4.1. Let S be an O-compact pro-ind-stack. We say that S is an O-Tate stack if there
exist a poset K and a diagram S: K°P — Ind” dSt;, such that

(i) The limit of S in PIdSt, is equivalent to S ;
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(ii) For any i < j € K the pro-module over S(i)

coker(@g(i) — 5(i < j)*Og(j))

is trivial in the pro-direction — ie belong to Qcoh(S(i)).
(iii) For any i < j € K the induced map S(i < j) is represented by a diagram
f: L x At — dSty,
such that

e For any [ € L the projections f(1,0) — % and f(I,1) — * satisfy the base change formula ;
e For any [ € L the map f(I) satisfies the base change and projection formulae ;

e For any m < [ € L the induced map f(m < [,0) satisfies the base change and projection
formulae.

Remark 2.2.4.2. We will usually work with pro-ind-stacks S given by an explicit diagram already
satisfying those assumptions.

Proposition 2.2.4.3. Let us assume that Y is a derived Artin stack locally of finite presentation.
Let S be an O-compact pro-ind-stack. If S is an O-Tate stack then the ind-pro-stack Map(S,Y) is a
Tate stack.

Proof. Let Z = Map(S,Y) as an ind-pro-stack. Let S: K°P — Ind" dSty, be as in definition 2.2.4.1.
We will denote by Z: K — Pro"” dSt;, the induced diagram and for any i € K by s;: Z(i) — Z the
induced map.

Let us first remark that Z is an Artin ind-pro-stack locally of finite presentation. It suffices to
prove that s¥L is a Tate module on Z(i), for any i € K. Let us fix such an i and denote by Z; the
pro-stack Z (7).

We consider the differential map

S;kLZ i LZ,;

It is by definition equivalent to the natural map
lim AE™(Z| =) 5 AB®(Z,)
where K>? is the comma category ¢/K and Z|x=: is the induced diagram
K> - Zi/ProV dStg

Let ¢; denote the diagram
¢i: (K>')” — IPerf(Z;)
obtained as the kernel of f. It is now enough to prove that ¢; factors through Perf(Z;).
Let j > 7 in K and let us denote by g;; the induced map Z; — Z; of pro-stacks. Let f:LxA" -
dSty, represents the map S(i < j): S(j) — S(i) € Ind” dSt;, as in assumption (i) in definition 2.2.4.1.
Up to a change of L through a cofinal map, we can assume that the induced diagram

coker(Og;) — S(i < 7)+O05(;))
is essentially constant — see assumption (ii). We denote by h: L° x A’ — dSt;, the induced diagram,
so that g;; is the limit of h in ProY dSty,. For any [ € L we will denote by h;: Z; — Zj; the map h(l).

Let us denote by Z; the induced diagram [ — Z;; and by Zj the diagram [ — Zj;. Let also p; denote
the projection Z; — Z;
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We have an exact sequence
i () — collimp;"hl*ILZﬂ — collimp?‘LZ“

Let us denote by 1);; the diagram obtained as the kernel

bij = NG (Z5) — NG (Zy)
so that ¢;(j) is the colimit colim;; in IPerf(Z;). It suffices to prove that the diagram ;;: L —
Perf(Z;) is essentially constant (up to a cofinal change of posets). By definition, we have
wl](l) = p;k]LZa:z/ij [_1]

Let m — [ be a map in L and ¢ the induced map Z;; — Z;p,. The map ¢;;(m — 1) is equivalent to
the map p;*¢ where ¢ fits in the fibre sequence in Perf(Z;;)

—t*Ly

im

t* Lz, /2 [— 1 —t*h} Lz,

| |

LZu/ZjL [_1] h?‘Lij Lz,
We consider the dual diagram

T 2,02y [ 1] <—— "N T, <——1*Tg,

| ]

TZil/Zjl [1] hl*Tij Tzil

Using base change along the maps from Sj,, Sjn, and Sj; to the point, we get that the square (o) is
equivalent to
T (id X8 frn) 5 (id X8 fin ) ¥ E <—— 7, (id x8)4(id x8)*E

| |

i (id X f1)« (d x fi)* B <——————— ™ &

where w: Z;; x S;; — Z;; is the projection, where s: S;,, — S;; is the map induced by m — [ and
where E ~ ev* Ty with ev: Z; x S;; — Y the evaluation map. Note that we use here the well known
fact Tyrap(x,y) = pry ev* Ty where

Map(X,Y) =—— Map(X,V) x X —>V

are the canonical maps.
Now using the projection and base change formulae along the morphisms s, f; and f,, we get
that (o) is equivalent to the image by 7, of the square

E®p*8*fm*05jm -~ E®p*8*osim

| |

E®p*f1,.0s;, E®p*0Og,

We therefore focus on the diagram

S*fm*OSjm S*OS“n

T |

f150s,, =<— Og,
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The map induced between the cofibres is an equivalence, using assumption (4i). It follows that the
diagram 1);; is essentially constant, and thus that Z is a Tate stack. O
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Chapter 3

Loop and bubble spaces

In this chapter, we will at last define and study the higher dimensional formal loop spaces. We will
prove it admits a Tate structure and then study the bubble space, an object defined using the formal
loop space. We will then prove the bubble space to admit a symplectic structure.

3.1 Formal loops

3.1.1 Dehydrated algebras and de Rham stacks

In this part, we define a refinement of the reduced algebra associated to a cdga. This allows us to
define a well behaved de Rham stack associated to an infinite stack. Indeed, without any noetherian
assumption, the nilradical of a ring — the ideal of nilpotent elements — is a priori not nilpotent itself.
The construction below gives an alternative definition of the reduced algebra — which we call the
dehydrated algebra — associated to any cdga A, so that A is, in some sense, a nilpotent extension of
its dehydrated algebra. Whenever A is finitely presented, this construction coincides with the usual
reduced algebra.

Definition 3.1.1.1. Let A € cdga,fo. We define its dehydrated algebra as the ind-algebra Agen, =
colim; H° (A)/1 where the colimit is taken over the filtered poset of nilpotent ideals of H°(A). The
case I = 0 gives a canonical map A — Agep, in ind-cdga’s. This construction is functorial in A.

Remark 3.1.1.2. Whenever A is of finite presentation, then Agey is equivalent to the reduced algebra
associated to A. In that case, the nilradical v/A of A is nilpotent. Moreover, if A is any cdga, it is a
filtered colimits of cdga’s A, of finite presentation. We then have Agen, ~ colim(Ag )req in ind-algebras.

Lemma 3.1.1.3. The realisation B of Aqen in the category of algebras is equivalent to the reduced
algebra Areq.

Proof. Let us first remark that B is reduced. Indeed any nilpotent element x of B comes from a
nilpotent element of A. It therefore belongs to a nilpotent ideal (x). This define a natural map of
algebras A,.q — B. To see that it is an isomorphism, it suffices to say that v/A is the union of all
nilpotent ideals. [

Definition 3.1.1.4. Let X be a prestack. We define its de Rham prestack Xgr as the composition

<0 (—=)den U <0 IndU(X) U colim
cdgay” — Ind (cdga;”) ——'Ind" (sSets) —— sSets

This defines an endofunctor of (00, 1)-category P(dAff)). We have by definition

Xar(A) = collimx(HO(A)/I)
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Remark 3.1.1.5. If X is a stack of finite presentation, then it is determined by the images of the cdga’s
of finite presentation. The prestack Xggr is then the left Kan extension of the functor
cdga,fo’fp — sSets
A — X (Ared)

Definition 3.1.1.6. Let f: X — Y be a functor of prestacks. We define the formal completion Xy
of X in Y as the fibre product

Xy — Xur
.
Y ——Yar

This construction obviously defines a functor FC: 77(dAff;€)Al — P(dAffy).

Remark 3.1.1.7. The natural map Xy — Y is formally étale, in the sense that for any A € cdga,f0
and any nilpotent ideal I  H°(A) the morphism

Xy (A) — Xy (H(A)/1) x Y (A)
Y (H(A)r)

is an equivalence.

3.1.2 Higher dimensional formal loop spaces

Here we finally define the higher dimensional formal loop spaces. To any cdga A we associate the
formal completion V;{ of 0in Afg. We see it as a derived affine scheme whose ring of functions A[ X7, 4]
is the algebra of formal series in d variables X7, ..., Xy4. Let us denote by Ulj'l1 the open subscheme of
V¢ complementary of the point 0. We then consider the functors dSty x cdga,f0 — sSets

£~dV: (X7 A) — N[apdSt;c (szllaX)
L{: (X, A) — Mapgs,, (U, X)

Definition 3.1.2.1. Let us consider the functors ﬁdUN and L{ as functors dSt; — P(dAfF). They
come with a natural morphism L{, — L{;. We define £ to be the pointwise formal completion of L{,
into LY :

LX) = FO(L4(X) — LX)

We also define £, £& and L{ as the stackified version of £¢, L& and L{. respectively. We will call
L£4(X) the formal loop stack in X.

Remark 3.1.2.2. The stack £ (X) is a higher dimensional analogue to the stack of germs in X, as
studied for instance by Denef and Loeser in [DL].

Remark 3.1.2.3. By definition, the derived scheme U¢ is the (finite) colimit in derived stacks

U4 = colim colim Spec(A[[Xl_“d]][Xi_l_l__i ])
q iq B

U1,y

where A[[X1.. 4] [X;l1 ] denote the algebra of formal series localized at the generators X[ll, XL

tq 1q

It follows that the space of A-points of £4(X) is equivalent to the simplicial set

d ~ . . . ‘_1 ‘ \/j
£~ ot i 1, (S (A1, A0 1).5)
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where A[[led]][Xi’l‘l“.q]ﬁ is the sub-cdga of A[X1. 4JI[X;."; ] consisting of series

K2 ‘lq

where a,,, .. n, is in the kernel of the map A — H° (A)/] as soon as at least one of the n;’s is negative.
Recall that in the colimit above, the symbol I denotes a nilpotent ideal of H° (4).

Lemma 3.1.2.4. Let X be a derived Artin stack of finite presentation with algebraisable diagonal (see
definition 0.2.0.7) and let t: T = Spec(A) — X be a smooth atlas. The induced map LE(T) — LE(X)
is an epimorphism of stacks.

Proof. It suffices to study the map L{,(T) — L{(X). Let B be a cdga. Let us consider a B-point
z: Spec B — L% (X). It induces a B-point of X

Spec B — Spec(B[[X1...4]) 5 X

Because t is an epimorphism, there exist an étale map f: SpecC — SpecB and a commutative
diagram
SpecC ——=T
| |
SpecB——= X
It corresponds to a C-point of Spec B x x T'. For any n € N, let us denote by S,, the spectrum Spec C,,,

by X, the spectrum Spec B,, and by T}, the pullback T x x X,,. We will also consider the natural fully
faithful functor A™ ~ {0,...,n} — N. We have a natural diagram

g - A?? x N I A2 x AD - dSt;
A22XAD

informally drown has a commutative diagram

So Sh
| v
X, X,
{ i
To T,

Let n € N and let us assume we have built a diagram

an: (A2 xN) 11 A? x A" — dSt;,

A2:2x AN
extending «,,_1. There is a sub-diagram of «,,

Sp == Sn+1

|

Ty —— Ty

itn#»l

Xn+1
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Since the map t,1 is smooth (it is a pullback of t), we can complete this diagram with a map
Sn+1 — Th+1 and a commutative square. Using the composition in dSt;, we get a diagram v, 1
extending a,,. We get recursively a diagram a: A? x N — dSt,. Taking the colimit along N, we get
a commutative diagram

Spec C —— colim,, Spec C,, T
| | j
Spec B —— colim,, Spec B,, — Spec(B[ X1, 4]]) —= X
This defines a map ¢: colim Spec(C,,) — Spec(B[X1..4]]) xx T. We have the cartesian diagram
Spec(B[[Xlni]J]) xx T X
| |

Spec(B[X1. 4) x T ——=X x X

The diagonal of X is algebraisable and thus so is the stack Spec(B[[X1.. 4]]) xx T. The morphism ¢
therefore defines the required map

Spec(C[X1..all) — Spec(B[X1..a])) X T

O

Remark 3.1.2.5. Let us remark here that if X is an algebraisable stack, then E‘{/(X) is a stack, hence
the natural map is an equivalence .
L9(X) ~ L5 (X)

Lemma 3.1.2.6. Let f: X — Y be an étale map of derived Artin stacks. For any cdga A € (:dga,fO
and any nilpotent ideal I HO(A), the induced map

0: LEX)(A) — LE(X) (H(A)1) x LEY)(A)
£500)(10(A)y)

is an equivalence.

Proof. The map 6 is a finite limit of maps

p: X(EA) — X (£(HO(A)/1)) x Y (£A)
Y (£(H ()

where £A = A[[Xl...d]][Xi:,l“ip] and ¢(H°(A)/1) is defined similarly. The natural map ¢(H’(A)) —
f(HO(A)/]) is also a nilpotent extension. We deduce from the étaleness of f that the map

X(EH"(A))) —= X (£(H°(A)/1)) x Y(E(H(4)))
Y (s(H (1))

is an equivalence. Let now n € N. We assume that the natural map

X(E(A<n)) —= X (E(H°(A)/1)) * Y(E(A<n))
Y (s(H (1))
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is an equivalence. The cdga (A< 1) ~ (EA) <,y 1 is asquare zero extension of £(A<, ) by H" 1 (£A).
We thus have the equivalence

X(€(A<nt1)) — X(€(A<n)) x Y(E(A<nt1))
Y (£(A<n))

The natural map

X(E(A<n+1)) — X (E(H(A)1)) x Y (£(A<n+1))
Y (s(8°(ayr))

is thus an equivalence too. The stacks X and Y are nilcomplete, hence p is also an equivalence —
recall that a derived stack X is nilcomplete if for any cdga B we have

X(B) ~ lim X (Bgp)
n
It follows that 6 is an equivalence. O

Corollary 3.1.2.7. Let f: X — Y be an étale map of derived Artin stacks. For any cdga A € cdga,f0
and any nilpotent ideal I  H°(A), the induced map

0: Ed(X)(A) Hﬁd(X)(HO(/})/[) X Ed(Y)(A)
LYY)(HO(A)r)

s an equivalence.

Proposition 3.1.2.8. Let X be a derived Deligne-Mumford stack of finite presentation with algebrais-
able diagonal. Let t: T — X be an étale atlas. The induced map LY(T) — LU(X) is an epimorphism
of stacks.

Proof. We can work on the map of prestacks £4(T) — £4(X). Let A € cdgaj;". Let = be an A-point
of £L4(X). Tt corresponds to a vertex in the simplicial set

colim £, (X) (H(A)/1) x LE(X)(4)
LE(X)(HO(A)r)

There exists therefore a nilpotent ideal I such that x comes from a commutative diagram

d
UHO(A)/I

|

Vo (Ayr

— U

— X

Using lemma 3.1.2.4 we get an étale morphism : A — B such that the map v lifts to a map
u: Vp; — T where J is the image of I by ¢. This defines a point in

LE(T)(HY(B)g) x £4(X)(B)
LE(X)(H%(B)y)

Because of lemma 3.1.2.6, we get a point of £4(T)(B). We now observe that this point is compatible
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In the case of dimension d = 1, lemma 3.1.2.6 can be modified in the following way. Let f: X —» Y
be a smooth map of derived Artin stacks. For any cdga A € cdga,f0 and any nilpotent ideal I = H(A),
the induced map

0: L{(X)(A) — Ly(X)(H(A)/1) x Li(Y)(A)
Ly (Y)(H(A)r)
is essentially surjective. The following proposition follows.

Proposition 3.1.2.9. Let X be an Artin derived stack of finite presentation and with algebraisable
diagonal. Lett: T — X be a smooth atlas. The induced map L' (T) — L(X) is an epimorphism of
stacks.

Ezample 3.1.2.10. The proposition above implies for instance that £!'(BG) ~ B £!(G) for any alge-
braic group G — where B G is the classifying stack of G-bundles.
3.1.3 Tate structure and determinantal anomaly

We saw in subsection 2.2.1 that to any Tate stack X, we can associate a determinantal anomaly. It a
class in H*(X, 0% ). We will prove in this subsection that the stack £%(X) is endowed with a structure
of Tate stack as soon as X is affine. We will moreover build a determinantal anomaly on £¢(X) for
any quasi-compact and separated scheme X.

Lemma 3.1.3.1. For any B € cdga,f0 of finite presentation, the functors
L (Spec B), L(Spec B): cdga;’ — sSets
are in the essential image of the fully faithful functor
IPdSt™" ~ IPAAff;, — IPdSt, — dSt, — P(dAfF)

(see definition 2.1.4.1). It follows that L& (Spec B) ~ L (Spec B) and L%(Spec B) ~ L£(Spec B).
Proof. Let us first remark that Spec B is a retract of a finite limit of copies of the affine line Al Tt
follows that the functor £dU(Spec B) is, up to a retract, a finite limit of functors

Zh: A Map (K[Y], ALX oD, 1)

where E = {i1,...,i,} € F = {1,...,d}. The functor Z¢ is the realisation of an affine ind-pro-scheme

Z$ ~ colim lim Spec(k[aa, ....oy> —10; < o <))
nop

where §; = 1if i € E and §; = 0 otherwise. The variable a,,, . o, corresponds to the coeflicient
of X{...X$?. The functor Z¢ is thus in the category IPdSt™® ~ IPdAff,. The result about
L¢, (Spec B) then follows from lemma 2.1.4.5. The case of £(Spec B) is similar: we decompose it into
a finite limit of functors

GL: A colim Map(k[Y], A[X, JI[XL, V7
i A coim Map(k[Y] ALY, allX; 1)

where I is a nilpotent ideal of H”(A). We then observe that G is the realisation of the ind-pro-scheme

G4 ~ colim lim Spec (k‘[aah,_,ad, —nd; < o < p]/J>

n,m p

where J is the ideal generated by the symbols ap with at least one of the «;’s negative. O

- 0d
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Remark 3.1.3.2. Let n and p be integers and let k(F,n,p) denote the number of families (a1, ..., aq)
such that —nd; < a; < p for all i. We have

Z% ~ colim lim(A®)k(F-m.p)
nop
Definition 3.1.3.3. From lemma 3.1.3.1, we get a functor £ dAffip — IPdSt;. It follows from
proposition 3.1.2.8 that L4 is a costack in ind-pro-stacks. We thus define

£%: dSt)? — 1PdSt,

to be its left Kan extension along the inclusion dAfF{? — dSt, — where dSt,” is (0, 1)-category of
derived stacks locally of finite presentation. This new functor £? preserves small colimits by definition.

Proposition 3.1.3.4. There is a natural transformation 6 from the composite functor

ﬁd I_‘IP

dSt;? —— IPdSt;, — dSt;,

to the functor L%. Moreover, the restriction of 0 to derived Deligne-Mumford stacks of finite presen-
tation with algebraisable diagonal is an equivalence.

Proof. There is by definition a natural transformation
0: L ()" — £(~)

Moreover, the restriction of 6 to affine derived scheme of finite presentation is an equivalence — see
lemma 3.1.3.1. The fact that x is an equivalence for any Deligne-Mumford stack X follows from
proposition 3.1.2.8. O

Lemma 3.1.3.5. Let F be a non-empty finite set. For any family (Mp) of complexes over k indezed
by subsets D of F', we have

colim @ MDZMF[d—l]

GAESE o DeE

where d is the cardinal of F' (the maps in the colimit diagram are the canonical projections).

Proof. We can and do assume that F' is the finite set {1,...,d} and we proceed recursively on d.
The case d = 1 is obvious. Let now d > 2 and let us assume the statement is true for F' ~\ {d}. Let
(Mp) be a family as above. We have a cocartesian diagram

colim 6—) Mp ——  colim @ Mp
{JSECF o 5 i BEECF{d} o B

| n

Mgy ——— colim M,
“ SR, M

We have by assumption

colim Mp ~ Mp g1 |d — 2
@#EcF\{d}@ch D P{ayld — 2]

and
colim Mp ~ Mpn ® colim M ® colim M
(d)SECF @S?cE v @ <{d}9ECF {d}ch D) (“”*C*ECF @#D@\{d} D)
~ M{d} (&) MF[d — 2] @MF\{d}[d - 2]
The result follows. O
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Lemma 3.1.3.6. For any B € cdga” of finite presentation, the ind-pro-stack L& (Spec B) is a Tate
stack.

Proof. Let us first focus on the case of the affine line A'. We have to prove that the cotangent
complex ]Lé([i] (a1) is a Tate module. For any subset D < F' we define M7%™ to be the free k-complex
generated by the symbols

{tday....a0,—n < a; <0if i€ D,0 < a; < p otherwise}
in degree 0. From the proof of lemma 3.1.3.1, we have

d : : p,n d 1\ o : d
Zg ~ co}llmhlrjn Spec(k[Bpcp MP"]) and LH(AY) ~ g;lélglcF Z%

where F' = {1,...,d}. If we denote by 7 the projection LdU(Al) — Speck, we get

L,ya a1y >~ 7% colim limcolim MP™ | ~ 7% limcolim colim ME™
L (AY) Gg#ECF np DGC_)E b noop g#ECFDC—PE b

Using lemma 3.1.3.5 we have
Lpaany ~m* (lirrlncoymMg" @Mp"[d— 1])

Moreover, we have MJ" ~ Mgo and ME™ ~ My™. Tt follows that Lza a1y is a Tate module

on the ind-pro-stack £f;(A'). The case of £ (Spec B) then follows from lemma 2.1.4.5 and from
lemma 2.2.1.6. O

Lemma 3.1.3.7. Let B — C be an étale map between cdga’s of finite presentation. The induced map
f: LE(SpecC) — LY (Spec B) is formally étale — see definition 2.1.2.17.

Proof. Let us denote X = Spec B and Y = Spec C. We have to prove that the induced map
jt Mapgg - (L5 ON[1£5(0)) = Map g vy (L5, £5(X))

is an equivalence of functors PIQcoh(L%(Y))<? — sSets. Since L{,(Y) is ind-pro-affine, we can
restrict to the study of the morphism

jzi Mapg; (Z[-).LG(Y)) — Mapy, (2[-1, L (X))

of functors IQcoh(Z)<% — sSets, for any pro-affine scheme Z and any map Z — L‘Z,(Y). Let us fix
E € IQcoh(Z)<". The pro-stack Z[F] is in fact an affine pro-scheme. Recall that both £{ (Y") and
L& (X) belong to TPASt;™ . Tt follows from the proof of theorem 2.1.4.2 that the morphism jz(E)
is equivalent to

liz(B)|: Mapyg,_(IZ[E]|, £G(Y)) — Mapz,_ (IZ[E]], LT (X))

where | — | is the realisation functor and the mapping spaces are computed in dStg. It now suffices
to see that |Z[F]| is a trivial square zero extension of the derived affine scheme |Z] and to use
lemma 3.1.2.6. O

Proposition 3.1.3.8. Let Spec B be a derived affine scheme of finite presentation. The ind-pro-
stack éd(Spec B) admits a cotangent complex. This cotangent complex is moreover a Tate module.
For any étale map B — C the induced map f: éd(Spec C) — éd(Spec B) is formally étale — see
definition 2.1.2.17.
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Proof. Let us write Y = Spec B. Let us denote by i: L4(Y) — L{(Y) the natural map. We will prove
that the map 4 is formally étale, the result will then follow from lemma 3.1.3.6 and lemma 3.1.3.7. To
do so, we consider the natural map

3 Map oy (L' L(Y)) = Mapgay- (L)) L5 (V)

of functors PIQcoh(éd(Y))<0 — sSets. To prove that j is an equivalence, we can consider for every
affine pro-scheme X — £%(Y) the morphism of functors IQcoh(X)<° — sSets

e Mapy, (X[, £(1)) — Mapy, (X[, £4(1))
Let us fix E € IQcoh(X)<%. The morphism jx (F) is equivalent to
[ix ()| Map x|, (IX[E]|, £4(Y)) — Mapx,_ (X [E]], £5:(Y))
where the mapping space are computed in dSt;. The map |jx(E)| is a pullback of the map
f+ Map|y,_ (IX[E]], £{-(Y)ar) — Map x|, (IX[E]|, £&(Y)ar)

It now suffices to see that |X[E]| is a trivial square zero extension of the derived affine scheme |X]|
and thus f is an equivalence (both of its ends are actually contractible). O

Let us recall from definition 2.2.1.5 the determinantal anomaly

[Detza(gpec 4)] € H? (Ed(Spec A), Ozd(Spec A)>

It is associated to the tangent T za(gpec 4) € Taterp (L% (Spec A)) through the determinant map. Using

proposition 3.1.3.8, we see that this construction is functorial in A, and from proposition 3.1.2.8 we get

that it satisfies étale descent. Thus, for any quasi-compact and quasi-separated (derived) scheme (or

Deligne-Mumford stack with algebraisable diagonal), we have a well-defined determinantal anomaly
[Det a(x)] € B2 (£4(X), O )

Remark 3.1.3.9. It is known since [KV3] that in dimension d = 1, if [Det1(x)] vanishes, then there

are essentially no non-trivial automorphisms of sheaves of chiral differential operators on X.

3.2 Bubble spaces

3.2.1 Local cohomology

This subsection is inspired by a result from [SGA2, Exposé 2|, giving a formula for local cohomology
— see remark 3.2.1.6. We will first develop two duality results we will need afterwards, and then prove
the formula.

Let A € cdgay’ be a cdga over a field k. Let (fi,..., f,) be points of A? whose images in H°(A)
form a regular sequence.

Let us denote by A, ; the Kozsul complex associated to the regular sequence (f7,..., fi) for
k<p Weset A,g = A and A, = A, for any n. If k < p, the multiplication by f;' ; induces an
endomorphism ¢}, | of A, . Recall that A, 41 is isomorphic to the cone of ¢} :

Pht1
An,k > An,k

Ll

0 > An,k+1

Let us now remark that for any couple (n, k), the A-module 4,, ;, is perfect.
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Lemma 3.2.1.1. Let k < p. The A-linear dual A;’/,? = RHom 4 (A, k, A) of Ak is equivalent to
fLLk[_kﬂ;

Proof. We will prove the statement recursively on the number k. When k = 0, the result is trivial.

Let £ > 0 and let us assume that ATVL/? is equivalent to A, x[—k]. Let us also assume that for any
a € A, the diagram induced by multiplication by a commutes

AV = Anl—k]

AV A [k

We obtain the following equivalence of exact sequences
WZ+1

Apppr[=k = 1 ——= Ay p[ k] — An i [-F]

~ ~ ~

V/A V/A (‘PLL-H)v V/A
‘Ank+1 ‘Anﬁ ‘Ank
The statement about multiplication is straightforward. O

Lemma 3.2.1.2. Let us assume A is a formal series ring over Aj:

A=Af1,---5 fol

It follows that for any n, the Ai-module A, is free of finite type and that there is map r,: A, — A;
mapping fi'... [, to 1 and any other generator to zero. We deduce an equivalence

A, > A = RHom , (A, Ay)

given by the pairing

An ®a, Ay —— A, —> A,

Remark 3.2.1.3. Note that we can express the inverse ATVL/A1 — A, of the equivalence above: it map
a function a: A,, — A; to the serie

DLl

2

where 4 varies through the uplets (iy, .. .,i,) and where fi = fi! ...f;;’”.

We can now focus on the announced formula. Let X be a quasi-compact and quasi-separated
derived scheme and let i: Z — X be a closed embedding defined be a finitely generated ideal Z < Ox.
Let j: U — X denote the complementary open subscheme.

Let us denote by Y the diagram N — dStx defined by

Y(n) =Y, = Specy ((’)X/In)
For any n € N, we will denote by i,,: Y;, — X the inclusion. Let us fix the notation

hoP op
Qcoh,,: dSthi> (Pr{;cfv> ~ PritY

64



It maps every morphism ¢: S — T to the forgetful functor ¢, : Qcoh(S) — Qcoh(T). This functor
also admit a right adjoint, denoted by ¢'. We denote by

! R,V
Qcoh': dSt;” — Pr;

the corresponding diagram. It will also be handy to denote Qcoh by Qcoh™. We finally set the
following notations

¥ j*

Qcoh(X) = lim Qcoh* (V) =—= Qcoh(X) é Qcoh(U)

T JI%
i
Qcoh(X)

Gaitsgory has proven the functors fi, and i*g to be equivalences. The functor f then corresponds to
i* through this equivalence. We can also form the adjunction

lim Qeoh' (V) =—= Qcoh(X)

Lemma 3.2.1.4 (Gaitsgory-Rozenblyum). Let A € cdga;’ and let p be a positive integer. The
natural morphism induced by the multiplication A, ®a A, — Ay is an equivalence

colim RHom , (An ® Ap, —) ~ colim RHom 4 (An ® Ap, —) < RHom 4 (4,,—)
n A A

nzp

Proof. See [GR, 7.1.5]. O

Proposition 3.2.1.5. The functor T = 14" is the colimit of the diagram

v Qcoh
N——>dStyx *

MNQcoh(X)

PrIJdV/Qcoh(X) Fet(Qcoh(X), QCOh(X))/id

It is moreover a right localisation equivalent to the local cohomology functor gf. This induces an
equivalence -
lim Qcoh' (V) — Qcoh 4 (X)

commuting with the functors to Qcoh(X).

Remark 3.2.1.6. Let us denote by Hom, (—,—) the internal hom of the category Qcoh(X). It
corresponds to a functor Qcoh(X)°P — Fct(Qcoh(X), Qecoh(X)). We moreover have a global section
functor O, : dStx — Qcoh(X)°P mapping a morphism ¢: S — X to ¢,Og. The composite functor

Homy (Ox(—),—): dStx — Fct(Qcoh(X), Qcoh(X))

is then equivalent to 7Qcon(x) © Qcoh,, using the uniqueness of right adjoints.
Tt follows that for any quasi-coherent module M € Qcoh(X), we have an exact sequence

colim Hom, (Oy, , M) — M — jyj*M
n

and thus gives a (functorial) formula for local cohomology

Hz(M) ~ colim Hom, (Oy,, M)

n

It is a generalisation to derived schemes of [SGA2, Exposé 2, Théoréme 6].

65



Proof (of the proposition). The first statement follows from the proof of proposition 1.2.0.5, applied
to the opposite adjunction. Let us consider the adjunction morphism a: T = 7,i' — id. We must
prove that both the induced maps

T >T

are equivalences. We can restrict to the affine case which follows from lemma 3.2.1.4. The functor
T is therefore a right localisation. We will denote by QcohT(X) the category of T-local objects; it
comes with functors:

Qcoh” (X) == Qcoh(X)

such that vu ~ id and wv ~ T. Using now the vanishing of j*i,, we get a canonical fully faithful
functor ¥: QcohT(X) — Qcohy (X) such that u = g¢. It follows that ¢ admits a right adjoint £
and that

Y= fu and & =vg

We will now prove that the functor £ is conservative. Let therefore E' € Qcohy (X) such that {E = 0.
We need to prove that E is equivalent to zero. We have TgE = 0 and i1 i} TgFE ~ RHomy , (Oz,gF).
Because Oz is a compact generator of Qcohy (X) — see [Toé2, 3.7] —, this implies that gF is
supported on U. It therefore vanishes.

The vanishing of j*7, implies the existence of a functor

lim Qcoh' (Y)——Qcoh, (X)
such that ¢ ~ 7,. The functor € = 7'g is right adjoint to v. The computation

gre~ixig=Tg~g

proves that ¢ is fully faithful. We now have to prove that v is conservative. Is it enough to prove that
74 is conservative. Let (E,) € lim Qcoh'(Y). The colimit

colim i, F,,
n

vanishes if and only if for any n, any p € Z and any e: Oy, [p] — E,, there exist N > n such that the
natural morphism f: h,n.Oy, [p] = hnnyFEn — En vanishes. The symbol h,y stands for the map

Y (n < N). We know that e is the composite map

Ron f
Oy, [p] — h!nNhTLN*On [p] — hi’LNEN = E,

The point e is therefore zero and F,, is contractible. O

3.2.2 Definition and properties

We define here the bubble space, obtained from the formal loop space. We will prove in the next
sections it admits a structure of symplectic Tate stack.

Definition 3.2.2.1. The formal sphere of dimension d is the pro-ind-stack
S? = lim colim Spec(A, ® Hom 4 (A,, A)) ~ lim colim Spec(A, ® A,[—d])

n  pz=n n  p=n
where A = k[z1,...,z4] and A, = A/(x?’ )

Remark 3.2.2.2. The notation Spec(A, ® A, [—d]) is slightly abusive. The cdga A, ® A,[—d] is not
concentrated in non positive degrees. In particular, the derived stack Spec(A, @ A,[—d]) is not a
derived affine scheme. It behaves like one though, regarding its derived category:

Qcoh(Spec(A, ® A,[—d])) ~ dgMod 4 g4, [_q
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Let us define the ind-pro-algebra

Oga = colim lim A, @ A,[—d]

n p=n

where A, @ A,,[—d] is the trivial square zero extension of A, by the module A,[—d]. For any m € N,
let us denote by S¢ the ind-stack

Sd — co>lim Spec(A4, ® A, [—d])
p=m

Definition 3.2.2.3. Let T be a derived Artin stack. We define the d-bubble stack of T" as the mapping
ind-pro-stack R
B(T) = Map(S%,T): Spec B + colim lim T(B ® (A, ® A,[—d]))

n p=n

Again, the cdga A, ® A, [—d] is not concentrated in non positive degree. This notation is thus slightly
abusive and by T(B ® (4, ® A,[—d])) we mean

Map(Spec(A4, ® A, [—d]) x Spec B, X)

We will denote by B(T) the diagram N — Pro" dSty of whom B(T) is a colimit in TPdSty,. Let us
also denote by 3B, (T') the mapping pro-stack

B, (T) = Map(S2,,T): Spec B — lim T(B® (A, ® A,,[—d]))

p=m
and B,,(T): {p € N|p = m}°® — dSts the corresponding diagram. In particular

B (T) = Map(SZ,T): Spec B — limT(B® A,)
P

Those stacks come with natural maps

Proposition 3.2.2.4. If T is an affine scheme of finite type, the bubble stack B(T) is the product in
ind-pro-stacks

B(T) — Ly(T)
l |
LY(T) — LG(T)
Proof. There is a natural map de — S% induced by the morphism

colimlim A, ® A, [—d] — lim A,
2

n pz=zn
Because T is algebraisable, it induces a map B(7T") — Q‘i, (T') and thus a diagonal morphism

§: B(T) — LL(T) x LE(T)
LE(T)

We will prove that 6 is an equivalence. Note that because T is a finite limit of copies of A!, we can
restrict to the case 7= A'. Let us first compute the fibre product Z = £{,(A?) X £d (A1) LE(AY). Tt
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is the pullback of ind-pro-stacks

Z lim Spec(k[aa; .....ay,0 < a; < p))
] ’ -
lim Spec(k[aq,.....au,0 < a; < p]) — colim lim }m} Spec(kaay,....aq, —Mbier < o < pl)
(e

p n p

where J = {1,...,d} and 8e; = 1 if i € I and 0 otherwise. For any subset K < .J we define ME" to
be the free complex generated by the symbols

{@ar, . agy—m <0y <0if i€ K,0 < o < p otherwise}

We then have the cartesian diagram

JZJ lim,, Spec (k[M%’OD
lim,, Spec (k[M%’OD — colim,, lim,, lim;c ; Spec(k[@® o ; ME"])
Using lemma 3.1.3.5 we get
~ . . p,0 0,n
Z ~ colimlim Spec(k[Mg ® M [d]])
O

Remark 3.2.2.5. Let us consider the map lim, A, — Ay ~ k mapping a formal serie to its coefficient
of degree 0. The (lim A,)-ind-module colim A, [—d] is endowed with a natural map to k[—d]. This

induces a morphism Og, — k @ k[—d] and hence a map S? — S, where S is the topological sphere
of dimension d. We then have a rather natural morphism

B9(X) — Map(S?, X)

3.2.3 [Its tangent is a Tate module

We already know from proposition 2.2.4.3 that the bubble stack is a Tate stack. We give here another
decomposition of its tangent complex. We will need it when proving @d(T ) is symplectic.

Proposition 3.2.3.1. Let us assume that the Artin stack T is locally of finite presentation. The
ind-pro-stack @d(T) is then a Tate stack. Moreover for any m € N we have an exact sequence

S;'I’*Lgd(r]ﬂ)o —— S;Lgd(T) —_— sfnLgd(T)/ﬁd(T)o

where the left hand side is an ind-perfect module and the right hand side is a pro-perfect module.

Proof. Throughout this proof, we will write B instead of B4(T) and B, instead of B4 (T),, for
any m. Let us first remark that 28 is an Artin ind-pro-stack locally of finite presentation. It suffices
to prove that s’ Lg is a Tate module on 8B,,, for any m € N. We will actually prove that it is an
elementary Tate module. We consider the map

* Lk *
ST ]L§D — 5, Los
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It is by definition equivalent to the natural map
ABZ(By) b lim AG(B..,,,(T))
where B, (T) is the restriction of B(T) to {n > m} = N. Let ¢ denote the diagram
¢: {n e N|n = m}°® - IPerf(3,,(T))

obtained as the cokernel of f. It is now enough to prove that ¢ factors through Perf(%8,,(T)). Let
n = m be an integer and let g, denote the induced map B,,(T) — B,(T). We have an exact
sequence

st Lo (1) = gmnSnr " Las, (1) = gL (1) — 6(n)
Let us denote by ¢ (n) the cofiber
sur*Les (1) — L (1) — ¥(n)
so that ¢(n) ~ ¢ (n). This sequence is equivalent to the colimit (in IPerf(8,,(T))) of a cofiber
sequence of diagrams {p € N|p = n}°? — Perf(8,,(T))
A1) (Bo (1)) — Ag Gy (B,,(T)) — ¥ (n)

It suffices to prove that the diagram ’g[}(T_L)I {peN|p = n}°? - Perf(B,,(T)) is (essentially) constant.
Let p e N, p = n. The perfect complex ¥(n)(p) fits in the exact sequence

thpenpls, (1) = T L (r) = P(n)(p)

where t,,,: B, (T) — B, ,(T) is the canonical projection and ,,,: B,, (T') — B, ,(T) is induced by
the augmentation Og, , — Og, . It follows that 1(n)(p) is equivalent to

nple® (1)), (T)

=n,p

Moreover, for any ¢ > p > n, the induced map ¢ (n)(p) — 1(n)(q) is obtained (through ¢} ) from the
cofiber, in Perf(B,, (1))

pgnpls, (1) —= anply )y =g L (ry/m, (1)
Il
5§qa§pqL§o,p(T)

i (o)

engls, () ——— Ly ) ——>La (), 1

where v, is the map B, (T) — B, (T). Let us denote by (o) the square on the left hand side
above. Let us fix a few more notations

B, ,(T) x Sop =3, 4(T) x Sop =3, ,(T) x So,

n,p

aop

SO,p $Pnp Ynpq Pnq
b’Vl
Enp §n,p(iz—‘) x Sn,P §n,q({Z—‘> X STMD - ﬁn,qcr) x Sn,q

% ) / . % \

Sﬂyl’ Sn,p Sn)q TWnq T
B, ,(T) B, ,(T) = B, ,(T)



The diagram (o) is then dual to the diagram

* * * *
QpaEnp@0py €V0p LT <—— Oy

*
npgSnp pg@nps €y TT

| |

* ES %
€1q@0q+ €V0q Tp<~——— Wngy €V g T+

Moreover, the functor @y, (for any n and p) satisfies the base change formula. This square is thus
equivalent to the image by cw,,, of the square

* * * * *
Vnpq s Onpa s OnpgVnpg ©Vng TT brpqOnpg €Vng T

T T

* * < *
PnqyPng €Vng Tr €Vngq Tr

Using now the projection and base change formulae along the morphisms .4, bnpg and ¥y, we see
that this last square is again equivalent to

(@7 Bnpa 4 &np s Oso.,,) @ (V3 Tr) <—— (a548npq . Os,,,,) ® (evyg Tr)

T |

(a;qu§7lQ*OSO,q) ® (ev;qu TT) (a:kzqosn,q) ® (ev':q TT)

We therefore focus on the diagram

OSn,q gnq*OSo,q

| |

ﬂnpq* OSn,p > Bnpq*fnp* OSO,p

By definition, the fibres of the horizontal maps are both equivalent to A,[—d] and the map induced
by the diagram above is an equivalence. We have proven that for any ¢ = p > n the induced map
¥(n)(p) — (n)(q) is an equivalence. It implies that Ly (7 is a Tate module. O

3.2.4 A symplectic structure (shifted by d)

In this subsection, we will prove the following

Theorem 3.2.4.1. Assume T is g-shifted symplectic. The ind-pro-stack Qd(T) admits a symplectic
Tate structure shifted by q — d. Moreover, for any m € N we have an exact sequence

sml*Laga(r), = smLagar) = simr*Tyecr) [a — d]

Proof. Let us start with the following remark: the residue map r,: A, — k = A; defined in
lemma 3.2.1.2 defines a map Ogs — k[—d]. From theorem 2.2.3.8, we have a (¢ — d)-shifted closed

2-form on B%(T). We have a morphism from theorem 2.2.2.3
Oga(rle = d] = Lgairy ® Lopa(r)
in PIPerf(B%(T)). Let m € N. We get a map

Ogary,, [a—d] = shLaa(r) ® sy Lgacr)
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and then
SmTpe(r) @ 53, Tga(ry = Oa(ry,, [q — d]

in IPPerf(B%(T),,). We consider the composite map

0: anTﬁd(T)/ﬁd(T)o ® S;Tﬁd(T)/Ed(T)o i S;Tﬁd(T) ® anng(T) i Oﬁd(T)m [q - d]
Using the remark 2.2.3.9 and the proof of proposition 3.2.3.1 we see that 6 is induced by the morphisms
(varying n and p)

A B
Daps(E® E@evhy(Tr @ Tr)) —> @np, (E @ Elq]) —> @np, (Oma(ay,., x5,., 1))

where E = ay np, np *fy,!L(’)Ad and the map A is induced by the symplectic form on 7. The map B
is induced by the multiplication in Og, ,. This sheaf of functions is a trivial square zero extension of
augmentation ideal &y, finp *"}/LOAd and B therefore vanishes. It follows that the morphism

S Tpa(r) ® 3 Twa(ry ma(r), = SmTwa(r) ® 53 Twa(ry = Opacr),, [q — d]

factors through s} Ty (), ® s, Tosa(ry ma(r),- Now using proposition 3.2.3.1 we get a map of exact

sequences in the category of Tate modules over Qd(T)m

S;ng(T)/gd(T)o I——— S;ng(T) —_—> anT*ng(T)o

"| ! |

sl Laga(r), [d — a] — i L) [d — 4] — shLapa () ez, [d — 4]
where the maps on the sides are dual one to another. It therefore suffices to see that the map
Tm: i Tga(ry ma(r), = ST Laga(r),[d — ¢ is an equivalence. We now observe that 7, is a colimit

indexed by p = m of maps

Ipmlpp (E;fpﬂ—’gdmop - T@d(T)W@d(T%J

Let us fix p > m and G = a;,§p, Os,,- The map F,: Tgary, s wi(r)

! al - o > Epplima(r),, ab hand is
induced by the pairing

Top(7),,/89(T)op ® Epp T8 (1), = Tppy (E @ vy, Tr) @ wpp,, (G ®@evy, Tr)
Tpp 4 (E ® ev;’)‘p Tr®G® ev;’,‘p TT)

wpp*(E ®G)[dg]

Wpp 4 (Ogd (T) pp X Spp ) lq]

Ogd(T)pp [q —d]

We can now conclude using lemma 3.2.1.2. O
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Chapter 4

Tangent Lie algebra

We will study in this last chapter the tangent complex of a derived Artin stack. The main theorem
builds a Lie structure on the shifted tangent complex Tx[—1] of a derived Artin stack X locally of
finite presentation. We will also prove that for any perfect complex E on X, its Atiyah class defines a
Lie action of the tangent Tx[—1] on E. In this chapter, k£ will be a field of characteristic zero. Given
Ae cdgalfo, we will use the following notations

e The (o0, 1)-category dgMod 4 of (unbounded) dg-modules over A4 ;

The (o0, 1)-category cdga, of (unbounded) commutative dg-algebras over A ;

The (o0, 1)-category cdgajO of commutative dg-algebras over A cohomologically concentrated
in non positive degree ;

e The (o0, 1)-category dgAlg 4 of (neither bounded nor commutative) dg-algebras over A ;
e The (o0, 1)-category dgLie, of (unbounded) dg-Lie algebras over A.

Each one of those (o0, 1)-categories appears as the underlying (oo, 1)-category of a model category.
We will denote by dgMod 4, cdga 4, cdgajo, dgAlg 4 and dgLie, the model categories.

4.1 Lie algebras and formal stacks over a cdga

In this part we will mimic a construction found in Lurie’s [DAG-X]

Theorem 4.1.0.1 (Lurie). Let k be a field of characteristic zero. There is an adjunction of (00,1)-
categories:

op
Cy: dgLie, 2 (cdgak/k) : Dg
Whenever L is a dg-Lie algebra:

(i) If L is freely generated by a dg-module V' then the algebra Cy (L) is equivalent to the trivial square
zero extension k ®VV[—1] — see [DAG-X, 2.2.7].

(ii) If L is concentrated in positive degree and every vector space L™ is finite dimensional, then the
adjunction morphism L — Dy Cy L is an equivalence — see [DAG-X, 2.3.5].

The goal is to extend this result to more general basis, namely a commutative dg-algebra over k
concentrated in non positive degree. The existence of the adjunction and the point (i) will be proved
over any basis, the analog of point (ii) will need the base dg-algebra to be noetherian.

Throughout this section, A will be a commutative dg-algebra concentrated in non-positive degree
over the base field k (still of characteristic zero).
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4.1.1 Poincaré-Birkhoff-Witt over a cdga in characteristic zero

In this first part, we prove the PBW-theorem over a cdga of characteristic 0. The proof is a simple
generalisation of that of Paul M. Cohn over a algebra in characteristic 0 — see [Coh, theorem 2].

Theorem 4.1.1.1. Let A be a commutative dg-algebra over a field k of characteristic zero. For any
dg-Lie algebra L over A, there is a natural isomorphism of A-dg-modules

Symy L — Us L

Proof. Recall that U4 L can be endowed with a bialgebra structure such that an element of L is
primitive in U4 L. The morphism L — U, L therefore induces a morphism of dg-bialgebras T4 L —
Ua L which can be composed with the symmetrization map Sym 4 L — T4 L given by

1
x1®...®xnn—>a £(0,0)To1) ® - .. ® To(n)

where o varies in the permutation group &,, and where ¢(—, Z) is a group morphism &,, — {—1,+1}
determined by the value on the permutations (i j)

e((i §),7) = (—1)l=lasl

We finally get a morphism of A-dg-coalgebras ¢: Sym, L — Uy L. Let us take n > 1 and let us
assume that the image of ¢ contains Mi"‘l L. The image of a symmetric tensor

by ¢ is the class
1 _
[H!EE(O} l’)[L’U(l) ®... ®xa(n)]

which can be rewritten

1, a

where y¢* is either some of the ;s or some bracket [x;,x)]. This implies that U5" L is in the image
of ¢ and we therefore show recursively that ¢ is surjective (the filtration of U4 L is exhaustive).
There is moreover a section
UaL — Symy L

for which a formula is given in [Coh] and which concludes the proof. O

4.1.2 Algebraic theory of dg-Lie algebras

Let us consider the adjunction Free,: dgLie, & dgMod , : Forget 4 of (o0, 1)-categories.

Definition 4.1.2.1. Let dgMode&’21 denote the full sub-category of dgMod 4, spanned by the free
dg-modules of finite type whose generators are in positive degree. An object of dgModi;ft’21 is thus
(equivalent to) the dg-module

(:Tél AP ]

for some n > 1 and some family (pi,...,p,) of non negative integers.
Let dgLieiift’21 denote the essential image of dgModi;ft}l in dgLie, by the functor Free.

Let us recall that Px(C) stands for the sifted completion of a category C with finite coproducts.
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Proposition 4.1.2.2. The Yoneda functors

dgMod , — Px(dgMod’">!) = Fet* ((dgModiift’Zl)op, sSets)

op
dgLie, — Ps(dgLie{">!) = Fct* ((dgLiert’Zl) ,sSets)

are equivalences of (0, 1)-categories.

Remark 4.1.2.3. The above proposition implies that every dg-Lie algebra is colimit of a sifted diagram
of objects in dgLiei"ft’Zl. Note also that this proposition is very similar to [HAlg, 6.2.2.16].

Proof. Every dg-module can be obtained as the colimit of a diagram in dgModiift’21

of dgModi;ft’g1 are compact projective in dgMod 4 (an object is compact projective if the functor
it corepresents preserves sifted colimits). The proposition [HTT, 5.5.8.25] makes the first functor an
equivalence.

The forgetful functor Forget 4 is by definition conservative. Moreover, the Poincaré-Birkhoff-Witt
theorem 4.1.1.1 implies that Forget 4 is a retract of the composite functor

and objects

dgLie,, —> dgAlg , — dgMod ,

Since the latter preserves sifted colimits (the functor U4 is a left adjoint and then use [HAlg, 3.2.3.1]),
so does Forget 4. We deduce using the Barr-Beck theorem (see [HAlg, 6.2.0.6]) that Forget 4 is monadic.
Every dg-Lie algebra can thus be obtained as a colimit of a simplicial diagram with values in the (o0, 1)-

category of free dg-Lie algebras (see [HAlg, 6.2.2.12]). From those two facts we deduce that every
£6t,>1

dg-Lie algebra is a colimit of objects in dgLie; . The forgetful functor Forget 4 preserves sifted
colimits and objects in dgLieift’Zl are thus compact projective in dgLie. We conclude using once
more [HTT, 5.5.8.25]. O

Remark 4.1.2.4. The equivalence dgMod 4 ~ Pg(dgModiﬁ’Zl) is given by the Yoneda embedding.
It follows that for any n, the shift functor [n]: dgMod , — dgMod 4 corresponds to the composition
with the left adjoint [—n] to [n]

[—n]*: Pz(dgModif“%) N Pz(dgModif“%)

As another example, the forgetful functor dgLie, — dgMod, is given by the composition with
Free4 and the following diagram commutes

dgLie , Ps(dgLie">")

Forget 4 i \LFreej

dgMod , —— Px(dgMod’>")

Remark 4.1.2.5. Whenever A — B is a morphism in cdga,fo, the following square of (oo, 1)-categories
commutes:

dgLie, —— Px(dgLie’">")

B@Al (B®A)!\L

dgLiey —— Pyx(dgLiek™>")

The following proposition actually proves that this comes from a natural transformation between
functors cdga,f0 — Caty.
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Proposition 4.1.2.6. There are (20, 1)-categories § dgLie and SPg(dgLief’ft’Zl), each endowed with
a coCartesian fibration to cdga,fo, respectively representing the functors A — dgLiey and A —
Pz(dgLiefA&’Zl). There is an equivalence over cdgay’:

{ Px(dgLie"™>1) {dgLie

~

cdga;?

.. . < .
This induces an equivalence of functors cdga,;o — Pr{jo’tU which moreover descend to a natural trans-

formation
A,

cdga,f0 HN Pr{.g[U
~—_

Remark 4.1.2.7. This proposition establishes an equivalence of functors Cdga,fo N PI‘IJO’U between
A— dgLieA and A — Px (dgLie;’ft’Zl)_

Proof. Let us define {dgLie as the following category.
e An object is couple (A, L) where A € cdga;’ and L € dgLie ,.

e A morphism (A,L) — (B,L') is a morphism A — B and a morphism of A-dg-Lie algebras
L—-1L

It comes with a natural functor 7: {dgLie — cdgafo. For any morphism A — B € cdga,fo, there is a
strict base change functor —®4 B: dglie, — dgLieg, left adjoint to the forgetful functor. It follows
that 7 is a coCartesian fibration. Let us call a quasi-isomorphism in {dgLie any map (A, L) — (B, L)
of which the underlying map A — B is an identity and the map L — L’ is a quasi-isomorphism. We
define SdgLie to be the (oo, 1)-categorical localization of SdgLie along quasi-isomorphisms. Using
[DAG-X, 2.4.19], we get a coCartesian fibration of (o0, 1)-categories p: {dgLie — cdga,fo.

This coCartesian fibration p defines a functor dgLie: cdga,fo — CatXJ mapping a cdga A to
dgLie, and a morphism A — B to the corresponding (derived) base change functor. It comes with
a subfunctor

dgLief’&’le cdgafo — Catg)

Let us denote by Py (dgLie"™>") its composite functor with

Ps.: Cat) — Cat,

Let us denote by SdgLief’ft’21 — cdga,fO the coCartesian fibration given by the functor dgLief’ft’21

and by {Px(dgLie"™>!) that classified by Px(dgLie™>").
We get a diagram

§ Ps; (dgLief’ft’Zl)

—
~
A

§ dgLie § dgLie"™>"

Fo

<
cdgas”

The functor Fy has a relative left Kan extension F' along G (see [HTT, 4.3.2.14]). From propo-
sition 4.1.2.2 we get that F is a fibrewise equivalence. It now suffices to prove that F preserves
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coCartesian morphisms. This is a consequence of remark 4.1.2.5.We get the announced equivalence of

functors
A

cdga,fo ﬂ~ Pr{;o’tU
~_ 7
We now observe that both the involved functors map quasi-isomorphisms of cdga,fo to equivalences

of categories. It follows that this natural transformation factors through the localisation cdga,f0 of
cdgas’. O

4.1.3 Almost finite cellular objects

Let A be a commutative dg-algebra over k.
Definition 4.1.3.1. Let M be an A-dg-module.
e We will denote by M¢(M) the mapping cone of the identity of M.
e We will say that M is an almost finite cellular object if there is a diagram
0— APO = My —> M; — ...

whose colimit is M and such that for any n, the morphism M, — M, fits into a cocartesian
diagram
Apn+1 [n] [ Mn

L

ME(APr [n]) ——= My

Remark 4.1.3.2. We choose here to use an explicit model, so that any almost finite cellular object
is cofibrant (see lemma below). This will allow us to compute explicitly the dual of an almost finite
cellular object (see the proof of lemma 4.1.4.12). The definition above states that a dg-module M is
an almost finite cellular object if it is obtained from 0 by gluing a finite number of cells in each degree
(although the total number of cells is not necessarily finite).

Lemma 4.1.3.3. Let ¢: M — N be a morphism of A-dg-modules.
e If M is an almost finite cellular object then it is cofibrant.

o Assume both M and N are almost finite cellular objects. The morphism ¢ is a quasi-isomorphism
if and only if for any field I and any morphism A — [ the induced map ¢x: M @41 —> N Q4 l
1S a quasi-isomorphism.

Remark 4.1.3.4. The second point in the above lemma is an analogue to the usual Nakayama lemma.

Proof. Assume M is an almost finite cellular object. Let us consider a diagram M — @) «— P where
the map P — @ is a trivial fibration. Each morphism M,, — M, .1 is a cofibration and there thus is
a compatible family of lifts (M,, — P). This gives us a liftt M — P. The A-dg-module M is cofibrant.

Let now ¢ be a morphism M — N between almost finite cellular objects and that the morphism
¢y is a quasi-isomorphism for any field [ under A. Replacing M with the cone of ¢ (which is also an
almost finite cellular object) we may assume that NV is trivial. Notice first that an almost finite cellular
object is concentrated in non positive degree. Notice also that for any n the truncation morphism
a®~": M2 — M>~" is a quasi-isomorphism. We then have

n+1
o:Hﬂ'(M@l) :Hj<Mn®l>
A A
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whenever —n < j < 0 and for any A — [. Since Hj(Mn ®al) ~0if j < —n — 2 the A-dg-module M,
is perfect and of amplitude [—n — 1, —n]. This implies the existence of two projective modules P and
@ (ie retracts of some power of A) fitting in a cofibre sequence (see [TV])

P[n] - M,, — Q[n + 1]

The dg-module M,, is then cohomologically concentrated in degree | — oo, —n|, and so is M. This
being true for any n we deduce that M is contractible. O

The next lemma requires the base A € cdga,fO to be noetherian. Recall that A is noetherian if

H°(A) is noetherian and if H"(A) is trivial when n is big enough and of finite type over H’(A) for
any n. Note that since A € cdgay’, we always have H"(A) = 0 for n > 0.

Lemma 4.1.3.5. Assume A is noetherian. If B is an object of cdgay /A such that:
o The H(A)-algebra H°(B) is finitely presented,
e For anyn > 1 the HO(B)-module H™"(B) is of finite type,

then the A-dg-module Lg 4 ®p A is an almost finite cellular object.

Remark 4.1.3.6. The lemma above is closely related to [HAlg, 8.4.3.18].

Proof. Because the functor (A — B — A) — LLg/4 ®p A preserves colimits, it suffices to prove that
B is an almost finite cellular object in cdga$ /A. This means we have to build a diagram

Bo—>B1—>...

whose colimit is equivalent to B and such that for any n > 1 the morphism B,,_; — B, fits into a
cocartesian diagram

AR} Ry 0 But

o] ] l

Alup,....UrXp,. ., XP)P =0 —— B,

where R;‘_l is a variable in degree —(n — 1) and X' and U;" are variables in degree —n.
We build such a diagram recursively. Let

H°(B) =~ HO(A)[X?,...,XSO]/(R?V”?RSO)

be a presentation of H’(B) as a H’(A)-algebra. Let By be A[XY, ... , X ;] equipped with a morphism
¢o: By — B given by a choice of coset representatives of X9 ..., XSO in B. The induced morphism
H°(By) — H°(B) is surjective and its kernel is of finite type (as a H’(A)-module).
Let n > 1. Assume ¢,,_1: B,_1 — B has been defined and satisfies the properties:

e If n = 1 then the induced morphism of H’(A)-modules H°(By) — H°(B) is surjective and its
kernel Ky is a H(A)-module of finite type.

e If n > 2, then the morphism ¢,_; induces isomorphisms H™*(B,_;) — H *(B) of H(A)-
modules if i = 0 and of H°(B)-modules for 1 <i <n — 2.

e If n > 2 then the induced morphism of H°(B)-modules H™""*(B,,_1) — H™""!(B) is surjective
and its kernel K,_; is a H’(B)-module of finite type.
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Let n > 1. Let XT,..., X be generators of H™"(B) as a H°(B)-module and R, ... R be
generators of K, 1. Let B, be the pushout:

-1 - n—1_
A[R’f ,...,R;L 1]dRm 0O > B, 4

RHl N l

AlUp,...,Ur X7, X0 —— B,
Let i7", ..., 72! be the images of R{™',... RI~! (respectively) by the composite morphism
AR, RIRTS0 LB, - B

There exist uf, ..., uy € B such that duj’ = r?_l for all 4. Those uf,...,uy together with a choice of
coset representatives of X7',..., X! in B induce a morphism

AlUp,... . Ur X7, X050 S B
which induces a morphism ¢,,: B, — B.
If n = 1 then a quick computation proves the isomorphism of H’(A)-modules

H(B)) =~ HO(BO)/(R% LRY)E H°(B)

If n > 2 then the truncated morphism BZ?~" = B?ﬁ]" is a quasi-isomorphism and the induced

morphisms H™*(B,,) > H™*(B) are thus isomorphisms of H(B)-modules for i < n —2. We then
get the isomorphism of H’(B)-modules

—n+1 ~ —n+1 ~ —n+1
H (Bn) ~H (Bn_l)/(R;L—l’“.’Rgfl) ~H (B)
The natural morphism 6: H™"(B,,) — H™"(B) is surjective. The H’(B)-module H™"(B,,) is of finite

type and because HO(B) is noetherian, the kernel K, of 6 is also of finite type. The recursivity is
proven and it now follows that the morphism colim,, B,, — B is a quasi-isomorphism. O

Definition 4.1.3.7. Let L be a dg-Lie algebra over A.

e We will say that L is very good if there exists a finite sequence
0=Ly—>L1—>...>L,=1L
such that each morphism L; — L;, fits into a cocartesian square
Free(A[—p;]) —— L;
"
Free(M¢(A[=pi])) — Lit1
where p; > 2.
o We will say that L is good if it is quasi-isomorphic to a very good dg-Lie algebra.
e We will say that L is almost finite if it is cofibrant and if its underlying graded module is

isomorphic to
@ A™i[—1]

=1
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Remark 4.1.3.8. The notions of almost finite dg-Lie algebras and of almost finite cellular objects are
closely related. We will see in the proof of lemma 4.1.4.12 that the dual LY of an almost finite dg-Lie
algebra is an almost finite cellular dg-module.

Lemma 4.1.3.9. The following assertions are true.
e Any very good dg-Lie algebra is almost finite.
e The underlying dg-module of a cofibrant dg-Lie algebra is cofibrant.

Proof. Any free dg-Lie algebra generated by some A[—p] with p > 2 is almost finite (it is actually
obtained by base change from an almost finite dg-Lie algebra on k). Considering a pushout diagram

Free(A[—p]) —— L

I

Free(MC(A[—p])) — L'

Whenever L is almost finite, so is L’. This proves the first item.

Let now L be a dg-Lie algebra over A. There is a morphism of dg-modules . — U4 L. The
Poincaré-Birkhoff-Witt theorem states that the dg-module i/4 L is isomorphic to Sym 4 L. There is
therefore a retract 4 L — L of the universal morphism L — U L. The functor U, : dglie, — dgAlg,
preserves cofibrant objects and using a result of [SS], so does the forgetful functor dgAlg , — dgMod 4.
We therefore deduce that if L is cofibrant in dglie, it is also cofibrant in dgMod 4. O

Definition 4.1.3.10. Let dgLiei‘f{’Odl denote the sub-(c0,1)-category of dgLie, spanned by good
dg-Lie algebras.

Remark 4.1.3.11. We naturally have an inclusion dgLiei’lft’21 — dgLieiOOd.

4.1.4 Homology and cohomology of dg-Lie algebras

The content of this section can be found in [DAG-X] when the base is a field. Proofs are simple
avatars of Lurie’s on a more general base A. Let then A be a commutative dg-algebra concentrated
in non-positive degree over a field k of characteristic zero.

Definition 4.1.4.1. Let A[n] denote the (contractible) commutative A-dg-algebra generated by one
element 1 of degree -1 such that n2 = 0 and dn = 1. For any A-dg-Lie algebra L, the tensor product
A[n] ®a4 L is still an A-dg-Lie algebra and we can thus define the homological Chevalley-Eilenberg
complex of L:

HA<L>—uA(A[n]<§L) ® A

Us L
where Uy : dglie, — dgAlg, is the functor sending a Lie algebra to its enveloping algebra. This
construction defines a strict functor:

Ha: dgliey, — A/dgModA

Remark 4.1.4.2. The complex H,4 (L) is isomorphic as a graded module to Sym 4 (L[1]), the symmetric
algebra built on L[1]. The differentials do not coincide though. The one on H4(L) is given on
homogenous objects by the following formula:

dn.r1 ® ... n.xy,) = Z(—l)T”n.[xi,xj]®17.9c1®...®77/.9?i®...®17/.9?j®...®77.mn

1<j

—Z(—l)sin.xl ®...0Ndx;)Q...®N.xy,
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where 7.2 denotes the point in L[1] corresponding to x € L.

Si=ti—14 x|+ + |ziz1]
Tij = (|| = DSi + (|| = 1S5 + (Jwil = 1) (|5 — 1)

The coalgebra structure on Sym 4 (L[1]) is compatible with this differential and the isomorphism above
induces a coalgebra structure on H4 (L) given for x € L homogenous by:

Anz)=nz®@l+1Q@nx

Proposition 4.1.4.3. The functor Hy preserves quasi-isomorphisms. It induces a functor between
the corresponding (o0, 1)-categories, which we will denote the same way:

H,: dgLie, — 4/dgMod,,

Proof. Let L — L’ be a quasi-isomorphism of A-dg-Lie algebras. Both H4(L) and H4(L') are
endowed with a natural filtration denoted H5"(L) (resp L') induced by the canonical filtration of
Sym 4(L[1]). Because quasi-isomorphisms are stable by filtered colimits, it is enough to prove that
each morphism H$"(L) — HY"(L') is a quasi-isomorphism. The case n = 0 is trivial. Let us assume
HS" (L) — HS" (L) to be a quasi-isomorphism. There are short exact sequences:

0 —— H5" (L) — H5"(L) —= Sym} (L[1]) —=0
| i |
0 —— H5" (L)) — H5"(L') — Sym}y(L'[1]) —=0

The base dg-algebra A is of characteristic zero and the morphism 6 is thus a retract of the quasi-
isomorphism L[1]®" — L/[1]®" (where the tensor product is taken over A). O

Proposition 4.1.4.4. Let A — B be a morphism in cdga,fo. The following square is commutative:

dgLie, A A/dgMod 4
B®a l J{B®A -
dgLie; — 2> B/dgMod,,
Proof. This follows directly from the definition. O

Corollary 4.1.4.5. Let L be in dglie, freely generated by some free dg-module M. The homological
Chevalley-Eilenberg complex Ha (L) of L is quasi-isomorphic to the pointed dg-module A — A® M[1].

Proof. This a consequence of the previous proposition and the corresponding result over a field in
Lurie’s theorem 4.1.0.1. O

Definition 4.1.4.6. Let L be an object of dgLie ;. We define the cohomological Chevalley-Eilenberg
complex of L as the dual of its homological:

Ca(L) =Ha(L)" = Hom,(H4(L), A)
It is equipped with a commutative algebra structure (see remark 4.1.4.2). This defines a functor:
op
Ca: dgLlie, — (cdgaA/A)

between (00, 1)-categories.
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Remark 4.1.4.7. The Chevalley-Eilenberg cohomology of an object L of dgLiefLift’21 is concentrated

in non positive degree. It indeed suffices to dualise the quasi-isomorphism from corollary 4.1.4.5.
The following proposition proves the cohomology of a good dg-Lie algebra is also concentrated in
non-positive degree.

Proposition 4.1.4.8. The functor C4 of (00, 1)-categories maps colimit diagrams in dgLie 4 to limit
diagrams of cdga,/A.

Proof (sketch of a). For a complete proof, the author refers to the proof of proposition 2.2.12 in
[DAG-X]. We will only transcript here the main arguments.

A commutative A-dg-algebra B is the limit of a diagram B, if and only if the underlying dg-
module is the limit of the underlying diagram of dg-modules. It is thus enough to consider the
composite oo-functor dgLie, — (cdgas/4)” — (dgMod,/4)”. This functor is equivalent to
(Ha(=))". It is then enough to prove H,: dgLie,, — 4/dgMod 4 to preserve colimits.

To do so, we will first focus on the case of sifted colimits, which need only to be preserved by the
composite functor dgLie, — 4/dgMod, — dgMod 4. This last functor is the (filtered) colimits
of the functors Hf‘” as introduced in the proof of proposition 4.1.4.3. We now have to prove that
Hfl": dgLie , — dgMod 4 preserves sifted colimits, for any n. There is a fiber sequence

Hjn—l s Hjn — SymZ((_)[l])

The functor Sym 4 ((—)[1]) preserves sifted colimits in characteristic zero and an inductive process
proves that H4 preserves sifted colimits too.

We now have to treat the case of finite coproducts. The initial object is obviously preserved. Let
L = L’ L" be a coproduct of dg-Lie algebras. We proved in remark 4.1.2.3 that L’ an L” can be

written as sifted colimits of objects of dgLieiift’gl. It is thus enough to prove that H,4 preserve the
coproduct L = L’ 11 L” when L' and L” (and thus L too) are in dgLieiift’Zl. This corresponds to the

following cocartesian diagram

A

Ao M[1]

S
A@M"'[1] —= A® (M ®M")[1]

where M’ and M" are objects of dgMode’ft’21 generating L’ and L” respectively. O

Definition 4.1.4.9. The colimit-preserving functor C4 between presentable (oo, 1)-categories admits
a right adjoint which we will denote by D 4.

<0

Lemma 4.1.4.10. Let B — A be a morphism of cdga
commautes:

. The following diagram of (0o, 1)-categories

C o
dgLielfgOOCI —Es (cdgaEO/B) P

A®B\L \LA(@B

C o
dgLieiOOd —2s (cdgajO/A) P

Proof. The proposition 4.1.4.4 gives birth to a natural transformation A®p Cp(—) = CA(A®p —).
Let L e dgLiegBOOd. The B-dg-module C4(A ®p L) is equivalent to

Ca <A ® L) ~ Homg(Hp(L), A)

We thus study the natural morphism
gf)L: ACE) CB(L) g HOHlB(HB(L), A)
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Let us consider the case of the free dg-Lie algebra L = Free(B[—p]) with p > 1. If B is the base
field k& then Hy (L) is perfect (corollary 4.1.4.5) and the morphism ¢y, is an equivalence. If B is any
k-dg-algebra then L is equivalent to B ®y Free(k[—p]) and we conclude using proposition 4.1.4.4 that
¢, is an equivalence.

To prove the general case of any good dg-Lie algebra it is now enough to ensure that if L; <
Lo — Ly is a diagram of good dg-Lie algebras such that ¢r,, ¢r, and ¢z, are equivalences then so
is ¢, with L = L; iz, Lo. Using proposition 4.1.4.8, we see it can be tested in dgMod 4 in which
tensor product and fibre product commute. O

Corollary 4.1.4.11. The composite functor C4 Frees: dgMod, — dgLie, — (cdgaA/A)Op 18
equivalent to the functor M — A® MY [-1].

Proof. The (oo, 1)-category dgMod 4 is generated under (sifted) colimits by dgModf&ft)l. The

f.6t,>1
d;

functors at hand coincide on dgMo and both preserve colimits. O

Lemma 4.1.4.12. Assume A is noetherian. Let L be a good dg-Lie algebra over A. Recall Dy from
definition 4.1.4.9. The adjunction unit L — D4 Cy L is a quasi-isomorphism.

Proof. Let us first proves that the morphism at hand is equivalent, as a morphism of dg-modules,
to the natural morphism L — LY. The composite functor Forget 4, D 4: (cdgaA/A)Op — dgLiey —
dgMod 4 is right adjoint to C4 Free 4. Using corollary 4.1.4.11, we see that Forget 4 D 4 is right adjoint
to the composite functor

VWV =1 _ °
dgModA(LJdgModzp A8 (cdga,/A) P

The functor (—)"[—1] admits a right adjoint, namely (—[1])" while A @® — is left adjoint (beware of
the op’s) to
(A>B—- A)— A%’)LB/A

It follows that Forget 4 D4 is equivalent to the functor :

\%

(A->B—->A)— <A§>§)]LB/A[1])
The adjunction unit L — D4 C4 L is thus dual to a map
: L A— LV[-1
fiLc,ra CEQL [—1]

As soon as L is good and A noetherian, the complex C,4 L satisfies the finiteness conditions of
lemma 4.1.3.5. We can safely assume that L is very good. Because L is almost finite (as a dg-Lie
algebra), there is a family (n;) of integers and an isomorphism of graded modules

L=@A™[-i]

=1

The dual LY of L can be computed naively (since the underlying dg-module of L is cofibrant). The
dual LY is then isomorphic to [[,5, A™[i] with an extra differential. Because A in concentrated in
non positive degree, only a finite number of terms contribute to a fixed degree in this product. The
dual LY is hence equivalent to ;- A™[i] (with the extra differential). The dg-module LY[-1] is
hence an almost finite cellular object. Both domain and codomain of the morphism f are thus almost
finite cellular A-dg-modules. It is then enough to consider f ® [ for any field [ and any morphism
A—-1
F@U: (Loawya®A) @1 = (Lol [-1]
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The lemma 4.1.4.10 gives us the equivalence C4(L) ®4 ! ~ C;(L ®4 1) and the morphism f ®4 [ is
thus equivalent to the morphism

Lo, (e ®1— (L) [-1]

This case is equivalent to Lurie’s result 4.1.0.1 (ii). We get that f is an equivalence and that the
adjunction morphism L — D4 C4 L is equivalent to the canonical map L — LV".

We now prove that L — LY " is an equivalence. We saw above the equivalence LY ~ ), A™[i].
The natural morphism L — LV " therefore corresponds to the morphism

@ An[-i] — A" [~

i>1 i>1

Since A is noetherian, it is cohomologically bounded. Once more, only a finite number of terms
actually contribute to a fixed degree and the map above is a quasi-isomorphism. O

Remark 4.1.4.13. The base dg-algebra A needs to be cohomologically bounded for that lemma to be
true. Taking H°(A) noetherian and L = Free(A%[—1]), the adjunction morphism is equivalent to

L—LYY

which is not a quasi-isomorphism if A is not cohomologically bounded.

4.1.5 Formal stack over a dg-algebra

Throughout this section A will denote an object of cdga,fo.

Definition 4.1.5.1. Let dgExt, denote the full sub-category of cdga$ /A spanned be the trivial
square zero extensions A @ M, where M is a free A-dg-module of finite type concentrated in non
positive degree.

Definition 4.1.5.2. A formal stack over A is a functor dgExt — sSets preserving finite products.
We will denote by dStf, the (00, 1)-category of such formal stacks:

dStf, = Px(dgExt?)

Remark 4.1.5.3. The (o0, 1)-category dSt’, is U-presentable.

Let A€ cdga,fo. For any formal stack X over A we can consider the functor

(dgModfft’>1>op —  sSets
— XA M)

From X being a formal stack, the functor above preserves finite products and is hence (see proposi-
tion 4.1.2.2) represented by an A-dg-module: the tangent of X at its canonical point.

Definition 4.1.5.4. Let A € cdgal,f0 and let S = Spec A. The tangent complex of a formal stack
X over A at the canonical point z is the A-dg-module Tx s, representing the product-preserving
functor

M- XA®MY)

Remark 4.1.5.5. We will link this tangent with the usual tangent of derived Artin stacks in re-
mark 4.2.2.9.
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Proposition 4.1.5.6. Let A be in cdga,fO and let S = Spec A. There is an adjunction
Fa:dgLie, = dSt, : £,
such that

o The functor Forget, £a4: dSth‘ — dgLie, — dgMod, is equivalent to the functor X —
Tx/s,.[—1] where Tx g, is the tangent complex of X over S at the natural point x of X.

e The functor £4 is conservative and preserves sifted colimits. Its restriction to dgExt’] is
canonically equivalent to D 4.

o If moreover A is noetherian then the functors £4 and Fa are equivalences of (00, 1)-categories.

Definition 4.1.5.7. Let X be a formal stack over A. The Lie algebra £4.X will be called the tangent
Lie algebra of X (over A).

Proof (of proposition 4.1.5.6). Let us prove the first item. The functor C4 restricts to a functor

=1

Ca: dgLie > — dgExt?P

which composed with the Yoneda embedding defines a functor ¢: dgLiertz1 — dStf4. This last
functor extends by sifted colimits to

Fa: dgLie, ~ Px(dgLie’{*>") — dstf,
Because C4 preserves coproducts, the functor F4 admits a right adjoint £4 given by right-composing

by C4. The composite functor

dstf, —=%> Py (dgLie'{">') — > Py (dgMod;">") ~ dgMod,,
then corresponds to the functor
X — X (Ca(Free(—))) ~ X(A® (-)"[-1])

The use of remark 4.1.2.4 proves the first item. The functor
op
Ca: (dgLiert’>1> — dgExt 4

is essentially surjective. This implies that £4 is conservative. Let us consider the commutative
diagram

P (dgExt) _fa Py, (dgLieg&’Zl)

i I

*

(@]
P(dgExt) —— P(dgLie{"~")

The functors 4, j and C% preserve sifted colimits and therefore so does £4. We now focus on the third
item. Because £ 4 is conservative, it suffices to prove that the unit id — £ 4F 4 is an equivalence. Since
both £4 and F 4 preserves sifted colimits, this can be tested on projective compact generators, namely
dg-Lie algebras L € dgLiei"&)l. The morphism L — £4F 4L is then equivalent to the adjunction

unit L — D4 C4 L. We conclude with lemma 4.1.4.12 using the noetherian assumption. O

Until the end of this section, we will focus on proving that the definition we give of a formal
stack is equivalent to Lurie’s definition of a formal moduli problem in [DAG-X], as soon as the base
dg-algebra A is noetherian.

85



<

Definition 4.1.5.8. An augmented A-dg-algebra B € cdga AO/ ‘A is called artinian if there is sequence
B=By—...—»B,=A
and for 0 < i < n an integer p; > 1 such that

Bi o~ Bi+1 x A

A[Epi]

where Alep, | denote the trivial square zero extension A @ A[p;].
We denote by dgArt 4 the full subcategory of cdgajo/ ‘A spanned by the artinian dg-algebras.

Definition 4.1.5.9. A formal moduli problem over A is a functor
X :dgArt, — sSets
satisfying the conditions:

(F1) For n > 1 and B € dgArt 4/A[¢,,] the following natural morphism is an equivalence:

X[BxA|S X(B)x X(A)
Alen] X (Alen])

(F2) The simplicial set X (A) is contractible.

Let dSti\ denote the full subcategory of P(dgArt?’) spanned by the formal moduli problems. This is
an accessible localization of the presentable (o0, 1)-category P(dgArt’) of simplicial presheaves over
dgArt).

Proposition 4.1.5.10. Let A € cdga,f0 be noetherian. The left Kan extension of the inclusion
functor i: dgExt, — dgArt, induces an equivalence of (00, 1)-categories

j: dStf — dstf

Proof. We will actually prove that the composed functor

f: dgLie,, — dStf, — dSt!,

is an equivalence. The functor f admits a right adjoint g = £44*.
Given n > 1 and a diagram B — Ale,] < A in dgArt ,, lemma 4.1.4.12 implies that the natural
morphism

DA(B) 11 DA(A);DA Bx A
Da(A[en]) Alen]

is an equivalence. For any B € dgArt, the adjunction morphism C4 D4 B — B € (cdga$’/4)”"
is then an equivalence. Note that it is actually a map of augmented cdga’s B — C4 Dy B. Given
L € dgLie, the functor D* L: dgArt, — sSets defined by D*(B) = Map(D(B), L) is a formal
moduli problem (we use here the above equivalence). The natural morphism id — D* g of co-functors
from dStix to itself is therefore an equivalence. The same goes for the morphism gD* — id of
oo-functors from dgLie 4 to itself. The functor g is an equivalence, so is f and hence so is j. O
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4.2 Tangent Lie algebra

We now focus on gluing the functors built in the previous section, proving the following statement.

Theorem 4.2.0.1. Let X be a derived Artin stack locally of finite presentation. Then there is a Lie
algebra Lx over X whose underlying module is equivalent to the shifted tangent complex Tx[—1] of
X.

Moreover if f: X —'Y is a morphism between algebraic stacks locally of finite presentation then
there is a tangent Lie morphism £x — f*{y. More precisely, there is a functor

X/agtirtte _, £x /dgLie

sending a map f: X —Y to a morphism £x — f*{y. The underlying map of quasi-coherent sheaves
is indeed the tangent map (shifted by —1).

4.2.1 Formal stacks and Lie algebras over a derived Artin stack

Let A — B be a morphism in cdga,fo. There is an ezact scalar extension functor B®4 — : dgExt, —
dgExt; and therefore an adjunction

*
(B ® —) : dStf, =—=dSt; : (B ® —)
A ), A

Proposition 4.2.1.1. There is a natural functor dSt': cdga,f0 — Prgc’[U mapping A to dStil. There
moreover exists a natural transformation F: dgLie — dstf

Proof. Let us recall the category §dgLie defined in the proof of proposition 4.1.2.6. Its objects are
pairs (A, L) where A € cdgas? and L € dgLie .
We define {(cdga/—)®" to be the following (1-)category.

e An object is a pair (A, B) where A € cdga,fO and B € cdga,/A-

e A morphism (A, B) — (A,B’) is a map A — A’ together with a map B’ — B ®Y4 A’ of
A’-dg-algebras.

From definition 4.1.4.6, we get a functor C: {dgLie — S(cdga/,)()p preserving quasi-isomorphisms.
This induces a diagram of (oo, 1)-categories

C

{dgLie

.

<
cdgays?

f(cdga—)™

Restricting to the full subcategory spanned by pairs (A, L) where L € dgLiefj‘&’zl, we get a functor

{dgLie"™>! — < > [ dgExt®

Using lemma 4.1.4.10, we see that this last functor preserves coCartesian morphisms over cdgafo.
It defines a natural transformation between functors cdgay’ — Catl. Since both the functors at
hand map quasi-isomorphisms to categorical equivalences, it factors through the localisation cdga,fU
of cdgas’. We now have a natural transformation

dgLief"t*>1
/X

cdga;’ ﬂ Cat>,
~ "
dgExt°P
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Composing with the sifted extension functor Py, we get a natural transformation F: dgLie ~
Ps(dgLie™>1) — dst'. O

Remark 4.2.1.2. The Grothendieck construction defines a functor

F: {dgLie — {dSt'
over cdga,fo. Note that we also have a composite functor
G: {dgLie — {(cdga</_)» —"> {dSt'

where h is deduced from the Yoneda functor. The functor F is by definition the relative left Kan
extension of the restriction of G to SdgLief’ft’>1. It follows that we have a natural transformation
F — G. We will use that fact a few pages below.

Proposition 4.2.1.3. The functor

dgLie: cdga,f0 — Pr{;o’[U
is a stack for the ffqc topology.

Proof. The functor dgLie is endowed with a forgetful natural transformation to dgMod, the stack
of dg-modules. This forgetful transformation is pointwise conservative and preserves limits. This
implies that dgLie is also a stack. O
Definition 4.2.1.4. Let X be an algebraic derived stack. The (o0, 1)-category of formal stacks over
X is
f : f
= 1
dSty Speclip—nx dSt,

The (o0, 1)-category of dg-Lie algebras over X is

dgLiey = o lim dgLiey

pec A—X
where both limits are taken in PrI;(;U. There is a colimit preserving functor
Fx: dgLiey — dSt%
It admits a right adjoint denoted by £x.

Remark 4.2.1.5. The functor £x may not commute with base change.

4.2.2 Tangent Lie algebra of a derived Artin stack locally of finite presen-
tation

Let us consider C the following category.

e An object is a pair (A, F' — G) where A is in cdga,fo and F' — G is a morphism in the model

category of simplicial presheaves over cdgajo.

e A morphism (A, F — G) — (B, F’ — G’) is the datum of a morphism A — B together with a
commutative square

<
of presheaves over cdgasy’
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We set SP(dAff)Al to be the (o0, 1)-localization of C along weak equivalences of presheaves. The
natural functor SP(dAﬁ')Al — cdga’ is a coCartesian fibration classified by the functor A —
P(AALFL)A".

Let D denote the following category.

e An object is a pair (A, F') where F is a simplicial presheaf over the opposite category of mor-
phisms in cdga$’.

e A morphism (4, F) — (B,G) is a morphism A — B and a map F' — G as simplicial presheaves
1
over (cdgaﬁo)"pA
We will denote by §P (dAﬁ' Al) the (00, 1)-category obtained from D by localizing along weak equiv-
alences. The natural functor SP(dAﬁ'Al) — cdgakgo is a coCartesian fibration.

Lemma 4.2.2.1. There is a relative adjunction

f: JP(dAﬂ“AI) ZJP(dAfF)Al g

<0

over cdga, . They can be described on the fibers as follows. Let A € cdga,fo. The left adjoint f4 is
given on morphisms between affine schemes to the corresponding morphism of representable functors.
The right adjoint ga maps a morphism F — G to the representable simplicial presheaf

Map(—, F — G)
Proof. Let us define a functor C — D mapping (A, F — G) to the functor
(S—>T)— Map(S —>T,F - Q)

We can now derive this functor (replacing therefore F' — G with a fibrant replacement). We get a

functor
g: JP(dAﬂ‘)A HJP(dAﬂ‘AI)

which commutes with the projections to cdga,fo. Let A be in cdga,fO and let g4 be the induced functor

P(AAFF )% - P(dAf})
It naturally admits a left adjoint. Namely the left Kan extension f4 to the Yoneda embedding
dAff} — P(dAFF )Y

For any morphism A — B in cdga,fo, there is a canonical morphism

(55~ (o5 ) 0

which is an equivalence. [When X = Spec A’ — Spec A” is representable then both left and right hand
sides are equivalent to Spec B’ — Spec B” where B’ = B®4 A’ and B” = B®y4 A”]. We complete
the proof using [HAlg, 8.2.3.11]. O

Let now {*/P(dAff) — cdga;” denote the coCartesian fibration classified by the subfunctor

A Spec(A) /P(AAFF 1) of P(AAFF)A'. Let also | P(AAFF*) be defined similarly to { P(dAFA). Tt
is classified by a functor

AP (Spec A/dAﬁ‘A>
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Proposition 4.2.2.2. The adjunction of lemma 4.2.2.1 induces a relative adjunction
f P(dAfF*) 2 J*/P(dAff)

< . .
over cdgako. It moreover induces a natural transformation

P(dAFF*)
A

cdga;’ ﬂ Cat),
~__ 7
*/P(dAfF)

Proof. We define the restriction functor
fP(dAffAl) - f P(AAF*)

It admits a fiberwise left adjoint, namely the left Kan extension, which commutes with base change.
This defines — using [HAlg, 8.3.2.11] - a relative left adjoint

JP(dAff*) - JP(dAﬁ‘Al)
Composing with the relative adjunction of lemma 4.2.2.1, we get a relative adjunction
JP(dAﬂ‘*) 2 JP(dAff)Al
The left adjoint factors through {*/P(dAff) and the composed functor
f */P(AAFF) — JP(dAff)Al - JP(dAﬁ"*)

is its relative right adjoint. It follows that the functor {P(dAff*) — {*/P(dAff) preserves coCarte-
sian morphisms over cdga,fo. We get a natural transformation

P(dAFFF)
X\

cdgas? ﬂ Cat,
~ ' 7
*/P(dAfF)

As both functors at hand map quasi-isomorphisms of cdga’s to equivalences of categories, it factors
through the localisation cdgak<0 of cdga,fo. O

Proposition 4.2.2.3. Let X be an algebraic derived stack. There are functors

o X/P(dAf)y —  lim SPCA/PdALE)

and
. : Spec A BT s
0: Spelclf4n~>X /P(dAFE ) SpelclgL)XP(dAﬂ‘A)

Proof. The functor ¢ is given by the following construction:

HPaaf > lim SPCAPAAR) gpec 4 > o Jim | P A/P(aAR)

The second functor is constructed as follows. From proposition 4.2.2.2 we get a functor

lim _P(dAFF%) - lim _SPCA/p(dAFE,)

Spec A—»X Spec A—»X

It preserves colimits and both left and right hand sides are presentable. It thus admits a right adjoint
0. O

90



Remark 4.2.2.4. Note that the functor # commutes with base change. We can indeed draw the
commutative diagram (where S — T is a morphism between affine derived schemes)

T/p(dAft,)r — P(T/P(dAfE,)/ 1) — P(T/dAfE /1)

| | l

S/P(dAfE,)/s — P(S/P(dAf,)/s) — P(5/dAfE/s)

The left hand side square commutes by definition of base change. The right hand side square also
commutes as the restriction along a fully faithful functor preserves base change.

Definition 4.2.2.5. Let X be an algebraic derived stack. Let us define the formal completion functor

() X/P(dAffk)/X - Jm P((dgExt ,)°")

as the composed functor

Fipaaty i P APaary

— 1 op
LJim P((dgExt,)™)

Remark 4.2.2.6. Let u: S = Spec A — X be a point. The functor u*(—)" maps a pointed stack ¥
over X to the functor dgExt, — sSets

B — Mapg,_,x(Spec B,Y)

Definition 4.2.2.7. Let X be a derived Artin stack. Let dSt}’}’Art denote the full sub-category of
X/P(dAff)/x spanned by those X — Y — X such that Y is a derived Artin stack over X.

Lemma 4.2.2.8. The restriction of (=)' to dSt}X}’Art has image in dSt .

Proof. We have to prove that whenever Y is a pointed algebraic stack over X then Y is formal over
X. Because of remark 4.2.2.4, it suffices to treat the case of an affine base. The result then follows
from the existence of an obstruction theory for ¥ — X. O

Remark 4.2.2.9. Let X = SpecAandlet X > Y — X € dSt}’}’Art. Let us assume that Y is locally of
finite presentation over A. The tangent Ty« x , of the formal stack YT over X (see definition 4.1.5.4)
is equivalent to the tangent Ty x , of Y at y over X. By definition (see [HAG2, 1.4.1.14]), the tangent
complex Ty x,, corepresents the functor

vy dgModOAp—» sSets
Dery/x (X, (=)"): M Mapy,_x(X[MY]Y)

where X[M V] is the trivial square zero extension Spec(A@® MY). Using proposition 4.1.2.2, we know
it is actually determined by the restriction of Dery , x (X, (—)") to (dgModi{ft’;l)OP. On the other
hand, the formal stack YT is the functor

dgExt, — sSets
B +—Mapy,_,x(SpecB,Y)

Our claim follows from definition 4.1.5.4.
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Definition 4.2.2.10. Let X be an algebraic stack locally of finite presentation. We define its tangent
Lie algebra as the X-dg-Lie algebra

Ix = £y ((X x X)f)

where the product X x X is a pointed stack over X through the diagonal and the first projection.

Proof (of theorem 4.2.0.1). Let us denote ¥ = X x X and let u: S = SpecA — X be a point.
The derived stack X has a global tangent complex and the natural morphism v*/x = u*€xY’ —
£4(u*Y") is an equivalence. The functor «*Yf maps B in dgExt 4 to

Mapg,_,x(Spec B, X x X) ~ Mapg,(Spec B, X)

We deduce using corollary 4.1.4.11 that the underlying A-dg-module of £4(u*Y") therefore represents
the functor
dgModff’21 — sSets
M o Mapg)(Spec(A® MY [1]), X)

Using once again that X has a global tangent complex we conclude that the underlying module of ¢x
is indeed Tx[—1].
Let us now consider the functor

X/dStArt,lfp N dSt;k(,Art

mapping a morphism X — Z to the stack X x Z pointed by the graph map X — X x Z and endowed
with the projection morphism to X. Composing this functor with (—)f and £y we finally get the
wanted functor

X/dastArie _, X /dgLie,

Observing that X x Z is equivalent to X x z (Z x Z) and because Z has a global tangent complex,
we deduce
SX ((X X Z>f> >~ U,*EZ

Let us finally note that the underlying map of quasi-coherent sheaves is the tangent map shifted by
—1. O

4.2.3 Derived categories of formal stacks

The goal of this subsection is to prove the following

Theorem 4.2.3.1. Let X be an algebraic stack locally of finite presentation. There is a colimit
preserving monoidal functor
Repy: Qcoh(X) — dgRepy (¢x)

where dgRep x ({x) is the (o0, 1)-category of representations of £x. Moreover, the functor Repy is a
retract of the forgetful functor.

We will prove this theorem at the end of the subsection. For now, let us state and prove a few
intermediate results. Let A be any cdga,fo and L € dgliey. The category dgRep (L) of represen-
tations of L is endowed with a combinatorial model structure for which equivalences are exactly the
L-equivariant quasi-isomorphisms and for which the fibrations are those maps sent onto fibrations by

the forgetful functor to dgMod 4.

Definition 4.2.3.2. Let us denote by dgRep 4(L) the underlying (o0, 1)-category of the model cat-
egory dgRep 4 (L).
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Lemma 4.2.3.3. Let L be an A-dg-Lie algebra. There is a Quillen adjunction
fit: dgModc, , 2 dgRep4(L) : g7,

Given by

AV A L
sy uA< e )C§>Lv

S

:M*—>Han<UA<A[77]<§L)aM>

where A[n|®aL is as in subsection 4.1.4 and Hom, denotes the mapping complex of dg-representations
of L.

Remark 4.2.3.4. The image g7 (M) is a model for the cohomology RHom, (A, M) of L with values in
M.

Proof. The fact that f and g7 are adjoint functors is immediate. The functor fi' preserves quasi-
isomorphisms (see the proof of proposition 4.1.4.3) and fibrations. This is therefore a Quillen adjunc-
tion. O

Remark 4.2.3.5. The category dgRep 4 (L) is endowed with a symmetric tensor product. If M and N
are two dg-representations of L, then M ®4 N is endowed with the diagonal action of L. The category
dgMod, ;, is also symmetric monoidal. Moreover, for any pair of L-dg-representations M and N,
there is a natural morphism
A A
M N) — M®N
s 00 © (V) g (MO N)
This makes g7 into a weak monoidal functor. In particular, the functor g7 defines a functor dgLie; —
dgLiec , (), also denoted gf.

Proposition 4.2.3.6. Let L be a good dg-Lie algebra over A. The induced functor
ff‘5 dgMod, | — dgRep,(L)
of (o0, 1)-categories is fully faithful.

Proof. In this proof, we will write f instead of f{!. Let B denote Ca L. We first prove that
the restriction fipere(p) is fully faithful. Let V' and W be two B-dg-modules. There is a map
Map(V, W) — Map(fV, fW). Fixing V (resp. W), the set of W’s (resp. V’s) such that this map is an
equivalence is stable under extensions, shifts and retracts. It is therefore sufficient to prove that the
map Map(B, B) — Map(fB, fB) is an equivalence, which follows from the definition (if we look at
the dg-modules of morphisms, then both domain and codomain are quasi-isomorphic to B = C4 L).

To prove that f: dgMod g — dgRep 4(L) is fully faithful, we only need to prove that f preserves
perfect objects. It suffices to prove that fB ~ A is perfect in dgRep4(L). The (non commutative)
A-dg-algebra U, (A[n] ®4 L) is a finite cellular object (because L is good) and is endowed with a
morphism to A. The forgetful functor dgMod 4, — dgModIL?f\t( 1) therefore preserves perfect objects
(see [TV]). O

Let us consider the category {dgLie®” such that:
e An object is a pair (A, L) with A € cdga,fo and with L € dglie, and

e A morphism (A, L) — (B, L') is amap A — B together with a map L' — L ®% B in dgLiey.
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It is endowed with a functor {dgLie®® — cdga,fo. Localising along quasi-isomorphisms, we obtain a
coCartesian fibration of (oo, 1)-categories

JdgLieOp — cdgay’

classified by the functor A — dgLie?} (see the proof of proposition 4.1.2.6).
Let Fin* denote the category of pointed finite sets — see definition 0.1.0.13. For n € N, we will
denote by (n) the finite set {*,1,...,n} pointed at . Let {dgRep® be the following category.

e An object is a family (A, L, My,...,M,,) with A € cdga,fo, with L € dglie, and with M; €
dgRep 4 (L).

e A morphism (A, L, My, ..., My,) — (B,L',Ny,...,N,) is the datum of a map (4, L) — (B,L’) €
§ dgLie?, of a map ¢: (m) — (n) of pointed finite sets and for every 1 < j < n of a morphism
®i€t_1(j) M; ®4 B — N; of L’-modules.

It comes with a projection functor {dgRep® — {dgLie®® x Fin*. We will say that a morphism in
Sngep® is a quasi-isomorphism if the underlying maps of pointed finite sets and dg-Lie algebras
are identities and if the maps of cdga’s and of dg-representations it contains are quasi-isomorphisms.
Let us denote by Sngep® the localisation of Sngep® along quasi-isomorphisms. This defines a
coCartesian fibration p: {dgRep® — {dgLie®® x Fin* (using once again [DAG-X, 2.4.29)]).

Let now SdgModg(f) be the following category

e An object is a family (A,L,Vi,...,V,,) with A € cdgafo, with L € dglie, and with V; €
dgModg, .-

e A morphism (A, L,V4,...,Vy) — (B, L, Wq,...,W,) is the datum of a map (A4,L) — (B,L) €
§dgLie®?, of a map of pointed finite sets ¢: (m) — (n) and for every 1 < j < n of a morphism
of Cp L’-dg-modules ®iet,1(j) Vi®c, Cp L — Wj.

Localising along quasi-isomorphisms of modules, we get a coCartesian fibration of (oo, 1)-categories
q: SdgModg(_) — {dgLie®” x Fin*.

Lemma 4.2.3.7. The above coCartesian fibrations p and q define functors
dgRep, dgMod(_): JdgLieOp — Cat?o’V
Proof. For any object (4, L) € {dgLie®?, the pulled back coCartesian fibration

Jngep® X {(A, L)} x Fin* — Fin*

§ dgLie°P xFin*

defines a symmetric monoidal structure on the (oo, 1)-category dgRep 4(L) — see definition 0.1.0.14.
The coCartesian fibration p is therefore classified by a functor

PN} AY
Jdnge P Cat®

Moreover, this functor maps quasi-isomorphisms of dg-Lie algebras to equivalences. Hence it factors
through a functor

dgRep: JdgLieOp — Cat®V

The case of dgMod_) is isomorphic. O
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We will now focus on building a natural transformation between those two functors. Let us build
a functor g: §dgRep® — SdgMod(g(f)

e The image of an object (A,L,M,...,M,,) is the family (A, L,V4,...,V,,) where V; is the
C4 L-dg-module

o 01) = How, (s (Al @ 1) 01

e The image of an arrow X) ) M; ® 4 B — Nj is the composition

et 1(
A / A l
Mi CgL — Mi CgL
®9L( )C?L B 9L(® )C?L B
—gB (@ M; % B>
—g1(N)
where the second map sends a tensor A ® p to (A ®1id).u with
A®id: Ug <B[n] %)L’> — Up (B[n] @L) =Ux (A[n] <§L> ®B — (&) ®B
The functor g induces a functor of (oo, 1)-categories
g: Jngep® — fdgMod(é)(f)

which commutes with the coCartesian fibrations to {dgLie®® x Fin*.

Proposition 4.2.3.8. The functor g admits a left adjoint f relative to §dgLie®® x Fin*. There is
therefore a commutative diagram of (00, 1)-categories

§ dgMod%(f) {dgRep®

vl

{ dgLie°” x Fin*

f
p

where [ preserves coCartesian morphisms. It follows that [ is classified by a (monoidal) natural
transformation
dgModc(f)
0
jdgLie” |7 Cat”
~_ " 7
dgRep

Proof. Whenever we fix (A4, L,(m)) in { dgLie°” x Fin*, the functor g restricted to the fibre categories
admits a left adjoint (see lemma 4.2.3.3). Moreover when (A, L) — (B, L’) is a morphism in {dgLie®P,
the following squares of monoidal functors commutes up to a canonical equivalence induced by the
adjunctions

A
dgMod, . — dgRep, (L)

—®c 4 LCB(L®AB)i l-@uA LUs(L®AB)

fLB®AB
dgModc , (1g,5 — dgRepp(L @4 B)
®CB(L®AB)CB(L,)l lForgot
ff/ ,
dgMOdCB L dgRepp (L )
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For any family (V3,...,V,,) of C4 L-dg-modules, the canonical morphism

(®f2() ®, Cnl' = fL ((@ V)@ B)

is hence an equivalence. This proves that g satisfies the requirements of [HAlg, 8.3.2.11], admits a
relative left adjoint f which preserves coCartesian morphisms. O

Let us denote by SdgMod® the category
e an object is a family (A4, My,..., M,,) where A € cdga,fo and M; € dgMod 4

e a morphism (A, My,..., M,,) — (B, Ny,...,N,) is the datum of a morphism A — B, of a map
t: {(m) — {(n) of pointed finite sets and for any 1 < j < n of morphism of A-dg-modules

® M; — N;

iet=1(4)

There is a natural projection SdgM0d® — cdga,fo x Fin*. We have three functors

T

§ dgRep® § dgMod® x cdga=® § dgLie®?

I

§dgMod®

compatible with the projections to §dgLie®® x Fin*. The functor = is defined by forgetting the Lie
action, while p maps an A-dg-module M and an A-dg-Lie algebra L to the C4 L-dg-module M, where
C4 L acts through the augmentation map C4 L — A. The above triangle does not commute, but we
have a natural transformation g — pm, defined on a triple (A, L, V') by

9(A, L, V) = Hom (Ua(A[] ®4 L),V) —=V = pr(A,L,V)

We check that this map indeed commutes with the C,4 L-action. Localising all that along quasi-
isomorphisms, we get a tetrahedron

§ dgMod® x cdga<° § dgLie?

\/

{dgLie°” x Fin*

where p, ¢ and r are coCartesian fibrations — see [DAG-X, 2.4.29] — where the upper face is filled with
the natural transformation g — pm and where the other faces are commutative.

Lemma 4.2.3.9. The functor p admits a relative left adjoint T and the functor m preserves coCartesian

maps. Moreover, the natural transformation T — wf — induced by g — pm and by the adjunctions —
is an equivalence.
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Remark 4.2.3.10. It follows from the above lemma the existence of natural transformations

dgMod¢_,
m
{ dgLie®® —dgRep—> Cat®"

~

dgMod

This lemma also describes the composite 7 f as the base change functor along the augmentation maps
Cal— A

Proof. Let us first prove that p admits a relative left adjoint 7. For any pair (A, L) € {dgLie®?, the
forgetful functor dgMod 4, — dgMod, ;, admits a left adjoint, namely the base change functor along
the augmentation map C4 L — A. This left adjoint is monoidal and commutes with base change. It
therefore fulfil the assumptions of [HAlg, 8.3.2.11]. The induced natural transformation 7 — 7 f maps
a triple (4, L,V) € {dgMod_) to the canonical map

A A A
= A— L®A =
A=V @ A=V © (L@ Al) - R IAY)
which is an equivalence of A-dg-modules. O

Let us consider the functor of (oo, 1)-categories
op
dAfFA” - (Catg%“’)

mapping a sequence X — Y — Z of derived affine schemes to the monoidal (oo, 1)-category Qcoh(Y).
We form the fibre product

¢ —— dAfY

lp
dAff, — > dAfF

where p is induced by the inclusion (0 — 2) — (0 — 1 — 2). Finaly, we define D as the full
subcategory of C spanned by those triangles Spec A — Spec B — Spec A where B € dgExt 4. We get

a functor
op

F:D— (Cat%“’)

Note that the functor D — dAff}, is a Cartesian fibration classified by the functor A — dgExt%.

Let us denote by §3dStf — dAff; the Cartesian fibration classified by the functor Spec A —
dSt', = Px(dgExt%). The Yoneda natural transformation dgExt®® — dSt’ defines a functor
D — §dSt’. We define

op
Lqcoh: ﬂgdStf - (Cat%v)

as the left Kan extension of F' along D — §dStf.
Let now X be a derived stack. The category dSth defined in definition 4.2.1.4 is equivalent to
the category of Cartesian sections ¢ as below — see [HTT, 3.3.3.2]

§dst’
|
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Definition 4.2.3.11. Let X be a derived stack. We define the functor of derived category of formal
stacks over X:

oh colim op
LYon: dStly ~ Fet§yk, (dAffk/X §dSt ) Lol pet (dAffk/X, (Cat® V) ) _colim_ (Cat?o’v)

If Y e dSt% then choh(Y) is called the derived category of the formal stack Y over X. We can
describe it more intuitively as the limit of symmetric monoidal (o0, 1)-categories

L Y)= lim lim dgMod
qCOh( ) Spec A—»X BedgExt, g B
Spcc B—Ya

where Y4 € dStf, is the pullback of Y along the morphism Spec A — X

The same way, the opposite category of dg-Lie algebras over X is equivalent to that of coCartesian
section

op
dgLie¥ ~ Fctzg(éaso ((dAﬂ'k/X> ,JdngeOP)
We can thus define

Definition 4.2.3.12. Let X be a derived stack. We define the functor of Lie representations over X

to be the composite functor dgRepy : dgLie§ — Cat%V

dgLie — Fet((dAffy/x)”, § dgLie™) “=F Fet( (dAfy/x)™, Cat$ ") —"> Cat®”

In particular for any L € dgLiey, this defines a symmetric monoidal (o0, 1)-category

dgRepy (L) = lim dgRep,(La)

where L4 € dgLie 4 is the dg-Lie algebra over A obtained by pulling back L.

Proposition 4.2.3.13. Let X be a derived stack. There is a natural transformation

Licon (Fx (=)
o
dgLie$? ﬂ\lf Cat®"
~ 7
dgRepx

Moreover, for any L € dgLiey, the induced monoidal functor choh(]:XL) — dgRepy (L) is fully
faithful and preserves colimits.
To prove this proposition, we will need the following

Lemma 4.2.3.14. The natural transformation F: dgLie — dstf together with the functor

op
Lcon <3€ dStf> — Cat®"

define a functor ¢: §dgLie®® — Cat%’v. There is a pointwise fully faithful and colimit preserving
natural transformation ¢ — dgRep.

Proof. Let £ denote the full subcategory of {dgLie® such that the induced coCartesian fibration
- cdga,f0 is classified by the subfunctor

op
A— (dgLiei;ft’Zl> c dgLie?}
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The functor ¢ is by construction the right Kan extension of its restriction ¢ to £. Moreover, the
restriction 1 is by definition equivalent to the composite functor

dgMod )
£ — {dgLie® ——— > Cat®"

Using the natural transformation dgModC(_) — dgRep from proposition 4.2.3.8, we get
a: ¢ — dgRep¢ € Fct (5, Cat?o’v)
We will prove the following sufficient conditions.
(i) The functor dgRep: SdgLieOp — Cat?o’V is the right Kan extension of its restriction dgRep|¢

(7i) The natural transformation « is pointwise fully faithful and preserves finite colimits.

Condition (i) simply follows from proposition 4.2.3.6. To prove condition (3), it suffices to see that
when A is fixed, the functor
dgRep ,: dgLie?? — Cat®"

commutes with sifted limits. This follows from [DAG-X, 2.4.32]. O

Proof (of proposition 4.2.3.13). Let X be a derived stack and L be a dg-Lie algebra over X. Recall
that we can see L as a functor

L: (dAfryy) " — JdgLieOP

By definition, we have LY | (FL) = lim ¢o L and dgRep y (L) = lim dgRep oL. We deduce the result

qcoh
from lemma 4.2.3.14. O

We can now prove the promised theorem 4.2.3.1.

Proof (of theorem 4.2.3.1). Let us first build a functor
vx : Qeoh(X) — Lquh((X x X)f)
Let us denote by C the (o0, 1)-category of diagrams
Spec A — Spec B —— Spec A
la
X

where A € cdga,fO and B € dgExt 4. There is a natural functor C°? — Catg%’V mapping a diagram
as above to the monoidal (o0, 1)-category dgMod . Unwinding the definitions, we contemplate an
equivalence of monoidal categories

LY ((X X X)f) ~ liéndgModB

qcoh

The maps « as above induce (obviously compatible) pullback functors a*: Qcoh(X) — dgModj.
This construction defines the announced monoidal functor
vx: Qeoh(X) — LX ((X x X)f)

qcoh

Going back to definition 4.2.2.10 and definition 4.2.1.4, we have a canonical morphism

0: Fx(lx) = FxLx ((X x X)f) S (X x X)f

99



Now using the functor from proposition 4.2.3.13, we get a composite functor

vx D' f 0* b'e v
Rer : QCOh(X) - choh ((X X X) ) - choh (]:X (gX)) - nger (‘eX)

As every one of those functors is both monoidal and colimit preserving, so is Repy. We still have to

prove that Repy is a retract of the forgetful functor O x: dgRepy(¢/x) — Qcoh(X). We consider

the composite functor © x Repy

Qeoh(X) —>~ 1X, (X x X)) 2= L, (Fx(£x)) — > dgRepy (€x) ——> Qcoh(X)

qcoh

It follows from lemma 4.2.3.9 that the composite functor © x ¥ is equivalent to the pullback

Lajeon (Fx (£x)) = Lion (X) ~ Qcoh(X)

qcoh

along the canonical morphism X — Fx(¢x) of formal stacks over X. It follows that ©x Repy is
equivalent to the composite functor

Qeoh(¥) —~ 1%, (X x X)) " Qcoh(X)

qcoh
where « is the morphism X — (X x X)f. Unwinding the definition of vx, we see that this composite
functor is equivalent to the identity functor of Qcoh(X). O

4.2.4 Atiyah class, modules and tangent maps

Definition 4.2.4.1. Let Perf denote the derived stack of perfect complexes. It is defined as the stack
mapping a cdga A to the maximal co-groupoid in the (oo, 1)-category Perf(A). For any derived stack
X, we set Perf(X) to be the maximal groupoid in Perf(X). It is equivalent to space of morphisms
from X to Perf in dSty.

Definition 4.2.4.2. Let X be a derived Artin stack locally of finite presentation. Any perfect module
E over X is classified by a map ¢p: X — Perf. Following [STV], we define the Atiyah class of E as
the tangent morphism of ¢g

atp: Tx — 05 Tpert

Remark 4.2.4.3. We will provide an equivalence ¢%Tpers ~ End(E)[1] in the proof of proposi-
tion 4.2.4.4. The Atiyah class of E should be thought as the composition

atE: Tx[—].] g gf)ETm[—l] ~ End(E)

We will, at the end of this section, compare this definition of the Atiyah class with the usual one —
see proposition 4.2.4.6.

Proposition 4.2.4.4. Let X be an algebraic stack locally of finite presentation. When E is a perfect
module over X, then the lx-action on E given by the theorem 4.2.3.1 is induced by the Atiyah class
of E.

Lemma 4.2.4.5. Let A€ cdgafO and L € dgLieiift’;l. The functor
ffi dgMOch(L) — dgRep (L)
defined in lemma 4.2.3.3 induces an equivalence
Perf(C4 L) > dgRep,4 (L) x Perf(A)

dgMod 4
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Proof. We proved in proposition 4.2.3.6 the functor f; to be fully faithful. Let us denote by C the
image category
C = fi (Perf(Ca(L)))

From Lurie’s work ([DAG-X]) over a field and from proposition 4.2.3.8 we deduce that C contains
any representation of L whose underlying A-module is (equivalent to) A™. Moreover the category
C is stable under pushouts and fibre products. The forgetful functor C — dgMod 4 also preserves
pushouts and fibre products. The category C therefore contains any representation whose underlying
module is perfect. Reciprocally, every representation in C has a perfect underlying complex. O

Proof (of the proposition 4.2.4.4). The sheaf E corresponds to a morphism ¢p: X — Perf. Its
Atiyah class is the tangent morphism

atp: Tx[—1] — ¢5Tpers[—1]
In our setting, we get a Lie tangent map
atp: {x — ¢hlpert

We observe here that ¢ /pers represents the presheaf on dgLiey

L — Gpd (Lgl(coh(fX(L)) x {E}>
Qcoh(X)

while gl(E) — the dg-Lie algebra of endomorphisms of F — represents the functor

L — Gpd| dgRepx (L) x {E}
Qcoh(X)

where Gpd associates to any (o0, 1)-category its maximal groupoid. We get from proposition 4.2.3.13
a morphism ¢%lperr — gI(E) of dg-Lie algebras over X. Restricting to an affine derived scheme
s: SpecA — X, we get that s*¢%lperr and s*gl(E) ~ gl(s*E) respectively represent the functors
(dgLief&ft’Zl)‘)p — sSets

L° — Perf(C4 L°) x {E} and L° — Gpd (ngepA(LO) X {E})
Perf(A) dgMod 4,

The natural transformation induced between those functors is the one of lemma 4.2.4.5 and is thus
an equivalence. We therefore have
atE: KX — g[(E)

and hence an action of /x on E. This construction corresponds to the one of theorem 4.2.3.1 through
the equivalence Perf(X) ~ Map(X, Perf). O

We will now focus on comparing our definition 4.2.4.2 of the Atiyah class with a more usual one.
Let X be a smooth variety. Let us denote by X(® the infinitesimal neighbourhood of X in X x X
through the diagonal embedding. We will also denote by 7 the diagonal embedding X — X? and by
p and ¢ the two projections X(?) — X. We have an exact sequence

i*LX — OX(z) g Z*OX (41)

classified by a morphism «: i,Ox — i,Lx[1]. The Atiyah class of a quasi-coherent sheaf E is usually
obtained from this extension class by considering the induced map — see for instance [KM]

E~p.(i:0x ®¢*E) = pu(isLx[1] ®¢*E) ~ Lx[1]® E (4.2)
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From the map «, we get a morphism i*i,Ox — Lx[1]. Dualising we get
B: Tx[—1] — Homgy  (i%*i4Ox,Ox) =~ pyiy Homy  (i%i4Ox, Ox) =~ py Hom, (ix0x,1+O0x)

The right hand side naturally acts on the functor i* ~ p, (_®Ox(2> 1xOx) and hence on i*¢* ~ id. This
action, together with the map 3, associates to any perfect module F a morphism Tx[-1]® E — E.
It corresponds to a map F — E ® Lx[1] which is equivalent to the Atiyah class in the sense of (4.2).

Proposition 4.2.4.6. Let X be a smooth algebraic variety and let E be a perfect complex on X. The
Atiyah class of E in the sense of definition 4.2.4.2 and the construction (4.2) are equivalent to one
another.

Proof. We first observe the two following facts

e The derived category L ((X(Q))f) is equivalent to Qcoh(X ().

qcoh

e The tangent Lie algebra SX((X(2))f) is the free Lie algebra generated by Tx[—1].

We moreover have a commutative diagram, where i: X(2) — X x X is the inclusion.

Rep x
Qeoh(X) — L, (X x X)) ———— dgRep (¢x)
X‘ iu*
Qcoh(X®) dgRep y (Freex (Tx[—1])) —— Qcoh(X)

¥

where w is the natural morphism X® — X x X.
From what precedes, the Atiyah class arises from an action on ¢*, and we can thus focus on the
composite

Qcoh(X®) —— dgRepy (Freex (Tx[—1])) — Qcoh(X)

which can be studied locally. Let thus a: Spec A — X be a morphism. Let us denote by L the
A-dg-Lie algebra Frees(Tx ,[—1]). Pulling back on A the functors above, we get

A

dgMod, ;, At dgRep 4 (L) —— dgMod 4

where f;} is given by the action of L on Ua(L ®4 A[n]) through the natural inclusion. On the other
hand, the universal Atiyah class « defined above can be computed as follows

Ca L — Hom, (Ua(L ®a A[n]), A)

Nl lN

A@vaa A@(LX,a ®a A[ﬁ])
i Jl
0 ILJX,cn[l]

The universal Atiyah class is thus dual to the inclusion Tx o[—1] — Ua(L ®4 A[n]). It follows that
the action defined by the functor f;* is indeed given by the Atiyah class. We now conclude using
proposition 4.2.4.4. O
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4.2.5 Adjoint represention

In this subsection, we will focus on the following statement.

Proposition 4.2.5.1. Let X be a derived Artin stack. The {x-module Repx (Tx[—1]) is equivalent
to the adjoint representation of {x.

The above proposition, coupled with proposition 4.2.4.4, implies that the bracket of /x is as
expected given by the Atiyah class of the tangent complex. To prove it, we will need a few construc-
tions.

Lemma 4.2.5.2. Let A € cdga,fo and L € dgliey. To any A-dg-Lie algebra L' with a morphism
a: L — L' we associate the underlying representation 14 (L') of L — ie the A-dg-module L' with the
action of L through the morphism «. The functor wf preserves quasi-isomorphisms. It induces a
functor between the localised (00, 1)-categories, which admits a left adjoint qi)f :

¢ dgRep, (L) = L/dgLie, : !

Proof. The functor wf preserves small limits and both its ends are presentable (co,1)-categories.
Since both dgRep 4 (L) and dgLie, are monadic over dgMod 4, the functor 34 is accessible for the
cardinal w. The result follows from [HTT, 5.5.2.9] O

Lemma 4.2.5.3. Let A be a cdga and Ly be a dg-Lie algebra over A. There is a natural transformation

Ca

Lo/dgLie , (cdgan/Ca L) ™
wi A) [(—1]
dgRep 4 (Lo) oA ((5)Y) (dgMOdCA Lo)op
Lo

where gfo was defined in lemma 4.2.5.3.

Proof. Let a: Ly — L be a morphism of A-dg-Lie algebras. The composite morphism
Syma(Lo[1]) ® L[1] = Sym(L[1]) © L[1] — Sym, (L[1])
induces a morphism
Hom 4 (Sym 4 (L[1]), A) — Hom 4 (Sym(Lo[1]) ® L[1], A) ~ Hom 4 (Sym 4 (Lo[1]), L”[-1])

This defines a map of graded modules §,: C4 L — gfo (LY)[—1]. Let us prove that it commutes with
the differentials. Recall the notations S; and Tj; from remark 4.1.4.2. We compute on one hand

0(dE) (N1 ® ... @N.xp)(NYnt1) = Z ()5 ey ®...01ndy; @ ... @ N.Yni1)

i<n+1

+ > (DY y O ®. . QOTH® . @MY ® - @ N-Yni1)

i<j<n+1
+dEMn ® ... ®N-Ynt1))

where y; denotes az;, for any 7 < n. On the other hand, we have

d(E))nr1®...0n.xy,) = Z (1) ®...Qndr; ® ... Q1n.xy,)

i<n

+ Y (=DM 2] @Ona ® .. RTE® ... QNI ® ... @ Ty
i<j<n

+ 3 () S i b ® . R TT® .. ® 1)

i<n

+d(6EMN21 ® ... @n.2y))

103



where e denotes the action of Ly on LY. We thus have

() (21 ® .. @nan)Nynsr1) = Y (D5 My © ... @y ® ... @ 0.y @N.Yn+1)

<n
+ > (D)) @ ®@ . @NT® .. @ NG ® ... @N.Yn @ N-Yns1)
<j<n
+ ) (=) I DSH vl =S )il e (s @ . @ TG @ - -0y @ - [Yms1, i)
<n

+d(0(Mx1 ® ... ®N.70))(NYnt1)

Now computing the difference 6(d€)(n.21®...®n.2,)(NYnt+1) — (d(0E)) (N1 ®...®N.2n) (N-Ynt1) We
get

(—D)5  Eap @ ... @ 1Yy @ 1.dynt1)
+dEMN ® ... ®NYnt1)) —d(0EM21® ... ®@N.Tn))(N-Yns1) =0

It follows that 6, is indeed a morphism of complexes C4 L — g7\ (LY)[—1]. It is moreover A-linear.
One checks with great enthusiasm that it is a derivation. This construction is moreover functorial in
L and we get the announced natural transformation. O

Let us define the category S*/dgLie as follows
e An object is a triple (A, L, L — L;) where A € cdga;’ and L — L; € dgLie,.
e A morphism (A,L,L — L) — (B, L', L' — L}) is the data of

— A morphism A — B in cdga,fo,
— A commutative diagram
L' ——L®sB

]

Li<~—L;®4B

This category comes with a coCartesian projection to S*/dgLie — {dgLie°?. The forgetful functor
L/dglie , — dgRep 4 (L) define a functor Ad such that the following triangle commutes

§ */dgLie §{ dgRep
§ dgLie®?

Let us define the category S(cdga/c(_))"f’ as follows

e An object is a triple (A, L, B) where (A4,L) € {dgLie°® and B is a cdga over A with a map
B — CA L )

e A morphism (A, L, B) — (A, L', B’) is a commutative diagram

A——B——=Cy L

L

Al —— DB ——Cy L’

where C4 L — C 4/ L’ is induced by a given morphism L' — L ®% A’.
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Let us remark here that C induces a functor y: {*/dgLie — §(cdga/c(—))°P which commutes with
the projections to {dgLie®. The construction dgRep (L) — (cdga,/C 4 L)

Vi CaLl®gi (VY)[1]

defines a functor
op
0: Jngep — f(cdga/c(_))

and lemma 4.2.5.3 gives a natural transformation §Ad — x. Localising along quasi-isomorphisms, we
get a thetaedron

§ */dgLie
/ \

S(cdga/c S dgRep

Y

§ dgLie®?

where the upper face is filled with the natural transformation 6Ad — x and the other faces are
commutative.

Lemma 4.2.5.4. The functor Ad admits a relative left adjoint ¢ over {dgLie®®. Moreover, the
induced natural transformation 0 — 0Ad¢ — x¢ is an equivalence.

Proof. The first statement is a consequence of lemma 4.2.5.2 and [HAlg, 8.3.2.11]. To prove the
second one, we fix a pair (A4, L) € {dgLie®” and study the induced natural transformation

dgRep 4 (L) (cdgay/c, )™

~o

L/dgLie ,

The category dgRep 4(L) is generated under colimits of the free representations Uy L ® N, where
N € dgMod 4. Both the upper and the lower functors map colimits to limits. Since qb‘f (Us LQN) ~
L11Frees(N), we can restrict to proving that the induced morphism

CAL®NY[-1] > CaL®gi (UsLON)"[-1])
is an equivalence. We have the following morphism between exact sequences

NV[—l] CALG—)NV[—I] CalLl

| | ¥

91 (UAL®N)'[-1]) —=Ca L@ g (Ua L)' [-1]) —=Ca L

Since the functors (—)" and g7 (Ua L ® —)"[—1]) from dgMod 4 to dgMod} are both left adjoint
to same functor, the morphism 3 is an equivalence. O

Let us now consider the functor
fdgMod(">! —~ {dgModc_) — [ dgRep
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Remark 4.2.5.5. Duality and proposition 4.2.3.6 make the composite functor

0
SdgModg?jl — {dgRep —— {(cdga/c(—))®

equivalent to the functor (A, L, M) — C4 L@ MY [-1].
Moreover, the composite functor

JdgMOdfC’f(t;?l % j(dgLief,ft,Zl)Op s Jngep % f(dgLief,ft,Zl)op
S dgLie°P S dgLie°P

s J\ */dgLie X J\(dgLiefvfM?l)op
§ dgLie°P

has values in the full subcategory of good dg-Lie algebras S*/dgLiegOOd. Using lemma 4.1.4.10, we
see that the functor

dgMod:=t  « Jd Liehft-=1 Op—>fcd a P Jd Liehft-=1yop
Janodts - fragtict 2 f(edgao )7 f(asiet

preserves coCartesian morphisms. We finally get a natural transformation

£ft,>1
dgModc(i)

j(agLie™ =1y | Cat".

\_/
(cdgayc(—))?

There is also a Yoneda natural transformation (cdga/C(—))°* — Spec(C(—))/dst’ and we get

) t,tt,>1 _ Spec(C(— f
G: dgMod{ (C(—))/ast
Let us recall remark 4.2.1.2. It defines a natural transformation
. £,ft,>1 1 _ Spec(C(— f
¢: dgModif*>! x Al — SPee(C(=)) st

such that ((—,0) ~ F¢f and ((—,1) =~ G ~ hof.
We are at last ready to prove proposition 4.2.5.1.

Proof (of proposition 4.2.5.1). Extending the preceding construction by sifted colimits, we get a
natural transformation 3: Lgcon(F(—)) x Al — F(=)/dSt" of functors {dgLie®® — CatY.. Let now
X denote an Artin derived stack locally of finite presentation. We get a functor

Bx: LE o (Fxtx) x A — Fx(lx)/qsef,
On the one hand, the functor Sx(—,0) admits a right adjoint, namely the functor

Fx(£x)/dSty —> (x /dgLiex —> dgRepx (£x) —2> LY, (Flx)
while on the other hand, using remark 4.2.5.5, the functor
Map(ﬂX(_v 1)7 (X X X)f)

is represented by vx (Tx[—1]) where vy is the functor Qcoh(X) — Lffcoh((X x X)) defined in the
proof of theorem 4.2.3.1. We therefore have a morphism

vx(Tx[-1]) = gxAdx Lx((X x X)) ~ gxAdx(¢x)

and hence a morphism Rep y (Tx[—1]) = fxvx(Tx[-1]) — Adx(¢x). It now suffices to test on the
underlying quasi-coherent sheaves on X, that it is an equivalence. Both the left and right hand sides
are equivalent to Tx|[—1]. O
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Chapter 5

Perspectives

In this last chapter, we will expose a few research directions the author would like to pursue.

5.1 A symplectic structure on the formal loop space

We approached in this thesis the following question: if X is a symplectic stack, does its formal loop
space £4(X) inherits a Tate symplectic structure. We showed in proposition 3.1.3.8 that £¢(X) is
endowed with a "local" Tate structure.

Problem 1. Let X be an n-shifted symplectic derived Artin stack. Does the formal loop space L%(X)
of dimension d with values in X admit an (n — d + 1)-shifted symplectic structure, as a locally Tate
stack?

One way of approaching this issue is by considering the nerve of the morphism £{,(X) — £ (X).
This defines a groupoid object Z, in ind-pro-stacks. We showed that when X is affine, the space
of morphisms Z; of this groupoid is %d(X) and admits a closed form as soon as X has one. This
groupoid object is moreover expected to be compatible with the closed form so that it should define
a closed form on the quotient. One core idea of this construction is that the quotient of the fore-
mentioned groupoid in the right category — something like the category of Artin ind-pro-stacks —
should be equivalent to £4(X).

Moreover, stating and proving that the form on £4(X) is non-degenerate encounters several
problems. The first one is that the tangent of £¢(X) is only know to be a locally Tate object but not
necessarily globally, so that comparing the tangent with its dual, the cotangent, does not really make
sense yet.

5.2 A formal loop space over a variety

As we explained in the introduction, it appeared in [KV1] that the formal loop space (in dimension
1) can be defined over a curve. It moreover admits a factorization structure allowing us to use some
local-to-global argument. This strategy also makes the core of [GL]. The question of defining the
formal loop space over a variety V — say of dimension d — then naturally pops up. The difficulty lies
in defining properly the punctured formal neighbourhood of the diagonal embedding V' — V x V. In
[KV1], the authors defined it as a locally ringed space. This approach would also make sense in the
derived setting: for any cdga A with morphism u: Spec A — V', one can consider the space Spec A
with a sheaf of cdga’s O corresponding to the punctured formal neighbourhood of the graph I,
of u. The assignement

(u: SpecA > V) — Mapf/v((Spec A, Ofu\Fu>’X)
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when X is a derived affine scheme over V, should define some sort of formal loop space over V.
Although this definition would only make sense for an affine scheme X, one could give a broader
definition by enforcing étale descent. And what of the factorization structure? The same kind of
construction should allow us to build an object over the Ran space of V', hence defining a factorisation
structure on this formal loop space over V. Its Ran space can be seen as the colimit in the category
of stacks
Ran(V) = colim V7
IeFin~

where Fin™ is the category of finite sets and surjective maps. We come to the second problem I would
like to investigate.

Problem 2. Let V be a smooth and proper variety of dimension d. There should be a factorization
monoid 7: L(X)ran(vy — Ran(V) in ind-pro-stacks such that, for any configuration {vy,...,v,} of
points in V, we have a cartesian diagram

(‘Cd<XL)p - £(X)Ran(V)

F—T. Ran(V)
Moreover, this factorization structure is expected to admit a flat connection — ie the map w is the
pullback of a map Z — Ran(V)qg.

When V is Calabi-Yau, this factorization monoid is moreover expected to be compatible, in some
sense, with the symplectic structure. A local-to-global argument should allow us to define a symplectic
form on the (flat) factorization homology Hy of L(X)gan(v)-

This factorisation structure could also be linked to some higher dimension chiral differential
operators, following the work of Kapranova and Vasserot in [KV3]. Of course, the first step in this
direction would be to give a definition of what higher dimensional chiral and vertex algebras would
be. The author hopes to follow those ideas together with Giovanni Faonte and Mikhail Kapranov.

5.3 Local geometry

Another direction the author is interested in is the development of a so-called local geometry. In this
thesis, we encountered infinite dimensional stacks with a natural ind-pro-structure. This theory of
ind-pro-stacks has some good features but seemed a bit tight for some purposes. Namely, the fact
that the algebra k((t)) of Laurent series over the base field & does not fit in this context. There is
indeed no reasonible ind-pro-stacks representing k((¢)) and remembering — as one would want — that it
is in fact a localisation of a pro-algebra. The same problem arises of course when considering higher
dimensional "loops", ie the derived scheme U,gl as defined in chapter 3.

Problem 3. Is there a natural geometrical context in which the punctured formal neighbourhood lives
and behaves?

This problem could be answered with the following observation: the ring of Laurent series is an
algebra in the category of ind-pro-vector spaces over k:

k((t)) = colim lim k[t]/n+p

n p

where the maps k[t]/n+p — k[t]/4n+(p—1) is naturally a morphism of algebras but the transition maps

k[t]jm+p — k[t]fn+1)+p
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are given by the multiplication by ¢ and thus do not preserve the product. The idea here is to build
a geometry on the site of algebras in the category of ind-pro-vector spaces, or more precisely in ind-
pro-perfect complexes over k. Those algebras come with a natural definition of a cotangent complex
and an étale topology therefore arises.

Let us denote by dAffip = (CAlg(IPP(k)))°P this opposite category of commutative algebras in
ind-pro-perfect complexes. The category P(dAffrp) admits a localisation dStrp with respect to the
étale topology. We will call objects in dStyp local (derived) stacks. The canonical monoidal inclusion
i: dgMod, ~ Ind"”(Perf(k)) — IPP(k) defines a restriction functor

P(dAffip) — P(dAF)

which descends to a restriction functor between the category of stacks for the étale topology on both
sides: i*: dStyp — dSt. Any local stack hence admits an underlying derived stack. There is also a
lax monoidal realisation functor p: IPP(k) — dgMod,;, which then defines a restriction functor

p*: dSt — dStIP

The functor p* is fully faithful and defines an embedding of derived stacks into local stacks.

One of the expected feature of this geometry of so called local stacks is that it should contain
everything needed to define fully and properly the punctured formal neighbourhood — as the functor
on dAffip represented by k((t)) in dimension 1. More generally, let f: Spec(A/r) — Spec A be a
closed embedding of affine schemes. Let us assume that the ideal I is finitely generated by elements
(ai,...,ay). The punctured formal neighbourhood associated to the map f can now be obtained by
glueing ind-pro-perfect vector space such as

colim lim A/

n P (ail . aik)”ﬂ”

endowed with a multiplication induced by that of A. Those ind-pro-vector spaces hence define objects
in our site dAffip and can be glued. In this definition, the maps in the pro-direction are given by
moding out, while the maps in the ind-direction are given by multiplying by a;, ... a;,. The punctured
formal neighbourhood of f is then the local stack represented by the local affine scheme above. This
construction should generalize to a reasonible closed immersion between finitely presented schemes.

Once we have a punctered formal neighbourhood, we can define the formal loop space L& (X)
in X as the internal hom — in dStyp — from A’ < {0} to p* X. Note that the restriction p*(L{p (X))
is naturally equivalent to ECLZ,(X ) as defined in chapter 3. The symplectic structure could then follow,
using the same strategy as in theorem 2.2.3.8.

This alleged local geometry would also give a well-behaved construction of the formal loop space
over a variety V', as well as its factorisation structure. The author would also be interested in studying
the links between this local geometry and differents fields, including Beilinson’s adéles, rigid analytic
or adic spaces.
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Notations glossary

AP(X),AP(X)
Al (X),ARS(X)
BL[

C

Be

BY(X)

U
Catg, ,
Catgg’

,st
Cat\o;J .
Cat >

<0
cdga3
cdgay
Cal

dAff,
dgExt 4
dgLie 4
dgMod 4
dgRep,(L)
dSt,
dstr
dst',
dStg‘ate
Fct(C,D)
Fin*

Fx
nd”(C)
Ind;
IPdSt}>"
IPerf(X)
IQcoh(X)
K(C),K(C)
Kl>

Lx/s

L£x

lx

Complex of k-modules of (closed) p-forms on X
Pro-ind-complex of k-modules of (closed) p-forms on X

Functor C2&" — Cati’O mapping ¢ — d € C to the category C/C/d -
with pushforward functors

Functor (CAI)Op — Cat’ mapping ¢ — d € C to the category
C/C/d — with pullback functors

Ind-pro-stack of bubbles of dimension d in X

Category of U-small (o0, 1)-categories

Category of U-small symmetric monoidal (oo, 1)-categories
Category of V-small stable (oo, 1)-categories

Category of V-small stable and idempotent complete (co,1)-
categories

Category of cdga’s over A

Category of unbounded cdga’s over A

Chevalley-Eilenberg cohomology complex of the A-dg-Lie algebra
L

Category of derived affine schemes over k

Category of trivial square zero extensions of A

Category of A-dg-Lie algebras

Category of A-dg-modules

Category of representations of the A-dg-Lie algrebra L

Category of derived stacks over k

Category of derived Artin stacks over k

Category of formal stacks over A

Category of Tate stacks over S

Category of functors C — D

Category of pointed finite sets

Functor mapping a Lie algebra over X to a formal stack
Category of U-small ind-objects in C

Ind-extension functor to Ind”(C)

Category of shy and bounded ind-pro-stacks over S

Derived category of ind-perfect complexes on X

Derived category of ind-quasi-coherent sheaves on X

Connective (resp. non-connective) K-theory spectrum of C
Simplicial set obtained from K by adding a final object
Cotangent (pro-)(ind-)complex of X over S

Functor mapping a formal stack over X to its tangent Lie algebra
Tangent Lie algebra of the stack X

111

p.46
p.46
p-22

p-22

p-66
p-1
p-5
p.-5
p-5

p-6
p.71
p-79

p.6
p.82
p.71

p.6
p-90

p-6

p.6
p.82
p-44

p-1

p-5
p-86

p-2

p4
p-42
p-30
p.31
p-12

p-3

p.7, 33, 37
p-86
p-90



PIPerf(X)
PIQcoh(X)
PPerf(X)
P(C)

Pr"
Pro”(C)
Pro
Px(C)
Qcoh(X)
sSets
Tate" (C)
Tateg (C)
Tate (C)

Stack of dimension d loops in X

Ind-pro-stack of dimension d loops in X

Derived category of the X-formal stack Y

Mapping space from ¢ to d in C

Mapping stack from X to Y

Functor C — Cati’O mapping ¢ € C to the overcategory C/.
Functor C°P — Cati’o, ¢+ CJe — with pullback functors
Derived category of perfect complexes on X

Derived category of pro-ind-perfect complexes on X
Derived category of pro-ind-quasi-coherent sheaves on X
Derived category of pro-perfect complexes on X
Category of presheaves over C

Category of U-presentable (oo, 1)-categories

Category of U-small pro-objects in C

Pro-extension functor to Pro”(C)

Category of sifted objects in C

Derived category of quasi-coherent sheaves on X
Category of spaces

Category of Tate objects in C

Category of pure Tate objects in C

Category of elementary Tate objects in C

Functor C°? — Cati’O mapping ¢ € C to the undercategory ¢/C
Functor C — Cati’o, ¢ — ¢/C — with pushforward functors
De Rham prestack associated to X

Trivial square zero extension of X by M
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