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Abstract

Let p be a prime number and K a finite extension of Q,. We state conjec-
tures on the smooth representations of GL,(K) that occur in spaces of mod
p automorphic forms (for compact unitary groups). In particular, when K is
unramified, we conjecture that they are of finite length and predict their inter-
nal structure (extensions, form of subquotients) from the structure of a certain
algebraic representation of GL,. When n = 2 and K is unramified, we prove
several cases of our conjectures, including new finite length results.
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1 Introduction

1.1 Preamble

Let p be a prime number and K a local field of residue characteristic p. In the
early nineties, Barthel and Livné had the fancy idea to start classifying irreducible
(admissible) smooth representations of GLy(K') over an algebraically closed field of
characteristic p ([BL94], [BL95]). They found four nonempty distinct classes of such
representations: 1-dimensional ones, irreducible principal series, special series, and
those which are not an irreducible constituent of a principal series that they called
supersingular. In 2001, one of us classified supersingular representations of GLy(Q),)
with a central character ([Bre03a]) and showed that they are in “natural” bijection
with 2-dimensional irreducible representations of Gal(@p /Q,) in characteristic p. This
was one of the starting points of the mod p and p-adic Langlands programmes for
GL2(Q,), which was developed essentially during the decade 2000-2010 (see for in-
stance [Bre03b], [Brel0], [Emel0Ob], [Kis10], [Coll0], [Ber10], [Pas13|, [Eme], [CDP14],
[CEGT1S], ...).

There are two main novel features of the mod p local Langlands correspondence
for GL2(Q,) (compared to previous Langlands correspondences). The first one is that
it involves reducible representations of GL3(Q,). More precisely, the representation
of GLy(Q,) is irreducible (resp. semisimple, resp. indecomposable) if and only if its
corresponding 2-dimensional representation of Gal(@p /Q,) is, and, in the reducible
case, is given (at least generically) by an extension between two specific principal
series. The second one, found by Colmez in [Col10], is that the correspondence can be
made functorial by an exact functor from finite length representations of GL2(Q,) to
étale (p,I')-modules, i.e. to finite length representations of Gal(Q,/Q,) by Fontaine’s
equivalence. Thanks to this exact functor, one can extend the correspondence first
to extensions of representations, and then to deformations on both sides.

When K is not Q,, trouble comes from supersingular representations. Contrary
to the case K = Q,, they can be more numerous than 2-dimensional irreducible rep-
resentations of Gal(K/K) ([BP12]) and they cannot be described as quotients of a
compact induction by a finite number of equations ([Hul2, Cor.5.5], [Sch15, Thm.0.1],
[Wul, Thm.1.1]), justifying a posteriori the terminology “very strange” that was used
to describe them in the introduction of [BL95|]. As a consequence, no classification of
supersingular representations of GLy(K) is known so far, which has hitherto made im-
possible to find a definition of a hypothetical local mod p correspondence for GLy(K)
by purely local (either representation theoretic or geometric) means.

Fortunately, the global theory comes to the rescue. If a local correspondence
exists, there is a place where it should be realized: the mod p cohomology of Shimura
varieties. Let us assume now that K is a finite unramified extension of QQ, with residue



field IF,; and let K E 14 pMy(Ok) € GLy(Ok). Following the pioneering work of
[BDJI10] on Serre weight conjectures, a series of articles ([BP12], [EGS15], [HW1§],
[LMS], [Lel9]) led to a complete description of the Kj-invariants of the GLg(K)-
representations carried by Hecke isotypic subspaces in such mod p cohomology groups.
Although these invariants are only a tiny piece of the representations of GLy(K),
combined with weight cycling this turned out to give a strong hint on the form of
these representations, as well as being a useful technical result. Indeed, very recently,
building on this description and on results of [BHHT|, Hu and Wang could prove
that, at least when K is quadratic unramified and the representation of Gal(Q,/K)
is a nonsplit extension between two (sufficiently generic) characters, these GLg(K)-
representations are indecomposable of length 3 (in particular are of finite length), with
similar principal series as in the case K = Q, in socle and cosocle, and a supersingular
representation “in the middle” ([HW), Thm.10.37]).

These recent results maintain the hope of a local Langlands correspondence for
GL2(K). They also prompted us to make public some conjectures we had in mind for
many years on the form of the GL,, (K)-representations carried by Hecke isotypic sub-
spaces, and on a functorial link to representations of Gal(Q,/Q,) via (¢, T')-modules.
We state such conjectures in the present work (Conjecture , Conjecture ,
Conjecture and we prove some special cases in the case n = 2 and K unram-
ified, including some new finite length results (Theorem Theorem ,
Corollary . Moreover, when n = 2 and K is unramified, we also define (and
use in the proofs!) an abelian category C of smooth admissible representations of
GL.(K) in characteristic p (containing the representations coming from the global
theory) together with an exact functor from C to a new category of multivariable
(i, I')-modules.

1.2 Conjectures

Let us first describe our conjectures with some details. As usual, we mostly work in
the setting of compact unitary groups (except in §2.1.4)), so that we do not (yet) mix
delicate representation theoretic issues with difficult geometric problems (ultimately,
we think that the representations of GL,(K) should not change from one global
setting to another). We fix F' a CM-field, i.e. a totally imaginary quadratic extension
of a totally real number field F'*, and we assume for simplicity in this introduction
that p is inert in F'*. We also assume (not for simplicity) that the unique p-adic place
v of F* splits in F'. We fix a continuous absolutely irreducible representation

7: Gal(F/F) — GL,(F),

where F is a (sufficiently large) extension of F,, and we assume that 7 is automorphic
for a unitary group H over F'" that is compact at all infinite places and becomes GL,,



over F. Equivalently there exists a compact open subgroup U” C H(A};") such that
S(UY,F)[m] = {f : H(FY)\H(A%,)/U" — F locally constant}[m] # 0,

where [m] means the Hecke-isotypic subspace associated to 7 (one has to choose a
finite set of bad places X in the definition of m, but we forget this issue here, see

§2.1.3 below).

Let olv in F, K < Fj the corresponding completion and 75 the restriction of
7 to a decomposition subgroup at ©. Then S(U?,[F)[m] is an admissible smooth
representation of GL,(K) over F by the usual right translation action on functions.
Our main conjecture gives the form of this GL, (K )-representation (assuming it is
of finite length) as well as a functorial link to 7;. But to state it we need a few
preliminaries on certain algebraic representations of GL,, over F.

Let us first assume for simplicity that K = Q,. We let Std be the standard n-
dimensional algebraic representation of GL,, over IF and define the following algebraic
representation of GL,, over F:

®def®/\ Std.

We fix P C GL, a parabolic subgroup containing the Borel B of upper-triangular
matrices, and let Mp be its Levi subgroup containing the torus 7" of diagonal matrices.
We fix P C P a Zariski Closed algebraic subgroup containing Mp and we consider the
algebraic representation ¢ |5 of P over F.

Definition 1.2.1 (Definition [2.2.1.3)). A subquotient of f®]}; is a good subquotient
if its restriction to the center Zy;, of Mp is a (direct) sum of isotypic components of

&
L ’Z]MP‘

Note that an isotypic component of f®| Zy, Carries an action of Mp (Lemma

2.2.1.2). Hence, viewing an isotypic component of f®| Zu, A a representation of

P via the surjection P — Mp, one can see f®\ 5 as a successive extension of such
isotypic components (Lemma [2.2.1.5). On the GL,(Q,)-side, the isotypic compo-
nents of f®| Zu, Will play the role of irreducible constituents. Note that the isotypic

components of L | Zu,, are by definition all distinct.

To an isotypic component C' of f®] Zui,» W associate a parabolic subgroup P(C')
of GL,, containing B as follows. Let A € X(T') = Homg, (7T, Gy,) be any weight such
that C' is the isotypic component of A|z,, = and define (see )

1
(W(P)]

N = > W) € X(T)@zQ,

w' €W (P)



where W (P) is the Weyl group of Mp. Let 6 be the highest weight of f®]T and w
in the Weyl group of GL,, such that w(\') is dominant with respect to B. Then one
can check that (see Proposition [2.2.2.6))

= nao,
a€esS
where S is the set of simple roots of GL,, (with respect to B) and the n, are in
Q>0. Then P(C) is by definition the parabolic subgroup of GL,, corresponding to the
subset {a € S,n, # 0} of S. We denote by P(C)~ its opposite parabolic subgroup.

We now go back to the above global setting. Assuming a weak genericity condition
on T, one can replace 75 by a suitable conjugate so that the image of 75 is contained
in the F-points of a Zariski closed algebraic subgroup ]5;5 of a parabolic Pr, as above
which is “as small as possible” (see Definition and Theorem [2.3.2.5). The
following conjecture is part of Conjecture (see Definition and Definition
2.4.1.5)).

Conjecture 1.2.2. Assume that T3 has distinct irreducible constituents and that the
ratio of any two 1-dimensional constituents is not in {w,w™'}, where w is the mod
p cyclotomic character. Then we have a GL,(Q,)-equivariant isomorphism for some

integer d > 1:
d
S, F)[m) = (T @ (" odet)) ™,

where 115 is an admissible smooth representation of GL,(Q,) over F of finite length
with distinct irreducible constituents such that there exists a bijection ® between the
(finite) set of subquotients of Il; and the (finite) set of good subquotients of f®|ﬁ~

satisfying the following properties:

(i) ® respects inclusions, and thus extends to a bijection between the sets of all
subquotients on both sides;

(i) @~ sends an isotypic component C off®|ZMP7 to an irreducible constituent of

II; of the form Ind]GD(LC”)QfQ y7(C), where w(C') is a supersingular representation
of Mpc)(Qp) over F.

When K is not necessarily Q,, the conjecture is completely analogous, defining
+®
L~ by

'Y ® (@/\ Std>

Gal(K/Qp)
replacing P by PS(K/@) & By ...« P and taking isotypic components of L”| Zuty

Gal(K/Qp)

for the diagonal embedding Zy;,, — Z,; Gal(K/ @) in the definition of good subquotients

of % | PCal(K/Qp) -



Example 1.2.3. (i) If 7; is irreducible, then 15;73 = GL,, = Mp._ and there is only one

isotypic component C' in L”| Zer, - 1t is such that P(C) = GL,: the representation
IT; in Conjecture [I.2.2]is irreducible and supersingular.
(ii) If 75 is semisimple, then Pr, = Mp_, and since the direct sum decomposition

of L Zu,, into isotypic components for the (diagonal) Zyr, -action is a direct sum

decomposition as a ]5% = Mp_-representation, we see that the representation II; in
Conjecture [[.2.2]is also semisimple.

(iii) If K = Q, and n = 2, we have L® = Std. When T is irreducible, by (i) the rep-
resentation II; of GLy(Q,) in Conjecture is supersingular. When 75 is reducible
split, then ]5;5 =T = Mp_, and f®\T = FX\; @ F\y, where \; : diag(xy, 22) —
i € {1,2}. There are twouisotypic components C' = FA; or C = F\,, both with
P(C) = B: the representation II; in Conjecture is a direct sum of two irre-
ducible principal series. Finally, when 75 is reducible nonsplit, then ]5;1.] =B, f®| B is
a nonsplit extension of FAy by FA; and Il; is a nonsplit extension between two irre-
ducible principal series. Note that Conjecture is known in that case ([CS17h],
[CS17a] for 75 irreducible, [BD20, Cor.7.40] for arbitrary 75, all generalizing methods
of [Emel).

(iv) For K arbitrary (unramified) and n = 2, see Example and Example 1 of
\,

Conjecture only gives part of the picture. For instance there should be
reducible subquotients of II; which are also parabolic inductions Indg%c’i)@fép) 7(C)
with 7(C') of the form 7(C) = m(C) ® -+ ® wa(C), where the (reducible) m;(C)
have themselves the same form as IlI; but for the smaller GL,, (K) appearing in
the Levi Mp)(K) (which gives a “fractal” flavour to the whole picture!). In fact,
it is possible that, in the end, this “fractal” picture will automatically follow from
property (ii) in Conjecture m (i.e. from the statement for irreducible subquotients
only), as one can already see in many of the examples of using the work of
Hauseux ([Haulg], [Haul9]), see Remark [2.4.1.6|iv). Also some parabolic (possibly
reducible) inductions as above should be deduced from others by a permutation on
the factors m;(C'). Tracking down all these internal symmetries (with the various
twists by characters that occur) and all the implications between them is not really
difficult but a bit tedious, as the reader will see from the technical lemmas in
(see e.g. Proposition [2.4.1.8)). The interested reader should maybe first have a look
at the various examples in before going into the full combinatorics.

Finally, the full picture has to take into account the Galois action. There is a
simple way to extend Colmez’s functor from representations of GL2(Q)) to represen-
tations of GL,(K) that we recall now (see [Breld| or §2.1.1). Let & : Gy, — T be the
cocharacter  — diag(z" ', 2"2,...,1) and N; = Ker(N, L Ok =% Z,), where
Ny is the unipotent radical of B(Ok) and the map ¢ is the sum of the entries on

n—1
)



the first diagonal (following the notation of [SV1I]). Let 7 be a smooth representa-
tion of GL, (K) over F and endow the algebraic dual (72V*) of 7™¥* with the residual
F[No/N,] = F[X]-module structure (where X = [((1) %)} — 1), an action of Z); and
an endomorphism 1 which commutes with the Z-action by

(@f)(v) £ fElaY), 2 €2y, fe (@)Y, verh
V() Z f(Zajemmem- mE@), £ @)Y, ver

Then one defines a covariant left exact functor V' from the category of smooth repre-
sentations of GL,(K) over F to the category of (filtered) direct limits of continuous
finite-dimensional representations of Gal(Q,/Q,) over F by

V(r) 2 (1im VY(D)) @0, (1)

where the inductive limit is taken over the continuous morphisms of F[X]-modules
h: (7N)Y — D, where D is an étale (¢, T')-module of finite rank over F((X)) and
h intertwines the actions of Z; (recall ' = Z;), commutes with v and is surjective
when tensored by F((X)). (Here VV is Fontaine’s contravariant functor associating a
representation of Gal(Q,/Q,) to D and recall that any étale (o, I')-module is endowed
with an endomorphism v which is left inverse to the Frobenius ¢.) In , 0is a
certain power of w which is here for normalization issues (see Example , see
also the end of §2.1.4). In general, one doesn’t know when V/(7) is nonzero or if it is
finite-dimensional.

Using , one can strengthen Conjecture (when K = Q) so that it takes
into account the action of Gal(Q,/Q,) as follows.

Conjecture 1.2.4 (see Definition [2.4.1.5{and Conjecture [2.5.1). There is a bijection
® as in Conjecture that moreover commutes with the action of Gal(Q,/Q,) in

the following sense: for each subquotient ITj; of Iy one has V (I1}) = ®(I1})o75. (Recall
that ®(I15) is an algebraic representation of Py, over F and that 7y takes values in

By (F).)

If K is not necessarily Q,, then by definition ®(II}) is an algebraic representation
of ﬁgal(K/ ©) and there is a completely analogous conjecture replacing ®(I1%) o 75 by

P (1) o (T)secal(k/a,), Which is again a representation of Gal(Q,/Q,).

In particular the functor V', when applied to II; and its subquotients 117, should
behave like an exact functor. Note that Conjecture is known when K = Q, and
n = 2 by the same references as in Example [1.2.3[iii). In the special case I} = II,
Conjecture [1.2.4] implies in particular

Conjecture 1.2.5 (Conjecture 2.1.3.1)). The functor V induces an isomorphism

V(S(U”,F)[m] ® (w_(”_l) o det)) & (ind?}(@p(éei /\,»Fm>)@d,



where indy™" is the tensor induction from Gal(Q,/K) to Gal(Q,/Q,).

The statement in Conjecture [I.2.5 makes sense even if K is ramified, and we
conjecture it for an arbitrary finite extension K of QQ, and an arbitrary representation
75 (see Conjecture [2.1.3.1)). In fact, using C-parameters ([BG14]), it can even be
formulated in a more intrinsic way and in a more general global setting, see Conjecture
2. 1.4.0l

Remark 1.2.6. Assuming K = Q,, the first appearance of the Gal(Q,/Q,)-represen-
tation on the right-hand side of the isomorphism in Conjecture is in [BHI15],
where its “ordinary part” was related to the “ordinary part” of S(UY,F)[m] (see
Theorem for an improvement). Note that the algebraic representation L% of
GL,, is not irreducible for n > 2. One could have thought about using the irreducible
algebraic representation of GL, of highest weight 6 instead of the reducible % to
make predictions (at least for p big enough the latter strictly contains the former as
a direct factor). However, we chose the representation L. One reason is that it

can also be seen as a representation of GL,, X --- x GL, (n — 1 times) in an obvious
def

way — in which case a better notation is IR X' ALStd — and one can hope to
state a stronger variant of Conjecture replacing ¥ by 7% and O(I15) o 7 by
O(115) o (T5,T5, . . ., T5) (see [Zab18b], [Zab18a] where such a possibility is mentioned).
However one has to be careful with defining a “multivariable” functor V' in that
context (there is a tentative definition in [Z4bI8b] when K = @, generalizing (1)), but

see Remark [3.1.2.12| when n = 2 and K # Q,)).

If a representation II; as in Conjecture exists, we do hope that it will realize
a mod p local Langlands correspondence for GL,,(K).

1.3 Results

Let us now describe our main results when n = 2 and K = Q, is unramified. For
a finite place @ of F' we denote by R: the (unrestricted) framed deformation ring
of Ty = Tl GaiF m) OVEr W(F). We let I C Gal(Q,/K) be the inertia subgroup
and wy for f' € {f,2f} be Serre’s fundamental character of level f’. We make the
following extra assumptions on F', H, 7 and U" = [],,, U, (recall we assumed p inert

in F* for simplicity):

(i) F/FT is unramified at all finite places of F't;
(ii) H is quasi-split at all finite places of F'*;

(ili) 7|gauE r(om) s adequate ([Thol7, Def.2.20]);

10



(iv) T is unramified if @|p+ is inert in F}
(v) RZ is formally smooth over W (F) if 7 is ramified and @|p+ # v;

(Vi) T3|r, s, up to twist, of one of the following forms:

ol = w}(cro+1)+-"+pf_1(rf,1+1) 0
o 0 1)’
T el (e
rolp = wéfo+1)+ +p! T (rp—1+1) fo |
K 0 wgf(same)

where the r; satisfy the following bounds:

max{12,2f -1} <r; < p—max{15,2f+2} if j > 0 or 75 is reducible,
max{13,2f} < rg < p—max{14,2f+1} if 75 is irreducible;

(2)

(vii) U, is maximal hyperspecial in H(F)) if w is inert in F.

(We also need to fix a place v; which splits in F', where nothing ramifies and U,, is
contained in the Iwahori subgroup at vy, we forget that here along with the set ¥ of
bad places and the definition of the ideal m.)

Theorem 1.3.1 (Theorem [3.4.4.3)). Assume n =2, K/Q, unramified, and the above
conditions (i)—(vii). Then Conjecture [1.2.5 holds.

We sketch the proof of Theorem[I.3.1] We denote by I; the pro-p Iwahori subgroup
in GLy(Ok) and set
pET(1) M= SUF)[m],

Note that the central character of II is det(p)w™! (Lemma [2.1.3.3). There are two
main steps in the proof which involve quite different arguments:

(i) one proves a Gal(Q,/Q,)-equivariant injection (indS%p)%d — V(11);

(i) one proves dimg V(IT) < 2/d (= dimg(ind5 " p)®).

We first sketch the proof of (i). Arguing as in the proof of [BHH™, Thm.1.2(i)],
there is an integer d > 1 and a GLy (O ) K *-equivariant isomorphism IT51 2 D (p)®¢,
where Dy(p) is defined as in [BP12] §13] (see Corollary [3.4.2.2). Taking into account

the action of (2 8) on IT"t C II¥1, one can promote this isomorphism to an isomor-
phism of diagrams:

11



Theorem 1.3.2 ([DL, Thm.1.3] when d = 1, Theorem [3.4.1.1f when d > 1). There
is a diagram D(p) = (D1(p) < Do(p)) only depending on p such that one has an
isomorphism of diagrams:

D(p)®* = (II" — II*).

Theorem [1.3.2| can actually be made stronger, i.e. one can show that certain
constants v; € F* associated to the weight cycling on Dy(p) = Dy(p)™ as in [Brelll
§6] (up to suitable normalization) are as predicted in [Brelll Thm.6.4]. When d = 1,
Theorem[1.3.2] (and its strengthening) is entirely due to Dotto and Le ([DL, Thm.1.3]).

When d > 1, we check from their proof that the action of (9 (1)) on I = (Dy(p)h)®d

“respects” each copy of Dy(p)’t. Note that Theorem
bounds on the r; than the bounds (2)), see §3.4.1]

2| holds under much weaker

Then item (i) above follows from the following purely local result.

Theorem 1.3.3 (Theorem3.2.1.1)). Let w be an (admissible) smooth representation of
GLy(K) overF such that one has an isomorphism of diagrams D(p)®? = (g1t — 751).

Then one has a Gal(Q,/Q,)-equivariant injection (ind2%p)%d — V(x).

The proof of Theorem is a long and technical computation of (¢, I')-modules
that is given in §3.2] It uses the previous computations in [Brell] and the bounds
(though one can slightly weaken them, see ((125))).

We now sketch the (longer) proof of (ii). We let Z; be the center of I; (or
of K1) and my,,z the maximal ideal of the Iwasawa algebra F[/;/Z;]. The main
idea is to focus on the structure of the (algebraic) dual 7 as F[[;/Z;]-module
and to use the results of [BHH™|. Recall that the graded ring gr(F[[;/Z;]) for
the my, /7 -adic filtration (we use the normalization of [Lv096, §I.2.3]) is not com-
mutative, but contains a regular sequence of central elements (ho,...,hs_q1) such
that R = gr(F[I,/Z:])/(ho, ..., hs_1) is a commutative polynomial algebra in 2f
variables Fly;, 2,0 < i < f — 1] (see [BHHY, §5.3] and (100), (L16))). We let
J = (y;zi, hi, 0 < i < f — 1) (an ideal of gr(F[I,/Z,])) and define

RE gr(F[11/Z:])/J = Flyi, 2,0 <i < f—1]/(y;2:,0 < i < f = 1). (3)

Then po = (2,0 < i < f — 1) is one of the 2/ minimal prime ideals of R. If N is any
finite type gr(F[1;/Z:])-module killed by a power of J, one can define its multiplicity
gy (N) € Zg at po, see (120

For m a smooth representation of GLo(K) over F with a central character,
we endow 7V with the m;, /7 -adic filtration and we let gr(7") be the associated graded

gr(F[1,/Z,])-module.
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Theorem 1.3.4 (Theorem [3.3.2.3)). Let m be an (admissible) smooth representation
of GLo(K) over F satisfying the following two properties:
(i) there is a GLy(Og ) K> -equivariant isomorphism Dy(p)P¢ = 71,
(ii) for any character x : I — F* appearing in m[my, 7] there is an equality of
multiplicities
[7[m7,z]) + X] = (7w 2] x)-

Then gr(mV) is killed by J and one has my,(gr(7")) < 2/d.

By the proof of [BHH™, Cor.5.3.5], property (ii) in Theorem implies that
gr(m") is killed by J. By an explicit computation (using both properties (i) and (ii)),
one proves in Theorem [3.3.2.1] that there is a surjection of R-modules

(@rerR/a(N)* — gr(rY),

where & is a combinatorial finite set associated to p (in bijection with the set of x
appearing in wmy, 7], see nd the a(\) are explicit ideals of R containing
the image of J (see Definition |3.3.1.1)). Then Theorem follows from the equality
Mypy (BrerR/a(N)) = 2/ which is an easy computation.

Arguing as in [BHHT], the representation II satisfies all assumptions of Theorem

1.3.4] see Corollary [3.4.2.2) and Theorem [3.4.4.1] Hence the upper bound in item (ii)
below Theorem [[.3.1] follows from Theorem [[.3.4] combined with the next result:

Theorem 1.3.5 (Corollary [3.1.4.5). Let m be an admissible smooth representation of
GLy(K) over F with a central character such that gr(n¥) is killed by some power of
J. Then one has dimg V(1) < my, (gr(7")).

We prove Theorem by first associating to m an “étale (p, O )-module over
A” (Definition [3.1.3.1). This is the “multivariable (¢, ')-module” mentioned at the
end of §I.1 Though one could probably give a more direct proof without explicitly
introducing them, these étale (p, O%)-modules are important for our finite length
results below and are likely to play a role later, so we describe them now.

We start with the ring A. Let F[No] = F[Ok] be the Iwasawa algebra of the
unipotent radical Ny of B(Og). Then F[Ny] = F[Yo,...,Y;_1], where the Y; are
eigenvectors for the action of the finite torus on F[No] (see (100)). Let S be the
multiplicative system in F[Ny] generated by the Y;. The filtration on F[Ny] by powers
of its maximal ideal my, naturally extends to a filtration on the localized ring F[No] s
and we define A to be the completion of F[Ny[s for this filtration ([LvO96l, §I.3.4]).
The ring A is not local, but it is a regular noetherian domain (Corollary and
a complete filtered ring in the sense of [LvO96, §1.3.3] with associated graded ring

13



gr(A) = gr(F[No]s) (see Remark [3.1.1.3(iii) for a concrete description of A). Most
importantly, the natural action of O on F[Ny] = F[Ok] by multiplication on O
extends by continuity to A (Lemma [3.1.1.4)) and any ideal of A preserved by O is

either 0 or A (Corollary [3.1.1.7)).

Let m be an admissible smooth representation of GLy(K') over F with a central

character and recall that 7V is endowed with the my, 7 -adic filtration (which, in
general, strictly contains the my,-adic filtration). We endow (7V)s = F[No]s®@wqno T
with the tensor product filtration and define D 4() as the completion of (7V)g. Then
D4(7) is a complete filtered A-module such that gr(Da(w)) = gr((n¥)s) (Lemma

3.1.1.1)). The action of Ok on 7" extends by continuity to D4(7), as well as the map

pirt ot o) (vem s ) = £((39)0))
(Lemma [3.1.2.5). The latter can be linearized into an A-linear morphism
ﬁ : DA<7T) — A ®¢>,A DA(W),

where ¢ is the usual Frobenius on the characteristic p ring A (see (L15))).

We let C be the abelian category of admissible smooth representations m with a
central character such that gr((7")g) is a finite type gr(F[Noy]s)-module. It follows
from that

(gr(F[[Il/Zl]])/J)[(yo oy ) T =2 Flyos -yl (o yp-) T = gr(F[No]s)

which easily implies that, if gr(7") is killed by a power of J, then 7 is in C (Proposition
3.1.2.11)). In particular the representation II is in C. Note that any finite length
admissible smooth representation 7 of GLy(Q,) over F with a central character is
such that gr(m) is killed by a power of .J (Corollary [3.3.3.5)), hence is in C.

For 7 in C, by general results of [Lyu97], there exists a largest quotient D 4 ()¢ of
D 4(m) such that the map (3 induces an isomorphism 3% : D4 ()% = A ®4 4 Da(m)®
(see the beginning of §3.1.2). We let ¢ : Da(m)* — Du(m)® such that [d®@yp =
(B%)7L. Then D4(m)® equipped with ¢ and the induced action of O is our étale
(p, Of)-module over A associated to 7 in C.

Theorem 1.3.6 (Corollary [3.1.2.9, Theorem [3.1.3.3] and Corollary [3.1.4.5)).

(i) If © is in C, then Du(m) and Ds(7)® are finite projective A-modules and
rka(Da(m)™) < my, (gr(m”)).
(ii) The (contravariant) functor m — Da(m) is exact on the abelian category C.

14



One key ingredient in the proof of Theorem m (cf. the proof of Proposition
3.1.1.8) is that if the annihilator of an A-module endowed with an A-semilinear Q-
action is nonzero, then this annihilator is A (since there are no proper nonzero ideals
of A which are preserved by O, see above) and hence the A-module must be 0.

For a smooth representation 7 of GLo(K) over F such that dimp V(7) < o0,
we denote by D¢ () the unique étale (o, T')-module over F((X)) such that V(m) =
VY(D{(m)) ® 6 (see (1)). We denote by tr : A — F((X)) the ring morphism induced
by the trace tr : F[No| — F[Z,] = F[X].

Theorem 1.3.7 (Theorem [3.1.3.7)). If w is in C, then we have an isomorphism of
étale (@, I')-modules over F((X)):

Du(m)* @4 F(X)) = D{ ().

In particular, dimg V(1) = tka(Da(7)%) < +00 and the functor # — V(7) in
is exact on the category C.

The proof essentially follows by a careful unravelling of all the definitions and
constructions involved. The last statement follows from the first and from Theorem
L.o.0l

Theorem and Theorem [1.3.6(i) imply in particular the bound on V() in
Theorem [1.3.5] which finally proves Theorem [1.3.1]

We see that the multivariable (¢, O%)-module D 4(7) plays an important role in
the proof of Theorem [I.3.5] One natural question therefore is to understand more
the internal structure of D4(I1)¢ (at least conjecturally): does D4(I1)¢* only depend
on p? Does it determine p? We plan to come back to these questions, as well as
generalizations in higher dimension, in future work.

The modules D (IT)* and Dy (IT) are also crucial tools in the proof of our finite
length results on the representation II which provide evidence to Conjecture [1.2.2{and
Conjecture and that we describe now.

Theorem 1.3.8 (Theorem [3.4.4.5). Assume moreover d = 1, i.e. I*1 = Dy(p)
(the so-called minimal case). Then the GLy(K)-representation I1 is generated by its
GL2(Ok)-socle, in particular is of finite type.

Note that the last finiteness assertion in Theorem (with TI%1 instead of the
GL2(Ok)-socle) was known for p non-semisimple (and sufficiently generic) by [HW,
Thm.1.6], but the proof there doesn’t extend to the semisimple case.

We sketch the proof of Theorem [1.3.8] Let II' C II be a nonzero subrepresen-
tation and I1” = II/IT. As gr(I1Y) and hence its quotient gr(I") are killed by J,
the representations II, IT', II” are all in C, thus Theorem [1.3.6(i) and Theorem
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imply dimg V (II') < my,(gr(I'Y)) and dimg V(I1") < my,, (gr(II”V)). Since V(II") =
V(IT)/V(II') by the last statement in Theorem 1.3.7], and since my, is an additive func-

tion by Lemma [3.3.4.4] (and Definition [3.3.4.1]), we deduce dimg V (II') = my, (gr(II"V))
and dimg V(IT") = my,, (gr(II”V)) as we have seen that dimg V(II) = my, (gr(IIV)) (=
27). On the other hand, by computations analogous to the ones used in the proofs of
Theorem [1.3.3| and Theorem [1.3.4], we also have inequalities

M, (gr(I1)) < lg(socary o) (IT)) < dimg V(IT)
and thus we deduce
My, (gr(IT)) = lg(socar, o) (IT')) = dimg V(II') # 0. (4)

Now take II" to be the nonzero subrepresentation generated over GLy(K) by the
GL2(Of)-socle of TI. We wish to prove I1” = 0. As

lg(socarox) (IT')) = lg(socary o) (1) = 2/ = dimg V(IT)
we already have by and the exactness of V' that
My, (gr(I1"Y)) = dimy V(II") = 0. (5)

To deduce IT” = 0 from , we need the following key new ingredient: Il is essentially
self-dual of grade (or codimension) 2f, i.e. ExtﬁF[[h/Zl]](Hv,IF[[Il/Zl]]) =0if j < 2f
and there is a GLy(K)-equivariant isomorphism

X2,y (1, FLI/Z1]) 2 TV @ (det(p)o™), (6)

where Extf?ﬂ[ch 121 F[11/Z1]) is endowed with the action of GLy(K) defined by
Kohlhaase in [Koh17, Prop.3.2]. This follows by the same argument as in [HW,
Thm.8.2] (using Remark . We then define II as the admissible smooth repre-
sentation of GLy(K) over F such that

1 @ (det(pho) 2 I Extdy, ) (11, LI Z0) = Extdy, ) (17, FIL/Z1D) ),

and by @ II is a subrepresentation of II. By @ and general results on Ext} (—, A)

for Auslander regular rings A, II”V C I1V is also of grade 2f if it is nonzero, and hence

Extéﬁ[ch/zlﬂ(ﬂ”v,IF[[[l/Zl]]) is nonzero if and only if II” # 0. From the short exact

sequence
0T @(det(pow ") = Extil, ) (7, FIL/21]) = Exti) (1Y, F[L/Z1]) (7)

and the fact that the last Ext> ™ has grade > 2f + 1, we finally obtain:
IT is nonzero if and only if II” is nonzero. (8)

We now use the following general theorem.
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Theorem 1.3.9 (Theorem [3.3.4.5). Let m be an admissible smooth representation
of GLy(K) over F with a central character such that gr(w") is killed by a power of
J. Then the gr(F[Li/Zi])-module  (for the wy gz -adic filtration on
EXtJQFJ[EIl/Zl]](Wv7Fﬂfl/Zl]]))f

gr <Ext§.f[fh sy (7 FLL /Zﬂ]))

is also finitely generated and annihilated by a power of J, and we have
Mo (g1 (7)) = My, <gr (EXtﬁfll/Zlﬂ (va F[[Il/Zl]])>>'

From the injection in and from Theorem applied to 7 = II” we have
My, (gr(I1V)) < my, (gr(I1"V)), hence we obtain

iy (gr(T1¥)) = g, (ex(T1)) 2 0

This implies II = 0 by (applied to the subrepresentation II" = II) and thus I1” = 0
by , finishing the proof of Theorem m

The following corollary immediately follows from Theorem and from [BP12,
Thm.19.10(i)].

Corollary 1.3.10 (Theorem [3.4.4.5). Assume moreover d = 1 and p irreducible.
Then the GLo(K)-representation 11 is irreducible and is a supersingular representa-
tion.

When 7 is reducible (split), we can prove the following result.

Theorem 1.3.11 (Theorem [3.4.4.6)). Assume moreover d = 1 and p reducible, i.e.

p= (%1 )?2> Then one has

1T = Indg; 2 (1 @ xow ™) @ ' & Ind5 2 (2 ® xaw ™),

where T is generated by its GLo(Ok)-socle and TI'V is essentially self-dual of grade
2f, i.e. satisfies @ Moreover, when f =2, I is irreducible and supersingular (and
hence 11 is semisimple).

The fact that the two principal series in Theorem occur as subobjects of 11
was already known (and is not difficult). To prove that they also occur as quotients
(and that the obvious composition is the identity), we again crucially use the essential
self-duality (6). The rest of the statement follows from Theorem and [BP12,
Thm.19.10(ii)].

The following last corollary sums up the above results.
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Corollary 1.3.12 (Theorem [3.4.4.7)). Assume (i) to (vii) as at the beginning of §1.5
and assume d = 1 as in Theorem[1.3.8 Then Conjecture holds for n = 2 and

p irreducible, or for n = 2, K quadratic and p semisimple.

Note finally that when f = 2, p is non-semisimple (sufficiently generic) and d = 1,
Conjecture at least is known and follows from [HW| Thm.10.37].

1.4 Notation

We finish this introduction with some very general notation (many more will be
defined in the text).

Throughout the text, we fix @, an algebraic closure of Q, and K an arbitrary
finite extension of QQ, in @p with residue field F,, ¢ = p/ (f € Z>1). The field K is
unramified from on. We also fix a finite extension £ of QQ,, with ring of integers
Og, uniformizer wg and residue field F, and we assume that IF contains F,. The finite
field F is the main coefficient field in this work. We denote by e the p-adic cyclotomic
character of Gal(Q,/Q,) and by w its reduction mod p. We normalize Hodge-Tate
weights so that € has Hodge-Tate weight 1 at each embedding K — F. We normalize
local class field theory so that uniformizers correspond to geometric Frobeniuses.

If H is any split connected reductive algebraic group, we denote by Zy the center
of H and by Ty a split maximal torus. If Py is a parabolic subgroup of H containing
Ty, we denote by Mp,, its Levi subgroup containing 7%, Np, its unipotent radical
and Py its opposite parabolic subgroup with respect to Ty (so Py N Py = My).

We let n > 2 be an integer and denote by G the algebraic group GL,, over Z. The
integer n is arbitrary in §2] and is 2 in §3|

Irreducible for a representation always means absolutely irreducible.

Finally, though we mainly work with the group GL,, several proofs in §2| can be
extended more or less verbatim to a split connected reductive algebraic group over Z
with connected center, and §2.1.4] deals with possibly nonsplit reductive groups.
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2 Local-global compatibility conjectures

We state local-global compatibility conjectures (Conjecture[2.1.3.1} Conjecture|2.1.4.5
and Conjecture [2.5.1)) which “functorially” relate Hecke-isotypic components with

their action of GL,(K) in spaces of mod p automorphic forms to representations
of Gal(Q,/Q,). Conjecture assumes K is unramified but is much stronger and
more precise than Conjecture[2.1.3.1/and Conjecture [2.1.4.5|as it predicts the number,
position and form of the irreducible constituents of these Hecke-isotypic components,
as well as their contribution on the Galois side.

Throughout this section, we let T" C G = GL, the diagonal torus over Z and
X(T) the Z-module Homg, (T, G,,). As usual, we identify X (7T') with &P ,Ze; via
e — (diag(xl,...,xn) — xl) and define ( , ) : X(T) x X(T) — Z, (es,¢;) = 6,
which we extend by Q-bilinearity to X(7") ®z Q. This provides an isomorphism of
Z-modules X (T') = Homgz(X(T'),Z) = Homg, (G, T') given by

eil—>e;‘d:ef(xr—>diag(l,...,1,x,1,...,1)), ie{l,...,n}. (9)
—_——

i—1

We denote by R ={e; —ej, 1 <i# j <n} C X(T) the roots of (G,T), by BC G
the Borel subgroup (over Z) of upper-triangular matrices and by N the unipotent
radical of B, so that the positive roots are R = {e; —e;, 1 <i < j<n} C R and
the simple roots are S = {e; —e;41, 1 <i<n—1} C R". An element of X(T)®;Q
is dominant if (A, e; —e;41) > 0forall i € {1,...,n—1}. If \,p € X(T) ®z Q, we
write A < pif p— X € X Qsoles —ei1). A= X1 ny(e; — eiq1) for some n; € Q,
its support is by definition the set of simple roots e; — e;,1 such that n; # 0. Finally,
we denote by W = S, the Weyl group of (G,T'), which acts on the left on X (7") by

w(N\)(t) = Nw Htw) for A € X(T) and t € T

If P is a standard parabolic subgroup of G (that is, containing B), we denote by
S(P) C S the subset of simple roots of Mp, R(P)" C R the positive roots of Mp
(generated by S(P)) and W(P) C W its Weyl group.

2.1 Weak local-global compatibility conjecture

We state our first local-global compatibility conjecture (see Conjecture and
its generalization Conjecture [2.1.4.5) which relate Hecke-isotypic components with
their action of GL, (K) to representations of Gal(Q,/Q,) without taking care of their
irreducible constituents.
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2.1.1 The functors Dg/H and Vy

We review the simple generalization of Colmez’s functor defined in [Brel5.

Throughout this section, we fix a connected reductive algebraic group H which
is split over K with a connected center, By C H a Borel subgroup and Ty C By a
split maximal torus in By. We let (X(TH), Ry, XV (Ty), R%) be the associated root
datum, R}, C X (Ty) the (positive) roots of By, Sy C Rj; the simple roots and S}
the associated simple coroots.

We need to recall some notation of [Brel5] (to which we refer the reader for any
further details). For a € R};, we let N, C Ng be the associated (commutative) root
subgroup, where Ny &£ N B, 1s the unipotent radical of By. For o € Sy, we fix an
isomorphism ¢, : N, — G, of algebraic groups over K such that

La(tnat™) = a(t)ia(ne) Yt €Ty, ¥ ng € N. (10)

We fix an open compact subgroup Ny € Ny (K) such that [T, R, N, = Ny induces

a bijection HaeRz N,(K)N Ny = N, for any order on the o € R}; and such that ¢,
induces isomorphisms for o € Sy:

Na(K) N Ny =5 Ok € K = G, (K).

Yaesy o

We denote by £ the composite Ny — [laes, Na il G. (a morphism of algebraic
groups over K). The morphism ¢ thus induces a group morphism still denoted ¢ :
Ny — Ok and we define

TrK/Qp

5 Q) (11)

which is a normal open compact subgroup of Ny. We fix an isomorphism of Z,-
modules ¢ : Trg,q,(Okx) = Z,. When Ny # 0, i.e. when H # Ty, this fixes an
isomorphism

Nl e Kel"(No l> OK

TrK/Qp oé w
No/N1 — TrK/Qp(OK> — Zp. (12)
We fix fundamental coweights (Ayv)acs, (which exist since H has a connected center)
and set

& Y Aav € Homa (G, Trr) = XY (Ty). (13)

avesy,

Note that &g () Ni&g(z7) C Ny for any z € Z,\{0}. Let F[X][F] be the noncom-
mutative polynomial ring in F' over the ring of formal power series F[X] such that
FS(X)=S(XP)F.

For 7 a smooth representation of By (K) over F, we endow the invariant subspace
7™M C 7 with a structure of an F[X][F]-module as follows:
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(i) F[X] = F[Z,] acts via F[Ny/N,] = F[Z,] (here X = [1] — 1);

(ii) F acts via the “Hecke” action F(v) = neN e (mNen (p-1) Mér(p)v € T for
venV

Note that 71 is a torsion F[X]-module (but not a torsion F[F]-module in general).
We also endow 7™ with an action of Z, by making x € Z) act by {y(x). This action
commutes with F' and satisfies {g(z) o (1 4+ X) = (14 X)* o€y (x).

As in [Brel5], we denote by ®LEt the category of finite-dimensional étale (¢, T)-
modules over F[X][X '] = F(X)) and by CIDF "the corresponding Category of (pseudo-
compact) pro-objects, see [Brel5, §2] for more details. Both ®I;¢* and QDII’F are abelian
categories. Let M C 7™ be a finite type F[X][F]-submodule which is ZX-stable and
assume that M is admissible as an F[X]-module, that is, M[X] = {m € M, Xm = 0}
is finite-dimensional over F. Let M"Y = Homg(M,F) (algebraic F-linear dual) which
is also an F[X]-module (but not a torsion F[X]-module in general). Then by a

key result of Colmez MV[X '] can be endowed with the structure of an object of
P ([Coll0], see also [Brel5, Lemma 2.6]). More precisely X acts on f € MY by
(Xf)(m) E f(Xm) (m € M), x € ZX acts by (zf)(m) = f(z~'m), and the operator
¢ is defined as follows. Take the F-linear dual of [d®F : F[X] ®,rxy M — M,
compose withl]

(FIX] ®prixy M) — FIX] ®prpx) M
p—1 1
f —

(1+X) @ f(

i=0 (1+X) “ ) (1)

and invert X: the resulting morphism MY[X '] — F[X] ®,rpx; MY[X '] turns out
to be an F((X))-linear isomorphism whose inverse is by definition Id ®¢.

When H # Ty we then define

D¢, (m) = lim MY[X 1], (15)

M
where the projective limit is taken over the finite type F[X][F]-submodules M of
1 (for the preorder defined by inclusion) which are admissible as F[X]-modules
and invariant under the action of ZY. When H = Tjy, one has to replace MY[X ']

by F((X)) @& MY, we refer the reader to [Brel5, §3]. The functor D, is right exact
contravariant from the category of smooth representations of By (K) over F to the

——ét
category @Iﬁf and, up to isomorphism, only depends on the choice of the cocharacter

!The formula for this isomorphism given in the proof of [Brel5, Lemma 2. 6] is actually wrong, the
present formula is the correct one. Note that it is also the same as f — ZZ o (1+X - Rf(1+X) ).
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& Moreover, if DY (7) turns out to be in ®I* (and not just <I/>1\1;t), then DY (m) is
exactly the maximal étale (o, T')-module which occurs as a quotient of (7™)V[X 1],
see [Breld, Rem.5.6(iii)].

Remark 2.1.1.1. If H = G,, = Ty, then by definition £z = 1. It follows, for
dimp m = 1, that D/, () is always the trivial (rank one) (¢, I")-module (even if 7 is a
nontrivial character).

Let us now assume that the dual group H of H also has a connected center, and
let us fix 0y € X (Ty) such that 0y o oY = Idg,, for all @ € Sy ([BH1S, Prop.2.1.1],
such an element is called a twisting element). In below, it is possible to avoid
this assumption using C-parameters, but since our main aim is G = GL,, in the rest
of the paper, there is no harm making this assumption.

Consider the smooth character
K* — F*, 2+ w(0n(€u(2)))

and denote by dg the restriction of this character to Q; C K*. Seeing wo 0y oy
as a character of Gal(Q,/K) via local class field theory for K (as normalized in ,
and remembering that the restriction from K™ to Q, corresponds via local class field
theory to the composition with the transfer Gal(Q,/Q,)** — Gal(Q,/K)*", we see
that

6 = ind5 (w0 Oy o &),

where ind2% is the tensor induction from Gal(Q,/K) to Gal(Q,/Q,) (see the end of

§2.1.2) below).

Denote by Repp the abelian category of continuous linear representations of
Gal(Q,/Q,) on finite-dimensional F-vector spaces (equipped with the discrete topol-
ogy) and IndRepy the corresponding category of ind-objects, i.e. the category of
filtered direct limits of objects of Repp. Recall that there is a covariant equivalence of
categories V : ®L¥ 5 Repy (see [Fon90, Thm.A.3.4.3] where this functor is denoted
V¢) compatible with tensor products and duals on both sides. We denote by VY the
dual of V (i.e. the dual Galois representation). When H # Ty, we then define the
covariant functor Vi from the category of smooth representations of By (K') over F
to the category IndRepp by

Vir () = lim (VY(MY[X 1)) @ 0, (16)

where the inductive limit is taken over the finite type F[X][F]-submodules of 71
which are admissible as F[X]-modules and preserved by Z . Likewise, when H = Ty,
with F(X)) @ M" instead of MV[X '] (note that dy is then 1).

Lemma 2.1.1.2. The functor Vy is left exact.
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Proof. We give the proof for H # Ty, leaving the case H = Ty to the reader. Let
0 — 7 — 7> 7" — 0 be an exact sequence of smooth By (K)-representations over
F, which gives a short exact sequence 0 — /™ — 7 2 7N 1If M is a finite type
F[X][F]-submodule of 7' which is admissible as F[X]-module and stable under the
action of Z), then so are M N 7™ and s(M) (see e.g. [Breld, Lemma 2.1(i)]). The
functor M — VV(MY[X™1]) being covariant exact (since both M + MY[X '] and
VV are contravariant exact), each such M C ©™ gives rise to a short exact sequence
in Repy:

0= VY ((Ma™)Y X)) = VY (MY[X ) = VY (s(M)V[X 1) = 0.

Twisting by 0y and taking the inductive limit over such M, we obtain a short exact

sequence 0 — Vi (') — Vi (m) — lim V" (S(M)V[Xfl]) ® 6y — 0 in IndRepy. But
M

we have an injection

lim VY (s(M)¥[X 7)) @ 05 < Vi (")

in IndRepy since all transitions maps in the inductive limits are injective, therefore
we end up with an exact sequence 0 — Vg (') — Vi (7) — V(7). O

Example 2.1.1.3. For H = G xz K = GL, i (so H = j{\), we take in the sequel
(writing just G as a subscript instead of G xz K)

n—1,n—2

fo(z) = diag(a™ 1, ..., z,1) and 90<diag(x1, . ,a:n)) =Tl

so that 0 = ind52(wm=1*+n=2*++441) (I fact, since tensor induction of a char-

acter is given by composition with the transfer map |Col89], by local class field theory
we see that dg = WK Q=1 +(-2)% - 44+1)

Remark 2.1.1.4. (i) The covariant functor V depends on the choices of £ and dg
(though we don’t include it in the notation). The reader may wonder why we need
to assume the existence of 6y and normalize V using the strange twist oy above.
This comes from the local-global compatibility: it turns out that this normalization
is essentially what is going on in spaces of mod p automorphic forms (see [BHI5, §4],
[Breld, Cor.9.8], Example and §§2.1.3] below). This normalization is also
natural if one uses C-parameters, see §2.1.4]

(ii) For H as in Example 7 a smooth representation of B(K) over F and
X : K* — F* a smooth character, one checks that Vg (m®(xodet)) = Vi (m)®0, where
¢ is the continuous character of Gal(Q,/Q,) associated via local class field theory to

n(n—1) ~

T X(det(fg(m))) for € Q. An explicit computation gives § = (x|gx)” 7 =
indy ().

n(n—1)
2

24



When restricted to the abelian category of finite length admissible smooth repre-
sentations of H(K) over F with all irreducible constituents isomorphic to irreducible
constituents of principal series, it is proven in [Brel5l §9] that the functors ngH and
Vi are exact. It seems reasonable to us, and also consistent with the conjectural
formalism developed in the sequel (see e.g. Remark [2.4.2.8{(iii)), to hope that there
exists a suitable abelian category of admissible smooth representations of H(K) over
F containing the previous abelian category and the representations “coming from the
global theory” on which the functors Dg/H and Vy are still exact. See for instance the
category C in when H = GLy/x and K is unramified.

We now recall the behaviour of the functor Vg with respect to parabolic induction.

We assume for simplicity H = G Xz K = GL,/x and let g, 0g as in Example
. We let P be a standard parabolic subgroup of G'x ZK and write Mp = H 1 M;
Wlth Ml & GLni/K. We define V};, as in |.) using SMP = SG and 0y, e 9(; (to
define Dy, and dy,). We write &, = @i8upa in XV(T) = ®d , XVY(T;) and
Orrp, = ®L,0hr,; in X(T) = &L, X (T;), where T; is the diagonal torus in M;, and let
Vitpi = VoL, but defined with &y, and 0y, ;. Finally we define Vi, = Vg, with
&y, and 6y, as in Example replacing n by n;, and we recall that &y/,, ), and

0p, are trivial characters if n;, = 1.

If 7p is a smooth representation of Mp(K) over IF, that we see as a representation
of P~(K) via P~ (K) — Mp(K), we define the usual smooth parabolic induction

IndIGD(,I(([)() 7p = {f: G(K) — mp loc. const., f(px) =p(f(z)), p€ P (K), z € np},

with G(K) acting (smoothly) on the left by (¢f)(¢') = f(d'g).

Lemma 2.1.1.5. Let wp be a smooth representation of Mp(K) over F of the form
p =M & -+ Q@ my, where the m; are smooth representations of M;(K) over F. As-
sume that the m; have central characters Z(m;) : K* — F* and that Vi, (7p) =
Q% Varpi(m). Then we have an isomorphism in IndRepy (using implicitly local
class field theory for Gal(Q,/Qy)):

d i
Vg<1nd (K) 7TP) I ® (VM i) (Z(ﬂ',i)n_z:j—lnj)’Q;;(SMli).

Proof. By [Breld, Thm.6.1] we have Vg(IndIGD(f&) 7TP) = Vi (mp) so that from the
assumption (all isomorphisms are in IndRepy):

Ve (Indg! 0 mp) = @VMN ). (17)
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An easy computation yields in M;(K) for x € K*:

Ermi(2) = diag(z" 2™ "S5y (2)

ng

which implies by [Brel5, Rem.4.3] that

Vitpi(m) ® O3 s = Vag, (1) @ (Z(mi)" 227 )| o031, (18)
where 6y, = ind2%(w o Orip i © Enp i) (and recall Vi (m;) = 1if n; = dimpm; = 1,
see Remark [2.1.1.1)). Since §¢ = 1%, dus, 4, twisting (17) by d5' gives the result by
(18). O

Example 2.1.1.6. An enlightening and important example is the case of principal
series Indg(_l((l)()(xl ® -+ ® Xn), where the x; : K* — F* are smooth characters. The

assumptions of Lemma [2.1.1.5|are then trivially satisfied and thus we have
G(K -1 ~ n—1. n—
VG(IndB(—([)q(Xl Q& Xn)) ® 5G1 = (X1 1X2 2. ‘Xn—l)|@§-
In particular we deduce (using Example [2.1.1.3| for d¢g) that
G(K —(n— —(n— ~ n—1, n—
VG(IndB(—(;()(XIW 1) @ xow™ "2 ®"‘®Xn)> = (XX 2"'Xn—1)|<@;

= indg (NG X)),
where x7~'X57? -+ x»_1 on the last line is seen as a character of Gal(Q,/K) via local

class field theory for K.

Remark 2.1.1.7. Using [Brel5, Prop.5.5] the assumptions of Lemma[2.1.1.5] are sat-
isfied when all finite type F[X][F]-submodules of 7" for i € {1,...,d} are automati-
cally admissible as F[ X ]-modules. This happens for instance if the ; are principal se-
ries or (when K = Q,) are finite length representations of GL,(Q,) with a central char-
acter, but is not known otherwise. Contrary to what is stated in [Brel5, Rem.5.6(ii)],
we currently do not have a proof of an isomorphism Vi, (7p) = Q% Viy,.i(m;) for any
smooth representations m;, though we expect that it will indeed be satisfied for repre-
sentations “coming from” the global theory. Note that, in [Zab18b, Prop.3.2], Zabradi
does prove a compatibility of his functor with the tensor product which looks close
to the isomorphism above. However, loc.cit. deals with an external tensor product,
whereas we have an internal tensor product. In particular he has two operators F,
one for each factor in the external tensor product (whereas we consider the resulting
diagonal operator), and his argument doesn’t extend.

2.1.2 Global setting

We recall our global setting (see e.g. [EGHI3| §7.1] or [Thol2, §6] or [BHI15, §4.1]
or many other references) and define the Gal(Q,/Q,)-representation L% (p) for p
Gal(Q,/K) — G(F).
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We let F'* be a totally real finite extension of Q with ring of integers Op+, F/FT
a totally imaginary quadratic extension with ring of integers Or (do not confuse F’
with the operator F' of §2.1.1]) and ¢ the nontrivial element of Gal(F/F*). If v (resp.
0) is a finite place of F'* (resp. F'), we let Ff (resp. Fj) be the completion of F'*
(resp. F) at v (resp. ¥) and Op+ (resp. OF,) the ring of integers of F,\ (vesp. Fy). If
v splits in F" and 0,0° are the two places of F' above v, we have Op+ = Op, = Or,.,
where the last isomorphism is induced by ¢. We let A%, (resp. A%}") denote the finite
adeles of F'* (resp. the finite adeles of F'* outside v). Finally we always assume that
all places of F' above p split in F.

We let n € Z~;, N a positive integer prime to p and H a connected reductive
algebraic group over Op+[1/N] satisfying the following conditions:

(i) there is an isomorphism ¢ : H xo_, 1/5) Or[1/N] — G x7 Op[1/N];
(ii) H Xo, /v F* is an outer form of G xz F'* = GLy, /p+;

(iii) H Xo,, /5 F* is isomorphic to U, (R) at all infinite places of F'*.

One can prove that such groups exist (cf. e.g. [EGHI3| §7.1.1]). Condition (i) implies
that if v is any finite place of F'™ that splits in F and if 9|v in F the isomorphism
¢ induces 15 : H(F) & GL,(F;) = G(F;) which restricts to an isomorphism still
denoted by ¢ : H(Opt) = GLn(OF,) if v doesn’t divide N. Condition (ii) implies
that co vy @ H(FS) = GL,(Fse) (vesp. coty : H(Op+) = GL,(Op,.) if v doesn’t
divide N) is conjugate in GL,,(Fs) (resp. in GL,(OF,.)) to 7! 0 t5c, where 7 is the
transpose in GL,,(Fe) (resp. in GL,(OF,.)).

If U is any compact open subgroup of H (A%, ) then
S(U,F) = {f: HF")\H(A%:)/U — F}

is a finite-dimensional F-vector space since H(F*)\H(A%,)/U is a finite set. Fix v|p
in F* and a compact open subgroup U of H(A}}"), we define

S(U*,F) = lim S(U*U,, F),
Uy
where U, runs among compact open subgroups of H(Op+). We endow S(U", F) with

a linear left action of H(F;}) by (h,f)(h) = f(hhy,) (h, € H(ES), h € H(AS))).
Thus, for v dividing v in F', the isomorphism ¢; gives an admissible smooth action of
G(F) = GL,(F;) on S(U",F). By what is above, the action of G(F,") induced by
L5 is the inverse transpose of the one induced by tge.

If U is a compact open subgroup of H(A%.), following [EGHI13, §7.1.2] we say
that U is unramified at a finite place v of F'© which splits in F' and doesn’t divide N if
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we have U = U x H(Op+), where U" is a compact open subgroup of H(A}"). Note
that a compact open subgroup of H(AS$,) is unramified at all but a finite number
of finite places of F'* which split in F. If U is a compact open subgroup of H(A%)
and Y a finite set of finite places of F'™ containing the set of places of F'™ that split
in ' and divide pN and the set of places of F'" that split in F' at which U is not
unramified, we denote by 7> < OE[TE)] the commutative polynomial Og-algebra
generated by formal variables Tg ) for j€{l,...,n} and @ a place of F' lying above
a finite place w of F'* that splits in F and doesn’t belong to X. The algebra 7> acts
on S(U,F) by making T, W) act by the double coset

17t lGLn(OFm ) (1“‘ > GLn(OFm)] ,

TWw 1]'
where wy is a uniformizer in Op,. Explicitly, if we write

GLu(Or,) (" a1, ) OLu(Oka) = [19: (" 20, ) GLa(Ory),

we have for f € S(U,F) and g € H(A%,):
110 =5 1 (0 (0 (7 o)) ) )

One checks that T = (TSN on S(U,F). We let T=(U,F) be the image of
T% in Ende, (S(U,F)) (if U' C U, we thus have S(U,F) C S(U’,F) and T>(U',F) -
T=(U,F)). If S is any T>-module and I any ideal of 7%, we set in the sequel
SN = {xe€S:Ir=0}

We now fix v|p and a compact open subgroup U” of H(AL}"). If 3 a finite set of
finite places of F'* containing the set of places of F'™ that split in I’ and divide pN
and the set of places of F'* prime to p that split in F' and at which U*U, (for any U,)
is not unramified, the algebra 7> acts on S(UU,,F) (via its quotient 7>(U"U,, F))
for any U, and thus also on S(U",F). This action commutes with that of H(F,"). If
m?” is a maximal ideal of 7> with residue field F, we can define the localized subspaces
S(U"U,,F)us and their inductive limit

lim S(UU,, F)ps = S(UY,F) s,

Uy

which inherits an induced (admissible smooth) action of H(F,) together with a com-
muting action of lim T>(U"U,,F),=. We have
Uy

S(UU,,F)[m*] C S(UU,,F)us C S(U'U,,F)
and thus inclusions of admissible smooth H(F)")-representations over F:

S(U,F)m*] C S(U",F)u= C S(U",TF).
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Moreover, as representations of H(F,\), S(U" )= is a direct summand of S(UY )
(= the maximal vector subspace on which the elements of m* act nilpotently).

We now go back to the notation of §2.1.1} For A € X(T') a dominant weight with
respect to B, we consider the following algebraic representation of G xz IF over F:

L))« (mdg_A)/Z @z F = (ind5*% o)) (19)

/F’

where ind means the algebraic induction functor of [Jan03], §1.3.3] and the last equality
follows from [Jan03], I1.8.8(1)]. For v = e; — €;41 € S, we set

/\ad:ael—i""—i‘@iEX(T),

so that the A\, for a € S are fundamental weights of G (see e.g. [BHIS, §2.1]).
Let p : Gal(Q,/K) — G(F) be a continuous homomorphism, viewing L()\,) as a
continuous homomorphism

G(F) — Aut(L(A)(F))

(where L(\,)(F) is the underlying F-vector space of the algebraic representation
L(\a)), we define the Galois representations for a € S:

L(A)(p) : Gal(@,/K) 2> G(F) “2% Aut(L(Ao)(F)).
Recall that L(A\,)(p) = N\ep if a = ¢; — ;41 ([BHIS, Ex.2.1.3]). We let
® (10)7) * @ N\or

be the tensor product of the representations L()\,)(p) (over F) and define the following
finite-dimensional continuous representation of Gal(Q,/Q,) over F:

() = ndi® (@ (Z0)(0)): (20)

aesS

where ind5% means the tensor induction from Gal(Q,/K) to Gal(Q,/Q,) ([Col&9],
[CR&1, §13], see also the end of the proof of Lemma [2.4.2.3). Note that there are
Gal(Q,/Q,)-equivariant isomorphisms

L°(p") = T%(p)" = I"(p) ® indi™"(det(p) ") (21)
(recall ind%, ”(det(ﬁ)_("_l) ) is still one dimensional).

Example 2.1.2.1. For n = 2, we thus just have L% (p) = ind5(p).
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2.1.3 Weak local-global compatibility conjecture

We state our weak local-global compatibility conjecture (Conjecture [2.1.3.1]).

Let 7 : Gal(F/F) — GL,(F) be a continuous representation and 7 its dual. We
assume:

(i) 7 27 @ w'" (where 7°(g) = 7(cgc) for g € Gal(F/F));

(ii) 7 is an absolutely irreducible representation of Gal(F'/F).

Fix vlp in F*, V¥ C U” C H(A}}") compact open subgroups and X a finite set of
finite places of F'* containing

(a) the set of places of F'* that split in F' and divide pN’;
(b) the set of places of F* that split in F' at which V" is not unramified;

(c) the set of places of F'* that split in F' at which 7 is ramified.

We associate to 7 and ¥ the maximal ideal m* in 7> with residue field F generated
by wg and all elements

((—1)jNorm(w)j(j_1)/2T£~f) - ag)> ,

Jw

where j € {1,...,n}, @ is a place of F lying above a finite place w of F'* that splits
in F' and doesn’t belong to >, X" +a§§’X"—1 +-- -—i—aghl)X —|—6£Dn) is the characteristic
polynomial of 7(Frobyg) (an element of F[X], Frob; is a geometric Frobenius at )
and where oY is any element in O lifting @’. Note that S(V*, F)[m*] 0 in fact
implies assumption (i) above on T (though strictly speaking we need (i) to define m*
in 7). Note also that if U is any subgroup of H(A%,) containing V' as a normal
subgroup, then U naturally acts on S(V¥,F) and S(V?,F)[m*].

For o|v in F, we denote by Vi 5 the functor defined in applied to smooth
representations of H(F,") over F, where we identify H (F.") with GL,,(F;) = G(Fy) via
5. For any finite place w of F', we denote by 74 the restriction of 7 to a decomposition
subgroup at w.

Conjecture 2.1.3.1. Let 7 : Gal(F/F) — GL,(F) be a continuous representation
that satisfies conditions (i) and (ii) above and fix a place v of F™ which divides p.
Assume that there exist compact open subgroups V' C UV C H(ARL) with V¥ normal
in UV, a finite-dimensional representation ¥ of U /V? over F and a finite set 3 of
finite places of F™ as above such that Homy.(o?, S(V?,F)[m*]) # 0. Let d|v in F.
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Then there is an integer d € Zso depending only on v, U, V", 0" and T such that
there is an isomorphism of representations of Gal(Q,/Q,) on F:

VGJ,(HomUv (0¥, S(V?,F)[m*]) @ (w " Yo det)) ~ T%(7;) %4 (22)

Remark 2.1.3.2. (i) In the special case ¢” = 1, Conjecture boils down to
Voo (S(UY, F)[m”™] ® (w= "V o det)) = L”(7;) %

(ii) Conjecture[2.1.3.1)implies that the G(Fy)-representation Homg (a% S(V?, F)[m*))
determines the Gal(Q,/Q,)-representation L%(75). Note that this doesn’t imply in
general that Homg. (0, S(V?, F)[m*]) determines the Gal(F;/F};)-representation 7
itself (though this is also expected, see [PQ] and the references therein).

(iii) See §§3.2] below for nontrivial evidence on Conjecture [2.1.3.1] when K is

unramified and n = 2.

We now check that, at least when p is odd, F/F™ is unramified at finite places
and H Xo_, 1/ F T is quasi-split at finite places, Conjecture holds for v if and
only if it holds for o¢ (these extra assumptions come from the use of [Thol2, §6] in
the next lemma).

Lemma 2.1.3.3. Assumep > 2, F/F* unramified at finite places and H xo_ 15 F™"
quasi-split at finite places of F*. Let 0lv in F. Then the action of the center (F,;F)* C
GL,(F) on S(V?,F)[m*] via t5 is given by det(ﬂ;)ww (via local class field theory
for F.F).

Proof. We can assume S(V? F)[m*] # 0. The map S(V°U,, Op) — S(V'U,,F) be-
ing surjective for U, small enough (see e.g. [BH15, Lemma 4.4.1] or [EGH13, §7.1.2]),
we have a surjection of smooth H(F)")-representations:

SV, 0p)us = S(V,F)us (23)

(where S(V'U,,Og), S(V¥,Og).= are defined as S(V'U,,F), S(V*,F),= replacing

F by Og). By classical local-global compatibility applied to (lgn S(U, OE)> ®o, E,
U
see e.g. [EGH13, Thm.7.2.1], we easily deduce with that 4f (EF,F)* acts via (5 on

the whole S(V?,F)[m*] (inside S(V,F),=) by a single character, then this character
must be det(ﬂ,)wn(n;l).

Let us prove that (F,7)* indeed acts by a character. The functor associating to
any local artinian Og-algebra A with residue field F the set of isomorphism classes
of deformations r4 of T to A such that 7§ = rY ® '™ is pro-representable by a
local complete noetherian Og-algebra Ry, of residue field F. When p > 2, F/F't is
unramified at finite places and H xo_, n/n) F * is quasi-split at finite places of F'T, it
follows from [Thol2, Prop.6.7] that there is a natural such deformation with values
in T*(V*U,, O)y= for any U, (where T>(V'U,, O )y> is defined as T>(V?U,,F) s

~
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in §2.1.2) replacing F by Op), and hence by universality a continuous morphism of
local Og-algebras:
Riy — T2(V'Uy, Op)ns. (24)

Likewise, the functor associating to any A as above the set of isomorphism classes of
Gal(F;/ Fy)*-deformations of det(7;) over A is pro-representable by the Iwasawa
algebra Og[Gal(F;/F;)**], and considering det 4(r Alga#/ry) for A= Ry provides
by the universal property again a continuous morphism of local Og-algebras:

Op[Gal(F;/ F5)™] — Rrx. (25)

Since T>(V'U,, Og)u» acts by a character on S(V'U,,F)[m*] for any U,, so is the
case of Ry on S(V? F)[m*] by . Using , we see that it is enough to prove
that the induced morphism

0u[Gal(F5/F)™] B Ry B i T5(V70,, 0p) e
Uy

gives an action of Gal(F5/F;)*® on S(V?, Op)n.s which, when restricted to F;* <
Gal(F;/F5)* (via the local reciprocity map), coincides with the action of F}* on
S(V?, Op)ns as center of H(F,) £ G(F5). We can work in S(V?, Og)ps ®o, E, in
which case this follows from local-global compatibility (as in [EGHI3, Thm.7.2.1])
and from the fact that, by construction of the map (see [Thol2, §6]) and by
, Gal(F;/F;)* acts on 77" C S(V?, Op)ws ®0, E by multiplication by the char-
acter det(rr)|qa 7 ry. Where 7 is an irreducible H(Ag, )-subrepresentation of

(h_I_I} S(U, OE)) ®p, E such that 7¥" occurs in S(V?, Op)ns Qo, E and where r, is
U

its associated (irreducible) p-adic representation of Gal(F/F) (JEGH13, Thm.7.2.1]

again). O

Let 7 be a smooth representation of G(K) = GL,(K) over F with central character
Z(m) and denote by 7* the smooth representation of G(K') with the same underlying
vector space as 7 but where g € G(K) acts by 7(g)~".

Lemma 2.1.3.4. There is a Gal(Q,/Q,)-equivariant isomorphism
Vo (r*) = Ve(m) @ Z(m) ™" Vg,
where Z(w)|qx is seen as a character of Gal(Q,/Q,) via local class field theory.

Proof. We use the notation of Let wy € W be the element of maximal
length, the isomorphism 71 5 gwoNiwo 4 s yv shows that one can compute
Va(m) using woNywy instead of Ny and conjugating everything by wy (e.g. € Z)
acts by woa(z)wo, etc.). Now, it is easy to check that the F-linear isomorphism
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()Nt 5 gwolNiwo gy qpgu is compatible with the F[X][F]-module structure on
both sides but where we twist the F[X][F]-action as follows on the right-hand side:
X acts by (1+ X)™' — 1 and F acts by p~ ™"V F, p~(»=1 being here in the center of
G(K). Likewise, it is compatible with the action of Z) but where x € Z) acts by
2~ Deq(x) on the right-hand side (with 2~(~Y in the center of G(K)). All this
easily implies the lemma. O]

Lemma 2.1.3.5. Assumep > 2, F/F* unramified at finite places and Hx o, 1/nF™"
quasi-split at finite places of F*. We have a Gal(Q,/Q),)-equivariant isomorphism
Ve e ( Homyo (0", S(V?, F)[m*]))
—n(n—1 2
~ Voo Homn (0, S(V°, F)[m))) @ indf” (det(ry) " V™5 ).

Proof. This follows from Lemma [2.1.3.4] applied to 7 = Homg. (0¥, S(V?,F)[m*]) to-
gether with Lemma [2.1.3.3} recalling that Z ()|, seen as a character of Gal(Q,/Q,)

via local class field theory, is ind%;@"(Z (7)) (where Z(7) is here seen as a character of
Gal(I5/Fy)). O

Proposition 2.1.3.6. Assume p > 2, F/F* unramified at finite places and

H Xo_, 1/n] F* quasi-split at finite places of F*. Conjecture |2.1.3.1| holds for v if
and only if it holds for v°.

Proof. This follows from Lemma [2.1.3.5] together with 73 = 7Y @ w!™", and an

easy computation. O

2.1.4 A reformulation using C-groups

We show that one can give a more general and more natural formulation of Conjecture
2.1.3.1| (in the special case of Remark [2.1.3.2(i)) using C-parameters (Conjecture
2.1.4.5)).

We start by some reminders about L-groups and C-groups.

Let k be a field and k%P a separable closure of k. We note I'y, = Gal(k*?/k).
Let H be a connected reductive group defined over k, let H be its dual group, “H
its L-group and “H its C-group. We refer to [Bor79, §2], [BG14, §§2,5], [GHSIS,
§9] and [Zhul §1.1] for more details concerning these L-groups and C-groups. Note
that these two groups can be defined over Z. Their construction depends on the
choice of a pinning (B, Ty, {%a}tacs,) of Hgseo. The dual group H has a natural
pinned structure (B, T5,{75}acsy;) With By a Borel subgroup of H, Ts C By
a maximal split torus and {z;}acs, a pinning of (By,T5) (see [Conl4, §§5,6] for
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the fact that everything can be defined over Z) on which the group I'y is acting.
Let 1 - G,, = H — H — 1 be the central G,,-extension of H (over k) whose
existence is proved in [BG14, Prop.5.3.1(a)]. The inverse images T and By of Ty

and By in Hyr are respectively a maximal torus and a Borel subgroup of Hpses.
Moreover, since the above extension is central, there is a unique pinning {Z, }aecs,
of (B, 1) inducing {q}aes, on (B,T) via the map Hyser — Hysep. This gives rise

to a pinned dual data (H, BE,T[:{, {Z:}aecs,) with an action of I’y (trivial on some
open subgroup) and a I'y-equivariant injection (H, By, Ty) — (H, BE : TE) such that
{5}aes, induces {73 }acsy, -

The L-groups and C-groups are then defined as the group schemes
LHEHxDy, “HEHxT,. (26)

We have the following simple description of H given in [Zhul, §1.1]. Let H*! and T%d
be the quotients of H and T by the center of H and let 8,4 be the cocharacter of
ad Trad el 7 .
1% < H* ii\eﬁned as thihalf sum of positive roots of H with respect to (Bg,T5).
The group H*! acts on H by the adjoint action and, after precomposition with daq,
this defines an action, in the category of Z-group schemes, of G,, on H. There is an
isomorphism of Z-group schemes H~HxG,, identifying B;I with Bz x G, and TA
with Tz X G,, = T x G,,,. We note that, since d,q is fixed by the Galms action, thls
isomorphism is Ga101s equivariant. Using this isomorphism, we identify X <T1§) with

X(T) x Z = XY(Ty) x Z. This shows that we have an exact sequence of Z-group
schemes:
1—!H %G, — 1

Let A be a topological Z,-algebra and assume from now on that £ is either a
number field or a finite extension of Q,, so that we have an A-valued p-adic cyclotomic
character. We recall that a morphism p : Ty — YH(A) is called admissible if its
composition with the second projection “H(A) — T is the identity (see [Bor79, §3]).

Definition 2.1.4.1. An L-parameter (resp. C-parameter) of H over A is an admis-
sible continuous morphism p : 'y, — PH(A) (resp. p : 'y, — “H(A) such that do p
is the p-adic cyclotomic character). When A is moreover an algebraically closed field,
we say that two L-parameters (resp. C’-param/gters) of H over A are equivalent if they

are conjugate by an element of H(A) (resp. H(A)).

Remark 2.1.4.2. Assume A is an algebraically closed field. Each element of H(A) is

the product of an element of H(A) and an element of the center of H(A). This can be
deduced from [BG14, Prop.5.3.3] or [Zhu, (1.2)]. This implies that two C-parameters
of H over A are equivalent if and only if they are conjugate by an element of H(A).
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For simplicity, we assume from now on that A is moreover an algebraically closed
field. We also assume (not for simplicity) that H has a connected center. We gener-

alize now the representation L° (p) ®p F, (see for L% (p)).

Let (Aav)acsy be a family of fundamental coweights of H such that

&’ 3 Aav € X(Tp) = XV(Ty) (27)

aESy

is fixed under the action of I'y (compare with and note that the cocharacters \,v
exist since H has a connected center but each of them doesn’t have to be fixed by I'y).
Let (rx,., Va,.) be the irreducible algebraic representation of H of highest weight A,v

over A and let (r¢ Vi) be the irreducible algebraic representation of HSH over A of
highest weight (Ayv)aecs, = the character of TSH defined by (24 )acsy F Yo Aav (Ta)-

Note that we have an isomorphism of algebraic representations of HSn:

(T?H7 Vv{%) = ® (r)\a\/ ) V)\a\/)‘ (28)

aESyH

Let v € I'y, and xa,, be the character of H corresponding to the cocharacter Y(Aav) —
Mov € XY(Zy) € XY(Ty). Comparing the highest weights, for v € T'), there is an
isomorphism of algebraic irreducible representations of HH:

(T?H (7_1-), V;fl) = <®aESH (r,\av ® Xoy-1lan) O Cys ng,) ,

where c, is the automorphism of HS defined by (24)acs, — (y-14)acsy - Therefore
there exists an A-linear automorphism M, of Vgl, well defined up to a nonzero scalar,

such that, for (24 )acs, € H(A)S:

My (rE, (7 %a)acsi)) My ' = (®acsymay (T3-10)) TT Xan(za):  (29)

aeSy

Moreover the subspaces of highest weight of these two representations over V&% being
the same, we can choose M, such that it induces the identity on this line. With this
choice, the map v +— M, is a representation of I';, over ngl Since &y € XV(Ty),
we have [T,es, Xay = 1 for all 4 € Ty, so that, for x € H\(A), we have from 1) and
(28) (replacing v~ 'z, by x for all a € Sg):

M, (@aeSHT)\av (x)) ]\47_1 = <®aeSH7’>\av (’yx)) .

All this proves that there is an algebraic representation (Lg, VS ) of “H on Vg
defined by

L?H (xaf)/) S (®QGSHT)\QV (J])) MW
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for # € H(A) and v € T'. The isomorphism class of this representation does not
depend on the choice of the A\ v such that £ = Y A\,v. Namely any other choice will
twist each ry_,, by a character whose product over all « is trivial.

If p is an L-parameter of H over A we define the I'y-representation L¢, (p) as the
composition L?H o p. Moreover if two L-parameters p; and ps are equivalent, the
representations L¢, (p1) and Lg, (p2) are clearly isomorphic. If p is a C-parameter of
H over A, p is in particular an L-parameter of H over A by , and we define the
['g-representation L?}}C(p) = L?ﬁ (p), where

€™ (€n,0) € X(T3) = X(Tp) x Z. (30)

We now compare L (p), L?I;C(p) between k and finite extensions £’ of k.

We fix k' C k%P a finite extension of k, H' a connected reductive group over £’
and we let H & Resy /x(H'). We let ¥y be the set of embeddings &' — k*P inducing
the identity on & and 7y € X the inclusion &' C k*P. For 7 € ¥ we Ch00§§ gr €1y
such that 7 = ¢, o 79, and we have I', = HTGZk/ g-I'y. The dual group H of H is

isomorphic to indgzl H' , i.e. the group scheme of functions f : 'y — H’ such that
f(gh) = h='f(g) for all g € Ty and h € T (see [Bor79, §5.1(4)]). More explicitly,

— =3
the map f — (f(g-))rex, induces an isomorphism indg’;, H' = H"™" and the action

==
of I'; on H™* is given by

g- (xT)TEEk/ = ((g;lgggflofr»rg*lm')

TEX,, )

The map (2;)rex,, + T, is a [y-equivariant map H — H'. Tt extends to a morphism

of group schemes HxTy — LH (resp. HxTy — °H ) inducing the identity on
the I'ys factor (resp. the G,, and T’y factors). If p is an L-parameter (resp. a C-
parameter) of H over A, we can define an L-parameter (resp. a C-parameter) p’ of
H' by restriction of p to Iy and composition with the above morphism.

Lemma 2.1.4.3. The map p — p' induces a bijection between equivalence classes
of L-parameters (resp. of C-parameters) of H over A and equivalence classes of L-
parameters (resp. C-parameters) of H' over A.

Proof. A map p from I’y to “H(A) of the form (c,,Id) is admissible if and only if
¢, is a l-cocycle of I'y, in H (A) and is continuous if and only if ¢, is continuous.
Moreover two admissible p are equivalent if and only if they are conjugate by an
clement of H (A). Therefore the map associating to p the class [¢,] of ¢, induces
a bijection between the set of equivalence classes of L-parameters and the set of

classes [ € HL (T, H(A)). The fact that the above map p — p' induces an
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isomorphism HL_ (I'y, H(A)) = HL (I, H'(A)) is a consequence of a nonabelian
version of Shapiro’s Lemma (see for example [Stil0, Prop.8] noting that everything

can be made continuous there or [GHS18, Lemma 9.4.1] in a more restricted context).

Therefore the map associated to a C-parameter p the class [c,] of ¢, induces a
bijection between the set of equivalence classes of C-parameters and the set of classes

ce H- (T, H(A)) such that d(c) € H! (Fk,AX) Homcont(f‘k, A*) coincides with

cont cont

the p-adic cyclotomic character. Let H1 ' Resy kH . so that H can be identified
to a quotient of Hy. It follows from Remark [2.1.4.2) that H* (T, H1 (A)) is the set of

classes of 1-cocycles of T, with values in Hy(A) up to H(A)-conjugation. It follows
again from Remark 2.1.4.2) that the set of equivalence classes of C-parameters of H

over A is in bijection with the subset of HL (I, H;(A)) of classes whose image in
Hl

aont (Ti, (AR = Hom$™ ()., (A*)¥**)) is the image of the p-adic cyclotomic
character via the diagonal embedding A* < (A*)¥**. The conclusion follows from
the commutativity of the following diagram

1Y (T H(A)) —— Hy (T, (Resge G (A))

! !

Hclont (Fk’y ﬁ(fb) —_— Hcont (Fk:’7 @-T\n(A))

and from the fact that the classes corresponding to the cyclotomic characters corre-
spond under the right vertical arrow. O]

Lemma 2.1.4.4. Let p be an L-parameter, resp. a C-parameter, of H over A and
! the L-parameter, resp. C-pammeter, of H" over A corresponding to p by Lemma
m Let & € X(T;) be as in (27) (with H' instead of H) and let £y € X (1) =
X(T5;)™ be the character (§H/)T€gk, (which is fixed by T'y). Then we have an iso-
morphzsm of representations of I'y, over A:

LE, (p) = indg® (L (0))  resp. LES(p) = indgF (LEC ()

Proof. Let p’ be an L-parameter of H over A. If g € 'y and 7 € Xy, let gg, =
Ggorh(g, ) with h(g,7) € I'ys. For g € I'y, we can check that the above automorphism
M, of V& = (V2 )®IFH is defined by My(®ren, vr) = @res,, (Mi(gg-1omg-10r)-
Moreover, setting for g € I':

p(g) = (¢ (g, 97" 0 ))res,,g) € H(A)™ x T

it is easy to check that p is an admissible morphism and that the equivalence class of p
corresponds to p’ via Lemma [2.1.4.3] The result follows from an explicit computation
together with the definition of the tensor induction (JCR81) §13], see also the end of

37



the proof of Lemma [2.4.2.3| below). The case of C-parameters can be deduced from
the case of L-parameters as in the proof of Lemma [2.1.4.3] O

We will later need to “untwist” a C-parameter into an L-parameter. This can
be done when the group H has a twisting element (as we assumed in §2.1.1), i.e. a
character Oy € X (Ty)™ = XV(T5)"™ such that (0, ") = 1 for all « € Sy. By [Zhu,

(1.3)], there exists a Galois equivariant isomorphism H H x G,, given explicitly by

t - f{\xGm = f[\xGm

o (ht) = (hOg(t),t).

This induces an isomorphism of group schemes “H = “H x G,,. The choice of
gives a bijection between the equivalence classes of C-parameters and of L-parameters
of H over A given by p© +— p, so that ty,, o p© = (p, ), where € is (the image in A*)
of the p-adic cyclotomic character.

Let £y € XY (Tw)™ = X(T5)™ be a dominant character of H fixed by T'y as above.
The algebraic representation Te~ ote’; of HX Gy, (see for £;) is the representation
of highest weight (£, —(€m, 0r)) and similarly LY ot, = LY © o~ %m01) (where we

H

note z" the character x — z" of G,,). This proves that we have

Le;C (0°) = L, (p) @ e~ em o), (31)

On order to state the reformulation/generalization Conjecture [2.1.3.1| (more pre-
cisely of its variant in Remark [2.1.3.2(i) and extending scalars from F to F,), we
broaden the global setting of §2.1.2 following [DPS].

We now let H be a connected reductive group defined over Q. We fix some compact
open subgroup U? C H(Ay™) satisfying the hypotheses of [DPS, §9.2] (U? there is
denoted K¥%). For i > 0 an integer, let H(F,) be the completed cohomology of the
tower of locally symmetric spaces associated to H of tame level UP defined in [Eme06]
(see [DPS| §9.2]). Let 3 be a set of finite places of Q@ containing p and the places of
Q where H is not unramified or UP is not hyperspecial. Let T* be the abstract Hecke
algebra defined as the tensor product of the spherical Z[p~!]-Hecke algebras H, of
H(Qy) with respect to UY. We recall that a maximal open ideal m C T* is weakly
non-Eisenstein [DPS, Def.9.13] if the equivalent assumptions of [DPS, Lemma 9.10]
are satisfied. In this case there is a unique gy > 0 such that H® (F,)m # 0. Then the
H(Q,)-representation H%(F,)[m] is smooth and admissible and the residue field of m
is finite. We choose an embedding T/m < F,,.

Considering [DPS, Conj.9.3.1], the following construction is natural. Let 7¢ :
Gal(Q/Q) — “H(F,) be a C-parameter unramified outside a finite number of primes
and choose Y big enough to contain all the primes of ramification of 7°. For each
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(¢, let zp : Hy — F, be the character such that the semisimplification of 7¢ (Froby)
is contained in the H (F,)-conjugacy class CC(x,)¢(¢~1) of “H(F,) defined by the
version of Satake isomorphism for C-groups in [Zhu] and ¢ is the cocharacter t +—

(20,4 (t™1), %) of H (recall 8,4 is defined at the beginning of this section). We define
m” as the maximal ideal of T* generated by the kernels of all the z, with ¢ ¢ 3. Note
that this gives us a natural embedding T* /m* < F,,.

Assume that Hg, = H xgQ, is isomorphic to Resy/q, (H') for a finite extension K
of Q, and some split connected reductive group H' over K (in particular Hg, is quasi-
split) and that H’ has a connected center. Then we can fix a cocharacter g of H'

def

such that (g, ) =1 for all & € Sy and define {n, = Resr/g,(§n)ls,, (restriction

to the diagonal embedding G,, — Resg /g, (Gm) = GIE%!), which is a cocharacter of
Hg, satisfying (& H@p,&) = 1for all a € Sy, . We can finally conjecture:

Conjecture 2.1.4.5. Assume that the H(Q,)-representation m = ﬁqo(F)LmZ] is
nonzero. Then D¢ (m) (defined similarly to 1} is finite-dimensional over F, (X))
and there is an integer d € Z~o such that we have an isomorphism of representations

of Gal(Q,/Q,) over F,:

VY(DY, (7)) @rsjms Ty = (L?,;gp (TC|Ga1(@p/@p>))®d'

We now check that, when H is the restriction of scalars of a compact unitary
group as in §2.1.2] Conjecture [2.1.4.5]is equivalent to the special case of Conjecture
2.1.3.1)in Remark [2.1.3.2(i) where the coefficient field is F, instead of F.

We go back to the notation of § and we fix an embedding F — F,,. For
simplification we assume that there is a unique place v of F'* over p and we fix ¥ in F
above v, so that we have an isomorphism (Resp+ /g H) xg Q, = Resp, g, GLy,. The
base field k at the beginning is now F'*, the connected reductive group H over k is
the compact unitary group H of (so that H~G= GL,), &g is the cocharacter

¢q of Example [2.1.1.3] the twisting element 6 is the character 64 of Example [2.1.1.3
and the algebraically closed field A is F,,.

Let 7 be a continuous irreducible representation Gal(Q/F) — GL,(F,) as in
§2.1.3| (composed with our embedding F < F,). Let 7 : Gal(Q/F*) — G,.(F,) be
the continuous morphism associated to 7 using [CHT08| Lemma 2.1.4] and denote by
(7)° : Gal(Q/F*) — “H(F,) the C-parameter of H over I, obtained by the con-
struction of [BG14, §8.3]. A simple computation shows that (7)€ (or more precisely
its composition with H x Gal(Q/F*) — H x Gal(F/F7)) is the composition of (7, w)
with

G xG,, — Hx (G, xGal(F/Ft))

(@70 s (g0 (V)1 A7) (32)
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where g € GL,(F,), u, A € F;, v € Gal(F/F*) and 0} € X(T) is the character
0 (diag(zy, ..., x,)) = x5 w32 - - 217" Finally we define 7 as the C-parameter of
Resp+,g(H) over F, obtained from the application of Lemma to (7)°. We
can check that the maximal ideal m* of T* defined by 7¢ coincides with the ideal
m”® defined in . This can be checked using the formulas relating the Satake
isomorphism for C-groups with the usual Satake isomorphism ([Zhu, §1.4]) and the
explicit formulas [Gro98| (3.13)], [Gro98, (3.14)].

Note that, seeing now 8y and 6%, as cocharacters of T' (recall GL, = GL,), we
have 0 o w = (0} ow)w" ™, so that we have, using (32)):

(F’)C = tg_; o (FRw"),w).

Let & = & X+ Fif and &, d:iRest/Qp (&)|g,,- Then and Lemma [2.1.4.4] imply
(note that &, is fixed by Gal(Q,/F,") since H x p+ F,f is split):

,C r— ~ : ®Q - n— — , _ 79 —
L?; (Tc‘eal(@p/@p)) = ind, > (r?i (s @ W H)w 6 9H>> =L (T3) ® 65"

This shows that Conjecture 2.1.4.5 is equivalent to the special case of Conjecture

2.1.3.1|in Remark [2.1.3.2(i) (with F, instead of F).

2.2 Good subquotients of L

From now on we assume that K is unramified (i.e. K = Q,s). We define the algebraic

representation % of [loecax/o,)G together with “good subquotients” of f®, and
prove various properties of these good subquotients. This section is entirely on the
“Galois side” (though no Galois representation appears yet). All the results, except
Remark , in fact hold for any split reductive connected algebraic group G/Z
with connected center.

2.2.1 Definition and first properties

We define good subquotients of I°.

If H is an algebraic group over Z, we now write H instead of H Xz F (in order
not to burden the notation) and HS(5/Q) for the group product [oecarx o) H (it
is not a subgroup of H!).

We define the following algebraic representation of GE(5/Q) gyer F:

Y @ (®I0) (33)

Gal(K/Qp) " a€S
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(recall L()\,) is defined in ) Note that L is also the tensor product of all
fundamental representations of the product group GG 5/@) In particular the center

ZGH ) acts on LP by the character |z, ® - - - ® 0|z, where fg is as in Example
Gal(K/Qp)
BT e
b= A € X(T). (34)

a€eS

Remark 2.2.1.1. (i) With the notation of the representation L is the re-
striction to H of the representation (L, VE) of "H, where k = F, H = Resg/q,(G)
and £ = (&g, .-+, 8a) € X(Tg) (§c as in Example .

(ii) Since A\, € B! Z>oe;, all the weights of X (T") appearing in each L(\,)|r are also
in @7 ,Z>oe;, and thus the same holds for the weights of L%|7 (where T is diagonally
embedded into GE(K/Q)) This follows from the classical fact that the weights ap-
pearing in L(\)|r for any dominant A € X (7T') are the points in &7 ,Ze; = X(T) of
the convex hull in &7 ;Re; of the weights w(\), w € W.

Fix P a standard parabolic subgroup of G, if R is a finite-dimensional algebraic
representation of PEK/Q) oyer F, we write R| Znip for the restriction of R to Zy,
acting via the diagonal embedding

Zm

P

o Z]\(jf(K/@”) C GCalK/Q) (35)

Since Zy, is a torus, it follows from [Jan03, §1.2.11] that R|z,  is the direct sum

of its isotypic components. For instance, if P = G and R = f®, there is only one
isotypic component as Zy;, = Zg acts on L? via the character f0c|z.-

Lemma 2.2.1.2. Any isotypic component of R|ZJVIP carries an action of MSaI(K/Q")

when viewed inside R\Mcalm/@p).
P

Proof. This just comes from the fact that the action of Z);, commutes with that of
Mgal(K/Qp)‘ N

Definition 2.2.1.3. Let P C P be a Zariski closed algebraic subgroup containing Mp
and R an algebraic representation of PE(5/@) gyver F, a subquotient (resp. subrepre-
sentation, resp. quotient) of R|5caix/q,) is a good subquotient (resp. subrepresentation,
resp. quotient) if its restriction to Zy, is a (direct) sum of isotypic components of

Rz, -

Remark 2.2.1.4. A Zariski closed subgroup P as in Definition actually de-
termines the standard parabolic subgroup P that contains it. Indeed, assume there
is another standard parabolic subgroup P’ such that Mp/ C P C P’. Then we have
Mp: C P which implies P’ C P. Symmetrically, we also have P C P’ hence P = P’.
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Since isotypic components of R| Zu,, tautologically occur with multiplicity 1, we
see in particular that there is only a finite number of good subquotients of R|zcaix/ay) -

For instance the entire L° is the only good subquotient of Z®|GGal(K/Qp). If P - P
is another Zariski closed algebraic subgroup as in Definition [2.2.1.3] any good sub-
quotient (resp. subrepresentation, resp. quotient) of R|zcax/q,) is a good subquotient
(resp. subrepresentation, resp. quotient) of ngcalm/@p) (but the converse is wrong).

Lemma 2.2.1.5. There ezists a filtration on f®\§Gal(K/Qp) by good subrepresentations
such that the graded pieces exhaust the isotypic components of f®|ZMP seen as rep-

resentations of PCAE/Q) g the surjection PCalE/Q) _, Mﬁa“K/Qp) and Lemma

2212

Proof. Tt is enough to prove the lemma for P = P. We prove the following statement
(which implies the lemma): let H be a split connected reductive algebraic group over
7 with connected center, Ty C H a split maximal torus in H, By C H a Borel
subgroup containing Ty with set of (positive) roots Rj;, V a finite-dimensional H-

module over F, Qi C H a parabolic subgroup containing By with Levi decomposition
def

Mg, Ng,, and center Zy,, C T, ZjMQH a subtorus of Zy, and A\, € X(Z]’V[QH) =
HomGr(ZMQH,Gm). Then the Z}wQH-isotypic component VA;QH of V' is a quotient of
two subrepresentations in Vg, which are both direct sums of isotypic components
of V|z  (one applies this result to H = GGUE/W) v = TP Qy = PCalK/Q)
and Z o = Zur,)- Note that as above V = @,\r VX and that VA/ carries from

Vg, an 1 action of My,, by the same proof as for Lemma | Let R(QH)+ C R}
be the positive roots of Mg, if « € RE\R(Qu)™, denote by «@ its image via the
quotient map X (7x) — X(ZMQH) and N, C Ng,, the root subgroup. If n, € N,
and \p, € X(Z}wQH), then we have na(V)\bH) C i V’\bH”a by [Jan03l, §11.1.19]
(the sum being finite inside V). Fix A\, € X(Z), QH) that occurs in V| Zirg and let

H
W(Ag,,) be the set of \j,, € X(ZJIWQH) of the form \j,  + (EaeR;\R(QHﬁ Zzoa> that
occur in V| Zigy > WE deduce that both subspaces
H

O D DI
17 ! ! QH 17 ! QH
N EWOG NG} N EWOG )

are preserved by Ng,, hence by Qp, inside V. Since their cokernel is exactly ka ,
H
this proves the statement. O

We will use the following lemma extensively.

Lemma 2.2.1.6. If Q) is a (standard) parabolic subgroup of G containing P, any iso-
typic component of R|ZMQ is a good subquotient of R|pcax/ey (hence of R|zcax ey )-
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Proof. By Lemma (applied in the case P = P and with P there being @), such
an isotypic component is a good subquotient of R|Qc;a1(;</@p), and thus is a subquotient
of R|pcax/o, since P C Q. It is also obviously a direct sum of isotypic components
of R|z,,, since Zy, C Zy,. This proves the lemma. O

Remark 2.2.1.7. Let P, P and R as in Deﬁnition and define a good sub-
quotient of R|z (for the diagonal embedding P — PGalK/Q) gimilar to ) as a
subquotient of R|5 such that its restriction to Zyy, is a sum of isotypic components of
R| Zun,- Then, using the same kind of argument as for the proof of Lemma , one
can prove that a good subquotient of R|z is also a good subquotient of R[zcaix/a,),
so that good subquotients of |5 and of R|5cax/q,) are actually the same.

2.2.2 The parabolic group associated to an isotypic component

Fix P C G a standard parabolic subgroup and C'p an isotypic component of f®| Znip
we associate to Cp a subset of the set of simple roots S (see (37)), as well as the
standard parabolic subgroup of G, denoted by P(Cp), corresponding to this subset.

We will use the following two lemmas, the first being well-known.

Lemma 2.2.2.1. Let A € X(T) ®z Q be dominant. Then the Weyl group of the
root subsystem of R generated by the simple roots o € S such that s, fixes X is the
subgroup of W of elements fixing .

Lemma 2.2.2.2. Leta € S. Then 3 ewpyw(a) > 0, and we have 3, ey py w(a) =
0 if and only if « € S(P). Moreover, if a € S\S(P), then « is in the support of

ZwGW(P) w(a).

Proof. If a € S(P), it is clear that },cypyw(a) = 0 since, for each w € W(P),
we also have ws, € W(P). If a € S\S(P), then —« is dominant for Mp, that
is, —(a, ) > 0 for p € S(P). This implies that w(—a) < —a for w € W(P).
Summing over W (P) gives — > ,cw(py w(a) < —|W(P)|a or equivalently [W (P)[a <
Swew(p) W(a). This proves the lemma. O

If w € W satisfies w(S(P)) C S, we denote by * P the standard parabolic subgroup
of G whose associated set of simple roots is w(S(P)). It has Levi subgroup Mwp =
wMpw™" (so “P = (wMpw')N) and Weyl group W(“P) = wW (P)w™! (caution:
wPis not wPw™ if w# 1!). If A € X(T'), we define

N =

> W) € (X(T) ez Q™. (36)
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Remark 2.2.2.3. (i) Note that \’ only depends on A|z,,  since two distinct A with the
same restriction to Zyy, differ by an element in 3°,cg(py Za and since 3, ey (py w(a) =
0 for & € S(P) by Lemma 2.2.2.2]

(ii) It easily follows from the definitions and Lemma that if w € W satisfies
w(S(P)) C S and A € X(T) is any weight, then w(\') = (w(\))’, where (w(\))’ is
given by the same formula as in applied to the parabolic Y P and the character
w(N).

Lemma 2.2.2.4. Let P be a standard parabolic subgroup of G.

(i) Let A € X(T), there exists w € W such that w(S(P)) C S and w(A)|z,,,
coincides with the restriction to Zyp,, of a dominant weight of X (T') @z Q.

(i) Let A € X(T) such that Az, occurs in f®|ZMP and let w as in (i). Then
we have fOg — w(\) = Y qeg Naex for some n, € Zso (see for ) and the

subset
w(S(P))U{a € S n,#0} C S (37)

only depends on M|z, .

Proof. (i) We first claim that it is equivalent to find w such that w(S(P)) C S and
w(\') is dominant with A’ as in (36]). Assume we have such a w, since w'(\)]

Alzy, forallw’ € W(P), we have Xz, = Alz,,, and thus w(})|z,,, , = w(X)|z,, -
Conversely, assume that there is w such that w(S(P)) C S and w(N)|z,, , = #lzy, ,

y def

for some dominant p in X(7T)®z Q, and set p/ = W%Zw'eW(wp) w'(p) €
(X(T) ®z QW (“P). Then we have ' = w(\) by Remark [2.2.2.3(ii) and pu > p/
(as p > w'(p) for any w' € W since p is dominant). Thus p —w(N) = p— 4/ =
Yaes(wp) Naa for some ng € Qg (vecall plz,,, = 1’|z, ). This implies that

(wX),8) = (1, 8) = > nale, ) >0

aES(WP)

for any 5 € S\S(“P) (as p is dominant and (o, ) < 0if o # f € S). Since
(w(N),8) = (W, B) =0 for B € S(P) (use again Lemma [2.2.2.2), we see that w(\')
is dominant.

Now let us find such a w. First, pick w' € W such that w'()\') is dominant, by
Lemma applied to w'()\') the set of elements 5 in S such that sz fixes w'(\)
generate a root subsystem of R with corresponding Weyl group the subgroup of W of
elements that fix w’(\'). This root subsystem has two natural bases of simple roots:
namely the elements 5 above and the elements w'(y) € w'(S) such that s, fixes X
(they are usually distinct as W doesn’t preserve S). This second basis obviously
contains w'(S(P)). Therefore, there is w” in the Weyl group of this root subsystem,
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ie. w” € W fixing w'()'), that maps the second basis to the first. In particular we
have w”w’(S(P)) C S and w"w'(X) = w'(\) dominant, thus we can take w = w"w'.

(i) The positivity of the n, follows from the fact f6¢ is the highest weight of L |7 (for
the diagonal embedding of T" as in (35))). Let wy,wsy as in (i) and A as in (36|). Then
wy(N) = we(N') as these two weights are dominant (by the first part of the proof of
(i)) and in a single W-orbit. Since \’ only depends on A|z,, by Remark 2.2.2.3(i), it is
therefore enough to prove that the support of f0g —w(\') is exactly the set of simple
roots for one (any) w as in (i). Writing f0c—w(X) = (f0c—w(N))+(w(A)—w (X))
and recalling that w(\) —w(\') is a sum of roots in w(S(P)) C S (as w(A), w(\') have
same restriction to Zy, , from the proof of (i)), we see that this support is contained
in and that it contains {a € S\w(S(P)),n, # 0}. It is thus enough to prove
that this support also contains w(S(P)). Since fOg > w(N) (use fOg > ww'(A) for
any w’ € W and sum over w’ € W(P)) and (5,a) < 0if a # 5 € S, it is enough to
check that (f0g —w(N),a) > 0 (in Q) for any o € w(S(P)). But this follows from

Lemma [2.2.2.2] and (f0c — w(N), o) = f{0g, a) — (w(N),a) = f — 0= f. O

Remark 2.2.2.5. Note that it is not true in general that, for A as in Lemma
2.2.2.4(ii), one can find w € W such that w(S(P)) C S and w(})|z,,, is the re-
striction to Zyy,, of a dominant weight of X (7") (one really needs X (7') ®z Q).

The proof of Lemma [2.2.2.4] also gives the following equivalent proposition that
we will use repeatedly in the sequel.

Proposition 2.2.2.6. Let P be a standard parabolic subgroup of G.

(i) Let X € X(T) and X as in (B36)), there exists w € W such that w(S(P)) C S
and w(X') is a dominant weight of X (T') ®7 Q.

(i) Let A € X(T') such that A|z,,, occurs in f®|ZMP and let w as in (i). Then we
have fOg—w(XN') = Y g Nax for some n, € Qso and the support of fOg—w(N')
is S(P(Cp)).

Let Cp be an isotypic component of f®\ Zu,, associated to some A\p € X (Zn,) =
Homg, (Zarp, Gr). We denote by P(Cp) the unique standard parabolic subgroup of
G whose associated set of simple roots S(P(Cp)) is for one (equivalently any)
weight A € X(T) such that A|z, , = Ap. We also define

W(Cp) = {w € W as in Proposition [2.2.2.6(i) for A € X(T), Alzy, =Ap}  (38)

(W(Cp) doesn’t depend on the choice of such A by the claim in the proof of Lemma

2.2.2.4(i) and by Remark [2.2.2.3(i)). We see from that for all w € W(Cp) we

have the inclusion
wp C P(Cp). (39)
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Note that the set W(Cp) is not in general a group, in particular it is distinct in
general from the Weyl group W(P(Cp)) (see Lemma [2.2.2.10 below for the relation

between the two).

Remark 2.2.2.7. The inclusion *P C P(Cp) for some w € W (such that w(S(P)) C
S) doesn’t imply w € W(Cp) (take P = B). Also P(Cp) doesn’t necessarily contain
P, see e.g. the end of Example (ii) below. The subgroup generated by all P
for w € W(Cp) may also be strictly contained in P(Cp) (see e.g. Example [2.2.2.9[(i)
below).

The parabolic subgroups P(Cp) respect inclusions.

Lemma 2.2.2.8. Letf’ C P be two standard parabolic subgroups of G, Cp an
isotypic component of L®|ZMP and Cp: an isotypic component of L®|ZMP, such that

Cp C CP|ZMP,' Then P(Cp/) - P(Cp)

Proof. Let A € X(T) such that Cp is the isotypic component of A Zut,, - Then by
assumption Cp is the isotypic component of A|z,, . Define X, € (X(7') ®z QWP
Npr € (X(T) ®2 Q)W) as in for respectively P and P’ and let (wp,wp:) €
W x W such that wp(S(P)) C S and wp(Np) dominant, wp (S(P')) C S and wp (Np/)
dominant (wp,wp: exist by Proposition [2.2.2.6(i)). Then we have
]' / !/ 1 /
wwp(N), wp(ANp/) = —== w'wp(N)

WP o P =P i

w' €W (YP P) w €W (WP P’)

wp(Ap) =

and also ,
, W (P

orXe) = ()

> owp(Np). (40)
GEW (VP P)/W (VP P)
Since wpr(Np/) is dominant, we have wp/ (Ap/) > wwp (Np/) for any w € W and in par-
ticular wp(Np) > cwp(Np) = (cwpwpi )wp (Np ). Summing up these inequalities

over o € W(*?P)/W (*? P') and multiplying by ‘IVVII//((I:))N’ one gets with :

wer(Xps) = wp(Xp). (41)

Now the result follows from
oo —wp(Xp) = (f0c —wp(Np)) + (wpr (Np) — wp(Xp))

together with Proposition [2.2.2.6]ii) and (41)). O
Example 2.2.2.9. We give a few simple examples (beyond GLy(Q))).

(i) Assume n = 2 and P = B. Then f®| Iniy = f®\T has f + 1 isotypic components
C(\;) given by the characters ), : diag(zy, 23) — 2 ‘ad for 0 < i < f. Fori < f/2,
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A; is dominant, W(C'(X\;)) = {1} and fOs — \; = i(e; —ez). For i = f/2 (if f is even),
Ai = Sey—ey(Ai) 18 dominant, W(C(N;)) = {1, S¢,—¢, } and flg —w(\;) = f/2(e1 — e2)
for w € W(C(N;)). Fori > f/2, s¢,—e,(Ai) is dominant, W(C(\;)) = {Se,—e, } and
fO0c—Se;—es(Ni) = (f —i)(e1 —e2). Wesee that “B =B C P(C(\)) =G ifi ¢ {0, f}
and “B = P(C(\;)) = Bifi € {0, f}.

(ii) Assume n = 3 and K = Q,.

If P = B, then f®|T has 7 isotypic components given by the 6 characters A\, :
diag(xy, za, x3) mfv_l(l)qu(g) for w € S3 and the character det : diag(zy, xs, x3) —
x1xows. If Cp corresponds to some A, one gets that W (Cp) is the singleton {w}
and g — w(\,) = 0, which implies “B = P(Cp) = B. If Cp corresponds to det, one
gets W(Cp) =W and 0 — w(det) = (e; — e2) + (e2 — e3) for w € W, which implies
“B=BC P(Cp)=0G.

If P is the standard parabolic subgroup of Levi diag(GLs, GL;), then Z®|ZMP has 3
isotypic components C'p given by the characters

gy 3 T 2 T 2
Ao @ diag(z1, x1, 2) = a7, Ay @ diag(@y, o1, 22) = 2722, Ao @ diag(xy, x1, 22) — 125.

One has \j = 3/2(e; +e3), \] = e1 +ea+e3, Ay = 1/2(eg + €2) + 2e3 from which one
deduces for the three respective isotypic components Cp (where w € W(Cp)):

W(Cr) = {1} b —w(Ny) = 1/2(er o)
W(CP) = {17 361—62562—63} Oc — w(>‘/1) = (61 - 62) + (62 - 63)
W(CP) = {861—62862—63} Oc — w(>‘,2) = 1/2(62 - 63)‘

If Cp corresponds to Ag one gets “P = P(Cp) = P, if Cp corresponds to A; one
gets “P C P(Cp) = G (“P being P if w = Id and the standard parabolic subgroup
of Levi diag(GL1, GLy) if w = S¢;—¢ySe5—es), and if Cp corresponds to Ay one gets
“P = P(Cp) = the standard parabolic subgroup of Levi diag(GL;, GLs). In this last
case we see that P(Cp) doesn’t contain P.

Finally, if Mp = diag(GL;, GLs), the situation is symmetric.

Lemma 2.2.2.10. We have W(Cp) C W(P(Cp))w for any fixed element w €
W(Cp). Equivalently w'w=' € W(P(Cp)) for any w,w’ € W(Cp).

Proof. Let A\p € X(Zp,) corresponding to Cp, we, € W(Cp), A € X(T') such that
Alzy, = Ap and define X" as in (36). Recall that an element w € W is in W(Cp)
if and only if w(S(P)) C S and w()\') is dominant (see Proposition [2.2.2.6{1i)), and
that we have w(\') = we, (N) for all w € W(Cp) (see the beginning of the proof of
Lemma (11)) We rewrite this wwg! (we, (V) = we, (X) Vw € W(Cp). By the
definition of P(Cp) and Proposition [2.2.2.6[(ii), we know that S(P(Cp)) is the set of
simple roots in the support of flg —we, (). Since we, (N') is dominant, by Lemma
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2.2.2.1| the subgroup of W fixing we, (\') is generated by the simple reflections sg
fixing we, (N'), or equivalently such that (we, (X)), 5) = 0. Since (f0g—we, (X)), 5) =
f — 0= f, we see that these simple roots 3 are all in the support of f0s — we, (N).
Therefore W (P(Cp)) contains the subgroup of W fixing we, (X'). Since wwg! fixes
we, (X)), it follows that wwg! € W(P(Cp)). O

Remark 2.2.2.11. The inclusion in Lemma [2.2.2.10] is not an equality in general
(take P = G).

2.2.3 The structure of isotypic components of ¢

We let P be a standard parabolic subgroup of GG, we prove an important structure
theorem on the isotypic components of f®| Znip (Theorem [2.2.3.9) as well as several
useful technical results.

Recall that W (Cp) is defined in (38)) and P(Cp) is defined just before.
Lemma 2.2.3.1. If P(Cp) = " P for some w € W(Cp) then W(Cp) has just one

element.

Proof. Let wc, € W(Cp) such that P(Cp) =", P and let wg, € W(Cp). Since
P(Cp) ="cr P we get S(P(Cp)) = we, (S(P)) and W(P(Cp)) = we, W (P)wgl. By
Lemma applied to the element w¢,, we deduce W(Cp) C we, W(P) and
thus wg, wy, € W(P). But since S(P(Cp)) contains w(S(P)) for all w € W(Cp) by
definition of W(Cp) and , we have we, (S(P)) € S(P(Cp)) = we, (S(P)) which
implies wg, (S(P)) = we, (S(P)) since the cardinalities are the same on both sides,
that is, wg wi, (S(P)) = S(P). Since wg wy, € W(P), this forces wi,, = we,. O

Remark 2.2.3.2. (i) The converse to Lemmal[2.2.3.1]is wrong in general (e.g. consider
the C(\;) with @ ¢ {0, f/2, f} in Example 2.2.2.9(1)).

(ii) For a general isotypic component C'p, it is not true that one can find w € W (Cp)
such that w™*Mpc,pyw is the Levi subgroup of a standard parabolic subgroup of G.

Proposition 2.2.3.3. The isotypic components Cp such that P(Cp) =" P for some

(necessarily unique) w € W(Cp) are those isotypic components which are associated
to fw=0c)|zy, for thew € W such that w(S(P)) C S.

Proof. Let w € W such that w(S(P))
w(\) = fOg is dominant and fOs — w(\)
P(Cp) ="P.

Conversely, let Cp as in the statement, A € X(T) such that Cp is the isotypic

C Sand A = fw'(g) € X(T). Since
= 0, the set is w(S(P)). This implies
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component associated to the character A Zun, Of Zyp and define A as in . Since
S(P(Cp)) = w(S(P)) by assumption, from Proposition [2.2.2.6(ii) we obtain

f - QG Z Na

aeS(P)

(for some n, € Qsg), which implies fw™'(06)|z,,, = Nlzy,,- Since Az, = N|z,,
(see the beginning of the proof of Lemma|2.2.2.4{(i)), we deduce that Cp is the isotypic

component associated to the character fw™'(0g)|z,,,,- O

Note that if Cp is associated to fw™'(0c)|z,, (With w(S(P)) C S), we have
W(Cp) = {w} by Lemma [2.2.3.1]
Example 2.2.3.4. Coming back to Example [2.2.2.9] the isotypic components as in
Proposition [2.2.3.3| are the isotypic components C(\o), C(Af) when n =2, P = B,

the isotypic components associated to the six A, when n =3, K = Q,, P = B, and
the isotypic components associated to A\g, Ay whenn = 3, K = Q,, Mp = GLs x GL;.

We set for a = e; —e;q € S(P):

Ap = Y e € X(T). (42)

€;—€j41 GR(]D)Jr

One easily checks that the A\, p for a € S(P) are fundamental weights for the reductive
group Mp and that (\, p, 3) < 0for 5 € S\S(P). For any A € X(T), we define Lp(\)
as in but with (Mp, MpN B~) instead of (G, B~). When S(P) = 0, we define L}
to be the trivial representation of TG (K/%) over F and, when S(P) # (), we define
similarly to the algebraic representation of M Gal(i</3y) over [F:

Y ® (@ Lr(ar) ). (43)
Gal(K/Q,) " aeS(P)

We also define

0p & > Aap €X(T) and 0" = g — 0p € X(T). (44)
a€eS(P)

Since for a € S(P) we have (7 a) = (fg,a) — (#p,a) = 1 —1 = 0, we see that
0T extends to an element of Homg,(Mp,G,,). Likewise we have for a € S(P) and
w € W such that w(S(P)) C S:

(W™(0""), a) = (07", w(a)) =0

so that w=1(#"F) also extends to Homg,(Mp, G,,). Note that, since (0p, 3) < 0 for
B e S\S(P), we get (07, 8) = (0g, B) — (0p, 3) > 1, thus 67 is a dominant weight.
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Example 2.2.3.5. If G = GLg and Mp = GLy x GL3 x GL1, one gets

Op : diag(zy,...,x6) > (21)(2324)
oF : diag(zy,...,26) > (z122)*(z32475).

Lemma 2.2.3.6. If w € W(P), we have w(0”) = 6F.

Proof. The character 0 extends to Mp and factors through Mp/M&. But conjuga-
tion by W (P) is trivial on Mp/M&r. O

Lemma 2.2.3.7. Let A\ € X(T) be a dominant weight and denote by L(\),, € L(\)
for w e X (T) the isotypic component of L(A)|r associated to pu (i.e. the weight space
of L(\) for p, see [Jan03), §1.2.11]). Then

& LW, S LW

/‘e/\_zaeS(P) Lo

is an Mp-subrepresentation of L(\)|a, which is isomorphic to Lp(\).

Proof. Since @,e\_y 7200 L(N), 18 the isotypic component of L(\)|z, =~ associ-

€S(P)
ated to Az, (as Az, = plz,, < A — p € Xaesp) Zav), it is endowed with an

action of Mp by the same proof as for Lemma [2.2.1.2, By [Jan03, 11.2.2(1)], [Jan03|
[.6.11(2)] and the transitivity of induction ([Jan03l 1.3.5(2)]), we have an injection of
algebraic representations of Mp over F:

H°(Np, L(\)) = Lp()) (45)

(recall Np is the unipotent radical of P) and by [Jan03, I11.2.11(1)] we have an iso-
morphism of algebraic representations of Mp over [F:

B IO, = H(Np L))

ue,\—zaes(l,) Zsoo
It is therefore enough to prove that is an isomorphism, or equivalently that
“e/\*ZaGS(P) Z>oa

Let L(A) = (ind3-\) 2 ®2 B, Lp()) aof (md%;;mB,A)/Z ®z B and L(\), C L()\) the

weight space associated to p, we have dimp L(X), = dimg L()),, and thus

dimg ( b L(A)M> = dimp ( b L()\)H>.

HEA=D o es(p) L2o0a HEA=D nes(p) D20

20



Likewise, we have dimp Lp(\) = dimg Lp()). Tt is therefore enough to have

dimg ( D L()\)H> — dimp Lp(A).

/‘@‘_ZQES(P) A

But now, we are over a field of characteristic 0, where it is well known that L(\) and
Lp(\) as defined above are simple modules with highest weight X\. Then the result
follows from [Jan03 Prop.I1.2.11]. O

The following lemma is a special case of Lemma

Lemma 2.2.3.8. Let A € X(T) be a dominant weight such that (\,a) = 0 for all
a € S(P) (equivalently X\ extends to an element in Homg,(Mp,Gy)). Then any
p € X(T) distinct from X with L(X), # 0 is such that X — pu contains at least one root
of S\S(P) in its support.

Proof. Since A € Homg,(Mp,G,,), we have Lp(\) = X\ by applied with Mp
instead of G. By Lemma [2.2.3.7, we deduce @,c\_y sy Z200 L(\), = X inside
ac =

L(\). This clearly implies the lemma. O

If R is any algebraic representation of Mp or of Mgal(K/ ®) and w € W such
that w(S(P)) C S, we define an algebraic representation of Mwp = wMpw™' or
of MS;I(K/Q”) = u}]\L(jal(K/Qp)uf1 (w acting diagonally via W s WGalK/Q)) py
(g € Mup or MR/,

w(R)(g) = R(w™ gw). (46)

If a € S(P), one then easily checks that w(Aap) = Aw()wp and w(Lp(Xap)) =
Luwp(Ay(a),»p), from which one gets

O\ 7
Theorem 2.2.3.9. Let C'p be an isotypic component off®|ZMP, associated to )\|ZMP
for X € X(T'). For any w € W(Cp), there is an isomorphism of algebraic represen-

MG/ )

tations of over F:

Cp 2wt (CP(CP),MP) & (wfl(ep(CP)) K- & wil(QP(CP)))a (48)

Gal(K/Qp)

where  Cpcpywp 15 the isotypic component of Z%(Cp)|zklwp associated to
(w(\) — f@P(CP))]ZMwP (thus an MS;I(K/Q”)—representation, recall P C P(Cp)) and
w(Cpcpywp) is defined in (46).
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Proof. Step 1: Assuming the result holds if w = Id, we prove it for any w. For
p € X(T') we have p|z,, = Az,, if and only if w(y)|z,, , = w(N)|z,, . therefore
the image w(Cp) of Cp for the diagonal action of w € W on L% is the isotypic com-

ponent of L”| Zan, ssociated to w(A)|z,, . Note that, as an algebraic MS ;I(K/ Q).

subrepresentation of Z®| e, w(Cp) is indeed isomorphic to g — Cp(w™ Lgw)
wp

if g € M ;I(K/ %) 5o the notation is consistent with . By Remark (ii) we
have w(X) = (w(\)) in (X(T)®zQ)V“P). Recall that w()\'), and hence (w()))', are
dominant since w € W(Cp) (see Proposition [2.2.2.]i)). Therefore Id € W (w(Cp))
and by the case w = Id for the parabolic subgroup “P and the isotypic compo-
nent w(Cp), we have w(Cp) = Cpy(cp)),wp® (QP(“’(CP) ® - @ o)) Moreover
S(P(w(Cp))), which is the support of f9G — (w(N))" by Proposition 2.2.2.6(ii) (ap-
plied to w = Id), is the same as S(Pg,), which is the support of fOs — w(\') by
loc.cit. (applied to w), i.e. we have P(w(Cp)) = P(Cp). We thus deduce w(Cp) =
Cpcp)wp ® (GP(CP) R ® HP(CP)> which gives by applying w1.

Step 2: From now on we assume w = Id (so in particular P C P(Cp)). Writing
7® J— J—
Fo(®@ (@ ))e( ® (@ o))

Gal(K/Qp) " aeS(P(Cp)) Gal(K/Qp) "~ aeS\S(P(Cp))

we prove that any (u1, pu2) € X(T') x X(T') such that

(i) 1 occurs in (®Gal(K/Qp) acs(Pcp) L(a ))) |7 (for the diagonal action of T');

(®
(® i}

(ii) p2 occurs in (®Gal(K/Qp acs\s(P(Cp)) L(Aa )))\T (idem);

(iii) :u1|ZMP + /‘L2|ZMP = )\|Z]\4p
must be such that us = f 3 co\s(p( cr)) Ao (note that py < f 3 eo\s(p(cp)) Aa and
1 < f Xaespcp)) M) Let N, ul, ,u2 as in . ) for P(Cp) and the respectlve

characters A, ul, p2, we have N = pi} + i from (iii) and Remark [2.2.2.3[(i), and thus

foo-N=f( X a)-mas( X M) - (49)

aeS(P(Cp)) aeS\S(P(Cp))

Assume fip is not f X e\ s(p(cp)) Ao Then writing ps = 35, iz jo Where (j,a) €
Gal(K/Q,) x S\S(P(Cp)) and pg o occurs in L(\,) and applying Lemma
with P = P(Cp), A = Ay and pt = pig o for a € S\S(P(Cp)) (the assumptions in
Lemma are satisfied since the \,, a € S are fundamental weights), we get that
[ X aes\s(P(Cp)) Aa— M2 has at least one root of S\S(P(Cp)) in its support. Averaging
over w € W(P(Cp)) as in (36) and using w(A,) = A, for w € W(P(Cp)) and
a € S\S(P(Cp)) (same proof as for Lemma [2.2.3.6]), we get applying Lemma

52



to P = P(Cp) that f > cs\s(p(cp)) Aa — My has still at least one root of S\S(P(Cp))
in its support (and that p5 < f 3 co\s(p(cp)) Aa)- Since 1y < f X oespicp)) Aa by the
proof of Step 3 below, this root doesn’t vanish in the sum (49). But by Proposition
2.2.2.6ii), S(P(Cp)) is the support of (49)), which is a contradiction. Therefore, we

must have iy = f > ,es\s(p(cp)) Ao and thus from (iii) that

Cr = Cpopp © @ ( Aa)? (50)
Gal(K/Qp) \ a€S\S(P(Cp))
where Cp ¢, p is the isotypic component of (®Gal(K/Qp) (®aes(p(cp))f(>\a)))|ZMP
associated to ()\ — [ X aes\s(P(Cp)) )\a) |20, (= (A= 12)| 20, = 11|20, )-
Step 3: We prove that
f( Z >\a>—,u1 € Z Lo
a€S(P(Cp)) aeS(P(Cp))

(i.e. noroot of S\S(P(Cp)) is in the support). Since A, is dominant, we have A\, > \/ ,
where )\, is defined as in for P = P(Cp) and the character \,. This implies

(with obvious notation)
/
O x)-m=f( X N)-m= (f( > /\a)—ul) >0, (51)
aeS(P(Cp)) aeS(P(Cp)) aeS(P(Cp))

where the last inequality follows from Lemma [2.2.2.2| (applied with P = P(Cp)). If
f(zaES(P(CP)) )\a)—ul has roots of S\S(P(Cp)) in its support, then by Lemma [2.2.2.2

/
again so is the case of (f (Eaes(p(cp)) )\a) — u1> , and thus of f(ZaeS(p(Cp)) )\a> — 1y
by . As in Step 2, this is again a contradiction by and the definition of
P(Cp).

Step 4: We prove the statement for w = Id. By Lemma [2.2.3.7| applied with P =
P(Cp) and the various L(\,) for a € S(P(Cp)), we deduce from Step 3 that p is a

weight of ®Gal(K/Qp)(®aES(P(CP)) LP(C;»)(M)) inside ®Gal(K/Qp)(®aES(P(CP)) L(Aa))
(see just after (42)). Let o € S(P(Cp)), for each 5 € S(P(Cp)) we have (Ao, 8) =
(Aa,p(cp): B) (a straightforward check from , thus Ao — Aa,p(cp) extends to
Homg, (Mp(cp); Gm) which implies Lp(cp)(Aa) = Lpcp)(Aa.pcp)) @ (Aa — Aa,p(cp))-
Thus 25 M fZOéES(P(CP))()\Oé - )\a,P(CP)) is a Welght of

T +®
X ( & LP(CP)(MPwp)))=Lp<cp)7

Gal(K/Qp) "~ aeS(P(Cp))

or in other terms:

Chermp ZCrcmr © @ ( ) (Aa—Aa,me))),
Gal(K/Qy) \ aeS(P(Cp))
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where  Cp(cpyp is the isotypic component of f%(cpﬂ Zu, associated to
(/\ — [ Xaes\spcp)) Ao — f Laespcp))(Pa — Aa,P(C;»))) | Zur,,- But by 1

Z )\a + Z ()\a - )\OZ,P(CP)> = HG — Z )\a,P(Cp) — QP(CP)’
aeS\S(P(Cp)) a€S(P(Cp)) 0eS(P(Cp))

so together with we are done. O]

Remark 2.2.3.10. The character w=!(67(r)) of Mp doesn’t depend on w € W (Cp),

as follows from Lemma [2.2.2.10] and Lemma [2.2.3.6| (the latter applied with P there
being P(Cp)). In particular, by we see that the representation w1 (CP(CP%wP)

of MS™ /%) 5 also independent of w € W (Chp).
When Cp is as in Proposition [2.2.3.3] its underlying MSal(K/ Q )—representation
looks like L¥ but for the reductive group Mp instead of G.

Corollary 2.2.3.11. Let Cp be an isotypic component 0ff®|ZMP such that P(Cp) =
P for some (unique) w € W such that w(S(P)) C S. Then there is an isomorphism

CP gf%® (wfl(ewp) ® . ®w71(8“)P>)

Gal(K/Qp)

M}Cjal(K/Qp)

of algebraic representations of over .

Proof. If P(Cp) = "P, then fg(cpﬂzwa = Z§P|Z]Wuyp has only one isotypic compo-
nent, corresponding to fOuwp Zat p- So the corollary follows from Theorem [2.2.3.9| to-

gether with . Note that, by Proposition [2.2.3.3, Cp corresponds to A = fw™"(0¢),
which is consistent with Theorem [2.2.3.9] since

(W) = £07)| 2, = (w(fw™(0c)) = 10" ) 2s, = FOc = 0")| 20,

= f@wP|ZMwP.
[

Remark 2.2.3.12. In this remark, we use that we are working with G = GL,,. We
write Mp(cp) = diag(Ma, ..., My) for some d > 0 with M; = GL,,, and correspond-
ingly T' = diag(T3, ..., Ty), where T; is the diagonal torus of GL,,, so that we have
X(T) = oL, X(T;) and S(P(Cp)) = 1L, S(M;), where X (T;) = Home, (T}, Gy,) and
S(M;) = S(P(Cp)) N X(T;) is the set of simple roots of M; (for the Borel subgroup
of upper-triangular matrices). Note that S(M;) = 0 if M; =2 GL,. Fori € {1,...,d}
such that n; > 1, one easily checks that A\, p(c,) € X(T;) € X(T) if o € S(M;) and
that the Ao pcp) € X(T;) for a € S(M;) are fundamental weights for the reductive
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group M;. For i € {1,...,d} and \; € X(T;), we define Ly, ()\;) as in but for
the reductive group M; instead of G. When n; = 1, we define f? to be the trivial
representation of M, Cal(K/Qp) o >~ GGal(K/Q) and when n; > 1, we define as in the

Gal K/Qp)

algebraic representation of M, over IF (seeing Ao, p(cp) in X(T5)):

L' @ ( Q) L (Aap cp>)> (52)
Gal(K/Qp) ~aeS(M;)
We then clearly have L} PCp) = ¢ 1ZZ®. Likewise, we have 7(°r) = ¢ (F(Cr)),
where (#7(P); € X(T;) extends to Homg,(M;, G,,) and where we denote by j; the
image in X (7;) of a character u € X (7).

For any w € W(Cp), we define (“P); as the standard parabolic subgroup of M,
which is the image of “ P under
YP — P(Cp) — MP(CP) — Mz

(in particular its Levi Mwpy, is the image of Mwp under Mwp — Mpc,p)y — M;).
Applying w to , it is not difficult to deduce from Theorem [2.2.3.9/an isomorphism

of algebraic representatlons of M.p CallK/Qp) o 4 M (%}L()f{/ %) over F:
w(Cr) = @ (Cus® (7P 0 (67),)), (53)
= Gal(K/Qy)
where Cy,; is the isotypic component of L] Drtp associated to (w(A) —
fOrer),| ZM( . (thus an M (iil;(K/ Q) -representation, note that Cl,i is trivial if n; =
1). If w' is another element in W(Cp), writing w’' = wpe,w with wpe,) €

W(P(Cp)) (Lemma [2.2.2.10), we have M.p = wp(cp)]\/[wpw;(lcp), and thus w'(C))
wp(cp)(w(Cp)) and Cpop)w'p = WPEp) (C’p(cpwp) (as the twist by 7P @ ...
9F(CP) doesn’t involve the choice of w). Since U)P(CP)MZ'UJ;(ICP) = M; for all i, we

X

get Miwp), = wp(CP)M(wp).w;(lc , (inside M;) and deduce for i € {1,...,d} an iso-
Gal(K/Qp)
P)i

Cur i = Wp(p)(Cuyi). (54)
We will avoid applying w™* to C,; since w™*Mp(cpyw is not in general the Levi

subgroup of a standard parabolic subgroup of G' (see Remark [2.2.3.2(ii)), although it
indeed contains Mp.

morphism of algebraic representations of M

(46)):

over ' (with notation similar to

2.2.4 From one isotypic component to another

We let P be a standard parabolic subgroup of G. We show that, if C'p is an isotypic
component of L®| Ztp then one can associate to Cp in a natural way another isotypic
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component w - Cp of f®|ZMP for any w € W such that w(S(P(C’p))) C S (see
Proposition [2.2.4.2). Note that, on the contrary to w(Cp), w - Cp is an isotypic
component of f| Zip for the same standard parabolic subgroup P as Cp.

Lemma 2.2.4.1. Let y € X(T) be a dominant weight. Then p occurs in L |y (for
the diagonal embedding of T analogous to ) if and only if p < fOg in X(T).

Proof. Since this statement only concerns weights, we can work in characteristic 0, i.e.
with [? & Qcal(K/0,) (®a€5 L()\a)), where L(\,) = (indg_)\a)/z ®z E (see )
Arguing as in the proof of [BH15, Lemma 2.2.3], it is equivalent to prove that p is a
weight of the algebraic representation L(ffg) of G. The result then follows from the
inequalities w(p) < p < flg for all w € W (the left ones hold since p is dominant
and the right ones since ffg is the highest weight) combined with [Hum?78, Prop.
21.3]. O

Proposition 2.2.4.2. Let \p € X(Zy,) be a character of Zy,, which occurs in
f®] Znip (for the diagonal embedding, as usual) with associated isotypic component Cp

0ff®|ZMP, and let w € W such that w(S’(P(C’p))) cS.

(i) For we, € W(Cp) the character of Zyy,:
A = (fuch(6e) + fwwe,) ™ (06)) |2, (55)
doesn’t depend on wc,, .

(ii) The character corresponds to an isotypic component w - Cp 0ff®\ZMP, i.e.

occurs in L%z, .
Mp

(iii) We have P(w - Cp) ="P(Cp).

Proof. (i) For any a € S(P(Cp)) we have (since w(a) is still in S)
(w™(0g) — bc, @) = (b, w(@)) = (fg,a) =1—-1=0 (56)
which implies so(w™1(0g) — 0c) = w(0g) — ¢, and thus for all w’ € W (P(Cp)):
w'(w™(0) — 0g) = w™(0e) — bg- (57)

Let wi,, € W(Cp), by Lemma [2.2.2.10| we have w(, we, € W(P(Cp)) and thus by
(7):

(we, wep ) (W™ (0e) — b)) = w™ ' (0a) — bg.

Applying w’Cgl we get in particular

(wep (W™ (6c) = 00))| 201, = (Wi, (W™ (Be) — 60)) 24,
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from which (i) follows.
(i) Let A € X(T') such that Az, = Ap. Applying wwe, to (55)), it is sufficient
to prove that fOg — w(fé)g — wcp()\)) occurs in L |7 (since L |7 is acted on by

the diagonal action of W — WGalE/Q))  Recall from Lemma [2.2.2.4(ii) (and the
definition of P(Cp)) that

fbe—we, (V) € Y. Zsec. (58)
a€S(P(Cp))

For f = w(a) € w(S(P(Cp))) and any w' € W, we have
(fc —w(fbc —w'(X),B8) = (ww'(A),B)+ f(0c —w(bc),B) (59)
= (ww'(\), B) + flw™(0g) — b, a)
(wuw'(X), B),

where the last equality follows from (56)). This can be rewritten as
s5(f0c —w(fbe —w'(N)) = foa—w(foc—w'(N) = (ww'(\),B)3  (60)
= fle —w(fbg — sqw'(N)).
Iterating (60), we see that for any wp(c,) € W(P(Cp)), we have for w' € W that
wwpcpw ™ (foa = w(fle —w'(\) = fio — w(fbo — wpcw' (V). (61)

Choose wp(c,y € W(P(Cp)) such that wpic,)(we,(A)) is dominant for the root
subsystem generated by S(P(Cp)), equivalently

(wwpcpywep(A), B) 20V B € w(S(P(Cp))). (62)

As X occurs in L7 |7, we get that wpcp) (Wep () € wep(A) + Xaesp(cp)) Lo occurs
in L%|7 (L7 is stable under W), and thus wp(c,) (we, (M) < ffg. Since on the other

hand by :
f@G — U}p(cp)(wcp()\)) = (f@G — wcp()\)) + Z o € Z Lo,

aeS(P(Cp)) aeS(P(Cp))
we see that we must have
f@G — WpCp)WCp (/\) - Z ZZOOA (63)
a€S(P(Cp))

Since w(S(P(Cp))) € S, we deduce (w(fbs — wpepywe,(A)),B) < 0 for B €
S\w(S(P(Cp))). In particular we have for such §:

<f€G - w(feG — WpCcp)WCp ()‘))76> = f - <w(f0G - wP(CP)wCP(/\))v ﬂ) (64)
> f.
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Combining for w' = wpepwe, with and (64), we obtain that ffg —
w(fOc — wpepywe,(N)) is a dominant weight. Applying w to , we also get
since w(S(P(Cp))) C S:

fOo —w(flc — wpepwe,(N)) < flg.

Lemma then implies that f0q — w(flc — wpcpywe, () occurs in L%|r. By
applied with w" = w¢,,, we finally deduce that f0q—w(ffc—we,(N)) also occurs
in Z |T-

(iii) By definition S(P(w - Cp)) C S is the union of w'(S(P)) and of the support of

fba —w' (A = fwg(8a) + f(wwo,) ™ (0c)) (65)

for any w’ € W such that w'(S(P)) C S and w’()\—fwal:(Gg)+f(wwcp)_1(eg)) is the
restriction to Zy,, of a dominant weight of X (7')®zQ. Consider the case v’ = wwe,,
since we,, (S(P)) € S(P(Cp)) and w(S(P(Cp))) C S, we get w'(S(P)) € S. Let us
check that

w (X = fwg, (0c) + f(wwe,) ™ (06)) = wwe, (V) — fw(ba) + f0o

is the restriction to Zy,, of a dominant weight of X (T)®zQ. Let X as in (36), since
Mzu, = Nlzy,, we have w'(X)|z,, = w'(X)|z,, , and it is enough to prove that
wwep (N) — fw(0g) + fOq is dominant. As in (59)) we have if a € w(S(P(Cp))):

(wwe,(N) — fw(lc) + flg, ) = (wwe,(N),a) + f(0c —w(0g), o)
= (we,(X),w™(a)) >0

since we,, (') is dominant in X (7') ®z Q by Proposition [2.2.2.6(i), and as in (64]) we
have if a € S\w(S(P(Cp))):

(wwe, (N) = fw(ba) + fOc, ) = [ — (w(flg —we, (X)), a) > f

since w(f@c; —we, ()\’)) € Ygesp(cp)) Qeow(B) from Proposition [2.2.2.6((ii). Now all
that remains is to compute for w' = wwe,, which gives w(flg — we,(N)), the
support of which is w(support(ffs — we,(A))). Therefore we obtain

S(P(w-Cp)) = w(wcp<S<P>> U support (g — wop<A>)) = w(S(P(Cp)))
which finishes the proof. O

Remark 2.2.4.3. If Cp is one of the isotypic components of Proposition [2.2.3.3], say
associated to fw(_);(@G)‘ZMP for some we, € W such that we, (S(P)) € S, and if
w € W is such that w(S(P(Cp))) C S, i.e. wwe,(S(P)) C S, we see from that
w - Cp is the isotypic component associated to f(wwe,) ™' (0c)|z,,, -
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Example 2.2.4.4. Let us consider Example [2.2.2.9((ii) (Example 2.2.2.9(i) only pro-
vides components C'p which are either as in Remark [2.2.4.3|or such that P(Cp) = G).

If P =B and Cp is associated to A\jlq = 6g, then w - Cp for w € S5 gives the iso-
typic component associated to A, (and there is no w - Cp # Cp if Cp corresponds
to det since P(Cp) is the whole G). If Mp = GLy x GL;, consider Cp associated
to Ao and w € &3 the unique permutation e; — ey, es — e3, ez — e (so that
w(S(P(Cp))) = w(e; —ez) € S). Then w - Cp is the isotypic component associated
to Ay (here again, there is no w - Cp # Cp for Cp corresponding to A;).

2.3 Good conjugates of p

Following and generalizing the mod p variant of [BHI5, §3.2], we define and study
good conjugates of a continuous p : Gal(Q,/K) — G(F) under a mild assumption
on p (see Definition and still assuming K unramified. Though some of the
results might hold for more general split reductive groups, we use here in the proofs
that we work with GL,,.

2.3.1 Some preliminaries

We start with a few group-theoretic preliminaries.

We fix a standard parabolic subgroup P of G. Recall that a subset C' C R* is
closed if « € C, 5 € C with a+ € R* implies a+ 8 € C. For instance R(P)" C R*
is closed.

Definition 2.3.1.1. A subset X C RT is a closed subset relative to P if it satisfies
the following three conditions:

(i) it contains R(P)*;
(ii) X\R(P)* is a closed subset of R™;
(iii) for any w € W(P), w(X\R(P)") = X\R(P)*.
Note that a closed subset relative to B is the same thing as a closed subset and
that R™ is the only closed subset relative to G.

Lemma 2.3.1.2. Let X C RT be a closed subset relative to P. Then X is a closed
subset of R™.

Proof. Since we already know that both R(P)™ and X\ R(P)* are closed, it remains
to show that if @« € R(P)"T and 8 € X\R(P)" are such that o + § € R", then
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a+ € X. We work with GL,,, and it is then easy to check that a + 8 = s,(3).
Since s, € W(P), we have o + € X\R(P)" C X by Definition [2.3.1.1(ii). O

Remark 2.3.1.3. Note that Lemma doesn’t hold for an arbitrary split con-
nected reductive algebraic group (for instance it doesn’t work for GSp,). An alterna-
tive definition would be to consider closed subsets Y of R™\ R(P)" such that YUR(P)
is also closed.

If X C Rt is any closed subset, we let Nx C N be the Zariski closed algebraic
subgroup generated by the root subgroups N, for a € X (see [Jan03| §11.1.7]). Thanks
to Lemma [2.3.1.2], we can thus consider Nx for any X C R closed relative to P.

Lemma 2.3.1.4.

(i) Let X be a closed subset of RT relative to P. Then MpNx is a Zariski closed
algebraic subgroup of P containing Mp.

(ii) Let P C P be a Zariski closed algebraic subgroup containing Mp. Then there
exists a unique closed subset X relative to P such that P = MpNx.

Proof. (i) Since MpNx = MpNx\r(py+, it is enough to prove that Mp normalizes
Nx\rpy+- Let a € R(P)*, f € X\R(P)" and let n, € Ny, ng € Ng. Then

nangng' = (I1 niatss)ns, (66)

1,7>0

where the product is over all integers 7,7 > 0 such that ia + j8 € RT (see [Jan03,
§11.1.2]). Since X C R* is closed, all these ia+j are in X, and since § ¢ R(P)", they
are all in X\ R(P)". Therefore nongn,' € Nx\gpy+. Let w € W(P), € X\R(P)"
and ng € Ng. Then w(f) € X\R(P)" implies wngw™" € Nx\gp)+. The Bruhat
decomposition for the reductive group Mp then shows that Mp normalizes N X\R(P)*-
(ii) Let P C P be a closed algebraic subgroup containing Mp. Then P = Mp(PNB) =

Mp(PﬂN) (since T C Mp C P). By [BHIH, Lemma 3.4.1] applied to PN B C B, we
deduce PN N = N for a (unique) closed subset X C R*. Since Mp NN C PNN,
the set X contains R(P)*. Since P N Np = Nx\r(py+, the set X\R(P)* is closed,

and moreover P = MpN x\r(p)+- oSince Mp normalizes Np and ]5, it normalizes
PNNp=N x\r(P)+, from which Definition [2.3.1.1(iii) easily follows. H

Remark 2.3.1.5. (i) The sets R(P)" and R" are closed with respect to P (they
correspond respectively to P = Mp and P = P in Lemma . In particular, if
X is closed with respect to P, from w(RT\R(P)") = RT\R(P ) and w(X\R(P)") =
X\R(P)", we also get w(R+\X) = RT\X for all w € W(P).

(ii) If X C RT is a closed subset relative to P, it follows from the proof of Lemma
2.3.1.4{i) that Mp normalizes Nx\g(p)+.
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Lemma 2.3.1.6. Let X C RT be a closed subset relative to P. Then there are roots
ai, ...,y € RP\X such that we have a partition

Rt = XTI {w(ay),w e W(P)} - - T {w(a,),w e W(P)}

and such that, for all i, «; is not in the smallest closed subset relative to P containing
X and the o for 1 <j <i—1.

Proof. Since w(RT\X) = R"\X for all w € W(P) (Remark 2.3.1.5(i)), we have
a partition Rt = X I {w(o),w € W(P)} I --- I {w(ay,),w € W(P)} for some
ai, ...,y € RT\X. Denote by h(-) the height of a positive root (see e.g. [BHIS,
Rem.2.5.3]). Replacing each «; by a suitable w(a;) for w € W(P), we can assume
h(c;) maximal among the h(w(«;)), w € W(P). Permuting the «; if necessary, we
can assume h(ap) > h(ag) > -+ > h(a,). It is enough to prove that each set
X I {w(ay),we W(P)}I--- I {w(a;),w € W(P)} for 1 <i < m is closed relative
to P, or equivalently that X; = (X\R(P)") I {w(ay),w € W(P)}I-- - Il {w(a;),w €
W (P)} satisfies conditions (ii) and (iii) in Definition [2.3.1.1]for 1 <4 < m. Since (iii)
is clear, let us prove (ii), i.e. that each of the X; is closed in R*.

This is obvious if ¢ = m since RT\R(P)™ is closed, so we can assume i < m. If X is
not closed for some i < m, then its complementary in R contains an element 2 which
is the sum of at least two roots of X;, at least one being in {w'(a;),w’ € W(P),1 <
J < i} (since R"\R(P)™ is closed). Such an element z is in R(P)" I {w(«a;),w €
W(P),i+1 < j < m} and, since w'(X;) = X; for w' € W(P), it also satisfies
w'(z) € RT for any w’ € W(P). In particular z can’t be in R(P)", and is thus of the
form = w(qy) for some k € {i+1,...,m} and some w € W(P). Thus w(ay) is the
sum of at least two roots of X;, one at least being in {w'(a;),w € W(P),1 < j <i}.
Applying a convenient w’ € W(P) and using again w'(X;) = X;, we can modify w if
necessary and assume that «; for some j € {1,...,4} appears in the sum of w(ay).
This implies in particular h(w(ay)) > h(a;) for some j < i (see the argument in the
proof of [BHI5, Lemma 3.2.1]), which is impossible since by assumption h(w(ag)) <
h(ax) < h(a;). Hence X; is closed for all 1. O

Lemma 2.3.1.7. Let X C R be a closed subset relative to P, pY MpNx and let
w € W such that w(S(P)) C S. Then the following assertions are equivalent:

(i) wPw™" is contained in “P;
(i) w(X\R(P)*) C R*,
Proof. We have

wPw™ = (wMpw ™) (wNx\gpy+w™ ") = (WMpw™ ") Nyx\r(p)+)-

As “P = (wMpw )N, we deduce wPw™" C “P if and only if w(X\R(P)*) C
R*. O
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2.3.2 Good conjugates of a generic p

We define good conjugates of a Gal(Q,/K)-representation p under a mild genericity
assumption and show how two good conjugates are related (Theorem [2.3.2.5)). The
intuitive idea is that conjugating a good conjugate of p can only increase the image

in G(F).
We fix a continuous homomorphism
7 Gal(Q,/K) — Py(F) C G(F), (67)
where P; C G is a standard parabolic subgroup. We consider

Pl Gal(Qy/K) "+ Py(F) — Mg, (F),

and assume that the image of p/7*° is not contained in the F-points of a proper

(not necessarily standard) parabolic subgroup of M p,. This implies in particular
that P is uniquely determined by the homomorphism p. Finally we let p* be the
homomorphism Gal(Q,/K) — G(F) obtained by composing p'7~* with the inclusion
Mp(F) € G(F) (so p* is the usual semisimplification of p). We let X5 be the smallest
closed subset of R* relative to P such that Py(F) < M P (F)Nx_(F) contains all the
p(9), g € Gal(Q,/K). By Lemma , P is the smallest closed algebraic subgroup
of P; containing Mp, such that p takes values in P5(F), i.e. p: Gal(Q,/K) — P5(F) —
P5(F) = G(F). Note that Xz = R(P)* and P r, - = Mp,,

Lemma 2.3.2.1. Assume that the irreducible constituents of p** of dimension 1 (i.e.
the characters of Gal(Q,/K) occurring in p*) are all distinct. Let « € R\ X5 and
na € No(F)\{1}. Then X,, 5,1 is the smallest closed subset relative to P5 containing
X5 and o.

Proof. The proof of this lemma is quite technical, but is no more than simple com-
putations in GL,. We denote by X5, C R* the smallest closed subset relative to Ps

containing X5 and o and by Yp C X5 the subset of roots which are not the sum of
at least two roots of X5,. For g € Gal(Q,/K) we can write

pg)=0"7"@) II nsly), (68)
BEXZ\R(P5)*

where p'7~%(g) € Mp,(F) and ng(g) € N(F). Using , we see that

no I o))t € TIN ®), (69)

BEXF\R(P5)*

where v runs among the roots in RT of the form Zsoa 4+ Z-of1 + -+ + Zofs for
s > 1 and 8; € X5\R(P;)". This clearly implies X, 5 -1+ C X;,. To prove the

62



reverse inclusion, it is enough to prove j(v C X, -t and w(a) € X, - -1 for some
w € W(P;) (as then a € X, - 1 by Remark 2.3.1.5((1)).
An easy explicit matrix computation in GL,, (that we leave to the reader) gives that

Nap o™ S(g)n; ' is of the form in GL, (F):

nap 7 (gngt €97(g) 1 myg(g) (70)
Be{w(a),weW (Pp)}

with mg(g) € N3(F) (note that, as w € W(P;), w(e) is of the form a+nja+- - -+n0y
for some t > 0, a; € S(P5), n; € Z). It then follows from and that, for
g e )A(/p\()? N R(P;)*), the > entry ng(g) in n (68) is not affected by the conjugation by
nge. In particular, we have X C X, st
We now prove that w(a) € X, 5 - for some w € W(P;). We first claim that
none of the roots 7 in are in {w(a),w € W(P5)}. Indeed, assume w(a) =
ma + my Sy + - - -+ mgfs for some s >0, m >0, §; € Xz\R(P5)", m; > 0. If m=0,
then we get w(a) = m151+ +msfs € Xp\R( 5) T since X5\ R(P5)" is closed in R,
which implies a € X7\R(P5)* by Definition (111) a contradiction. If m > 0,
then we get (m —1)a+my 51+ - +msfs = niay + -+ mnpay (writing w(a) as in the
above form), which implies in particular all 5; € R(P5)*, a contradiction. We deduce
from this that for all g € Gal(Q,/K):

nap(g)na’ € nap 7 (g)ng' [[ N,(F)
Y

with v in R*\( (P5) " I {w(a),w € W(Pﬁ)}).

We can see p'7~%(g) as a block matrix diag(p, (9), - . ., pa(9)), where p; : Gal(Q,/K) —
GL,, (F) is irreducible. Assume that {w(«),w € W(P5)} 2 {a}. Then using that, for
fixed i, the p;(g) for g € Gal(Q,/K) do not take all values in the F-points of a strict
(not necessarily standard) parabolic subgroup of GL,,,, one can check that at least one

mg(g) in is nontrivial for some g € Gal(Q,/K). If {w(w),w € W(P5)} = {a},
then there are integers 1 < ¢ < j < d such that n; = n; = 1 and the non-diagonal
entry in mq(g) is (p;(9) — p,;(9))%a, where z, € F* is the non-diagonal entry in ng.
By assumption, there is at least one g € Gal(Q,/K) such that p;(g) # p;(g), which
implies m,(g) # 1 for that g.
Hence we finally deduce that

nap(g)n,' € p'v” SS(Q)( 11 ) [IN,(F
Be{w(a),weW (P, )}
with v in R*\( (P5) T I{w(a),w € W(Pﬁ)}) and at least one mg(g) being nontrivial
for some g € Gal(Q,/K) and some 8 € {w(a), w € W(P;)}. This implies that this 3
isin X, - -1 and finishes the proof. O

Proposition 2.3.2.2. Let p : Gal(Q,/K) — P5(F) and X5 as below , and assume
that the irreducible constituents of p* of dimension 1 are all distinct. Then there is
ho € P5(F) (non unique in general) such that Xpopnzt © Xign-r for all h € P5(IF).
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Proof. The proof is modelled on that of [BHI5, Prop.3.2.3]. Since Mp, normalizes
Nx\r(py)+ (Remark 2.3.1.5(ii)), it is enough to prove the same statement with ho, h €
Np (F). Using that p"7*(g)""hp'7~(g) € Nx \r(py)+(F) for b € Nx \rp)+(F) C
Np (F) by Remark (ii) again, and that Ny_\g(r,)+(F) is a group, we deduce
Xppn-1 € Xpforall h e N X\R( pﬁ)+(F). Replacing 7 by a suitable conjugate hophg '
with hg € NXF\R(pFﬁ(F), we can assume X1 = X for all h € Nx \r(p)+ (F). Tt is
enough to prove X5 C Xjz,-1 forall h € Np (F). Choosing roots ay, ..., oy, € R\ X5
as in Lemma m (for P = P; and X = X3), we can write any h € Np (F) as
h = hmhm,1 tee hlhﬁ, where hz € Hﬁe{w(oci),wEW(P;)} NB(F) and hﬁ S NX;\R(P;)“’(IF)'
We have X hpphst = X5 and a straightforward induction applying successively Lemma

2.3.2.1] to Xhﬁﬁh:l and a = ag, Xhlh;ﬁ(hlhﬁ)*l and « = ag, etc. (which we can do
P
thanks to Lemma|2.3.1.6)) gives that X};,-1 is the smallest closed subset of R relative

to P containing X5 and the «;, 7 = 1,...,m. In particular X; C X5, for all
h € NPF(F>‘ ]

Definition 2.3.2.3. Let p : Gal(Q,/K) — G(F) be a continuous homomorphism
such that the irreducible constituents of p* of dimension 1 are all distinct. A good
conjugate of p is a conjugate p’ of p in G(IF) which satisfies the two conditions:

(i) it is of the form p' : Gal(Q,/K) — Py(F) C G(F) for a standard parabolic

subgroup Py of G such that the image of e Gal(@p/K ) 2 Py(F) —

M Py (F) is not contained in the F-points of a proper parabolic subgroup of
MP—/;
P

(11) Xﬁl g Xhﬁ/h_l fOl" all h < Pﬁ/ (F)

From Proposition [2.3.2.2] we easily deduce that good conjugates always exist. If
p is irreducible, then any conjugate of p in G(F) is a good conjugate.
For p: Gal(Q,/K) — P5(F) C P4(F) as in , set

W = {weW,w(S(F) C S and w(X;\R(F,)*) € R} (71)
= {we W, w(S(P)) CSand wPw* C P},
where the second equality follows from Lemma [2.3.1.7] Using the definition of X5 we
see that, for any w € W5, we have X,5,-1 = w(X5), where
wpw™' : Gal(Q,/K) — wPs(F)w™ = Pyzu-1(F) C (“P5)(F).

(and note that the set X,;,-1 is relative to “P5, while the set X5 is relative to P;).
Lemma 2.3.2.4. Let p : Gal(Q,/K) — G(F) as in Definition and 7' :
Gal(@p/K) — ﬁ’ﬁ/(lﬁ‘) C Py(F) a good conjugate of p (where f)ﬁ/ = MPZ’NXE’ =
Mp, NXE,\R(pE,ﬁ). Then any hp'h~! for h € ]55/ (F) and any wp'w™" forw e Wy is a

good conjugate of p. Moreover we have Xyz,-1 = X and Xyz,,-1 = (X ).
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Proof. Again, the proof is formally the same as that of [BH15, Lemma 3.2.5]. The
statement is obvious for h € ]5? (F) (as hNx\r(py+h™' = Nx\g(p)+ for any X closed
subset relative P and any h € Nx\gp)+) and the very last equality follows from the
discussion just above. Following the argument in the proof of Proposition [2.3.2.2] it
is enough to check

Xh(wﬁ w-1)p=1 = Xwﬁ/wfl

for all h € NXwE’w—l\R(sz’w—1)+ (F) = Nw(Xﬁ/\R(PE/)'*‘)(F)' We have
h(wpw H)h™ = ww hw)p (wh™ w)w ™.

Since wthw € NX;/\R(P;/V (IF), we have X (1405 (w-1n-1w) € Xz and since p’ is a
good conjugate, we have Xz C X (i-1hu)5 (w-1h-1w), Dence Xy = X(uy-1pu)s (w-1h-1w)-
Applying the discussion just before this lemma to (w™'hw)p' (w=*h~'w) and then to
ﬁ/, we thus get Xh(wﬁ/w—l)h—l = w(X(w—lhw)ﬁ’(w—lh—lw)> = w(Xp/) = Xwﬁ/w—l. ]

We now state and prove the main result of this section (see [BHI5, Prop.3.2.6]).

Theorem 2.3.2.5. Let p: Gal(Q,/K) — G(F) be a continuous homomorphism such
that the irreducible constituents of p* of dimension 1 are all distinct. Let p' and p”
be two good conjugates of p. Then there exist h € ]%(]F) and w € Wy such that
P’ =whp'h " Yw™t. In particular we have Xz = w(Xy).

Proof. By assumption there is x € G(F) such that p"(g) = zp/(g)z~" for all g €
Gal(Q,/K). We can write = h"wh’ with b/ € Py(F), i € Py(F) and w € W such
that w(R(Py)*) C R".

Step 1: We prove that w(S(Py)) = S(Py). We have wh'p'(9)' 'w™' € Py (F)
for all g € Gal(Q,/K), which implies WE ()~ e (w™'Pyw N Py)(F) C Py(F)
for all g € Gal(Q,/K). In particular, using for instance [DM91, Prop.2.1(iii)], the
image of W'p'h' ™" in M Py (F) is contained in the F-points of the parabolic subgroup
w Pyprw N Mpﬁ/ of Mpﬁ,. But since (h’p’h’_l)Pﬁ"ss is conjugate to p/f7 (recall
h' € Py(FF)), the image of h'p'}h/ “lin M P, (F) is not contained in the F-points of a
proper parabolic subgroup of M Py- Thus we must have w™ PyrwN M P, = M Py which
implies Mp, C w‘lMpﬁ,,w. The same argument starting with w='h""'5"(g)h"w €
P (F) yields Mpﬁ,, C prﬁ,w_l, i.e. we have Mpﬁ, = w_lMpﬁ,,w. Since by assumption
w(R(Py)") C R*, this forces w(S(Py)) = S(Py) (and thus w(R(Py)") = R(Py)").

p p p p p

Step 2: We choose roots af,...,al, € R"\ X, as in Lemma [2.3.1.6| (for P = Py and
X = Xﬁ/) and we write h/ = h’;n’h;n’fl v hllh%, Where h; € Hﬁe{w’(a,’i),w'EW(pr)}NB<F>

and h7, € 155/ (F). By Lemma [2.3.2.4) we can replace p’ by h%,ﬁ’ h’g/l and thus assume
’ﬁ, = 1. By Lemma [2.3.2.1| and an induction as in the proof of Proposition [2.3.2.2]
Xpg-1 18 the smallest closed subset relative to Py containing X and those «; such
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that h; # 1. Since w(K'p'R' " )w™! takes values in Py (F) and w(R(Py)) = R(Py)
(by Step 1), we must also have w(Xj, 1 \R(Py)*) € R*\R(P;)". This implies
ww'(af) € RT if w' € W(Py) and h} # 1, and w(Xz\R(Py)*) C R". In particular
w € W5 together with Step 1.

Step 3: We prove that Xz = w(X5). Setting

hi € whiw™ € 11 Ng(F) C Py (F)

P
Be{ww! (o), w' €W (Py)}
(we proved ww'(a}) € RY in Step 2), we have
7= W+ )l )b, (72)

where A"l -+ hy € Py/(F) and where p” and wp'w™! are good conjugates of p (the

latter by Lemma [2.3.2.4)). Applying Definition [2.3.2.3to both p” and wp'w™!, we get
X = Xy = w(Xy) (and thus w ' Pyw = Py).

Step 4 : We complete the proof. We choose again roots of, ..., a0, € RT\X 7,1

as in Lemma [2.3.1.6/for P = P,;,,-1 = P (this latter equality from Remark[2.2.1.4)

and X = X,7,-1 = Xz and we write
h”(hm/ et hl) == h/T/n//h'Z’L/lfl ctt h/llh;/(ﬁ/ﬂ
where B’ € Taeur (o) wrew(py) No(F) and by, € Py (F) = Py(F). From

and Lemma [2.3.2.1] we see that we must have b = 1 for all i € {1,...,m”} otherwise
X5 would be strictly bigger that X,,z,,-1. Thus we deduce

e e Ve Y
12 1 1 Iz
Setting h = w‘lh’)’%uw € w Py (F)w = Py(F), this finishes the proof. O

2.4 The definition of compatibility

Given a sufficiently generic n-dimensional representation of Gal(Q,/K) over F (where
K = Q, is still unramified) and a good conjugate p of this representation as in
Definition we define what it means for a smooth representation of G(K) over
F to be compatible with Py (Definition [2.4.1.5, see the beginning of for P;) and
to be compatible with p (Definition [2.4.2.7)).

2.4.1 Compatibility with P

We first define what it means for a smooth representation of G(K) over F to be
compatible with a Zariski closed subgroup P of a standard parabolic subgroup P as

in Definition 2.2.1.3] We keep the notation of §§2.2] 2.3]
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We fix a Zariski closed algebraic subgroup P of a standard parabolic subgroup P
—72.2.1.4

of G as in Definition [2.2.1.3| (by Remark P is in fact determined by P). We
let X be the unique closed subset of RT relative to P such that P = MpNx (Lemma

2.3.1.4) and define
Ws ™ fw € W,u(S(P)) C S, w(X\R(P)*) € R*}.
Note that W5 is analogous to W5 in 1} with ]55 replaced by P.

Let Q be a parabolic subgroup containing “7ZP for some ws € W5, wq an element
of W such that wq(S(Q)) C S and ' a parabolic subgroup containing “?() (note that
both @ and @' are standard). So we have inclusions of standard parabolic subgroups
YeUPP C Yo C @' and likewise for the Levi subgroups

Muquy, = IUQU)ﬁMP(’lUQUJ§)_1 C Mvgg = wQMQwél C Mgy
Using that we work with GL,,, we write
Mg = diag(My, ..., M)
with M; = GL,,, and we define the standard parabolic subgroup (*2Q); of M; as
(“eQ); = Im(“’QQ Q' — Mgy — Mi).

We define a standard parabolic subgroup (“?“#P)q of Mwq g, resp. a standard parabo-
lic subgroup (“?“7P)q,; of M(»q),, as the image of “?"PP via “?“PP C "@Q — Muq,,

i

resp. via “?YPP C Q) —» Muqg — Mwag),. Equivalently,
(“PP)q = wo("PP N Mo)wg' C woMoug' = Muaq
(“@“FP)gs = Im(we(“FP N Mg)wg' C Muag — Magy,).

Note that

-1 -1
M(waFP)Q - wQM(“’EP)mMQwQ = wqwpMp(wqug)

We finally define a Zariski closed algebraic subgroup (“%“#P)q of ("*“#P)q contain-
ing Mrovzp) ; Tesp. & Zariski closed algebraic subgroup (“¢“#P)q; of (“°“7P)q
containing M(wa;P)Q,i ,

("9"7P)g = wo((wpPwz') N Mo)ug' C wo("?P N Mo)uwg' = (*"7P)q

as

("@#P)q; £ tm(wo((wpPuz!) N Mo)ug! € Meag > Merag), )

We also define the continuous group homomorphism
W of?  QT(K) — Mg (K) L5 KX S5 FY o FX,
where 9" is defined in (44)) (applied with P = Q").

We need a quite formal and easy lemma.
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Lemma 2.4.1.1. Let II be a smooth representation of a p-adic analytic group over
F which has finite length and distinct absolutely irreducible constituents. Let H be a
split connected reductive algebraic group over Z, Py C H a parabolic subgroup with
Levi Mp,,, Py C Py a Zariski closed algebraic subgroup containing Mp, and R a

pgal(K/Qp)

(finite-dimensional) algebraic representation of over F. Assume that there

exist

a) a filtration on R by good subrepresentations for the P/ g etion (see Def-
H

inition |2.2.1.5) such that the graded pieces exhaust the isotypic components of
R|ZM 5
Py

(b) a bijection ® of partially ordered finite sets between the set of subrepresentations

of Il and the set of good subrepresentations of R|ﬁGal(K/Qp) (both being ordered
H

by inclusion).
Then the following hold:

(i) The bijection ® uniquely extends to bijections between subquotients of I1 and
good subquotients of R)| FGal(K/Qp) 5 and between irreducible constituents of 11 and
H

isotypic components of R|ZMP .
H

(ii) IfII" is a subquotient of I1, then ® induces a bijection of partially ordered finite
sets between the set of subrepresentations of II' and the set of good subrepresen-
tations of ®(II')| scacr/ap) -

H

Proof. Formal and left to the reader. O]

Remark 2.4.1.2. (i) Let I and ® as in Lemma [2.4.1.1} II" a subquotient of II and
I1" C IT' a subrepresentation. Then the bijection ® also induces a short exact sequence
0 — O(I1") — O(II') — P(II'/II") — 0 of algebraic representation of Pgal(K/Q”) over
F.

(ii) By Lemma [2.2.1.5| applied with P there being the parabolic~wFP above, we see
that Lemma [2.4.1.1{ can be applied with H = G, Py = “FP, Py = wﬁPw;1 and

R=1I°. Using moreover Lemma [2.2.1.6} one easily sees that Lemma|2.4.1.1f can also

be applied with H = Mg, Py = “?PPN Mg, Py = (wﬁPw;) N Mg and R any isotypic
component Cp of L Znig (recall from (the proof of) Lemma [2.2.1.5 applied with P
there being @ that the action of Q%(,/Q) on the subquotient C¢ of Z®’QGa1(K/@p)
factors through QG(K/Qe) _, MSal(K/ Qp)).
(iii) Let @ as above, Cg an isotypic component of f®\ZMQ, Q' = P(Cy) (see §2.2.2
and wg € W(Cq) (see and note that *2Q C @' by ([39)). Lemma [2.4.1.1] can
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also be applied with H = Muagy,, Py = (“?“#P)q;, Py = ("?“*P)q; and R =

Cug,is where C, ; is the algebraic representation of M (%Zlgi{ @) Jefined in Remark

2.2.3.12 with P there being @ (it is an isotypic component of L: |z, o ). To
("% Q)

prove that assumption (a) of Lemma [2.4.1.1}is satisfied in that case, note that Cy, ;

is a good subquotient of L | (v )/ and thus a fortiori a good subquotient of

Li ’(wa;P)Gal(K/Qp) (Lemma|2.2.1.6)), where (“°“7P)q ; C (“2Q); C M; is the standard
Qi

parabolic subgroup of M; with the same Levi as (“9“#P)q,;. We have
("9"FP)qu C (""7P)qu C (""PP)q C M;
and (“9“FP) g, is a closed algebraic subgroup of (“¢“FP)q; containing M wQuEy, =

( )q i
M(wa;

Plos One then applies Lemma [2.2.1.5| with f? and with

("9"FP)q, C ("?VFP)q; C M;

instead of P C P C @G, which implies that there is a filtration on C’wQ il wa~~)Gal(K/Qp)

(or on Cuyg il wous,

( )gaux/gp), and thus on CwQ il ("5 )Gal(x/@p>) by good subrepresen—

tations such that the graded pieces exhaust the isotypic components of

C’LUQ,’L = CwQ Z|ZM wa~ '
PP)g i ( PP)or 4

Lemma 2.4.1.3. Let P C P, wz € W5 and Q containing “PP as above. Let Cq be
an isotypic component of Z®|ZMQ and Q' = P(Cp).

(i) For any wg € W(Cyq), there is a canonical bijection of partially ordered finite
sets between the set of good subrepresentations of

CQ‘(w;ﬁwzl)Gal(K/Qp) = CQ| wNPw )QM )Gal(K/@p)
P

(where the equality follows from Remark|2.4.1.2(i1)) and the set of good subrep-

resentations of wg(Cq) |(wa;ﬁ)Gal(K/Qp) )
Q

(ii) For any wq,wy € W(Cq) and i € {1,...,d}, there is a canonical bijec-
tion of partially ordered finite sets between the set of good subrep-

resentations of CwQ7i|(wagﬁ)Gal(K/Qp) and the set of good subrepresentations of
Q.1

wey i |( ov P)Gul(K/@p)

Proof. (i) follows from the definition of wg(Cp) in and the fact that (“?“#P) =
wQ((wﬁ;f’w;) N MQ)wél.
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(ii) We have wy = wgwqg with wg € W(P(Cq)) = W(Q') by Lemma [2.2.2.10
(applied with P there being (). In particular wg (wqo(S(Q))) € S which implies
(“Q“EP) g = wey (waFIB)Q,iwé,l inside M ., = worMwag),wg (viewing we: as an
element in W(M;) by abuse of notation). By (applied with P there being Q)

we have C“’bvi = sz(C'w@,i), where the conjugation by wé,l intertwines the actions of
(%wFIB)Q,i and of (“?"“FP)g,. The result follows. O

Remark 2.4.1.4. The bijections in Lemma [2.4.1.3] all extend to bijections between
good subquotients or isotypic components on both sides, as for Lemma [2.4.1.1

Let II, H, Py, Py, R and ® as in Lemma . For any wy € Wy (the
Weyl group of H) such that wHIBHwI_{l is contained in a standard parabolic subgroup
of H, we can define another bijection wgy(®P) between the set of subquotients of II
and the set of good subquotients of R\( 1yaal(/ap) as follows: wy (P)(IT') is the

wH}AﬁHw;I
algebraic representation wg (@(H’)) of (wg Prwy")S /%) where wy (@(H’))(g) 4

() (witgwy) if g € (wy Pywpyt) S K/@) | see (46)).
Here is now the first crucial definition.

Definition 2.4.1.5. An admissible smooth representation II of G(K) over F which
has finite length and distinct absolutely irreducible constituents is compatible with P
if there exists a bijection ® of partially ordered finite sets between the set of subre-
presentations of II and the set of good subrepresentations of f®| Saak/g, (both being
ordered by inclusion) which satisfies the following conditions (once extended to all

subquotients as in Lemma [2.4.1.1)):

(i) (form of subquotients) for any wz € Wy, any parabolic subgroup @ con-
taining “PP and any isotypic component Cg of f®| Zrigy» writing Mp(c,) =
My x --- x My with M; = GL,,, we have

wi(®) " (Co) = Inde) - o) (7(Co) ® (w0 07C)) - (73)

where P(Cp) is defined in §2.2.2, §7(“@) is defined in (44) and where 7(Cy) is
a Mpc,)-representation of the form 7(Cq) = m(Cqp) ® --- ® m4(Cy) for some
(finite length) admissible smooth representations m;(Cg) of M;(K) over F;

(ii) (compatibility between subquotients) for any ws € Wy, any parabolic

P
subgroup ) containing “FP, any isotypic component Cg of f®] Zarg and any
w € W such that w(S(P(C’Q))) C S, let w(m(Cgq)) be the representation

of Mup(cy)(K) = wMpcy)(K)w™" defined by
w(m(Cq))(g) = m(Co)(w™ gw)
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for m(Cg) as in and g € Muwp(cy)(K). Then we have

ﬂ(w : C’Q) = w(w(C’Q)),

where w - Cg is the isotypic component of L Zu,, In Proposition 2.2.4.2(ii) (ap-
plied with P there being @) and where 7(w - Cg) is as in for the isotypic
component w - Cy instead of Cg (note that P(w-Cgq) = *P(Cg) by Proposition
9.2.4.9/iii));

(iii) (product structure) for any wz € W5, any parabolic subgroup @ con-

taining “FP, any isotypic component Cg of f®| Zrrgy» and one, or equivalently
any by Lemma R.4.1.3[i), element wq € W(Cqp), writing Mp(c,) =
diag(M, ..., Mg) with M; = GL,,, the restriction of wz(®) to the set of subquo-
tients of w(®)~(Cq) comes from d bijections wz(P)y,,; of partially ordered
sets between the set of M;(K)-subrepresentations of m;(Cg) (where m;(Cq) is
as in (i)) and the set of good subrepresentations of Cy, ;| (“QVF S/ %) (where

’

Clug,i 18 the isotypic component of f?| I gy with its M (%Zlg)(/ ©)_action in 1}
(T€Q); ¢

applied with P there being Q) in the following sense: for any subquotient II" of
d~1(Cp) of the form

I = Indggg(;)—(x) ((Wi ® QTR (w o HP(CQ)))
with 7; a subquotient of m;(Cg), the good subquotient wx(®)(I') of
OQ|(wgﬁw;1)Gal(K/Qp) = CQ|((w;ﬁw;1)mMQ)Gal(K/Qp)

corresponds via Lemma [2.4.1.3|(i) and Remark [2.4.1.4]to the following algebraic

representation of (waFﬁ)gal K/Qp) _ ngl(wa;ﬁ)gil K/Qp)

® (w5 (@)ugiln) @((67) - (079, ) )

=1
Gal(K/Qp)

(iv) (supersingular) for any isotypic component Cp of L”| Zur,» the (absolutely ir-
reducible) Mp(c,)(K)-representation 7(Cp) of is supersingular (cf. [Herlll
Def.4.7, Def.9.12, Cor.9.13)).

If (I, @) is as in Deﬁnition then we have in particular ®(II) = L° and
W5(P)we,i(mi(Cq)) = Cuy,i- If P =G, then II is compatible with P if and only if II
is absolutely irreducible supersingular. Also it is clear from Definition that,
for a fixed wz € Wy, Il is compatible with P if and only if II is compatible with

w;f’w}gl (replace ® by wx(®)).
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Remark 2.4.1.6. (i) In Definition [2.4.1.5, we have used Lemma everywhere
(see Remark [2.4.1.2](ii)(iii)). In Definition [2.4.1.5((iii), we have used Remark [2.4.1.4]
Also, Definition [2.4.1.5] is somewhat redundant since a parabolic subgroup ) can
contain “PP for several ws € W5, but we found it too tedious to make it “non-
redundant”.

(ii) The representations m(Cg) and m;(Cg) in Definition [2.4.1.5(i) are uniquely de-
fined since there are no nontrivial intertwinings between parabolic inductions (by
[Emel0al).

(iii) When @ = “7P, 7(Cwz,) in is absolutely irreducible, and is thus automat-
ically of the form 7(Cuv;,) = m(Cepp) ® -+ - ® mg(Cuyp). It is then not difficult to
deduce from this, together with Lemma and |[Emel0Oa] (and the properties of
®), that each m;(Cp) as in has distinct (absolutely) irreducible constituents and

that each irreducible constituent of is of the form Indggé{g)_( K) ((ﬂi ®--QT)®

(w™tof (CQ))), where 7} is an irreducible constituent of m;(Cg). This also justifies
the terminology “comes from d bijections wz(®)y, ;" in Definition (iii).

(iv) It is in fact possible that Definition [2.4.1.5[i) for parabolic subgroups @ strictly
containing some “FP and Definition [2.4.1.5(iii) both automatically follow from the
other conditions in Definition [2.4.1.5] See for instance how the results of [Haulg] are
used in Example 2, Example 4, Example 5 and Example 6 of below to show
that several conditions of Definition are automatic in special cases.

(v) In Definition [2.4.1.5[(iii), we have to use some element wq of W(Cg) and “pass
through wq(Cq)” because of Remark [2.2.3.2[(ii) (see also the end of Remark [2.2.3.12)).

Nothing in here and what follows depends on the choice of such a wy.

(vi) For a given II compatible with P, a bijection ® as in Definition is not
unique in general (consider the case P = Mp).

(vii) In Definition it is necessary in general to consider all elements ws € W,
note just wz = 1, otherwise one misses some condition, see for instance (97) below
(note that this is also quite natural in view of Theorem [2.3.2.5)).

Example 2.4.1.7. Let us consider the case n = 3, K = Q, and P = P with
Mp = GLy x GL; in the last part of Example [2.2.2.9[ii) (see also Example [2.2.4.4).
We denote by P’ the standard parabolic subgroup of Levi GL; x GL,. Then II is
compatible with P if and only IT has 3 irreducible constituents and the following form
(a line means a nonsplit extension of length 2 as a subquotient and the constituent
on the left-hand side is the socle):

Inngj?zgiz;) (7-[- . (w_l ¢} det) X X) —SS

GL3(Qp) —2
Indy, 207 (xw ™ @ )
where x : Q — F* is a smooth character, 7 is a supersingular representation of

GLy(Q,) and SS is a supersingular representation of GL3(Q,). The case P = Mp is
analogous but with a semisimple II (instead of nonsplit extensions). See also §2.4.3]
below for more examples.
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The following proposition shows that a representation Il as in Definition [2.4.1.5
has internal symmetries.

Proposition 2.4.1.8. Assume II is compatible with P and let ® be a bijection as in
Definition|2.4.1.9. Let wz € W5, Q a parabolic subgroup containing “PP and Cgq an

isotypic component of f®|ZMQ such that P(Cg) = “eQ for some (unique) wg € W
with wo(S(Q)) € S. Then w;(Cy) is compatible with (“*“FP)q, fori € {1,...,d},
where m;(Cq) is as in Definition |2.4.1.5(i).

Proof. The proof is long but essentially formal. Replacing P by wﬁﬁw; and ¢ by
w5(®) (see the discussion following Definition [2.4.1.5)), we can assume wy = Id. We
write for simplicity w instead of wg. Recall from Proposition [2.2.3.3] that Cj

is the isotypic component of fw™!(0g)| Znig in f®| ZMQ' More precisely, by ,

Corollary [2.2.3.11] and Remark [2.2.3.12| (especially (5 )7 we have an isomorphism of
algebraic representations of M.y, Gal(K/Qp) o 1_[Z L M, Gal(K/Qp) ~ Hf: . GLSial(K/@p):

d

w(Co) 2 Lug® (079® - ®0"?) = (L? ® (0@ (er)i)). (74)

i=1

Thus the map ®,,; in Definition [2.4.1.5((iii) (recall wz = Id and w = wyg) is a bijection
of partially ordered sets between the set of M;(K )—subrepresentations of m;(Cq) and

the set of good subrepresentations of C’mZ Gal(K/Qp) L | Gal(K/Qp) (recall that
Qi

) (PG
(“P)g. is here a standard parabolic subgroup of M; and (*P)g.; a Zarlskl closed sub-
group of (*P)q,; containing M(wp),,). We have to check that ®,,; satisfies conditions
(i) to (iv) in Definition (with M; instead of G and (“P)g,; instead of P). We

will only check condition (i) below, leaving the others, which are again essentially
formal, to the (motivated) reader.

We can assume i = 1. Let P, & (“P)ga, p Y (“’]5)@1 (so Mp, C PCPC
M, € Mug) and recall that T3 is the torus of diagonal matrices in M;. Let wp €
W5 C W (M), Q, a parabolic subgroup of M; containing * 71P; and Cg, an isotypic
component of fﬂZMQ , we have to prove that wg (®,,1) "' (Cg,) is of the form 1}

1

g < ldx-oxId € W(M) x - x W(My) = W(*Q) € W and

set wp = wlw € W(Q). Then wsz € W5 and @Q contains “7P. Indeed, since
wp € Wp, and the simple roots of Py are contained in w(NS (Q)) € S, we see that
wi = w'wyw sends the simple (resp. Eositive) roots of P N Mg to simple (resp.
positive) roots of My and the roots of P N Ny to positive roots (using that W(Q)
normalizes Ng). Moreover, one easily checks that “ 1P, = (““#P)g1 = (“(“FP))ga

Replacing P by “#P and ® by w3(®), we can thus assume wp = 1d.

Step 1: Let @ £ w
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Step 2: Let A; € X(T1) be a weight of L |1, such that Co, is the isotypic component
of )\1|ZMQ1 and recall that \i|z,, = O |z, = fOuqlz,, , where Oy, fori € {1,...,d}
is defined as in (34) replacing G = GL,, by M; = GL,,,. Let Awg € X(T') be the unique
character such that Awg|r, = A\ and Awg|r, = fOu, = fOug|r if i € {2,....d} (here,
we use the convention in Remark and recall that 0y, is trivial if M; = GL;).
Then Au is a weight of @2, L, |7,. We set

AE g + f079 € X(T)
which is a weight of |7 (use (74)). We have

)\|ZMI = /\1|ZMl + f‘ng

Zyy — JOu, ‘ZMl + fer|ZM1
- f(er + 0wQ)|ZMl = f0G|Z]Ml (75)

and if ¢ > 2:
Mz, = fOu, + 079z, = f(Ouqg + 091, = [l

In particular /\|ZMwQ = f0G|ZIWwQ and thus

T (76)

w_l()‘)|ZMQ = fw_l(eGNZMQ : (77)

Let Q) € @ be the standard parabolic subgroup of G such that “Q) € “(Q has
Levi Mg, x My x --- x Mgq. As P, C Q1 by Step 1, we note that “Q(;) contains
“P and hence Q1) contains P, W(*Q)) = W(Qq) x W(M) x --- x W(Mgy) and
w(S(Qq))) = S(Q1) WS(My) IT - - - TT S(Mg). Let Cq,, be the isotypic component of

L%|z,, associated tow™(\)|z, . From 1} we get Co.,, C Cp (inside L] 5, )
Q) Q) @ Q)

and from , an isomorphism of algebraic representations of MST(K/Q”) ®
Hd QMGal(K Qp):

w(Ca) = (o (0" @+ 2(0° ) )o@ (L7 @ (072 --0(0"9);) ). (78)

=2

Step 3: Define N, \i and 6 by the formula for P = "Q) and the respective

characters A, Awg and fg. Set \] £ m Dl W (@) wi(A) € (X(Th) @z Q)W(@D,

From (the proof of) Lemma , we easily get X' = M. + f0"9 with N |r, = N
Let wy € W (M) such that w;(S(Q1)) € S(M;) and wy(\)) is dominant (w; exists by
Proposition (1)) We prove that wy(X) = wi (M) + 0”9 is also dominant, (we
consider here w; as an element of W(*Q) in the obvious way and use that W (*Q)
acts trivially on 0“?). From (76) we easily get N|r, = fO04|r, if i > 2. But 0 is
dominant since g is (see the proof of Lemma [2.2.2.4{1)), thus (w;(N),a) = (X, a) =
(f0g, ) > 0if a € {ej —ejp1,m +1 < j < n—1}. Since wi(Aug)ln, = wi(N)
is dominant by assumption and (f0“?,a) = 0 if o € {e; — ;31,1 < j < ny — 1}
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(see after (44)), we are left to check that (wi(N), €, — €n,41) > 0. But an explicit
computation gives

<w1()\l)7 enl - €n1+1> = <w1( LJQ)a enl - €n1+1> + <f‘9wQ7 enl - en1+1>
<w1()‘:ﬂQ)’ en1> - <w1(>‘L’Q)7 em-i-l) + an

ng — 1
= (wi(Nog),en,) = f 22 + fna
TL2—|—1
>
e

where the last inequality follows (wi(A.g), €n,) > 0 by Remark [2.2.1.1{(ii) applied to
LY|7, (instead of L”|7) together with formula .
) is the support of fy, — wi(\]) (see Proposition

Step 4: By definition, S(P(Cp,

2.2.2.6(ii)). By Remark(ii we have w1 (\) = (w™'(\)) in (X (T)®,Q)"V @),
where the latter is given by (36 applied to the parabolic )1y and the character
w™(X). Since ww(S(Qq))) C S and ww((w™ (X)) = ww(w (X)) = wi(N) is
dominant (Step 4), S(P(Cq,,,)) is by definition the support of

~— —

nn

n

foa —un(N) = fig — (wi(Nag) + f079) = fhug — wi(Nog)
d

= (fOr, —wi(M)) + 3_(fOu, — fO)), (79)

=2

where ¢}, is defined by applied to P = M; = GG and the character 0,,, of T;. In

fact, ¢}, is the character detnin1 of T;, from which we easily see that the support of
(79) is exactly S(P(Cog,)) L S(My) I1--- I1 S(My). This implies

MP(CQ(1)) = diag(Mp(CQl), Mg, e ,Md). (80)

Step 5: We now finally prove that ®,,; satisfies condition (i) in Definition [2.4.1.5
Write Mpcg ) = Mig X -+ X My g, (for some d; > 1), by condition (i) in Definition

2.4.1.5 for the map ® we have using :
_ ~ 1. G(K 1 _aP(Ca,,)
P I(CQ(U) - IndPECQ)Q(I))*(K) ((WI(CQ(D) Q- ®7Td(CQ(1))) ® (w ' o6 o )>7 (81>
where m(Cq,,) = m1,1(Cq,,y) @ -+ @ T1,4,(Cq,,) (with obvious notation). Let
of 1. 1M (K -
) mdngQl))_ 10 (M(Copy) @ (w0 07Ca))), (82)
it is enough to prove that 7] is a subquotient of m(Cg) and that

Cu1(m) = Coulpenocan (= Caul @, jeen )
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Note first that
pF(Cen)) — gP(Co) 4 g (Car), (83)

where we view 67(@1) as a character of T (not just T}) by sending the coordinates

in T; to 1 for ¢ > 2 (this is straightforward to check from (44)). From (81)), and
, we get

_I(CQ(U) = Indggé{;)_(m ((7‘(‘3 ® WQ(C’Q(U) Q- ® Wd(CQm)) ® (w_l o QP(CQ))).

Since Cg,,, is a subquotient of Cq (both being good subquotients of f®] Baal(K/0p) )

~1(Cq,,) is asubquotient of ®~'(Cg). This implies in particular (using the ordinary
functor of [Emel0a] together with Remark [2.4.1.6(iii)) that 7 (resp. m(Cq,,) for
i > 2) is a subquotient of m(Cq) (resp. of m;(Cg) for i > 2). By condition (iii) for ®

(in Definition [2.4.1.5) applied to II" = ®~'(Cq,,,) (together with P(Cqp) = “Q), we

w D\ Gal(K/Q
( P)Q,z’( /Qp)

also get an isomorphism of algebraic representations of [, over F:

w(Cay) = (Pualm) @(#" 1@+ (0")) o

®< wi(mi(Cqyy)) ® ((HwQ)i®---®(6”Q)i)), (84)

=2

where ®,,1(7}) and CI)wZ(m(CQ<1 )) (i > 2) are good subquotients of L \ )G/ 0p)
P)q,i
Since we have good subquotients of L |(w ) Gal(K/Qp) in each factor of and

and 1mply CI)wJ(ﬂ'l) CQ1|131G31(K/QP) and q)w,z(m(OQ(l))) LZ | wP)Gal(K/Qp) fOl"
i > 2 (recall isotypic components of Z? | 1 Gal(s/ep) tautology occur with multiplicity 1,
(WP)q,q

so there is no multiplicity issue). This finishes the proof of condition (i) in Definition

2.4.1.5/for @, ;. O

Remark 2.4.1.9. When P(Cy) is strictly bigger than “2(@) for one, or equivalently

any by Lemma [2.2.3.1} wg € W(Cy), there is no real analogue of Proposition [2.4.1.8
since L, has to be replaced by Cugyi in which is not L in general.

2.4.2 Compatibility with p

We define what it means for a representation of G (K) over F to be compatible with
a good conjugate p : Gal(Q,/K) — P5(F) as in ~, Essentially, an admissible
smooth representation II is compatible with p if it is compatible with ﬁﬁ in the

sense of Definition [2.4.1.5| and if the bijection ® of loc.cit. satisfies some natural
compatibilities with the functor Vi in (16)) (see Definition [2.4.2.7)).

76



We now fix a continuous homomorphism
p:Gal(Q,/K) — G(F)

and recall that p* denotes the semisimplification of the associated representation of
Gal(Q,/K) (see §2.3.2). We assume that p is generic in the following sense:

(a) p® has distinct irreducible constituents;

(b) the ratio of any two irreducible constituents of 7* of dimension 1 is not in

{w,w™}.
By Proposition [2.3.2.2] conjugating p by an element of G(F) if necessary, we can
assume that p is a good conjugate in the sense of Definition [2.3.2.3] that is we have
p: Gal(@,/K) — P5(F) C P5(F) C G(F),

where P; is a standard parabolic subgroup of G such that p* is given by the com-
position Gal(Q,/K) 2, P5(F) — Mp(F) (see ), P; C P; is the smallest closed
algebraic subgroup of P; containing Mp, and the p(g) for g € Gal(Q,/K) (in its
F-points), and where, for any h € P5(F), if we define ﬁhﬁh—l C P; as for p, then we
have [55 - ﬁhﬁh—l. Good conjugates are not unique, see Theorem , but we fix
such a good conjugate p (and the associated pair (P, P5)) for the moment.

For any w € W; = W5 (see ) and any parabolic subgroup ) containing ”JP@
P

we define the Q-semisimplification p®~ of p as the continuous homomorphism

72 : Gal(Q,/K) "5 TPA(F) < Q(F) — Mgf(F)

(strictly speaking, it also depends on w). More generally, for any w € W such that
w(S(Q)) C S, we define the continuous homomorphisms

— w*Qfss,w—l .
w(P? ) : Gal(Q,/K) " —"  wMg(F)w™" = Mug(F)
and note that w(p? ) actually takes values in
(““Pp)q(F) C (““Fp)q(F) C Muq(F)

(recall from the beginning of §2.4.1| that (WJPﬁ)Q = w(JPﬁ N Mg)w™! and (“’Eﬁﬁ)Q =
w((@Pwt) N Mg )w™),
Let w € W35, @ a parabolic subgroup containing JPp, w € W such that w(S(Q)) C
S and @' a parabolic subgroup containing “Q). We write Mg = diag(My,..., M)
with M; = GL,,, and we set for i € {1,...,d}:
_ w(5Q—ss
w9, : Gal(Q,/K) "I Mug(F) — Mg (F) — M;(F).
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We also have (recall from §2.4.1| that (*@); is a standard parabolic subgroup of M;):

ss *SS)
w(p? )i : Gal(@,/K) T Mug(F) - Mg, (F) = M(F). (85)
Composing w(p?~); with M;(F) — (M;/M3)(F) = F*, we obtain by class field
theory for K a continuous group homomorphism

det(w(p9™);) : K* — F*. (86)

Lemma 2.4.2.1. Let p, @) as above, Cg an isotypic component 0ff®|ZMQ and Q' <

P(Cq). Then the characters (86) for i € {1,...,d} and w € W(Cq) (see (33))
don’t depend on the choice of w € W(Cp). Moreover we have I, det(w(p?);) =
det(p).

Proof. This follows from Lemma [2.2.2.10| (applied to P = @) together with the fact
that conjugation by W (P(Cq)) (seen in Mp(c,,)(IF)) is trivial on MP(CQ)/MI‘ie(YCQ), and
thus on each M;/M2°". The last assertion is obvious. ]

As previously, w(p%?~); in takes values in
(77 ) guE) € ("7 Pr)gi(F) € Mg, (F) € Mi(F) = GL,, (F)

(recall from the beginning of 2 1| that wa >)0,i is a standard parabolic subgroup of
Mwg), and that (“"P5) . i & Zarlskl closed algebraic subgroup of (““P;)q,; containing

(waE)Q,i

Proposition 2.4.2.2. Let p, Q as above, w € W such that w(S(Q)) C S and
Q' ="Q. Then w(p® ), : Gal(Q,/K) — M;(F) is a good conjugate with values in

(“””Pﬁ) W(F) forie{l,...,d}.

Proof. Note that wpw " is a good conjugate (with values in @P;5(F)w~' C “Py(F))
by Lemma Since w(p® ") is obtained from p%~*% by permuting the blocs
M; = GL,, of Mg, it is equivalent to prove the statement for w = Id. Assume
that 7, = (p9); : Gal(@ /K) — M;(F) is not a good conjugate. Then it follows

from Proposmon 9 that there is h; € (“P5)q.(F) such that hip;h; ! is a good

1
conjugate, and thus X, 5 ,-1 C X5, (with the notation of ~.D Let «; be a positive
root of GL,, in Xﬁi\Xhiﬁ_hfl and note that, if «; is a sum of roots in R (viewing o

in R*), then all of these roots are positive roots of GL,,. Set h; = lda,, € GLy, S (IF)
if j # i and define h = (hy,...,hq) € diag(My, ..., Md) Mq(F) g Q(F). If
we had a; € X z55-1,-1, then from what we just said necessarily we would have
a; € X(j50-sp-1), = X}, 5,1 which is impossible. Therefore a; & X}, 555-1,-1. But
since o € Xp, € Xga (
deduce X} 5m-1,-1 & Xg55-1 which is impossible as wpw™

viewing the positive roots of GL,, as a subset of RT) we
lis a good conjugate. [

=
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For 0 € Gal(K/Q,) = Gal(Q,s/Q,) consider
77 : Gal(Q,/K) — P5(F) C P5F) C G(F),

where p7(g) = p(cgo™!). Here g € Gal(Q,/K) and o is any lift of o in Gal(Q,/Q,).
Since Gal(Q,/K) is normal in Gal(Q,/Q,), p°(g) is well defined up to conjugation
(by elements in P5(F)). If C'is a good subquotient of Z®\Ec,a1(;</@p) (Definition 2.2.1.3)),

P
we can view in particular C' as a continuous homomorphism

Py(F) x -+ x P5(F) — Aut(C(F)) (87)

Gal(K/Qp)

(denoting by C(F) the underlying F-vector space of the algebraic representation C')
and define a Gal(Q,/K)-representation C(p) as

Gal(Q,/K) 117 Py(F) x - x P5(F) 5 Aut(C(F)),

where, in the first arrow, we choose any order on the elements o of Gal(/£/Q,).

Lemma 2.4.2.3. The Gal(Q,/K)-representation C(p) is well-defined up to isomor-
phism and canonically extends to a Gal(Q,/Q,)-representation.

pGal(K/Qp)

Proof. The algebraic representation C' of P; over [F doesn’t depend up to

isomorphism on the order of the copies of ]55, i.e. any permutation of the 155’8 yields an

algebraic representation which is conjugate by an element of Aut(C(F)). Indeed, this

clearly holds when C'is an isotypic component of f®| Znip. 88 Zu embeds diagonally
> P

into ]?’ﬁG al(K/Qp), Thus, for a general good subquotient C', any permutation of the 155’8

gives a representation C’ which contains the same isotypic components of f®\ Znp, S
P
those of C. Assume now that C'is a good subrepresentation of f®| SGal(K/Qp) - Then

P
C'" must be isomorphic to C since isotypic components of f®| Zu,, tautologically

occur with multiplicity 1. In general, one writes C' as the quotie;lt of two good
subrepresentations of L”| seai/ap - All this implies that C(p) is well-defined.
i

We now prove that it extends to Gal(Q,/Q,). First, if C' = f®| BGalk/gp) , then O (P)

is the tensor induction and thus canonically extends to Gal(Q,/Q,). Let us
recall explicitly how it extends. Fix oy,...,0; some representatives in Gal(Q,/Q,)
of the elements of Gal(K/Q,) = Gal(Q,r/Q,) and define permutations wy, ..., ws on
{1,...,f} by aioj_l = a;il(j)hi7j, where h;; € Gal(K/Q,). The underlying F-vector
space L”(F) of L is

f

& ((®Z0w)m),

=1 aesS
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where (®a€ s f()\a)) () is the underlying vector space of ®,cg L(\o), and the action
of o; then sends v; @ V2 ® --- @ vy € f®(F) to u; ®uy ® - - - ® uy, where:

w (@ TOW) @i ) vy). (58)

a€esS

This yields an action of Gal(Q,/Q,) which doesn’t depend on any choice (up to
isomorphism). It is enough to prove that this action of Gal(Q,/Q,) preserves the

subspaces C(F) C L”(F), where C is any good subrepresentation of L° | FGaI(K/Tp) -
But this is clear from since C(IF) is preserved by the action of Gal(Q,/K) and

by any permutation of the v; (as we have seen at the beginning). O

Remark 2.4.2.4. One could also use L-groups as in §2.1.4] in order to have more
intrinsic definitions (see Remark [2.2.1.1{(i)). However the above pedestrian approach
will be sufficient for our purpose.

The following lemma is in the same spirit as Lemma [2.4.2.1]
Lemma 2.4.2.5. Let p, Q) as above, Cg an isotypic component 0ff®|ZMQ and Q' £
P(Cq). Forw e W(Cq) andi e {1,...,d}, let

o Cy; be the isotypic component of Zl@|ZM(wQ>_ defined in (applied with P
there being Q);

o w(p?™); the representation of Gal(Q,/K) with values in Mgy, (F) defined in
(85) (applied to Q" = P(Cq));

o Oy, (w(ﬁQ_SS)i) the representation of Gal(Q,/Q,) defined in Lemma |2.4.2.5
(applied to p = w(p9~);, ZZ@ and C' = Cy,;).

Then the Gal(Q,/Q,)-representation Cy; (w(ﬁQ_SS)i) doesn’t depend on w € W(Cy).

Proof. Let w' be another element in W(Cg). Then w' = wp(c,yw with wpc,) €
W(P(Cq)) by Lemma [2.2.2.10] (with P there being Q). Since wp(c,,) respects M;, we

have

w (P97 = wrcew(p¥TF)iwp ey

The result then follows from (54]) (applied with P = Q). O

Remark 2.4.2.6. Lemma still holds replacing C,; by any good subquotient

of Cw7i|(w;137)ca1<;</@p) and using the proof of Lemma [2.4.1.3(ii) and Remark [2.4.1.4] to
P/Q,i

compare with the corresponding good subquotient of C ;|

(') SR/ ) - The proof
5

is the same as for Lemma [2.4.2.5( using that w(p?~*); takes values in (waﬁp)Qﬁi(F).

80



We now state the second crucial definition. We use the functor Vg defined in

§2.1.1] in the case H = GL,,, m > 1 (with the convention of Example 2.1.1.3)). If a

smooth representation 7 of H(K) has a central character, we denote it by Z(7) (so
writing Z(m) in the sequel implicitly means that 7 has a central character). We also
define

On; |z, 1

w ol Zy(K) = KX —" KX “5 F) — F~ (89)
(Opr, as in replacing G by M;).
Definition 2.4.2.7. An admissible smooth representation IT of G(K) over F which
has finite length and distinct absolutely irreducible constituents is compatible with p

if there exists a bijection ® as in Definition [2.4.1.5) for P = 155 (in particular IT is
compatible with P;) which satisfies the following extra conditions:

(i) for any subquotient II" of IT, we have an isomorphism of Gal(Q,/Q,)-representa-
tions over [F:
Ve(I') = o(11') (p), (90)

where ®(II')(p) is the associated representation of Gal(Q,/Q,) defined in Lem-

ma 2123,

(ii) for any w € W3, any parabolic subgroup () containing EPﬁ and any isotypic com-
=® i . . ~
ponent Cg of L \ZMQ, writing Mp(c,) = diag(My, ..., My) with M; = GL,,, we
have for one, or equivalently any, element w € W (Cg) and for any subquotient
w; of m(Cg):

Z(m}) = det(w(@? ™)) w0, (91)
B(P )i (77) (w(PV7)s),

N
/N
A
O~
N—
12

where

e 7,(Cq) is the admissible smooth representation of M;(K) over F in Defini-
tion [2.4.1.5((1);

o det(w(p®~);) (resp. wtofyy,) is the character of K* defined in (resp.
in (89));

o w(P),,(m}) is the good subquotient of C,, | ( defined in Definition

5. 4.1.5)(iii);
o w(p¥™™), is the representation of Gal(Q,/K) with values in (waﬁﬁ)Qd(F) -
Mgy, (F) defined in (85)) (applied to Q" = P(Cy));
o W(D), () w(pQ—SS)i) is the representation of Gal(Q,/Q,) defined in

Lemma [2.4.2.3| (applied to p = w(p?~);, L; and C = W( D)y i (7).

YYP5)Q,i
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If II is compatible with p, then we have in particular Vg(II) = Z%(p)
and Vi, (m(C’Q)) = Cui (w(ﬁQ*SS)Z) for Q,w, i as in Definition [2.4.2.7(ii) (recall that
Vi, (m:(C)) is always the trivial representation of Gal(Q,/Q,) when n; = 1). If p is
(absolutely) irreducible, then P; = P; = G, W, = {Id} and I is compatible with 7
if and only if II is absolutely irreducible supersingular, Z(IT) = det(p) - w™' o (0g|z.)
and Ve (I1) = L% (p).

Remark 2.4.2.8. (i) The isomorphisms in (91]) are consistent with Lemma [2.4.2.1]
Lemma [2.4.2.5] and Remark since their left-hand sides don’t depend on w €
W(Cop).

(ii) Let IT be compatible with p. From applied with wz = 1 and @ = P, (91)
applied with @ = 1 and @Q = P;, the last assertion in Lemma and from

d
HG‘ZG = HP(CQ)’ZGHP(CQ)‘ZG = 9P(CQ)|Z@<H9Mi ZMi)
=1

(which follows from (44])), we deduce that each irreducible constituent IT" of II is such
that Z(IT') = det(p) - w' o (6g|z,). Since these irreducible constituents are all dis-

tinct by assumption, we obtain that IT has a central character Z(IT) = det(p) - w™! o

. —n(n—1)
(Ol zs) = det(p) - ™
(iii) Let II be compatible with 5, II" a subquotient of II and I1” C II' a subrepre-
sentation. Then from Remark [2.4.1.2(i) we have an exact sequence of Gal(Q,/Q,)-

representations:

0 — &(I1")(p) — ®(II')(p) — @(II'/TI")(p) — 0.

Thus implies that the sequence 0 — Vg (I1") — Vg (I') — Vo (II'/I1") — 0 is
exact. In other terms, when applied to II and its subquotients Vi; behaves like an
exact functor.

(iv) Let x : K* — F* be a smooth character. Then it easily follows from Remark
2.1.1.4(ii) that II is compatible with 7 if and only if II ® (x o det) is compatible with

P RX-
(v) For a given II compatible with 5, a bijection ® as in Definition 2.4.2.7] is still

not unique in general. For instance consider the case n =4, K = Q,, P, = M P, =
diag(GLy, GL,) and p = p,®p, with p; : Gal(Q,/Q,) — GLx(F) absolutely irreducible
distinct for ¢ = 1,2 but such that AZp, = AZp,.

Definition [2.4.2.7 doesn’t depend on the choice of a good conjugate.
Proposition 2.4.2.9. Ifp' : Gal(Q,/K) — 155/ (IF) C Py(F) is another good conjugate
of p, then I1 is compatible with p if and only if I is compatible with 7.

Proof. From Theorem [2.3.2.5 we have 7 = whph~'w™" for some h € P;(FF) and some
w € W5 By symmetry, it is enough to prove that II compatible with p implies II

82



compatlble with /. We have first that II is compatible with hph~!. Indeed, Phph 1=
P and the conditions in Definition m for hph~! follow from the conditions for

p since w(p@*); and w((hph~1)2~*), are conjugate in (““P;)o.(F) (with @, w here
as in Definition [2.4.2.7)). Thus we can assume h = Id. But then, it is clear from
Definition [2.4.2.7| that II is compatible with p' = wpw ™. O

Just as some statements in Definition [2.4.1.5| should follow from others (see Re-
mark [2.4.1.6(iv)), we expect the isomorphisms to follow in many cases from the

isomorphisms :

Proposition 2.4.2.10. Assume I is compatible with p and let ® be a bzyectzon as
in Definition Let w € W5, @ a parabolic subgroup containing “P;, Cg an

isotypic component ofL |Z1VIQ and H’ a subquotient of w(®)*(Cq) of the form

H/ ~ I dG(K (K) (( ® . ® ﬂ_él) ® (wfl o HP(CQ))),

/

where m, is a subquotient of the representation w;(Cg) of M;(K) over F defined

in Definition |2.4.1.9(i) (so that w(®)(II') is a good subquotient of Cqlzzcax/o, =
P
C’Q|((J§F5,I)QMQ)GM(K/QP)). Assume that VMP(cQ)(Wi R 2L, VMP(CQ)?i(ﬂg)

(with the notation used in Lemmal|2.1.1.5). Then the isomorphism for II' follows
from the isomorphisms (91]).

Proof. For i € {1,...,d}, we have (easy computation):

(§F(CQ)Y, = det™ 5= ™, (92)

Let 7/ € 7/ ® (W o det)niZ;:lnj, we have by Lemma [2.1.1.5] and Remark
5 T 1A):

Volll) = Va( {8 o (@) @ (@ 0 67C))

d

® (Vi
(Vs

I

&
(&

=1

[y

112

(K)
N6 (26T g ) ) odc
) ®

7_‘_/
Vi, (! <(Z(7r;.) ‘wo eMi)”‘Zj'”‘") |@;)> ®3,

i
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where § < (6G e, 51\2) ind?}(@"(w*z;; %) with (by an explicit computation):

¢ = ni(n;— 1)<n— in]) —i—ni(n— inj)Q

= nl(n—]z;n» (nl — 1+n—jz;nj>
= ni(n—gnj)(n—l—gnj). (93)

Now, assuming we have for one, or equivalently any, w of W(Cg):

o(I1)(p) = @(@)(1T)(p)
= B(@)I) ()

Q((8)esl) (w6 ))
("o #"C)) 0 (o, <w<pQ—ss>i>”))>
<( det(w(stsm)”Z;_l ”J') |@;>

= @ (Ve (7w o) )iy ).

I¢

I
X

(Vi) ®

where the first isomorphism follows from p = wpw ', the second equality is obvi-

ous (w(®)(Il') being a representation of MSal(K/ %) as it is a subquotient of Co),

the second isomorphism follows from Definition [2.4.1.5((iii), and the last two isomor-
phisms from , and local class field theory for Q,. So we have to prove

(0c T, 03fh) ind%#(w i %) =1, which amounts to checking the following explicit
identity (using (93)) and Example 2.1.1.3):

n—1 d ni—1 d i i—1
Zf: ij—i—Z(ni(n—an)(n—1—an)>.

; L “ s =

This follows easily by induction on d using the case d = 2 and the identity
(n—mP+n-—m+17>+---+n-172=1+22+---+(m—12+m(n—m)(n—1)

for any integers n > m > 1. O]

The following proposition is analogous to Proposition [2.4.1.8
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Proposition 2.4.2.11. Assume I is compatible with p and let ® be a bijection as in
Definition Let w € W5, Q a parabolic subgroup containing wP and Cq an

isotypic component ofL |ZMQ such that P(Cq) ="Q for some (unique) w € W with
w(S(Q)) € S. Then m;(Cq) is compatible with w(p?=); for i € {1,...,d}, where
m:(Cq) is as in Definition[2.4.1.5(i) and w(p9™>); as in (85).

Proof. We use the notation in the proof of Proposition . Replacing p by wpw
and ® by w(®P), we can assume w = Id. We have to prove that the map ®,,; satisfies
conditions (i) and (ii) of Definition with M; instead of G' and w(p®~%); instead
of p. Note that this makes sense thanks to Proposition m We can assume i = 1.
Condition (i) clearly follows from the second equality in applied to ] = m(Cg).
Arguing as in Step 1 of Lemma [2.4.1.8] we need only consider a standard parabolic
subgroup @; of M; containing (“P;5)q,1 and Cp, an isotypic component of LY Zuig,

Let Cq,,, be the isotypic component of f®| Zrig,,, defined in Step 2 of the proof of

Proposition [2.4.1.8, Then it is easy to check that condition (ii) for My, w(p®~%);,
Cq, and an element w; € W(Cq,) follows from condition (ii) with G, p, Cq,,, and
wiw € W(Cq,,,) (see Step 3, Step 4 and Step 5 of the proof of Proposition|2.4.1.8)). [

2.4.3 Explicit examples

We explicitly give the form of a representation II compatible with 7 for various p.

In the examples below, as in Example a line means a nonsplit extension
between two irreducible constituents, the constituent on the left being the subobject
of the corresponding (length 2) subquotient.

Example 1
We start with GLy(Q,s) and P; = P; = B as in Example 2.2.2.9(1), i.e. we have

—~ [ X1 %

where y; are two smooth characters Q; — F* (via class field theory) with ratio

# 1,w*! (and where * is nonsplit). Let II be compatible with p. Then IT has f + 1
irreducible constituents and the following form:

GL(Q,
Indg 2@ f))(Xlw ® x2) — SS; — SSg — -+ —S8Sp_ 1 — Ind ( )(ng ® X1)
where the SS; for i € {1,...,f — 1} are distinct supersingular representations of

GL3(Q,r) over F such that Z(SS;) = det(p)w! and

ass)= @ (@)@ (®x))

ICGal(K/Qp) oel o¢l
[|=f—i
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(here x7 = xi(o - o~1) and Vg(SS;) is immediately checked to be a representation of
Gal(Q,/Q,)). Moreover it follows from Example [2.1.1.6| that
L2(Q )

G _ ~ o
VG(IndB—(Qg (xw ' ® Xz)) = QoeGal(K/Qp) X1

and likewise with Ind B (Q pf)(xgw_l ® x1). Finally the conditions in imply that
Vi behaves as an exact functor on the (not necessarily irreducible) subquotients of II

(see Remark [2.4.2.8(iii))

Still with GL(Q,s) but when P; =T, ie. 7= x1® xa, then IT (compatible with
p) is semisimple, i.e. has the same form as above but with split extensions every-
where. This is consistent with the discussion at the end of [BP12, §19]. Note
that, if we only require II to be compatible with f’p (Definition , then II

has the same form as above, but with arbitrary distinct supersingular representations

of GLy (pr) and arbitrary distinct irreducible principal series Ind (pr))(mw ® n2)

and IndB_(@ f)) (now™ ®@my). See [HW, §10.6] and §3.4.4] for instances of represen-

tations II (coming from mod p cohomology) satisfying (special cases of) the above
properties.

Example 2 B
We go on with GL3(Q,) as in Example [2.2.2.9(ii) and P; = P; = B, i.e. we have
Xl * *
P = 0 X2 % )
0 0 xs

where y; are three smooth characters Q) — F* (via class field theory) of ratio
#1,wt. For 7 € W = S;, we define

def GL Q) — _
PSXT(1)7XT<2),XT(3) = Indp- 3(@ ) (XT(U(‘u ’® Xr(2)W '® XT(3))'

Let IT be compatible with p. Then II has 7 irreducible constituents and the following
form:

/ X2,X1,x3\ /PSX27X37X1\
PSSy xe, xs\ / SS \ /PSXS,X2,X1

PSXl,Xs,X2 PSX37X17X2

where SS is a supersingular representation of GL3(Q,) over F such that Z(SS) =
det(p) - w™® and Vg(SS) 2 (xixaxs)® = det(p)®. It follows from the proof of
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[Haul6l Thm.5.2.1], or from [Haul8, Thm.1.4(i)], combined with [Emel0al, Cor.4.3.5],
that the nonsplit extensions between two principal series in subquotient are automat-
ically parabolic inductions as required in condition (i) of Definition (looking
at isotypic components of Z®|Z]MQ with Mg € {GLy x GL;, GL; x GLy}, see Example
2.2.2.9(ii)). Conditions (ii) to (iv) in Definition are then easily checked. Con-
cerning Definition [2.4.2.7] the subquotients involving only principal series do satisfy
and by [Brel5, Rem.9.9]. The reader can then easily work out the remain-
ing conditions in (90 which all involve the supersingular representation SS, and also
work out the shape of a I which is compatible with ]55 = B only (but not necessarily
with p).

Example 3 _
We stay with GL3(Q,) but where P; = P; = P with Mp = diag(GLy, GLy), i.e. we

have
pr ¥
0 x2/’

where p; : Gal(Q,/Q,) — GL»(F) is any absolutely irreducible representation and
X is any smooth character Q) — F* (via class field theory). Note that such a p is
always generic (see the beginning of @ . Then IT is compatible with p if and only
IT has the same form as in Example [2.4.1.7}

I

P

Indp ) (71 - (W™ o det) ® x2) —— S8 —— Ind (07 (xow™> @ 1)

and where moreover

e 7 is the supersingular representation of GL2(Q,) over F corresponding to
71 by the mod p local Langlands correspondence for GLy(Q,), i.e. we have
Z(m) = det(py)w™! (via class field theory) and Vgr,(m1) = py;

e Z(SS) = det(p)w3;
o Vo(Il) = P ®r ARP;
. VG( Indp 30 (1 - (W™ o det) @ x2) —SS ) ~ Ker(p ®p A25 — v2 ® 75,).

The properties of Vi in §2.1.1| (in particular Lemma [2.1.1.5|which can be applied here
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thanks to Remark [2.1.1.7)) then automatically give the remaining conditions in (90)):

p1 ©r Agpy = py @ det(p;)

I

Vo < Indgli?&(g%') (7r1 (w ' odet) ® X2)>
VG< SS — IIldG'L3 8 Xow ™2 @ T ) = (p@r Aep)/ (1 @F ApD))

VG<Ind (xaw™ ®m) ~ P @x
Va(SS) = (7 @ x2) ® det(py)x2

The case ]55 = Mp,ie. p= (pol )? ) , is analogous and easier since II is then semisim-
2

ple.

Example 4

We consider GL4(Q,) and f’ﬁ = P; = P, where Mp = diag(GLs, GL;, GL;), that is
we have a good conjugate

x

X2 * |,
0 X3

7

[12
o o

where p; : Gal(Q,/Q,) — GL»(F) is any absolutely irreducible representation and x;
two smooth characters Q) — F* (via class field theory) of ratio # 1, wil If1<i<4
and Z;Zl n; = 4 with 1 < n; < 4, we write B,, _,, for the standard parabolic
subgroup of GL, of Levi diag(GL,,,...,GLy,) (so Po11 = P, Pi111 = B, etc.). As
in Example 3 above, we let m; be the supersingular representation of GLy(Q,) over
[ corresponding to 7; by the mod p local Langlands correspondence for GLy(Q,)
(so Z(m) = det(py) - w™! and Vgr,(m) = p,). We define the following parabolic
inductions:

Pl voxs e IndGLf(l%p <7r1 2 odet) ® yow ®X3)
Pl e = In djj;f%p (m - (W% 0 det) ® xaw™ @ xe)
PLyrse = In dﬁ?j%ﬁ (rew™® @ m - (W odet) ® xs)
PL,myy o Indi?ji%p (xsw?@m "o det) ® ya)
Pliysm Indjj;j(%p (e ® xaw™ ®m)

e GL4(Q _ _
PIXS,X2,7T1 d:f Indej(Q((a)p) (ng ® XaWw ® 7T1)

and also, for ssj,sse two (not necessarily distinct) supersingular representations of
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GL;(Q,) over F:
PISS1,X3 d:ef IndGL4(Qp

PISS2 X2 d:ef IndGL4 i

&

—

(oW
Q -
=l e S

A

=]

cl

P1x2,552 -

Pl = Indi(@

We then let SS3, SS4, SS5, SSe be 4 distinct supersingular representations of GL4(Q),)
over [F. If Il is compatible with p, then it has the following form:

Py, mixs Ply, s Pl xam
Pl vs 554 SS¢ Pl xom
PLr yo.xs SS3 SSs Ply; s
PL:, vsxe Pls, x» Pl mixe

where we have

~ GL _
Pleyoos — Plsis — Plhomas = Indpg—f((g:))(nl - (w™h o det) ® x3)

~ (94)
PIX3,7T17X2 — PIXS,Ssl — PIX37X27TF1 = IndGEML(Qp)(X?)w_?) ® Hl)
Pr3(Qp)
~ GL3(Qp) (-1 GL3(Qp) -2
for TI; & IndPgl(Qp) (7r1 (w™ odet) ® X2> 88y 7Indpi2(Q;’) (ng ® 7r1), and
also
PITFl,Xz,XS 7 PLTLX&XQ =

GL4(Q - GL - GL .
Indpi;l(((@:)) (71'1-((,0 20det)®(1ndB_2(((§7’3) (xow ' ®x3) —IndB_Q(((@Q;’;) (x3w 1®X2))> (95)
and an analogous isomorphism for Pl,, , -, — Pl yo.x . It actually easily follows
from [Haul8, Thm.1.4(i)] (together with [Emel0Oal, Cor.4.3.5]) that the isomorphism
and the analogous isomorphism with Pl,, \, r, — Pl v0.r are automatic. It also

follows from [Haul8, Thm.1.2(ii)] and [Haul8, Thm.1.2(ii)] that we automatically
have isomorphisms

PI7r1,X2,X3 — PISSl,X3 = IndGE4(Qp) (IHdGL3(QP) (71—1 ' (w_l © det) ® X2) — SSl)

PS,l(Qp) P27,1 (@)
Plais —Pluma 2 Indg (&) (ss1 — Indg(en (ew? @m) )
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and likewise with the two “halves” of Pl,, r, vo — Ply,sss — Pl x0,m - It is likely that
the full isomorphisms are in fact also automatic.

We must have moreover Z(ss;) = det(p;)xaw >, Z(ss2) = det(p; ) xsw ™3, Z(SS;) =
det(p)w ™ for i € {3,4,5,6} and

VoL, (ss1) = (pF° @ x2) @ det(py) xa
Vars(ss2) = (p7° ® x3) @ det(py) xs
~ D2
Vor,(883) = (7% @ det(py)xaxs) @ (det(p)) xavs)
&5
VGL4<SS4) = (Pl ® det ,01 X2X3) S (,01 b2y XQX )
D5
VGL4(SSB) = (Pl ® det /01 X2X3) D (ﬁ1®3 X X2X§)
@2
Vo, (SSe) = (7 ®X2X3) ® (det(p)x3x3) -

The reader can work out all the other conditions of Definition [2.4.2.7| (applying V¢ to
subquotients of IT). Note that by Proposition [2.4.2.11)the GL3(Q,)-representation II;
of p

is compatible with the subrepresentation (501 ;2 7 (see the last part in Example 2).

Example 5
We stay with GL4(Q,) but where P; = P with Mp = diag(GLy, GLs, GL;) and a
good conjugate of the form

X2 * *
p = O pl O )
0 0 xs

where the * are nonzero, p, : Gal(Q,/Q,) — GLy(F) is any absolutely irreducible
representation and x; are two smooth characters Q) — F* (via class field theory) of
ratio # 1,w*!. One has (see (71)) W5 = {Id, Sc,_¢;5es—c, } = the set of permutations
of the last two blocks GLy, and GL;. Using the notation and conventions of the
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previous case, we can check that any Il compatible with p has the following form:

PI

T1,X2:X3

\
/

PI PI

S51,X3 T1,X3,X2

\

S5S3

PIX2,7T17X3

SS4 PISSz,Xz

VN

SSs

X2,582

Ay
\/ \/\/

5S¢ PI

X3,T1,X2

\ /

PI I

X2,X3,T1 X3,581

A

PI

X3;X2,7T1

(recall the socle is the first layer on the left), where condition (i) in Definition [2.4.1.5
yields, when applied to a suitable Cp with Mg = diag(GL3, GL4):

PIX2,7r1,X3 T PIss1,x3 T PIW1,X27X3 = In ngLf(g:)) (Hl : (Wil o det) ® X3) (96)
Pl vom — Plyss — Plymaye = In dGL4 (gp)) (sw? @11,
~ TndCLs(@) -2 CLs(Qp) (¢, ~1
for II; = Ind,- (@) (sz ®7T1) SS1 Indpil(@p) (771 (W™ odet) ® X2):

and yields, When applied to a suitable Cg with My = diag(GLg, GL2) (that is,
Sea—eg¥es—es P> C (), note that here P; € ), see Remark [2.4.1.6(vii))

PLyam —PLgyom =
Ind @0 (nd 55 (™ @ xgw ™) — Indg4 @) (v @ xow ™)@ m) - (97)

and an analogous isomorphism for Pl:, y, s — Plz ya v, . Asin Example 4, it follows
from [Haul8, Thm.1.4(i)] that and the analogous isomorphism are automatic,
and from [Haul8, Thm.1.2(ii)], [Haul8, Thm.1.2(ii)] that isomorphisms as in but
for every “half” only of the extensions on the left are also automatic.

One can again work out all the conditions of Definition (conditions on
Z(ss;), Z(SS;) and on Vir,(ssi), Vi, (SS;) are the same as in Example 4).
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Example 6 N
We consider GL3(Q,2) and P; = P; = B, i.e.

X1 * *
p = 0 X2 * )
0 0 xs

where y; are three smooth characters Q), — F* (via class field theory) of ratio #
1, wtt. We let ssy, sso, 883 be 3 (not necessarily distinct) supersingular representations
of GLy(Qy2) over F and SS;, ¢ € {4,...,10} be 7 distinct supersingular representations
of GL3(Q,2) over F. We use without comment notation for GL3(Q,2) analogous to
the ones in Example 2, Example 4 and Example 5 to denote principal series and
parabolic inductions. If II is compatible with p, then it has the following form:

PSXQ:XI:XS PIXQvSSS PSX2:X3:X1
N N N
Pli, xs SSs SSs Plss,
N N N RN
PS,, xans S8, SS; SS10 PS., o
NN T N T S
Py, sso SSg SS, PL,
N
PSXI:XS X2 PISSS X2 PSXS X1,X2
where we have
PS. o — Pl — PSains 2 Indp 07 (111 (w0 det) @ xs)
PSyins — Plisss — PSyanans Indz;’((g:j)) (w2 @1L) o)
PSoms — Plass — PSyonans = Indpif((g:j)) (T2 - (™" o det) ® x1)
Sy, ons — Pl ses — PSyyvans = Indi;j((g:;) (™ ®11,)
for
I, = IndgLZzQ(Elj ») (Xlufl ® XQ) — 881 — IndgEQ(((@%;Q)) (ngfl & Xl)
I, =2 In dGL2 (@2) (ng_l ® Xg) —— 88y — IndGL2 @ 2) (xgw '® Xz)

By a straightforward induction, it follows from [Haul8, Thm.1.3] combined with
[Emel0al, Cor.4.3.5] that all isomorphisms are actually true!
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We must have moreover Z(ss;) = x1xow ™}, Z(882) = Xaxzw ™1, Z(883) = x1ix3w ™,

Z(SS;) = det(p)w 3 for i € {4,...,10} and, denoting by o the only nontrivial element
of Gal(Qy2/Qy):

Var,(ss1) = xaxs @ x7xz
Var,(ss2) = xa2X5 @ x5xe2
Ve, (ss3) = xix3 © x5xa
D3

VoL, (SSs) = (X?XQ det(p)” & (xix2)” det(ﬂ)) ® (xfm(x%xﬁ" ® (x?x:s)”xixl)
Vars (SS;) = analogous for i € {5,6,8,9,10} (left to reader)

@9
Vor,(SS7) = (det(p)det(p)”) @ (X?Xz(X%Xz)" @ (X§X2)”><§Xz> ®

<X?X3(X§X3)" ® (X?Xg)"xix:a) @ (x%xl(xixl)" o (X%M)"X%Xl)

(all obviously representations of Gal(Q,/Q,) over F). The reader can then work out
the conditions in involving the various subquotients of II. Finally, by Proposition
2.4.2.11 the GL2(Q)2)-representation II; (resp. Il,) is compatible with the subrepre-

sentation (’8 ;2> (resp. with the quotient ()62 N )) of p (see Example 1).

Example 7 B
We end up with GL4(Q,) and P; = P; = B, i.e.

X1 *  x %

0 x2 x %
=10 o X3 * |’
0 0 0 xa

where y; are four smooth characters Q; — F* of ratio # 1, w*l. The structure of a II
compatible with p is given in the next 3D diagram. Just like the previous 2D diagrams
look like stacked squares, this 3D diagram looks like stacked cubes: there are 8 cubes,
one being entirely “behind”. As before, each vertex is an irreducible constituent
with PS (in green) meaning principal series, SS (in red) meaning supersingular and
PI; (resp. PIy) (in blue) meaning parabolic induction from the standard parabolic
subgroup of Levi GL3 x GL; (resp. of Levi GL; x GL3). The socle is the principal
series at the very bottom and the cosocle is the principal series at the very top. Like
previously, each edge is a nonsplit extension between two irreducible constituents, the
dashed edges being those which are “behind” in the 3D picture. Near each vertex we
write the value of Vg1, applied to the corresponding irreducible constituent.

The interested reader can then check all the other conditions and compatibilities in
Definition [2.4.1.5| and Definition [2.4.2.7] for instance the two left faces on the bottom
correspond to the parabolic induction PI; of Example 2 tensored by the character y4.
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2.5 Strong local-global compatibility conjecture

Back to the setting of but assuming that F\ is unramified and that 7 (for o|v)
is generic as at the beginning of §2.4.2] we conjecture that the G(Fj)-representation
Homg. (0¥, S(VV,F)[m¥]) is a direct sum of copies of a G(Fj)-representation which is
(up to twist) compatible with any good conjugate of 7; (Definition .

We consider exactly the same global setting as in §2.1.2, We fix v|p in F* such
that qu;is an unramified extension of Q, and consider a continuous representation
7: Gal(F'/F) — GL,(F) such that

(i) 7 =27V @ w!™ (recall 7°(g) = T(cgc) for g € Gal(F/F));
(ii) 7 is an absolutely irreducible representation of Gal(F'/F);

(iii) 75 for o]v has distinct irreducible constituents and the ratio of any two irre-
ducible constituents of dimension 1 is not in {w,w™'}

(note that condition (iii) doesn’t depend on the place ¥ of F' dividing v since Tz =

Y @wl).

The following is the main conjecture of this paper.

Conjecture 2.5.1. Let 7 : Gal(F/F) — GL,(F) be a continuous homomorphism
that satisfies conditions (i) to (iii) above and fix a place v of F* which divides
p such that Ff is unramified. Assume that there exist compact open subgroups
Vv C UY C H(AYL) with V' normal in UY, a finite-dimensional representation
o of UY/VY over F and a finite set 3 of finite places of F™ as in such
that Homgw (0¥, S(V?,F)[m*]) # 0, where m* is the mazimal ideal of T* associ-
ated to 7. Let ¥jv in F and see Homy.(ov, S(VY,F)[m*]) as a representation of
H(F}) = GL,(F;) = G(F;) via v; (cf. §2.1.9). Then there is an integer d € Zq
depending only on v, U, V', ¥ and T and an admissible smooth representation I1;
of G(Fy) over F (depending a priori on v, UV, V¥, 0¥ and F) such that

Homg (0%, S(V, F)[m*]) & (Hﬁ ® (W 'o det))@d’

where 115 is compatible with one (equivalently any by Proposition |2.4.2.9) good con-
jugate of T5 in the sense of Definition[2.3.2.3

Remark 2.5.2. (i) Conjecture implies in particular that the G(Fj;)-represen-
tation Homge (0, S(VY, F)[m*]) is of finite length with all constituents of multiplicity
d (under assumptions (i) to (iii) on 7), which is already far from being known in
general. See however below for nontrivial evidence in the case of GLy. It also
implies that Homg. (0¥, S(V?,F)[m¥]) has a central character, but this is known (at
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least under some extra assumptions), see Lemma [2.1.3.3

(i) When F" is unramified and 75 is as in (iii) above, Conjecture of course
implies (and is in fact much stronger than) Conjecture 2.1.3.1]

(iii) Assuming that p is unramified in F'* and that 7 is generic as in (iii) above for
all w|p, an even stronger conjecture would be as follows.

Conjecture 2.5.3. For UP C H(AZ) such that S(UP,F)[m*] # 0 (where & contains
the set of places of F'™ that split in F' and divide pN, or at which UP is not unramified,
or at which 7 ramifies, and where S(UP,F)[m*] is defined as in replacing U"
by UP) and for any w|w in F with w|p, there is an integer d € Z~q depending only on
p, UP and T and admissible smooth representations Ilg of G(Fy) over F, where Il is
compatible with one (equivalently any) good conjugate of T such that

S(UP, F)[m*] = <® (s ® (" o det)))®d.

wlp

As in §2.1.3| we prove that Conjecture holds for v if and only if it holds for
0¢ (we do not need here extra assumptions). We start with two formal lemmas. We
use the previous notation and denote by wy € W the unique element with maximal
length.

Lemma 2.5.4. Let p : Gal(Q,/K) — P5(F) C P5(F) C G(F) be a good conjugate
as in . Then the continuous homomorphism Gal(Q,/K) — G(F) = GL,(F)
defined by

g wor(p(9))  wo (99)

is a good conjugate of the dual of the representation associated to p.

Proof. Denote by “°P; the standard parabolic subgroup of G with set of simple roots
—wo(S(P5)) C S. Using that W (“°P;) = wOW(Pﬁ)wO, one checks that —wy(X5) C R
is a closed subset relative to “°P; (Deﬁnition and thus corresponds to a
Zariski-closed algebralc subgroup “’OP = woM P wON wo(X5) Of “°P5 (Lemma [2.3.1.4).
Denote by woT(p) twy the homomorphlsm |@D its assomated representation is the

dual of the representation associated to p. Moreover one has PwOT(p) Ly = wOPf
and Xpuor@)-twoh—t = —Wo(Xugr(h)-Lwopwor(hywe) for any h € “°P5(F) (note that
woT(h)twy € P5(F)). The result follows from Definition [2.3.2.3| O

As in | if 7 is a smooth representation of G(K) over F we denote by 7* the
smooth representatlon of G(K) with the same underlying vector space as m but where
g € G(K) = GL,(K) acts by 7(g)~".
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Lemma 2.5.5. Let p : Gal(Q,/K) — G(F) be a continuous homomorphism such
that p* has distinct irreducible constituents and the ratio of any two irreducible con-
stituents of dimension 1 is not in {w,w™'}. Let II be a smooth representation of G(K)
over F. Then 11 is compatible with one (equivalently any by Pmposition good
conjugate of p if and only if II* is compatible with one (ibid.) good conjugate of
p¥ @ w1t (denoting by p¥ the dual of the representation associated to p).

Proof. We use the notation in the proof of Lemma [2.5.4] Assuming p is a good conju-
gate, it is enough to show that if II is compatible with p, then IT* is compatible with
woT(p) two@w™ L. If Ris a (finite-dimensional) algebraic representation of G&1(5/Qr)
over IF, let R* be the algebraic representation where g € GS(5/@) acts by 7(g)~* (in-
verse transpose on each factor). Then one checks that L° = T% @ (det™ ("~ 1))2K:Q],
Let ® be a bijection as in Definition [2.4.2.7] and define ®* from the set of subquo-
tients I of TI* (where I’ is a subquotient of IT) to the set of good subquotients of
E®’(woﬁF)Gal(K/Qp) as follows: ®*(IT"*) is the algebraic representation of (“0P;)G2I(K/Q)
given by ®*(I1"*)(g) = ®(I1') (wor(g) " wo)det(g)" " for g € (“oP5)GK/%) (with obvi-
ous notation). We leave to the reader the tedious but formal task to check that ®* sat-

isfies all conditions of Definitions 2.4.1.5)and [2.4.2.7| with “0P; and w7 (p) wy @ w™ !
instead of P; and p using (for () any standard parabolic subgroup of G):

<Indg(_18()(7r1 ® cee ® 7Td>) & Ind(Gw(Jg)_(K) (ﬂ'd* ® te ® 7T1*)

and Lemma 2.1.3.4] O
Proposition 2.5.6. Conjecture holds for v if and only if it holds for v°.

Proof. This follows from Lemma together with 73e = 7Y ® w!'™, Remark
2.4.2.8(iv) and an easy computation. O

There is an obvious analogous statement with Conjecture 2.5.3]instead of Conjec-

ture 2011

Remark 2.5.7. Let m be an admissible smooth representation of G(K) over F with
a central character. In [Koh17, Cor.3.15], Kohlhaase associates higher smooth duals
Si(r), i > 0 to ™ which are also admissible (smooth) representations of G(K) over
F with a central character. In view of the results when n = 2 (see condition (iii) in
§3.3.5| below and [HW|, Thm.8.2]), it is natural to expect that, when K = Fj and II;
is as in Conjecture , we have S*(I1;) # 0 if and only if i = iy = [K : Qp]@
and that S(II;) is compatible with (a good conjugate of) 7Y @ w"! (when n = 2,
this is indeed consistent with loc.cit. since Ty = 7y @ det(75)~1). It is also natural to
ask if we have S (I1;) = II% (see Lemma [2.5.5)).
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From the results of [BH15| §4.4] and [Enn], we can at least give some very weak
evidence for Conjecture 2.5.1] more precisely for the stronger Conjecture in
Remark (iii), when p is totally split in F'* and 7 is upper-triangular sufficiently
generic for all w|p in FT.

If I is an admissible smooth representation of G(K) over F, we denote by 114 C TI
the maximal G(K)-subrepresentation such that all its irreducible constituents are iso-
morphic to irreducible subquotients of principal series of G(K') over F. The following
lemma is not difficult using Proposition , [BH15, Thm.2.2.4] and the results of
[BH15. §3.3], [BH15, §3.4] (the proof is left to the reader).

Lemma 2.5.8. Assume K = Q, and let p: Gal(Q,/Q,) — B(F) C G(F) be generic
(as at the beginning of and a good conjugate (as in Definition[2.3.2.5). Let 11
be compatible with p (as in Definition[2.4.2.7). Then 114 2 T1(5)°, where TI(p)"
is the representation of G(Q,) over F defined in [BHLE, §3.4].

Note that one can explicitly determine Vg (I1(p)™) inside L% (p), see [Breld, §9).

We let S, be the set of places of F'™ dividing p. Recall that an injection between
two representations of a group is called essential if it induces an isomorphism on the
respective socles.

Theorem 2.5.9 ([Ennl). Assume that F/FT is unramified at finite places, that H
is defined over Op+ with H Xo_, FT quasi-split at finite places of F*, and that p
is totally split in F. Assume that 7 : Gal(F/F) — GL,(F) satisfies assumptions
Al to A6 of [Ennl §3.1], let vy be a finite place of F* as in [Enn, Lemma 3.1.2]
and ¥ = S, U{v1}. Choose vi|vy in F and let UP = Tl,y, Uw € H(ARF) such that
Uy = H(Op+) if w splits in F', U, is mazimal hyperspecial in H(F;) if w is inert
in F' and 15 (Uy,) is the Twahori subgroup of GL,(F;;). Then for any w|w in F' and
any good conjugates Ty (where w € S,), we have an essential injection of admissible
smooth representations of [, H(F,}) over F:

on!
(@ (7)™ ® ™" o det)> s S(UP, F)[m],
wlp
where S(UP,F)m*]od C S(UP,F)[m*] is defined as 11°¢ C II above replacing G(K)
Proof. This follows from [Enn, Thm.3.3.3] (which itself improves [BH15, Thm.4.4.7])

and its proof (see just before [Enn, Lemma 3.2.1] for the n!). O

Remark 2.5.10. The cokernel of the injection in Theorem [2.5.9 is an admissible
smooth representation of [, H(F,}) over F, and its [],,, H(F; )-socle is by con-
struction a direct sum of finitely many irreducible subquotients of principal series. If
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we could prove that all these irreducible subquotients are irreducible principal series
which do not appear in the [T, H(F,})-socle of ®,,,(IL(T5)" ® w™ ' o det), then it
would follow from the mod p version of [Haul9, Cor.1.4] that the essential injection
in Theorem [2.5.9|is an isomorphism.
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3 The case of GLy(Q,s)

We give evidence for Conjecture 2.1.3.1] and Conjecture when Ft is unramified
and G = GL;. We now assume K = Q,r and n = 2 till the end. We fix an embedding

o9 : F,r = F, — F and let o; & 5y 0 ¢! for o the arithmetic Frobenius and i > 0.

3.1 (¢,O0f)-modules and (p,I')-modules

We associate étale (¢, O )-modules to certain admissible smooth representations of

GL2(K) over F and relate them to the étale (¢, [')-modules of §2.1.1]

We assume p > 2. We let [ & ( Ok OK) be the Iwahori subgroup of GL2(Ok),

pOK OF
ef O 10) . ef O (@)
K = (1;(’;; 1ﬁp<19(1<> the pro-p radical of GLy(Ok), I} = (1;(%}{’( H;é}() the pro-p
radical of I, No = (§ 9% )C I, Ny = (,8,9)C L and Ty = (740¢ 0 )C I,

We denote by Z; the center of I;. If C'is a pro-p group then F[C] denotes its Iwasawa
algebra over I, which is a local ring, and m¢ the maximal ideal of F[C]. If R (resp.
M) is a filtered ring (resp. filtered module) in the sense of [LvO96l §I.2], we denote
by F,R (resp. F,M) for n € Z its ascending filtration and gr(R) = @®pezFoR/F_1R
(resp. with M) the associated graded ring (resp. module). When R = F[C], we set
F,R ¥ mzp" if n <0 and F,R Y Rifn >0 If Misan R-module, the filtration
F,M =wmy"Mifn <0 and F,,M = M if n > 0 is called the mp-adic filtration on M.

3.1.1 The ring A

We describe some properties of a complete noetherian ring A which will be a coefficient
ring for some multivariable (¢, O )-modules and (¢, O )-modules.

Let vy, be the my,-adic valuation on the ring F[No] so that F,F[No] = {z €
F[No],vn,(x) > —n} for n € Z. We use the same notation to denote the unique
extension of vy, to a valuation of the fraction field of F[Ny]. For i € {0,..., f — 1}
let

e (1l a
Y, def Z O'Q(a) p (O 1) € mNO\m?VO (100)

aEF;

(where @ € O denotes the Teichmiiller lift of a) and write y; = gr(Y;) for the image
of Y; in my,/m%, C gr(F[No]). Then F[No] is isomorphic to the power series ring
F[Yo,...,Ys_1] and gr(F[No]) to the polynomial algebra Flyo,...,ys—1]. Let S be
the multiplicative subset of F[Ny] whose elements are the (Yp---Yr_1)" for n > 0,

def

F[No]s the corresponding localization and F,F[Ny]ls = {z € F[No]s, vn,(x) > —n}.
We define the ring A as the completion of the filtered ring F[Ny]s ([LvO96, §1.3.4]).
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Note that vy, extends to A, which is thus a complete filtered ring. As A is complete,
an element x € A is invertible in A if and only if gr(z) is invertible in gr(A) (as is
easily checked, here gr(z) is the “principal part” of x as in [LvO96l, §1.4.2]).

Let M be a filtered F[Ny]-module. The tensor product A ®gpn,) M is then a
filtered A-module for the tensor product filtration as defined in [LvO96, p.57]. We
let A@F[[NO]]M be its completion. This filtered A-module can also be described as
the completion of the localization Mg endowed with the tensor product filtration
associated to the isomorphism Mg = F[Ny|s ®rpn,g M.

Lemma 3.1.1.1. We have an isomorphism
gt (ASrpng M) = gr(Ms) = gr(M)[(yo - ys-1)7']. (101)

Proof. As A@F[[NO]]M is the completion of Mg, it is sufficient to prove that gr(Mg) =
gr(M)p, where T = {(yo...ys—1)" k > 0}. Note that we have an isomorphism of
F[NoJ-algebras F[No]s = F[No][T]/((Yo---Y;—1)T — 1). Moreover if we endow the
ring F[No][7'] with the filtration

Fo(FINo][T]) = Y mif 7

k>0

(with the convention mly, = F[No] for i < 0), the filtration on F[No]s is the quotient
filtration via F[No][T] — F[No]s. Therefore the filtration on Mg is the quotient
filtration of the tensor product filtration on M[T] = F[No][T] ®gpny M.

As the filtered F[Ny]-module F[Ny][T] is filtered-free by definition (see [LvO96,
Def.1.6.1]), it follows from [LvO96, Lemma 1.6.14] that gr(M[T]) = gr(M)[T] with
deg(T) = f. We claim that the following sequence of filtered modules is strict exact:

M[T] (YO'“Yf—l)T_]-

MI[T) — Mg — 0.

Namely the exactness of the second arrow follows from the definition of the quotient
filtration. As (Yp---Y;_1)T and 1 have degree 0 in F[Ny][T], the multiplication by
(Yo---Yy_1)T — 1 induces the multiplication by (yo---ys—1)T' — 1 on gr(M[T]) =
gr(M)[T] which is injective. It follows from [LvO96, Thm.I.4.2.4(2)] (applied with
L=0,M =N = M][T], f =0 and g being the multiplication by (Yy---Y;_1)T — 1)
that the multiplication by (Yy---Y;_1)T — 1 is a strict map.

It then follows from [LvO96, Thm.1.4.2.4(1)] that the following sequence is exact:

er(M[T]) LT o (MT]) — gr(Ms) — 0. (102)
Finally, since gr(M[T]) = gr(M)[T], we have gr(Mg) = gr(M)[(yo---ys—1)""]. O
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Corollary 3.1.1.2. We have an isomorphism gr(A) = Flyo, ..., yr-1, (Yo ysr—1) "]
As a consequence the ring A is a regular domain, i.e. a noetherian domain which has
a finite global dimension ([Ser00), §IV.D]).

Proof. The first sentence is a direct consequence of Lemma [3.1.1.1] applied with
M = F[Ny]. This implies that the ring gr(A) is a noetherian domain. Then the
noetherianity of A follows from [LvO96, Thm.I.5.7] applied to the ideals of A, and
the fact that A is a domain follows easily from gr(z) gr(y) = gr(zy) if x,y € A\{0} (us-
ing gr(z) gr(y) # 0). As gr(A) is a regular commutative ring, it follows from [LvO96,
Thm.I11.2.2.5] that A is an Auslander regular ring (note that A is Zariskian by [LvO96,
Prop.11.2.2.1]) and a fortiori has finite global dimension ([LvO96, Def.I11.2.1.7]). O

Remark 3.1.1.3. (i) The ring A can also be defined as the microlocalization of F[Ny]
along the set {(yo---ys—1)",n > 1} C gr(F[No]) (see [LvO96, Cor.IV.1.20]). This
shows that the ring A does not depend on our choice of elements Y; but rather on the
elements ;.

(i) If M is a filtered F[Ng]-module, the filtration on Mg is given explicitly by the
following formula:

Fo(Ms) =Y (Yo Ys1) " Fogy(M), nel.

k>0
As (Yo - Yq)"Fo (M) C Fy_pp(M) for all n € Z and m € N, we have
(Yo Y1) Py (M) © (Yo -+ Yyo1) ™ Fo sy 1 (M)
so that F,(Mg) can also be described as the increasing union

Fo(Ms) = |J (Yo Y1) " Fooig(M).

k>0

Note that the filtration on Mg is not necessarily separated even if the filtration on
M is separated.
(iii) The ring A can also be defined as the set of series

Py
A= — Pie(Yo,.... Y ) ny >0, d >0
{ Z (Yv(-)"'Yf71)nd’ i € (Yo, L f 1) , g >0, d+ fng > ,

d>—o0
equivalently, A is the set of infinite sums of monomials in the Y; with F-coefficients

such that the total degree of the monomials tends to +oo.

Let n > 0 be an integer and let Né’n C Ny be the subgroup of p"-th powers (which
is p"Ok under the identification Ny & Oy). Let SP" be the set of p"-th powers
of S and let AP" be the completion of F[N§ ]gp for the filtration coming from the
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valuation 1}1\;0|]F[an]1 = p"v,m. As the saturation of SP" (see [LvO90, §IV.1]) contains
0 0
S, we have by [LvO96, Cor.IV.1.20]

F[No]s = F[Nolsom = F[NE Tsom @gpppny FINo]. (103)

FIN?
It is easy to check that F[No] is a filtered free F[Ng "J-module with respect to the basis
(Yyo - - YN o<i;<pn—1. Hence, by [LvO96, Lemma 1.6.15] and (103), we conclude

0<j<f-1
that F[Ny]s is a filtered free F [[Ng”]] gpn-module with respect to the same basis, and
thus by [LvO96, Lemma 1.6.13(3)] that A is a filtered free AP"-module with respect to
the same basis again. Moreover, by [LvO96, Lemma 1.6.14], we have an isomorphism
of graded modules

gr(A) = gr(A”") B e (FINT" ) gr(F[No]). (104)

Note that the p"-power Frobenius map z + 2" induces an isomorphism of fil-
tered rings (F[No]s, vn,) — (F[NVG ]]Spn,ngn) and thus; as ”UNO|]FHNgn]] = p"vyr, an
isomorphism of topological rings (F[No]s, vn,) — (F[NE e, v, |]F[[an]]). It induces

0
an isomorphism of complete topological rings A —+ AP" such that the composite map

A =5 AP" < Ais the p"-power Frobenius. This implies that the image of A?" in A
is the subring of p"-th powers of A.

The group O acts on the group Ny via a- (%) = (3%) and thus on F[Ny],
preserving the valuation vy, and hence the filtration. This induces an action of O
on the graded ring gr(F[Ng]), where it is immediately checked that 1 + pOyk acts
trivially. Moreover if a € F* and 0 <@ < f — 1, we have @ - y; = 04(a)y;.

Lemma 3.1.1.4. There is a unique continuous action of O on the ring A extending
the action of O on F[Ny].

Proof. As Oj; acts by ring endomorphisms on F[Ny] and as F[Ny]s is dense in A,
the uniqueness is clear.

For the existence, let a € OF and consider the composition F[N,y] = F[Ny] € A
which extends to a ring homomorphism F[Ny]s — A since the elements of a(S)
are invertible in A (because they are invertible in gr(A) as gr(a(S)) = gr(S)). The
precomposition of the valuation vy, on A with this map is a valuation on F[Ny] s which
coincides with vy, on F[Ny] since the multiplication by a preserves the valuation on
F[No]. Therefore the map F[Ny]s — A is isometric and extends to a filtered ring
homomorphism A — A ([LvO96, Thm.I.3.4.5]). This defines an action of O on
A. O

We recall that ¢ is the cocharacter x — (£9) of GLs. The conjugation by the
matrix (p) in GLo(K') induces a group endomorphism of Ny and a continuous endo-

morphism ¢ of F[No]. We have ¢(Y;) = Y}”; for 1 <i < f —1 and ¢(Yp) = Y7 .
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This implies that ¢ is the composite of the (relative) Frobenius endomorphism with
a permutation of the variables Y;. It follows that ¢ extends to a continuous injective
endomorphism of the ring A with image AP. More generally, for n > 0, the subring
AP" is the image of ¢".

Proposition 3.1.1.5. Let a C A be an ideal of A which is Of-stable. Then a is
controlled by AP, which means

a=A(an AP).

Proof. The proof follows closely the strategy of [AW09].

We note that the pair (A, AP) is a Frobenius pair in the sense of [AW09, Def.2.1]
(to see this use [AWZ0S, Prop.6.6] applied to G = N together with [AW09, Lemma
2.2.(a)] and Remark (1)) We endow A? with the filtration F,A? = AP N E, A
induced by the filtration of A.

Let = a/A(an A?). Endow A(an A?) and a with the filtration induced by
A, and F with the quotient filtration. Then by [LvO96, Rk.I.5.2(2)] and [LvO96,
Cor.1.5.5(1)] all these filtrations are good in the sense of [LvO96, Def.I1.5.1]. Moreover
a and A(aN AP) are complete filtered A-modules by [Lv096), Cor.1.6.3(2))] and thus
so is F' by [LvO96, Prop.1.3.15].

We want to prove that FF = 0. Assume for a contradiction that F' # 0, or
equivalently gr(F') # 0 by [LvO96, Prop.1.4.2(1)].

Let T = 1 4 pOx (this not the I' of the (¢, T')-modules!). This is a uniform pro-
p-group. Note that the action of T" on Ny is uniform in the sense of [AW09, §4.1].
In the notation of [AW09, §4.2], we have Ly, = Ok, g = F, and the action of F, on
Ly, /pLy, is given by the multiplication in F,.

Let P be a (homogeneous) prime ideal in the support of the gr(A)-module gr(F)
(which exists since gr(F") # 0).

Let z € F and 7, = exp(p[z]) € F[No] € A. It follows from [AW09, Prop.4.4]
and [AW09, Prop.3.2(a)] that the family

def

2
a(x) = (Vo V2VE, .. 0)

is a source of derivations of (A, AP) in the sense of [AW09, Def.3.2]. Let Tp C
gr(A) be the set of homogeneous elements of gr(A) which are not in P and let

TI(DP e gr(AP). It follows again from [AW09, Prop.3.2(a)] that a(x) induces on
(Q7p(A), QL (AP)) a source of derivations ar, (), where Qr,(A) (resp. Q. (A?))
P P

is the microlocalization of A (resp. AP) with respect to Tp (resp. Tlgp )). Let S &<
{a(x),r € F)} and Sp = ap,(z),z € Fx}.
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As a is -invariant, a is also S-invariant, i.e. for all z € F; and r > 0, we have
v"a C a. Then ap = Qr,(a) = Qr,(A) ®4 a ([LvO96, Cor.IV.1.18(2)], though here
everything is simpler as all rings are commutative) is an ideal of Qr,(A) which is
Sp-invariant.

Let Py = P N gr(F[No]) (inside gr(A)). We prove that P, contains Ly, /pLy,,
where the latter is seen in gr_, (F[Ny]) (recall Ly, = Npy). Assume this is not true.
Let J < gr(ap) = gr(a)p ([AWZ0S, Lemma 4.4]), which is a graded ideal of the
localization gr(A)p of gr(A) with respect to the set of homogeneous elements which
are not in P, and let Y € gr(A)p such that Y € JS7 (see [AW09, Def.3.4] for the
definition of J57). Noticing that gr(A)p = gr(F[No])r, and that Ly,/pLy, is a 1-
dimensional F -vector space, we can apply [AW09, Prop.4.3] (together with [AW09,
Prop.4.4(c)]) to the graded prime ideal Py of B = gr(F[Ny]) and the graded ideal J
of gr(F[No])p,- We deduce Dp(Y) C J (see [AW(9, §4.3] for the definition of Dp).
It follows from |[AWOQ9, Thm.3.5] applied to the Frobenius pair (Qr,(A), QT}}’) (AP))

and the ideal ap that ap is controlled by @ (A?). Then [AW09, Lemma 2.3] shows
P
that gr(F)p = 0. This is a contradiction.

As Ly, /pLn, generates the F-vector space gr_, (F[No]) = @/ Fy;, it follows that
y; € Pforall 0 <i < f—1 and then that gr(A) = P. This is a contradiction so that
F=0ie a=A(an AP). O

Lemma 3.1.1.6. Let a C A be a proper ideal of A. Then Ny>o(A(aN AP")) =0. In
particular, if p(a) C a we have Ny>oAP" (a) = 0.

Proof. Let a, = A(an A”"). We endow an AP" with the induced filtration of A”" (or
equivalently A). As A is a finite free AP"-module, we have a,, & A® 4 (aNAP"). We
endow this A-module with the tensor product filtration. Since A is a filtered free AP"-
module, it follows from [LvO96], Lemma I1.6.14] that gr(a,) = gr(A)®gammgr(anA?”).
Since gr(A) is a finite free gr(A”" )-module, the natural map gr(a,,) — gr(A) is injective
(and the filtration on a,, is in fact the one induced from A). Moreover from ((104) we
deduce

gr(a,) = gr(F[No]) gy pnzry) gr(an AP"). (105)

Assume that a # A. Then as both a and A are complete and the injection a < A
is strict, it follows as for the A-module F' in the proof of Proposition [3.1.1.5 that
gr(A/a) # 0 (with the quotient filtration on A/a), hence by |[LvO96, Thm.I.4.4(1)]

that gr(a) # gr(A), and a fortiori gr(a,) # gr(A).
Using (105)) and the fact gr(F[No]) = Flyo, ..., ys—1] is free of finite rank over
gr(FING ) = Flyg ,...,y; ], we have inside gr(A) that
gr(a,) N gr(F[No]) = gr(F[No]) @, eqzyy (r(an AP) N gr(FINGT). (106)
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The ideal gr(a,) N gr(F[No]) is therefore generated by homogeneous elements of
gr(F[No]) which are of degree < —p" since homogeneous elements of Flyg ..., v5_|]
of degree zero are invertible and gr(a,) does not contain invertible elements (as

gr(a,) # gr(A)). We conclude that
gr(an) N gr(F[No]) € Fopn (gr(F[No]))-

Consequently (recall (,,>¢ @, has the induced filtration from A)

gr () ) N r(FING]) € ) (gr(an) N g (FING]) = 0. (107)

n>0 n>0

As gr(Ny>0a,) is an ideal in gr(A) = Flyo, ..., ys—1, (Yo - yr—1)""], it follows from
(107) that we must have gr(N,sa,) = 0, and hence that N,>a, = 0 by [Lv096]
Prop.1.4.2(1)]. O

Corollary 3.1.1.7. The only ideals of A which are O -stable are 0 and A.

Proof. Let a be such an ideal and assume that a # A. It follows from Proposition
3.1.1.5 applied recursively with A, AP, etc. that a = A(a N AP") for all n > 0. Then
Lemma [3.1.1.6] implies a = 0. O

An Of-module over A is a finitely generated A-module with a semilinear action
of Ox.

Proposition 3.1.1.8. Let M be an O -module over A. Then M is a finite projective
A-module.

Proof. (We thank Gabriel Dospinescu for suggesting the following proof which is
shorter than our original one.) Let M be an Oj-module. For k > —1 let Fit, (M) be
the k-th Fitting ideal (see for example [Stal9, Def. 07Z9]). As M is a finitely generated
A-module, it follows from [Stal9, Lemma 07ZA] that there exists some r > 0 such that
Fit,.(M) # 0. Let » > 0 be the smallest integer such that Fit,.(M) # 0. Let v € Ok.
It follows easily from the definition of Fit, (M) that Fity(M ®4., A) = v(Fit,(M)) as
ideals of A. The action of v on M induces an A-linear isomorphism M ®4., A = M,
showing that v(Fit(M)) = Fit,(M). It follows then from Corollary that all
the ideals Fity (M) are zero or A. Therefore we have Fit,_, (M) = 0 and Fit, (M) = A
and we deduce from [Stal9, Lemma 07ZD] that M is projective of rank 7. O

3.1.2 Multivariable (¢, O )-modules

We define a functor from a certain abelian category of admissible smooth represen-
tations of GLy(K) over F to a category of multivariable (¢, O )-modules.
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Let R be a noetherian commutative ring of characteristic p endowed with an
injective ring endomorphism Fp such that R is a finite free Fr(R)-module. If M is

def

an R-module, we define Fj;(M) = R ®p, rp M. Examples of such pairs (R, Fg) are
given by (F[No], ¢) and (4, ) in §3.1.1}

A tp-module over R is a pair (M, [3), where M is an R-module and [ is an R-
linear homomorphism M — Fj;(M). When R is a regular ring, Fy is the Frobenius
endomorphism of R and f is an isomorphism, we recover the notion of Fr-module of
[Lyu97], Def.1.1]. We say that a ¥-module (M, f3) is étale if 3 is injective.

If (M, ) is a ¢-module, the exact functor F}; gives us, for each n > 0, an R-linear
map (F3)"(8) : (F5)"(M) — (F5)" ™ (M) and we can define

B = (FR)" "1 (B) 0+ 0 (Fp)(B) 0 B+ M — (Fp)"(M).

The inductive limit of the system ((Fy)"(M), (F})™(B)). gives rise to a ¥-module
(M, B) with 8 an isomorphism. Then (M, 3) generates (M, ) in the sense of [Lyu97,
Def.1.9]. Let M be the image of M in M and M?° the kernel of M — M¢. The map
S induces a structure of 1-module on M° and M® and M® is an étale 1-module.
The y-module M is called the étale part of M and MP° the nilpotent part of M. We
note that (M, 3) and (M®, %) generate the same Fr-module and (M, 3°) generates
the trivial Fr-module whose underlying module is zero. Note that the constructions
(M, ) — (M 3%) and (M, 8) — (M°, %) are functorial in (M, 3) and that, if 3 is
injective, we have M° = 0. This implies that if f : (M, 3) — (M’,3’) is a morphism
of y-modules with (M’, 5') étale, then f factors through M®.

We are mainly interested in a special kind of ¢-module that we call (¢, Of)-
module over A. If M is a finitely generated A-module, we always endow it with
the topology defined by any good filtration (note that good filtrations generate the
same topologies, cf. [LvO96, Lemma 1.5.3]). It is also the quotient topology given
by any surjection A®? — M (as follows from [LvO96, Rk.I1.5.2(2)]), and we call it
the canonical topology on M. The group O acts continuously on A and this action
commutes with the endomorphism ¢. If M is an A-module which is endowed with an
action of Oy, we consider the diagonal action on ¢*(M), which is well defined since
¢ commutes with Oj.

Definition 3.1.2.1. A (¢, Of)-module over A is a ip-module (M, ) over A such
that M is a finitely generated A-module with a continuous semilinear action of O
such that /3 is Ox-equivariant (here, continuity means that the map Ox x M — M is
continuous). We say that a (1, O )-module over A is étale if the underlying ¢)-module
over A is.

We remark that if (M, ) is a (¢, Of)-module, then M is an Ox-module and is
therefore finite projective as an A-module by Proposition [3.1.1.8
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Proposition 3.1.2.2. Let (M, 3) be an étale (¢, Ok )-module over A. Then [ is an
isomorphism.

Proof. We note that the two A-modules M and ¢*(M) = A ®4 4 M have the same
generic rank. As (3 is an injective A-linear map between two finitely generated modules
of the same generic rank over a noetherian domain, its cokernel is torsion. This
cokernel is then an Ox-module which is moreover torsion as an A-module, it follows

from Proposition |3.1.1.8| that it is zero and [ is an isomorphism. O]

We now define a functor from certain representations of GLy(K) over F to (¢, O )-
modules over A.

Let m be an admissible smooth representation of GLy(K) over F. Its (F-linear)
dual 7 is then a finitely generated F[[/;]-module. We fix a good filtration on 7v. As
above, we endow A®ppn, 7" with the tensor product filtration and define the filtered
A-module

Da(m) & ABppvgym” = (7V)s. (108)
As all the good filtrations on 7¥ are equivalent ([LvO96l Lemma 1.5.3]), the underlying
topological A-module does not depend on the choice of the good filtration on 7. An
example of a good filtration on 7" is given by the m;,-adic filtration, as follows directly
from the definition. It is very important to note that the topology used on 7V is not
the my,-adic topology but the m;, -adic topology, which is actually coarser.

Proposition 3.1.2.3. The functor m — D () is ezact.

Proof. Let 0 — " — m — 7" — 0 be an exact sequence of admissible smooth
representations of GLy(K') over F. The sequence 0 — (7)Y — 7¥ — (7)Y — 0 is still
exact. We endowed 7" with a good filtration, (7’)¥ with the quotient filtration and
(7)Y with the induced filtration (which are again good by e.g. [LvO96, Prop.11.1.2.3]).
With these choices, the exact sequence remains exact after applying the functor gr
(see for example [LvO96, Thm.1.4.2.4(1)]). It follows from Lemma from the
exactness of localization and from [LvO96, Thm.[.4.2.4(2)]) that the sequence 0 —
(7" — (m¥)s — (7')§ — 0 is exact and strict. The exactness of 0 — Du(n") —
D4(m) = Da(7") — 0 then follows from [LvO96, Thm.I.3.4.13]. O

We define a continuous action of O on 7w as follows, for f € 7V, v € O we

have
a-nw =i (% Y)e) veen

As Oj; normalizes I, the action of Oj on 7 is continuous for the my,-adic topology.
We use the continuous action of Oy on A to extend this action diagonally to A ®g[n,]
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7w and, by continuity, to D4 (7). The action of O is continuous and A-semilinear
in the sense that

v-(af)=(y-a)y-f) YV (y,a,f) € Ok x Ax Da(r).
We define an F-linear endomorphism 1 of ¥ by the formula
(@) = fEp)r) V(f,z) e’ xm (109)

This endomorphism is continuous, clearly commutes with the action of O and sat-
isfies the relation

for all a € F[Ny], f € 7.

Lemma 3.1.2.4. Let M be some F[No]-module and let ¢ be an F-linear endomor-
phism of M satisfying the relation

Y(p(a)m) = ap(m) VY (a,m) € F[Ng] x M.
Then for all integers n > 0, we have
STV ) C mt
As a consequence, forn > pf — (f — 1), we have

n B

Proof. For n = 0, the result follows from the fact that, if Y(fo . Yf” 1€ m%) (= 1),
there exists some 0 < j < f — 1 such that ¢; > p. Then, for all m € M, we have

T/J(Ybio' Ylf 'm) = J+1¢(YZ YZJ P Yf 'm) € my, M.
The general statement follows from a simple induction on n.

For the last statement, we choose m such that

pm+pf—(f=1) <n<pm+1)+pf—(f-1)

and we use the first statement to deduce that

(i M) C (U0 C mpttv C mp? HCM. O

We extend ¢ to an F-linear map (7¥)g — (7¥)g (recall (7¥)s = F[No]s Qrpngy )

by the formula
m _ (m)
v ((Yb---Yf_l)pn> a (Yo Yq)" (110)

for all m € 7V and n > 0. Each element of (7¥)g can be written as (Y- --Yy_1)""m
for some m € 7¥ and n > 0, and it follows from the properties of ¥ on 7V that the
right-hand side of does not depend on this choice. For any element g in I, we
denote by d, the corresponding element [g] in F[1].
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Lemma 3.1.2.5. The map ¢ : (7¥)s — (7V)s is continuous.

Proof. As all the good filtrations on 7" are equivalent, we choose the my,-adic filtra-
tion on 7" for this proof, i.e. F,m¥ = m; "7 for n < 0 and F,7n¥ = 7" for n > 0.
From the proof of [BHH™, Prop.5.3.3] we have an equality for n > 0:

n o __ T s t
mp = > My, M7, My (111)
r,5,t>0
r+2s+t=n

As &(p) commutes with each element in Ty, and &(p)~' (1 9)&(p) = (L9)P for any
(19) € Ny, it is easily checked from the definition of ¢ and the F[[;]-action on 7"
that

$(0n0: - f) = 0nd9(f) (112)
for all h € Ty, z € Ny . In particular,

t \Y% t \
¢(m?pomNO_7r ) C mf_spomljvgw :

and it follows from Lemma [3.1.2.4] that if r > pf — (f — 1) we have

: [51+2s+pt—f [ f
w(m}"\,omsTomﬁvgﬂv) Cmy “mypmi 7’ Cm,” ™ Cmy * 7. (113)

_m’ C
NO

If r<pf—(f—1), we need the following lemma.
Lemma 3.1.2.6. Let M C ¥ be a closed F[ Ny ]-submodule. Then

U(F[No[my- M) S mp, o (F[No[M).

As a consequence, for all t >0, @/J(]F[[No]]mﬁvo,wv) Cmj 7.

Proof. Note that m;, x F[Ny] x M is compact, as M is closed, hence so is the image
my, Y(F[No] M) of the continuous map my, x F[No] x M — 77, (a,b,m) — ap(bm).
As my- s generated as right F[N; |-module by the §, — 1 for y € Ny and as ¢ is
continuous on 7", it is thus sufficient to prove that, for y € Ny, x € Ny and m € M,
we have ¢(6,(0, — 1)m) € my(F[No]M). As Ny C K;, K is normalized by Ny
and K, = NJTyNy , we can write xy = zitiy;x with (xq1,t1,y1) € Ny x Ty X Ny .
Therefore

¢(5x(5y - 1)m) = ¢(5xf5t15y15$m) - ¢<5xm)
= 6x1t1yf¢(6$m) - 1/}<5$m) - (6x1t1y1f - 1)¢<5$m)
C m11¢(]F[[N0ﬂM)
For the second statement, inductively apply the first to M = m';_lwv, M = mZ_QWV,
etc. ’ ‘O
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When r <pf—(f—1)=(p—-1)f+1, wehave 2s +t >r+2s+t—(p—1)f so
that, using Lemma [3.1.2.6] and the fact that Ty normalizes Ny, we obtain

W(mpy,mipmi ) € my, p(F[No]miy 7)€ mprHa’ C mpf =m0 (114

We deduce from ([110]), (113]) and (114} that, for alln € Z, r > 0, s > 0, ¢t > 0 and
k > 0 such that r +2s 4+t > pf, we have

1 T s t Vil 1 [r+2psit]*f v
1/} (Yb e Yf_l)pkmNomTomN(;W = (YE) . -Yf_l)kmll ™

so that, for n > pf by (111 we have

1 n 1 211
(i ™) € e S B (00

From Remark [3.1.1.3(ii), we know that, for n € Z, F,,((7")g) is the increasing union
over k > max{0, %} of the subspaces

1 —n+pkf v
(yb...yffl)pk I T

hence we deduce for all n € Z that

VE()s) S U Bz (7)s) € Frypz)((79)s).
kZmax{O,ﬁ}

This proves the continuity of . O

We can therefore extend v to a continuous F-linear map v : D(7) — Da(m) such
that
V(p(a)m) = ap(m) V (a,m) € Axr".

~Y

We fix {ag,...,a,-1} a system of representatives of the cosets of Nj = pOg
in Ny = Ok, so that F[No] = @ 0, F[NF]. As ¢(F[Ny]) = F[NJ] and A =
B9 64,6(A), we have a canonical isomorphism for any A-module M:

q—1

¢" (M) = PD(Fdq, @5 M).

1=0

We define an F-linear map 5 : Da(m) = ¢*(Da(m)) = A®gp 4 Da(m) by

Da(m) — @Y, (Fé,, ®r Da(r))

mo o Y00, ®g (5, m) (115)

(we write & ®, y instead of just z ® y in order not to forget the map ¢ in the tensor
product).
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Remark 3.1.2.7. The definition of the map S does not depend on the choice of the
system {a;}, namely, replacing a; with a;b” for some b € Ny, we have

Oabr @ ( a_z}npm) = da,b0 D ¢(¢(5b)_15;1m) = Oazbr D 51:17’0(5‘1_1'17”)
= Ga,tr 0" ® (8, 'm) = b4, ®15(6,,'m).

Using Remark , we easily check that § is actually an A-linear map (note
that it is enough to check it for an element in d,,¢(A) using A = B, d,,6(A), and
thus for d,, and for an element in ¢(A)), hence 5 : Da(mw) — ¢*(Da(m)) can be seen
as a “linearization” of ¢ : Da(w) — Da(w). Moreover, letting O act diagonally on
A®y 4D 4(m), the map (3 is then O-equivariant. Indeed, for a € O and m € D (),
we have

i=0 i=0
q—1 q—1

=D Oaa; @ W(a-0,m) =D Gaa; @4 U(054,(a - m))
=0 =0

= B(a-m),

the last equality coming from Remark [3.1.2.7| and the fact that {a - ag,...,a-a,1}
is another system of representatives of N§ in Nj.

It is convenient to assume that the admissible smooth representation 7 has a
central character, in which case Z; acts trivially on 7 and 7V is a finitely generated
F[11/Z1]-module. We recall from [BHH", §5.3] that the graded ring gr(IF[1;/Z1]) of

F[11/Z] is isomorphic to a tensor product of (noncommutative) graded rings

f-1
& Flyi, zi, hil, (116)
i=0

where variables with different indices commute, where [y;, z;] = hy, [hi, yi] = [hi, 2] =

0, where y;, z; are homogeneous of degree —1, and h; is homogeneous of degree
—2. Note that the my, 7 -adic topology on F[/;/Z;] induces the my,-adic topol-
ogy on F[Ny] via the inclusion F[Ny] C F[{;/Z;]. Therefore the map gr(F[No]) —
gr(F[11/Z1]) is injective and its image is Flyo, ..., yr—1] in gr(F[11/Z1]).

Remark 3.1.2.8. The A-module D,(7) can also be defined as the microlocaliza-
tion of 7V with respect to the multiplicative subset T = {(yo---y;_1)", k € N} C
gr(F[1,/Z,]). This shows that D(m) can be promoted to a module over the noncom-
mutative ring which is the microlocalization of F[[1; /7] with respect to T

We now let C be the category of admissible smooth representations 7 of GLy(K)
over F with a central character and such that there exists a good filtration on the
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F[I,/Z]-module 7 such that gr(D4(7)) is a finitely generated gr(A)-module, or
equivalently by Lemma and Corollary gr(m)[(yo - - - yp—1)""] is finitely
generated over gr(F[No])[(yo- - - yr—1)"']. By [LvO96, Thm.1.5.7] this is also equiva-
lent to require that D4 () is finitely generated over A and that its natural filtration
in is good (equivalently gives the canonical topology). In particular, if this
holds for one good filtration on 7", then this holds for all good filtrations. It easily
follows from the proof of Proposition and the noetherianity of gr(A) (Corollary
that C is an abelian subcategory stable under subquotients and extensions in
the category of smooth representations of GLy(K') over F with a central character.

For 7 in C, the pair (D4(nm),3) is an example of (¢, O)-module over A as in
Definition We can in particular consider its étale part D4(m)%. The action
of O on D4(m) preserves its nilpotent part D4(7)° and thus induces a continuous
action of O on D(m)%. In particular, D(7)% is an étale (¢, O )-module over A.
Note that the canonical topology on the finitely generated A-module D 4(m) is also
the quotient topology of Da(m) — D4 ().

Corollary 3.1.2.9. Let 7 in C. Then the A-modules D () and D ()¢ are finite
projective over A. Moreover the map B% : D ()% — ¢*D (7)) is an isomorphism.

Proof. This is a special case of Propositions [3.1.1.8] and 3.1.2.2] O

Remark 3.1.2.10. If 7 is 1-dimensional (a character of GLy(K)), then Dy(m) =
DA(ﬂ')ét =0.

We give an important condition on an admissible smooth representation = (with

a central character) which ensures that 7 is in C. Let J be the following graded ideal
of gr(F[L1/Z1]):

J = (yizi hi, 0 <0 < f = 1). (117)

From the definition of equivalent filtrations (see [Lv096, §1.3.2]), one easily sees (using
[LvO96l, Lemma 1.5.3]) that if gr(7") is annihilated by some power of J for one good
filtration on 7, then it is so for all good filtrations (but note that the power of .J
which annihilates gr(7") may depend on the fixed good filtration).

Proposition 3.1.2.11. Assume that gr(w") is annihilated by some power of J. Then
the A-module D () is finite projective and the gr(A)-module gr(Da(m)) is finitely
generated.

Proof. As the hypothesis does not depend on the choice of the good filtration on
7, we are free to work with the m;, ,» -adic topology on V. Let us first prove that
gr(D4(m)) is a finitely generated gr(A)-module. It follows from the admissibility
of 7 and from the hypothesis that gr(7") is a finitely generated gr(F[I,/Z,])/J"-
module for some N > 1. Lemma then implies that gr(Da(m)) is a finitely
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generated (gr(F[L1/Z1])/I™)(yo - - - ys—1)~'|-module. It is therefore sufficient to prove
that (gr(F[L/Z1])/IN)(yo---ys—1)""] is a finitely generated gr(A)-module. Since
gr(F[11/Z]) is noetherian, we are reduced by dévissage to the case N = 1, where we
have

(er®LL/20)/7) (o yr0)] = (Flyis 21, hil/ (gsze b)) (o - yp1) ']
= Fly"] = gr(A).

Finally, as D4(7) is a complete filtered A-module, it then follows from [LvO96,
Thm.I.5.7] that D () is finitely generated over A and from Proposition |3.1.1.8| that
it is projective. O

It follows from Proposition that the admissible smooth representations 7
(with a central character) such that gr(7") is annihilated by some power of J for at
least one good filtration is a full subcategory of the category C. Moreover this full
subcategory is abelian and stable under subquotients and extensions in C. Namely,
for a short exact sequence 0 — " — m — 7”7 — 0 in C, the filtrations induced on
(7)Y and (7)Y by a good filtration of 7" are good. For these filtrations we have a
short exact sequence 0 — gr((7”)¥) — gr(n¥) — gr((n’)¥) — 0 which shows that
gr(m") is annihilated by a power of J if and only if gr((7")") and gr((7”)") are.

Remark 3.1.2.12. It is natural to consider the image D% () of @V in Dy(r) =
A®pnom". Indeed, as the map 7 — Dy(m) is continuous and 7" is compact, it
follows that D%(m) is a compact F[Ny]-submodule of D4(7). However, the F[N]-
module Di(ﬂ') is not finitely generated when 7 is an irreducible admissible supersin-
gular representation and [K : Q,] > 1 (even if D(m) is finitely generated over A).
Namely, if this was the case, this would give us the existence of a nontrivial finitely
generated F[Ny][(%Y)]-submodule of 7 that is admissible as F[Ny]-module and this
would contradict the results of [Schi5] and [Wul. Likewise, the image of 7V in the
quotient D 4(m)¢ of Dy(w) won’t be finitely generated over F[Ny] in general (see

Remark [3.3.5.4(ii)).

3.1.3 Multivariable (p, O%)-modules

Using the results of §3.1.2) we promote the functor 7 — D4 ()¢ to an exact functor
from C to a category of étale multivariable (¢, O )-modules (Theorem |3.1.3.3) and
we compare D () with the functor DY () of §2.1.1| (Theorem [3.1.3.7)).

Let R be a noetherian commutative ring of characteristic p endowed with an
injective ring endomorphism Fp such that R is a finite free Fr(R)-module (as at
the beginning of . A p-module (D, ) over R is an R-module D with an Fg-
semilinear map ¢ : D — D. We say that a ¢-module (D, ¢) is étale if the R-linear
map Fj(D) — D defined by a ® d — ayp(d) is an isomorphism.
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Definition 3.1.3.1. A (¢, O )-module over A is a ¢-module (D, ) over A such
that D is a finitely generated A-module, the endomorphism ¢ is continuous (for the
canonical topology on D as at the beginning of and D is endowed with a
continuous A-semilinear action of O commuting with ¢. We say that a (¢, O%)-
module over A is étale if the underlying ¢-module over A is.

We note that, by Proposition |3.1.1.8] if (D, ¢) is a (¢, Of)-module over A, then
D is a finite projective A-module.

If (D, B) is an étale (1, Of)-module over A as in Deﬁnition by Proposition
we can define a ¢-semilinear endomorphism ¢ of D such that Id®p = 371,
so that (D, ) is an étale (¢, Of)-module over A. (Note that ¢ is continuous, as the
topology of D is defined by any good filtration and ¢ : A — A is continuous.)

We now go back to representations 7w of GLg(K), but we first need some more
notation. The trace map tr : Ny = Og — Z, induces a ring homomorphism tr :
F[No] — F[Z,] = F[X], where we recall that X = (}1) — 1. Moreover, for ¥; as in
(100)), we have tr(Y;) = —X mod X? (see Lemma and the last statement in
Lemma below) and the universal property of the ring A shows that this map

extends to a continuous ring homomorphism tr : A — F((X)). We let
p = Ker(tr : A — F(X)).
Then p is a closed maximal ideal of A. Note that
p N F[No] = Ker(tr : F[No] — F[X]) = mp, F[No] = (Yo — Vi,..., Yy — Y}_1),

where N7 C N is as in (for the second isomorphism write Ny = N, & Z,e, where
tr(e) = 1, noting that tr : O — Z, is surjective, as K is unramified, and for the
third use the first statement of Lemma (3.2.2.4] below).

Remark 3.1.3.2. Let B be the completion of F[Ny] s along the prime ideal generated
by (Yo — Yi,...,Yy — Y1) (see the beginning of for S). Expanding Y, =
(Yo — (Yo — Y;))" if n > 0, and writing Y* = (3%, (Yf,;}ffm)*” and expanding
everything if n < 0, one can see using Remark (iii) Othat the ring A embeds
into B. The endomorphism ¢ on A extends to B but only the action of Z C O
extends to B, as (Yy — Yi,...,Yy — Ys_1) is not preserved by all of Of. Then from
Corollaryand as B is a local ring, we see that D4 (7)*®4 B is a finite free étale
(¢, Z)-module over B, which is similar to the generalized (i, I')-modules defined in
[SV1I] (though loc.cit. only considers split algebraic groups over Q).

Let m be in the category C. Using Corollary we can define a ¢-semilinear
endomorphism ¢ of D4(m)% such that Id ®p = (5%)7!, so that Da(7)® is an étale
(¢, O5)-module over A. As p is a ¢-stable ideal of A, we deduce that D, (7)%/p =
Da(m)* @4 F((X)) is an étale (¢, Z))-module over F((X)).
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Theorem 3.1.3.3.

(i) The functor m — Da(m) is exact from the category C to the category of étale
(¢, OF%)-modules over A.

(i) The functor m — Da(m)*@4F (X)) is ezact from the category C to the category
of étale (p,Z)-modules over F((X)).

Proof. (i) is a consequence of Proposition [3.1.2.3] of the exactness of ¢* and of the
exactness of direct limits, together with the description (see the beginning of §3.1.2))

DAME = lim ()(Da(m)®) = L (6 (Da(m).
(¢*)™(B¢) (¢*)™(8)
(ii) is a consequence of (i), of Corollary [3.1.2.9/ and of the exactness of (—) ®4 F((X))
on short exact sequences of finite projective A-modules. O

Remark 3.1.3.4. One can prove that if 7 € C then the endomorphism ¢ : D(7) —
D(m) (defined right after Lemma is always surjective. (This follows ulti-
mately from the fact that the image of the natural map A ®gpn,] 7 — Da(r) is
surjective since A is complete and Noetherian, and A @y, 7" is endowed with a
surjective endomorphism that is compatible with ¢» on D4(7).) In particular, this
implies that D4(7)% # 0 as soon as Da(7) # 0, since 1 cannot be nilpotent if it is
surjective on D 4(m) and the latter is nonzero. Note that for the representations 7 of

particular interest for us here, we will actually have D(7) = D4(m)®; see Remark

3.3.5.4((ii).
We now compare the étale (¢, ZX)-module D ()% /p with D () (15).

Let ¢ be the F-linear endomorphism of 7 /my, = (7)Y defined by

P(r) = > P(67) mod my,, (118)

b€N1/Nf
where b € Ny is a lift of b, # € 7V is a lift of z and 1 is as in (it is easy to
check that the definition of 1) does not depend on the choice of these lifts). We have
(S(XP)Ym) = S(X)(m) for all S(X) € F[X] and m € n¥/my,, and ¢ is the dual
of the endomorphism F of 7™Vt in . We define an endomorphism 1 of D4 (7)/p
(resp. Da(m)%/p) by the same formula replacing 7" by Da(w) (resp. D4(m)%) and
my, by p, it is then clear that the following diagram commutes:

™ /my, _v, 7 /my,

J ) J (119)

Da(r)/p —— Da(m)/p,
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together with an analogous diagram with D4 (7)/p — D4(7)%/p that we leave to the
reader.

Let B : Da(m)/p — ¢"(Da(m)/p) = FIX] @px1x) (Dalm)/p) = ¢"(Da(n))/p be
the F((X))-linear map defined by

Blm) = S™(1 4 X)~ @ B((1 + X)'m).

=0

Lemma 3.1.3.5. The following diagram is commutative (where the horizontal maps
are the canonical surjections):

DA(T(') —_—> DA(ﬂ')

E

¢"(Da(m)) —— ¢"(Da(m)/p).

isy

Proof. We choose a system of representatives (g~'b;)o<i<p—1 of No/N§ such that
1<j<p/~!

9= (41) € Ny and by, ... by are in Ny. We then have for m € D 4(r) that

p—1pf~t
B(m) = ( 0y, Qg ¢(5;j15gim))
=0 j5=1
p—1 ’ pf—t
=3 (6" ®s 3 v, m))) mod pg*(Da(r))
=0
p—1

(591'1 Rg w((sglm) mod p¢* (DA(W)%

s
Il
o

where the first equality follows from ([115]), the second from 0, —1 € p C A (and the
commutativity of Np), and the third from the analog of (118]) for D4(m)/p. Noting
that the image of 6, in F[X] is (1 4+ X)’, we obtain the desired compatibility. [

Lemma 3.1.3.6. Let M C 7™ be an F[X]-submodule that is admissible as F[X]-
module. Then the surjective map 7 — MY is continuous for the my, -adic topology
on w and the X-adic topology on M.

Proof. The map 7w — MV is continuous with respect to the natural profinite topolo-
gies arising from Pontryagin duality. As M is admissible as F[ X ]-module, the natural
topology on MV is the X-adic topology. It thus suffices to show that the my, -adic
topology is at least as fine as the natural topology on 7. Dually this means that
any finite-dimensional subspace of 7 is contained in ﬂ[mﬁ ] for some sufficiently large
integer N, which is true by smoothness. O]
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Recall that we defined in a projective limit D (7) of étale (¢, Z,;)-modules
over F((X)) associated to .

Theorem 3.1.3.7. We have an isomorphism of étale (¢, Z))-modules over F((X)):
Da(m)*/p — D¢ (7).

In particular, D¢ (r) is finite-dimensional over F((X)) and the functor m — D{ ()
is exact on C.

Proof. As a first step we construct the map. Let M C 71 be a finitely generated
F[X][F]-submodule that is admissible as F[X]-module and Z}-stable. By Lemma
3.1.3.6, the map 7Y — MV is continuous. It extends to a surjection of F[Ny]s-
modules (7V)g — MY[X!]. By definition of the tensor product filtration on (7V)sg,
this surjection is continuous if MV[X '] is endowed with its natural topology of
finite-dimensional F((X))-vector space. As MY[X ] is complete for this topology, by
completion we obtain a continuous surjection of topological A-modules (s : D(7) —
MY[X™!]. Since N; acts trivially on M, (ys factors through a surjection of F((X))-
vector spaces (y : Da(m)/p — MY[X~1]. By definition of 1, we obtain a commutative
diagram (where FV is the F-linear dual of F' : M — M that we extend to MV [X ]
using FY(X7'f) = X F(X'P=1) f))

Da(m)/p —s MY[X]

o

Da(m)/p =2 MY[XY).

It then follows from Lemma|3.1.3.5|that, identifying ¢*(M") = F[X]®, ppxy M"Y with
(FIX] ®yrpxg M)V via (14), the following diagram is commutative:

Da(r) —— Da(m)/p —M 5 MV[X]

Jﬂ F B (1d@F)Y (120)
¢"(Da(m)) — 6" (Da(m)/p) =24 ¢ (MY[X ),

where (Id®F)" comes from F-linear dual of [d®F : F[X] ®,rx1 M — M. As
(Id®F)Y is an isomorphism (see just after (14))), the map (ar @ Da(w) — MV[X ]
factors through D4 ()¢ and the map Cyr : Da(m)/p — MY[X™!] factors through
Da(7)%/p. The map Cpr : Da(m)%/p = MY[X Y clearly commutes with the action
of Z,; and the commutative diagram shows that it is a morphism p-modules.
These maps are obviously compatible when M is varying among the finitely generated
F[X][F]-submodules of 7™ that are admissible as F[X]-modules and Z-stable so
that we obtain a map

C: Da(m)®/p — lim MY[X~'] = DY (m).
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We prove that the map ( is surjective. Since D(7)%/p is a finite-dimensional
[F((X))-vector space, the dimension of the vector spaces MY[X 1| when M is varying
is bounded. This implies that there exists some M such that Dy (r) = MY[X '] and
that the map ¢ : Da(m)/p — DY (n) is surjective. In particular, dimg(x) Dy (7) <
+00.

We prove that the map ( is an isomorphism. Let D(7)® be the image of 7V in
Da(7)%/p. This is a compact F[X]-module in the finite-dimensional F((X ))-vector
space D ()% /p, hence a finite free F[X]-module. Since the maps 7 — Da(7)/p —
Dy(m)® /p commute with the action of ZX, D*(m)® is preserved by ZX. The image
of (1¥)g in D4 ()¢ /p coincides with D%(7)*[X~!]. As (7¥)s has a dense image in
D4 (7) by definition, D*(m)[X 1] is a dense F((X))-vector subspace of D ()% /p
and thus equal to D4(m)®/p by finiteness of the dimension. The surjective map
7V — D¥()® factors through 7 /mpy, = (7)Y so that the topological F-linear dual
(DA(m)é)Y of D(7)® is identified with an F[X]-submodule of 7™ (endowed with the
discrete topology) preserved by ZX. As D*(m)% is stable by 1 by , (D4(7)et)V
is actually an F[X][F]-submodule of 71, Since 5% : Da(7)® = ¢*(Da(m)®) is an
isomorphism, it easily follows from Lemma that the map B induces a surjective
map of finite-dimensional F((X))-vector spaces B : Da(m)%/p — ¢*(Da(m)é/p).
As these spaces have the same dimension, Bet is actually an isomorphism, and in
particular Bet|Dh(ﬂ.)ét : D¥(m)® — F[X] ®,rpxg D¥(m)® is an injection and becomes an
isomorphism after inverting X.

We claim that (Df(7)®)Y is finitely generated as F[X][F]-module. Note that
(DA(m)%)" is admissible as an F[X]-module since D*(7) is a finitely generated F[X]-
module. Hence, the claim follows from [Brel5, Lemma 5.2] using the last statement
of the previous paragraph.

We now give another proof of the claim using results of |[Lyu97, §4]. In fact,
we even prove that (D¥(m)%)Y is of finite length as F[X][F]-module. As F is a
finite extension of F,,, the F,[X]-module (Df(7)%)" is artinian so that the F,[X][F]-
module (D*(m)%)Y is a cofinite F,[X][F]-module in the sense of [Lyu97, §4] (the ring
F,[XT[F] is isomorphic to the ring A{f} of loc. cit. where A = TF,[X]). It follows
from Theorem 4.7 in loc. cit. that (D%(7)*)Y has a filtration

0=MyC M C- - C M, = (D))"
by F,[X][F]-submodules such that M, ,/M; is a simple [F,[ X][F]-module or a nilpo-
tent F,[X][F]-module, i.e. such that some power of F' is zero on M,,1/M,. Let
M+ be the kernel of D(m)® — MY for all i. As Bét‘Dh(ﬂ-)ét coincides with (Id @ F)Y
(this is analogous to ([120)) using with M = (D%m)%)V), the map Bét induces
an isomorphism of F,( X)) ®r,x] M;- onto F,(X)) ®ur,1x) M;-. In particular, if

M;1/M; is nilpotent then F¥ induces a nilpotent endomorphism of M;-/M:;, so that
Fy (X)) @, 1x1 M = Fp (X)) @, 137 MiTy (as Fy(X) ®@pyrypx (M /M) = 0 in this
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case) and hence M- /M, is a torsion F,[X]-module. As D*(r)* is a finitely gener-
ated F,[X]-module, we conclude that when M; /M, is nilpotent the F,[X]-module
M;- /M is finite-dimensional over F,, in particular it is an F,[X][F]-module of fi-
nite length. Since M;,1/M; is obviously of finite length when M, /M, is irreducible,
the claim follows.

The claim implies that (D%(7)*)V is one of the modules M C 7™ in §2.1.1] in
particular

dimIF((X)) Dg/(ﬂ) Z dimF((X))(Dh(W)ét[X_l]) = dimﬂr((X))(DA(ﬂ-)ét/p).

This implies that the map ¢ is an isomorphism (and that D4(7)%/p = D*(7)*[X 1]
D{(m)). The very last statement follows from Theorem [3.1.3.3(ii).

(Y

3.1.4 An upper bound for the ranks of D ()% and Dy ()

For 7 in C we bound the dimension of D/ () in terms of gr(7"). When gr(r") is
killed by some J", we give an interpretation of this bound as a certain multiplicity.

We keep all previous notation. We start by the following lemma.

Lemma 3.1.4.1. Let M be a finitely generated A-module endowed with a good filtra-
tion. Then the generic rank of the A-module M and the generic rank of the gr(A)-
module gr(M) coincide.

Proof. We first note that if N is an A-module of generic rank 0, then N® 4Frac(A) = 0
and N is a torsion module. This implies that gr(/N) is a torsion module and that its
generic rank is 0.

Let d be the generic rank of M and f : A% — M ®4 Frac(A) be a morphism of
A-modules sending an A-basis of the left-hand side to a Frac(A)-basis of the right-
hand side. The kernel of f is then a torsion A-submodule of A®? and is zero since A
is a domain. Moreover there exists a € A\{0} such that the image of af is contained
in M. As Frac(A) is a flat A-module, the generic rank is an additive map on the
abelian category of finitely generated A-modules. As af is injective and A%¢ and M
have identical generic ranks, this implies that the cokernel @) of af has generic rank
0. We fix a good filtration on M: it induces good filtrations on af(A%®?) and on Q.
For these filtrations we have a short exact sequence

0 — gr(af(A®)) — gr(M) — gr(Q) — 0.

As @ has generic rank 0, so does gr(Q) so that it suffices to prove that gr(af(A®?))
has generic rank d. It follows from the second paragraph after [Bjo89, Def.4.2] that,
for a finitely generated A-module N, the generic rank of gr(N) does not depend on
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the choice of good filtration. We can thus choose a good filtration af(A%®d) =~ A4
which is filtered free with respect to the canonical basis of A%¢, for which the result
is obvious. O

Let 7 be in the category C and choose a good filtration on the F[I; /Z;]-module 7".
Since the finitely generated A-module D4(7) doesn’t depend up to isomorphism on
the choice of this good filtration (see , it follows from Lemma (applied
to M = D4(m)) and Lemma (applied to M = 7¥) that the generic rank of
gr(A) ®grrpng) gr(m) also doesn’t depend on this choice.

Proposition 3.1.4.2. Let 7 € C. Then rka(D (7)) = dimg(x) D¢ () is bounded
by the generic rank of the gr(A)-module gr(A) @grwne]) gr(m”).

Proof. As Da(m)® is a quotient of D4(w), the result follows from Lemma [3.1.4.1]
Lemma B.T.T.1 and Theorem B.1.3.7 O

When gr(7") is moreover killed by the ideal J™ for some n > 1 (here J is as
in ((117) and recall this doesn’t depend on the good filtration), the generic rank of
gr(A) ®grwpng) 8r(m) has a nice and useful interpretation that we give now.

We define R & gr(F[,/Z1])/J. Recall using (116) that we have

Therefore R has 2/ minimal prime ideals which are the ideals (y;, zj,i € J,j ¢ J)
with J a subset of {0,...,f —1}. Let

o= (2,0<) < f—1)
be the minimal prime ideal corresponding to the choice of J = ().

If N is a finitely generated module over R and q is a minimal prime ideal of R, we
denote by mg(N) the length of N, over R,. More generally, if N is a finitely generated
gr(F[I,/Z1])-module annihilated by J" for some n > 1, we define the multiplicity of
N at q to be

n—1
mg(N) = > me(J'N/J*'N). (122)
=0
Lemma 3.1.4.3. If0 - Ny - N — Ny — 0 is a short exact sequence of finitely
generated gr(F[1/Z1])/J"-modules, then mq(N) = mq(N1) + mg(Na).

Proof. This is checked by a standard dévissage. If n = 1, the statement is obvious
since gr(F[I1/Z1])/J = R is commutative (and noetherian). Assume n > 2 and by
induction we assume that the result holds if N is annihilated by J" 1.
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Assume first that N; and N, are both annihilated by J7~! (but not necessarily
N). Then Nj is a quotient of N/J* 'N. Let Ker & Ker(N/J"'N — N,) be the
corresponding kernel. Then we have two short exact sequences

0— Ker = N/J"'N = Ny = 0

0— J"'N — N, — Ker — 0. (123)
By definition of m4(/N) and the inductive hypothesis, we then obtain

mg(N) = mq(J""'N) +mq(N/J"IN) = mq(N1) + mq(Na).

Assume now that Ny is annihilated by J"~' (but not necessarily for Ni). Then
the surjection N —» N, factors through the quotient N/J"!N of N. Again let
Ker = Ker(N/J" !N — Ny). Then mg(N/J" 'N) = mg(Ker) + m,(N,) by the
inductive hypothesis. On the other hand, both J" !N and Ker are annihilated by
J"1, thus my(+) is additive for the short exact sequence by the discussion in
last paragraph. The result also holds in this case.

To finish the proof it suffices to decompose further N as 0 — Ker' — N —
Ny /J" 1Ny — 0 and apply the above discussion. O

If N is a finitely generated module over gr(F[I,/Z,])/J™ for some n > 1 recall
that the gr(A)-module gr(A) ®gwn,)) IV is finitely generated by Proposition(3.1.2.11}

Lemma 3.1.4.4. Let N be a finitely generated module over gr(F[1,/Z])/J" for some
n > 1. Then the generic rank of the gr(A)-module gr(A) Qg wnoy) N is equal to
Mg (N>

Proof. By Corollary gr(A) is flat over gr(F[No]), so gr(A) @grwpno) N has a
finite filtration with graded pieces given by gr(A4) g (JN/JTIN) for 0 <i <
n — 1. Since taking generic rank and taking my, () are both additive in short exact
sequences (by Lemma for the latter), we are reduced to the case where N is
killed by J.

In that case we have

gr(A) Qgrpvon) N = (8r(4) Qurpvog) ) @5 N,
Since the image of gr(F[No]) in R is Flyo, . .., ys-1], we have
gr(A) @gevan B = Rl(yo -+ yp-1) '] = gr(A).

Since the fraction field of R[(yo---ys—1)7"] is just Ry,, we see that the generic rank
of the R[(yo - - - ys—1)"']-module gr(A) Qgurnog) N is equal to my, (N). O
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We finally deduce from Proposition [3.1.4.2) and Lemma [3.1.4.4}

Corollary 3.1.4.5. Let w be an admissible smooth representation of GLy(K) over F
with a central character having at least one good filtration such that the gr(F[1,/Z1])-
module gr(m") is killed by some power of J. Then we have

l"]:{A(DA(ﬂ')ét) = dim]p((X)) Dg/(ﬂ') S Mpq (gl‘(ﬂ'v)).

3.2 Tensor induction for GLy(Q,r)

We prove that Vi, () (as defined in (16])) contains some copies of a tensor induction
as in Example [2.1.2.1|for certain admissible smooth representations 7 of GLy(K) over

F (Theorem (3.2.1.1]).

We recall that the definition of the functor V1, depends on the choice of a charac-
ter {g1,, which we have fixed to be g1, () = diag(x, 1), and depends on a normalizing
character dgr, = ind*(w) (cf. Example [2.1.1.3)).

3.2.1 Lower bound for Vi, (7): statement

We state the main theorem of this section on Vip,(7) for certain admissible smooth
representations m of GLy(K') over F (Theorem [3.2.1.1)). After some simple reductions,

this theorem will be proved in §§3.2.2) to [3.2.4]

We keep all the previous notation and denote by Ik the inertia subgroup of
Gal(Q,/K). We fix an embedding of : F,2r — F such that O'[/)hgpf = 09 (see the
very beginning of , and denote by wy,way @ [ — F* Serre’s corresponding funda-
mental characters of level f and 2f.

We consider p: Gal(Q,/K) — GLy(F) of the following form up to twist:

- 1oty o1 if p is reducible, (124)

Piie = Z; o (rj+1)p7 zf:f o (ry )t if p is irreducible,

where the integers r; satisfy the following (strong) genericity condition:
2f —1<r;<p—2-2f if 7 > 0 or p is reducible, (125)

2f <ro<p-—1-2f if pis irreducible

(note that this implies in particular p > 4f +1). Let x : Gal(@p /K) — F* such that

ri+1)p?
(P ® X)|1, is as in (124)) and moreover det(p @ x) = J; o
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We refer to [Pas04] and [BP12l §§9,13] (and the references therein) for the back-
ground and definitions about diagrams.

We choose one diagram D(p® x) = (D1 — Dy) associated to p® x in [Brelll, §5],
and we set

D(p) = (D1(p) = Do(p)) = (D1 ® (x ' odet) = Dy @ (x ' odet)),  (126)

where the actions of GLy(Of) and the center K* on Dy(p) (resp. of I, (2 (1)) and K*
on Di(p)) are multiplied by y ! odet via local class field theory for K (note that y is
trivial on K7 and I; and recall that (2 %) normalizes I and I;). Recall that the action
of GLy(Ok) on Dy(p) factors through GLy(Ok) — GLy(F,). More precisely, denoting
by W(p) the set of Serre weights of p defined in [BDJI10L §3], Dy(p) is the (unique)
maximal finite-dimensional representation of GLy(FF,) over ' with socle isomorphic
to @yew(p)0 such that each o € W(p) occurs with multiplicity 1 in Dy(p). Finally
K* acts on Dy(p) by the character det(p)w™.

If 7 is an admissible smooth representation of GLy(K) over F, recall that (7t —
K1) is naturally a diagram. We aim to prove the following theorem.

Theorem 3.2.1.1. Let m be an admissible smooth representation of GLo(K) over
F. Assume that there exists an integer r > 1 such that one has an isomorphism of
diagrams

D(p)* = (nft — 71,

|1, - If we
assume moreover that the constants v; associated to D(p ® X) at the beginning of
[Brelll, §6] are as in [Brelll Thm.6.4], then one has a Gal(Q,/Q,)-equivariant injec-

tion (ind5 ()™ = Vir, (m).

Then one has an Ilg,-equivariant injection (ind?}@”(ﬁ))%’; — Vo, (7)

Let us first make some straightforward reductions. In order not to repeat argu-
ments, we assume from now on that the constants v; associated to D(p®x) in [Brelll
§6] are as in [Brelll Thm.6.4] and we will prove the last statement of Theorem
(the proof for the first one being the same up to some trivial modifications). It is
enough to prove Theorem for the GLy( K )-subrepresentation of 7 generated by

Do(p)®". Hence we can assume that 7 has a central character which is x, = det(p)w™".

Using Remark [2.1.1.4(ii) (for n = 2), it is also enough to prove Theorem |3.2.1.1| for

(rj+1)p?
P ® x as above, i.e. we can assume p|y,. is as in (124)) and det(p) = wa]( o

In the sequel, for any F[X][F|-submodule M of 7' which is stable under ZJ,
denote by M ® x; ! the same F[X]-module but where the action of F is multiplied

by xx(p)~! and the action of z € Z is multiplied by x,(z)".

124



Lemma 3.2.1.2. With the notation in §2.1.1} it is enough to prove that (1 @ x; )™
contains a finite type F[X][F]-submodule M which is admissible as F[X]-module and

stable under Z such that V(M"[1/X]) = (ind}e}(@p(ﬁﬁ@r.

Proof. As (7 @ x;1)M = 7 as F-vector subspaces of 7, we can assume that 7!
contains a finite type F[X][F]-submodule M which is admissible as F[ X ]-module and

stable under Z such that V(M ®x;")V[1/X]) = (ind?}(@p(ﬁ))@r. From the definition

of Vg, in |D it is enough to prove VV(MY[1/X]) ® dar, = (ind}e}(@p(ﬁ))@r. From
Example 2.1.1.3|and as in Remark [2.1.1.4ii) (both for n = 2), we have

VYMY[X) ®bc, = V(Mo /X)) ® (wlg:
= ((nd()”")" @ indz(det(p))
(indi®@) "
which finishes the proof. m

The sections that follow will be devoted to the proof that there exists a certain
finite type F[X][F]-submodule M, of 7™ which is admissible as F[X]-module and

stable under Z such that V((M, @ x;")"[1/X]) = (ind}e}(@p(ﬁ))@ (see Proposition
>, (it

3.2.4.6). Note that the assumption det(p) = w; implies x.(p) = 1, so that
the operator F' on M, ® x;' is the same as on M,, but the action of v € Z, now
comes from the action of ((1] 791> on 71,

3.2.2 Preliminaries

We give some technical results on F[Ny], F[No/N;] and on certain modules over these
rings coming from Serre weights.

We let H = (Fg FOX )%“ I/I; € GLy(F,) (this finite group H shouldn’t be confused
with the algebraic group H in §2.1.1or in §2.1). Note that the trace Trg g, : Ox —
Z, is surjective (using that K is unramified) hence directly induces an isomorphism
No/Ny = Z,. Recall we defined the elements Y; for ¢ € {0,..., f — 1} in (100). We
define analogously

yE S ot (é ‘f) € F[Z,] = F[No/Ni].

aEFg

We write i for an element (ig,...,i; ;) in Z7, Y* for Y{° - -Y;f’ll and set [|i|| =

Zf;é i;. We also write i < ¢’ to mean i; < it for 0 <j < f—1.
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Lemma 3.2.2.1. We have the following isomorphisms and equalities:
(i) F[No] = F[Yo,..., Yy 1] and F[No/Ng] E F[Yo, ..., Y]/ (Y-, Y1),
(ii) Yip({]’ (1)): (g?)YQH and ( u) = (A Y(é\ 2) for N peFy;

(i) F[No/Ni] = F[Y] and (§9)Y = M\ )Y (§9) for A, p € Fy.

Proof. Note that F[Ny/N§] = F[( )] The first equality in (i) and the explicit
action of ( ) on Y% in (ii) are immediately obtained from [Morl7, Lemma 3.2]
(after conjugating by the element ( )) The second equality in (i) follows from the

first by dimension reasons, as Y’ = 0 in F[Ny/N§]. The action of (0 1) on Y in

(ii) is a direct computation (see also [Morl7, Lemma 5.1]). Finally, (iii) is a special
case of (i) and (ii). O

Note that F[No/N1] = F[X] = F[Y] with X = (}1)~1 as in §2.1.1} but it is
more convenient in the computations to use the “ H-eigenvariable” Y rather than the
variable X. To compare them the following lemma will be useful.

Lemma 3.2.2.2. We have X € =Y (1 + YF[Y]) and Y € —X(1 + XF[X]) in
F[No/N].

Proof. Equivalently, we have to prove Y = —X in m/m?, where m is the maximal
ideal of F[No/N;]. We can work modulo m?, i.e. in F[Ny /N, N{| = F[(é T )] In that
group ring we have

For A, € Fy we set
o((3)) = v

Remark 3.2.2.3. By Lemma [3.2.2.1(1ii), if V is a representation of GLy(F,) and

4 . f-1,
= —yat . def / i
v € V=X then Y% € V=X where of = a2io P’

Lemma 3.2.2.4. Assume p > 2. The kernel of the map h : F[No] — F[No/Ni] is
generated by the elements Y; —Y; (i # j). Moreover, there exists f(Y) € F[No/N:] =
F[Y] such that h(Y;) =Y + YPf(Y).
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Proof. Note that Try/q, (W) = Tri/qg,(A) for all A € FX and i € Z, hence Y; — Y] €
Ker(h). As F[No]/(Y; —Y;,1 # j) and F[Ny/N;] are both power series rings in
one variable, the quotient map F[Ny]/(Y; — Y;,i # j) — F[No/N1] has to be an
isomorphism. To establish the final claim it suffices to prove that the image of Y in
F[Y]/(Y?) = F[No/N,N{| = F{(l FP)} is Y. We compute

01

> AT e )=Z< > A*)(é%)- (127)
AeFy a€lp AeFy
Trp, /r, (A)=0a

If a # 0, we sum over the distinct roots of VP 4+ vVP T 4.4V —a =0, so the

inside sum on the right hand side of (127 equals 1/a (from the last two coefficients).

If a = 0 we sum over the distinct roots of yP' Tl YPl 41 =0, so the inside

sum in ([127) equals 0 as p > 2. Hence the right-hand side of (127)) is just Y. O
By Lemma [3.2.2.4} if V' is a representation of GLy(F,), then ¥; =Y on V7,

For 0 <7< q—1, we set

0: = > N (3 )e FINo/NS = F[(55)].

A€F,

So Y, =6, 1, in F[Ny/NE).

qg—1-p

Lemma 3.2.2.5. Suppose i € {0,...,p— 1} and let i = 3125 i;p7.
(i) We have
f-1 |
b= (0 Tty
j=0
in F[No/N{J] for 0 <i<q—1.
(i) For fo,..., fo—1 and ¢ as defined in [BP12l, §2] we have

f—1
= o (T re(2a)e
=0
for0<i<q-—1.

Proof. Part (i) follows from |[Mor, Lemma 0.2] after conjugation by (0 1) Indeed,
in the notation of loc.cit. we take m = n = 1 (so that A, is the group algebra of
(pOK/lp20K ?)): we see that 6; corresponds (under conjugation) to F; if 0 <1i < ¢ —1,

—1
and the constant r,__; equals (—1)/~ l(H ey ) . Part (ii) follows immediately
from (i) and the definition of 6;. O
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As in [BP12] we write (s, s1,...,57-1) ® n for the Serre weight
Sym®° 2 R (Symsl ]F2)Fr ® - Qp (Symeﬂ ]FZ)Frffl ®r 1 o det,
where the s; are integers between 0 and p—1, 7 is a character F,\ — F* and GLy(F,)

acts on (Sym® F2)*" via o, : F, < F. If x = x; ® X2 is a character of H = (]FOX ]FOX ),

we let x* = x2 ® 1.

Lemma 3.2.2.6. Let 0 = (s0,...,5;.1) @1, 8= (50,51,...,87-1) €{0,...,p— 1},
and fix v € o™, v £ 0. Let x, denote the H-eigencharacter on o™,

(i) The F[No/N1] = F[Y]-module o™ is cyclic of dimension min{so, ...,s;_1}+1.

that is sent by Y to v. The corresponding H-eigencharacter is x,a~t. Also,

Y;Y "t =0 ifi; = 0.

(iii) If0 <i <min{sg,...,sr-1} andi < p—1, then o™* contains a unique (]Fg F% )—
eigenvector Y ~'v that is sent by Y"Ato v. The corresponding eigencharacter is
Yoot We have Y v = S lif=i Y.

Proof. (i) Note that o™ is a torsion module over F[Ny/N;] = F[Y] as o™ is finite-
dimensional. To show cyclicity it suffices to note that o™ = o™ [X] is 1-dimensional.
Then from [Morl7, Prop. 3.3] applied with n = 1 we have an isomorphism

F[Yp,...,Y;a]/ (V7 0<i<f-1) "0

128
g(Y) — g(¥) (94 )e. 2

(Restrict equation (9) in [Morl7] to ( é ?) and conjugate by (0 1) Note that o is
01
10

self-dual up to twist.) In particular, {Y%
of H-eigenvectors.

Let m = min{so, ..., sy—1}. We claim that the vectors
v Y YEQw 0<i<m (129)
0<k<s
lI&l1=Ils]l—
form a basis of oM. If i < m and ||k| = ||s|| — 4, then k; > 0 for all j. By

using also ((128)) we see that v; = Yjv;4q. Also, Yjuo = 0 for all j. In particular,
Y; — Y, annihilates v; for all ¢, so v; € o™ by Lemma [3.2.2.4] Moreover, Xv;1; = v;
(0 <i < m)and Xvg = 0. It remains to show that v,, ¢ Xo™. Choose j, such
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that s, = m. Then [[;4;, Y;” ((1’ (1))1) is the only term appearing in the sum (|129)) for

i = m that is not divisible by Yj,. Hence v,, ¢ Yj,0, and thus v, ¢ Xo™.

(ii) Let o' = XQ(? é)v, which is a scalar multiple of v. By (|128)), (KE@ é)”)gg@gé

forms a basis of o consisting of H-eigenvectors with eigencharacters x5a% = y,af™r.

The eigencharacters are pairwise distinct, except if s = p — 1 where XE(? (1))1) and
((1) [1))'0 have the same eigencharacter. Hence, as ¢ < p — 1, the unique H-eigenvector
in the preimage (Y%)~!(v') is Xi_i@ é)v. Note also that Y}Xé_i@ é)v =0ifi; =0
by .

(iii) Using the notation in (ii), we have v; = > ill=i Y for 0 < i < m and it
is a (Fg ]F% )—eigenvector with eigencharacter y,a~*. These characters for 0 <i < m
are pairwise distinct, except if s = p —1, in which case vy and v,_; have the same
eigencharacter. As we assume ¢ < p — 1 the claim follows. [

Lemma 3.2.2.7. Suppose V is a representation of GLy(F,) generated by some vector
v € VN that is an eigenvector for the action of H. If dimp V' < q, then the map

F[Yo,..., Y] — V
FY) = F) (96

is surjective and its kernel is generated by monomials. In particular, if Xi@ (1))1) =
Zi(? é)v #0, theni = j.

Proof. Let x denote the eigencharacter of H on v. Then we have a GLy(F,)-equiva-

riant surjection S : Ind?LQ(OK )(X) — V sending ¢ to v, where ¢ is the unique function

supported on [ which sends 1 to 1. Consider i : F[Yp,..., Yy 4]/(Yy,..., Y} ) —
Ind %) (y) sending f(Y) to f(X)((l) (1))gz5 By Lemma [3.2.2.5] f; € Im(é) for all j

(even if j = ¢—1), so by [BP12, Lemma 2.5], Ind?LQ(OK)(x) = Im(i) ®F¢ (as F-vector
spaces) and ¢ is injective.

Suppose first x 2 x*. By [BP12, Lemma 2.7(i)] and as dim V' < ¢ we have f,+¢ €
Ker(S) for some r = Zf;&pjsj € {0,...,9 — 2} and some sign £+ (both depending
on x), so S oi is surjective. If Ker(S) is irreducible (as a GLy(FF,)-representation),
then by [BP12, Lemma 2.7], Ker(S) = (f5piq4,,0 < d;j < s; (not all equal), f. & ¢)r.
Intersecting with Im(i) = (fy~p4,,0 < dj < p— 1) we get

Ker(S) NIm(i) = <fzpjdj,0 <d; <s; (not all equal)>F.

By Lemma [3.2.2.5((ii), it follows in particular that Ker(S o) is generated by mono-
mials. If Ker(.S) is reducible, the argument is analogous using [BP12, Lemma 2.7(ii)].
If x = x*, it is again almost identical, using [BP12l Lemma 2.6] instead. O
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Lemma 3.2.2.8. Suppose f > 1. In F[Ny/N{]| we have

2 (41) = (—U“(W1 Z(f I)YZ).

AEF,,Trg, /s, (A)=0 lill=(p—1)
<i;<p-—-1
Proof. First we have (using 2! =1ifr € Fx):
> (81) = X (Trem, ) (52)
AEF g, Trz, i, ()70 A€EF,
= (A+AP+---+A’“’1>”‘1($%)
A€F,

=2 2

()
\eFq jezf | H 7!

lil=p-1
(p— 1)‘ ( ) ;
ie%; I ij! HZ] k
lifl=p—1

where the last equality follows from Lemma ( ), noting that Zf;& ipt <q—1
|

since f > 1. Letting #/ = p — 1 — i we get (as ( —!'=—-1inTF,):
SN () EUEIE SR
)\GFq,TI‘]Fq/]Fp()\)#O ilezio
¢ |=(p—1)(f 1)

On the other hand, Lemma [3.2.2.5(1i) gives

> (81)= (- vt

A€F,
The result follows. 0

Proposition 3.2.2.9. Fiz jo € {0,...,f—1}. In

F[No/N{] = F[Yp, ..., Ypal/((Yi = Y))"i # j)

we have

> n=(CDT I

neN1 /Ny J#jo

modulo terms of degree > f(p —1).
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Proof. The statement being trivial if f = 1, we can assume f > 1. We_prove the
first isomorphism. As V; — Y € Ker(F[No] — F[No/Ni]) by Lemma [3.2.2.4, we

deduce that (Y; — Y;)P € Ker(F[[NO]] — IE‘[[NO/Nf]]), and we thus have a surjection

F[Yo, ... ,Yf,l]]/((Y; —Y;)P i # j) — F[No/N7]. Since both terms are free modules
of rank p(f — 1) over a power series ring in one variable over F, the surjection has to
be an isomorphism.

Let A < F[N,/N?], B £ F[Ny/N?] and B = F[Ny/NE], they are complete
local commutative rings of respective maximal ideals denoted by myu, mp, mz. Let
ZE Y enyin € Ao As A= F(Zy, ..., Zpa]/(Z7,..., Z}_,) and Z is killed by my4

(as N1/N7 is a group) we deduce that Z € m® DD Note that mP~ DU DH =

Let + : A < B denote the inclusion and denote by gr™(z) the induced map
w7 /m = m /mst for m > 0. We claim that gr'(z) is injective with image
generated by all Y; —Yj, (j # jo) in mp/m%. If so, then gr®=D=1(3) has to send the
1-dimensional F—Vect~0r space m(ji_l)(f_l) to a multiple of [T, (Y; — Yj,)?~! modulo
m{P=DU=DH By (6\ 2)Z = Z(g 2) for A, € F)¥, and considering the action of H,

it follows from the sentence following Lemma [3.2.2.1] that we must have
W(Z) =c [](Y; = Y;,)""" + (element of m]l;(p_l))
J#Jo
for some ¢ € IF (note that every element of B can be written uniquely as 3°; CE‘XZ with

i; < pfor all j # jo and that mp is generated by the Y i # 0). By passing to B and
using Lemma [3.2.2.8, we deduce that we must have ¢ = (—1)/~1.

It remains to prove the claim. As B = B/(Y{,...,Y} ), we have mp/m3 =
myz/mZ and it is equivalent to prove the claim with 7: A — B. As N;/N{ = F/~!
and No/N} = F}Jj , it is clear that 7 is injective. Consider the natural map s : B —
C < F[Ny/N,NE] = F[Y]/(Y?). As gr'(s07) = 0 and s(Y;) = Y by Lemma ,
we deduce from loc.cit. that the image of gr'(7) is indeed spanned by all ¥; — Yj,
(J # Jo)- [

3.2.3 A computation for the operator F

We give a crucial computation for the operator ' on 7"t for 7 as at the end of §3.2.1]
The main result of this section is Proposition [3.2.3.1{(ii).

We keep the notation of §3.2.2l For ¢ = (to,...,t;—1) ® n € W(p), recall we
have t; € {r;,r; + L,p —2—r;,p—3 —r;} if j > 0 or p is reducible and t, €
{ro—1,ro,p—1—19,p—2 —r1¢} if p is irreducible (see e.g. [Brelll, §2]). We deduce

from ((125)) that
tie{2f—1,....p—1—=2f} forallj. (130)
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We identify W (p) with the subsets of {0,1,...,f — 1} as in [Brelll §2| and let
Jy €H0,..., f—1} be the subset associated to 0. We have t; € {p—2—r;,p—3—r;}
for j € J, if j > 0 or p is reducible, to € {p —2 —ro,p— 1 —1ro} if 0 € J, and p is
irreducible.

def

Let 0 = (tg,...,t;—1) ® n € W(p). Denote 6(c) = 0rea(0) if p is reducible and
d(o) e dir(0) if p is irreducible the Serre weights dyeq(0), dir(0) defined in [Brelll,
§5]. We write d(0) = (sg,...,s7-1) ® 1. Let z, € o™\ {0} and let x, : H — F*
denote the H-eigencharacter of x,. We also identify the irreducible constituents
of Ind?L2(0K)(Xj) with the subsets of {0,..., f — 1} as in [BP12] §2] (for instance ()
corresponds to the socle o of Ind?LQ(OK)(Xj)). Forany J C {0,..., f—1} let Q(x%, J)

denote the unique quotient of Ind?LQ(OK )(Xf,) whose GL3(Ok)-socle is parametrized

by J (see [BP12, Thm.2.4(iv)]). We know that the Serre weight 6(c) occurs in
Ind?LQ(OK)(Xf,) (see the proof of [Brell, Prop.5.1]) and we denote by J™*(o) C

{0,..., f — 1} the associated subset. We thus have
s0caLy(0x) QX5 /" (0)) = 6(0)

(by definition of 6(o), it is the only constituent of Q(x%, J™*(o)) that is in W(p)).
We also have from [BP12| §2] (with —1 = f — 1):

S]:p—2—t]+1jmax(a)(j_]_> lf] 6 (]Inax(o_>7
55 = tj — 1Jmax(o-)(j — 1) lfj ¢ Jmax(o'>.

Moreover, using [BP12, Lemma 2.7] it is a combinatorial exercise (left to the reader)
to prove

(131)

Jmax(d) = (JU U Jg(g)) \ (JJ N J(;(U)). (132)
We define
m = | J"(q)] € {0,..., f}.

We have m = 0 if and only if §(¢) = o, and this occurs precisely if p is reducible and
o is an “ordinary” Serre weight of p, i.e. such that J, = () or J, = {0,..., f — 1} (this
follows, for example, from the proof of Lemma (3.2.3.2| below).

We consider a GLg(K')-representation 7 as at the end of §3.2.1} and fix an embed-

ding 0 <= s0CGL,(0,)(7) (recall there are r copies of o inside socgr, (o) (7)). From
the assumption on 7, we know that (g 6)@, generates Q(x2, J™(0)) as GLa(Ok)-

subrepresentation of 7|qr,(0), in particular §(o) can also be seen in socqr, @) ()
(its embedding being determined by that of o).

Proposition 3.2.3.1.

(i) The vector
e = L v I v7(§9) (133)
)

jeTm(a) I (o

spans 6(o)No as F-vector space.
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(i) We have in ©™ that

YZjGJmaX(o) SJ'F(Yl_me) = (—1)f_1Y1_m335(0) ifm >0,
YP U (2,) = (= 1) 50 if m = 0.

Proof of Proposition[3.2.3.1(i). Suppose first m > 0. From [BP12, Lemma 2.7(ii)]
and Lemma [3.2.2.5(ii) we see that d(c) has basis X%g?)xa, where 0 < 4; < s; if
jeJ™(o)and p—1—s; <i; <p—1if j ¢ J*(o). Hence the only vectors
in 0(o) that are killed by all Y; are the multiples of xs(,). The statement follows by
an inspection of the H-action on this basis (which is formed by H-eigenvectors), see

Remark 3.2.2.3
If m = 0, then &(c) is the socle of Ind7™“%)(y*). By [BP12, Lemma 2.7(i)], fo

is the unique I-invariant element of §(c) C Ind$™*“*)(x%). The statement follows
from Lemma [3.2.2.5((ii). O

In order to prove Proposition [3.2.3.1(ii), we first need several lemmas.

Lemma 3.2.3.2. We have |J™*(0)| = |J™**(5(0))].

Proof. 1f p is reducible, identifying {0,..., f} with Z/f we have Js,) = J, — 1 as
p ymg ) (o)

subsets of Z/f by [Brelll §5], and the statement follows in that case by (132)). If »

is irreducible, let J. = J,11(J, + f) € {0,...,2f — 1} as in [Brelll §5], where J,

is the complement of J, in {0,...,f — 1}. It follows from (132) that |J™**(¢)| =

315U T5 ) \ (J7 N Ty Tdentifying {0,...,2f — 1} with Z/2f, we again have

J5) = J5 — 1 as subsets of Z/(2f) by [Brelll §5], and the statement follows. O

The three lemmas that follow only apply to m > 0. In these three lemmas, we
identify without comment {0,..., f — 1} with Z/fZ (so —1 = f — 1, f =0, etc.).

Lemma 3.2.3.3. Assume m >0 and let i € ZJ;O with ||i]] < m — 1. Then we have

(GLa(00) (38)Y a0) | 3 (GLa(0x) (59)Y )

0<j<i

= Q(xsat{j € T™™(0) i1 = 0}). (134)

Proof. Note first that ¢; € {2i; +1,...,p — 2} for all j by (130) and the assumption
on 7, so that the vectors Y "z, and X‘lxg'are well-defined elements Qf o by Lemma
3.2.2.6(i1). We rewrite <GL2(OK)<8?)X_1$O-> = <GL2((’)K)(2 (1))Z_lxg> and, using
notation from [BHH™, §§2.1,2.2], 0 = F(X\) where A = (Ao,...,Af—1) with \; =
()\j,h )\j’g) € {O, ey Pp— 1}2 We have )\j,l — )\ij = t]’ for all j
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Let W’ (resp. W) be the I-subrepresentation of 7 generated by Y "z, (resp.
(1))Y ‘245). We deduce from Lemma [3.2.2.6(ii) that W’ = (NoY *x,) has F-basis
i

o for all 0 < j < i, and soc;(W') = Fa,. We moreover have W = (gé)W’

since [ is normalized by ( 2(1)). In particular we see that W injects into the I-

representation J,, of [BHHT, Cor.6.1.4] and that W has Jordan—Hélder factors x2al
for 0 < j <4, each occurring with multiplicity 1. Let V' £ Ind?h(o’( )(W) Then V is
the representation appearing in the first paragraph of the proof of [BHH™, Prop.6.2.2],
with B; taken to be 2i; + 1 for all j (and note the bounds on \;; — A2 which let us
invoke loc.cit.). Hence, by [BHH™, Prop.6.2.2] and its proof in the case ¢; = —1 and

= 2i; + 1 for all j, we get that V' is multiplicity-free, has Jordan-Holder factors
0a = F(t\(— X a;7;)) for 0 < a < 2i + 1 with the notation of [BHHT], §2.4], and
GLQ((’)K)—socle o. Moreover, the unique subrepresentation of V' with cosocle o, has

with subquotlents Ind§™! OK)(XOal) for 0 < j <4, and by [BHH™), Lemma 6.2.1(i)]

the constituents of IndGL2 OK)(xiozi) are the Serre weights o, with 25 <a < 2j + 1.

By the proof of [BHH*, Lemma 6.2.1(i)], one easily checks that the constituent o, of
Ind?LZ(OK)(Xf,al) corresponds to the subset {£,az; is odd} C {0,..., f — 1} in the
parametrization of [BP12, §2] (note that twisting x2 by ol corresponds to shifting by
—23%" 747, in the extension graph).

By Frobenius reciprocity V = <GL2(OK)( )Y 1) is the image of a nonzero
map IndGL2(OK)(W) — 7 and any Serre Welght in its GLQ(OK) socle has to be in

of Ind$™¥)(x#) C V. Thus by the deﬁnitlon of 0(0) and as m 1/ SOCGL,(0x) T does
not contain any Serre weight of W (p) it follows that V is the unique quotient of V'
with GL(Ok)-socle §(o). By the previous paragraph and the definition of J™*(o),
we have §(0) = 0y, where b; = 1 jmax(5)41(j) for all j, and V has constituents o, with

1jmax(o)11(J) < a; < 2i;+ 1 for all j. By construction, the left-hand side of 1} is a

quotient of IndGL2 O )(Xioci). Moreover, by what is before, it must have constituents

o, with maX(]_Jmax( 1+1(7),215) < aj < 2i; + 1 for all j. It follows that its GLa(Ok)-
socle is irreducible and isomorphic to 0., where ¢; = max(1 jmax(s)11(4), 2i;) for all 5.
Since 2i;41 is even and > 1 as soon as i1 # 0, we see that c;;; is odd if and only if

ij41 = 0. Hence the GLy(Ok)-socle of this quotient of IndGL2 ©x )(Xiai) corresponds
to the subset {j € J™*(0),7,41 = 0}, as required. O

Lemma 3.2.3.4. Assume m >0 and let i € Z>0, 0 € J™*(g) such that ||i]] <m —1
and ig41 = 0. Then
Y e (p0)y iy, = 0,

Proof. Recall p — t, + 2i, > 1 by (130]), so that Y}" _tﬁz”(g ?)Z‘ixa is well-defined.
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Suppose on the contrary that Y/~ t”m(” 9)Y tx, # 0 for some ¢ € J™*(g) such
that ip.7 = 0 and ||7|| < m —1. By Lemma |3.2.2.1|(ii) and Lemma 3.2.2.6(ii) this is an

eigenvector for {(0 #>, A, € FX} with eigencharacter y o a@=te+2i0r" | By Lemma

3.2.3.3|it suffices to show that the H-eigencharacter y,a ta®~ te+2i0p" Joes not oceur
in A

Ve = Qxgat, Jy)
for any i’ such that 0 < i’ <, where Jy = {j € J"*(q o)t = 0}.

Using the notation A = (Ao(xo), ..., Ap—1(xs-1)) and P(zo,...,xs-1) of [BP12
Thm.2.4], the irreducible constituents of V;; are given by the Serre weights (\o(to —
2ig), - Apoa(tpor — 2i% 1)) (up to twist) for those A € P(xg,..., 2y 1) such that
J(A) 2 Jy. Recall that \j(z) =p—2—a+ 1,00 —1)if j € J(A) and \j(z) =
x— 1090 —1)if 5 & J(A ) By [BP12, Lemma 2.5(i)] and [BP12, Lemma 2.7], the
H-eigencharacters that occur in Vj are Yoo Yok where

0<kj<p—2—(t; =25 + 1, — 1) ifje J(N),

. L (135)
p—1—(t; =2 =1, — 1) <k; <p—1 if j & J(N).
(Note that Jy #0 as ||| <m—-1< f—1.)
Assume Xoa_?a(P—teﬂie)pé = yoa Yok for some \ and k as above. Then
f~r e S o B
=S i+ (p—te+20)p ==Y iy + > k' (mod g — 1)
=0 =0 =0
or equivalently
f_l . f_l .
(p—te+2i)p" = (i, — i)' =3k’ (mod ¢ —1). (136)
=0 =0

Note that £ € Jy, as 0 < i), < ippq =0and £ € J™(0), s0 L € J(N).

If i = i; for all j # ¢ (for example if i' = i orif f = 1), then (136) gives
(p—te +ig +i))p* = > kip’, so ke = p —ty +ig + iy as (using (130)) for ¢, and
iy <ipg<m-—-1<f—1):

p—ti i+ € {240+ il p—1— (i;— i)} (137)

This contradicts (135) as £ € J(A) and 4y < i,. Therefore f > 1 and 7 < i; for some
j # L. For m € Zsq, let [m] the unique element of {0, ..., f — 1} which is congruent
to m modulo f. In particular p” = pI™ (mod ¢ —1). Let he {£+1,..., 0+ f—1}
be minimal such that if,; < ip). Then modulo ¢ — 1:

F-1 o4f o+f

. -/ y
> (i =i = D7 (i) —igp¥ = D (i) — iy )p?
=0 =41 i=h
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and we deduce the following congruences modulo ¢ — 1:

f—1

(p—te+ 2ig)p" — > (i; — i5)p’
=0
o+ f .
=(p—1—to+2i)p" +p" — Z(i[j] - i/[j])P[]]
j=h
i1 ' 4 f ‘
=(p—1—te+2i)p"+ > (p—Dp/ +p" =3 (i — if;)pV
j=h+1 Jj=h
+f—1 . L+ f )
=(p—1—te+2i)p" + > (p— Dp + M+ = (igyy — if)pY
j=h+1 Jj=h
t+f-1 ‘
= (p—1—te+ic+ip)p" + > (p—1—(ify _ifj}))Pm + (p—(i[h}—i/[h}))P[h]‘ (138)
j=htl

Note that all powers of p in are distinct in {0, ..., f — 1} and all coefficients are
in {0,...,p—1}. Moreover these coeflicients cannot all equal 0 as p — (ify — z'{h]) #£0,
nor p — 1 by (137)). Hence by we get kg =p—1—1t,+i,+1,. Asl € J(A) and
iy < ip, we get from that i, =iy and £ — 1 € J(A). By for j =¢—1 and
by , we get

p—1—(ip-1 —ipq) <hker <p—1—t,1+2i),

(note that by (138 the left-hand side is an equality as soon as £ —1 # h mod f which
can only occur if f > 2). This implies ¢, <ip—y +1ij)_; <2(m —1) <2f — 2, which
contradicts genericity (130]). This finishes the proof. ]

Lemma 3.2.3.5. Assume m >0 and let k € ZJ;O.
() IFYE(5)YIma, 0, then

Bl < (f=Dp-1)+m-1)+ > s

jejmax (a-)

If moreover equality holds, then Xﬁ(g ?)Yl_mxc, = T5(0) (see (133) and

) ifj € " (o),
) if g ¢ (o).

kj=s; (modp

kj=—-1 (mod p

(i) IFIEN = (f =1 (p=1)+ X max(s) 55 then ZE(]S ?)Yl_mxg € §(o), more precisely:
Xk(g ?)Yl*mf‘fo € <X_4565(a), el = m — 1>F.
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Proof. We prove the following statements inductively on ||i|| < m — 1 for i € ZJ;O:
(a) Tf YE(29)Y iz, # 0 then

Bl < (f =Dp-D+m=1+ > s5—(m—1—]lil)p.

]EJmax )
If moreover equality holds, then Xk(g ?)X‘ixa = T5(o) and

k’j = ij+1p+ S;j if j € JmaX(O'),
kj=ijap+(p—1) ifj ¢ J" (o).

(b) TENE] = (f = D(p = 1) + Zjemoys; — (m =1 = [|i]})p then
YE(BO)Y ", = Y g
for some ||£|| = m — 1, or it is zero.

By Lemma [3.2.2.6((iii) we have

Yl_mx(r - Z X72I0

gezéo
Jifl=m—1
and we see that [(a)] and [(b)] for ||i]] = m — 1 imply (i) and (ii) (note that in

if Yk<p O)Y tr, # 0 and equality holds, then i is uniquely determined by k and
Jmax( ))

We first prove by induction on ||i|| < m—1for i € Z! Lo that if |E]| > (f—1)(p—1)+
2gme(o )55 (m—1=i[)pand YX(5 9 )Y Lz, # 0, then YE(59)Y Lz, = V¥ (59,

for k' € Z %o such that k% = k; —i;,,p for all j. A examination of |(a) and . shows
it will then be enough to prove them for i = 0 (replacing k by £').

There is nothing to prove for i = 0, so we can assume ¢ # 0. If k;, > p for some

Jo, then using Lemma [3.2.2.1|(ii):
ZE({; ?)K—lxa Yk pejoyp(p O)Y_ng Kh_péjo (8 ?)X_(Z_§j0+1)xaa

where ¢; < (0,...,0,1,0,...,0) with 1 in position j and 0 elsewhere (note that

YJOHY’ixa = Y =i+ g, is nonzero by assumption, and hence i —¢; 11 € Z>0 by
the last statement in Lemma [3.2.2.6((ii)). As ||i — g, 41/ = [|z]] — 1 and ||k — pg; || =

[k =p > (f = D(p— 1) + X m ()8 — (m =1 =i = g;,1[[)p, we can apply the
induction hypothesis and a small computation shows that &' is the right one, so we
are done in that case.
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We assume k; < p for all j and derive below a contradiction (so this case can’t
happen). Define

J o {j S JmaX(U),ij+1 = 0},
then by Lemma [3.2.3.4| (applied to ¢ = j and using Y;* (g ?)Z‘zxa #0):

kjgp—l—t]+2zj lfjej,
ki <p-1 ifj ¢ J,
which implies ||&[| < (f —|[J])(p — 1) +X;cs(p — 1 —t; 4 2i;). From (131]) we deduce
IEF < (p = D(f = 1) + D (85 + 2i5) + [T\ (T (o) + D).
jel

So to get a contradiction it is enough to show that
(p=D)(f = D)+ D (55 +2i5) + [T\ (J"™ (o) + D) < (p = 1)(f — 1)

jeJ
+ > 5= (m—1-llilp,

jeJmax (0’)

or equivalently

pm+ I\ o)+ )| < =D +pd ij+(@—2)) i+ > s

igJ jeJ  jegmax(g)\J

— -2l + - DI+ (25 5+ > s)39)
ig)  jermax(o)\J
Case 1: assume |J™(o) \ J| > 0.
If j € J™(o)\ J, then i1 > 0, so [J™(a) \ J| < ||i||. As [J™(o) \ J| =m — ||,
this means m < ||z]| + |J|, hence (139) is implied by

2m—|—|J\(JmaX(U)+1)|S\JH—(QZij—l— $ sj). (140)
g jegmax(g)\J

Using |J \ (J™(o) 4+ 1)| < |J|, (140)) is implied by

2m < > sy (141)

jegmax(a)\J

Genericity with give s; > 2f —1>2m — 1 for j € J™*(o), hence
holds if either s; > 2m for at least one j € J™*(a) \ J or if |J™*(o) \ J| > 2 (using
2m — 2 > 0 for the latter). Therefore, the only way inequality may fail is when
Jm(g)\ J = {jo} (for some jy) and moreover J \ (J™(o) + 1) = J and i; = 0 for
all j & J. But then ;41 > 0 so we have jo+1 € JN(J™(0)+1), which contradicts
J N (J™*(g) 4+ 1) = (. Hence inequality holds.
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Case 2: assume J™ (o) = J.
Then using

[N o)+ D] < KO, .o f=TINT™ (o) + 1) = {0, ..., f =1\ J"(0)| = f—m

and |J| = m, we see that (139)) is implied by (p — )m + f < (p — 2)|li|| + (p — 1)m
which is true as [|Z|| > 0 and f < p — 2 by ((125).

To prove @ and @ it therefore suffices to consider the case i = 0, which we
prove now.

Recall (GLy(Ok)(53)70) = Q(x5, /™ (0)). By [BPI2, Thm.2.4(iv)] the con-
stituents of this GLy(Ok )-representation are the Serre weights (Ao(to), ..., Ar—1(ts-1))
up to twist, where A € P(zo,...,z5_1), J(A) 2 J™™(0) and \;(t;) =p—2—1t; +
1;00( — 1) if j € J(A) (we use the notation of [BP12, §2] as in the proof of Lemma
3.2.3.4). By [BP12, Lemma 2.7, Lemma 2.6] and Lemma [3.2.2.5[ii), Q(x3, J™*(0))
has [F-basis Xk(g (l))x(,, where

0<k <N@E)  ifje 0,

p—1—=XN(tj)) <kj<p-—1 if j & J(N) (142)

for some A € P(zo,...,zs_1) with J(A) D J™*(o). We see that (142]) implies

Il < (=D = [JN]) + 2(: )(p —2—t;+ 10 — 1)) (143)
JEJ(A

with equality if and only if k; = A\;(¢;) if 7 € J(A) and k; = p — 1 otherwise.
Moreover, Zﬁ(gg)x(, € 6(o)\ {0} if and only if (142)) holds with J(\) = J™*(0).

Hence if Zk(g ?)xa ¢ d(o) we deduce that (142) holds for some A € P(zg,...,x_1)
with J(A\) 2 J™**(0).

We claim that the right-hand side of is smaller or equal than (p — 1)(f —
1) +m =14 X jmaxpy 85 — p(m — 1) if J(A) = J™(0) and strictly smaller than
(p=1)(f = 1) + X max(e) 85 —p(m — 1) if J(X) 2 J"*(0). Recalling that s; = p—2—
tj+ 1 jmax(py (7 — 1) for j € J™(0), the first case follows from (p—1)(f —|J™**(0)|) =
(p—1)(f—1)+m—1—p(m—1). For the second case, as (p—1)(f —1)—p(m—1) =
(p—1)(f = |J™*(0)|) — (m — 1), it is enough to prove

=D=M+ D =2—-1)+[JN) NI + 1)
jeJ()

< (p—1)(f=|T"(o +Z p—2—t;) + [T (0) N (I (o) + 1))

edex
- (m - 1)7
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or equivalently (by an easy calculation):

(m—=1)+[JN) N TN + 1) = [J"(o) N (J™ o)+ 1) < D (t;+1).
JeJ(M\Jmax(a)
This is true, as m — 1 < f — 1 (so the left-hand side is at most (f — 1) + f),
J(A)\ J"(0) # (0 and t; + 1 > 2f for any j by genericity (130)).

Therefore [[k|| < (p—1)(f —1)+(m—1)+ 3 jmax(y) 8; —p(m — 1) ifXE<g(1))a:g # 0
and YX(19)z, € d(0) if [|k]| > (p— 1)(f — 1) + z 8- p(m —1).

We prove the remaining statements in@and@ (fori=0). If [|E|| > (p—1)(f—
)+ > sj—p(m—1)and Yk(p O)xg # 0, we know by above that J(\) = J™*(o).

Jmax o
By (1 \)Ne then have kj <sjifje J™(o)and k; <p—1if j ¢ J™(o). By the
deﬁnition of T 1 and by Lemma [3.2.2.6[ii) (and Remark we deduce
Xk(po):cg = Y ST5(0) Where U =s;—kjif j € J(0) and {; = p—1—Fkj if
j ¢ J™*(g). This implies ||£]] = (p — 1)(f — m) —|— Z s] — ||&||, and in particular

1]l = 0if J[E[| = (p = (S = 1) + (m = 1) + Fiax (o) SJ ( —Dpand [[f] =m —1if
Ikl = (@—-1)(f—1)+ > s;—p(m—1). This finishes the proof of@ and@ O
Jmax(a)

Now we can finally complete the proof of Proposition [3.2.3.1}

Proof of Proposition|3.2.3.1|(ii). Suppose first that m > 0 and fix jo € J™*(0). By
Lemma [3.2.2.4] and Proposition [3.2.2.9| we have

YZjEJmaX(O') Sj F(Yliml’o.)
= (=) IT v TL G =it + F)| (59)Y ™,
jegmax(a)  j#jo

for some f(Y) € F[Yo,..., Y 1] of total Y-adic valuation > 3= jmax(yy 5; + (p — 1) f.
Asp>f>mwehave (p—1)f > (p—1)(f — 1)+ m — 1 and by Lemma [3.2.3.5(1i)
we get f(X)(g ?)Yl_mxg = 0, hence

YR P ) = (<1 T v TG = Ya) (59)y

jeJmax(o) J#jo

Moreover, the right-hand side is contained in (Y x50, ||| = m — L)z C §(0)
by Lemma [3.2.3.5(ii). As it is also Nj-invariant, it is contamed in FY'""z5,) by

Lemma|3.2.2.6(iii). It is therefore enough to show that Y~ 2 s o) S p(yt-m U) =
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(=1)"'24(4), or again by Lemma [3.2.2.4] Proposition [3.2.2.9| and Lemma [3.2.3.5(1)

that .
vt T v TG =) (5 )Y e, = e,

jeJmax(o) J#Jo

>
»n
/N
bS]
S
—
~—
I

(—1) for 0 <7 < p — 1, the left-hand side equals

IR Sl () e 119
Jmax(a) & [|[=(p—1)(f-1)
K, <p—1if j # jo

By Lemma [3.2.3.5(i), as k} + s; can never be congruent to s; modulo p when £ €
{1,...,p— 1}, only the terms with k; = 0 for j € J™(0) \ {jo} and K} = p — 1 for
j ¢ J(o) survive. As ||E'|| = (p — 1)(f — 1), we must have &}, = (p — 1)(m — 1),
and by Lemma (1) again it follows that equals 754, as required.

Finally suppose m = 0. As Y;-p (75 ?):ca = 0 for all j, we get again by Lemma

3.2.2.4] Proposition [3.2.2.9[and (133]):

VP () = ()Y TIOG = Yo (59) e
J#0

f—1
= DI (89 )2 = (<) M. O

J=0

3.2.4 Lower bound for Vi, (7): proof

We prove Theorem (3.2.1.1]

We keep the notation of §§3.2.1} [3.2.2 3.2.3| Fix o € W (p) and define o; € W (p)
inductively by oy = o and 0; = § (0;-1) for i > 1 (o0; here shouldn’t be confused with
the embedding o; = 0 0 ¢'). Let n > 1 be the smallest integer such that 0,1 = 0y
and write o; = (s(()i), . ,sgle) ® n;. Recall that n = 1 if and only if J™*(¢) = () if
and only if p is reducible and o corresponds to J, = () or J, = S (see the beginning
of §3.2.3). We set m & [J™(g,)| if n. > 1 (this doesn’t depend on i € {1,...,n} by
Lemma and m = 1if n = 1, so that m € {1,...,f}. Fori € {1,...,n} we

let x; denote the H-eigencharacter on 0;"° = oi'. We also define for i € {1,...,n}:

def +1 .
si= Y. 3§-l+) ifn>1,
jeJmax(Ui)
def

s;=p—1 ifn=1.
The following lemma will be useful later.
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Lemma 3.2.4.1. We have >0 ;s; =0 (mod p — 1).

Proof. Let s(x;) € {0,...,q — 1} such that y;11 = x;a™**) and denote by |s(x;)| €
{0,...,(p — 1)f} the sum of the digits of s(y;) in its p-expansion. Then it follows
from (151 below that we have

€T (o) 5P Y g g ) (P~ 1P Xi = Xi+1
and so
i+1)\
i)=Y 1o 9
jesmax(ay)

which implies |s(xi)| = (p — 1)m — 8. AS Xps1 = x1 = x1o 2i=1°04) | we have
2 18(xi) = 0 (mod ¢ — 1), hence >, |s(x:)] = 0 (mod p — 1) and the result
follows. 0

Recall 7 is as at the end of §3.2.1l In [Brelll §4] there is defined an F-linear

isomorphism

S (S0CGLy(0x) ™)™ — (S0CGT, (05 T)'™. (146)
Fixing an embedding o < socqr,(o0x) T, for i € {2,...,n} there are unique embed-
Iy

dings 0; < s0CqL,(0k) T such that the morphism S cyclically permutes the lines o;".
In particular there exists v € F* (which depends on ¢ but not on the fixed embedding
0 > SOCQL,(0x) T) such that S| i is the multiplication by v for all i € {1,...,n}.

We define u; € F* for1gignby,uld:dyifnzlandifn>1:

, -1
" def (ngi/gn HjeJmax(ai,)(p —-1- Sg'l H))!) v ifi=n,
1 otherwise.

We let M, be the F[X][F]-submodule of 71, or equivalently the F[Y][F]-submo-
dule, generated by Y'=m¢ = Y1=mglt for 1 < i < n. Recall v € Z, acts on

M, ® x;* by the action of (é 791) (see the end of §3.2.1)).

Proposition 3.2.4.2. The module M, ® x7' is admissible as an F[X]-module (see
§2.1.1), ZX-stable, and such that (M, ® x;')¥ is free of rank n as F[X]-module.
Moreover the étale (p,T')-module (M, @ x 1)V[1/X] admits a basis (ey,...,e,) over
F[X][1/X] such that fori € {1,...,n} (with e, = e)):

ple) = pi X e, (147)

e € x((32))7(1 + XELXD)e, for all 7 < B, (145)
where 7 is the image of v € Z; in F. Moreover (e;) is uniquely determined by (147)
and (T35).
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To prepare for the proof, fix z; € o1° \ {0} and define for 1 <i < n — 1:

(z+l

N VU | B I v 1( )xl € o\ {0}

eJmax ) ¢Jmax )

and z,,1 = 21 (note that this formula is (133) multiplied by (—1)71).

Lemma 3.2.4.3. Fori € {l,...,n} we have

S(z;) = ( II w-1- S§i+1))!>,uix,;+1 (149)
jegmax(ay)
and

YEF(YY ™) = Y "y (150)

Proof. 1f i € {1,...,n} we have

7,+1)

VI YT ()

jEJmax(o. ) jejmax(ai)
—1
_ (i+1) 0
= ( I -1- S; )') (92 (p_1_8§i+1))pj<gl)xi
jeJmax(g;) Jmax (g,
-1
(IO 1) s, s
jeJmax(Ui)

where the first equality follows from Lemma |3.2.2.5(i) and the second from the defi-
nition of the function S in [Brelll §4]. From the definition of x;,;, we obtain ({149))
for i < n. For i = n, using inductively

-1
vea=( I =1-s")) S
jeJmax(o-i)
fori=n—1,i=n—2tilli =1 we obtain (as S is F-linear):

I -1-s")) S

jEJmax(o-n_l)

() = (

(I T 1) s,

1<i<n—1 jejmax(g;)

Since S™(x1) = vx; and from the definition of u,, we get (149)) for i = n. The last
part follows from Proposition |3.2.3.1| combined with (151]) and (149)). O
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The following lemma is stated with the variable Y, but remains the same with
the variable X.

Lemma 3.2.4.4. Suppose M is a torsion F[Y]-module. Let ¥ C M be a subset
spanning M as F-vector space and set ¥ <= Upes F*v. If

(i) Y C S U{0};
(ii) FYv; = FY vy # 0 = vy = vy for vy, ve € ¥;

(i) XN M[Y] is a finite set of F-linearly independent vectors,

then ¥ is an F-basis of M and M is an admissible F[Y[-module. If moreover VY =
Y U {0}, then MY is a finite free F[Y]-module of rank dimp M[Y].

Proof. Write ¥ N M[Y] = {v1,...,vq4} (assuming ¥ N M[Y] # 0 otherwise M =
0 and there is nothing to prove). For ¢ € {1,...,d} let %, Y e XYy e
F*v, for some j > 0}. Then M, e Brex,Fu is an F[Y]-module usingb. Ifv, v € Xy,
then using[(ii)] there is j > 0 such that either Fu = FY7¢/, or Fv’ = FY7v, from which
one easily deduces M;[Y] = Fuv,, in particular M, is admissible. Since ¥ spans M
over F and ¥ = [[;_, Y, the natural map f : @?:1 M, — M is surjective, and thus
M is also admissible. Since @, M,[Y] = @&, Fv, — M[Y] (the last injection following
from [(iii))), we deduce that Ker(f)[Y] = 0, hence Ker(f) = 0 and f is an isomor-
phism. This proves the first part of the statement. It follows from Y = ¥ U {0}
that the multiplication by Y is surjective on each My, i.e. we have exact sequences
0 — Fv, — M; 5 M, — 0. Dualizing, this gives 0 — My 2 My — (Fuv,)¥ — 0,
which shows M, is free of rank 1 over F[Y]. The last statement follows. O

Recall that M, is the F[Y][F]-submodule of 7' generated by Y!="z; for 1 <
7 <n. Let

5 YIFF(Y1 ™), 1<i<n, k>0, 0<j<prls ifk>1
B 0<j<m ifk=0 ("

We now check that M, and X satisfy all the assumptions in Lemma [3.2.4.4] Define
for ¢ € 221:
S YR Y ) €8, k+i=( (mod n)}

and M, o Dyex, Fv. We have = [[}_; X,. Applying F*~! to QD for £ > 1 we
get (recall that FoY =Y?o F on 7):

YPTSER Y ) € FXRR (Y ), (152)
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hence X spans M, and condition of Lemma 3.2.4.4/holds for ¥. Using (152) we also
see that the multiplication by Y induces an injection 3, < ¥, U ﬁ} and that Y'Y, =

5:,U{0}, hence My, is an F[Y]-submodule of M, and condition |(ii)|of Lemma
holds for ¥, and X. Moreover, Y = ¥ U {0}. Finally, N M,[Y] = {z1,...,2z,}
(and X N My,[Y] = x;). By Lemma and its proof, we deduce that ¥ is an
F-basis of M,, that M, = @;_, M,, and that each MZU is free of rank 1 over F[Y].
In fact one can visualize the “Y-divisible line” M;, as follows using ([150):

Fripi b FY' " &8 FR(Y ™) C2 FRAY 2, )
PQSi—2
Y FR(Y ) — -

where Fz; 11 = M;11,[Y] and the arrows mean “multiplication by the power of Y
just above”. In particular we see that if d(v) = min{j > 1,Y7v = 0} for v € ¥, then

v € ¥;11 is contained in F(X) if and only if d(v) = s; + m (mod p).
Define a basis fi, ..., f, of the free F[Y]-module M) by

filz)) = 1land fi(Z\ {z:}) =0, i€ {l,...,n}.

From what is above we then easily deduce the following formula, where F(f)(v) <

f(F(v)) for f € MY and v € M, (and using conventions as in §2.1.1)):

/l,iYm_lfi lf g = O,

. (153)
0 ifl1<i<p-1.

Frem g, ) = {

Lemma 3.2.4.5. The module M, ® x;" is Z) -stable, hence Z) acts on (M, ®x;')".
Moreover we have for v € Z) (recall v(f)(v) = f((ég)v> for f € (M, ® x;')Y,
veM,):

v(f) e x:((89)) 1+ YFIYD) f;

for1 <i<n.

Proof. As M, = @i F[Y][F]Y'"™z; and Y'"™z; is a ZX-eigenvector by Lemma
3.2.2.6(iii) we deduce that M,, and hence M, ® x; ', are Z -stable.

From 70X = ((1+X)?—1)ov and Lemma [3.2.2.2)it is easy to deduce that yoY =
fy(Y) oy for some f,(Y) € vY + Y?F[Y], hence Z) preserves the decomposition of
F[Y]-modules M, ®x,;' = @, M;,®x;*. In particular, v(f;) annihilates My ,®x;*
for all i/ # i. Let Y Jz; for j > 0 denote the unique element of il such that
YI(Y ~Iz;) = x; (this is compatible with our previous notation in Lemma [3.2.2.6(iii)).
Then

V(f) =Y () Pz Y fi € xai((89)) 1+ YFY]) £ O

>0
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Proof of Proposition [3.2.7.9. We have already seen above that M,®x ' is admissible,
ZX-stable, and that (M, ® x;')" is free of rank n as F[Ny/N]-module. To find the
basis (e;);, first note from Lemma [3.2.2.2| and (153) that (using F o Y? =Y o F on
(My @ x71)Y):

F(Xsﬁ-m lfz—‘rl (Z cj YSH_m 1+]f+1)

7>0
= W Z cipY ™
Jj=0
€ (~1)"p(1 + XFIX]X"™ 1, (154)
for some ¢; € F with ¢g = (—1)*"™!. Similarly for £ € {1,...,p— 1}
F(Xetm=4 g, 0) € FIX]X™ fi. (155)

It easily follows from that
p—1

S+ X) " o(F(1+ X)) =f (156)

=0

for all f € (M, ® v=1)V[1/X]. Let f % X=+m=1f ., by (154) and (155) we have for
te{0,....,p—1}

F(A+X)f) € (=1)* (1 + XFIX)) X' £,

and so
P(F((1+X)'f)) € (=1)" (1 + X"F[X])p(X ™" fi).
Using

p—1 X p—1
(14 X) = <1+X) = X! (mod XP?),
=0

we see that applied to f = X%Tm=1f, | becomes
(1% XP (X ) € (1+ XFIX]) X5 fi
or equivalently in (M, ® x;')V[1/X]:
P(X"fi) = (1) i (X)X fin (157)
for some g;(X) € 1 + XF[X].

Let e; & (—1)22;1 “hi(X)X™f; for some h;(X) € 1+ XF[X] and note that the
sign doesn’t change if i is replaced by i+n by Lemma|3.2.4.1] Then (147 is equivalent

to
hi(Xp)SO(mez‘) = <_1)siﬂflhz‘+1(X)XsimeiH,
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or equivalently h;(X?)g;(X) = hi1(X) by (157)). This system has the unique solution

o0

ha(X) = [Lois (X7

j=1

in 1 4+ XF[X], where the indices are considered modulo n. Then ((148) follows from
Lemma [3.2.4.5] The final uniqueness assertion follows from v o0 ¢ = ¢ oy and is left
as an exercise (similar to [Brelll Lemma 4.5]). O

Let O(m) (resp. O(p)) be a set of representatives for the orbits of 6 on the set of
Serre weights in socqr, (o, ) ™ counted with their multiplicity r (resp. on the set W (p)).
We define M, & DBocomr Mo (with M, as above). It follows from the assumptions
on 7 that we have

M.~ @ M.
)
In particular (M,®x;!)V[1/X] is an étale (¢, T')-module over F((X)) of rank 7|W (p)| =
r2/. From the description of M,[X], we also see that the natural map M, — 7™ of
torsion F[X]-modules is injective as the following composition is injective:

M,[X] = Qo — 7" C 7M[X],

where the direct sum is over all Serre weights o in socgr,o,) ™ (counting their mul-
tiplicity r).

Proposition 3.2.4.6. We have an isomorphism of representations of Gal(Q,/Q,)
over IF:

V(M © x;1)'[1/X]) = (indi>(p))

Proof. We are going to use a computation of [Brelll §4]. Associated to the diagram
D ¥ D(5)®" of §3.2.1] there is defined in loc.cit. an étale (o, T')-module over F((X))
denoted there M (D) and which is of the form M (D) = @er(ﬂ)M(D)JEL where M (D),
is a rank n étale (¢, I')-module over F((X)) associated to the orbit of o, i.e. to the
cycle 0 = 01,...,0, as above (so in fact one has M (D) = GyecomM(D)L7).

g

Let N = F((X))e be the rank 1 étale (¢, T')-module over F((X)) defined by

ole) = (1) 2,

Y

B WX Zj(r,j+1)
v(e) = <(1+X)v-1> c

2 A more consistent notation with the ones of this article would have been M (D)"Y and M (D)Y...
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We have V(N) 2 w2 = ind?%(det7) (using ind} wy) = w) by [Brelll
Prop.3.5] and
V(M(D)) = (ind"(p @ (det ﬁ)_1)>@r = ((ind}c(p) ® indje(det p—l))@"
by [Brelll Thm.6.4]. We therefore deduce
V(M(D) @x(xy N) = (ind2(p)) "

Therefore it suffices to show that M (D), ®p(x) N = M) [1/X] for each 0 € O(7), or
equivalently each o € O(p).

Let z,...,z) € (@™ ,07") be the dual basis of the F-basis (z;); of @, o}"

i=10; i=1 04 »
it follows from its definition in [Brelll §4] and from (145)) that M (D), has basis
xy,...,z) as F(X))-module with

o(z)) = Xsi+<p—1>(f—m)< M e-1- s§~i+1))!> (@i 08| 1),
jGJmaX(O'i) ‘

where S~! is the inverse of the bijection S of (146)) (which preserves @7, o/'). By
(149) we have

-1
o8|y = ( II -1 —8?“))!) pi i,
z Jmax 0-1.)

so we obtain

plo) = XoeH DU

Also we have for v € ZX (using the hypothesis on the central character of 7):

hence with the definition of v(x;") given in [Brelll Lemma 4.5]:
(@) € xi((§9))7 2" (1 + XF[X])z).
We deduce that M (D), ®r(x)y N = @;-, F[X](x; ® e) with

gO(I;/ ®e) = Mi—lXSr(p*I)(”HZj Tj)<xiv+1 ®e),
Yo @e) e xi((39))7 257 (1 + XFIX])(a) ® ).

148



Now, let e/ % X™ 25" (¥ @) for all i. Then ¢}, ..., ¢, is a basis of M(D), Qr(xy N
and we have for i € {1,...,n} (with €/, = ¢}):

/

p(e;) = Mi_lXSi6;+17
1)) € xi((9))7" (1 + XFIX])el

From Proposition 3.2.4.2| we see that M (D), ®r(x) N = M) [1/X]. O

By Lemma [3.2.1.2] this completes the proof of Theorem [3.2.1.1] when the constants
v; are as in [Brelll Thm.6.4]. When they are arbitrary, the proof of Proposition

3.2.4.6/gives V((M@x;")"[1/X])|1, = (ind}e}(@p(ﬁ)) |70 using [BrelT, Cor.5.4], which
finishes the proof of Theorem [3.2.1.1]

3.3 On the structure of some representations of GLy(K)

We prove results on the structure of an admissible smooth representation 7 of GLy(K)
over [ associated to a semisimple sufficiently generic representation p of Gal(@p /K)
as in [BP12] when 7 satisfies a further multiplicity one assumption as in [BHH™] and
a self-duality property. In particular we prove that such a 7 is irreducible if and only

if p is, and is semisimple when f = 2 (Corollary [3.3.5.8) and Corollary [3.3.5.6)).

We keep the notation at the beginning of §, 3.1 and set A & F[I,/Z,]. We
recall that the graded ring gr(A) is isomorphic to ®;_yF[y;, z;, h;| with h; lying in the

center (see (116)). We set
R= gr(A)/(ho, ... hy1),

which is commutative and isomorphic to Fly;, 2;,0 < i < f — 1], and recall that
R = R/(y;z,0 <1 < f—1) = gr(A)/J (see ) Moreover the finite torus H
naturally acts on A by the conjugation on I; (via its Teichmiiller lift) and we see (using
(100)) that the induced action on gr(A) is trivial on h; and is the multiplication by the
character a; (resp. o; ') on y; (resp. z;), where ai((é 2)) = o;(Aph) for (()\ 2)6 H.

Notice that gr(A) is an Auslander regular ring (see [LvO96, Def.I11.2.1.7], [LvO96,
Def.I11.2.1.3]) by the first statement in [BHH, Thm.5.3.4] and so is A itself by
[LvO96, Thm.I11.2.2.5]. This allows us to apply (many) results of [LvO96], §II1.2].

For any ring S and any S-module M, we set EL(M) = Extl(M, S) for i > 0.
3.3.1 Combinatorial results

We define some explicit ideals a(A) of R and study some of their properties.
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We fix a continuous representation p : Gal(Q,/K) — GLo(F) which is generic in
the sense of [BP12, §11] and let Dy(p) be the representation of GLy(F,) over F defined
in [BP12, §13] (see also when p is semisimple). Recall from [BP12, Cor.13.6]
that Dy(p)!* is multiplicity-free as a representation of H = I/I,. By [Breld, §4],
there is a bijection between the characters of H appearing in Dy(p)"* and a certain
set of f-tuples, denoted by

PID(xo,...,x4-1), vesp. PAD(xg,...,T5-1), resp. PD(xo,...,x5-1),

if p is irreducible, resp. reducible split, resp. reducible nonsplit. We refer to [Brel4,
§4] for the precise definition of these sets and we simply write & for the set associated
to p. We write y, for the character of H associated to A € & (more precisely, in
loc.cit. one rather associates a Serre weight oy to A, and x is the action of H = I/1;
on the 1-dimensional subspace ail, different o, giving different ).

On the other hand, the set W(p) is in bijection with another set of f-tuples,
denoted by (see [BP12, §11])

I D(xo,...,x5-1), resp. BD(xo,...,xp-1), resp. D(xo,...,Tj-1),

depending on p as above. We simply write & for the set associated to p. Since the
socle of Dy(p) is @rew(p 0, we may view Z as a subset of &. For example, if p is
reducible split, then & is the subset of & consisting of A such that

() € {aj, 25+ 1,p—2 —25,p — 3 — 25},

while if p is nonsplit, then we require moreover that \;(z;) € {z; + 1,p — 3 — z;}
implies j € J5, where J5 is a certain subset of {0,..., f — 1} uniquely determined by
the Fontaine-Laffaille module of p (cf. [Breldl, (17)]).

Definition 3.3.1.1. We associate to A € & an ideal a(\) of R as follows.

e If p is irreducible, then a(\) = (to,...,t;_1), where
zo  if Ao(wo) € {mo —1,p — 2 — 20}
to d—ﬁ Yo lf )\0(1‘0) - {ZEO + 1,p — [Eo}
Yozo if Ao(wo) € {mo,p — 1 — z0},
and if j # 0
Zj if )\j([L‘j) S {wj,p—3—:13j}
tp=q v i Nlry) e{ay+2,p—1—a}
yizi i () € {o; +1,p— 2 — a5}

e If p is reducible nonsplit, then a(\) = (to,...,ty_1), where

(

z; if N(zj) €{zj,p—3—=x;} and j € J;

wr ) y; if )\(xj)E{xj—l—2p l—z;}and je J;

yjz; if AN(z;) € {zj,p—1—2;}and j & J;
yizi b Aj(s) € {; +1,p— 2 — a5}
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o If 7 is reducible split, then a(X) = (to,...,t;_1) is defined as in the nonsplit
case by letting J; = {0,..., f — 1}, namely

s i () e dzp =3 -5}
yi i XN(y) € {z; +2,p— 1 — a5}
yizi i Aj(ey) € {a; +1,p— 2 — a5}

In particular, if p is reducible nonsplit and J; = 0, then a(X)=(yo20, . - -, Ys—12f-1)
for any A € 2. Note that R/a()) is always a quotient of R.

Remark 3.3.1.2. An equivalent form of Definition is as follows (compare
the proof of Theorem . Given A € &, t; = y; (resp. t; = z;) if and only if
the character y ;" (resp. xac;j) occurs in Do(p)" (i.e. has the form y for some
N € ), and t; = y;z; if and only if neither of X)\oz;d occurs in Dy(p)h.

Lemma 3.3.1.3. Let A € .
(i) Assume p is semisimple. Then X € Z if and only if y; ¢ a(\) for any j €
{0,...,f—1}.

(ii) Assume p is reducible nonsplit and let p* be the semisimplification of p. Then
there is a bijection between Z(p*) (defined as the set 2 associated to p*) and
the set of A € & such that y; ¢ a(\) for any j € {0,..., f —1}.

Proof. (i) It is clear by definition.
(ii) Let A € & such that y; ¢ a(\) for any j € {0,..., f — 1}. By definition, we have
(for p reducible nonsplit)

Ni(z;) e{zjz;+1L,p—1—x;,p—2—1x;,p—3—x;}

and from the definition of a(\) if A\j(z;) = p — 1 — x; then j ¢ J; (note that if
Aj(z;) = p — 3 — x; then it is automatic that j € J5). We define an f-tuple p by

(gt ] p =3 — g i A(a) =p—1 -
pj(5) = { Ai(z5) otherwise.

It is then easy to see that u is an element of 2(p*) and that any element of Z(p*)
arises (uniquely) in this way. O

Corollary 3.3.1.4. The set {\ € Z,y; ¢ a(\)V j€{0,...,f—1}} has cardinality
27,

Proof. This is a direct consequence of Lemma [3.3.1.3| and of |W (p%)| = 2/. O
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Given A € &, write a(\) = (to,...,t;_1) as in Definition [3.3.1.1{ and define
AN Z G e{0,.... f—1ht; =y} €{0,.... f — 1} (158)

The following proposition will only be used in Corollary [3.3.2.5] below.
Proposition 3.3.1.5. We have ¥ ¢ 24N = 47

Proof. We will only give the proof in the case p is reducible (split or not), the irre-
ducible case can be treated similarly.

First assume that 7 is split. Given A € &, we define an element \ € 2 as follows:

B ; if - Aj(x;) € {aj, 25 + 2}
)\j([Ej)déf p—B—LE] if )\j(l’j)é{p—l—mjap_g—l'j}
Aj(z5) otherwise.

It is easy to see that A\ € 2. By definition of & (see [Breld, §4] and recall & =

& giving rise to A under the above rule. Moreover, it is direct from the definitions

that A(X\) = A(\). Hence
S QMO — 3 (27 AR — 9f || — 9 — 47,

re? A2

Now assume that p is nonsplit. Let 2 be the subset of & considered in the proof
of Lemma |3.3.1.3(ii), namely A € & if and only if

Ni(zj) e {zj,z; +1,p—1—2;,p—2—x;,p—3—z;}

and \j(z;) = p— 1 — x; implies j ¢ .J;. By the proof of loc.cit., we have | 2| =
|2(p%)| = 2/. Given A\ € &, we define an element A € & as follows:

R it Aj(z;) € {x), 5 + 2}
N(z)) =< p—3—x; if N(z;)=p—3—x;0r (N\j(z;) =p—1—=x;and je ;)
Aj(z5) otherwise.

As in the split case it is easy to see that A(\) = A()) and that given A € &, there

in the split case. []

Definition 3.3.1.6. Given A € &, we define another f-tuple \* as follows:

p—=3=X(x;) if t; =z
Ni(ay) = p+1=N(zy) if t; =y,
p—1=X(z;) if t; =z
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If A € 2, we define its “length” ¢()\) to be (see [BP12l §4]):
Lemma 3.3.1.7. Let A € .

(i) We have \* € & and a(\) = a(\*).

(ii) Assume that p is semisimple. Then X € P if and only if \* € P, and in this
case L(N*) = f —L()).

Proof. (i) The first statement can be checked directly using the definition of &7 and
the second one is obvious from the definitions.

(ii) The first statement follows from (i) and Lemma |3.3.1.3|(i). By definition of &
(see [BP12, §11]), £(A\) can be computed as the cardinality of the following set:

{j €e{0,...,f =1}, N\i(zy) € {p—l—xj,p—Q—xj,p—?)—xj}}.
For example, when p is reducible split, we have (cf. the beginning of [BP12] §11])
Ai(xj) €{p =2 —xj,p =3 —x;} <= Nya(wj01) € {p = 3 — w1, 7501 + 1}
The second statement of (ii) follows from this and Definition [3.3.1.6] O

Lemma 3.3.1.8. Let A € &, x\ the character of H associated to \, (to,...,tr_1)
the ideal a(\) in Definition |3.3.1.1 and ny be the character of H acting on Hf;& t;.

Then we have
XaXas = Ma(n o det),

where \* is as in Definition |3.3.1.6( and n(a) = XA((S 2)) fora € FY (n does not
depend on \ € ).

Proof. This is an easy computation, but we give some details. Note that \;(x;) +
Ni(x;) = (p—1)+2¢;, where g; equals 1, 0 or —1 if ; equals y;, y;z; or z; respectively.
Moreover, in the notation of [Breld, §4], we have

e(N) + e(\) =

DO | —

(1 =1+ S e, o)+ 30,0

T
0

P (x; — &),

0

<.
[l

The conclusion follows now from a simple computation, noting that for (8 2)6 H
a0)) — (Zf;ol Pj*a'(’“j))Jre(A)(f‘o 77777 rf-1) e\ (70,07 f—1)
0 ((89)) = oo(@) oy (b) V015
(see [Brel4, §4]) and that H acts on y; (resp. ;) via a; (resp. a; ). O
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Note that H acts on I1/Z; by conjugation and hence on A and gr(A). This induces
H-actions also on R, R, and R/a()) for any A € &2. We say that M is a gr(A)-module
with compatible H-action if H acts on M such that h(rm) = h(r)h(m) for h € H,
r € R, and m € M. In this case Eér(A)(M) is again a gr(A)-module with compatible
H-action for any i > 0.

Lemma 3.3.1.9. If M is a gr(A)-module with compatible H-action that is annihilated
by (ho,...,hy_1), then we have isomorphisms of gr(A)-modules with compatible H -
action for i > 0: ‘

By (M) 2 ER(M). (160)
If moreover M is annihilated by J, then we have isomorphisms of gr(A)-modules with
compatible H-action for v > 0:

i+2 ~ i ~ i
By (M) = EFY (M) = Ex(M). (161)
Proof. Since (hg,...,hs_1) is a regular sequence of central elements in gr(A) and
(Yozo, - -, Ys—125-1) is a regular sequence in R (which is commutative), the isomor-

phisms ((160)) and (161)) as gr(A)-modules are proved as in the proof of [BHH™, Lemma
5.1.3]. Moreover, H acts trivially on h; and y;z; (for 0 < j < f—1), the isomorphisms
are also H-equivariant, from which the results follow. n

We don’t use the following proposition in the sequel, but it is consistent with
Remark [3.3.2.61) and the essential self-duality assumption (iii) in §3.3.5) below (see
Proposition [3.3.4.6)).

Proposition 3.3.1.10. For A € & there is an isomorphism of gr(A)-modules with
compatible H-action:

By (G ® R/a(V) = ()i @ R/a(\)) @n o det.

Proof. Applying with i = 0 and M = x,' ® R/a()\), we are left to prove
Homgz(xx' ® R/a(A), R) = (x5 ® R/a(\)) @ o det.
Using Lemma , it suffices to construct an isomorphism of gr(A)-modules with
compatible H-action
Homgz(R/a(M), R) = ny' @ R/a(N), (162)
where 7, is the character of H acting on Hf_l t; if we write a(X) = (to,...,ty—1) with

t; € {yj, 2, yj2;}. Put ¢ = [T/25 (y;2;/t;). One easily checks that ¢'R = R[a(\)] and

there is an isomorphism of R-modules

0: n'®@R/a(\) = VR,
where the first map sends 1 to #’. As H acts on ' via ny', 0 is also H-equivariant.
The isomorphism (162)) is then obtained by sending r € 7' ® R/a()\) to ¢ €
Homz(R/a()), R) such that ¢(1) = 6(r). O
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3.3.2 On the structure of gr(7")

We give a partial result on the structure of gr(m") for certain admissible smooth
representations m of GLy(K) over F associated to p when gr(m") comes from the
my, sz -adic filtration on 7.

We let p be as in (in particular p is not necessarily semisimple) and keep
the notation of loc.cit. As in when 7 is semisimple, we consider Dy(p) as a
representation of GLy(Ok)K ™, where GLy(Ok) acts via its quotient GLy(F,) and
the center K™ acts by the character det(p)w™'. We now write m for my, /z,.

We consider an admissible smooth representation m of GLy(K) over F satisfying
the following two conditions:

(i) there is r > 1 such that 7% = Dy(p)®" as a representation of GLy(Ok)K* (in
particular 7 has a central character);

(ii) for any A\ € &, we have an equality of multiplicities
[r[m®] = xa] = [w[m] = X,

Note that (ii) implies that the gr(A)-module gr(7") (defined with the m-adic filtration
on 7") is annihilated by the ideal J in (117)) by the proof of [BHHT, Cor.5.3.5], and
in particular is an R-module.

Theorem 3.3.2.1. For 7 as above, there is a surjection of gr(A)-modules with com-
patible H-action

(A@Xil ® R/a(N)" - ai(xY), (163)

where a(\) is as in Definition|3.5.1.1]

Proof. Consider the gr(A)-module with compatible H-action:

ME (D' ®R/aN).
AP

Since there is a bijection A — x, between &2 and the characters of H on Dy(p)"t (see
§3.3.1)), we can choose a basis of 7't over F, say {vaz, A € 2,1 < k < r}, such that
each vy is an eigenvector for I of character x. We denote by {eyp, A € 2,1 <k <
r} the basis of gr’(7w") over F which is the dual basis of {vy}, and note that {ey}
generates the gr(A)-module gr(7m). To prove that there exists a surjective morphism
M — gr(m") it suffices to prove that, for any A € & and any k € {1,...,r}, the
vector ey is annihilated by the ideal a(\) of R = gr(A)/(ho,...,hy—1). Writing
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a(A) = (to,...,tf—1) as in Definition [3.3.1.1} we already see that if ¢; = y;z;, then t;
kills all the e, since gr(7") is annihilated by J.

Let j € {0,...,f — 1} such that ¢; € {y;,;} and define ' = XAQ; Vif t; =y,
Y < xae;j if t; = z;. By Definition one checks that x’ = yn, where \' € &
is defined by Nj(z;) = N(z;) if ¢ # j, and Nj(z;) £ \j(z;) + ¢, where £; equals
either —2 or 2 when t; equals either y; or z; respectively. Note that y'~! is equal
to the character of I acting on tje), € gr'(n¥). Thus, if ;e\, # 0, then dually the
X-isotypic subspace of 7[m?]/m[m] would be nonzero. But this contradicts condition
(ii) above. Hence e, is annihilated by the whole ideal a(\) and we are done. O

Corollary 3.3.2.2. Let " be a subrepresentation of m and &' C &P be the subset
corresponding to the characters (without multiplicities) of H appearing in 7', Then

gr(7"V) (with the m-adic filtration on 7') is a quotient of (@/\e@' Nl ® R/a()\))®r.

Proof. We have a natural quotient map 7¥ — 7Y which induces a quotient map
gr(m") — gr(a’V). Tt is enough to prove that the composition

(D v'oRr/aN)” = (@' ®R/aM)” - g(r") - gr(x)
Ae e
is surjective (where the second map is the surjection of Theorem [3.3.2.1)). The as-

sumption implies that it is surjective on gr’(—), and we conclude using that gr(z’")
is generated by gr’(7'V) as a gr(A)-module. O

If N is a finitely generated R-module and q a minimal prime ideal of R, recall
that mq(N) € Z>o denotes the multiplicity of IV at g, see (122).

Theorem 3.3.2.3. We have dimg Vi, (7) = dimgx) DY (1) < my,(gr(7¥)) < 277,
where the minimal ideal po is as in §3.1.4)

Proof. This is a direct consequence of , of Corollary , of Theorem
and of Corollary m 3.3.1.4] noting that, if y; € a(\) for some j € {0,...,f — 1},
then my,(R/a(X)) = 0 (as y; ¢ po), and if y; ¢ a(\) V j € {0,...,f — 1}, then
my,(R/a(N)) = 1 (as (R/a(\)[(vo - yr-1)7'] = Flyo, .., yp-all(yo- - yp-1)7'] =
gr(4)). O

Combined with the results of §3.2] we can deduce the following important corol-
lary.

Corollary 3.3.2.4. Assume moreover that p is semisimple, satisfies the genericity
condition (125)) and that condition (i) above can be enhanced into an isomorphism
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of diagrams (w'' — 7K1) = D(p)®", where D(p) is as in (126). Then we have an
isomorphism of representations of Ig,:

Var, (1)1, = (ind (@) (77 .

In particular we have dimg Vo, (1) = dimp(x) D (7) = my,(7¥) = 2/r. If moreover
the constants v; associated to D(p ® x) (x as in §3.2.1) at the beginning of [Brelll,
§6] are as in [Brelll Thm.6.4], then we have an isomorphism of representations of

Gal(@p/@p): .
Vor(m) 2 (ind5(p))

Proof. 1t follows from Theorem [3.2.1.1| and Theorem (3.3.2.3| as dimg (ind}e}(@p(ﬁ))earz

2fr. O

It is also worth mentioning the following corollary of Theorem [3.3.2.1]

Corollary 3.3.2.5. We have >, mg(gr(n")) < 477, where the sum is taken over all
minimal prime ideals q of R.

Proof. By an easy computation, we have 3>, mq(R/a())) = 2MM (see - for A(A
Thus the result follows from Proposition [3.3.1.5] and Theorem D

Remark 3.3.2.6. (i) It seems possible to us that the surjection in Theorem
could actually be an isomorphism, as least for 7 coming from the global theory as in
§.?%J below. Note that such an isomorphism implies in particular Ef mler(m)) # 0
i only if i = 2f (i.e. the gr(A)-module gr(7") is Cohen—Macaulay of grade 2f),

which in turns implies E4 (V) # 0 if and only if ¢ = 2f (use [Ven02, Cor.6.3] and the
similar result with gr(A) instead of A, the first statement in [Ven02, Thm.3.21(ii)]
and [LvO96, Thm.I.7.2.11(1)]).

(ii) It is worth recalling here the following implications that we have seen. Consider
the following conditions on an admissible smooth representation 7 of GLy(K') over F
with a central character:

(a) [r[m3] : x] = [r[m] : x] for every character x : I — F* appearing in 7[m];

(b) gr(m") is killed by J, where gr(n") is computed with the m-adic filtration on

(c) gr(mY) is killed by some power of J, where gr(r") is computed with any good
filtration on the A-module 7V;

(d) 7 is in the category C of §3.1.2,
Then we have (a) = (b) = (¢) = (d). We suspect that every implication is strict.
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3.3.3 Examples

We completely compute the gr(F[1/Z;])-module gr(V"Y) for certain irreducible admis-
sible smooth representations V' of GLy(K') over F (with V¥ endowed with the m-adic
filtration). We assume p > 5 in this section.

We keep the previous notation. If V' is a smooth representation of I;/Z; over F,
we write gr(V") for the graded module associated to the m-adic filtration on V.

Lemma 3.3.3.1. Let V be a smooth representation of 11/Zy over F such that V|,
is admissible as a representation of Ny and such that the natural map By, (VV) —
gr(VY) (induced by the inclusions my, VY C m"VY forn > 0) is surjective. Then this
map is an isomorphism.

Proof. Since V|, is a finite type F[Ny]-module by assumption, it is a complete
filtered F[No]-module for the my,-adic filtration. As all the maps m% V" /miVY —
m"VV/m" VY are surjective, any element in v € m"V" can be written v = vy + w,
where vy € 3,5, mip VY = miy VY (as V|, is complete) and w € Nyzpym™ VY =0
(as the m-adic filtration is separated since V' is smooth). Thus the inclusion my; V" C
m"V"V is an equality for n > 0, and we are done. ]

The following two lemmas are motivated by [Pasl(0, Prop.7.1, Prop.7.2]. We
consider the finite group H as subgroup of [ via the Teichmiiller lift.

Lemma 3.3.3.2. Let V' be an admissible smooth representation of I/Z, over F. As-
sume that dimg VN = 1 and that V|gy, is isomorphic to an injective envelope of
some character x in the category of smooth representations of HNy over F. Then
Ext}/zl(xaj_l,V) =0 forany0<j<f—1.

Proof. Consider an extension class in Ext; 17 (onj_l,V) represented by 0 — V —

Vi — onj_1 — 0. By assumption on V, this extension splits when restricted to H Ny,
hence we may find v € V/\V on which HNj acts via xa; ' (in particular o € V"No).
Notice that (g — 1)v’ € V for any g € I;. Let v € V™ be a nonzero vector so that
VNo = Fy by assumption.

First take g € (H%OK 1+I?OK ) It is easy to see that (¢ — 1)’ is again fixed by N

and H acts on it via Xaj_l. But, by assumption V™0 is 1-dimensional on which H acts
via x, thus we must have (g — 1)v" = 0. We deduce that v’ is fixed by I N B(Ok).

We claim that v’ is fixed by Ni & <péK ?) This will imply that v’ is fixed by

I; by the Iwahori decomposition, and consequently V' splits as [-representation. Let
— def

k > 1 be the smallest integer such that v’ is fixed by N, = ( pk(ng ?); such an integer
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always exists, as V' is a smooth representation of /. Suppose k > 2 and take g € N,_;.
Using the matrix identity (see [Pasi0, Eq.(14)])

((1] lf)(i ?): (c(l—l—%)c)_l (1)) ( 1‘5170 (1+l?c)’1 )

and the fact that v’ is fixed by ( 1;125): L gféK ), one checks that (g—1)v" € V™. Con-

sequently, Fv @ [Fv’ gives rise to an extension in Extllq NC (Xaj_l, X) which is nonsplit
-1
by the choice of k. But, as in [Pas10, Lemma 5.6], one shows that Ext}{N; (X, x)#0
-1

if and only if X’ = x; for some 0 < i < f — 1. Indeed, after conjugating by (pk; ?),

we are reduced to the case k = 2, in which case the result is proved by determining the
H-action on Hom (N, F) as in [Pas10, Lemma 5.3] (see the proof of [BP12, Prop.5.1]
for the computation). This finishes the proof as Xaj’l # xo; forany 0 <4, < f—1
(as p > 5). O

Lemma 3.3.3.3. Let V' be an admissible smooth representation of 1/Zy over F. As-
sume that dimp V™ = 1 and that V0gn, @s isomorphic to an injective envelope of
some character x in the category of smooth representations of H Ny over F. Then we
have an isomorphism of gr(F[I/Z,])-modules:

g(V)Y2x ' ®R/(2,..., Zf1).

Proof. By assumption, V[m] = V[my,] is one-dimensional and isomorphic to x, hence
we may view gr(V"V) as a cyclic module over gr(A) generated by e, € gr®(VV) =
V[m]¥, where H acts on e, by x~!. Let a C gr(A) be the annihilator of e,.

We first prove that z; € a for 0 < j < f — 1. Since H acts on z; via ozj_l (see just
above §3.3.1)), to prove z;e, = 0 in gr'(V"Y) it is equivalent to prove that

Hompy (xay, V[m®]/Vm]) =0 Vj€{0,...,f—1}.
If not, then V' would admit a subrepresentation isomorphic to Ey ., (for some j),
where E, ., denotes the unique //Z;-representation which is a nonsplit extension of
xa; by x. But by [BHH"| Lemma 6.1.1(ii)] (after conjugating by the element (2 (1))),

No acts trivially on E ,o,, which implies dimg V[my,] > 2, a contradiction to the
assumption on V. Using [BHH™, Lemma 6.1.1], we then deduce an embedding

V[m®)/Vim] = & xa; . (164)

On the other hand, since Hom;(xoz;l, V) =0, we deduce from Lemma [3.3.3.2[ that
Hom;(yoy !, V{m?]/V{m]) = Hom(ya; !, V/V{m]) % Extj (o5, x)

which have dimension 1 over F by [BHH™, Lemma 6.1.1] again. Combining this with

(164), we obtain

0=y — Vm? = & ixa;' —0. (165)
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and that V[m?] = V[m3, .

Next, we prove that Ext} 170G E has dimension 1 over F forany 0 < 7 < f—

—1)
X:xa;
1. A straightforward dévissage using Ext}/z1 (x,x) = 0 and dimg EX‘G}/Z1 (X, xo; ) =1

(see [BHH', Lemma 6.1.1]) yields dimp Ext}/zl(x,E -1) < 1. So it suffices to

XX
explicitly construct a nonzero element in this space, as follows. Let &; < Fuy @ Fo; @
Fuy equipped with the action of 1/Z; determined by:

e H acts on vy, v1, vy by ¥, on;l, X respectively;

° lfg: (1—;fa lfpd)E [1, then

guo = vy, gu1 = v1 + 0;(b)vo,
1 _ _
gUg = V2 + O'j(é)Ul —+ 5(@(6) — 0'j<d) + O'j(bé))?)o.

One easily checks that &; is well defined and yields the desired nonsplit extension of
Ext; 17 (X B o-1). Moreover one also checks that S]NO = [Fvy @ Fo,.

We prove that h; € a for 0 < j < f — 1. Since Ext}/z1 (x,x) = 0, the sequence
(165)) induces an embedding

Exty/z, (x, VIm®]) = Extj, (x, @120 xa; ).

Note that the right-hand side has dimension f over F. Since &;/x is nonzero in
Ext}/z1 (X,onj_l) for 0 < 57 < f — 1, we easily see that the above embedding is
actually an isomorphism and that Ext; sz, (X, V[m?]) is spanned by the &’s. By the
last statement of the previous paragraph, if an extension & € Ext} 1z (O V[m?]) s
nonzero then dimp &M > 2. Since dimp VN = 1 by assumption, we see that there
exists no embedding & < V. From ([165)) we then easily deduce

Hompy (x, Vm?]/V[m?]) = 0.

Since H acts trivially on h; and hje, € gr?(VV) = (V[m®]/V[m?])¥, we thus must
have hje, =0, i.e. h; € afor 0 < j < f — 1. This proves the claim.

We deduce a surjection gr(A)/(zj, hj, 0<j < f—1)— gr(VV). As the left-hand
side is Flyo, ..., yr-1] = gr(F[No]) and (V]|n,)" = F[No] from the assumption, we
obtain a surjection grmNO(VV) — gr(VV). By Lemma [3.3.3.1] this surjection is an
isomorphism (and hence a = (z;,h;,0 < j < f —1)). This finishes the proof. O

If x = x1 ® x2 is a character of H or of T(K), recall x* = xa ® x1.
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Proposition 3.3.3.4. Let V' be an irreducible smooth F-representation of GLa(K)
with a central character.

(i) If V' = 9 o det for some smooth character ¢ : K* — F*, then gr(VV) =
(Y @Y) LT, where ¢ ® 1 is viewed as a character of H.
(i) IfV = Indg(L2() X for some smooth character x : T(K) — F*, then

er(VY) = (1) ® R/ (20, -, 20-1)) @ ((xl) ™ @ R/ (o, -, yp1)).

(iii) If V = (In dg(L;((K 1)/1 is the special series, then gr(VY)= R/(y;z;,0 < i,j <
f=1).

(iv) Assume K = Q,. If V is supersingular, i.e. isomorphic to (c- Ind (S’” «0)]T

for some Serre weight o (recall that c-Ind here means compact mduction and

that Endgr,q,)(c- IndGL2§§;’)QP o) = F[T]), then

er(VY) = (x;' @ R/ (wox0)) @ ((x3) ™' @ R/(wo0)),

where X, is the action of H on o.

Proof. (i) It is trivial.
(ii) The restriction of V to I admits a decomposition

Vir= Ind}wB(K) X ©® Indij*(K) X’ (166)

(cf. the proof of [Pas10l Prop.11.1]). By loc.cit., when restricted to H Ny, Indme,(K)XS
is an injective envelope of x* in the category of smooth representations of H Ny over
IF, hence

gr((Indjrp- () X)) = (X°|lu) ' ® R/ (20, .. 2p-1)

by Lemma |3.3.3.3] One handles the other direct summand by taking conjugation by
the element

(iii) By assumptlon we have a short exact sequence 0 — 1 — IndGL;’Q 1=V =0

Write W = (In dg%;()K) 1)|; and decompose W = W, @ W, as in (166]). The image
of 1 — W is equal to the subspace of constant functions, hence the composition
1 < W — W, is nonzero for ¢ € {1,2}. Consequently, the dual morphism gr(W,") —
gr(1Y) is also nonzero, and using (ii) (applied to W) we obtain an exact sequence of

gr(F[1/Z,])-modules

0— R/(yizj,0 <i,5 < f—1) = gr(W)) ® gr(Wy) — gr(1¥) — 0. (167)
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Denote by F the induced filtration on V'V from the m-adic filtration on WV. By
we have an isomorphism gr,(V") = R/(y;z;,0 <4,j < f —1). To finish the proof, it
suffices to prove that F' coincides with the m-adic filtration on V'V, or equivalently the
inclusion m"VY C m"WY NVY (for n > 0) is an equality. As in the proof of Lemma
it suffices to prove that the induced graded morphism gr,, (V) — grp(V")
is surjective. But, grp(VV) is generated by gri(VV), so it suffices to show that
grd (VV) — gr% (V) is surjective, which follows from and the exact sequence

g (V") = g (W) — gry (1) = 0

induced by 0 — 11t — Wh — V11 (this sequence is actually right exact but we don’t
need this fact).

(iv) The proof is analogous to (iii), using [Pas10, Thm.1.2] together with [Pas10,
Prop.4.7]. O

By the classification of irreducible admissible smooth representations of GLy(Q),)

over IF, we deduce from Proposition and the results of §3.1.2;

Corollary 3.3.3.5. Let V be an admissible smooth representation of GLo(Q,) over
IF which has a central character and is of finite length. Then there is an integer n > 0
such that gr(V") is annihilated by J". In particular V is in the category C of §3.1.9

3.3.4 Characteristic cycles

We define the characteristic cycle of a finitely generated filtered A-module M such
that gr(M) is annihilated by a power of J and prove an important property (Theorem

EIL3).

Recall from §3.1.4| that the minimal prime ideals of R = R/(y;2;,0 < j < f —1)
are the (y;,2;,i € J,j ¢ J) with J a subset of {0,..., f —1}.

Definition 3.3.4.1. Let N be a finitely generated module over gr(A) which is an-
nihilated by some power of J. We define the characteristic cycle of N, denoted by
Z(N)] as follows:

Z(N) d:efzmq(N)q € DqZ>09,
q

where g runs over all minimal prime ideals of R.

Lemma 3.3.4.2. Letn > 0. If0 - Ny - N — Ny — 0 is a short exact sequence of
finitely generated gr(A)/J"-modules, then Z(N) = Z(Ny) + Z(N3) in ®qZ>0q.

Proof. 1t is a direct consequence of Lemma [3.1.4.3] O

3A more standard notation is Z¢(N), where f indicates the dimension of the cycles.
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Let M be a finitely generated A-module which is equipped with a good filtration
F = {F,M,n € Z} (in the sense of [LvO96, §1.5]) such that gr(M) is annihilated by
some power of J. Recall that this condition doesn’t depend on the choice of the good
filtration F' (see just before Proposition and that grp(M) is also finitely
generated over gr(A) ([LvO96, Lemma 1.5.4]).

Lemma 3.3.4.3. If F, I’ are two such good filtrations on M, then

Z(grp(M)) = Z(grp(M)).

Proof. The proof is (almost) the same as in [Bjo89, §4]. We recall it for the conve-
nience of the reader. Since F' and F” are equivalent by [LvO96, Lemma 1.5.3], we
may find ¢ € Z>( such that

Fo. .M CFMCF, M, VneLZ.

For i € {—c,—c+1,...,c} define a sequence of filtrations F') = {FWM n € Z} on
M by
FOMYE, M0FE M
It is clear that F(=9 = F[—c] and F() = F’, where F[—c] denotes the shifted filtration
F[—d], ' F,_., n € Z. Hence it suffices to show that each F is a good filtration on
M such that
Z(grpm (M)) = Z(grpeen (M)). (168)

Put for —c < <e¢:

T, = @ (FueiM 0 FLM)/(FiM 0 FL M),

nez

Si = P (FrpinMNELM)/(FyiM 0 ELM).
nez
Since T is a gr(A)-submodule of grz (M) and S; is a gr(A)-submodule of gr(M)[i+1],
both T; and S; are finitely generated gr(A)-modules and are annihilated by some power
of J. Moreover, one checks that there are short exact sequences of gr(A)-modules
(annihilated by some power of J):

0— T, — grpain (M) — S; — 0,

0— Si[—1] — grpw (M) = T; — 0.

Hence, grpu (M) is also finitely generated over gr(A) and annihilated by a power of J.
Consequently, F( is a good filtration on M by [LvO96, Thm.I.5.7] and (168)) follows
from Lemma 3.3.4.2 O

Thanks to Lemma [3.3.4.3] we can define mq(M) to be mg(grp(M)) and Z(M) to
be Z(grp(M)) for any minimal prime ideal q of R and any good filtration F on M.
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Lemma 3.3.4.4. Let M be as above and let 0 — M; — M — My, — 0 be an exact
sequence of A-modules. Then we have in ©qZ>oq:

Z(M) = Z(M,) + Z(Ms,).

Proof. We may equip M; (resp. M) with the induced filtration (resp. quotient filtra-
tion) from the one of M, which are automatically good by [Lv096], Cor.1.5.5(1)] and
[LvO96, Rem.I.5.2(2)]. Moreover the sequence 0 — gr(M;) — gr(M) — gr(M;) —
0 is again exact. In particular, both gr(M;) and gr(M,) are finitely generated
gr(A)-modules annihilated by some power of J, and the result follows from Lemma
0.0.4.2] [

If M is a finitely generated A-module, recall from [LvO96| Def.IT1.2.1.1] that the
grade of M is by definition the smallest integer js (M) > 0 such that Ef{‘(M)(M )#£0
(with ja(M) = +oo if E4(M) = 0 for all j > 0). For a good filtration F on M, we
define similarly the grade jgra)(grz(M)) of the gr(A)-module gr,(M). By [LvO96,
Thm.II1.2.5.2] we have jga)(grp(M)) = ja(M) (note that A is a left and right Zariski
ring by [LvO96, Prop.I1.2.2.1]), in particular jg(a)(grp(A)) doesn’t depend on the
good filtration F.

Recall that the Krull dimension dimg(/N) of a finitely generated module N over
R (which is commutative) is the Krull dimension of R/Anng(N). For such a module
N, by the argument in the proof of [BHH', Lemma 5.1.3] applied to A = gr(A),
I = (hg,...,hf_1) and with N instead of gr,, M there, we have

Jer(a)(N) = dim(1,/Z;) — dimpg(N). (169)

Now, for M as above, assume that grp (M) is annihilated by a power of J. Then
applying (169)) to the R-modules N = J'grn(M)/J* grp(M) for i > 0 and by an
obvious dévissage using [LvO96l Lemma I11.2.1.2(1)], we deduce

(M) > dim(I,/Zy) — dim(R) = 3f — f = 2f. (170)

Moreover, by the same dévissage using [LvO96l, Cor.I11.2.1.6] (note that all assump-
tions are satisfied since gr(A) is Auslander regular) and (169), we deduce that if
IA(M) = Jae(n)(grp(M)) > 2f, then we have dimg(J* grp(M)/J" grp(M)) < f for
all i, hence Z(J grp(M)/J ™ grp(M)) =0 for all i > 0 and Z(M) = 0 (see ([122)).

Theorem 3.3.4.5. Let M be a finitely generated A-module such that gr(M) is an-
nihilated by a power of J for one (equivalently every) good filtration on M. Then
Z(EX (M) is well-defined and we have

Z(M) = Z(EY (M)).
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Proof. 1f jA(M) > 2f, then the result is trivial since both terms are 0 by the sentence
just before the proposition. So from ((170]) we may assume jx(M) = 2f in the rest of
the proof.

Choose a good filtration F' of M so that Z(M) = Z(grz(M)). We first show that
the gr(A)-module ng( v (grp(M)) is also annihilated by some power of J. Indeed,
grr(M) has a finite filtration whose graded pieces are annihilated by J, hence by
dévissage it suffices to show that Ezf( A () is annihilated by J if N is a finitely
generated R-module. As in the proof of Proposition it is equivalent to prove
the same property for EQ(N ), which is obvious as R is commutative.

As a consequence, by the first statement in Proposition [3 6| below the graded
module associated to the filtration on Ej 2f (M) in loc.cit. is again ﬁnltely generated
over gr(A) and annihilated by some power of J. Hence Z(E3 (M)) can be defined.
By Proposition [3.3.4.6 the cokernel of the injection gr(EY (M)) — Ezf(/\) (grp(M))
has grade > 2f, hence its associated characteristic cycle is 0, as explained above.
From Lemma we deduce an equality of cycles

Z(gr(EY (M) = Z(Ed s (ers(M))).
Hence, we are left to show that
Z(grp(M)) = Z(EH  (ers(M))).
As gr(A) is an Auslander regular ring, any subquotient N of grp (M) has grade > 2f

(by [LvO96l Prop.I11.2.1.6]) and is such that Ejgr(A)(N) has grade > j for any j > 0,

so that Er A (V) and all its subquotients have zero cycle if j < 2f or if j > 2f (by
Lemma [3.3.4.2| and the discussion before the proposition for the latter). Hence, for n
large enough so that J™ annihilates gry(M), we deduce using again Lemma [3.3.4.2

Z(E ) (erp(M))) = Sz (B2 ) (T grp(M) /T grg(M)).

i=0
By the definition of Z and of my(NV), see , it thus suffices to show
Z(N) = (Ezf n))
for any finitely generated R-module N. Using Lemma it suffices to show
Z(N) = Z(Homg(N, ),
which is equivalent to show that for any minimal prime ideal q of R,
lgz, (Ng) = lgg, (Homg(N, R),).
Using the isomorphism Homg(N, ), = Homg, (Ng, Ry) and noting that R, is a field

(being artinian, and reduced as R is), the result is clear. O
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The first part of the following general result was used in the proof of Theorem
3.3.4.5l Recall that a finitely generated gr(A)-module of grade j is Cohen—-Macaulay
if all its Ef ) are 0 when i # j.

Proposition 3.3.4.6. Let M be a finitely generated A-module of grade jo with a good
filtration. Then there exists a good filtration on EX(M) such that gr(EX(M)) is a
submodule of Eg;(A)(gr(M)) and the corresponding cokernel has grade (over gr(A))
> jo+ 1. If gr(M) is moreover Cohen—Macaulay, then

gr(EY (M) = ER ) (gr(M)).

Proof. See [Bjo89, Prop.3.1] and the remark following it. We explain the proof fol-
lowing the presentation of [LvO96, §I11.2.2].

As in [LvO96, §I11.2.2], we may construct a filtered free resolution of M
o= L= Ly == Lo+ M—0

and taking EQ(—) = Homu(—, A) obtain a filtered complex of finitely generated A-
modules
0 — ER(Lo) = EX(Ly) — -+, (171)

where each E{ (L;) is endowed with a good filtration as in loc.cit.. Taking the associ-
ated graded complex of (171)), we obtain a complex of gr(A)-modules (denoted G(x)
in loc.cit.):

0 — gr(ER (Lo)) — gr(EX(L1)) — -+

and by [LvO96, Lemma II1.2.2.2(2)] we have isomorphisms EJ ,(gr(L;)) =

gr(E (L)) for j > 0. Next, as in [LvO96, §IT1.1] we may associate a spectral sequence
{Ej,r > 0,5 > 0} to the filtered complex (171)) and define a good filtration on

EA (M) for j > 0 with the following properties (for convenience we have shifted the
numbering):

(a) EY =gr(E}(L;)) and Ej = Eér(A) (gr(M)) for any j;
(b) for any fixed r > 1, there is a complex

0—Ey—-— E = E}

j+1%...

whose homology gives E}"“;

(c) for r large enough (depending on j), E° = £} = gr(E) (M)).

Since jy(M) = jo by assumption, we also have jga)(gr(M)) = jo by [LvO96,
Thm.II1.2.5.2] and so Ej = 0 for j < jo. By (b), this implies short exact sequences

0= Ef' > E, = E; ., Vr>1
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In particular, by taking 7 large enough, gr(EY(M)) = E5° is a submodule of E} .
Moreover, since E7 ., has grade > jo + 1 for all 7 and so do its subquotients, the
cokernel of E2° < E;O also has grade > jp + 1.

If moreover gr(M) is Cohen—Macaulay, then EJ1 = 0 except for j = jp, hence
E = E} which implies the last claim. O

3.3.5 On the length of 7 in the semisimple case

For p as in assumed moreover semisimple and strongly generic, and 7 as in
§3.3.2| with moreover r = 1 and satisfying one more hypothesis, we prove that m is
generated over GLy(K) by its GLo(Of)-socle, is irreducible if 7 is, and is semisimple
of length 3 if p is reducible split and f = 2.

We keep the notation in and we assume moreover that p is semisimple and
satisfies the strong genericity condition (125)) (we will use the results of . We
fix an admissible smooth representation 7 of GLy(K') over F satisfying the conditions
(i), (ii) in loc.cit. with r = 1 in (i), i.e. 7%t = Dy(p). Recall this implies that gr(m")
is annihilated by J, where gr(7") is computed with the m-adic filtration. We assume
moreover:

(iii) 7w is essentially self-dual of grade 2f, i.e. there is a GLqo(K)-equivariant iso-
morphism of A-modules

EY () 2 ¥ @ (det(p)o ) (172)

(recall det(p)w " is the central character of 7). Here E} () is endowed with the
action of GLy(K') (compatible with the A-module structure) defined in [Koh17,
Prop.3.2].

Remark 3.3.5.1. Conditions (i) to (iii), with » = 1 in (i), will be satisfied for 7
coming from the global theory in the so-called minimal case (see . The reason
to impose the extra assumption r = 1 in (i) is that although for general r we have an
equality of diagrams

(r" — 751 = (Do(p)™ — Do(p))*"

for the representations m coming from cohomology (see Theorem [3.4.1.1| below), we
do not know if this implies that 7 has the form 7'®" for some representation 7’ of
GLy(K).

Given o € W(p), we define the length of o as follows: if A € & corresponds to o

(see \) then /(o) o 0(N), see ([159)). For 0 < ¢ < f, let
Wilp) & {0 € W(p), (o) = 0}
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and define 74(p) & @oew, @ 0. We call Wy(p), or by abuse of notation 7,(p), an orbit
in W(p). Note that this is different from an orbit of ¢ in W (p) as defined in §3.2.4
(see §3.2.3|for §), i.e. in general 74(p) contains several orbits of ¢.

Lemma 3.3.5.2. If ' is a nonzero subrepresentation of m, then socgr,o.)(7') is a
direct sum of orbits in W(p).

Proof. Tt is clear that (7'1' — 7'51) is a subdiagram of (7't — 7%1). The result fol-
lows from this using [BP12, Thm.15.4] together with the proof of [BP12, Thm.19.10].
Actually, when p is irreducible, we even have socgr, (o) (7') = socgr, o) (7) by (the
proof of) [BP12, Thm.19.10]. ]

We use without comment the notation and definitions in §3.1.4] and denote by
lg(7) the length of a finite-dimensional representation 7 of GLy(Of) over F.

Proposition 3.3.5.3. Let ' be a subquotient of .

(i) We have dimg(xy D (7") = myp,(7").
(ii) Assume that 7' is a subrepresentation of w. Then
dimp(xy D¢ (7") = my, (7") = lg(socary o, (7).
In particular, if 7' # 0, then D{(n') # 0.

(iii) Assume that 7' is a nonzero quotient of w. Then D¢ (7') # 0.

Proof. (i) First, for any subquotient 7’ of 7, we equip the A-module 7’V with a good
filtration F' by choosing two submodules 7y C 7y of ©v (with filtrations induced
from the m-adic one on ) such that 7’V & 7y /7y and taking the induced filtration []
Then grp(n'V) is again an R-module, and dimg(xy Dy (7') < my,(7"") by Corollary
B.1.4.5 Since dimp(x) D{ (1) = my, (1) by Corollary[3.3.2.4] since DY (—) is an exact
functor by Theorem and since Z(—), and in particular my,(—), are additive

by Lemma the result follows.

(ii) By assumption 7’ is a subrepresentation of 7. Using that socqgr, o) () is a
union of orbits of 4, or equivalently of S as in ((146)), by Lemma |3.3.5.2] it follows

from Proposition that

dimy((x)) Dg/(ﬂ'/) Z lg(SOCGLQ(@K) (7‘(")).

4The filtrations on 7y and 7y might not be the m-adic ones, and the resulting filtration on 7V
might depend on the choice of 7} and 7y .
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On the other hand, by Lemma [3.3.1.3(i) and Corollary [3.3.2.2 we have my, (7") <

Ig(socar,(0x) (7)) (see the proof of Theorem [3.3.2.3). Hence all the three quantities
are equal by (i).

(iii) Let 7" be the kernel of the quotient map © — 7’ so that we have an exact
sequence of A-modules:
0—=7"—=r"—=a" —=0.

Since 7" is essentially self-dual of grade 2f by assumption, 7’ also has grade 2f by
[LyO96], Prop.111.4.2.8(1)] and [LvO96, Prop.I11.4.2.9]. Taking E}(—), we obtain a
long exact sequence of A-modules

0 — EY («") = EY () —» EXY (=") — E¥ (=) (173)

which gives rise by Pontryagin duality to an exact sequence of admissible smooth
representations of GLy(K') with central character (see [Koh17, Cor.1.8]). Define 7 to
be the admissible smooth representation of GLg(K') such that

7 @ (det(p)w ") = Im(EY (v¥) — EY (7). (174)

Since 7V is essentially self-dual by assumption (see (172), 7" is a quotient of 7¥ and
dually 7 is a subrepresentation of 7. Since Eif +1(7r”v) has grade > 2f + 1 as A is
Auslander regular, we have by (173]) and the discussion before Theorem |3.3.4.5}

Z(EY (7)) = Z2(7" ® (det(p)w ™)),
hence Z(7n"V) = Z(7¥) by Theorem [3.3.4.5| which implies in particular by (i):
dimg(x) D (') = dimg(x) Df (7). (175)

Since ja(n"Y) = 2f, Z(x"V) is nonzero (using e.g. (169))), hence 7 is nonzero, thus
D¢ (7) # 0 by (ii), and finally D¢ (") # 0 by (175). O

Remark 3.3.5.4. (i) The construction of 7 in the proof of Proposition 3.3.5.3((iii)
does not use the assumption that p is semisimple.

(ii) It follows from Proposition|3.3.5.3((ii), from Corollary|3.1.4.5 from Lemma|3.1.4.4}
from Lemma [3.1.4.1] and from ((108) that for 7’ C 7 as in Proposition [3.3.5.3(ii) we

have
rka(Da (7)) = dimg(xy D¢ (7') = my, (gr(7")) = rka(Da(7)). (176)

By Corollary [3.1.2.9] both D4(n’) and D4(n')*" are finite projective A-modules and
it follows from (176]) that the surjection of A-modules D4(7') — Da(7')¢ is here an
isomorphism.

Theorem 3.3.5.5. As a GLy(K)-representation, 7 is generated by its GLo(Of)-socle.
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def

Proof. Let T = socar,(og)(T), let 7 = (GLy(K).7) be the subrepresentation of 7

s def

generated by 7 and let 7 = 7 /7’. Since D/ (—) is exact by Theorem3.1.3.7, we have

dimF((X)) Dév (71') = dim]F((X)) Dg/ (7T/) + dimF((X)) Dg (71'//).
However, since 7 and 7" have the same GLy(O)-socle, we have
dimF((X)) Dg/ (7‘(‘) = dimF((X)) Dg/(ﬂ'/)

by Proposition (3.3.5.3((ii), thus D/ (n”) = 0. If 7" is nonzero this contradicts Propo-
sition [3.3.5.3ii). O

Corollary 3.3.5.6. Assume that p is irreducible. Then m is irreducible and is a
supersingular representation.

Proof. This follows from Theorem [3.3.5.5/and [BP12, Thm.19.10(i)]. O

Remark 3.3.5.7. (i) A result analogous to Theorem [3.3.5.5 when p is not semisimple
is proved in [HW], Thm.1.6].

(ii) While we believe that Proposition and Theorem should be true
without assuming r = 1, we don’t know how to prove a generalization of Corollary
3.3.5.6| (i.e. 7 is semisimple and has length r in general), as mentioned in Remark

B.35.1
Corollary 3.3.5.8. Assume that p is reducible split. Then w has the form
T=mo® ;DT (177)

where

e my and 7y are irreducible principal series such that BY (w)') = m{_,@(det(p)w™),

140, f};

o 7' is generated by its GLy (O )-socle and 'V is essentially self-dual (as in (172)).
Moreover, 7' is irreducible and supersingular when f = 2.

Proof. By the definition of W (p) (see [BP12, §11]), there exists a unique Serre weight
oo € W (p) such that £(cy) = 0. Let x,, be the character of I acting on of'. It is easy
to check that

() ) ) = ().

Let my = (GLy(K).00), a subrepresentation of 7. We claim that 7 is an irreducible
principal series. Indeed, by [HW] Lemma 5.14] and its proof, the morphism (induced
from og — 7 by Frobenius reciprocity)

GLa(K
C—IndGLzEO;)KX oy — T

170



(where c-Ind means compact induction) factors through c- ImdGL2 O;)() rex 00/ (T — 1)
for some iy € F* (as socgr,(og)(m) is multiplicity-free). Note that the genericity of
p implies that dimg oy > 2, hence the representation c- IndGLQ(O) )i x 00 (T — po) is
irreducible and isomorphic to some principal series by [BL94, Thm.30]. This proves
the claim. Moreover, the GLo(Of)-socle of my is exactly oo, and if my = Indg(Lf(()K) X0
for some smooth character xo : T(K) — F* then x|z = X0, Similarly, there exists
a unique Serre weight oy € W (p) such that ¢(cf) = f. It satisfies again

JH(Ind™ )y, ) W (p) = {0/}

and by the same argument as above the subrepresentation 7; = (GLy(K).0f) of

7 is an irreducible principal series with GL2(Of)-socle equal to oy, and if 7, =

Indg%f(()K) Xy then x}[# = Xo;. The map mo @ 7y — 7 is injective since it is injective
on the GLy(Of)-socles.

Letting ' = 7/(m @ 7), we have an exact sequence of A-modules:
O—)?T/V—>7Tv—>7T(\)/@7T}/—>O.

As A is Auslander regular and 7V is of grade 2, it follows from [LvO96l, Cor.I11.2.1.6]
that 7' is of grade > 2f, hence EXY "'(7"Y) = 0 and there is an exact sequence of
(finitely generated) A-modules

0 — E¥Y(r)) ® EY (7)) — EY (z¥) — EXY (=").

Since 7" is essentially self-dual by assumption (see (172))) and since EY (Y)Y and
E2f (my)¥ are also irreducible principal series by [Koh17, Prop.5.4], we see that
admlts a quotient isomorphic to 7 @ 7, where m; (for i € {0, f}) is the (irreducible)
principal series such that

Y @ (det(p)w ™) = EY (7). (178)
Explicitly, if 7 = Indg%f( X; for some smooth characters x : T'(K) — F*, and if we

let ap = w@w ™ T(K) — F* and n = det(p)w " (for short), then by [HW], Lemma
10.7] (which is based on [Koh17, Prop.5.4]):

Xr=xo as(n®n), xo=x;asnhemn). (179)

Let us compute the GLy(Ox)-socle of 7 (the case of m; is similar). Since 7 is equal
to the central character of Ty, we have xo'(n ® n) = x§, so that (179) becomes
X = Xoas- Since Xj|m = Xo, as seen in the first paragraph, we deduce

(X9’ = X508 = Xo;» (180)
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where the last equality holds by an easy check using the definition of oy and oy (see
[BP12, §11]). In particular, our genericity assumption on p implies that x; # x’f
when restricted to T(Ok). Using [BL94, Thm.34(2)], this implies that the GLy(Of)-
socle of 7} is irreducible and actually isomorphic to oy by (180)). Similarly, the
GL2(Of)-socle of m, is isomorphic to oy.

We claim that the composite morphism
WO@Wf(—>7T—»7T6@7T}

is an isomorphism. Since 7 is generated by its GLa(Ok)-socle, namely @,ew ;) 0,
the composite morphism
w: P oc—oT>m
oEW (p)

is nonzero. Since the image is contained in socgr, (o) (7)), which is equal to oy as
seen in the last paragraph, ¢y is nonzero when restricted to oy. But, by construction
we have (GLg(K).09) = m inside 7, hence the composite morphism 7y < 7™ — 7
is nonzero, hence an isomorphism as both 7y and 7(, are irreducible. In the same
way the composite morphism 7y — 7 — 7r} is also an isomorphism. This proves the
claim, from which the decomposition immediately follows. From we also
deduce the isomorphism EY (1Y) = m¢ ;®@n for i€ {0, f}.

We now finish the proof. First, 7’ is generated by its GLy(Of)-socle by Theorem
3.3.5.5] Explicitly, we have

socar, o) (™) = @ o
ceW (P)
0<t(o)< f

In particular, if f = 2, then 7’ is irreducible and is a supersingular representation by
[BP12, Thm.19.10(ii)]. Finally we prove that 7'V is essentially self-dual (as in (172])).
In fact, using ((177) and noting that

(EY (7)Y ©@n = m @ np @ (EY (') @,
it suffices to prove that the composite morphism
w5 (EY () @n - (EY (V)Y @n

is an isomorphism. Since both the source and the target have the same GLy(Ok)-
socle, the morphism is injective because it is when restricted to the GLy(O)-socle
of 7" and is surjective because (E3 (7/V))¥ @1 is generated by its GLy(Ox)-socle. [

3.4 Local-global compatibility results for GLy(Q,r)

We prove special cases of Conjecture [2.1.3.1) and Conjecture when Ff = Q,r
and n = 2. We assume E = W(F)[1/p] (thus O = W(F) and wg = p).
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3.4.1 Global setting and results
We refine the global setting of §§2.1] 2.5 when n = 2 in order to apply the results of
[BHH™] and we state the first main global result.
We come back to the setting of when n = 2 and we assume p > 7. We make
the following extra assumptions on the field F' and the unitary group H:
(i) F/F* is unramified at all finite places;

(i) p is unramified in F'T;

(iii) H is defined over Op+ and H Xo_, F'* is quasi-split at all finite places of F'".
Condition (i) (together with the fact that any p-adic place of F'* splits in F') implies

[F*: Q) is even (see [GK14, §3.1]). By [GK14, §3.1.1] such groups H always exist.
We denote by RY the universal framed deformation ring of 75 over W (F) (@ is any

finite place of F). We set K = Fif and f = [K : Q).

We let 7 : Gal(F/F) — GLy(F) as in §2.1.3/and make the following extra assump-
tions on 7 (recall that S, is the set of places of F'* dividing p):

B lrot Dt it )
‘7“6|1K=(f 0 1) 3<r;<p-—6,
Tt Htp Ty 1 41) 0
o Tyl = | ; 4<ry<p-53<r,<p—6
0 P (same)
2f
for 7 > 0.

Note that conditions (iv) to (viii) only depend on |+ and 9| p+ using condition (i) in
§2.1.3| (the genericity conditions in (viii) are satisfied in [DL §3.3] and don’t depend
on the choices of 0¢, 0j)). We denote by Sr the finite set of finite places of F* such
that @|p+ € Sr if and only if 75 is ramified. Thus S, C Sr and by (ii) any place in
Sy splits in F'*. We fix a finite place v; of F'* which is not in Sy and satisfies the
assumptions in [EGSI5l §6.6], and we choose vy|vy in F.
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We choose S a finite set of finite places of F'* that split in F' containing Sy but
not vy, and a compact open subgroup U =[], U, € H(A¥,) such that

We also define V& U? [Twes, Vs where U? & [Lwgs, Uw and V,, is a pro-p normal

subgroup of U, if w € S, (hence V is normal in U). We set ¥ = SU{v;} and assume
S(V,F)[m*] # 0 (see . Note that S(V,F)[m*] doesn’t depend on S as above by
the proof of [BDJ10, Lemma 4.6(a)]. For each place w € S, we choose a place w|w in
F. For w € S, recall from that W (74(1)) is the set of Serre weights associated
to Tg(1) = Ty ® w defined as in [BDJI0, §3]. Then it follows from [GLS14, Thm.A]
and [BLGG13|, Def.2.9] that we have

Homys (@ues, 0, S(V,F)[m¥]) # 0 <= 04 € W(75(1) Y w € S, (181)

where we consider ®yes,04 as a representation of U via U — U JV 5 Tlwe s, Uw/ Vi
and the isomorphisms ;. Note that the left-hand side of ((181)) is also isomorphic to
Homy (®ues, 0w, S(UP,F)[m*]), where S(UP,F)[m*] is defined as in §2.1.2] replacing
U" by UP.

We freely use the previous local notation (I; is the pro-p Iwahori subgroup in
GLy(Ok) = GLy(Op,) etc.) and set p = 75(1).

Theorem 3.4.1.1. Choose Serre weights o € W (T5(1)) for w € S,\{v} and set
7 = Homye (®ues,\ [0} 05, SV, F) [m>]).

Then there exist an integer r > 1 only depending on v, UY, V', Ques\{v}0s and T
and a diagram D(p) = (D1(p) < Do(p)) as in only depending on p = T5(1)
(and satisfying the assumptions in loc.cit. on the constants v;) such that there is an
isomorphism of diagrams

D(p)®r = (gt — 7).

The case r = 1 of Theorem is known and due to Dotto and Le (|DL,
Thm.1.3]). We generalize below their proof to the case r > 1 using the results in
[BHH™) §8.2]. Moreover the diagram D(p) in Theorem is in fact the same as
the diagram D(mgon(p)) of [DL, Thm.1.3].
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3.4.2 Review of patching functors

We recall the patching functors of [EGS15, §6.6] and some results of [BHH™, §8.2].

We keep the notation of §3.4.1 We choose Serre weights o5 € W (7(1)) for
w € S,\{v} and set
o ® -

weSp\{v}

For each w € S,\{v} we fix a tame inertial type 74 at the place @ such that, denoting
by o(7g) the irreducible smooth representation of GLy(Op,) over E associated by
Henniart to 75 in the appendix to [BM02], JH(o(73)) contains exactly one Serre
weight in W (74(1)) (where (—) means the mod p semisimplification). The existence
of such 7 follows from [EGS15, Prop.3.5.1], and the fact o(73) can be realized over
E = W(F)[1/p] follows from [EGS15, Lemma 3.1.1]. For each w € S,\{v} we also fix

a GLy(Op, )-invariant W (F)-lattice 0%(73) in o(73).

We define
o= R (),

weSp\{v}

and for any continuous representation o; of GLy(Op,) on a finite type W (F)-module,
we consider g%V ®wr) 05 as a representation of U via U —» [Twes, Uw and the iso-
morphisms ;. We define S(UP, W(F)),= exactly as in replacing ' by W(IF)
and UY by UP. Then, as in [EGSIH, §§6.2,6.6], by “patching” Homy (0" @
05, S(UP, W (F))p=)* for various U (where (—)* = Homy ((—), E/W(F)) as in
loc.cit.), we obtain a patching functor

My : 05— Moo (0" Qw ) 05)

which is an exact functor from the category of continuous representations o of
GL2(Op,) on finite type W (F)-modules to the category of finite type R.-modules
(though this patching functor depends on o%%; we just write M, (05) in the sequel).
The local ring R, is (see [GK14) §4.3] or [DL §6.2]):

Roo & R°[Xy, ..., X, (r+aql,
where ¢ is an integer > [F™ : Q] and

oc def (& 5 5 0,(1,0),7 \ &
R d=f<®weS\spREm(1))®W(F)(®wesp\{v}Rm((1>) )®W(F>RE(1>-

Recall REH;((ll’)O )7 ig the reduced p-torsion free quotient of RFDE(D parametrizing framed
potentially Barsotti-Tate deformations with inertial type 74 (by local-global compat-
ibility and the inertial Langlands correspondence, for w € S,\{v} the action of R )
on My (0% @ww)0v) factors through this quotient, see [EGSTH, §6.6]). As in [BHHT,
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§8.1] (see the discussion before [BHHT, Rem.8.1.3] but note that we do not need to

fix the determinant here) we have isomorphisms Ry ) = W(F)[ X1, X2, X3, X4] for

w € S\S,, and, by genericity of 7,, REU(l) = W(F)[Xy, ..., Xagairr0,]- By [EGSIS,
0,(1,0),7¢ ~

Thm.7.2.1(2)] (and [GK14, Rk.5.2.2]) we have RC'(\)"™ = W(F)[Xy, ..., Xiy(p,0,]-

so that we finally get

R = Ry [ X0, s Xa(isi=vta—tr 0] = WENXe, o Xy gisimrg ] (182)

Moreover, if o5 is free of finite type over W (F), then M, (05) is free of finite type
over a subring So, of Ru,, where S, = W(IF)[x1,...,24s/44]. Finally, denoting by
M, the maximal ideal of R, we have

My (03)/me & Homy <(®wesp\v0w) ®F 05, S(UP,F)[mE])v >~ Homy, (o5, m)", (183)

where 7 is as in Theorem B.4.1.1]

Since everything is now at the place ¥, we drop the index ©. If 7 is a tame

inertial type, we set RLO7™ = R ® R0 g’(l’o)’T. If o € W(p), we denote by P,

the projective F[GLy(F,)]-envelope of ¢ and by P, the projective W (IF)[GLy(F,)]-
module lifting P,. We recall that the scheme theoretic support of an R.-module M
is Roo/Anng,(M). The following theorem then follows by exactly the same proof as
for [BHH™, Prop.8.2.3] and [BHH™) Prop.8.2.5].

Theorem 3.4.2.1. There exists an integer r > 1 such that

(i) for any o € W(p) the module My (c) is free of rank r over its scheme-theoretic
support which is a domain;

(ii) for any o € W(p) the modules My (P,) and M (F,) are free of rank r over
their respective scheme-theoretic support;

(iii) for any tame inertial type T such that JH(o (7)) "W (p) # 0 and any GLy(Of)-
invariant W (F)-lattice ¢°(t) in o(7) with irreducible cosocle, the module
M. (c°(7)) is free of rank r over its scheme-theoretic support, which is the
domain RO

Corollary 3.4.2.2. Let w as in Theorem and r as in Theorem [3.4.2.1. We

have an isomorphism of GLa(Ok)K *-representations Dy(p)®" = 751,

Proof. The action of the center K* being by definition the same on both sides, we
can focus on the action of GLy(Ok). It follows from Theorem [3.4.2.1(i) and (ii)
and from that the surjection P, — ¢ induces an isomorphism of r-dimensional
F-vector spaces Homgr, (o) (0, 7)) = Homgr,o,) (P, 751). In particular the mul-
tiplicity of each o € W (p) in 7 is r. It follows from M (Do, (p)/o) = 0 (recall
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Dy(p) = ®oewr) Do (p)) and from that the injection o — Dy, (p) induces
an isomorphism HomGLz(@K)(Do,g(p) ) = Homgr, o) (0, #%*). This gives an in-
clusion Dy(p)®" — w%1. If this inclusion is strict, then by maximality of Dy(p)®"
(an obvious generalization of [BP12, Prop.13.1]) this implies there exists o € W (p)
which appears in 751 /Dy(p)®", and hence has multiplicity > 7 in 7%, which is a
contradiction. ]

Remark 3.4.2.3. In the proof of Theorem [3.4.2.1] and hence also in Corollary[3.4.2.2]
one only needs the slightly weaker bounds 1 < r; < p—4 (and 2 < 1y < p — 3 if
T3 is irreducible) in the genericity conditions (viii) on 75 (or equivalently p) in
(these bound are used in [LMS| §4] which is used in the proof of [BHH™, Prop.8.2.5]).

3.4.3 Direct sums of diagrams

We prove Theorem [3.4.1.1| using the method of [DL §4].

We keep the notation in §§3.4.1 3.4.2] Everything in this section being at the
place ¥, we drop it from the notation. Recall we identify the set of embeddings
F, — F with {0,...,f — 1} via g9 0 ¢’ + i. We denote by P the set of subsets of
{0,...,f — 1} and by J°¢ € P the complement of a subset J € P.

We start by fixing a tame inertial type 7 such that JH(o (7)) N W(p) # @ and
a GLg(Ok)-invariant W (F)-lattice §p in o(7) with irreducible cosocle. With the
notation of [EGS15, §5.1] there is I € P such that this cosocle is /() and 0y = o9(7).
As in [EGSI5, p.77] we can reindex the irreducible constituents of 6y/p by elements

J' in P as follows:
def __

oy = O'(qujc)\(J’mIC)(T)v

so that (by [EGS15, Thm.5.1.1]) the j-th layer of the cosocle filtration of 6y /p consists
of the oy for |J'| = f —j, 0 < j < f. By the beginning of the proof of [EGSI5
Thm.10.1.1] (see loc.cit. p.77), there is J|,, C J! . in P such that JH(6y/p)NW (p) =

min — max

{oy, Jlin CJ C J .} By [EGST5, Thm.7.2.1] we have

min — max

RAOT = (W (F)OX, Y i Y] = Phicssg, )01 Uil

for some integer d > 0. Up to renumbering the variables we can assume that the
irreducible component of R{:%)" /p corresponding to o/, J'. C J' C J' ., in [EGSIH,

min max’

p.77] (which is the support of My, (o) by Theorem [3.4.2.1(1)) is given by the ideal
(X7jem s (Vierur)-

We first fix J € P such that |J| = f—1, so that J° = {j} for some j € {0,..., f—
1}. We let € be the unique (up to homothety) GLy(Ok)-invariant W (IF)-lattice in

o(7) with irreducible cosocle o; ([EGS15, Lemma 4.1.1]). Up to multiplication by
an element in W(IF)*, there is a unique GLy(Of)-equivariant saturated inclusion
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L : 0 <= By, i.e. such that the induced morphism 7 : /p — 6y/p is nonzero. Recall
that by Theorem [3.4.2.1{(iii) both M, () and M, () are free of rank r over R(LO7

Lemma 3.4.3.1. The image ofM (1) : Moo (0) — (90) is Moo (0y), where x = p
ije mmix:XJ/' ije max\ min and x =1 ij¢ max *

Proof. Tt follows from [EGS15, Thm.5.2.4(4)] (up to a reindexation as above) that
p(0o/t(#)) = 0 and that the irreducible constituents of 6y/.(f) are the o, for J’
containing j. In particular 6y/c(6) is of the form &7 for a capped interval J as in
[EGS15), p.81] (namely J = {J',j € J'}). By the proof of [BHH™, Prop.8.2.3] the
module My, (0y/1(0)) = M, (57) is free of rank r over its schematic support, which is
the unique reduced quotient of R(:"" /p with irreducible components corresponding
to the o such that j € J and Jlfmn CJCJ .. Ifj gé ! ax, there are no such J', so
this quotient is 0 (i.e. M (6p/t(0)) =0). If j € max\ ! i, then this quotient is clearly
(RO /p)/(X}) = REO7T/(X)). Finally, if j € J),, all irreducible components

min?

remain, i.e. this quotient is R{-?" /p. The lemma follows by exactness of M. O]

We now consider an arbitrary J € P and let § be the unique invariant W (F)-
lattice in o(7) with irreducible cosocle o;. If J¢ # 0 we set J¢ = {ji1,...,Jn} and
Ji E T {1, ..., jni} fori € {0,...,h} (so Jo={0,...,f —1} and J, = J). As
above we then denote by 6; for i € {0, ..., h} the unique (up to homothety) invariant
W (F)-lattice in o(7) with irreducible cosocle o, and ¢; : §; < 6;_; the corresponding
saturated inclusion for ¢ € {1,...,h} (so 6y is the same as before and 0, = 6). The
composition

Lo ot 0 < 0, o b S b,

is still saturated since one can check using [EGS15, Thm.5.1.1] that the cosocle o,
of 0/p remains in the image of 0;/p — 0;_1/p for all : € {h,h —1,...,1} (indeed, by
loc. cit. the Serre weights o, — 0;,_, in 6y/p form a nonsplit extension as J; C J;_;
and |J;_;\J;| = 1). In particular : = 4, 0 - - 0, is the unique (up to scalar) saturated
inclusion 8 < 6,.

Proposition 3.4.3.2. There is v € RO such that the image of My (1) : Myo(6) <
Mo (0o) is Myo(0). Moreover the principal ideal xR(LO7T only depends on (the
semisimplification of) 0y /1(0).

Proof. The statement being trivial if J¢ = () (equivalently if § = 6y) we can assume
Je# (. Fori e {1,...,h} we can apply Lemma to t; : 0; — 0;_, instead of
L : 0 < 6. Hence there is ; € R(:O"" such that the image of M. (¢ Z) is ;Moo (0;_1).
The image of My (¢) is thus ([T, z;) Mo (6y), i.e. we can take z = [J", z;. It follows
that M. (6o/c(6)) = (RO /(2))®". Hence the irreducible components of R(O7 /(z)
are the ones corresponding to the oy such that J' . C J' C J' and o, appears

min = max

in 6y/c(f), and their multiplicities are the multiplicities of the o in 6y/c(f). The
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second assertion then follows by the same argument as at the end of the proof of [DL
Prop.4.17] (it also follows from an explicit computation of x via Lemma [3.4.3.1)). [

Till the end of this section, we now extensively use notation and results from [DL|
§4] to which we refer the reader for more details.

Recall that Dy(p) = ®ocw @z Doo(p). If x : I — F* is a character appearing in
Dy(p)™ and Fuv,, C Dy(p) is the corresponding eigenspace (which is 1-dimensional), we
define as in [DL, Def.4.1] Ry as the character of I on (socgr, o) (F GLa(Ok )vy))™,
which is also 1-dimensional as it is o't for the unique o € W (p) such that y appears in
Dy, (p)™*. As in [BP12, p.8] we denote by x* the character of I on (2 (l))vx € Dy(p)h
and by o(x) the Serre weight which is the cosocle of Ind?LQ(OK ) X

We define as in [DL, Prop.4.14] an isomorphism
byt Moo(0(RX%)) /Moc — Moo(0(RX)) /Moo

(the “one-dimensional by Theorem 4.6” in the proof of loc.cit. can just be replaced
by “of the same dimension by Theorem [3.4.2.1]"; also note that h, is an isomorphism,
as it is dual to the isomorphism g, in loc.cit.).

Proposition 3.4.3.3. Let k > 1 and xo, ..., Xk—1 arbitrary characters of I which
occur on 7 (equivalently on Do(p)™') such that Rxi = Rxy1 fori € {0,... k —2}
and Rxj_, = Rxo. Then the isomorphism

Py 0 by 0+ 0 oy © Ty : Moo(0(RXG)) /Moo — Moo(0(RX()) /Mo

is the multiplication by a scalar in F* which depends neither on r nor on My,. In
particular this scalar is the same as in [DL (34)].

Proof. We just indicate the steps in the proofs of [DL, §§4.4, 4.5], where the assump-
tion r = 1 is used, and how one can extend the argument there to r > 1. We use
without comment the notation of loc. cit.

e The definition of the isomorphism hy : Mo (07X") 5 M, (8%x) in [DIJ (28)] holds
because one only needs to know that M., (07X") and M., (67X) are free of the same
finite rank over R (7).

e By Proposition there exists U,(x) € Roo(7) such that M (1)(Mu(87X)) =
U, (x) Moo (67X°), where ¢ : 07X < 95X is as in the unlabelled commutative diagram
below [DI, (27)]. Since Ry (7) is a domain by [EGSI5, Thm.7.2.1(2)] and M, (0%x),
Moo (07X°) are free of rank r over R.(7) by Theorem [3.4.2.1fiii), there is a unique
Roo(7)-linear isomorphism 7, : Moo (07%) 5 M, (87X°) such that M., (1) = 7, o Uy(x),
where U,(x) here means multiplication by U,(x) on M (6%X). Then we have a com-
mutative diagram analogous to [DI (29)] replacing the multiplication by U,(x) in
the diagonal map by the map hy o &y, 0 Up(x) = U,(x)(hy 0 Ty)-
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e By the commutativity of the right-hand side of (the analog of) [DL, (28)] and by
the isomorphism M, (Q(x*)X) = M. (6(x*)™X)/p, we deduce that the map

hy 0 1q + Moo(Q(X*)™) — Mwo(Q(x*)™)
is the multiplication by the image of p=*™U,(x) in R (7(x*))/p. As the image of

hyotq is Uy(x) Mao(Q(x®)™X) by the commutativity of the left-hand side of (the analog
of) [DL, (28)] and the definition of U,(x), we deduce that

Up(X)(Roo (T(X*)) /D) = (p7* XU, (x))(Roo (T(x*)) /).

In particular, multiplying ﬁp(x) by a unit in R, (7) we can assume that ﬁp(X) and
p~*™U,(x) have the same image in the quotient R, (7(x*))/p of Reo(7). As a conse-
quence the analogue of [DL, Prop.4.17] holds.

e Since by definition p~*™U, () € R (7’( NP R (T (X 5)) we have

C moo(Roo(T(Xx%))/D)- (184)

»(0)
As Uy(x) = p~WU,(x) € Rso(r(x*))/p (previous point), we deduce U,(x)(hy o
oy — Id) — 0 in Endg_ ()Mo (Q(x*)X)) by the analog of [DL, (28)]. As
M (Q(x*)™x) = MOO(G(X ) X)/p is free of rank r over Roo(7(x*))/p (by Theorem
3.4.2.1{(ii)), (184) implies the image of hy, 0 7, — Id in Endp.(r(ys))/p( Moo (Q(x*) X))
lands in Mo Endg_ (r(y))/p( Moo (Q(x*)"X)).  Since Ker(Ruo(T) — Roo(T(x%))/p) C

Mo R (7), we also have
hy o7y —Id € my Endg.(r) (Moo (079)). (185)

e The big unlabelled diagram before [DL (33)] still holds but the diagonal maps are
not simply multiplication by some ﬁp(xi). For instance in the case k = 3 (the general
case being similar) one has to replace the left diagonal maps in loc. cit. by successively
(from top to bottom) U, (XO)((sz OZXI)_ 0 (hxo OTxo) OTxs Oyt ) U (X2)( (hxz Oly,)0
T); and Uy(x1)(hy, © Iy,). By and the R (7)-linearity of the 1somorphlsms
Ty, all these diagonal maps are in U »(Xi)(Id +me End g () (Moo (07X5))), and their
composition is thus in

Annpg_(r(xs ))/p(

S

k1
(11 0006)) (1 4+ Endle ) (Moo (975)). (156)
i=0
e For v > 1 defined as above DLl (33)], we have from the definition of the 7,
k=1
(chmnﬁhoah¢»~oaozpwd (187)
which implies p~(IT*=3 U,(x:)) € Raso(7)* since the 7y, are isomorphisms. By the

commutativity in the (analog of) the big unlabelled diagram before [DL (33)] (see
the previous point) together with (186]) and (187)) we finally obtain

k—1
o 00 Ty, 0 iy € (p7* T] Tpl0)) (1d g End_ ) (Mo (6759)))
=0
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which is our analog of [DL, (33)]. Then [DL, (34)] follows by the same argument.
The rest of the proof in [DL, §5] is unchanged. O

We can now prove Theorem [3.4.1.1]

Proof of Theorem[3.4.1.1. We let D(p) = (D1(p) — Dy(p)) be the diagram denoted
by D(7gen(p)) in [DI], which only depends on 7. Let D(w) = (Dy(7) < Do(m)) =
(7t < 7%1) be the diagram defined by 7. We will show that D(p)®" = D(7) as
diagrams.

Define first R : 7" — (socar,(ox) 7)™ as in [DI, Def.4.1], i.e. Rv = Sjyv with
Sitp as in [DL, Rem.4.2] if v € 7" is an [-eigenvector with eigencharacter y. Note
that the eigencharacter of Rv is Ry.

Starting from D(p) we define a groupoid G with objects x¢, where £ is any character
of I such that (socgr,(ox) Do(p))*[€] # 0, and morphisms freely generated by g, :
Xpy — XRys, where x is any character of I such that Di(p)[x] # 0, as in [DL
Def.4.3].

The diagram D(7) defines an r-dimensional representation of G, sending x, to the
vector space (socar,(ox) Do(m))"[€] and g, to the linear map

9%  (s0cary(0,) Do(m)) " [Rx] = (socar, (o) Do(m))" [Rx]

as in [DLL §4]. Similarly, we have an r-dimensional representation of G defined by the
diagram D(p)®"; we denote the linear maps by g?.

To check that the two r-dimensional representations of G are isomorphic it suffices
to check that for each object x the restrictions of the two representations to the
automorphism group Gy are isomorphic (see [DL, Prop.4.5]), which is the case by
Proposition , remembering that ¢7 is the dual of h, by (the analog of) [DI
Prop.4.14].

Therefore there exists an isomorphism

At (s0ccLy(0x) Do(m))™ = (socary(ox) Do(p)")"

of I-representations such that Ao g7 = g2 o A on (socqLy(o,) Do(m))™ [Rx] for all y.
As 71 = Dy(p)®" as K-representations we can extend A uniquely to an isomorphism
A Do(m) =5 Do(p)®" of K-representations (extending to the GLy(Ok)-socle first).
As in the proof of [DL, Prop.4.4] we deduce that A restricts to an isomorphism
A : Di(m) = Di(p)®" commuting with (2 (1)) and I, which completes the proof. [
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3.4.4 Local-global compatibility results

We collect our previous results to deduce (together with the results of [HW]) special
cases of Conjecture 2.1.3.T] and Conjecture 2.5.1 when n = 2 and K is unramified.

We keep all the previous notation. We also keep the assumptions (i) to (xii) of
§3.4.1] (in particular 75 is semisimple), except that we replace the bounds on the r;
in (viii) by the stronger bounds (which are those of [BHH™) §1]):

12<r;<p-15 if 7 > 0 or p is reducible;
B rg<p—14 if p is irreducible.

Recall that we choose Serre weights o, € W(73(1)) for w € S,\{v} and consider
7 = Homp» (Ques,\ (v}0a, S(V?,F)[m*]) (see Theorem [3.4.1.1)).

Theorem 3.4.4.1. We have [w[m3 ;| : x] = [7[mp,z,] : x] for all smooth characters
x : I — F* appearing in w[my, /7 ].

Proof. The statement of [BHH", Thm.8.3.10] applies verbatim with the same proof to

7 as above using Theorem [3.4.2.1| and ((183). Combining this with Corollary [3.4.2.2]

we see that 7 satisfies all the assumptions of [BHH™, Thm.1.3], whence the result. [

Remark 3.4.4.2. By a similar argument as in (ii) of the proof of [BHH", Thm.8.4.1]
(which uses [GN, App.AJ), we also have dimgr,, (k) (7) = f, where dimqr, (k) (7) is the
Gelfand—Kirillov dimension of 7 as defined in [BHH™) §5.1].

The following theorem is one of the main results of this paper.

Theorem 3.4.4.3. Keep all the previous assumptions and assume that the r; in Ty
satisfy the following stronger bounds:

max{12,2f —1} < r; < p—max{15,2f+2} ifj >0 orp is reducible;
max{13,2f} < 1o < p—max{14,2f + 1} if p is irreducible.
(188)

Let 0¥ = ®yes\ (0}, Where the oy are Serre weights in W (74(1)) for w € S,\{v}.
Then Conjecture[2.1.3.1] holds for Homg.(a?, S(V?, F)[m*]).

Proof. This follows from Corollary [3.3.2.4] applied to 7 = Homg«(c?, S(V", F)[m¥]),
which satisfies all the assumptions there by Theorem [3.4.1.1] and Theorem [3.4.4.1],

and by Remark [2.1.1.4]ii). H

We now give some evidence for Conjecture [2.5.1} still assuming ((188])). As we also
need r = 1, and to make things as simple as possible, we replace assumptions (v) and

(vii) in §3.4.1] by
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7 is unramified at all finite places outside S,

and we then take S = S, (hence ¥ = S, U {v;}). We also replace assumption (xii) in
by

L5 (Uy,) is equal to the upper-triangular unipotent matrices mod 1.

We take V¥ = UP HwESp\{v} Vw with Lw(vw) =1 +pM2(OFu~)) - GLQ(OFH)) = L@(Uw).
We let T be the Hecke operator acting on S(V",F) by the double coset

L [LUZ(UM (wﬁ 1) La(Um)] :

where @y is a uniformizer in Op.. Increasing [ if necessary, we fix a choice of
v1
eigenvalues a; € F of p(Frob;) (the image of a geometric Frobenius at v1) and

consider the ideal
mS d:Cf (mz T~ — O,/;l) g TE[TG],

» Loy
where o is any element in W (F) lifting @ (see §2.1.2/for 7). Then, replacing m*
by m? everywhere in §§3.4.1] [3.4.2] [3.4.3| by a multiplicity 1 result analogous to the
one in [BD14, Prop.3.5.1] (see for instance the argument in the proof of [Enn, Lemma
3.1.4]) all the previous global results hold with r being 1.

Proposition 3.4.4.4. Choose Serre weights o5 € W (T3(1)) for w € Sy\{v} and let
m = Homyo (Ques,\ {o} 0, S(V, F)[m?)).

The representation m satisfies all the assumptions of (with p =T5(1)).

Proof. The only missing assumption is the essential self-duality (172]). But it holds
by the same proof as for the definite case of [HW) Thm.8.2] using Remark|3.4.4.2, [

From the results of §3.3.5 we thus deduce the following theorems.

Theorem 3.4.4.5. The GLy(F;)-representation w is generated by its GLa(OF;)-socle,
in particular is of finite type.

Theorem 3.4.4.6.

(i) Assume that 75 is irreducible. Then 7 is irreducible and is a supersingular
representation.
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(ii) Assume that T5 is reducible (split) and write p = T5(1) = <>8 )?) Then one
2

has
GL2(F )(

™= IndGL2( ))(Xlw ® x2) ® 7 & Indy” xow ' ® x1),

where 7' is generated by its GLy(Op;)-socle and 7' is essentially self-dual, i.e.
satisfies (L72)). Moreover, when f =2, @' is irreducible and supersingular (and
hence m is semisimple).

Proof. Everything is in Corollary [3.3.5.6] and Corollary [3.3.5.8, except the precise
form of the irreducible principal series 7y, m¢ in loc.cit., but this easily follows from

(179) and Theorem [3.4.1.1] (which is [DL, §5] since r = 1). O

Combining Theorem [3.4.4.6| with Theorem [3.4.4.3, we obtain:

Corollary 3.4.4.7. Keep the same assumptions as just before Proposition [3.4.4.4.
If 75 is irreducible or if f = 2, then 7 is compatible with p (Definition [2.4.2.7). In
particular in these cases Conjecture holds for Homy. (0, S(V?,F)[m®]).

Remark 3.4.4.8. When 7; is reducible nonsplit, a similar proof as for
[HW, Thm.1.6] (with the hypothesis of loc.cit. on 75) implies that 7 is generated over

GLy(F5) by @', When moreover f = 2, a similar proof as for [HW, Thm.10.37]
implies that 7 is at least compatible with P; = P; = B (Definition [2.4.1.5))

184



References

[AW09)]

[AWZ08]

[BD14]

[BD20]

[BDJ10]

[Ber10)]

[BG14]

[BH15]

[BHH*]

[Bj689]

[BLO4|

Konstantin Ardakov and Simon J. Wadsley, I'-invariant ideals in ITwasawa
algebras, J. Pure Appl. Algebra 213 (2009), no. 9, 1852-1864. MR 2518183

Konstantin Ardakov, Feng Wei, and James J. Zhang, Reflexive ideals in
Twasawa algebras, Adv. Math. 218 (2008), no. 3, 865-901. MR 2414324

Christophe Breuil and Fred Diamond, Formes modulaires de Hilbert mod-
ulo p et valeurs d’extensions entre caractéres galoisiens, Ann. Sci. Ec.
Norm. Supér. (4) 47 (2014), no. 5, 905-974. MR 3294620

Christophe Breuil and Yiwen Ding, Higher L-invariants for GL3(Q,) and
local-global compatibility, Cambridge J. of Math. 8 (2020), no. 4, 775-951.

Kevin Buzzard, Fred Diamond, and Frazer Jarvis, On Serre’s conjecture
for mod € Galois representations over totally real fields, Duke Math. J.
155 (2010), no. 1, 105-161. MR 2730374

Laurent Berger, Représentations modulaires de GLy(Q,) et représentations
galoisiennes de dimension 2, Astérisque (2010), no. 330, 263-279. MR
2642408

Kevin Buzzard and Toby Gee, The conjectural connections between auto-
morphic representations and Galois representations, Automorphic forms
and Galois representations. Vol. 1, London Math. Soc. Lecture Note Ser.,
vol. 414, Cambridge Univ. Press, Cambridge, 2014, pp. 135-187. MR
3444225

Christophe Breuil and Florian Herzig, Ordinary representations of G(Q,)
and fundamental algebraic representations, Duke Math. J. 164 (2015),
no. 7, 1271-1352. MR 3347316

Christophe Breuil, Florian Herzig, Yongquan Hu, Stefano Morra, and Ben-
jamin Schraen, Gelfand—Kirillov dimension and mod p cohomology for
GLg, https://arxiv.org/pdf/2009.03127.pdf, preprint (2020).

Jan-Erik Bjork, The Auslander condition on Noetherian rings, Séminaire
d’Algebre Paul Dubreil et Marie-Paul Malliavin, 39éme Année (Paris,
1987/1988), Lecture Notes in Math., vol. 1404, Springer, Berlin, 1989,
pp. 137-173. MR 1035224

Laure Barthel and Ron Livné, Irreducible modular representations of GLs
of a local field, Duke Math. J. 75 (1994), no. 2, 261-292. MR 1290194

185


https://arxiv.org/pdf/2009.03127.pdf

[BLOS]

[BLGG13]

[BMO02]

[Bor79]

[BP12]

[Bre03al

[Bre03b]

[Brel0)]

[Brell]

[Brel4]

[Brel5]

[CDP14]

[CEG*18]

, Modular representations of GLo of a local field: the ordinary,
unramified case, J. Number Theory 55 (1995), no. 1, 1-27. MR 1361556

Thomas Barnet-Lamb, Toby Gee, and David Geraghty, Serre weights for
rank two unitary groups, Math. Ann. 356 (2013), no. 4, 1551-1598. MR
3072811

Christophe Breuil and Ariane Mézard, Multiplicités modulaires et

représentations de GLy(Z,) et de Gal(Q,/Q,) en | = p, Duke Math. J.
115 (2002), no. 2, 205-310, With an appendix by Guy Henniart. MR
1944572

Armand Borel, Automorphic L-functions, Automorphic forms, represen-
tations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ.,
Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math., XXXIII, Amer.
Math. Soc., Providence, R.I., 1979, pp. 27-61. MR 546608

Christophe Breuil and Vytautas Paskunas, Towards a modulo p Langlands
correspondence for GLy, Mem. Amer. Math. Soc. 216 (2012), no. 1016,
vi+114. MR 2931521

Christophe Breuil, Sur quelques représentations modulaires et p-adiques de
GL»(Q,). I, Compositio Math. 138 (2003), no. 2, 165-188. MR 2018825

, Sur quelques représentations modulaires et p-adiques de GLy(Q,).
II, J. Inst. Math. Jussieu 2 (2003), no. 1, 23-58. MR 1955206

, Série spéciale p-adique et cohomologie étale complétée, Astérisque
(2010), no. 331, 65-115. MR 2667887

, Diagrammes de Diamond et (¢,T')-modules, Israel J. Math. 182
(2011), 349-382. MR 2783977

, Sur un probléme de compatibilité local-global modulo p pour GLa,
J. Reine Angew. Math. 692 (2014), 1-76. MR 3274546

, Induction parabolique et (¢, T")-modules, Algebra & Number The-
ory 9 (2015), no. 10, 2241-2291. MR 3437761

Pierre Colmez, Gabriel Dospinescu, and Vytautas Paskunas, The p-adic
local Langlands correspondence for GLy(Q,), Camb. J. Math. 2 (2014),
no. 1, 1-47. MR 3272011

Ana Caraiani, Matthew Emerton, Toby Gee, David Geraghty, Vytautas
Pasktuinas, and Sug Woo Shin, Patching and the p-adic Langlands program
for GLy(Q,), Compos. Math. 154 (2018), no. 3, 503-548. MR 3732208

186



[CHTOS]

[Col&9]

[Col10]

[Conl4]

[CRS1]

[CS17a]

[CS17D)

[DL]

[DMO1]

[DPS]

[EGH13]

[EGS15]

Laurent Clozel, Michael Harris, and Richard Taylor, Automorphy for some
[-adic lifts of automorphic mod | Galois representations, Publ. Math. Inst.
Hautes Etudes Sci. (2008), no. 108, 1-181, With Appendix A, summariz-
ing unpublished work of Russ Mann, and Appendix B by Marie-France
Vignéras. MR 2470687

Michael J. Collins, Tensor induction and transfer, Quart. J. Math. Oxford
Ser. (2) 40 (1989), no. 159, 275-279. MR 1010818

Pierre Colmez, Représentations de GLy(Q,) et (¢, 1')-modules, Astérisque
(2010), no. 330, 281-509. MR 2642409

Brian Conrad, Reductive group schemes, Autour des schémas en groupes.
Vol. I, Panor. Syntheses, vol. 42/43, Soc. Math. France, Paris, 2014,
pp- 93-444. MR 3362641

Charles W. Curtis and Irving Reiner, Methods of representation theory.
Vol. I, John Wiley & Sons, Inc., New York, 1981, With applications
to finite groups and orders, Pure and Applied Mathematics, A Wiley-
Interscience Publication. MR 632548

Przemyslaw Chojecki and Claus Sorensen, Strong local-global compatibil-
ity in the p-adic Langlands program for U(2), Rend. Semin. Mat. Univ.
Padova 137 (2017), 135-153. MR 3652872

, Weak local-global compatibility in the p-adic Langlands program
for U(2), Rend. Semin. Mat. Univ. Padova 137 (2017), 101-133. MR
3652871

Andrea Dotto and Daniel Le, Diagrams in the mod p cohomology
of Shimura curves, https://arxiv.org/pdf/1909.12219.pdf, preprint
(2019).

Francois Digne and Jean Michel, Representations of finite groups of Lie
type, London Mathematical Society Student Texts, vol. 21, Cambridge
University Press, Cambridge, 1991. MR 1118841

Gabriel Dospinescu, Vytautas Paskunas, and Benjamin Schraen, Infinites-
imal characters in arithmetic families, https://arxiv.org/pdf/2012.
01041 .pdf, preprint (2020).

Matthew Emerton, Toby Gee, and Florian Herzig, Weight cycling and
Serre-type conjectures for unitary groups, Duke Math. J. 162 (2013), no. 9,
1649-1722. MR 3079258

Matthew Emerton, Toby Gee, and David Savitt, Lattices in the cohomology
of Shimura curves, Invent. Math. 200 (2015), no. 1, 1-96. MR 3323575

187


https://arxiv.org/pdf/1909.12219.pdf
https://arxiv.org/pdf/2012.01041.pdf
https://arxiv.org/pdf/2012.01041.pdf

[Eme]

[Eme06]

[Emel0a)]

[Emel0b]

(GHS18]

[GK14]

[GLS14]

[Haul6]

Matthew Emerton, Local-global compatibility in the p-adic Langlands pro-
gram for GLy/q, http://www.math.uchicago.edu/~emerton/pdffiles/
lg.pdf, preprint (2011).

, On the interpolation of systems of eigenvalues attached to auto-
morphic Hecke eigenforms, Invent. Math. 164 (2006), no. 1, 1-84. MR
2207783

, Ordinary parts of admissible representations of p-adic reductive
groups 1. Definition and first properties, Astérisque (2010), no. 331, 355—
402. MR 2667882

, Ordinary parts of admissible representations of p-adic reductive
groups II. Derived functors, Astérisque (2010), no. 331, 403-459. MR
2667883

John Enns, Multiplicities in the ordinary part of mod p cohomology for
GL,(Q,), https://arxiv.org/pdf/1809.00278.pdf, preprint (2018).

Jean-Marc Fontaine, Représentations p-adiques des corps locauz. I, The
Grothendieck Festschrift, Vol. II, Progr. Math., vol. 87, Birkhauser
Boston, Boston, MA, 1990, pp. 249-309. MR 1106901

Toby Gee, Florian Herzig, and David Savitt, General Serre weight con-
jectures, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 12, 2859-2949. MR
3871496

Toby Gee and Mark Kisin, The Breuil-Mézard conjecture for potentially
Barsotti-Tate representations, Forum Math. Pi 2 (2014), el, 56. MR
3292675

Toby Gee, Tong Liu, and David Savitt, The Buzzard-Diamond-Jarvis con-
jecture for unitary groups, J. Amer. Math. Soc. 27 (2014), no. 2, 389-435.
MR 3164985

Toby Gee and James Newton, Patching and the completed homology of
locally symmetric spaces, J. Inst. Math. Jussieu, to appear.

Benedict H. Gross, On the Satake isomorphism, Galois representations
in arithmetic algebraic geometry (Durham, 1996), London Math. Soc.
Lecture Note Ser., vol. 254, Cambridge Univ. Press, Cambridge, 1998,
pp. 223-237. MR 1696481

Julien Hauseux, Extensions entre séries principales p-adiques et modulo p
de G(F), J. Inst. Math. Jussieu 15 (2016), no. 2, 225-270. MR 3480966

188


 http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
 http://www.math.uchicago.edu/~emerton/pdffiles/lg.pdf
https://arxiv.org/pdf/1809.00278.pdf

[Haul§]

[Hau19]

[Her11]

[Hul2]

[Hum78]

[HW]

[HW18]

[Jan03]

[Kis10]

[Koh17]

[Lel9]

[LMS]

[LvO96]

[Lyu97]

, Parabolic induction and extensions, Algebra & Number Theory
12 (2018), no. 4, 779-831. MR 3830204

, Sur une conjecture de Breuil-Herzig, J. Reine Angew. Math. 751
(2019), 91-119. MR 3956692

Florian Herzig, The classification of irreducible admissible mod p repre-
sentations of a p-adic GL,, Invent. Math. 186 (2011), no. 2, 373-434. MR
2845621

Yongquan Hu, Diagrammes canoniques et représentations modulo p de
GLy(F), J. Inst. Math. Jussieu 11 (2012), no. 1, 67-118. MR 2862375

James E. Humphreys, Introduction to Lie algebras and representation the-
ory, Graduate Texts in Mathematics, vol. 9, Springer-Verlag, New York-
Berlin, 1978, Second printing, revised. MR 499562

Yongquan Hu and Haoran Wang, On the mod p cohomology for
GLy: the non-semisimple case, https://arxiv.org/pdf/2009.09640.
pdf, preprint (2020).

, Multiplicity one for the mod p cohomology of Shimura curves: the
tame case, Math. Res. Lett. 25 (2018), no. 3, 843-873. MR 3847337

Jens C. Jantzen, Representations of algebraic groups, second ed., Mathe-
matical Surveys and Monographs, vol. 107, American Mathematical Soci-
ety, Providence, RI, 2003. MR 2015057

Mark Kisin, Deformations of Ggq, and GLy(Q,) representations,
Astérisque (2010), no. 330, 511-528. MR 2642410

Jan Kohlhaase, Smooth duality in natural characteristic, Adv. Math. 317
(2017), 1-49. MR 3682662

Daniel Le, Multiplicity one for wildly ramified representations, Algebra
Number Theory 13 (2019), no. 8, 1807-1827. MR 4017535

Daniel Le, Stefano Morra, and Benjamin Schraen, Multiplicity one at full
congruence level, J. Inst. Math. Jussieu, to appear.

Huishi Li and Freddy van Oystaeyen, Zariskian filtrations, K-Monographs
in Mathematics, vol. 2, Kluwer Academic Publishers, Dordrecht, 1996. MR
1420862

Gennady Lyubeznik, F-modules: applications to local cohomology and D-
modules in characteristic p > 0, J. Reine Angew. Math. 491 (1997), 65—
130. MR 1476089

189


https://arxiv.org/pdf/2009.09640 .pdf
https://arxiv.org/pdf/2009.09640 .pdf

[Mor]

[Mor17]

[Pas04]

[Paz10]

[Pag13]

[Sch15]

[Ser00]

[Stal9]

[Sti10]

[SV11]

[Tho12]

[Thol7]

Stefano Morra, Corrigendum to Iwasawa modules and p-modular
representations of GLo, https://www.math.univ-parisi13.fr/~morra/
Iwasawa-CORRIGE.pdf, preprint (2020).

, Twasawa modules and p-modular representations of GLs, Israel J.
Math. 219 (2017), no. 1, 1-70. MR 3642015

Vytautas Paskunas, Coefficient systems and supersingular representations
of GLy(F'), Mém. Soc. Math. Fr. (N.S.) (2004), no. 99, vi+84. MR 2128381

,  FExtensions for supersingular representations of GLa(Q,),
Astérisque (2010), no. 331, 317-353. MR 2667891

, The image of Colmez’s Montreal functor, Publ. Math. Inst.
Hautes Etudes Sci. 118 (2013), 1-191. MR 3150248

Chol Park and Zicheng Qian, On mod p local-global compatibility for
GL,(Q,) in the ordinary case, https://arxiv.org/pdf/1712.03799.
pdf, preprint (2019).

Benjamin Schraen, Sur la présentation des représentations supersinguliéres
de GLy(F'), J. Reine Angew. Math. 704 (2015), 187-208. MR 3365778

Jean-Pierre Serre, Local algebra, Springer Monographs in Mathematics,
Springer-Verlag, Berlin, 2000, Translated from the French by CheeWhye
Chin and revised by the author. MR 1771925

The Stacks Project Authors, Stacks Project, https://stacks.math.
columbia.edu, 2019.

Jakob Stix, Trading degree for dimension in the section conjecture: the
non-abelian Shapiro lemma, Math. J. Okayama Univ. 52 (2010), 29-43.
MR 2589844

Peter Schneider and Marie-France Vigneras, A functor from smooth o-
torsion representations to (¢,I")-modules, On certain L-functions, Clay
Math. Proc., vol. 13, Amer. Math. Soc., Providence, RI, 2011, pp. 525—
601. MR 2767527

Jack Thorne, On the automorphy of l-adic Galois representations with
small residual image, J. Inst. Math. Jussieu 11 (2012), no. 4, 855-920,
With an appendix by Robert Guralnick, Florian Herzig, Richard Taylor
and Thorne. MR 2979825

, A 2-adic automorphy lifting theorem for unitary groups over CM
fields, Math. Z. 285 (2017), no. 1-2, 1-38. MR 3598803

190


https://www.math.univ-paris13.fr/~morra/Iwasawa-CORRIGE.pdf
https://www.math.univ-paris13.fr/~morra/Iwasawa-CORRIGE.pdf
https://arxiv.org/pdf/1712.03799.pdf
https://arxiv.org/pdf/1712.03799.pdf
https://stacks.math.columbia.edu
https://stacks.math.columbia.edu

[Z4b18a)

[Z&b18b]

[Zhu]

Otmar Venjakob, On the structure theory of the Iwasawa algebra of a p-
adic Lie group, J. Eur. Math. Soc. (JEMS) 4 (2002), no. 3, 271-311. MR
1924402

Zhixiang Wu, A note on presentations of supersingular representations of
GL2(F), Manuscripta Math., to appear.

Gergely Zabradi, Multivariable (p,I')-modules and products of Galois
groups, Math. Res. Lett. 25 (2018), no. 2, 687-721. MR 3826842

, Multivariable (p,I")-modules and smooth o-torsion representa-
tions, Selecta Math. (N.S.) 24 (2018), no. 2, 935-995. MR 3782415

Xinwen Zhu, A note on integral Satake isomorphisms, https://arxiv.
org/pdf/2005.13056.pdf, preprint (2020).

191


https://arxiv.org/pdf/2005.13056.pdf
https://arxiv.org/pdf/2005.13056.pdf

	Introduction
	Preamble
	Conjectures
	Results
	Notation

	Local-global compatibility conjectures
	Weak local-global compatibility conjecture
	The functors D_{xi_H}^v and V_H
	Global setting
	Weak local-global compatibility conjecture
	A reformulation using C-groups

	Good subquotients of L^\otimes
	Definition and first properties
	The parabolic group associated to an isotypic component
	The structure of isotypic components of L^\otimes
	From one isotypic component to another

	Good conjugates of rhobar
	Some preliminaries
	Good conjugates of a generic rhobar

	The definition of compatibility
	Compatibility with \tilde P
	Compatibility with rhobar
	Explicit examples

	Strong local-global compatibility conjecture

	The case of GL_2(Q_{p^f})
	(phi,O_K^x)-modules and (phi,Gamma)-modules
	The ring A
	Multivariable (psi,O_K^x)-modules
	Multivariable (phi,O_K^x)-modules
	An upper bound for the ranks of D_A(pi)^\et and D_{xi}^v(pi)

	Tensor induction for GL_2(Q_{p^f})
	Lower bound for V_{GL_2}(pi): statement
	Preliminaries
	A computation for the operator F
	Lower bound for V_{GL_2}(pi): proof

	On the structure of some representations of GL_2(K)
	Combinatorial results
	On the structure of gr(pi^v)
	Examples
	Characteristic cycles
	On the length of pi in the semisimple case

	Local-global compatibility results for GL_2(Q_{p^f})
	Global setting and results
	Review of patching functors
	Direct sums of diagrams
	Local-global compatibility results


	References

