A LOCAL MODEL FOR THE TRIANGULINE VARIETY AND
APPLICATIONS
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ABSTRACT. We describe the completed local rings of the trianguline variety at certain
points of integral weights in terms of completed local rings of algebraic varieties re-
lated to Grothendieck’s simultaneous resolution of singularities. We derive several local
consequences at these points for the trianguline variety: local irreducibility, descrip-
tion of all local companion points in the crystalline case, combinatorial description of
the completed local rings of the fiber over the weight map, etc. Combined with the
patched Hecke eigenvariety (under the usual Taylor-Wiles assumptions), these results in
turn have several global consequences: classicality of crystalline strictly dominant points
on global Hecke eigenvarieties, existence of all expected companion constituents in the
completed cohomology, existence of singularities on global Hecke eigenvarieties.
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1. INTRODUCTION

Let p be a prime number and n > 2 an integer. The aim of this paper is to prove several
new results in the theory of p-adic overconvergent automorphic forms on unitary groups
and in the locally analytic p-adic Langlands programme for GL,,. To a definite unitary
group over a totally real number field, one can associate several rigid analytic Hecke
eigenvarieties. A p-adic overconvergent eigensystem of finite slope is a point on such an
eigenvariety and we say that it is crystalline if its associated p-adic Galois representa-
tion is crystalline at p-adic places. Under standard Taylor-Wiles hypothesis and mild
genericity hypothesis, we prove, among other results, that any crystalline overconvergent
eigensystem of finite slope and dominant weight comes from a classical automorphic form.
Moreover, we show that such an overconvergent eigenform is a singular point on its Hecke
eigenvariety once its associated refinement is critical enough (in a specific sense).

Finally we address the problem of companion forms. It is a well known phenomenon in
the theory of p-adic automorphic forms that there can exist several eigenforms of distinct
weight with the same associated Galois representation, i.e. with the same system of Hecke
eigenvalues for the Hecke action away from p. Under the same assumptions as above we
explicitly describe all such companion forms of a fixed classical form (and in fact we
determine the locally analytic representations generated by these companion forms) in
terms of combinatorial data (elements of the Weyl group) attached to the associated
Galois representation. This description was conjectured by one of us (C.B.) in [16].

The key insight is, that the properties of p-adic automorphic forms we are interested
in, are encoded in the geometry of a rigid analytic space that parametrizes certain rep-
resentations of a local Galois group. We show that the local geometry of this so called
trianguline variety can be studied in terms of varieties that are familiar from geometric
representation theory.

We now describe our main results and methods in more detail.

Let F'" be a totally real number field, F' an imaginary quadratic extension of F'*

and G a unitary group in n variables over F'* which splits over F' and over all p-adic
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places of F*, and which is compact at all infinite places of F'*. Denote by S, the
set of places of F* dividing p and fix L a finite extension of QQ, which is assumed to
be “big enough” Let S (UP, L)* be the space of overconvergent p-adic automorphic
forms on G of tame level UP, a compact open subgroup of G(A*P), i.e. the space of
locally analytic functions from G(Q)\G(A>)/U? to L. This is an admissible locally Q,-
analytic representation of G(F'" ®q Qp) ~ [1,, GL.(F,"). Let S be a finite set of finite
places of F™ containing S, and the v{p such that U, is not hyperspecial. Let m® be a
maximal ideal of the Hecke algebra such that the localization S (UP, L)% is non zero. Let
p: Gal(F/F) — GL,(F,) be the mod p irreducible representation associated to m® that
we suppose to be irreducible. There is a rigid analytic variety Y (U?, ) over L (called the
Hecke eigenvariety) that parametrizes the systems of Hecke eigenvalues of finite slope in
the representation S(U?, L),

A point x € Y(UP,p) can be uniquely characterized by a pair (p,d) where p is a
Galois deformation of 5 on a finite extension of L and § = (0,)v)p = (6uv,i)(v,i)eS,x{1,...n}
is a locally Qp-analytic character of ((F* ®q Q,)*)", the diagonal torus of G(Ft ®q
Qp) = Ilup GLn(F,}). We are interested in points x = (p, d) that are crystalline generic,
by which we mean that p satisfies the following three conditions for all v|p: first, the
local representation p, is crystalline, secondly the eigenvalues (¢u;)ic(1,..n} of ¢% (the
linearization of the crystalline Frobenius on Deys(p,)) satisty o0, ¢ {1,q.} for i # j,
where g, is the cardinality of the residue field of £}, thirdly the Hodge-Tate weights of p,
are regular (i.e. the Sen endomorphism of p, is separable). Under these assumptions (and
in fact under much weaker assumptions on p), one can associate to x = (p,d), for each
v|p, two permutations w,, w, , € S}f S @l; the first one measuring the relative positions of
the weights of the d,;, ¢ € {1,...,n} (suitably normalized) with the antidominant order
(see before Lemma 3.7.4) and the second one measuring the relative positions of two
flags (see before Proposition 3.6.4 and Proposition 3.7.1) coming from the p-adic Hodge
Theory of p,. We set:

w = (Wy)ves, and Wy 1= (Wap)ves, € S 1= HSLFJ:QP].
vlp
When w is the longest element wy in S, or equivalently when the algebraic weight of ¢ is
dominant, we say that x is crystalline generic strictly dominant. Finally, we say that 2’ =
(p,d') € Y(UP,p) is a companion point of z = (p,§) if 8’6" is a Q,-algebraic character.
It is conjectured in [16, Conj.6.5] that the companion points of x are parametrized by
w' € § such that w, < w’ where < is the Bruhat order (note that w’ is w'wy with the
convention in loc.cit.). We write x,, for the conjectural companion point associated to

w' (we have © = xy,,).

Consider the following assumptions, called “standard Taylor-Wiles hypothesis” above:

(1) p>2;
(ii) the field F is unramified over F'*, F' does not contain a non trivial root /1 of 1
and G is quasi-split at all finite places of F'*;
(iii) U, is hyperspecial when the finite place v of F'* is inert in F;
(iv) p(Gal(F/F({/1)) is adequate ([66, Def.2.20]).

Remark 1.1. We thank the referee for pointing out that we forgot the assumption
Y1 ¢ F in a first version of this paper. Actually this assumption is also missing in the
global results of [19] and [20]. More precisely the assumption /1 ¢ F should be added

in [19, Th.1.5 & Th.3.5] and all subsequent results, as well as in [20, Th.1.1] and in
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the results of [20, §3 & §5]. Moreover all the results of [19] and [20] remain true under
the slightly more general notion of adequate subgroup of [66, Def.2.20] instead of [65,
Def.2.3]. We refer to [66] and especially to section 7 of loc.cit. for explanations about
this assumption.

Theorem 1.2 (Theorem 5.1.3). Assume (i) to (iv). If x = (p,0) € Y(UP,p) is generic
crystalline strictly dominant, then x comes from a classical automorphic form of G(Ap+).
In particular p is automorphic.

We point out that the assumption that x is strictly dominant is a necessary assumption.
However, if x = (p,d) € Y(UP,p) is generic crystalline (but not necessarily strictly
dominant) there exists a generic crystalline strictly dominant point 2/ = (p,d’) € Y (U?, p)
(see Remark 5.1.4) and hence our result still implies that p is automorphic (though the
point z itself does not necessarily come from a classical automorphic form).

Theorem 1.3 (Theorem 5.4.2). Assume (i) to (iv) and UP small enough. If x € Y (U?, D)
is generic crystalline strictly dominant such that w,wq is not a product of pairwise distinct
simple reflections, then x is a singular point on Y (UP,p).

Theorem 1.4 (Theorem 5.3.3). Assume (i) to (iv) and UP small enough. If the Ga-
lois representation p : Gal(F/F) — GL,(L) comes from a generic crystalline strictly
dominant point v = (p,0) € Y (UP,p), then all companion constituents associated to
p in [15, §6], [16, Conj.6.1] occur (up to twist) as G(FT ®q Q,)-subrepresentations of

~

S(UP, L)as[my,]. In particular all companion points x., of x for w, < w' exist in Y (U?,p).

Several cases or variants of Theorem 1.2 and Theorem 1.3 were already known. In the
setting of Coleman-Mazur’s eigencurve Theorem 1.2 was proven by Kisin ([51]). When
w, = wy Theorem 1.2 was proven by Chenevier (|24, Prop.4.2]), and when w,wy is
a product of distinct simple reflections Theorem 1.2 was proven in [20, Th.1.1] under
slightly more restrictive conditions on the ¢, ;. In the setting of the completed H* of usual
modular curves Theorem 1.4 was proven in [17] (see also [4]). When n = 2 Theorem 1.4
was proven by Ding ([30], see also [28]), and when n > 2 a few companion constituents
were known to exist ([16], [29]).

We now explain the main steps in the proofs of the above three theorems, and in doing
so we also describe our local results.

The first step is that one can replace in all statements the representation S (UP, L)
by the patched locally Q,-analytic representation I12" of G(F'* ®¢Q,) constructed in [23]
and the eigenvariety Y (U?, p) by the patched eigenvariety X, (p) constructed in [19, §3.2]
(these objects only exist under hypothesis (i) to (iv)). Recall that X,(p) is obtained from
I in the same way as Y (UP, p) is obtained from S(U?, L)% (see loc.cit.). It was shown
in [19, §3.6] that X,(p) is a union of irreducible components of Xz x I, Xui(p,) x U?
where Xz is the rigid analytic generic fiber of the framed deformation space of p at the
places of S\S,, U? is an open polydisc and Xi,;(p,) is the so-called trianguline variety at
v|p, i.e. the closure of points (r,d) where r is a trianguline deformation of 5, and J a

triangulation on D,i,(r,) seen as a locally Q,-analytic character of the diagonal torus of
G(F,) = GL,(F}).
We say that a character d of ((F,7)*)" is generic if §;6;' and §;0;"'| |, are not Q-

algebraic characters of (F,)* for i # j, where | |, is the norm character of F. Our

main local result is the following theorem.
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Theorem 1.5 (Corollary 3.7.10). Let x = (r,0) € Xui(p,) such that ¢ is generic locally
algebraic with distinct weights, then the rigid variety Xi(p,) is normal (hence irreducible)
and Cohen-Macaulay in an affinoid neighbourhood of x.

__The proof of Theorem 1.5 follows from the key discovery that the formal completion
Xiri(Py)z of X4i(p,) at the point x can be recovered, up to formally smooth morphisms,
from varieties studied in geometric representation theory. It follows from our assumption
on the Sen weights of r that this representation is almost de Rham in the sense of Fontaine
([37]). As an extension of almost de Rham representations is still almost de Rham, every
deformation of r on a nilpotent thickening of L is almost de Rham. Let rjy := By ®q, r
and rqr := Bgr ®q, 7 be the B(J{R and Bggr-representations associated to r. A result
of Fontaine tells us that there exists an equivalence of categories W +— (Dpar(W), vw)
between the category of almost de Rham Bgg-representations and the category of pairs
(D, N) where D is a finite dimensional QQ,-vector space and N a nilpotent endomorphism
of D. The set of Galois stable B;-lattices in W is then in natural bijection with the
set of separated exhaustive filtrations of Dyqr(W') stable under vy,. Moreover, when
the Sen weights of the Blz-lattice are multiplicity free, the corresponding filtration of
Dyar(W) is a complete flag. Let Sp A C X4,i(p,) be a nilpotent thickening of the point .
Then the representation r4 is almost de Rham, and we can use a key result of Kedlaya-
Pottharst-Xiao ([49]) and Liu ([55]) on global triangulations to construct a complete
flag of Dyar(74,ar) stable under v, , ... These constructions give us two natural flags in
Dyar(7raqr) that are stable under the same endomorphism v, aar Of Doar(raar). It it
therefore natural to consider the following construction.

Denote by g ~ g[f“j:@p] (resp. b) the L-Lie algebra of G := (ResFJ/Qp GLn/FJ)L (resp.
of the Borel subgroup of upper triangular matrices) and let:

g:={(yB,v) e G/Bxg|Ad(g ') eb} CG/Bxg.

Then g is a smooth irreducible algebraic variety over Spec L of dimension dim G and
the projection g — g is called Grothendieck’s simultaneous resolution of singularities.
The fiber product X := g x, g is equidimensional of dimension dim G and its irreducible

components X, are parametrized by w’ € S’ V Q) (the Weyl group of GG). Under our
hypothesis on z, the L ®q, Fr-module Dygr(rar) is free of rank n and equipped with
a nilpotent endomorphism N and with two flags: the first one D, comes from the tri-
angulation on D;;e(7), the second one Fil, being the Hodge filtration associated to 7qg.
These two flags are preserved by the endomorphism N, so that we can define a point
Zpar = (Da, Fils, N) of X (L) (modulo a choice of basis on Dyqr(r)). In fact, we obtain
a map:

Xtri(py)m — X:):

pdR

and we can show that it factors through X,, (and that xpar € Xyu(L)) where w €

S}LFJ:@P] measures the relative positions of the weights of the ¢;, i € {1,...,n} with the
antidominant order. It remains to prove that this map is formally smooth to deduce the
first of the following two statements, which themselves imply Theorem 1.5.

TpdR

Theorem 1.6 (see (3.33)). Let x as in Theorem 1.5, up to formally smooth morphisms

o~

the formal schemes Xi(p,). and )/(\w’xde are isomorphic.

Theorem 1.7 (see §2.3). The algebraic varieties X, are normal and Cohen-Macaulay

for any w' € S,
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The Cohen-Macaulay property in Theorem 1.7 was already known and due to Bezrukavni-
kov-Riche ([12]) but the normality (see Theorem 2.3.6) is a new result (to the knowledge
of the authors). Theorem 1.2 then follows almost immediately from Theorem 1.5 using
20, Th.3.9] (we refer to the introduction of loc.cit. for some details on this implication).

Theorem 1.6 has many other consequences on the local geometry of Xi;(p,). For
instance we can deduce that the weight map is flat in a neighbourhood of x and, when
r is de Rham, one can give an explicit bound for the dimension of the tangent space
of Xui(p,) at x, generalizing [20, Th.1.3], see §4.1. When x is moreover crystalline and
strictly dominant, one can also completely describe the local companion points of x on
Xui(P,), ie. those 2’ = (r,0') € Xui(p,) such that 6’0" is Q,-algebraic. We obtain the
following result, which is a purely local analogue of Theorem 1.4.

Theorem 1.8 (Theorem 4.2.3). Let x = (r,0) € Xui(p,) as in Theorem 1.5 and w, €
SIF V] measuring the relative positions of Ds and Fil,. Assume x crystalline strictly

dominant, then the local companion points of x are parametrized by w' € SLFJ:QP} with
w, < w'.

The existence of companion points on X;(p,) for w, =< w' is proven by a Zariski-
density argument which doesn’t involve Theorem 1.6. But the fact that there can’t be
others (for other values of w’), i.e. that these points exhaust all companion points of x
on Xyi(p,), relies on the geometry of X, via Theorem 1.6 (see Lemma 2.2.4).

The description of the local geometry in Theorem 1.6 allows us to derive another result
about the geometry of Xy,;(p,). Denote by R, the complete local ring parametrizing (equal
characteristic) framed deformations of r over local artinian L-algebras of residue field L
and by Z(Spec R,) the free abelian group generated by irreducible closed subschemes of
Spec R,.. If A is quotient of R, define:

(1.1) [Spec Al ;= > m(p, A)[Spec A/p] € Z(Spec R,)

p minimal

where the sum is over the minimal prime ideals p of A and m(p, A) € Z>¢ is the length
of A, as Ap-module. For any rigid variety Y, denote by @Y,y its completed local ring
at y € Y. When § is generic, the projection (r’,d") + 7’ induces a closed immer-
sion Spec @Xtri(ﬁv)’(né) < Spec R,. The projection (1/,4’) + §' induces a morphism
from Xi,i(p,) to the rigid space of locally Q,-analytic characters of the diagonal torus
of G(E}) and we let Xi(p,)s be the fiber above §. We obtain a closed immersion
Spec @Xm(ﬁv) 5.(ro) — Spec R,.. The quite striking result is that, though Xy (p,) is re-
duced, the fiber Xiri(p,)s can be highly nonreduced, even “contain” Kazhdan-Lusztig
multiplicities! The following result was inspired by Emerton-Gee’s geometric “Breuil-
Mézard” conjecture ([35, Conj.4.2.1]). Its proof uses Theorem 1.8 and relies (again) on
the geometry of X, via Theorem 1.6 (see §2.4).

Theorem 1.9 (Theorem 4.3.8). For any crystalline generic deformation r of p, with
distinct Hodge-Tate weights and any absolutely irreducible constituent I1 of a locally Q,-
analytic principal series of GLy(F."), there exists a unique codimension [F; = Q,] 23

2
cycle C,.11 in Z(Spec R,.) such that, for all locally Q,-analytic characters ¢, we have:

[Spec @Xm(ﬁv)g,(ré)] => msnCrn in Z(SpecR,)
I

6



where [Spec @Xtri(ﬁu)g,(r,é)] =0 if (r,0) ¢ Xui(p,) and mgn is the multiplicity (possibly
0) of I in the locally Q,-analytic principal series representation obtained by inducing the
character § (suitably normalized).

Ezamples: (i) For instance consider n = 2, F,f = Q, and r = x; @ x2 where y; :=
ZMiunr(p;) and hy < hy (= the Hodge-Tate weights of 7). Let 6, := 2"2unr(p;) and §, :=
ZMunr(py), then Xi(p,) is smooth at the point (r, (41, d2)) but Spec @Xcri(ﬁv)(sl,52)7(1”,(51752))
is reduced with two irreducible components of dimension 3. Forgetting the 2 framing
variables, one irreducible component corresponds to those crystalline deformations of
r = x1 @ X2 coming from the unique nonsplit (crystalline) extension of x; by x2, the
other corresponds to those trianguline noncrystalline deformations of r coming from the
unique nonsplit extension of xs by x1. The locally analytic principal series obtained by
inducing d; ® dae (see (4.10)) also has two irreducible constituents 1, IT, where II; is
locally algebraic and Il is isomorphic to the locally analytic principal series obtained
by inducing x1 ® x2¢. Then C,, is the cycle associated to the crystalline irreducible
component and C, 11, the cycle associated to the noncrystalline component. The locally
analytic principal series obtained by inducing x» ® x1€ has irreducible constituents II; and
the locally analytic principal series 1T, obtained by inducing d2®d; ¢, and this time we have
Crm, = 0. Let us point out that the fact that Spec @Xm(ﬁv)(sl,62)7@,(51,52)) is not irreducible
in this case implies that the canonical projections Xyi(p,) — 7" and X;(p,) — W™ are
not smooth at z = (r, (41, d2)) (here T resp. W denotes the space of continuous characters
of K* resp. of Of).

(ii) There is a global counterpart to this observation as follows. Let f be a modular form
of level prime to p and weight £ > 2 that has complex multiplication by a CM field F
in which p is split (so that the restriction of the associated Galois representation to a
decomposition group at p is the direct sum of two characters). In [3, Th.4] Bellaiche
shows that the eigencurve of Coleman-Mazur is smooth at the point associated to the
critical p-stabilization of f, but that the weight map ramifies at this point. As in this
paper we work in the context of a unitary group, we can not directly recover this result.
But we note that the method explained in §5.4 proves that the eigenvariety is singular
at a given point if its local avatar Xy,;(p,) is singular, and similar arguments imply that
the weight map of the global eigenvariety is ramified at a given point if the projection
Xtri(p,) = W™ is not smooth at (the image of) that point. However, the converse is not
true: not all phenomena in the local geometry of global eigenvarieties can be explained
by the corresponding phenomenon for Xi,i(p,). For example there exists a singular point
on an eigenvariety such that its image in the trianguline variety lies in the smooth locus,
see [20, Rem.5.19].

We now sketch the proof of Theorem 1.4 (see §5.3). The key idea is to define another
set of cycles [£(w')] on the patched eigenvariety X,(p) that satisfy the same multiplicity
formula as in Theorem 1.9 and such that:

[L(w')] # 0 <= HomG(F+®QQp)<Hw’7 153 [m,]) # 0,

where the II,,, are the locally analytic principal series representations that conjecturally
occur in S(UP, L)¥%[m,].

Roughly, the uniqueness assertion in Theorem 1.9 then should force these cycles to
agree with the cycles C,y1 , which then will imply Theorem 1.4. Unfortunately we can
not directly conclude like this, as the cycles [£(w')] are defined on a space X,(p) that

is only known to be a union of irreducible components of Xi,;(p) (or rather of Xz x
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[To}p Xui(p,) x U7). As this problem causes the proof of Theorem 1.4 to be a bit involved,
we sketch here some of the main inputs in more detail for the convenience of the reader.

Fix p as in Theorem 1.4. For each x = (p,0) € Y/(U?,p) — X,,(p) (generic crystalline)
strictly dominant and each w’ > w, write z,, = (p,d,,) and let IT,, be the (irreducible)
socle of the locally Q,-analytic principal series obtained by inducing d,, (suitably nor-
malized).

Fixing z, we hence need to prove that Homgp+gqgq,) (Hw, I3 [m,]) # 0 for w, < w'.
Since x = x,, is known to be classical by Theorem 1.2, we already have:

HOHlG(F*@QQp) (me Hig [mp]) 7& 0
(note that II,, is the unique locally Q,-algebraic constituent among the II,).

Denote by X,(7)wt(s) the fiber of X,() over the weight wt(J) of § seen as an element of
the Lie algebra of the torus of G(F* ®qQ,) and let X, := Xz x X5, x U? where X5 is the
rigid analytic generic fiber of the framed deformation space of p at the places of S, then
we have a closed immersion Spec O Xp(B)we(gyr < SPEC @xm,p similar to the one above with

Xiri(p,)s- For any @Xp(ﬁ)wt@ w-module M of finite type, we define [M] € Z(Spec Ox__,)
as in (1.1) but summing over the minimal prime ideals p of @Xp(ﬁ)wt@,x and replacing
m(p, A) by the length of the (O X (P) (s Jp-odule M. Recall that there is a coherent

Cohen-Macaulay sheaf M, on X,(p) (|20, Lem.3.8]). Taking its pull-back Moo,wt@,z on

Spec @Xp(ﬁ) we first prove that we have a formula in Z(Spec Ox._,):

wt(8) L)

(1.2) Mocwt@ral = D Prasgur (1)[L(w)]

Wy =W’

SIF" %) are the Kazhdan-Lusztig polynomials and £(w') are

vlp ©n

where P, , for z,y € []
certain finite type O X (B)wi(s),o-0dules such that:

E(w') 7é 0 <— HOIIlg(FJr@@Qp)(Hw/, Hig[mp]) 7é 0.

Formula (1.2) essentially comes from representation theory (in particular the structure
of Verma modules) and doesn’t use Theorem 1.6. By an argument analogous to the one
n(n+1)

for Theorem 1.9 (using Theorem 1.6), we have nonzero codimension [F'* : Q™5

¢(w') in Z(Spec @xoo,p) such that:
(1.3) [@Xp(p)wt(é),m] = D Pruwgw(1)E(w).

Wa =W
Moreover we know that the cycle €(wy) is irreducible and that [L(wpg)] € Z>o€(wo)
(roughly because the support of the locally Q,-algebraic vectors lies in the locus of
crystalline deformations). Consequently we can deduce Theorem 1.4 from the fact that
Py wou (1) # 0, if we know that €(w’) is contained in the support of L£(w’) for w, < w'.

-cycles

We prove this last assertion by a descending induction on the length of the Weyl group
element w,. Assume first that lg(w,) = lg(wy) — 1. In that case x is smooth on X,(p)

and then M is locally free at . Hence /(/l\oo,wt@,x o~ @;(P(ﬁ)wt(&:x for some r > 0 and we
can combine (1.3) (multiplied by the integer r) with (1.2). Using €(wp) # 0, €(w,) # 0
and [L(wp)] € Z>o€(wy), it is then not difficult to deduce [L£(w,)] # 0, hence L(w,) # 0
and then Homgp+gy0,) (v, i [m,]) # 0 and z,, € Y/(U?,p).

By a Zariski-density argument analogous to the one in the proof of Theorem 1.8, we

can then deduce [L(w')] # 0 for any w’ > w, such that lg(w’) > lg(wy) — 1 and any
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w, such that lg(w,) < lg(wg) — 1. In particular we have the companion points z,, on
Y (U?,p) for w' = w, and lg(w’) = lg(wy) — 1 and formulas analogous to (1.2) and (1.3)
localizing and completing at x,, instead of x = z,,.

Assume now lg(w,) = lg(wg) — 2, we can repeat the argument of the case lg(w,) =
lg(wy) — 1 but using the analogues of (1.2), (1.3) at z, = (p,d,,) for v’ = w, and
lg(w') = lg(wg) — 1 = lg(w,) + 1. The results on the local geometry of the trianguline
variety imply that X,(p) is smooth at the points z,, with lg(w’) > lg(wg) — 1 and hence:

~ (T
MOO7Wt(éw’)7‘rw/ - OXP(ﬁ)Wt(éw,)u$w’

with r in fact being the same integer for all the v’ (including x = z,,). Combining
equations (1.2), (1.3) for the points z,, with lg(w’) > lg(wy) — 1 we can deduce that
[L(w,)] # 0. Moreover, by a Zariski-density argument [£(w’)] # 0 for w’ > w, such that
lg(w') > lg(wy) — 2 and w, such that lg(w,) < lg(wy) — 2. By a decreasing induction
on lg(w,), we finally obtain (using a very similar argument) all predicted companion
constituents.

Finally, once we have Theorem 1.4, in particular once we have the companion point
Ty, of  in Y (UP, p), the argument of the proof of [20, Cor.5.18] can go through mutatis
mutandis and yields that the tangent space of X,(p) at x has dimension strictly larger
than dim X,,(p) under the assumption on w, in Theorem 1.3 (in loc.cit. we assumed the
crystalline modularity conjectures essentially because they guaranteed the existence of
Ty, on Y (UP p) by [19, Prop.3.27]).

x

notation: We finish this introduction with the main notation.

If K and L are two finite extensions of Q,, we say that L splits K when Hom(K, L)
(= homomorphisms of Q,-algebras K — L) has cardinality [K : Q,] and we then set
Y :=Hom(K,L) = {r: K — L}. If L is any finite extension of Q, we denote by O, its
ring of integers, by kj, its residue field and by Cj, the category of local artinian L-algebra
with residue field isomorphic to L. If A is a (commutative) local ring, we let m, be its
maximal ideal.

For K a finite extension of Q,, we write Ky, C K for the maximal unramified extension
in K, K for an algebraic closure of K and we set |z|x = ¢ ¢®) for » € K where
q :=p/, f:=[Ky: Ql, e :=[K : Ky and val is normalized by val(p) = 1. We
set K, == K(uyn) C K for n > 1, K := U,K,, C the completion of K for |- |k,
Gk = Gal(K/K) and I'k := Gal(K./K). We denote by € : Gx — I'x — Z) the p-adic
cyclotomic character. We let recg : K* — G be the reciprocity map normalized so
that a uniformizer of K is sent to a geometric Frobenius and we still write € for eorecy (a
character of K*). Recall that e = Ng/q,|Nk/q,|0, Wwhere Nk g, is the norm. If a € L*
(where L is any extension of K) we denote by unr(a) the unramified character of K*
sending a uniformizer of K to a (so |- |[x = unr(¢™')). When unr(a) extends to G via
recy, we still write unr(a) for the induced character of Gx and G2P.

If A is an affinoid L-algebra, for example an object of Cr, and 6 : K* — A*X a
continuous - or equivalently locally Q,-analytic - character, the weight of 0 is by definition
the Q,-linear morphism wt(8) : K — A, x — 2£4(exp(tx))|i=o. Since Homg, (K, A) ~
Homg, (K, Q,) ®q, A ~ K ®q, A where the isomorphism Homg, (K, Q,) ~ K comes from
the perfect pairing given by the trace map K — Q,, we can also see wt(d) as an element
of A®q, K. If L splits K, we can write A ®g, K = A®/, (L ®g, K) = ®rexA and see

wt(6) as (wt,(8))yes: € @renA.
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If A is an affinoid algebra, we write R4 x for the Robba ring associated to K with
A-coefficients (see [49, Def.6.2.1] though our notation is slightly different) and Rx when
A = Q,. Given a continuous character 6 : K* — A* we write R x(J) for the rank one
(¢, 'k )-module on Sp A defined by ¢, see [49, Cons.6.2.4].

If X is a scheme locally of finite type over a field L or a rigid analytic space over L, we
denote by X™ the associated reduced Zariski-closed subspace (with the same underlying
set). If 2 is a point of X, we let k(z) be the residue field of x, O, the local ring at z, @X,x
its mop, ,-adic completion and X, the affine formal scheme Spf @X,x (so the underlying

topological space of X, is just a point). We will often (tacitly) use the following: assume
L is of characteristic 0 and x is a closed point of X, then seeing x as a closed point of
Xz = X X k(x) one has (’A)X,m = (’A)Xk(m)w, in particular @X,x is a noetherian complete
local k(x)-algebra of residue field k(z).

If A is an excellent local ring (e.g. A = Ox, where X is a scheme locally of finite type
over a field or a rigid analytic variety) and A its my-adic completion, we will (sometimes
tacitly) use the following equivalences: A is reduced if and only if A is ([41, Sch.7.8.3(v)]),
A is equidimensional if and only if A is ([41, Sch.7.8.3(x)]), A is Cohen-Macaulay if and
only if A is ([40, Prop.16.5.2]), A is normal if and only if A is ([41, Sch.7.8.3(v)]). Moreover
the map Spec A— Spec A sends surjectively minimal prime ideals of A to minimal prime
ideals of A (as it is a faithfully flat morphism).

If g is a Lie algebra over a field k£, we still denote by g the k-scheme defined by
A g(A) = A®yg for A a k-algebra. We denote by k[e] := k[Y]/(Y?) the dual numbers.
If G is a group scheme and A is a ring, we denote by Rep,(G) the full subcategory of
the category of G 4-modules ([46, §1.2.7]) whose objects are finite free A-modules. If V' is
an A-module and I C A an ideal, we denote by V[I] C V the A-submodule of elements
of V' cancelled by all the elements of I.

2. THE GEOMETRY OF SOME SCHEMES RELATED TO THE SPRINGER RESOLUTION

We recall, and sometimes improve, several results of geometric representation theory
concerning varieties related to Grothendieck’s and Springer’s resolution of singularities,
in particular we prove a new normality result (Theorem 2.3.6). All these results will be
crucially used in §3 to describe the local rings of the trianguline variety at certain points.

2.1. Preliminaries. We recall the definition of a certain scheme X associated to a split
connected reductive group G and related to Grothendieck’s simultaneous resolution of
singularities.

We fix GG a split connected reductive group over a field k. We assume that the charac-
teristic of k is good for G, i.e. char(k) = 0 or char(k) > h where h is the Coxeter number
of G (though, for applications, we will only need the case char(k) = 0). We fix B C G
a Borel subgroup and denote by 17" C B a maximal torus and by U C B the unipotent
radical of B. We write W = Ng(T')/T for the Weyl group of (G,T) and wy € W for the
longest element. We denote by lg(—) the length function on W and by =< the Bruhat
order. We write g, b, t and u for the Lie algebra (over k) of respectively G, B, T and
U and we denote by Ad : G — Aut(g) the adjoint representation. Finally we write
w - A= w(A+ p) — p for the usual dot action of W on X*(T"), where p denotes half the

sum of the positive roots with respect to B.
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We equip the product G/B x G/B = G/B x; G/B with an action of G by diagonal
left multiplication. Let w € W and w € Ng(T') C G(k) some lift of w. Write:

U, :=G(l,w)BxB C G/BxG/B

Then G/B x G/B = UyewU,. It is well known that U, (a G-equivariant Schubert cell)
is a locally closed subscheme, smooth of dimension dim G — dim B + lg(w).

Let g be the closed k-subscheme defined by:

(2.1) §:={(9B,¥) €G/Bxg|Ad(g )Y €b} CG/B xg.
It has dimension dim G = dim g and we have a canonical isomorphism of k-schemes:
(2.2) GxPb 8, (9.9)— (9B, Ad(9)v)

where G xP b is the quotient of G' x b for the right action of B defined by (g,)b :=
(gb, Ad(b~1)). We deduce from (2.2) that the morphism g — G/B, (¢B,v) — ¢gB
makes g a vector bundle over G/B. In particular the k-scheme g is smooth and irreducible.

Given a vector bundle over a scheme and its corresponding locally free module of finite
type, recall that a subvector bundle corresponds to a locally free submodule which is
locally a direct factor, or equivalently such that the quotient by this submodule is still
locally free. Using the isomorphism G x? g = G/B x g, (9,%) — (9B, Ad(g)v¢), we
easily see from (2.2) that g is a subvector bundle of the trivial vector bundle G/B x g
over G/B.

Now recall Grothendieck’s simultaneous resolution of singularities:

q:§—9, (9B Y)—1
or equivalently G xZb — g, (g,%) — Ad(g)1. Recall that ¢ € g is called regular if its
orbit under the adjoint representation of G has the maximal possible dimension. Let us
write g'¢ (resp. g"¢~*) for the open k-subscheme of g consisting of the regular (resp. the
regular semi-simple) elements. Similarly, we will write "¢ C t for the open k-subscheme
of regular elements in the Lie algebra of the torus 7.

Proposition 2.1.1. (i) The morphism q is proper and surjective.
(ii) The restriction of q to ¢~ (g™®) is quasi-finite.
(iii) The restriction of q to ¢~'(g™&™%) is étale of degree |W]|.

Proof. For (i) and (ii) see for example [50, Th.VI.8.3(3) & Th.VI.8.3(4)] and its proof.
For (iii) see [50, Th.VI1.9.1]. See also [61, §11.4.7]. O

In the following we will sometimes use the notation g*& and §™¢~* instead of ¢! (g™®)
and ¢! (g"&™). We finally define the most important k-scheme for us:

(23) X :=gx,8={(01B,9:B,¢) € G/BxG/Bx g |Ad(g;")¢ € b, Ad(g,")¥ € b}

where the fiber product is with the map ¢. If we want to specify the base field k, we
sometimes write X}, instead of X.

2.2. Analysis of the global geometry. We describe the global geometry of the scheme
X. Most results in this section are fairly well known, but we include proofs in order to
fix notation and for the convenience of the reader.

Let us write:

(2.4) 7:X—G/BxG/Bxg—-G/BxG/B
11



for the projection to G/B x G/B. We write r; : X — t, i € {1,2}, for the morphism:
(2:5) (1B, 928, %) — Ad(g; )i € bj/u=t
where 1) denotes the image of 1/ € b under the canonical projection b — t. For w € W

let V,, := 7 Y(U,) C X.

Proposition 2.2.1. The projection V,, — U, induced by 7 is a geometric vector bundle
of relative dimension dim B — lg(w).

Proof. We consider the trivial vector bundle:
G/BxG/Bxg— G/BxG/B.

This vector bundle contains the two subvector bundles:

Y1:={(91B,9:B,v) € G/B x G/B x g | Ad(g; ')¢ € b}

Yy :={(1B,92B,¢) € G/B x G/B x g | Ad(g; )¢ € b}
(Y; are subvector bundles of G/B x G/B x g for the same reason that g is a subvector
bundle of G/B x g, see §2.1). By definition X = g x4g is the scheme theoretic intersection
of the two subvector bundles Y; and Y, inside G/B x G/B x g. By Lemma 2.2.2 below,
it is enough to show that for a given point y = (¢B,gwB) € U, C G/B x G/B the

dimension of 77!(y) only depends on w € W. We prove this last fact. The two conditions
Ad(g7 ")y € b, Ad(vw'g™ ') € b translate into:

(2.6) Ad(g M € bNAd(1)b ~ t D (uN Ad(w)u),

or in other words:

(2.7) 7 (y) =y x Ad(g)(t® (un Ad(i)u)) C Uy x g

which is an affine space of dimension dim B — Ig(w). O

Lemma 2.2.2. Let V. — Y be a geometric vector bundle over a reduced scheme Y
which is locally of finite type over a field, and W1, Wy C 'V subvector bundles. Assume
that for all closed points y € Y the intersection of the fibers Wy, N Wy, in 'V, (where
%, 1= % Xy Speck(y)) is an affine space of constant dimension r over k(y). Then the
scheme theoretic intersection W1 N Wy C 'V is a geometric vector bundle of rank r.

Proof. Let us write V, W; and W, for the corresponding locally free sheaves on Y and
recall that V /W is also locally free. We consider the morphism given by the composition:

a:W1—>V—»V/W2.

The coherent sheaf coker(«) is again locally free on Y: indeed by assumption for all closed
points y € Y the dimension of coker(a), is given by rtkV — rk W; — rk W, + r, and the
assumptions on Y imply that a coherent sheaf of fiberwise constant rank is locally free.
This last fact follows from the following classical statement: let A be a reduced noetherian
Jacobson ring and M a finite type A-module such that dimy/m M/mM is constant for
all maximal ideals m of A, then M is a locally free A-module (which is a consequence
of Nakayama’s Lemma and of the fact that the intersection of the maximal ideals of a
reduced Jacobson ring is 0).

Now consider the sheaf Wj := ker . Then the sequence:

00— W3 — W, — V/W, — cokera — 0
12



is exact and all sheaves but Wjs are known to be locally free. It follows that Wj is locally
free as well. It is easily checked that the geometric vector bundle associated with Ws
equals the intersection W; N W, O

Definition 2.2.3. For w € W, let X, be the closed subset of X defined as the Zariski-
closure of V,, in X.

If we want to specify the base field k, we sometimes write X, C X instead of
X, C X.

Lemma 2.2.4. Let w,w' € W, then X, NV, # 0 implies w' < w.

Proof. We first claim that 7(X,) is the Zariski-closure U, of the Schubert cell U, in
G/B x G/B. Indeed V,, = = Y(U,) € = '(U,) implies X, = V,, € 7 }(U,) and
hence 7(X,) C U,. Conversely we have U, x {0} CV,, C G/B x G/B x g and hence
U, x {0} CV,, = X,, which implies U,, C 7(X,,). Since 7(V,y) = U,y we then have:

Xe NV 0= 7(Xp) N7(V) 0= Uy NUy 0= w' 2w
the last implication being the well known closure relations for Schubert varieties. O

Proposition 2.2.5. The scheme X is locally a complete intersection and its irreducible
components are given by the X, for w € W. In particular X is Cohen-Macaulay and
dim X = dim X, = dimg = dim G.

Proof. 1t is obvious that the X, cover X (set-theoretically). By Lemma 2.2.1 and the
irreducibility of the U,, the V,, are irreducible. Moreover, the dimension of X, equals
the dimension of V,, which is equal to dim U,, + dim B — Ig(w) = dim G = dim X. As the
V,, are pairwise disjoint is also follows that none of the X, is contained in another one
for dimension reasons. We deduce that the X, are the irreducible components of X.

The scheme X C G/B x G/B x g is hence equidimensional (of dimension dim G)
and cut out by 2dimu equations in the smooth scheme G/B x G/B x g. As 2dimu =
dim(G/B x G/B x g) — dim X, it is a local complete intersection. d

Let us write: B
Vw = w\ U Xw/:X\ U Xw/ng.
w’Z£w w! #w
Then V,, is an open subset of X and hence it has a canonical structure of an open
subscheme. Moreover X, is still the Zariski-closure of \N/w in X. We define a scheme
structure on X,, by defining X,, to be the scheme theoretic image of V,, in X.

For i € {1,2} we define pr; : X =g xg8 — 9, (1B, ¢2B,¢) — (g: B, ).

Theorem 2.2.6. (i) The scheme X is reduced. In particular the irreducible components
Xy (with their scheme structure) are reduced.

(ii) For i € {1,2} the projection pr; : X — g induces a proper and birational morphism
I, Xy — @ which is an isomorphism above §*°¢ = ¢~ (g"®) C g.

Proof. (i) The scheme X is Cohen-Macaulay and hence it is reduced if it is generically

reduced, see [41, Prop.5.8.5]. We prove that X is generically smooth, i.e. that each

irreducible component X, contains a point at which X is smooth. Indeed, by (iii) of

Proposition 2.1.1 the morphism pr, : X — g is étale of degree |W| over gr¢=  as it is

the base change of the morphism ¢~ = g~ x ;g — g"*®~* (along itself). It is hence
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enough to show that there exists a point = € &~ such that each of the |[IW| components
X, of X contains a pre-image of z. However, by (2.6), any point z = (¢B,1) € g with
Ad(g ')y € t™8 has the property that V,, contains a preimage of x for any w € W.
Moreover, we have the following consequence: let z,, € V,, be such a preimage of x
(which is in fact unique), then pry is étale of degree 1 at z,,. Finally the open subscheme
‘N/w C X is reduced as X is. Hence the same is true for the scheme theoretic image X,
of Vw in X. Note that since V,, is reduced by Proposition 2.2.1, X, is also the scheme

theoretic image of V,, in X.

(ii) The morphism pr, ,, is certainly proper since it is the composition of a closed im-
mersion and the proper morphism pr; (the latter following by base change from (i) of
Proposition 2.1.1). Moreover, we have seen in (i) that X,, contains a point z,, such that
pry, is étale of degree 1 at z,,. Since both schemes X, and g are irreducible, it follows
that pr, , is birational. On the other hand base change from (ii) of Proposition 2.1.1
implies that pr;, and hence also pr,,, is quasi-finite above g™¢. By [42, Th.8.11.1] it
follows that the morphism:

DTy ¢ DI (§7F) — §°

is then finite, being both quasi-finite and proper. Since it is also birational and g™® is
normal, then it is an isomorphism by [42, Lem.8.12.10.1]. The claim for pr, is proven
along the same lines. U

2.3. Analysis of the local geometry. We give an analysis of the local geometry of the
irreducible components X, of the scheme X. In particular we prove the new result that
they are normal.

We denote by k;,, the restriction to X,, C X of the morphisms x; : X — t defined in
(2.5).

Lemma 2.3.1. Fori € {1,2} the fibers of the morphisms rk; and K; ., are equidimensional
of dimension dim G — dimT'.

Proof. We prove the claim for x;, the proof for the other cases being strictly analogous.
Note first that the scalar multiplication:

(28) A (ng,QQB,¢) = (91379287 )\W and A-t=\

defines an action of the multiplicative group G,, on X C G/B x G/B x g and on t such
that the morphism x; is G,,-equivariant. Moreover, it is important to observe that if 1
is a point of g, the orbit map G,, — g deduced from this action extends uniquely to a
map A' — g. As X is a closed subscheme of G/B x G/B x g, it is the same for an orbit
map G,, — X and it is clear that such a map sends the point 0 € A® in /11_1(0).

As the restriction of k; to each irreducible component of X is dominant (even surjective
as follows e.g. from (2.7)), we deduce that for ¢ € t each irreducible component of xy* ()
has dimension at least dim G — dimt = dim G — dim 7, see e.g. [42, Lem.13.1.1]. Let
E C X denote the set of points # € X such that there is a component of ki *(k; (7))
containing = and of dimension strictly larger than dim G — dim 7. By [42, Th.13.1.3] the
subset E is closed and we claim that E = (). Assume this is not the case and choose a
point © € E. The set E is invariant under the action (2.8) of G,, as k1 is G,,-equivariant.
Let A' — X be the unique extension of the orbit map associated to z. As E is G,,-

invariant and closed, this map factors through E. From (2.8), we deduce that E contains
14



a point 2’ such that 2’ € k7(0). As 2’ € E it is enough to show that £ (k1(2')) = &1 *(0)
is equidimensional of dimension dim G — dim 7', which will then be a contradiction.

We are thus reduced to prove that (the reduced subscheme underlying):
k11 (0) = {(91B.92B,¢) € G/B x G/B x g | Ad(gy ")¥ € u, Ad(g, " )¢ € b}

is equidimensional of dimension dim G — dim 7. However, the same argument as in
Proposition 2.2.1 (see (2.6)) yields that:

7 (Uw) N 7H0) = (771 (Uw) xx £71(0)"! — Us

is a geometric vector bundle with characteristic fiber u N Ad(w)u. And hence x;'(0)
is a finite union of locally closed subsets of dimension dim(G) — dim(7") (see also the
beginning of §2.4 below). O

We recall a criterion for flatness often referred to as miracle flatness.

Lemma 2.3.2. Let f:Y — Z be a morphism of noetherian schemes and assume that Z

is reqular and Y is Cohen-Macaulay. Assume that the fibers of f are equidimensional of
dimension dimY — dim Z. Then f is flat.

Proof. Let y € Y map to z € Z and let R (resp. S) denote the local rings of Z at z
(resp. of Y at y), so S is an R-algebra. By assumption the ring R is regular of dimension,
say, d and the ring S is Cohen-Macaulay. Let fi,..., fs € R be a system of generators
of the maximal ideal of R (which exists since R is regular). The assumptions on the
fiber dimension implies that dim S/(f1,..., f4)S = dimS —d. As S is Cohen-Macaulay
it follows from [40, Cor.16.5.6] that the sequence fi,..., fq is an S-regular sequence.
But as R/(f1,..., fa) is a field, the R/(fi,..., fa)-algebra S/(f1,..., f4)S is flat over
R/(f1,..., fa). Hence S is flat over R by [40, Prop.15.1.21] (applied with A = R and
B=M=25). O

Proposition 2.3.3. The schemes X,, are Cohen-Macaulay and the morphisms k; and
Kiw are flat for 1 € {1,2}.

Proof. Assume that char(k) > 0. Then the claim that X,, is Cohen-Macaulay is a result
of Bezrukavnikov and Riche, see [12, Th.2.2.1] (where the scheme X, is called Z,, and
note that char(k) > h is needed in loc.cit.). It is already mentioned in [12, Rem.2.2.2(2)]
that it is possible to lift this result to char(k) = 0, nevertheless we include some details
here. It is enough to prove the claim over any field of characteristic 0.

Let p > h be a prime number and and let A := Z,. Then A is a discrete valuation
ring with residue field F, of characteristic p > h (recall that h is the Coxeter number of
G) and fraction field £ = Q. As G is a Chevalley group there exists a reductive group
G 4 over A and a Borel subgroup B4 over A which are models respectively for G and B.
We denote by ga (resp. by) the Lie algebra of G4 (resp. Ba) considered as A-scheme.
We define a model X4 of X}, over A as the closed subscheme (see also [12, §2.1]):

{(91Ba, g2Ba, ) € Ga/Ba x Ga/Ba x ga | Ad(g; )Y € ba, Ad(g; 1)1 € b}

of Ga/Ba x Ga/Ba x g4 and we let m4 : Xy — G4/Ba X G4/Ba be the canonical
projection. Finally we denote by Uga,, C Ga/Ba X Ga/Bya the Schubert cell defined by
the G a-orbit of (1,w) € Ga/Ba X Ga/By for w € W.

The same argument as in Proposition 2.2.1 shows that 7' (Ua,,) — Ui, is a vector

bundle. We write X4, for the scheme theoretic image of 7, (Ua,,) in X4, which is also
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the scheme theoretic image of WZI(U;W) in X4. It is easy to deduce that X4, is flat
over Spec A and that the generic fiber of X4, is identified with X} ,. Moreover [12,
Rem.2.11.1] asserts that (recall our schemes X, are denoted Z,, in loc.cit.):

XA,w X Spec A SpeC IE?p = XIFp,w-

By [40, Prop.16.5.5] it follows that the A-flat scheme X4, is Cohen-Macaulay as its
special fiber Xg, ., is. It then follows e.g. from [31, Prop.18.8] that the generic fiber X ,,
is Cohen-Macaulay as well.

Finally, we deduce from Lemma 2.3.2 that s, is flat for ¢ € {1,2} using the fact that
X, is Cohen-Macaulay and that k;,, has equidimensional fibers by Lemma 2.3.1. The
proof for k; is the same using Proposition 2.2.5. U

We now state two lemmas which will be used in the main result, Theorem 2.3.6 below.
For simplicity we now write w instead of w.

We first compare the maps £ and ko using the decomposition of G/B x G/B into
Bruhat cells. Recall that t/W := Spec(R}") where Ry is the affine ring of t.

Lemma 2.3.4. Let w € W, then ko, = Ad(w™") o K14, where Ad(w) : t — t is the
morphism induced by the adjoint action of W on t. In particular the diagram:

K1,w
Xy —t

(2.9) wi l
t— /W
where the two morphisms t — t/W are both the canonical projection, commutes.
Proof. Tt is enough to show that the equality g, = Ad(w™!)ok;,, holdson V,, = 7~1(U,,)
as V,, is dense in X, and t is affine hence separated. Let x € 7~1(U,,)(S) be an S-valued

point. After replacing S by some fppf cover, we may assume that there exists some
g € G(S) such that x = (¢B, gwB, ) with ¢ € g(S). Then we have in g(.5):

Ad((gw) )¢ = Ad(w™") Ad(g™ ).
The claim follows from the remark that the image of the left hand side in ¢(S) is by
definition k() while the image of the right hand side equals Ad(w™")ky(z). O

Given w € W we denote by t* C t the closed subscheme defined as the fixed point
scheme of Ad(w) : t — t. It is clear that t* is smooth and irreducible (and in fact
isomorphic to an affine space over k).

Lemma 2.3.5. Consider the morphism fori € {1,2} (see (2.4) and (2.5)):
(m,k;) : X — G/B x G/B x t.
Then the restriction of (7, k;) to Vi, induces a smooth map:
fi Vi — U, x t.

with, irreducible fibers. In particular Vi, Nk (€) = (Vi xx k7 1 (£) is irreducible for
i€{1,2} and all w,w' € W.
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Proof. 1t is enough to prove the statement for ¢ = 1. We deduce from (2.7) that for x =
(9B, gwB,t) € U,xtthe fiber f{ ! (x) is isomorphic to the affine space t+(uNAd(w)u) C b,
hence in particular is smooth and irreducible of dimension only depending on w. It now
follows from Lemma 2.3.2 that f; is a flat morphism (note that both U, x t and V,,
are smooth using Proposition 2.2.1 for the latter). On the other hand a flat morphism
of algebraic varieties over a field is smooth if it has smooth fibers, see e.g. [43, §III
Th.10.2]. It follows that f; is smooth and has irreducible fibers. It remains to show
that V,, N k() = fr (U, x ) is irreducible. Consider two disjoint open subsets
A, B C i Uy x ') in 71 (U, x €). As fy is smooth, it is flat, hence open and f;(A)
and fi(B) are two open subsets of U, x t*". If their intersection is nonempty, there is
r € U, x t such that f;*(z) is not irreducible. Hence f,(A) and fi(B) are disjoint.
But the irreducibility of U, x t*" implies that either fi(A) or fi(B), and hence either A
or B, is empty, which proves that f; (U, x t*') is irreducible. O

We now prove the main result of this section. We recall that we have defined various
maps: 7|x, : X, — G/BxG/B (surjective onto U,), pr; ,, = pr;|x,, : X — @ (proper
birational surjective) and k;,, = K;|x, : X, — t (flat equidimensional surjective) where
K; is the composition of pr, with k: g — t, (¢B,¥) — Ad(g~1)¢.

Theorem 2.3.6. The schemes X,, are normal.

Proof. As X, is Cohen-Macaulay it remains to show by Serre’s criterion ([41, Th.5.8.6])
that X, is smooth in codimension 1. Both V,, and prillu(ﬁreg) are smooth open subsets of
X, the first one by Proposition 2.2.1, the second one by (ii) of Theorem 2.2.6 and the
smoothness of §**¢ (which is an open subset of the smooth scheme g). Hence it is enough
to show that the complement of the smooth open subscheme V,, U prl—}u(greg) in X, is of
codimension strictly larger than 1.

Let C' be an irreducible component of the closed subset X,,\V,, of X, such that C' has
codimension 1 in X,,. It is enough to show that C' can’t be contained in the (smaller)
closed subset X, \(V,, U pry,,(g°8)). As C is covered by the finitely many locally closed
subsets C' NV, for w' # w, we easily deduce that there exists some w’ such that C” :=
C NV, is Zariski-open dense in C. It is enough to show that C’ contains points of
prizlu(f;reg), i.e. that C” contains points (g1 B, g2 B, 1) with ¢ € g*8. Note that since C' is
irreducible so is its open subset C’.

Let x = (g1B, g2B,v¢) € ¢ C X, N Xy, by Lemma 2.3.4 we have:
(2.10) ko(x) = Ad(w™ ki (x) = Ad(w' ™)k ().

It follows that x(C’) C t¥ where @ := ww'~! € W, hence €' C V,y Nk (7). As w # w'
we find that t¥ # t and hence t¥ C t is a closed subset of codimension at least 1. By
Lemma 2.3.5 the map Ky, : Vi — tis smooth, hence the preimage V,, N ﬁfl(tw) of
t? C tin V,, has codimension in V,, equal to the codimension of t¥ in t. As C has
codimension 1 in X, we have:

dimC' =dimCNV,y =dimC =dimX, —1=dimV, — 1 =dimV,, — 1

and it follows from C’ C Vi, Nk (t7) that Vi Nk (%) has codimension < 1 in V.. We
thus see that t¥ C t must have codimension exactly 1 in t, and that V,, N &7 (t?) must
also have codimension 1 in V.

We claim that C" = Vi NryH(t7). Indeed, Vi Nry ' (£?) is Zariski-closed of codimension

1 in V,, and is irreducible by the last assertion in Lemma 2.3.5. On the other hand it
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contains the closed subset ¢/ = C' NV, of V,, which is also of codimension 1 in V.
Hence these two closed subsets of V,,, are the same.

As t% C t has codimension 1, it follows that @ = s, where s, is the reflection associated
to a positive oot . But (0 # C" C X, NV, implies w' < w = s,w’ by Lemma
2.2.4, hence Ig(w’) < lg(s,w’) and [45, §0.3(4)] implies that w'~'« is a positive root.
Equivalently the root « is positive with respect to the Borel subgroup w'Bw’ “1ie we
have g, € b N Ad(w')b where g, C g is the T-eigenspace of g for the adjoint action
corresponding to the root a. Applying (2.7) with g = 1 yields:

ﬂ_l((B,w’B)) = (B,w'B)x (t®(unAd(w')u)) = (B,w'B)xbNAd(w")b D (B,w' B)x (tBg.),
hence we deduce:
C' =V NeHE) D7 (B, w'B)) Nk () D (B,w'B) x (£ @ gq).

The claim then follows as one easily checks that t°> & g, contains elements in g™&. [

We end this section by formulating a general conjecture about the set-theoretic inter-
sections X, NV, for w,w’ € W.

Conjecture 2.3.7. Let w,w' € W with w' < w and @ = ww'™!, then we have:
X N Vi = Vi N7 HED).

Obviously Lemma 2.3.4 implies that the left hand side is contained in the right hand
side.

2.4. Characteristic cycles. We show that the fibers +(0) C X, are related to Springer’s
resolution and have a rich combinatorial geometric structure that will be used in §4.3.

We now assume char(k) = 0. Let g/G := Spec(R{) where g = Spec Ry and note that
the natural map t/WW — g/G is an isomorphism of smooth affine spaces (see e.g. [44,
(10.1.8)]). We have a canonical morphism & : X — g/G given by the composition of
the canonical map X ~ g x, g —> g with the projection g — g/G. Again for w € W we
write kK, for the restriction of kK to X,, C X and point out that &, is the diagonal map in
the commutative diagram (2.9). Note that &, is surjective as all maps in (2.9) are. We
define the following reduced scheme over k:

(2.11) Z = (X xgc {0D) = (r1(0))™ C X.

The scheme Z is known as the Steinberg variety (see [62]) and we easily check that we
have:

Z N xy N
where N C g is the nilpotent cone, N := {(¢B,v) € G/B x N | Ad(g~")¢ € u} (a
smooth scheme over k) and where ¢ : N — N, (9B, ) — 1 is the Springer resolution
of the (singular) scheme N. We also have as in (2.2):

(2.12) GxBu-5N, (g,9) — (9B, Ad(g)v).

We analyze the irreducible components of Z as we did for X in §2.2. For w € W let us
write V! := 7 1(U,) N Z (set-theoretic intersection in X) and Z,, for the Zariski-closure
of V! in Z with its reduced scheme structure.

Proposition 2.4.1. The scheme Z is equidimensional of dimension dim G — dim T and

its irreducible components are given by the Z,, for w € W.
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Proof. The proof is the same as the proof of the corresponding statements in Proposition
2.2.1 and Proposition 2.2.5. U

Remark 2.4.2. Contrary to the case of the X, (see Proposition 2.3.3), it doesn’t seem to
be known whether the irreducible components Z,, are Cohen-Macaulay. Moreover, even
assuming this, the proof of Theorem 2.3.6 doesn’t extend, and we do not know either if
the Z,, are normal.

We write Z°(Z) for the free abelian group generated by the irreducible closed subvari-
eties of codimension 0 in Z, i.e. for the free abelian group on the irreducible components
of Z. For w € W we denote by [Z,] the component Z,, viewed in Z°(Z). By Proposition
2.4.1 the [Z,] form a basis of Z°(Z) (which is thus isomorphic to Z[W]). Given a scheme
Y whose underlying topological space is a union of irreducible components of Z we can
define an associated class:

(2.13) V]i= Y m(Za V) Z] € 2°(2)

weWw
where m(Z,,Y’) is the multiplicity of Z, in Y, i.e. is the length as an Oy, -module of
the local ring Oy, of Y at the generic point 7, of Z,.

We set for w € W: B
X =ri,0) CcX,CX

(note that we do not take the reduced associated schemes). We obviously have de cZ
(using Lemma 2.3.4). Moreover, each irreducible component of X,, has dimension at least
dim Z = dim X,, — dim g/G = dim X,, — dim t by an application of [43, §II Exer.3.22] to
the surjective morphism &y, : X,, — t. Hence each irreducible component of X,, has
dimension dim Z and is thus some 7, for w’" € W. We are interested in computing the
class [X,] € Z°(Z), but for this we need some preliminaries.

Let us denote by O the usual BGG-category of U(g)-modules associated to g D b D t,
see e.g. [45, §1.1]. Given a weight u, i.e. a k-linear morphism t — k, let M(p) =
U(g) ®u) k(1) denote the Verma module of (highest) weight y where U(—) is the en-
veloping algebra and k(u) = k with action of U(b) given by U(b) — U(t) %+ k (where
the right hand side is the k-algebra morphism induced by p). We know that M (u) has
a unique irreducible quotient L(u) (see e.g. [45, §1.2]). Let w € W, then the irreducible
constituents of M (wwy-0) = M(—w(p)—p) = M(w-(—2p)) are of the form L(w'wy-0) for
w' € W and the constituent L(w'wy-0) occurs in M (wwy-0) with multiplicity Pugwwew (1),
see e.g. [45, §8.4]. Here P, ,(T') € Z>[T] is the Kazhdan-Lusztig polynomial associated
to x,y € W. Recall that P, , # 0 if and only if x < y and that P, (1) = 1. In particular
L(w'wg - 0) occurs in M (wwy - 0) if and only if wow =< wew’ if and only if w’ < w (the
last equivalence following from the definition of the Bruhat order, see e.g. [45, §0.4], and
from lg(wow) = lg(wp) — lg(w), see e.g. [45, §0.3]).

We write O(0) for the full subcategory of O consisting of objects of trivial infinitesimal
character ([45, §1.12]), for instance M (wwy - 0) and L(wwy - 0) are in O(0) for w € W.
The Beilinson-Bernstein correspondence ([1], [21]) defines an exact functor which is an
equivalence of artinian categories:

(2.14) BB : O(0) = D—Modg, pyqyp

to the category D—Modgl/ pxq,p Of regular holonomic G-equivariant D-modules on G/ B x
G/B (see e.g. [21, Th. 4.1], [44, §6] and [44, §11]). We write 9t (wwy-0) := BBg (M (wwy -
0)) and £(wwy - 0) := BBg(L(wwy - 0)) for w € W.
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Remark 2.4.3. In fact, in [44, §11] (and in most references on the subject), it is rather
constructed an equivalence BBg : O(0) — D—Moerh/ p to the category of B-equivariant
regular holonomic D-modules on G/B. However, if one embeds G/B into G/B x G/B
via gB +— (B, gB), then one can use the left diagonal action of G to extend a regular
holonomic B-equivariant D-module on G/B to a regular holonomic G-equivariant D-
module on G/B x G/B. This yields an equivalence of categories between D—Modgl/ B

and D—Modg‘/BXc/B, see [63, Lem.1.4(ii)]. The composition of BBy with this equivalence
gives the functor BBg.

By [27, Prop.3.3.4], the Steinberg variety Z is identified with the union in the cotangent
bundle of G/B x G /B of the conormal bundles of the diagonal G-orbits of G/B x G/B.
Recall these diagonal G-orbits are the U, for w € W (see §2.1), so in particular we have:

T;. (G/B x G/B) C Z C T*(G/B x G/B)

where T (G/B x G /B) is the conormal bundle of Uy, in G/BxG/B and T*(G/B x G/ B)
is the cotangent bundle of G/B x G/B. In fact, by [27, Cor.3.3.5(ii)] the irreducible
component Z,, of Z is identified with the Zariski-closure of T3; (G/B x G/B) in Z.

To any coherent D-module 9t on G/Bx G/ B one can associate a coherent Or+(G/BxG/B)-
module gr(9M) on T*(G/B x G/B) (which depends on the choice of a good filtration on
). The schematic support of gr(9M) defines a closed subscheme Ch(9) of T*(G/B x
G/B) such that each irreducible component of Ch(90) is of dimension greater or equal
than dim Z = dim(G/B x G/B) ([44, Cor.2.3.2]). The closed subscheme Ch(9) still
depends on the choice of good filtration on 9t however the associated cycle in the group
Z(T*(G/B x G/B)) depends only on M (see e.g. [44, p.60]). The following result is
well-known (see e.g. [63, §1.4]).

Proposition 2.4.4. If 9 is in D—Modg, 5, ¢/ then Ch(IM)™™ C Z C T*(G/B x G/B).

Proof. We only give a sketch. First, we have an isomorphism of k-schemes:

(215) Z L> G XB q—l(u)red’ ((gla¢1)a (92#?2)) — (gla (91_19277#2))

where we have used (2.12) for N and its subscheme ¢~'(u)®!, and where B acts on

G x ¢ (W) by (hy, (ha,¥))b == (hib, (b= hy,4)). Secondly, the k-scheme N can be
identified with 7*G/B (see e.g. [44, §10.3]) and if MV is in D—Modg‘/B, then we have
Ch(OM)d C ¢ '(w)™ and not just Ch(M')*d C N = T*G/B (see e.g. [63, §1.3]).
Thirdly, if 91 is in D—Modgl/ pxa/p and if 9 is the associated D-module in D—Modgl/ B
by the equivalence of Remark 2.4.3, then one can check that Ch(90) ~ G xZ Ch(9V). In
particular Ch(9)™d is in Z by (2.15). O

Let 901 be in D—Modg‘/BxG/B, then from Proposition 2.4.4 and what is before we deduce

that Ch(9t)™d is a closed subspace of Z whose underlying topological space is a union of
irreducible components of Z. We set (see (2.13)):

(O] := [Ch(M)] € Z°(2)

(the so-called characteristic cycle of 9t) and recall that the map 9t —— [M1] is additive
by [44, Th.2.2.3].

Remark 2.4.5. It was conjectured by Kazhdan and Lusztig in the case G = SL,, (and
k = C) that [L(wwy - 0)] = Z,, equivalently that the characteristic cycles [£(w - 0)] for
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w € W are irreducible. It turned out that this is wrong for n > 8 (but true for n < 7),
see [47].

Proposition 2.4.6. For w € W we have [X,,] = [M(wwy - 0)] in Z°(Z).
Proof. This is [12, Prop.2.14.2], see also [12, Rem.2.14.3]. O

The following theorem is well known.
Theorem 2.4.7. (i) The three classes:
([Zu])wew, (DR (wwq - 0)]) _ and ([(£(wuw - 0)])

are a basis of the finite free Z-module Z°(Z).
(ii) For w € W we have:

(90 (wwg - Z Puyw.wow (1) [£(w'wy - 0)] € Z°(2).

weW

(iii) There are integers ., v € Z>0 only depending on w,w" € W such that:

[£(wwy - Zaww kS 7°(2).

Moreover, ay., =1 and @y =0 ufnless w' X w. Finally if w' < w and Uy, is contained
in the smooth locus of the closure Uy, of Uy in G/B x G/B, then ay ., = 0.

Proof. Using Proposition 2.4.6 we have [D(wwy - 0)] = [ w) = 2w bww [ Zy] for some
b € Zq. I by # 0 for some w’ € W, then Z,, C Yw which implies (X,,NV,/)NZ #
() since V,,y N Z C Z,s, which implies v’ < w by Lemma 2.2.4. Moreover one easily gets
byw = 1 using that the restriction of ki, : X,, — t to V,, is smooth by Lemma 2.3.5.
It follows that the matrix (by w)ww)ewxw is upper triangular with entries 1 on the
diagonal and hence invertible. This implies that ([9(wwyq - 0)])wew is a basis of Z°(Z).
(ii) is a direct consequence of the fact L(w'wq - 0) occurs in M (wwy - 0) with multiplicity
Puowwow (1). As Py y(1) = 0 unless w’ < w and Pjuwow(l) = 1, it follows that the
matrix (Pygw,wow (1)) ww)ewxw is also invertible, and hence that ([£(wwg - 0)])wew is
also a basis of Z°(Z), which finishes (i). The first two statements in (iii) follow from the
fact the matrix (aww/)(w,w/)eWXW is the product of two upper triangular matrices with 1
on the diagonal. The last statement is [63, Lem.1.3(iii)]. O

By Proposition 2.4.6, (ii) of Theorem 2.4.7 and the fact Pyuw.wou (1) # 0 if and only if
w’ =< w, we see that X, is in general far from being irreducible as it contains all the Z,,
for w" < w, possibly even with some higher multiplicities than the Py ww (1)-

We end this section with a last result on the cycles [£(wwy - 0)] for w € W that will
be used in §4.3.

Fix w € W. As in the proof of [58, Lem.3.2], the left action of b on L(wwy -0) induced
by that of g comes from an algebraic action of B. Let us write P, C G for the largest
parabolic subgroup containing B with Levi subgroup M,, such that wwy - 0 is dominant
with respect to the Borel subgroup M, N B of M,,. Note that P, = G if and only if
w = wp. Then the argument of [58, Lem.3.2] shows that the action of B on L(wwy - 0)
extends to P,.

Let P, act on G/Bx G /B x g by the left multiplication on the first factor and the trivial

action on the two other factors. We identify Z°(Z) with a subgroup of the free abelian
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group Z49mC (G /B x G/ B x g) generated by the irreducible subschemes of G/B x G /B x g
of codimension dim G, equivalently of dimension dim Z. Any element of P, (k) induces an
automorphism of Z4m%(G/B x G/B x g) by the above action of P, on G/B x G/B x g.

Lemma 2.4.8. For w € W the characteristic cycle:
[L(wwy - 0)] € Z2°(Z) € Z9™C(G/B x G/B x g)

is invariant under the action of any element of Py(k).

Proof. Denote by £'(wwyg-0) the D-module on G/ B associated to the object L(wwyg-0) of
O(0) by the equivalence BBg of Remark 2.4.3. As the action of B on L(wwy - 0) extends
to P,, we get that £ (wwyp - 0) is in fact P,-equivariant (and not just B-equivariant).
Hence if we pass from B-equivariant D-modules on G/B to G-equivariant D-modules on
G/B x G/B as in Remark 2.4.3, we get that the D-module £(wwy - 0) on G/B x G/B
is equivariant for the action of P, by left multiplication on the second factor G/B, in
addition to being equivariant for the action of G by diagonal left multiplication on the
two factors.

This action of P, on G/B x G/B induces an action on:
T*(G/BxG/B)~gxg—G/BxgxG/Bxg

which is itself induced by the action of P, on the right hand side given by the left
multiplication on the third factor G/B and the adjoint action on the fourth factor g (and
the trivial action on the first two factors). The projection:

G/BxgxG/Bxg—G/BxG/Bxg, (91B,91,9.8,12) — (918, 92B,12)

is obviously P,-equivariant for the action of P, on G/B x G/B x g given by the left
multiplication on the second factor G/B and the adjoint action on the third factor g.
Since the composition:

Z —-T"(G/BxG/B)—G/BxgxG/Bxg—»G/BxG/Bxg

is still injective, all this implies that [£(wwyq - 0)] € Z°(Z) is invariant under the action of
Py,(k) on Z9mC (G /B x G/B x g) induced by this last action on G/B x G/B x g.

But as [£(wwyg - 0)] is also invariant under the action of G on G/B x G/B x g given by
the diagonal left multiplication on the first two factors and the adjoint action on the third,
it follows that it is also invariant under the action of P, (k) induced on Z4™¢(G/B x
G/B x g) by the left translation on the first factor of G/B x G/B x g (and the trivial
action on the second and third factors). This is exacty the assertion of the lemma. O

Remark 2.4.9. Let h € P,(k), since h(Z,) C G/B x G/B x g is isomorphic to Z,
inside G/B x G/B x g if and only if w' = w” (look at the respective projections in
G/B x G/B), it follows from Lemma 2.4.8 and (iii) of Theorem 2.4.7 that whenever
Ay # 0 we have h(Z,) = Z,y for any h € P,(k) (in particular h(Z,) = Z,).

2.5. Completions and tangent spaces. We prove some useful results related to com-
pletions and tangent spaces on the varieties X and Z. These results will be used at
several places in the rest of the paper.

It follows from (2.9) that the induced map (k1, k) : X — t x t factors through the
fiber product t x¢w t. We denote by 1" := t Xy t this fiber product (though both have
the same dimension, there should be no confusion with the torus 7' of G which won’t

directly appear).
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Lemma 2.5.1. The irreducible components of T' =t xw t are the (Tw)wew where:
T :={(z,Ad(w ")2), z € t}
and X, is the unique irreducible component of X such that (K1, k2)(Xy) = To.

Proof. The first half of the statement is clear since the T, are irreducible closed sub-
schemes of T" with the same dimension. The second half follows from Lemma 2.3.4 and
the surjectivity of x;,, (Lemma 2.3.1). O

For w € W denote by nx, € X (resp. np, € T)) the generic point corresponding to the
irreducible component X, (resp. T,,), then it follows from Lemma 2.5.1 that the map
(K1, k2) : X — T is such that (kq, k2)(nx,) = nr, for all w € W.

Let x be a closed point of X, w € W such that z € X,, C X and recall that f(,ﬂm)(x)
(resp. T (k1 ,xs)(x)) 18 the completion of T' (resp. T;,) at the point (x1, K2)(x). We have a
commutative diagram of formal schemes over k:

Xw,zc—> Xm

| |

Lo, (1 2) (2) = L1 ) (a) -

In §3.5 we will use the following lemma.

Lemma 2.5.2. Let z, w be as above and let w' € W. The composztwn of the morphisms
Xw z = X — T(Nl xo)(z) factors through T (k1 m2) (@) = T(,.i1 ro)(2) if and only if W' = w.

Proof. Let A be a local excellent reduced ring such that A/p is normal for each minimal
prime ideal p of A and let A be the completion of A with respect to my. Then the
morphism Spec A — Spec A induces a bijection between the sets of minimal prime
ideals on both sides. Indeed, let B be the integral closure of A, i.e. the product over the
minimal prime ideals p of A of the integral closures of A/p. Then by [41, Sch.7.8.3(vii)]
there is a canonical bijection between the set of minimal prime ideals of A and the set of
maximal ideals of B. But since A/p is normal by assumption we have B = [], A/p, and
the set of maximal ideals of B is in bijection with the set of minimal prime ideals of A.

Now the local ring Ox , of X at x satisfies all the above assumptions by [41, Prop.7.8.6(i)],
[41, Sch.7.8.3(ii)], (i) of Theorem 2.2.6 and Theorem 2.3.6. Likewise with the local ring
O, (1,x2) () Since the irreducible components T, are smooth (being isomorphic to t). In

particular the nonempty Spec @X ..z (resp. Spec @T (s12)(@)) for w' € W are the irre-
ducible components of Spec OX:E (resp. Spec OT(H1 ks)(z))- Denote by ﬁXw € Spec @X@
(resp. fir, € SpecOx.,) the generic point of Spec OXw « (resp. Spec Oy, (k1,m2)(z) ), it 18

enough to prove that the map Spec OXJ — Spec OT7 (k1,59) () S€DAS N, to Ay, . But this
follows from what precedes together with the commutative diagram:

Spec @X@ Spec Ox
Spec @T7(m,,{2)(1) — Spec Or,(x; m2) ()

and the fact both 7)x, and 7z, are sent to 1y, in Spec Or, (., x)(x)- O
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Denote by T, , the tangent space of X,, at x, which is just the same thing as the
k(z)-vector space X, ,(k(x)[e]).
Proposition 2.5.3. Assume that a closed point v € X, C G/B x G/B x g is such that

its image in g is 0 and let w' € W such that z € X, N V.
(i) We have:

. . . wwl71
dimp(e) Tx,0 < ditnia)) Tirg a(a) + dimp) £ (k(2)) + lg(w'wo).

(ii) If """ has codimension lg(w) — lg(w') in t and U, is smooth at w(z), then X,, is
smooth at x.

Proof. (i) Replacing k by its finite extension k(x) if necessary and base changing, we can
assume = € X, (k) and k(z) = k(w(x)) = k. Since X,, and U, are G-equivariant, we can
assume 7(r) = (B,w'B) € G/BxG/B. Recall that 7(X,,) = U, (see the proof of Lemma
2.2.4), hence we have a closed immersion X,, < U,, x g, and thus also a closed immersion

—

X\w@ — (m)w(x) x g where g is the completion of g at 0. Hence any vector v € Ty, , is
of the form v = (g1 B(kle]), g2 B(k[e ]) 1) where (g1, §2) € G(k[e]) x G(k[e]) is such that
(91B(kle]), 92 B(kle]) € T, mia) (Uw)ﬂ(@(k‘[ ¢]) and where ¢ € g(k). Working out the
condition (2.3) fo ( \B(K[g]), 92 B(K[e]), e) to be in X, (k[e]) we find (7(z),v) € X (k),
hence ( (2),¢) € Vi (k) since m(z) € Uy (k). This implies in particular y((7(z),v)) =
Ad(w' ™k (7 (), )) Since 7 € X, 4 (k[e]), Lemma 2.3.4 implies in #(k[e]) (where £ :=
completion of t at 0):
Ad(gy v = Ad(w™)Ad(gy ew

and thus xy((m(2),v)) = Ad(w Hk((m(x),)). Hence we have ki ((m(x),v)) € t?(k)
where w := ww'~! and from (2.7) (with g = 1) we obtain ¢ € t°(k)® (w(k) NAd(w")u(k)).
We deduce an injection of k-vector spaces:
) @ t(k) @ (w(k) N Ad(w)u(k))
and the upper bound in the statement is precisely the dimension of the right hand side.

(ii) Under the assumptions we have dimy(r(z)) T r(r) = dim U, = dim G/B + lg(w).
So we find using Ig(w'wy) = dim G/B —1g(w’) and dimy,) ' (k(z)) = dim t— (Ig(w) —
lg(w’)):

dimg()Tx,. < dimG/B+Ig(w)+ dimt—lg(w)+1g(w') +dim G/B — Ig(w’)
= 2dimG/B +dimt = dimG.

Since dimG = dim X,, < dimy,) T, ., we deduce dimy) Tx, ., = dimG = dim X,
whence the smoothness at z. i

TvaT — TUf

w,m (T

Remark 2.5.4. One can prove that, at least for w = wy, Conjecture 2.3.7 (for w = wy)
implies that the inequality in (i) of Prop051t10n 2.5.3 is an equality.

Let X := x7'(0) C X (here also we do not take the reduced associated scheme), if M
is a coherent Os-module, we define its class [M] € Z°(Z) as in (2.13) replacing m(Z,,Y)
by the length m(Zw, M) of the Ox,, -module M,, . Let x be a closed point in X (or
equivalently in Z), then it follows from [41, Sch.7.8.3(vii)] and [41, Sch.7.8.3(x)] that the
completed local rings (’)Z 2 OZw » are reduced equidimensional (of dimension dim Z when
nonzero). Moreover the set of irreducible components of Spec @Z,ac is the union for all

w € W of the sets of irreducible components of Spec @Zw’x (note that we don’t know
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whether Spec Oy, , is irreducible, see Remark 2.4.2 and [41, Sch.7.8.3(vii)]). We define
M, =M Qo OY which also has a class [M,] in Z°(Spec Oy,). Likewise we define

[Spec (’A)Zw,x] € ZO(Spec )
Lemma 2.5.5. We have:
M,] = > m(Z,, M)[Spec Oy, 2] € Z°(Spec Oz.,).

weWw

Proof. Let W(z) = {w € W, z € Z,}, using that the irreducible components of
Spec Oz, are the Spec Oy, , for w € W(x), from the definition of m(Z,, M) it is obvious
that:

M,] = Z m(Zy, M)[Spec Oy, ] € Z°(Spec Oy.,)

weW
where M, := M ®o_ Ox . Denote by p,, for w € W(x) the minimal prime ideal of
Ox., (or equivalently Oz,) corresponding to Oz, , and by qu.1; -, quwr, the minimal

prime ideals of Spec @y@ (or equivalently Spec @Zx) above p,, (recall that the morphism
of local rings O, — @Y,r is faithfully flat). Then by definition (and since Oy, , = 0
if w¢ W(x)):

wE%/: )Z(lg

But we have (M,)
it easily follows that:

M\x)qui)[Spec(@zwx/qw,i)] in ZO(Spec@ZﬂC).

Xz)q )1

~ ~

=M, ®og, ( Y,x)qw,i = (My)p. (0% ) ( % )aw,; from which

w,i

— ~

(Mw)pwxlg((g, ) ( Y,z)qw,i/pw)

Pw X,z/%,i

lg((f)\f (MHC)CIwz = (lg(oy,z)

X,z)"lw,i

which gives the result since @y@ ®or Oz, Oy, « (recall the map Ox. = Oz, 18
surjective). ' O

Define for w € W (see (iii) of Theorem 2.4.7):
(2.16) [E(wwy - 0)z] := > @uw[Spec Oz, 1] € Z°(Spec Oz,)

w'eWw
(note that [€(wwg - 0),] # 0 when w € W (z) since ay = 1).
Corollary 2.5.6. For w € W we have:

Oy x Z Poow.wou’ [Z}(w'wo -0).] € Z°(Spec @Zx)

w' eW

Proof. This follows from Proposition 2.4.6, (ii) of Theorem 2.4.7 and Lemma 2.5.5. [

3. A LOCAL MODEL FOR THE TRIANGULINE VARIETY

We show that the completed local rings of the trianguline variety X,;(7) at certain
sufficiently generic points of integral weights can be described (up to formally smooth
morphisms) by completed local rings on the variety X of §2 for a suitable G. This result

will have many local and global consequences in §4 and §5.
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3.1. Almost de Rham Bgg-representations. We define and study some groupoids of
equal characteristic deformations of an almost de Rham Bggr-representation of Gx and of
a filtered almost de Rham Bgr-representation of Gg.

We fix K a finite extension of QQ, and first recall some statements on almost de Rham
representations of Gx. In what follows the rings Bj and Bgr are topological rings for
the so-called natural topology ([37, §3.2]) and all finite type modules over these rings are
endowed with the natural topology. As usual we use the notation ¢ for “Fontaine’s 2in”
element depending on the choice of a compatible system of primitive p™-th roots of 1 in K.
Recall also that a Bgr-representation of the group Gk is a finite dimensional Bgr-vector
space with a continuous semilinear action of Gx ([37, §3]). We denote by Repg_ (G ) the
abelian category of Byr-representations of G If W is an object of Repg (G ), it follows
from the compactness of Gx and the fact that By is a discrete valuation ring that W
contains a BJi-lattice stable under Gx. We say that W is almost de Rham ([37, §3.7]) if
it contains a Gx-stable Bls-lattice W™ such that the Sen weights of the C-representation
W+ /tW are all in Z.

Let Bl be the algebra By [log(t)] defined in [37, §4.3] and Bpar := Bar Rpt Bl k-
The group Gx acts on Bl via ring homomorphisms extending its usual action on By
and such that g(log(t)) = log(t) + log(e(g)). This action naturally extends to Byag.
Moreover there is a unique Bgg-derivation VB,ar of Bpgr such that VB, wlog(t) = —1,
and it obviously preserves B;{dR and commutes with Gg. If W is a Bgr-representation
of G, we set Dpar(W) = (Bpar ®p,z W)9%, which is a finite dimensional K-vector
space of dimension < dimp,, W (see [37, §4.3]). It follows from [37, Th.4.1(2)] that a
Bar-representation W is almost de Rham if and only if dimy Dyar(W) = dimp,, W.
We say that a Bggr-representation is de Rham if dimyx W9 = dimg,, W, hence any
de Rham Bggr-representation is almost de Rham. The almost de Rham representations
form a tannakian subcategory Rep,qr(Gx) of Repg,. (Gx) which is stable under kernel,
cokernel, extensions (see [37, §3.7]).

If F is a field of characteristic 0, recall that the action of the additive algebraic group
G, on some finite dimensional E-vector space V is equivalent to the data of some FE-
linear nilpotent endomorphism vy of V', an element A € F = G,(F) acting via exp(Avy).
Consequently the category Repy(G,) is equivalent to the category of pairs (V,vy) with
V' a finite dimensional E-vector space and vy a nilpotent E-linear endomorphism of V'
(morphisms being the E-linear maps commuting with the vy/).

If W is a Bgg-representation, we let G, act on Dpgr (W) via the K-linear endomor-
phism induced by vg_,, ® 1 on Bpgr ®py, W. Then Dygr is a functor from the category
Repg, . (G ) to the category Repy(Ga).

Proposition 3.1.1. The functor Dpqr induces an equivalence of categories between
Repyar (Gx) and Repg(Ga).

Proof. By [37, Th.3.19(iii)] any object W of Rep,4r(Fx) is isomorphic to a direct sum
of Bqr[0; d] where Bqgr[0;d] C Bpar is the subspace of Bag-polynomials of degree < d in
log(t) as defined in [37, Th.3.19]. It follows that Ko ®x Dpar(W) and Dag oo(W) are
isomorphic as objects of Repy_ (G,) where Dgg oo (W) is defined in [37, §3.6].

Let W1 and W, be two objects of Rep,qr(Fk). It then follows from [37, Th.3.17] that
the natural map:

(31) HomRepde(gK)(Wl, Wg) — HomRepK(Ga)(Dde(Wl), Dde(WQ))
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induces an isomorphism:
Koo QK HomRepde(gK)(Wla WQ) = I—IornRepKOO (Ga) (Koo K Dde(Wl)a Koo K Dde<W2))-

As the natural map:

Koo QK HomRepK(Ga)(Dde(WI)a Dde(W2>>
— Homgep, (6,) (Koo @k Dpar(W1), Koo @1 Dpar(W2))

is an isomorphism ([46, §1.2.10(7)]), the map (3.1) is also an isomorphism and the restric-
tion of Dyar to Rep,qr(Fx) is fully faithful.

Let V be a finite dimensional K-representation of G,. We can write V' as a direct sum
of indecomposable objects of dimensions dy, . .., d, and we see that V is isomorphic to the
vector space Dpar (D)_; Bar|[0; d;]). The functor Dygr is thus essentially surjective. [

Corollary 3.1.2. Let (V,vy) be an object of Repy (G,) and set:
W(V,vy) := (Bpar @k V)qudR®1+1®uV=0-

Then W(V,vy) is an almost de Rham Bgg-representation of dimension dimg V' and the
functor (V,vy) — W(V,vy) is a quasi-inverse of Dyar in Proposition 3.1.1. Moreover
the functors Dpqar (restricted to the category Rep,qr(9x)) and W are exact,

Proof. Let W be an object of Rep 4r(Gk), then the natural B,qr-linear map:
(3.2) Ppdr : Bpar @k Dpar (W) — Bpar @ W

is an isomorphism by [37, Th.3.13] and identifies W with W (Dpar(W), vp,4rw)). The
other assertions are direct consequences of these statements together with Proposition
3.1.1 and the fact that an additive equivalence between abelian categories is exact. [

Let A be a finite dimensional Q,-algebra. We define an A ®q, Bqr-representation
of Gk as a Bggr-representation W of G together with a morphism of Q,-algebras A —
Endgep,,  (g,) (W) which makes W' a finite free A®g, Bar-module. We denote by Rep 44 oy B (Gk)
the category of A®q, Bqr-representation of Gx. We say that an A®q, Bar-representation
of G is almost de Rham if the underlying Bar-representation is, and define Rep 4g 4(9k)
as the category of almost de Rham A ®q, Byr-representation of Gx (with obvious mor-
phisms).

Remark 3.1.3. An A ®q, Bar-representation of Gy always contains a Bjs-lattice which
is preserved by the action of A. In fact, it is possible that it always contains such a lattice
which is moreover free over A ®g, Bjy, but we won’t need that statement. This is at
least true for almost de Rham A ®q, Bqr-representations as a consequence of Lemma
3.2.2 below.

Lemma 3.1.4. The functor Dpqar induces an equivalence of categories between Rep g 4(Gx)
and RepA®@PK(Ga).

Proof. Let W be an almost de Rham Bgg-representation of Gx with a morphism of Q,-
algebras A — EHdRedeR(gK)(W)- It follows from Proposition 3.1.1 that it is enough to
check that W is a finite free A ®g, Baqr-module if and only if Dyqr (W) is a finite free
A ®g, K-module. As the functor Dpgr commutes with direct sums, we can moreover

assume that A is a local artinian (finite dimensional) Q,-algebra.
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Let us first prove that Dyqr(W) is a flat A-module if and only if W is a flat A-
module. Let M be an A-module of finite type. As A is noetherian, the A-module M is
isomorphic to the cokernel of some A-linear map between finite free A-modules. Using
the fact that Dyqr is an exact functor commuting with direct sums, the canonical map
M ®4 Dpar(W) — Dpar(M ®4 W) is an isomorphism. Using the exactness of Dyagr
again, we conclude that Dyqr(W) is A-flat if and only if W is a A-flat.

If H is any field extension of Q,, we can check that an A ®q, H-module M which is
A-flat is a finite free A ®qg, H-module if and only if M/m M is a finite free (A/m,) ®q,
H-module. Applying this result with H € {K,Bgr} together with the isomorphisms
Doar(W/m W) >~ (A/my) @4 Dpar (W) and W (V/m4V) = (A/my) @4 W(V) (the latter
following from the exactness of the functor W), we are reduced to the case where A is
replaced by A/my, that is A is a finite field extension of Q,.

For K’ a finite extension of K, we easily check that there is a canonical isomorphism
K' @k Dpar(W) =~ (Bpar ®p,, W)9%' so that Wlg,, is almost de Rham. Moreover
Dpar(W) is a finite free A ®g, K-module if and only if K’ @ Dyar(W) is a finite free
A ®q, K'-module. We can thus replace K by an arbitrary finite K’ and hence assume

A ®q, K =~ @ﬁ:{@”] Ke; with e¢? = ¢;. Writing A ®q, Bar = (A ®q, K) ®x Bar =~
@Ei?”] Bares, we have W = @,(e; W) and:

Dyar(D(eiW)) = @(ei Dpar(W)).

K3 3

As W is almost de Rham, so is e,/ and thus:
dimg €;Dpar (W) = dimg Dpar(e;W) = dimp,,, e;W.
We conclude that Dpgr(W) is a finite free A ®g, K-module if and only if W is a finite
free A ®q, Bar-module. O
Let L be a finite extension of QQ, that splits K and set:
G := Spec L Xspecq, Resk/q,(GLn k) = GLy/p X -+ x GLy, .

[K:Qp] times

We let B = UT C G the Borel subgroup of upper triangular matrices where 7' is the
diagonal torus and U the upper unipotent matrices and define g, b, t, u, g, X, etc. as
in §2.1 (with £ = L). We refer the reader to the appendix of [53] for a summary of the
basic definitions, notation and properties of categories cofibered in groupoids, that we
use without comment below and in the next sections.

We fix W an almost de Rham L ®q, Bqr-representation of G of rank n > 1 and define
Xw a groupoid over Cy, (or a category cofibered in groupoids over Cy) as follows.

e The objects of Xy are triples (A, Wa,t4) where A is an object of C, W4 is an
object of Rep gr 4(Gk) and 1q4: Wa®4 L — W.

e A morphism (A, Wy, t4) — (A, Wyr,t4) isamap A — A’ in Cy, and an isomor-
phism W4 ®4 A — Wy, compatible (in an obvious sense) with the morphisms
ta and ¢y.

Remark 3.1.5. Since the category of almost de Rham Bggr-representations is stable under
extensions, any A®gq, Bqr-representation of Gx which deforms W is in fact automatically

almost de Rham, by using a dévissage on the finite dimensional L-algebra A.
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Let o : (L ®g, K)" — Dyar(W) be a fixed isomorphism, we define another groupoid
Xy over Cr, as follows.

e The objects of X§ are (A, Wa,t4,4) with (Wy,14) an object of Xy (A) and
g (A®q, K)* — Dpar(Wa) such that the following diagram commutes:

1®aa

(L ®q, K)" —= L ®4 Dyar(Wa)

ok

(L ®q, K)" Dpar(W).

e A morphism (A, Wa,ta,a4) — (A, W/, tar,aar) is a morphism (A, Wa,14) —
(A", War,ta) in Xy such that the following diagram commutes:

n 1®a s

A’ Xa (A ®Qp K) —5 A XA Dde(WA)

-

(A ©q, K)" — > Dpar(War).

Forgetting a4 gives an obvious functor X§, — Xy which is a morphism of groupoids
over Cr, in the sense of [53, §A.4].

Recall that a morphism X — Y of groupoids over Cy, is formally smooth if, for any
surjection A — B in Cp, any object xp in X (B) and any object y4 in Y (A) such that the
image of zp under the functor X (B) — Y (B) is isomorphic to the image of y4 under the
functor Y(A) — Y (B), then there exists an object z4 in X (A) such that 4 maps to an
object isomorphic to xg under X(A) — X (B) and x4 maps to an object isomorphic to
ya under X(A) — Y (A). For instance it is easy to check that X5, — Xy is formally
smooth.

If X is a groupoid over Cj, such that, for each object A of Cr, the isomorphism classes
of the category X (A) form a set, we denote by |X|(A) this set so that we obtain a functor
| X| from Cy, to Sets as in [53, §A.5]. Note that we can also see any functor F': C, — Sets
as a groupoid over Cy, by defining its objects to be (A, z) with « € F/(A) and morphisms
(A,x) — (A, 2') to be those morphisms A — A’ sending = € F(A) to 2’ € F(A').
Then we have an obvious morphism X — |X| of groupoids over C;. For instance we
have functors (or groupoids over Cr) | Xw| and |X}j;| and a commutative diagram:

XE —— Xy

.

| X | — [Xw]

where the horizontal morphisms are formally smooth. Moreover the morphism X, —
| Xi7| is actually an equivalence since any automorphism of an object (A, Wa, 14, @4) of
Xy (A) is the identity on Dyqr(Wa) because of the framing, hence is also the identity on
W 4 because of Lemma 3.1.4.

If (Wa,ta) is an object of Xy (A), we denote by vy, := vp_,,w,) the nilpotent endo-
morphism of Dyqr(Wa) giving the action of G,. If (Wa,t4,@4) is an object of Xy, (A),
we define Ny, € M, (A ®q, K) = g(A) as the matrix of a;' o vy, 0 a4 in the canonical

basis of (A ®g, K)" (in the case A = L, we simply write Ny ). We denote by g the
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completion of g at the point Ny € g(L), that we can see as a functor C, — Sets (hence
also as a groupoid over Cy).

Corollary 3.1.6. The groupoid X5, over Cr, is pro-representable. The functor:
(Wa,ta,a4) — Ny,

induces an isomorphism of functors between | Xy| and §. In particular the functor | X3 |
is pro-represented by a ring R5, which is isomorphic to L[ X, ... s X2 (k0,1 -

Proof. This easily follows from Lemma 3.1.4. O

Remark 3.1.7. The functor | Xy | is not pro-representable, though it has a hull in the
sense of [59, Def.2.7]. The dimension of this hull depends on the Jordan form of vy,. For
example, if vy = 0, one can check that the dimension of the tangent space | Xw |(L[e]) of
| Xw| is n?[K : Q,] so that R}, is a hull for [Xy| (we won’t use that result).

Definition 3.1.8. A filtered A®q,Bar-representation (W, F,) is an A®q,Bar-representation

,,,,,

A ®q, Bar-subrepresentations of Gi such that the A ®q, Bar-modules Fy and F;/F;_y
for 2 <1 <n are free of rank 1.

If A— B is amap in C; and (W, F,) is a filtered A ®q, Bar-representation of G,
we define B ®4 Fy := (B®a F;); and (B ®4 W, B ®4 F,) is then a filtered B ®q, Bar-
representation of G.

Let (W, F,) be a filtered L ®q, Bqr-representation of Gx with W almost de Rham of
rank n > 1. Then each quotient F;/F;_; is almost de Rham and finite free of rank one
over L®gq, B4r and thus (e.g. using Lemma 3.1.4) isomorphic to the trivial representation
L ®q, Bar. We define the groupoid Xy, 7, over Cy, of deformations of (W, F,) as follows.

e The objects of Xy 7, are (A, Wy, Fae,ta) where (Wa, 14) is an object of Xy (A)
and F4, is a filtration of W, as in Definition 3.1.8 such that ¢4 induces isomor-
phisms Fa; ®4 L — F; for all 7.

e The morphisms are the morphisms in Xy, compatible with the filtrations, i.e.
which induce isomorphisms Fa; ®4 A" — Fu; for all i.

Forgetting the filtration yields a morphism Xy r, — Xy of groupoids over Cy..

Now we define the groupoid Xy, 7, over Cy, as the fiber product Xy, r, X x,, Xy (see [53,
§A.4]). More explicitly the objects of XVDV,]-'. are (A, Wa, Fae,ta,cn) with (Wy, Fae,ta)
in Xz (A) and (Wa,ta,a4) in X{j(A) (morphisms are left to the reader). As for
Xy, the morphism Xy, », — | Xy 7| is also an equivalence.

of Xl%l/,}'.? we set Do = (Day)i with Da; := Dpar(Fa,i). These are complete flags of
Doar (W) and Dpar(W4) (respectively) and stable under vy, resp. vyy,. We denote by
g (resp. 1) the completion of § (resp. t) at the point (o= (D,), Nyw) € g(L) (resp. at
the point 0 € t(L)). From Lemma 3.1.4 (and what precedes) and the smoothness of the
L-scheme g, we deduce as for Corollary 3.1.6 the following result.

Corollary 3.1.9. The groupoid XVDV’]_-. over Cyp, is pro-representable. The functor:

(Wa, Faerta,an) — (a3 (Daa), Nw,)
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induces an isomorphism of functors between |XVDV]_- | and 3 In particular the functor
| X5 W.F | is pro-represented by a formally smooth noetherian complete local ring of residue
field L and dimension n?[K : Q,] = dimg.

Let K : g — t, (¢B,v) — Ad(g~1)1 be the weight map defined in §2.3, it maps the
point (o~ Y(D,), Nw) € g(L) to 0 € t(L) (since Ny is nilpotent) and induces a morphism

R:g— t We write kw,r, for the composition of the morphisms of groupoids over Cr:

Xivr, — [ Xinl 8"t

where the second map is the isomorphism of Corollary 3.1.9. One checks that rw, z,
actually factors through a map still denoted kw r, : Xw r, — t (as changing the fixed
basis replaces (gB,1) € g(A) by (¢'gB,Ad(¢')¢) for some ¢’ € G(A) with the notation
of §2.1 which doesn’t change the image by k). We thus have a commutative diagram:

(3.3) X r, — Xwr,

KW, Fe
KW, Fe

t.

The map kwr, @ Xwr, — t has the following functorial interpretation. Let x4 =
(W4, Fae, ta) be an object of Xy 7, (A). The endomorphism vy, induces an endomor-
phism v4; of each Dy ;/Da;—1 =~ Dpar(Fa,i/Fai—1) which is an A ®q, K-module of rank
1. Since there is a canonical isomorphism Endge; , 00, (Ga) (Dai/Da,i-1) ~ A®q, K, we
can identify v4; with a well-defined element of A ®g, K. Then kw7, is given by the
explicit formula:

(34) KW, F. ($A) = (l/AJ, ce VA,n) S (A XqQ, K)n ~ /’E(A)

3.2. Almost de Rham BJ-representations. We define and study some groupoids of
equal characteristic deformations of an almost de Rham Bji-representation of G-

We define a BJg-representation of Gy as a finite free Bjz-module with a continu-
ous semilinear action of the group Gx and denote by ReijR(gK) the category of Bli-

representation of Gx. If W7 is a Bjg-representation of Gg, then W7 is a Gg-stable
Bli-lattice in the Bqgr-representation W := W+ ®pt Bar = WH[1]. We say that W+
is almost de Rham if the Sen weights of the C-representation W /tW™ are all in Z. Tt
follows from [37, Th.3.13] that this notion only depends on W and not on the chosen
invariant Bg-lattice inside W.

We just write V instead of (V,vy) from now on for an object of Repy(G,). If V
is in Repy(G,), a filtration Fil*(V) = (Fil'(V))iez of V is by definition a decreasing,
exhaustive and separated filtration by subobjects in the category Repy(G,). If W is
an object of Rep,r(Gx) and W+ C W a Gg-stable Big-lattice, we define a filtration
Fil}, + (Dpar(W)) of Dpar (W) by the formula:

(3.5) Filyy+ (Dpar(W)) == (t'Bx Op W9 C Doar(W) (i € Z).

It follows from [37, Th.4.1(3)] that the i such that Filjy+ (Dpar(W))/ Filifi (Dpar(W)) #

0 are the opposite of the Sen weights of W /tW™ (counted with multiplicity).
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Proposition 3.2.1. Let W be an object of Rep,qr (G ). The map W+ +—— Filjy+ (Dpar(W))
is a bijection between the set of Gr-stable Blg -lattices of W and the set of filtrations of
Doar (W) as a G,-representation.

Proof. Let W be a Gx-stable BJ-lattice of W. We define a decreasing filtration on the
left hand side of (3.2) by:

(3.6)  Filiy (Bpar @« Dpar(W)) := > t"Blyg @k Filijs (Dar(W)) (i € Z)
i1+i2=1

and recall from the proof of Corollary 3.1.2 that W ~ W (Dyar(W), vp,.n(w)) = (Bpar @

Dyar(W))y=o where v := vp . ® 1 +1® vp_w). From the proof of [37, Th.3.13] we

see that (see (3.2) for ppar):

(3.7) poar (Filyy+ (Bpar ®x Dpar(W))) € t'Blyg @t WH (i € Z).

Moreover the bottom horizontal arrow in the commutative diagram on page 62 of [37] is
actually in our case an isomorphism (see [37, §2.6]) which implies that (3.7) is in fact an
equality for all 4 € Z. Consequently we see that for W+ C W a Gg-stable Bii-lattice,
we have:

W* =W N ppar (Filiy+ (Bpar @k Dpar(W))) C Bpar @pyp W
which proves that the map W — Filj+ (Dpar(W)) is injective.
Conversely let Fil*(Dyqr (W)) be a filtration of Dyar (W), set Fil’(Bpar®x Dpar(W)) 1=
ZiEZ t_iB:)_dR XK Flll(Dde(W)) and define:

Wi = W N ppar (Fil" (Bpar ®x Dpar(W))) = ppar (Fil" (Bpar @ Dpar(W))v—o) C W.
The Bjz-module Wi is clearly Gr-stable. Moreover a Bz-submodule H of W is
a Bip-lattice if and only if U,t™"H = W and N,t"H = 0. Together with W =~
deR((deR ®K Dde(W))V:()) this 1rnphes that pde('(tnB;)rdR ®K Dde(W))l,:(_)) is a B(TR_
lattice of W for each n € Z. Let io := max{i, Fil'(Dpar(W)) = Dpar(W)} and i; =
min{i, Fil'(Dpar (W)) =0}, then we have:

poar((t”*Blap @x Dpar(W))u=0) € Wi € ppar((t™"Blap @x Dpar(W))u=0)
which implies that W is a Bjg-lattice of W. One easily checks that pyqr induces an
isomorphism Fil’(Byar @k Dpar(W)) = Biag @p: Fil'(Bpar @k Dypar(W))y=o which
implies FilO(deR®KDde(W)) = Fll?/v+ (deR®KDde(W)) by the first part of the pI‘OOf
Fil®

(apply the equality (3.7) for i = 0 with W), from which one gets Fil*(Dyar(W)) =

Fil},+ (Dpar(W)). This gives the surjectivity. O
Fil®

From now on, if V' is an object of Repy(G,) and Fil* = Fil*(V) a filtration of V', we
denote by W (V, Fil*) the G-stable BJ-lattice of (Bpar @ V') @141, —0 associated

to Fil® via Proposition 3.2.1.

VBLdr

Let A be a finite dimensional Q,-algebra. We define an A ®gq, Bjg-representation
as a Blp-representation W7 of Gi together with a morphism of Q,-algebras A —
Endrep_, (g)(W") which makes W a finite free A ®q, Blz-module. We say that an

dR

A ®q, Bip-representation of Gx is almost de Rham if the underlying BJ;-representation

is. We define the category of filtered A ®q, K-representations of G, as the category of

(V,Fil*) where V' is an object of Rep,g, x(Ga) and Fil* = Fil*(V) = (Fil'(V))iez a de-

creasing, exhaustive and separated filtration of V by subobjects Fil'(V') of Rep 44 o x(G,)
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such that the graded pieces griy. (V) := Fil'(V))/ Fil'*! (V) are free of rank 1 over A®qg, K
for ¢ € Z (the obvious definition of morphisms being left to the reader).

Lemma 3.2.2. The functor defined by W+ — (Dpar(WT[3]), Fil}y 1), where one sets
Fily+ = Filjys (Dpar(WT[}])) as defined in (3.5), induces an equivalence between the
category of almost de Rham A ®q, Bl -representations of Grc and the category of filtered
A ®q, K-representations of G,. Moreover, if W is an almost de Rham A ®q, Blz-
representation of G and M is an A-module of finite type (note that M @4 W™ is then
a Big-representation), then for each i € Z there is a natural A-linear isomorphism of
Blg -representations:

M @4 gt (Dpar(W[E)) = grpgs  (Dpar(M @4 WT[3])).

AWt

Proof. Let Byour = C[t, 71, log(t)] as in [37, §2.7] and, for i € Z, set:
Fil'(Bpur) = t'C|[t, log(t)] C Bpur.
Note that Bpnr = ®jez gr'(Bpur) where:

(3.8) gr'(Bpur) == Fil'(Bpur)/ Fil™™ (Bpur) = t'Cllog(t)] = t'B/l g /7' Bl k.
For a C-representation U of G, set :
 Dyur(U) = (Bpur ®c U)9x
FllZ(DpHT(U>) = (FilprHT ®C’ U)gKl A
gr'(Dpur(U)) = Fil'(Dyur(U))/ Fil™™ (Dpur(U)) = (gr' (Bpur) ©c U)9%.

Let W be a Bjg-representation of G and set W := WH[7] and W+ := W /tW, which
is a C-representation of Gg. Left exactness of Gi-invariants and the last isomorphism in
(3.8) give a natural injection gr%ﬂ;v+ (Dpar(W)) = gr(Dprr(W)). If W is almost de
Rham, we have:

dimK Dde(W) = Z dlmK griFﬂ;H (Dde(W)) < z dlmK ng(DpHT(W))

S dlmK DpHT<W) = dlch = dideR<W) = dlIIlK Dde(W>

where the first equality on the second line follows from the fact that the Sen weights of

W are in Z (i.e. W is almost Hodge-Tate in the sense of [37, §2.7]). We thus see

that gri.. +(Dde(VI/')) = gr'(Dopr(WT)), and consequently that there is a functorial
w . -

isomorphism glrl':ﬂ;‘/+ (Dpar(W)) := Biez grlFﬂ;V+ (Dpar(W)) =~ Dppr(WT) on the category

of almost de Rham BJg-representations. As the functor Dyt is exact on the category

of C-representations with Sen weights in Z (see for example [37, Th.4.2]), we conclude
that the functor W — gri.. N (Dpar(W)) from the category of almost de Rham Bji-
w

representations of Gx to the category of finite dimensional K-vector spaces is exact.
Equivalently if 0 — Wi — W3 — W3" — 0 is a short exact sequence of almost de Rham
Bjg-representations of Gi and if W; := W;"[7] for i € {1,2,3}, we have a strict exact
sequence of filtered K-representations of G,:

00— (Dde<W1), Flll./VfL) — (Dde(Wg), FII;V;) — (Dde(W3), Fﬂ;/V;r) — 0.

Using that a Bjz-submodule of a free BJz-module of finite type is also free of finite

type (as Bj{R is a discrete valuation ring), we get in particular that an exact sequence
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Wit — W5 — W5t — 0 of almost de Rham Bl -representations yields an exact sequence:
grine , (Dpar(Wh)) — griye . (Dpar(W2)) — gy (Dpar(Ws)) — 0.
W1 W2 W3
We can then argue exactly as in the proof of Lemma 3.1.4 and obtain both the last
statement of the lemma (writing M as the cokernel of a linear map between free A-
modules of finite type) and the fact that if W' is an almost de Rham A ®q, Biz-
representation of Gr then griy. (Dpar(W)) is a flat A-module.
w

Conversely if 0 — (V4, Fil}) — (V3,Fil3) — (V3,Fil}) — 0 is a strict exact sequence
of filtered K-representations of G,, then it follows from the definition of (V| Fil®)
W+ (V,Fil*) that there is an exact sequence of almost de Rham BZ;-representations of
Ok:

0 — WH(Vy, Fil}) — WH(Vy, Fily) — W (Va, Fil3).
Considering the image of W (Vy, Fil3) in W (V3, Fil3) (which is still a BJ;-representation
as Bl is a discrete valuation ring) and applying the exact functor W+ s grf.. N (Dpar(W)),
w
we deduce that we have a short exact sequence:

0 — WH(V,Fil}) — WH(Vy, Fily) — W (V3, Fil3) — 0.

We can then argue again as in the proof of Lemma 3.1.4 and check that for each A-
module M of finite type and each filtered A ®q, K-representation V' of G,, there is a
natural isomorphism M @4 WH(V,Fil*) ~ WH(M ®4 V,M ®4 Fil*). If (V,Fil®) is a
filtered A ®q, K-representations of G,, then the A-module W*(V,Fil*) is A-flat if we
can prove that M — (M ®4 V, M ®4 Fil*) sends short exact sequences of finite type
A-modules to strict exact sequences of filtered K-representations of G,. But this is a
direct consequence of the above flatness of gr. (V) (together with Proposition 3.2.1).

Thus we have proven that W is A-flat if and only if gr}y. . (Dpar(WH[3])) is A-flat.
w
The rest of the proof is then essentially similar to the second half of the proof of Lemma

3.1.4 (using that one can embed BJy into Bgr) and yields that W is finite free over
A ®q, By if and only if gr%ﬂ;‘/+ (Dpar (WT[4])) is finite free over A ®q, K. O

Let L be a finite extension of Q, splitting K and recall that if A is an object of Cy,, we
have A ®qg, K ~ @,exA. Let W} be an almost de Rham A ®q, Bjz-representation of
Gk and set Wy := W[1]. If 7 € ¥ and i € Z, set:

 Dpars(Wa) = Dypar(Wa) @agq, k1er A
FII;VX (Dde’T(WA)) = FII;VX (Dde<WA)) ®A®@p K1®T1 A
grar  (Dparr(Wa)) = Filly (Dparr (Wa))/ Filip: (Dpar.(Wa))-

A

It follows from Lemma 3.2.2 that they are all free A-modules of finite type.

Now let W+ be an almost de Rham L ®q, Bj-representation of Gx of rank n, W :=
W*[%] and, for each 7 € 3, denote by —h,; > --- > —h,,, the integers ¢ such that:

gt (Dpar-(W)) = Filly s (Dpar.-(W))/ Fily} (Dpar. (W) # 0

(counted with multiplicity). Let A be in Cp, W} an almost de Rham A ®q, Bjg-
representation of Gr and t4 @ W4 ®4 L —» WT an isomorphism of L ®gq, Bix-
representations of Gi. The following result is a direct consequence of the last statement

of Lemma 3.2.2.
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Corollary 3.2.3. For each 7 € ¥ and © € Z we have:

gt (Dparr(Wa)) @4 L = grpge  (Dpar,(W)).
w w+

A

In particular gri. . (Dpar,-(Wa)) # 0 if and only if there exists j such that i = —h, ;.
w

A

We can define groupoids Xy+ and Xy, over Cp, of respectively deformations and
framed deformations of W exactly as we defined Xy and Xy in §3.1 by replacing W,
Wa in Xy by W+, Wy with W} an almost de Rham A ®q, Bjg-representation of Gg-.
Note that Xjj. = X+ Xx, Xip and X7 — |X[.| is an equivalence. We have
X+ — X+ and inverting ¢ induces morphisms Xy+ — Xy, X — Xjp of
groupoids over C, together with an obvious commutative diagram. We will make X7,
more explicit under one more assumption on WT.

Definition 3.2.4. Let W* be an almost de Rham L Rq, Biy-representation of rank
n. We say that W+ is regular if for each 7 € ¥ the h,; are pairwise distinct, i.e.
h771 < - K hT,’I’L'

Assume that W™ is moreover regular. Let A be an object of Cz, and (W}, 14, ) an
object of X+ (A). We define a complete flag:

of the free A ®q, K-module Dyqr(W4) by the formula:
(3.9) Fily+ ;(Dpar(Wa)) = P Fil;v};’i(DdeJ(WA)) ie{l,....n}
TEY

and it follows from Corollary 3.2.3 that each FilW;i(Dde(WA))/ FilW:’i_l(Dde(WA)) is
a free A®q, K-module of rank 1. Since Fily,+ , is stable under the endomorphism vy, of

Dpar(Wy), the pair (a;l(FiIW;.), Ny,) defines an element of g(A) where Ny, € g(A)

is as in §3.1. Denote by § the completion of § at the point (Fily+ ., Ny) € §(L) (note
that the formal scheme g here is in general different from the formal scheme also denoted
g in §3.1 since we complete at different points of g(L), see §3.5 for the mix of the two!).

Like for Corollary 3.1.9, we deduce the following result from Lemma 3.2.2.
Theorem 3.2.5. The groupoid X5+ is pro-representable. The functor:

(W:{7 LA, aA) — (a21<FﬂWX,o)> NWA)

induces an isomorphism of functors between | X3+ and . In particular the functor | X5+ |
is pro-represented by a formally smooth noetherian complete local ring of residue field L
and dimension n*[K : Q,) = dimg.

As in §3.1 we write Ky + for the composition of the morphisms of groupoids over Cy.:
Xy — | X ] =5 g 21
where the second map is the isomorphism of Corollary 3.2.5 and & is induced by x : g — t

(where t is the completion of ¢ at 0). By the same argument as in §3.1 the morphism
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ky+ again factors through a map still denoted ky+ : Xy+ — t so that we have a
commutative diagram:

X%.{. E—— XW+
\ ll{w+
Ky +
t.

3.3. Trianguline (¢, I'x)-modules over Ri[1]. We define and study some groupoids of
equal characteristic deformations of a (¢, I'x)-module over Ry, k[1] and of a triangulated
(¢, Tk )-module over Ry, k[1].

We define a (¢, 'k )-module over R[] as a finite free R [7]-module M with a semi-
linear endomorphism ¢ and a semlhnear action of the group 'y commuting with ¢
and such that there exists an Ry-lattice D of M stable under ¢ and 'y which is a
(¢, 'k )-module over R in the usual sense (see e. g [49]). Let A be a finite dimensional
Q,-algebra, we define a (¢, 'k )-module over R 4 K[ ] as a finite free R4 K[ ]-module with
an additional structure of (¢, 'k )-module over RK[ | such that the actions of ¢ and '
are A-linear. We denote by ®I'} the category of (gp, ' )-modules over Ry, ®I'x the
category of (¢, I')-modules over RK[%] and ®I'4 x the category of (p, 'k )-modules over
Rax|y] (with obvious morphisms).

Remark 3.3.1. Here again (compare Remark 3.1.3), it is possible that a (¢, 'k )-module
in ®I'4 x always contains an R4 g-lattice stable under ¢ and I'k-, but we don’t need this
result (note that it always contains an R g-lattice stable under ¢, I'jc and A). This is true
at least for those objects in ®I'4 x giving rise to almost de Rham Bgg-representations of
Ok, see Remark 3.5.2.

Definition 3.3.2. Let A be a finite dimensional Q,-algebra and M an object of L' 4 k.
We say that M is of character type if there exists a continuous character 6 : K* — A*
such that M ~ R 4 k(0)[7].

From now on we assume moreover that L splits K, that L C A and that A is local of
residue field L. For 7 € ¥ we also fix a Lubin-Tate element ¢, € Ry, x as in [49, Not.6.2.7]
(recall that the ideal ¢, R x only depends on 7).

We say that a continuous character § : K* — A* is Q,-algebraic, or more simply
algebraic, if it has the following form: for each 7 € ¥, there exists an integer &, such that
§(2) = [lrex T(2)F for z € K*. If k := (k,), € ZE®] we write z* this character. A
continuous character K* — A is said to be constant if it factors through K* — L* C
A* (i.e. is a constant family viewed as a family of characters over Sp A). Note that with
this terminology any algebraic character is constant.

Let 6 : K* — L* be continuous. It follows from [49, Cor.6.2.9] that every non
zero (p, T )-submodule (over Ry i) of Ry x(8)[+] is of the form t*R; k() for some

¢
k = (k,), € ZE®] where t* := T[], th € Ry k.

Let Ag be the torsion subgroup of I'x and fix 75 € 'k a topological generator of
Ix/Ag. If M is an object of ®I'x, we define HZMK(M) as the cohomology of the
complex:

(3.10) M- EDOKTD gt gy pqdre B0l ga
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If M is an object of ®T'y x then the groups H} 1 (M) are A-modules. Moreover if

D C M is a (¢,T'k)-submodule such that M = D[1], then we have the formula:
(3.11) H,,, (M)= lg H._  (t7"D)

where H!  _(t7"D) is the cohomology of the (¢,I'x)-module t™"D over Ry (which is
also glven by (3.10), see [54]). In particular one has:

(312) H,., (M)= 13 g (ETD) liTngExt(lDF; (Ri,t™"D) ~ Extgp, (Rk[1], M)
where the second isomorphism is the usual explicit computation of extensions in terms

of 1-cocycles (see [25, Lem.2.2]) and where the last isomorphism is easy to check. If M
is in ®I'4 g, the embedding RK[ | CRa K[ | yields by pull-back a K-linear map:

(3.13) Exter, o (Raxl], M) — Exter, (Ri[7], M)

which is easily checked to be injective. By (3.12) any extension in Ext(II,FK (RK[%], M)

is given by a 1-cocycle in Hé . (M), which in turn can be used to construct an explicit

extension in Extyp,  (Rax[3], M) (arguing as in [25, Lem.2.2]). It follows that (3.13)
is surjective, hence is an isomorphism of L-vector spaces.

The functor M — HY_ (M) isleft exact and we check using (3.11) that HY . (Ra, k(1))

PYK PYK

A. For any continous § : K* — A*, by a dévissage on R x(6)[1] or Ra k() and the

left exactness of H?  , (3.11) together with [49, Prop.6.2.8(1)] (see also [57, §2.3]) imply

PVK?
the following inequalities:
(314) dime Hg Vi (RA,K((;)) S dime Hg Vi (RA,K((;)[%]) S dime A.

The following Lemma follows by induction from [5, Prop.2.14].

Lemma 3.3.3. Let k = (k;),ex € Z[K Q) ,0: K* — L* a continuous character and
j €1{0,1}.

(i) If wt-(8) ¢ {1 — k,...,0} for each 7 € ¥ we have H) | (R, (6)/t“Rp,k(d)) = 0.
(ii) If wt,(0) € {1—k,,...,0} for each T € ¥ we have dimL Hi _ (Rix(0)/t"Rpk(6)) =
(K Q).

Lemma 3.3.4. Let§; : K* — A* fori = 1,2 be two continuous characters. If there is an
isomorphism R a x (61)[3] ~ Ra k(02)[3], then the character 6567 " is a constant algebraic
character K* — L*.

Proof. We can twist by 51_ and assume that 9, is trivial, so that we have an isomorphism
Raxli] — Rax(62)[7]. The induced embedding Rax — Rax(02)[7] factors through

t™"R A x(d9) for some integer k > 0. Consequently, replacing do by 52N 1??@ we can as-
sume that there exists an embedding R 4 < Ra i (d2) such that R4 K[ ] = Ra K(ég)[ .

We deduce A ~ Hg e (Rax) = HY ., (Rak(d)), and hence we obtain an isomor-

phism H)  (Rax) = H). (Rax(02)) by (3.14). As A is a finite Q,-algebra, we have
Rax = Rk ®q, A. Consequently R4 x and R4 x(02) are free A-modules, R x is a di-
rect factor of R4 x(d2) as an A-module and hence A/my @4 R4 x — A/mA ®4Rar(d2)
which implies that d, modulo m, is an algebraic character n = [[, 7% : K* — L* for

some k = (k;), € Z[ZIB:QP]. Let D := t*Rax(ds) € Rar(d). We have HY (D) C

PYK
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HY  (Rax(d)). As wt, (62 modulo my) = —k,, by (i) of Lemma 3.3.3 and a dévissage

PYK
on A using the left exactness of HJ) we obtain H)  (Rax(02)/D) =0, so that:

HY (D)=H). (Rax(d)) = HgﬁK(RA,K).

PVK PVYK

As Hg’A/K(RAK) contains a generator of R4 x, we obtain R4 x € D as R x-submodules
of Rak(02). But Rax and D are two isocline (¢, 'x)-modules over R with the same
rank and the same slope, hence they are equal (see for example [48, Th.1.6.10]) and thus

d2 =1 by [49, Lem.6.2.13]. O

Recall from [9, Prop.2.2.6(2)] that there exists a covariant functor Wy from the cat-
egory of (¢, 'k )-modules over Ry to the category of Bjg-representations of Gy (see the
proof of Lemma 3.3.5 below for details on its definition). Let M be a (¢, 'k )-module over
Rilf) and D C M a (¢, Tg)-submodule such that M = D[7]. Then it is easily checked
that Wyr(M) = Bar gt Wik (D) does not depend on the choice of D and defines a

functor Wyg from the category of (¢, 'k )-modules over RK[%] to the category of Byg-
representations of Gx. Moreover the functoriality of the construction in loc.cit. implies
that if D (resp. M) is a (¢, I'x)-module over R4k (resp. Rax|[3]), then Wik (D) (resp.
War(M)) has a natural structure of an A ®g, Big-module (resp. A ®g, Bar-module).

Lemma 3.3.5. (i) Let D be a (p,Tx)-module of rank n over Rax. Then Wik(D)
is a finite free A ®q, Big-module of rank n. In particular Wiy (D) is an A Qq, Big-
representation of Gk .

(ii) Let M be a (¢,Tk)-module of rank n over Ra k[+]. Then War(M) is a finite free
A ®q, Bar-module of rank n. In particular War(M) is an A ®q, Bar-representation of
Ok.

Proof. We only prove (i), the proof of (ii) being totally analogous (note however that
we cannot directly deduce (ii) from (i) in general, see Remark 3.1.3). It follows from [9,
Prop.2.2.6] that the rank of Wik (D) over Bl is the same as the rank of D over Ry.
Hence it is enough to prove that Wik (D) is a free A ®g, Bjz-module. By the same kind
of argument as in the proof of Lemma 3.1.4 or Lemma 3.2.2, we see that it is sufficient to
prove that Wi (D) is a flat A-module. This is shown in two steps. First we show that for
every A-module M of finite type, there is an A-linear isomorphism of B, -representations
M@AWik(D) ~ Wik (M®4D), secondly we show that the functor Wi sends short exact
sequences of (¢, 'g)-modules over Ry to short exact sequences of Biz-representations.
The first point is a direct consequence of the fact that Wi commutes with finite direct
sums and sends right exact sequences to right exact sequences (this last fact following
from the very definition of Wi in [9, Prop.2.2.6(2)]). The second is contained in [56,
Th.1.36], but we briefly recall the argument. Let 0 — Dy — Dy — D3 — 0 be a short
exact sequence of (¢, 'kx)-modules over Ry and let r > max{r(D;),1 < i < 3} where
r(D;) is defined in [8, Th.I1.3.3]. For 1 < < 3, let D! be the R}-submodule of D; defined
in [8, Th.I.3.3] where R is the ring BL’; i of loc.cit. (recall that Ry is denoted there
BL&K). Then Wir(Di) = Big ®rr. Dj by [9, Prop.2.2.6(2)]. It easily follows from the
properties defining these D] in loc.cit. and the fact that R} is a Bezout ring that we
have a short exact sequence of free Rj-modules of finite type:

0 — D] — Dj — D3 — 0.
In particular we have Tor?%(BjR, D}) = 0 and thus the short sequence:

0 — Wik(D1) — Wik(D3) — Wik(Ds) — 0
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is still exact. O

By [56, Th.1.36] (or the proof of Lemma 3.3.5) the functors D — Wi (D), resp.
M — Wyr(M) send short exact sequences in @'}, resp. @'k to short exact sequences

in RepB;rR(gK), resp. RedeR(gK )-

If 6 : K* — A* is a continuous character, we say that J is smooth if wt(d) = 0 and
locally @Q,-algebraic, or more simply locally algebraic, if it is the product of a smooth
character and an algebraic character. Equivalently ¢ is locally algebraic if and only if
wt-(§) € Z C Aforall T € X.

Lemma 3.3.6. Let 6 : K* — A* be continuous and M := R x(6)[1].
(i) Assume that 0 := 9 modulo my : K* — L* is smooth. Then the Bqg-representation
War (M) is almost de Rham and we have:

Wt(5) = VWap(M) e A ®@p K ~ EndRepA@,QpK(Ga)(Dde<WdR(M)))'

(ii) More generally assume that § is locally algebraic, then War (M) is almost de Rham

and we have wt(6) = wt(0) + v (m) € A ®g, K.

Proof. We can write § = 0105 where 01,09 : K — A* are two continuous characters such
that d; oreck' can be extended to a character of Gx and (52|OI><< = 1. As Wii(D) doesn’t
depend on the Frobenius ¢ on the (¢, 'k )-module D := R4 x(0) (see [9, Prop.2.2.6(2)]),
it follows from the construction of D (see [49, §6.2.4]) that War(M) ~ War(Ra,x (61)[3])
(i.e. War(M) doesn’t depend on d3). Since wt(d;) = wt(d), we can replace d by ;. The
Bgr-representation Wag (M) is isomorphic to (A®g, Bar )(4), i.e. we twist by 0 the action
of Gx on A ®q, Bar. If do 1recf_(1 is a de Rham character of Gg, the Byr-representation
(L ®g, Bar)(0) is de Rham, hence almost de Rham, and thus (4 ®g, Bar)(0) is almost
de Rham as an extension of almost de Rham representations (use a dévissage on A).

(i) Since the C-representation (A ®q, Biz)(0)/t(A ®q, Bir)(d) has all its Sen weights 0,
we have isomorphisms:

Dyar((A®q,Bar)(9)) & (Big[log(t)]|®py (A®g,Bir)(6))7" = (Cllog(t)]@c(A®q,C)(6))%"

in Repyg, x(G,) (the nilpotent operator being defined everywhere analogously to the

one on Dyqr and the second isomorphism following from an examination of the proof of
(37, Lem.3.14]). Sen’s theory shows that we also have an isomorphism in Rep 44 oy Koo (Ga,):

Koo @ (Cllog(t)] ®@c (A ®q, C)(8))9% — Agen((A ®q, C)(9))

where the nilpotent operator on the right hand side is given by the Sen endomorphism
(see e.g. [37, §2.2] together with [37, Prop.2.8]). But we know that the Sen endomorphism
on Agen((A ®q, C)(9)) is just the multiplication by wt(d) € A ®q, K.

(i) We can write § = 6,0203 where &; is smooth and §; o recy’ can be extended to
Gk, 0y : K* — L* C A* is constant such that &, o reci’ can be extended to a de
Rham character of G and (53\0;( = 1. We thus have Wyr(M) ~ WdR<RA’K(51(52)[%D o
(A ®q, Bar)(0102) = (A ®q, Bar)(d1) which is almost de Rham by (i). By (i) again, we
also deduce vy, vy = wt(d1) = wt(8) — wt(d2) = wt(d) — wt(d). O
Lemma 3.3.7. The Bqg-representation War(Rax(8)[}]) is trivial if and only if § is

t
locally algebraic.
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Proof. As in the proof of Lemma 3.3.6, we can write any ¢ as d;05 where d; o 1rec,?(1 can
be extended to G and 52|OIX( = 1 and we have WdR(RAK(cS)[%]) & WdR(RA,K((Sl)[%]) &~
(A ®Qp BdR)(él). We have (A ®Qp BdR)(61> = A ®@p BdR if and OIlly if 51 is de Rham if
and only if d; is the product of a smooth character with an algebraic character (namely

(515;1)51 and using (ii) of Lemma 3.3.6). Since dy is smooth, this proves the statement.
U

Definition 3.3.8. Let M be an object of ®PI'y x and n > 1 its rank. We say that M
in ®T' 4 such that My and M;/M;—y for i € {2,...,n} are of character type. Such
a filtration M, is called a triangulation of M and, if M;/M;_1 = Rax(5)[+] where

t

.....

.....

algebraic if each ¢; is. If a triangulation M, admits a locally algebraic parameter, then
by Lemma 3.3.4 all parameters of M, are locally algebraic.

Fix M a trianguline (¢, 'k )-module over Ry, x[;] together with a triangulation M, of
M. We define the groupoid X, over Cp, as follows.

e The objects of X, are quadruples (A, Ma, M., ja) where Aisin Cp, My is
a trianguline (¢, I'x)-module over R4 k[7], Ma. a triangulation of M, and ja
an isomorphism M4 ®4 L — M which induces isomorphisms M4 ;@4 L — M,
for all 3.

e A morphism (A, Ma, Mye,ja) — (A, Ma, Mare,ja)isamap A — A'inCyp,
and an isomorphism M ®4 A" — M 4 compatible (in an obvious sense) with the

morphisms j4, ja and with the triangulations, i.e. which induces isomorphisms
MA,Z' R4 A = ./\/lA/,i for all 7.

Denote by T the rigid analytic space over QQ, parametrizing continuous characters
of K* and Ty, its base change from Q, to L. Fix a triple (M, M,,d) where M is a
trianguline (¢, I'x)-module of rank n > 1 over Ry x[], M. a triangulation of M and
d = (01,...,0,) with ¢; : K* — L* a parameter of M,. Note that we can see § as
a continuous character (K*)® — L*, i.e. as an element of 7;*(L). The functor of
deformations of 9, i.e. the functor:

A — {continuous characters 04 = (d41,...,04n) : (K*)" — A, 04, modulomy = ¢; Vi}

is pro-represented by the completion ﬁ of T/* at the point § € T,*(L). If Ais in Cp,
and (Mg, My, ja) is an object of X/\;M.(A), it follows from Lemma 3.3.4 that there
exists a unique character d 4 € ﬁ(A) which is a parameter for M4, and satisfies 6, = 0
modulo m 4. The map:
(A, Ma, Mae, jia) — (A, 04)

gives rise to a morphism ws : Xy m, — ﬁ of groupoids over C;. Note that, if ¢’ is
another parameter of M,, then 86 tis (constant) algebraic by Lemma 3.3.4 and we have
an obvious commutative diagram:

XMmM.

(3.15) B :J‘S/X / 71& B
7 ¥

n
6/.
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We also define the groupoid X, over Cp, by forgetting everywhere the triangulations in
Xmm. (that is, we only consider deformations of the (¢, I'x)-module M). We have a
“forget the triangulation” morphism X s, — X of groupoids over Cy..

Fix M and M, as above, then by (ii) of Lemma 3.3.5 (with A = L) F; := Wyr(M,)
Definition 3.1.8. Assume moreover that M, possesses a locally algebraic parameter. It
then follows from Lemma 3.3.6 that each Byg-representation JF;/F;_; is almost de Rham
and hence that W is also almost de Rham (as it is an extension of almost de Rham
Bgr-representations). It moreover follows from (ii) of Lemma 3.3.5 that the functor Wyr
defines a commutative diagram of morphisms of groupoids over Cy:

Xmme — Xw 7,

L

X Xy

Now we fix an isomorphism « : (L ®q, K)" — Dyar(W) as in §3.1, so that we
have the groupoids X, and X‘,D[,, 7, over Cp, (see §3.1). We define the fiber products of
groupoids over Cy, (see [53, §A.4] and §3.1):

[ O O . O O
XM . — XM XXW XW and XM,M. . XM’M. XXW,]:. XW,.F. gXM"/\/l. XXW Xw.

77777

(316)  da4= (aiiefrm) = (WH(0a:) = Wt(di)ic1,...ny) € (A ®g, K)" = HA)

..........

induces a morphism of formal schemes wt — wt(8) : 7" — t.

Corollary 3.3.9. The diagram of groupoids over Cy,:

Xmme — Xw 7,

wgl \LHW'}—.
— wt—wt(J) ~
7 ®_ 3

18 commutative.
Proof. This is a consequence of (3.4) and of (ii) of Lemma 3.3.6. O

From Corollary 3.3.9 we obtain a morphism of groupoids over Cy:
(3.17) X, — T3 %7 X,

Writing 7~ ~ GX& x W where W is the rigid analytic space over Q, parametrizing con-
tinuous characters of O, we see that the right hand side of (3.17) is isomorphic to
Gn x Xw.r (with obvious notation).

3.4. A formally smooth morphism. We prove that under certain genericity assump-
tions the morphism (3.17) is formally smooth.

We keep all the previous notation (in particular we assume from now on that L splits

K). Let A be in C;, and M be an object of ®I'y k. Recall from §3.3 that we have
41



Ext}bFAK(RAK[%], M) ~ H,_ (M). Moreover, if W is an almost de Rham A ®g, Bar-

PVK
representation of Gg, there are natural isomorphisms:

(318) EthlzlepAyde(gK) (A ®@p BdR7 W) EXtRepA® (gK (A ®@p BdR) W) ~ H1 (gKv W)

where the last A ®g, K-module is usual contmuous group cohomology, the first isomor-
phism comes from the fact that Rep 4 ,4r (Gx ) is stable under extension in Rep 4 o, Bar (Gk)
and the second is the usual explicit description by 1-cocycles. In particular it follows
that the exact functor M +—— Wyg (M) from @I'4 i to RepA®QdeR(gK) (see §3.3) gives
a functorial A ®q, K-linear map:

(3.19) H.. (M)~ Exter,  (Raklil, M)
— EthlaepA%deR(gK)(A ®q, Bar, W) ~ H'(Gx, War(M)).

Moreover the equivalence of categories Dpqr of Proposition 3.1.1 between Rep, g (Gx)
and Repg (G,) induces functorial isomorphisms by an explicit computation:

H%(Gr, W) ~ Hompep . (6,c)(Bar, W) =~ ker(vw)
Hl(gK’W):Ext%{epde(gK)(BdR,W) ~ coker(vy)

where vy is the K-linear nilpotent endomorphism of Dyqr(W). In particular we see
the functor W —— H'(Gg, W) is right exact on Rep,qr(Gk). Since the functor W —
H°(Gx, W) is exact on the category of de Rham Bgg-representations W of G, it follows
that W —— H'(Gg, W) is also exact on the category of de Rham Bgg-representations of

Ok

Lemma 3.4.1. Let § : K* — L* be a continuous character such that § and 6~ are
not algebraic. Let k = (k;), € Z[K 2

(i) We have H) | (t™*Ry x(8)) = H2 . (R1x(d)) = 0.

(it) If wt,(6) ¢ {1,...,k,} for each T € ¥, then H._  (Rpx(6)) — H}. (t7*Ryp x(0))
is an isomorphism.

(iii) If wt-(0) € {1,...,k} for each T € X, then H) | (R k(8)) — H} (t7*Rpk(0))
is the zero map.

Proof. From [57, Prop.2.10] (together with and [57, §5]), our general hypothesis on ¢
implies (i) and also dimy, H}_ (R x(0)) = dimy H) , (t7*Rpx(6)) = [K : Q] for any
k € ZI5@l Then the result comes from the long exact cohomology sequence associated
to:

0— RLJ((&) — t_kRL,K(é) — t_kRLK((;)/RLK((;) — 0.
together with Lemma 3.3.3 (replacing § by 27%§). O

Lemma 3.4.2. Let § : K* — L* be a locally algebraic character such that § and e6~*
are not algebraic. Then the map in (3.19):

H, . (Rpk(0)[3]) — H' (Gx, War(Rr.x(6)[1])) ~ H'(Gk, L ®q, Bar)

s an isomorphism.

Proof. Replacing § by z7%§ for some k € Z K0l e can assume wt-(0) < 0 for all 7. Then

(ii) of Lemma 3.4.1 and (3.11) imply that the inclusion Ry, x(6) C R x(d)[1] induces

an isomorphism H; o (Rok(0)) = H._ (Rpx(0)[1]). In particular we have
dim; H!

o (R (6)[3]) = [K : @] (see the proof of Lemma 3.4.1). Lemma 3.3.7 implies
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WdR(RL k(0)[7]) ~ L ®q, Bar and it easily follows from [64, Th.1] and [64, Th.2] that

dimy H'(Gk, L ®q, Bar) = [K : Q,]. Thus it is enough to prove that the map:
(320) HSD’YK(RL K((S)) — HI(QK,WdR(RLVK(é)))

is an isomorphism. Since these two L-vector spaces are both of dimension [K : Q,], it is
enough to prove that the kernel of (3.20) is zero.

Let W(8) := (Wo(Rrx(9)), Wir(Rr.x(5))) be the L-B-pair associated to Rp x ()
following [56, §1.4] (which generalizes [9]) and H'(Gk, W (4)) the L®q, K-module defined
in [56, Def.2.1]. We have an isomorphism

(3.21) H, ., (Rpx(0)) = H' (G, W(0))

by [56, Prop.2.2(2)] together with [56, Th.1.36] (and the interpretation of H_ (D) as
extensions of Ry by D). The kernel of H' (G, W(0)) — H'(Gx, War(Rrx(0))) is
denoted by H,(Gx,W(d)) in [56, Def.2.4]. It follows from [56, Prop.2.11] that its
vanishing is equivalent to an isomorphism H}(Gx, W (67 te)) = HY (Gr, W (6 1))
where H (G, W (0 '¢)) is defined in [56, Def.2.4], or equivalently to the vanishing of the
map (see [56, Def.2.1]):

(3.22) H' (G, W(07"e)) — H' (Gr, We(R1x(67€))).
However it follows from the definition of W, (R k(6 '¢)) (see [9, Prop.2.2.6(1)]) that it

only depends on RLK(&)[%], hence we have for any k € Z[ZIB:Q;)]:

We(RL’K((Silf’:)) = We<t7kRL7K<5718)) = We(RLjK(Zik(Silé“))
and the map (3.22) factors as:

H' (G, W(67 ")) — H' (Gr,W (27567 ")) — H'(Gr, We(Rp (27567 1e)))
=~ H'(Gx, We(Rer k(67 '€))).
As for the first isomorphism in (3.21), the first map is also:
H. (Rix(6'e) — H.  (Rpr(z56'e)) =

PVK PYK

kRL K(6 6))

9071(

(t
which is zero by (iii) of Lemma 3.4.1 since we can choose k = (k,), € Z< KQ”] such that
k, > —wt.(8) + 1 for all 7 (and recall wt, () < 0 hence —wt, () +1 > 1) Thus (3.22)
is a fortiori zero. O

Lemma 3.4.3. Let A be an object of Cp, and let 6 : K* — A* be a continuous character
such that § and €5 are not algebraic where 6 := § modulo m.
(i) We have HY_ (Rax(6)[3]) = H2., (Rax(6)[3]) = 0.

PK oK
(i) Assume moreover & locally algebraic, then the map:

Hp o (Rax(0)[3]) — H'Y (G, War(Rax (9)[7])

18 surjective.
(7ii) Assume moreover § locally algebraic, then the map:

H,_  (Rax(0)[}]) — H'(Gx, War(Rax(6)[7]))

s an isomorphism.

Proof. (i) Let M be a (¢,T'g)-module over Ry k[1] which is a successive extension of
(¢, I )-modules isomorphic to Ry, x(6)[3] (for instance M = R4 x(6)[1]), then it follows

from (i) of Lemma 3.4.1 and the long exact cohomology sequence that H)_ (M) =
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H? ., (M) =0.
(ii) Let M as in (i). Since the functor Wyg is exact and since Wyg (M) is almost de Rham
(as it is an extension of almost de Rham Bgr-representations), then it follows from (the
surjectivity in) Lemma 3.4.2, from the right exactness of the functor W —— H(Gx, W)
on Rep,qr (Gx) and from (i) that the map H}_ (M) — H'(Gx, War(M)) is surjective.
(iii) The last statement follows from the dévissage in (ii) together with Lemma 3.4.2 and
the fact W —— H' (G, W) is exact on the category of de Rham Bggr-representations of

Ok. O

Denote by Ty C Ty, the subset which is the complement of the L-valued points z¥, (2)z¥
with k = (k,), € ZE®! and by 7" the characters § = (41, ... ,d,) such that d;/5; € To
for i # j. Equivalently 7;* C 7T;* is the complement of the characters (dy,...,d,) such
that 6;0; ! and €0;0; ! are algebraic for i # j. Note that if a triangulation M, (on a
trianguline (¢, I'x)-module of rank n > 1 over Ry x[3]) admits a parameter in 73"(L),
then by Lemma 3.3.4 all parameters of M, are in 7"(L).

We can now prove the main result of this section.

Theorem 3.4.4. Let M be a trianguline (¢, T k)-module of rank n > 1 over Ry k[3],

.....

locally algebraic and that § € To"(L). Let W := War(M) and Fy := War(M,). Then
the morphism:

Xmme — T3 X Xw 7,

of groupoids over Cr, in (3.17) is formally smooth.

Proof. Let A — B a surjective map in Cr,, 5 = (Mp, Mp., jp) an object of Xy . (B),
yp = (0, Wg, Fp.e, tp) its image in ﬁxTXWf.(B). Let ya = (04, Wa, Fae,ta) bean ob-
ject of T} x7Xw,r, (A) such that §, = 0 modulo ker(A — B) and B4 (Wa, Fae,ta)
(WB,.FBi.?LB). We will prove that there exists some object x4 = (Ma, M., ja) in
Xmm. (A) whose image in X am, (B) is isomorphic to zp and whose image in Tr X7
Xw.r. (A) is isomorphic to y4. Write 04 = (da1,...,04,) and 0p = (0p1, ... ,5B7n)T By
induction on ¢ we will construct (p, I'x)-modules M4 ; over Ry, K[%] such that M 4,1 C
My, and isomorphisms R4 k(6 Az)[%] ~ Ma;/Ma;—1 with compatible isomorphisms
BRaMuy,; ~ Mpi, War(Ma ;) ~ Fa,; (compatible meaning with B&4Fa,; ~ Fg;). For
i =1 one can take M1 := Ra x(04,1)[7] (using (ii) of Lemma 3.3.6). For i € {2,...,n}
set:

1 ,7 1 1
EXtRepA%deR(gK),i = EXtRepA®@deR(gI() (WdR(RA,K@A,i)[;]),fA,z’—l)
1 ,_ 1 1
EXtRePB@@deR(gK)’i T EXtRQPB@@deR(gK) (WdR(RB’K((;B”)[?])’ ]:37“1)
Extor, i = BExter, (Rex(05:)[i], Mpi1).

Assuming that M4 ;1 is known for a fixed i > 2, the existence of M4, is then obviously
a consequence of the surjectivity of the map:

WarxB®al
EXt}DFA,K<RA7K(5A,i)[%]7MAyi,l) dRX_>®A

1

(Gre)si X Extl Extor, .

1
Ext
Repmg)@l0 R,epB®QdeR’(QK),i

Bar
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which itself follows by (3.12), (3.13) and (3.18) from the surjectivity of:

(3.23) HL. (Ma;1(57%) —
H! (QK, WdR(MA,ifl (62,11))) XHl(gKaWdR(MB,ifl(ég,li))) ‘P YK (MB i 1( B ))

For i # j, the characters 0 A,j(SAT}Z- satisfy the hypotheses of Lemma 3.4.3, consequently
Lemma 3.4.3 (both (i) and (ii) are needed) together with right exactness of the functor
W — H'(Gg, W) on the category Rep,qr(Gx) imply the surjectivity of the map:

HY (Mo (339) — H'(Goc, Wan(Maia(97):

For W4 in Rep,qr 4(Gx) we have an isomorphism Dyqr(Wa) ®4 B ~ Dpqr(Wa ®4 B)
in Reppg, «(G,) (see the proof of Lemma 3.1.4) from which it follows that coker (v, )® 4
B = coker(vw,g,p) where vy, (resp. uvw,e,p5) is the nilpotent endomorphism on
Dpar (Wa) (resp. Dpar(Wa®4B)). Since we have functorial isomorphisms H* (Gx, Wa) ~
coker(vy,) of A ®q, K-modules, it follows that H'(Gx, Wa) ®4 B ~ H'(Gx, W4 ®4 B),
and in particular that H*(Gx, War(Ma,;—1(64}))) ®a B = H (G, War(Mp,i—1(65}))).

If0— M; - M — My — 0 is an exact sequence in ®I'4 x such that Hg W((/\/ll)

HSZVK(M‘) - SO’YK<M ®a B) = HS%’YK(M ®a B) = 0 and HS}"YK(M)(@AB =
M; @4 B) for i € {1,2}, then the long exact cohomology sequence for H? _
and an easy diagram chase yield an isomorphism Hi, (M) @4 B = Hé (M ®4 B).
By (i) of Lemma 3.4.3, Hg% and HgﬁK cancel RA,K(5A7]~5A,1-)[;} and RB,K(537j5§}i)[%]
for i # j, and more generally any M which is a successive extension of Ry, x(9,0; 1)[%] for
1 # j. By the same argument as in the first part of the proof of Lemma 3.1.4 using that
the functor H,, ., ! . is then exact on the subcategory of such objects M and commutes with
direct sums, we obtaln isomorphisms H, | (Ma;-1(65})) @4 B — H}_ (Mg, 1(55}))

(note that M4;_1(65}) is a successive extension of R x(04;045)[3] for j <i—1).

4P'7K(

The surjectivity of the map (3.23) is then a consequence of Lemma 3.4.5 below applied
with M = Hi?,WK (MA7¢_1(5A?’12»)) and N = H! (QK, WdR(MA,i—l(éA:li)))- ]

Lemma 3.4.5. Let A be a ring, I C A some ideal and B := A/I. Let f: M — N be a
surjective A-linear map between two A-modules. Then the map M — (M®aB)Xng, 8N
sending m € M to (m ® 1, f(m)) is surjective.

Proof. Let P := ker(f), tensoring with B we obtain a short exact sequence P ®4 B —
M®sB - N®asB — 0. Let (z,y) € (M ®4B) Xng,5N. There exists § € M such that
f@)=vy. Letu:=2—g®1€ M ®4 B. The image of u in N ®4 B is zero, hence there
exists v € P ®4 B whose image in M ®4 B is equal to u. Let © € P C M lifting v, then
u®1=wuin M ®4 B. We have f(g+a)=f(g) =yand (§+0)®@1=(x—u)+u==zx
in M ®4 B: this proves that § + @ € M maps to (z,y) € (M ®4 B) Xng, N. O

We say that a morphism X — Y of groupoids over Cy, is a closed immersion if it
is relatively representable ([53, Def.A.5.2]) and if, for any object y € Y(4,), the object
x € X(A,) representing the fiber product § xy X (see [53, §A.5] for the notation) is such
that the map A, — A, is a surjection in C,.

Proposition 3.4.6. Let M be a trianguline (T )-module of rank n > 1 over Ry k[3],

,,,,,
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T3 (L), then the morphism Xy pm, —> Xm of groupoids over Cy, is relatively representable
and is a closed immersion.

Proof. Since a triangulation M4, deforming M, on a deformation M4 of M is unique
if it exists by a proof analogous to [2, Prop.2.3.6] (using (i) of Lemma 3.4.3), we have an
equivalence of groupoids over Cy:

(3.24) Xavime — X X x| Xmme |-

A proof analogous to [2, Prop.2.3.9] but “inverting ¢ everywhere” shows that the mor-
phism | X .| — |Xm| is relatively representable. This implies that the morphism
Xmm., — X is relatively representable as well. The last statement follows easily
from this together with (3.24) and the fact that | X .| is a subfunctor of | X . O

Lemma 3.4.7. Let M be a trianguline (p,T'x)-module of rank n > 1 over Ry k7], M

0 € Tg'(L). Let (A, My, Mas, ja) be an object of Xpm, and 64 = (0a,)ic(1,..n} S
before (3.15). Assume that the nilpotent endomorphism vy, am,) 01 Dpar(War(Ma)) is
zero. Then we have Ma; = ®5_ R k(0a;)[7] fori € {1,...,n}, i.e. the (¢,Tx)-module

M4 is “split” (and hence also M ).

Proof. Since vy, (m,) = 0, we have in particular wt(d4,;) = wt(d;) by Corollary 3.3.9
and (3.4), i.e. 4, is locally algebraic for all 7. The result then follows by dévissage from
Lemma 3.1.4 and (iii) of Lemma 3.4.3 (via (3.12), (3.13) and (3.18)). O

3.5. Trianguline (p,'x)-modules over Rx. We define and study some groupoids of
equal characteristic deformations of a (¢, Ik )-module over Ry, j with a triangulation over
Rr. K[%] and of an almost de Rham Bji-representation of Gy with a filtration over Bgg.

We keep the previous notation and fix a (¢, I'x)-module D over Ry, . We define the
groupoid Xp over Cp of deformations of D exactly as we defined X, in §3.3 except
that we don’t invert ¢ anymore (so objects are (p,'x)-modules which are free of finite
type over R4 x and which deform D). We have an obvious morphism Xp — X D[] of

groupoids over Cy,.

We first assume that W (D) is an almost de Rham BJg-representation of Gr. By (i)
of Lemma 3.3.5 we also have a morphism X, — XWJR( D) of groupoids over C;, and the
diagram:

__

Xpp — Xwar (o))

is commutative. We thus have a morphism Xp — X, 1Xx X Wi (D) of groupoids

WaR (D[1])
over Cy,.

Proposition 3.5.1. The morphism Xp — XD[%} . S, XW;R(D) is an equivalence.
dR T

Proof. This is essentially a consequence of Berger’s equivalence between (p, I'x)-modules
over Rx and B-pairs (]9, Th.2.2.7]), once one knows that for A in Cj, there is a natural

equivalence of categories (which preserves the rank) between ®I'y x and the category of
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cris

type with a continuous semi-linear action of G.

First let M be a (¢, I'x)-module over R[] and set W (M) := W, (D) for any (¢, T'g)-
submodule D C M such that M = D[1] where W, (D) is the B.-representation of G
constructed in [9, Prop.2.2.6(1)], which does not depend on the choice of D inside M.
This defines a functor from ®I'yx to B.-representations of G which preserves the rank.
To prove that this functor is an equivalence of categories, we construct a quasi-inverse
using [9]. If W, is a B.-representation of Gy, take any G-stable Blz-lattice Wy inside
War = Bar ®p, W, and let W be the B-pair (W,, Wiz). Let D(W) be the (¢,['k)-
modules over Ry canonically associated to the B-pair W constructed in [9, §2.2]. It
follows from the construction in loc.cit. that M(W,) := D(W)[}] does not depend on
the choice of the lattice Wiy inside Wyg and that M —— W.(M) and W, — M (W,)

are quasi-inverse functors.

Now it has to be checked that M is free over R 4 k[7] if and only if W, (M) is free over
A ®q, Be. But by an argument analogous to the one in the proof of Lemma 3.1.4 using
the exactness of the functors M —— W, (M) and W, — M(W,) (which itself easily
follows from the exactness of the functors D and W of [9, §2.2], see [56, Th.1.36]) and
the fact that they commute to direct sums, one is reduced to the case A = L which is in

56, Th.1.36].

Finally it remains to be checked that if D is (¢, 'k)-module with a morphism A —
End@}t(D) and that W,(D[}]) is a finite free A ®g, B.-module and Wi (D) is a finite

¢
free A ®q, Biz-module (necessarily of same rank), then D is a finite free R4 x-module.
As usual, using the exactness of the functor D + (W.(D), Wik (D)) we show that D
is a flat A-module and D/myD is a finite free R g-module. Choose an isomorphism
R} x — D/myD and lift it to a morphism of R4 x-modules R , — D. The result
follows from the two following facts: R4 k is a flat A-module (it is a free A-module since
Rax = A®q, Rk) and a map between two flat A-modules which is an isomorphism
modulo my is an isomorphism (A is artinian so there exists m > 0 such that m} = 0, if
f: My — M, is such a morphism, its kernel and cokernel are A-modules N such that
N =myN =m}N). O

A ®q, Be-representations of Gx where B, := B! ie. free A ®q, Be-modules of finite

Remark 3.5.2. By the argument at the end of the previous proof, one also sees that a
(¢, Tk )-module D with an action of A is free over Rk if and only if D[] is free over
R3] and Wi (D) is free over A ®qg, Biy. Now if M € ®I'y  is such that Wag(M)
is almost de Rham, it follows from Remark 3.1.3 that Wygr(M) contains an invariant
lattice W which is free over A®q, Biy. The image of the B-pair (W.(M), W) by the
functor D of [9, §2.2] is then a free R4 x-lattice of M. In particular we deduce that any
such M possesses a free R4 g-lattice stable by ¢ and I'k.

We now assume that D is trianguline of rank n > 1 (but don’t assume anything on
Wik (D) for the moment), see [19, §2.2] and references therein for the definition (due
to Colmez) of trianguline (p,I'x)-modules over Ry k. We let M := D[7], M, =
(Mi)ieq1,..n) @ triangulation of M and we define the fiber product of groupoids over
CL (Cf §33)

Xpme = XD Xx 0 XM M, -

We assume moreover from now on that M, possesses a locally algebraic parameter.

-----
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(War(Mi))icqa,..ny- Then W (resp. W) is an almost de Rham Bgg-representation
(resp. Bjg-representation) of Gr, see the end of §3.3. Finally we fix an isomorphism
o : (L®qg, K)" — Dpar(W). Recall we defined the following groupoids over C, (and
many morphisms between them): Xy, Xy, Xwr, Xyr = Xwr Xx, X in §3.1,
Xipe, X = Xus Xy X5 0 8§3.2, XTy = Xon X xp Xob XTns = Xntme X x Xip
in §3.3 and we have Xp = X X x,, Xw+ by Proposition 3.5.1 just above. We now use
them to define the following fiber products of groupoids over Cy:

0. O O . O _ O
L d L o _ O
XWJ,-’]:. = Xw+ X Xw XW,]-—. XW*,]:. = XW+,f. X X XW = Xw+ X X XW,]-—.‘

There are many natural (and more or less obvious) morphisms between all these groupoids
over Cr, that we don’t list. We recall that, in Xp ¢, and Xg}M. (resp. X+ 7z and
X+ 7,), we do not deform a triangulation on D (resp. a filtration on W), but rather
the triangulation M, (resp. the filtration F,) on M = D[{] (resp. on W = WT[}]).

We assume from now on that M, moreover admits a parameter in 7;"(L).

Lemma 3.5.3. (i) The morphism Xy — Xw of groupoids over Cp, is relatively re-
presentable.
(i) The morphism Xy m, —> Xw.r of groupoids over Cy, is relatively representable.

Proof. We prove (i). We will use the equivalence between ®I'y x and the category of
A ®q, Be-representations of Gx in the proof of Proposition 3.5.1. Let W, := W, (M) be
the L ®q, Be-representation of G associated to M so that W ~ Bgr ®p, We. Fix 1y =
(A, W4, 14) an object of Xy and denote by 774 the groupoid over Cp it represents. Then
for each A-algebra A’ in Cy,, the groupoid (774 X x,,, X 1) (A’) is equivalent to the category of
(We,ar, jar, v ar) where W, 4 is an A’ ®@q, Be-representation of G, jar : We 4 @u L — W,
and Y4 1 Bar @B, We, ar 3 W4 ®4 A is a compatible isomorphism with the reduction
maps 1 ® ja and 14 ® 1 to Bqr ®p, W, (we leave the morphisms to the reader). It is
equivalent to the category of free A’ ®q, Be-submodules W, 4 C W4 ®4 A’ stable under
Gk such that Bggr ®p, We ar = W4 ®4 A" and such that 14 ® 1 induces an isomorphism
Wea ®a L — W,. On this description we see that all automorphisms in the category
Na Xxy Xm are trivial, hence 74 Xx,, Xm — |74 Xx, Xum|. But one can easily
check (on that description again) that the functor |74 x x,, X | from Cp, to sets satisfies
Schlessinger’s criterion for representability ([59, Th.2.11], for the finite dimensionality of
the tangent space in [oc.cit., use the above equivalence with ®I' 4  for A" = L[e| together
with a dévissage and the finite dimensionality of H,_ (Ry x(6)[§]) for 6 € To(L), see

PVK
Lemma 3.4.1 and its proof). Hence 74 Xx, X is representable. The proof of (ii) is
analogous by replacing everywhere modules by flags of modules. O

Corollary 3.5.4. The morphisms of groupoids XE/(,M. — XVDVI., Xpme — Xw+.r,
and Xp pq, — XVDW?F. are relatively representable.

Proof. The first one follows by base change from (ii) of Lemma 3.5.3. We have Xp p, =
Xp Xx, Xmme = X+ Xxy Xmom, by Proposition 3.5.1, and the morphism induced
by base change from Xy, — Xwor,:

XpMe = X+ Xxy Xpme — Xt Xxy Xwir, = Xw+ 7,

is relatively representable by (ii) of Lemma 3.5.3. The O-version follows by base change
(—) X X X%l/ Ol
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Lemma 3.5.5. The morphism of formal schemes wt —wt(d) : 775" — tin (3 16) is
formally smooth of relative dimension n.

Proof. The morphism of schemes wt : 7,* — t is easily checked to be smooth of relative
dimension n, and thus so is the morphlsm wt —wt(d) : T, — t. Thus the induced

morphism of formal schemes 7&" — t is formally smooth of relative dimension n. U

Corollary 3.5.6. The morphisms Xym, — Xwr,, XE,LM. — XI%F., Xpm, —
Xw+ r, and XE’M. — XVDVJFI. of groupoids over Cp, are formally smooth.

Proof. The morphisms 7’5\” X2 Xw,r, — Xw,r, and 7’5\” X2 X+ r, — Xw+ 7, are formally
smooth by base change from Lemma 3.5.5. The first statement follows then from Theorem
3.4.4 by composition of formally smooth morphisms. We have Xp », = X+ Xx,,
X m, M., hence by base change from Theorem 3.4.4 the morphism:

Xpme — (Xw+ Xxyw Xwr) X7 T50 = X 7, X7 T3

is formally smooth. The third statement follows again by composition of formally smooth
morphisms. The proof of the [J-versions follows by base change. U

Proposition 3.5.7. The groupoid XEA,M. over Cr, is pro-representable. The functor
|XEA’M.| is pro-representable by a formally smooth noetherian complete local ring of

residue field L and dimension [K : Q, J(n? + ”("“))

Proof. As XVDV, 7. is pro-representable (Corollary 3.1.9), then so is X/%l, m. by Corollary
3.5.4, and thus also | X v, |- As XFy v, — Xy, is formally smooth (Corollary 3.5.6),
then so is [ Xy v.| — | Xzl As [Xjy 5| is pro-representable by a formally smooth
local ring (Corollary 3.1.9), the same is thus true for | X \q, -

Using formal smoothness, for the last statement it is enough to compute the dimension
of the L-vector space | X7 1, |(L[e]). This can be done using an other pro-representable
groupoid X3¢ 4, as follows. For 1 <i < nlet 3; : Ry k(0;)[1] — M;/M;_; be a fixed
isomorphism in ®I'y, x and set 8 := (f;)1<i<n- Let X35 vy, be the following groupoid over
Cr (of “rigidified deformations” of (M, M,,3)). If A is an object of Cr, XT 4, (A) is
the category of (Ma, M., ta, Ba) where (M, My, t4) is an object of X, (A) and
Ba = (Ba,i)i<i<n is a collection of isomorphisms B4 ; : ’RA,K((SA,Z-)[%] = Mai/ My
in ®I'y x lifting 5; where (041,...,04,) is the character ws(Ma, Mao,ta) € ﬁ(A)
(see §3.3, morphisms of XY, (A) are left to the reader). There is a natural forgetful
morphism X3 v, — X, of groupoids over Cp, which is easily checked to be formally
smooth. Moreover all automorphisms in the category X7, (A) are trivial and thus
XX m, = XX . |- Moreover, by an argument similar to the one for (¢, 'kx)-modules
over Rk in the proof of [25, Th.3.3], | X\{ A4, | is pro-representable by a formally smooth

noetherian complete local ring of residue ﬁeld L and dimension n+[K : Q,]| =5 n( "H . Finally
consider the (cartesian) commutative diagram of groupoids over Cr:

ver Od O
XX Me X Xpinte XMMme — XM

| |

ver
XM,M.
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Since X7 4, is pro-representable, it is easy to check that X35\ X x . X/%t, M, 1s also
pro-representable (by adding formal variables corresponding to the framing) and that the
left vertical arrow is formally smooth of relative dimension n?[K : Q,]. The top horizontal
arrow is formally smooth of relative dimension n by base change. Set:

d = dimp | X3 v, X X XE/LMJ(L[é]),

we thus have d = n?[K : Q) +n+[K : Q"% = n4dim,, | X% . | (L[e]) which implies
dimy, | X5y p,|(L[e]) = [K 2 Q) (n? + "), 0

Now we let Do = (D1>z€{1 ,,,,, n} ‘— (Dde<-E>>i€{1 ,,,,, n} — (Dde(WdR<M'L>>>ZE{1 ,,,,, n}- It
is a complete flag of Dpgr(W). We assume moreover from now on that W+ is regular
(Definition 3.2.4). Recall then that we defined in (3.9) another complete flag:

Fily+ o = (Filw+ ;(Dpar (W)))icqa,...n}

of Dyoar(W) deduced from the filtration determined by the Bjz-lattice W' of W in
Proposition 3.2.1. Recall also that we fixed an isomorphism « : (L®g, K)" — Dpar(W).

We let « be the closed point of the L-scheme X = g x, g of (2.3) corresponding to the
triple (o~ '(D,), o ' (Fily+ o), Nw) (with the notation of §3.1).

Corollary 3.5.8. (i) The groupoid X",jvtf. over Cr, is pro-representable. The functor
| X+ 7| s pro-represented by the formal scheme X,.

(i) The groupoid Xp \, over Cy is pro-representable. The functor |Xp .| is pro-
represented by a formal scheme which is formally smooth of relative dimension [K :
@p]""+l over X,.

Proof. We prove (i). The second statement in (i) implies the first since in fact there is an
isomorphism Xy, - — | X}y 7| as all automorphisms of an object of Xy, 7 (A) are
trivial (see the discussion concerning X%, in §3.1). We have XW+7 A= = X5 W Xx3 Xt
and the statement is proven as for Corollary 3.1.9 and Theorem 3.2.5. We prove (ii). As
X‘,DV+7R is pro-representable by (i), then so is XB m. by Corollary 3.5.4, and thus also
| X .- As the morphism Xp \,, — Xpp4 7, is formally smooth by Corollary 3.5.6,
then so is the morphism | X v, | — | Xy« 7| The relative dimension of Xp ,, —
Xil/][/+,]-'. is the same as that of X/F/l, M, XVDK 7. (since it is obtained by base change
from it, see the proof of Corollary 3.5.4), which is [K : Qp]"("; Y by Corollary 3.1.9 and
Proposition 3.5.7. Whence the result by the last statement in (i). i

We denote by S ~ SU@l the Weyl group of G (the notation W of §2.1 could now
induce some confusion with the representations W and W of §3.1 and §3.2). Forw € S
define X, C X as in §2.2 and recall that X\w@ is the completion of X, at the closed
point z = (= 1(D,), o (Fily+ o), Nw) € X (L) (s0 Xy is empty if 2 ¢ X,,(L) € X(L)).
Define the following groupoid over Cy:

—

O,w

Since we have an equivalence XVDWJ. — | X D+ 7 ] (see the proof of (i) of Corollary

3.5.8), it follows that we also have an equivalence X7,/%" o | XY w+ £, | of groupoids over

Cr. Hence we deduce the following corollary from () of Corollary 3.5.8.
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Corollary 3.5.9. For w € S the groupoid X‘E,’f,f. over Cy, is pro-representable. The

functor |XVDV’ff.| s pro-represented by the formal scheme X\ww.

We define the groupoid Xy, », over Cp, as the subgroupoid of Xy+ 7, which is the image
of XW+F by the forgetful morphism X“,jwf. — Xw+ 7. So the objects of Xy, 7 are
those (A, W}, Faa,ta) such that there exists ay : (A®g, K)® — Dyar(W4[7]) making
(A, Wi, Fae, ta,as) an object of XW+f (A) and the morphisms (A, W1, Fae,t4) —
(AW, Fareytar) are (A — A Wi @4 A = W) where the isomorphism is compatible
with everything. Using the G-equivariance of X,,, we can easily check that it doesn’t
depend on the framing o and there is an equivalence of groupoids over Cy.:

(3.26) XY 7 = Xibw 5 XXy 5 Xt 7

For w € S, we then define:

Uw w . w
XDM. - XDM. XXI:I + 7 XW+,.7:. and XD,M. -— XD7M. XX XW+,.7‘—.'

W+, Fe

Proposition 3.5.10. The morphisms of groupoids Xy, r, — Xw+ 7, waf. —

XW+; , XB Mo T Xpm, and XD M. XgM. are relatively representable and are
closed immersions.

Proof. The O-versions follow by base change from the others, and the third morphism is
obtained by base change from the first. Hence it is enough to check the first. Let n4 :=
(A, W, Fa,ta) an object of Xy+ 7, and 774 the groupoid over C, that 14 represents. We
have to prove that X;‘{Hf. XXyt 7, 74 is representable and that X{/"Vﬂf. XXyt r Na —> Na
is a closed immersion.

Choose an object £4 = (A, W3, Fw,ta,@a) in Xy, mapping to 74 and let €4 be
the groupoid over Cp that it represents It is easy to check that forgetting the framing
actually yields an equlvalence 5 4 — 74 of groupoids over Cr. By (3.26), we have that

XW+ F XXEW; 5,4 is isomorphic to XW+’F. XXyt r 5,4 ~ XW+J. XXyt 5, TA- Hence

e

~ ~ .. . O,w z z .
X+ XXty M4 — 74 18 isomorphic to Xy; - XX‘E/+’}_. &a — €4, and everything
then follows from (3.25). O

Let S(z) = {w € S,2 € Xy(L)} = {w € 8§, Xypo # 0} = {w € S, X{4. 5, # 0} =
{w € S, XP . # 0}.

Corollary 3.5.11. If w € S(x), the functor XS% is pro-representable by a noetherian

complete local normal domain of residue field L and dimension [K : Q,](n* + "("H))

which is formally smooth (as a formal scheme) over qu.

Proof. The pro-representability of X 5;‘;4. follows from Proposition 3.5.10 and (ii) of Corol-
lary 3.5.8. It follows by base change from Corollary 3.5.6 and from (ii) of Corollary 3.5.8
that Xg’w XVDVf £, is formally smooth of relative dimension [K Qp]" (1) whence
the dimension since |XW+ ml = X, has dimension [K : Q,)n?. Recall that the local
rings of an algebraic variety are excellent and that the completion of a normal excellent
local domain is also a normal local domain ([41, Sch.7.8.3(v)] and [41, Sch.7.8.3(vii)]). In

particular, it follows from Theorem 2.3.6 that the local ring Ox,, , underlying the formal
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scheme X\w@ is a complete local normal domain. So is any local ring which is formally
smooth over Oy, .. 0

Recall from Lemma 2.5.1 that the irreducible components of T' = t x/s t are the T,
{(z, Ad( D2), z € t} for w € S. The map (K1, k2) induces a morphism X, — T( )
(resp. X, z— T, ,(0,0)) Where T(O,O) (resp. Tw7(070 ) is the completion of T' (resp. T,,) at
the point (O 0). Denote by © the composition:

XD M. — XVDVJFJ_-' ;> ’X%/Jr,]_-.’ L) 5(\5,; — f(m,nz)(:p) = f(070).

The same argument as in §3.1 and §3.2 for the morphisms kyw r, and sy + shows that the

morphism O factors through a morphism still denoted © : Xp »q, — f(o,o) of groupoids
over Cy, which doesn’t depend on any framing.

Corollary 3.5.12. Let w € S(x) and w' € S, then the morphisms ngwM. — XP m,—
T(Qo) and XP5 vy, <= Xpme — f(og) of groupoids over Cr, induced by © factor through
the embedding fw/7(070) — f(o,o) if and only if W' = w.

Proof. Since © factors through Xp a4, , by the commutative diagram:

Uw ] T
XD,M. - XDJ\A. > T(O,O)

L

Xpme — Xpm, — T

we see that it is enough to prove the first statement. By Corollary 3.5.11 and the definition
of O, it is enough to prove the same statement for X, 2 and T, (0,0), i-e. the composition of

the morphisms Xw z X — To .0 factors through T (0,0 if and only if v’ = w. This
is Lemma 2.5.2. O

3.6. The case of Galois representations. We reconsider some of the previous groupoids
over Cr, when the (¢, 'k )-module comes from a representation of Gx and define a few
others.

Let r : Gk — GL,(L) be a continuous morphism (where L is a finite extension that
splits K') and let V' be the associated representation of Gx (there should be no confusion
between this V' and a generic object of Repy  (Gx) which was denoted by V' in §3.1).
Let X, be the groupoid over C;, of deformations of r and Xy the groupoid over C; of
deformations of V. So the objects of X, are the (A,74 : Gk — GL,(A)) such that
composing with GL,(A) - GL, (L) gives r and the objects of Xy are the (A, Va,ja)
where V4 is a free A-module of finite rank with a continuous A-linear action of Gx and
ja a Gg-invariant isomorphism V4 ® 4 L —— V. There is a natural morphism:

X, — Xy

which is easily checked to be relatively representable, formally smooth of relative dimen-
sion n?. We let D := Dy (V) be the (étale) (p, 'k )-module over Ry, x associated to V
and we set M := D[1]. By the argument of [2, Prop.2.3.13] the functor D, induces an

equivalence Xy — Xp.

Now we assume that V is a trianguline representation and fix a triangulation M, of

M as in §3.5. We define the following groupoids over Cr: Xy a, := Xv Xx, Xp m, and
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Xome i =Xo Xxy Xvme =2 Xy Xxp Xpme ~ Xy Xx, Xmm.. The natural morphism of
groupoids over Cr:

(3.27) Xr Mo — Xvm,
is formally smooth of relative dimension n? by base change.

We assume moreover from now on that M, admits a locally algebraic parameter in
75*(L) and we define Wt := Wi (D) and W := W*[{] (in particular W is almost de
Rham). Note that W* = Bj; ®q, V and W = Bgr ®q, V. We also define F, and
D, as in §3.5. We fix a framing o : (L ®q, K)" — Dyar(W) as in §3.5. We define
XE = XV XXp Xg = Xg, XTD = X,« XXy X“;, XEM. = XV,M. XXy XE and XEM. =
X m. Xx, X2, By base change X — X7/ is formally smooth of relative dimension n?.
Since X5 — Xp is formally smooth of relative dimension [K : Q,]n? (by base change
from X}, — Xw ), the same is true (by base change again) for X/ — Xy and X~ —
X,. Note that X5, and hence X}/, are pro-representable (use X5 ~ X X x,, Xip+ by
Proposition 3.5.1, and then Theorem 3.2.5 with (i) of Lemma 3.5.3).

Remark 3.6.1. Recall that the framing (J in X{] is not directly on the Galois deformation
V4, as is usual to do (e.g. in [53] or [20]) but only on Dpar(Bar ®g, Va). The groupoid
over Cy, of usual framed deformations of V' is precisely X,., which is pro-representable by
the same argument as in [53, §8.1].

We assume moreover from now on that the almost de Rham L ®q, Bji-representation
W is regular (Definition 3.2.4) and define Filyy+ , and z = (o™ (D), a *(Fily+ o), Niw) €
X(L) as in §3.5. We finally also define the following groupoids over Cr: Xy, :=
Xy Xxp XP oy, (forw € S), X2y = X, Xx,, X{7y, and their O-versions. We have a
cartesian commutative diagram of groupoids over Cy:

O
XT‘,M. T',M.

(3.28) l l

|
Xvm, — Xvm,

where the vertical maps are formally smooth of relative dimension n? (by base change)
and the horizontal maps are formally smooth of relative dimension [K : Q,n? (base
change again). We also have the w-analogue of (3.28) with the same properties. More-
over, because of the framing on r, all automorphisms in the categories X,.(A4), X, m., (4),
XO(A), XD (A), X200 (A) and X3 (A) are trivial, hence all these groupoids over Cy,
are equivalent to their associated functor of isomorphism classes | |. We will tacitly use
this in the sequel.

Theorem 3.6.2. (i) The functor | X, m,| is pro-representable by a reduced equidimen-
sional local complete noetherian ring R, of residue field L and dimension n* + [K :
@p] n( n+1

(ii) For each w € S(x), the functor | X'\, | is pro-representable by Ry, = Ry, /P
where p,, s a minimal prime ideal of R, p, and Ry p, /Pw s a normal Zocal ring. More-
over the map w — p,, s a bijection between S(x) and the set of minimal prime ideals
Of RT‘ Mo'

(iii) The morphism |X M | — |XVM. — | Xvm.| =~ [ Xpa.

over Cy, factors through T (0,0) = TO (0,0) i and only if W' = w.
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Proof. By base change from Proposition 3.4.6 the morphism Xp, — Xp is rela-
tively representable, hence also Xy r, — Xy, and by base change also X, v, — X.
Since X, is pro-representable (see Remark 3.6.1), then X, »q,, and thus |X, a4, |, are
pro-representable. By Proposition 3.5.10 the morphism X7 . — Xp u, is relatively
representable and a closed immersion, hence also Xy ,,, — Xy um, and by base change
also X%y, — Xy m,. Since X, nq, is pro-representable, we deduce that X%, is pro-
representable by a complete local ring which is a quotient of the one representing X, 4,
Moreover it follows from their definition that the local complete ring representing the func-
tor | X4, | is a formal power series ring over the one representing the functor | X, v, |, and

likewise with |XE .| and [ XYy, | by base change using (3.26). The remaining assertion
in (i) follows from this, the formal smoothness of Xy, — Xi 4, , (ii) of Corollary 3.5.8
and the properties of X, (see e.g. the proof of Lemma 2.5.2). Likewise (ii) follows from
this, the formal smoothness of XE M, — Xa’k’,t., Corollary 3.5.11 and the properties of

X0 (see the proof of Corollary 3.5.11). Finally we prove (iii). Since © : Xp M, — T(Qo)
factors through | Xp a4, /, it is enough to prove the same statement without the | |. This
follows from Corollary 3.5.12 and the formal smoothness of X"\, — X/ .. U

For w € S recall that T, , = X\w,x(L[e]) is the tangent space of X, at the point z.
Corollary 3.6.3. For w € S§(x) we have:
n(n+1)
2

dimp Xy, (L[e]) =n® — [K : QyJn” + [K : Q)] + dimy, Tx,, -

Proof. The morphism Xg:wM. — XEV’”;” 7 A )/(\w,x is formally smooth of relative dimen-

sion [K : Q)] "("; U by base change from the morphism Xpm., — Xyt 5, and Corollary

3.5.8. Hence dimy, X‘Ef&.(L[E]) =[K: Qp]w +dimp, T, ». Since dimy, X%y, (L[e]) =
dimy, Xsﬁ.(L[s]) — [K : Qpn? = n* + dimy, Xa’f\”/l.(L[e]) — [K : Qp]n? by the w-analogue
of (3.28), we obtain the result. O

We let w, € S measuring the relative position of the two flags of (L®g, K)" = Dyar (W)
given by a~'(D,) and by a ! (Filyy+,). More precisely w, is the unique permutation in
S such that the pair of flags (a™(D,), a ' (Fily+,)) on (L ®g, K)" is in the G-orbit of
(1,w,) in G/B x, G/B. It doesn’t depend on the choice of a.

Proposition 3.6.4. If w € S(z), or equivalently X°\,, # 0, then w, < w.

Proof. By definition of w,, we have x € V,,_ (see the beginning of §2.2 for V,, ), hence
x € X, NV,, by definition of S(z). The result then follows from Lemma 2.2.4 (and from
the w-analogue of (3.28) for the equivalence w € S(z) < X%y, # 0). O

3.7. The trianguline variety is locally irreducible. We describe the completed local
rings of the trianguline variety Xy,;(7) at certain points of integral weights in terms of
some of the previous formal schemes and derive important consequences on the local
geometry of X,;(7) at these points.

We keep the previous notation. We denote by 7T, C 77, the Zariski-open complement
of the L-valued points z ™%, &(2)z" with k = (k;), € Z%;, and Tz, for the Zariski-open
subset of characters § = (91, ...,d,) such that 0;/d; € Treg for i # j. Note that 7" C T,
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We fix a continuous representation 7 : G — GL,(kz) and let R7 be the usual framed
local deformation ring of 7, that is, the framing is on the Gx-deformation. This ring was
denoted RY in [19, §3.2] and [20, §3.2], however we now drop the (J in order to avoid any
confusion with the other kind of framing used here and already denoted [ (see Remark
3.6.1). It is a local complete noetherian Op-algebra of residue field k;, and we denote by
X7 := (Spf R7)"8 the rigid analytic space over L associated to the formal scheme Spf R;.
Recall that X;(7) (denoted XZ.(F) in loc.cit.) is by definition the rigid analytic space

tri
over L which is the Zariski-closure in Xz x T, of:

(3.29) Uyi(F) := {points (r,9) in X7 x T

g Such that 7 is trianguline of parameter d}.

(we refer to [19, §2.2] for more details, note that being of parameter ¢ is here a different
(though related) notion than the one in Definition 3.3.8). The rigid space X;(7) is
reduced equidimensional of dimension n?+[K : Q,] "(";1) and its subset Uy (T) C Xy4(T) is
Zariski-open, see [19, Th.2.6]. As in [19, §2.2] we denote by w’ the composition X (7) <

X7 x T — T (the letter w being reserved for the weight map).

.....

Proposition 3.7.1. Assume that § € T3, then the (¢,T g )-module M over Ry k(1] has
a unique triangulation of parameter J.

Proof. 1t is sufficient to prove that the (¢, 'k )-module D, (V') has a unique triangulation
is exactly the contents of [49, Th.6.3.13]..' “The uniqueness follows from the discussion just
before [49, Def.6.3.2] and from the Galois cohomology computations of [49, Prop.6.2.8]
(using the hypothesis § € 7;*). These results can also be deduced from [55] or [2], see
e.g. the proof of Proposition 3.4.6. U

From now we assume that ¢ € 7;* and we write M, for the triangulation given by
Proposition 3.7.1. Denote by r» € X7 the closed point corresponding to the morphism
r: Gx — GL,(L). By [53, Lem.2.3.3 & Prop.2.3.5] there is a canonical isomorphism
of formal schemes between X, and fm. Namely if A is in C, a map SpA — f%\m is a
morphism Spec A — Spec R?[%D] sending the only point of Spec A to r, i.e. a continuous
morphism G — GL,(A) such that the composition with GL,(A) — GL, (L) is r, i.e. an
element of X, (A). We thus deduce a morphism of formal schemes:

X/m(\F)x — %A;’T ~ X,.

Recall that X, yq, = X, is a closed immersion by base change from Proposition 3.4.6.

Proposition 3.7.2. The canonical morphism X(T), — X, factors through a mor-

—

phism Xi(T), — Xi .-

Proof. Let U be an affinoid neighbourhood of x in X;(7). Let Dy be the universal
(¢, 'k)-module over U (coming from the universal representation Gx — GL,(R7) via
U —>~f£;). Using [49, Cor.6.3.10], there exists a proper birational morphism of spaces

-----

under ¢ and I'g such that Fy = 0 and F,, = f*Dy, invertible sheaves (£;)ic(1
and injections:

.....

Fi/Fiy = Ry 05, @0, L
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for i € {1,...,n} (where the 5, : K* — (U, Op)* come from U— U C Xu(7) LN
T/") whose cokernels are killed by some power of ¢ and supported on a Zariski-closed
subset Z whose complement is Zariski-open and dense in U. Let us fix a point T over
x and V' an affinoid neighbourhood of z in U over which all the sheaves £; are trivial.
Then for i € {1,...,n} the Ry k[7]-modules (F;[}]/Fi_1[1])|v are free of rank 1. Let A
be in Cp and Sp A — V' a morphism of rigid analytic spaces sending the only point of
Sp A to . By pullback along Sp A — U — X7, we obtain a deformation r4 in X,.(A)
such that Dyig(r4) = AQrwv,0,)I'(V, f*Dy). Moreover it follows from what preceeds that

above (3.15) for 0 4) corresponding to the map SpA — V — U C X4(7) N T,'. When
A = L, the triangulation M , coincides with M, by Proposition 3.7.1. The morphism
sending an element of Vz(A) to (r4, Ma,) clearly defines a morphism Vx — X, v, of
groupoids over Cy, fitting into the commutative diagram of pro-representable groupoids
over Cr:

Vg — X, M.

|

Uy — X,.

In this diagram the left vertical arrow is dominant, i.e. (since U, = Spf S for a reduced
ring S) the induced map on the corresponding complete local rings is injective, and the
right vertical arrow is a closed immersion. This implies that the lower horizontal arrow
must factor through X, rq, (as shown in the diagram). U

—

Proposition 3.7.3. The morphisms Xi(F), — X, m, and Xui(F), — X, are closed
immersions of groupoids over Cr, (or of formal schemes since they are pro-representable).

Proof. Tt is enough to deal with the first morphism. It follows directly from the proof of
Proposition 3.7.2 that there is a commutative diagram:

—

Xi(T), — XM,

(3.30) \ lwé

75"

where w; stands for the composition X, v, — Xy, ~ Xpme — Xamme = ﬁ”
(see (3.15)). From the closed immersion of rigid spaces Xi(T) < X7 xp T;* and using

.’lf;; ~ X, we deduce a closed immersion of formal schemes Xi,;(7), < X, x L@. However
(3.30) together with Proposition 3.7.2 show that this closed immersion factors through:

)(/tri<\7)x—>Xr,M. —)Xr XL@

where the right hand side is the morphism corresponding to the two morphisms X, ¢, —

—

X, and ws. This implies that the map Xi,i(7), — X, a4, is itself a closed immersion. [

We keep our fixed point = (r,0) € Xi(7)(L) and assume from now on that 4 is locally
algebraic. We define W' and W as in §3.6 and assume moreover that W is regular
(Definition 3.2.4). We write F, for the filtration on W deduced from the triangulation

M, and D, for the flag on D,qr(W) deduced from the filtration F,. We also write
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hr1 < .-+ < h;, where the (h;;);ex € ZIEQ] ¢ [EKQ] ~ ®q, K fori e {1,...,n}
are the Sen weights of r. It follows from [19, Prop.2.9] that {wt,(d;),i € {1,...,n}} =
{hs;,i € {1,...,n}} for each 7 € ¥. This implies that, for each 7, there exists a
permutation w; € S, such that (Wt; (0w, 1)), -, Wtr (0w, () = (Rr1s. .. hepn) € Z". We
define w := (w;)rex € S.

— —

We denote by ¢, the closed immersion X,(7), <= X, m, and by O, @ X(T), — YA’(OQ)
the morphism of formal schemes which is the composition:

/\7 Lz ~ © 52
Xui(T), = Xoomte — Xvme = Xp e — Ti0,0)-

Lemma 3.7.4. The morphism O, factors through fw,(o,o) — f(o,o)-

Proof. Denote by ©, w7, the composition:

e ~ KW, Fe 5
Xtri(T)x — Xome — Xvme = XD M, — XW+7]-'. — Xwr, — t

and by ©, + the composition:

Kyy+ =~

—_—
_ lx ~Y
Xui(7), = Xoomte — Xvme = Xpme — X+ 7o — Xt —

then by definition of T,, one has to show O, -+ = Ad(w™1)oO, w7, (recall that the action

of Ad(w_l) On/t\gives Ad(w_1>((yl,7')7627 SRR (Vn,T)TEE) = ((V”LUT(I),T)TEZ7 SRR (wa(n),fr>‘r€2)
if w= (w;)rex).

—

Let A be an object of Cp, x4 : Spf A — X.yi(T), some A-point of X/m(\?)z and Vy
the associated representation of G via Xi(7), — X, — Xy. Let (W], Fa.) be the
corresponding object of Xy+ 7, (A) (via the above morphism Xi(7), — Xw+ 7, ) and
set 04 = w'(za) and yu = (Wa, Fae) € Xz (A) where Wy := Wi[1] = Bar ®q,
V4. By Corollary 3.3.9, we have O, w r, (24) = kw,r (ya) = wt(d,) — wt(d). Moreover
Opw+(xa) = kw+(WY) = kw+(Big ®q, Va) is the element (vayq,...,va,) of (A ®q,
K)™ where the element vq; = (va;,); € A®q, K = ®;cxA is the action of vy, on
FilW;’i(Dde(WA))/ Fﬂwj,i—l(Dde(WA» (see (3.9)). It follows from Lemma 3.7.5 below
that the polynomial:

n

H (Y - ((h'r,i + VA7Z'7T)TEE)) €A ®Qp K[Y]

i=1
is the Sen polynomial of V4, i.e. the characteristic polynomial of the Sen endomorphism
on the finite free A ®q, K-module:

Asen(c ®@p VA) = ASQH(WX/tWX) ~ K Rk DpHT(WX/tWX)
(see the proof of Lemma 3.2.2 for Dygr). Then it follows from Lemma 3.7.6 below that
we have the following equality in A ®q, K[Y] ~ @res A[Y]:

n n

II (Y — (Wt (0i)res + ’W/,f-(yA)z‘)) =11 (Y = ((hri)res + RW+(WX)1'))-

i=1 i=1
By Lemma 3.7.7 we conclude that there exists a unique element w' := (w),;cx € S such
that

Ad(w' ™) (Whr(81))rem + Kwra(a)1s - (Wee (00))res + Rz (ya)n)

- ((hT,].)TEZ + KZW*(WX)I? ) (hT,n)TEE + K+ (WZ)n)
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Using uniqueness and reduction modulo my, we see that w’ = w, which implies:

Ad(w™)(Oaw.7 (w4)) = Opw+ (2.4).
U

If Aisin C, and W is an almost de Rham A ®q, Bjg-representation of Gx and
Wy := WJ[3], recall from §3.2 (see especially the proof of Lemma 3.2.2) that there is a
functorial isomorphism in the category Rep 44 o x(G,):

(3.31) Dy (W4 tW1) ~ D gt (Dpar(Wa)).

SV Wa
where glr%ﬂ‘.ﬂﬂr (Dpar(Wa)) = Fil;vX(Dde(WA)) / Fili‘;} (Dpar(W4)) and the action of G,
O Grfye (Dpar(Wa4)) comes from the A®q, K-linear nilpotent operator gr* (v, ) induced
w

A
by vw, (the equivariance for this G,-action is not explicitly mentioned in loc.cit. but is
straightforward to check). The following lemma follows from (3.31) and the material in

37, §§2.2,2.3].

Lemma 3.7.5. Let W} be an almost de Rham A ®q, Bl -representation of Gi. Then
the Sen polynomial of W1 /tW} in A®q, K[Y] is equal to the product for i € Z of the
characteristic polynomials of the endomorphisms —ild + gr'(vw,) of the free A Rq, K-
modules gri. e . (Dpar(Wa)).

WA
Lemma 3.7.6. With the notation in the proof of Lemma 3.7.4, the Sen polynomial of
Va is equal to [T} (Y — wt(da,)) € A ®q, K[Y].

Proof. Using compatibility of the Sen polynomial with base change (see [26, Ex.4.8]), it
is sufficient to prove that the Sen polynomial of the universal Galois representation on
Xui(T) (corresponding to X () — X5) is equal to [I7, (Y —wt(8;)) € (D'( X (7), Ox,.:(7)®0q,
K)[Y] withd = (41, ... ,0,) the universal character on X;(7) corresponding to Xy (7) —>
T/. It is sufficient to check that the coefficients of both polynomial coincide on a

dense subset of points of X,;(T) and it is a consequence of [19, Prop.2.9] (see also [49,

Lem.6.2.12]). O
Lemma 3.7.7. Let (ay,...,a,) and (by, ..., b,) be in A™. Assume that all the a; modulo
my are pairwise distinct. If we have [I7_ (Y —a;) =17 (Y — b;) in A[Y], there exists a
permutation w € S,, such that:

(332) <b17 s >bn) = (aw(l)a s >aw(n))'

Proof. Reducing modulo my4 and using the fact that L[Y] is a factorial ring, we can choose
w such that (3.32) holds modulo my, and replacing (ay, ..., a,) by (@w); - - Gww)), We
can assume w = 1. Thus we have a; = b; modulo my for all ¢ and we must prove
a; = b; for all i. Let j # i. As A is a local ring and a; — a; ¢ mga, b; —a; ¢ my,
we have [];.;(a; — a;) € A* and [];.(a; — b;) € A*. Replacing Y by a;, we obtain
0= (ai - bl) H];éz(az - b]) and ﬁnally a; = bz O

—

Corollary 3.7.8. The closed immersion ity : Xwi(T), — Xr ., induces an isomorphism

- o= ~
Xtﬁ(?)x _> X;‘I:M.
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Proof. By (i) of Theorem 3.6.2 we have X, py, — | X, .| > Spf R m. and we deduce
from Proposition 3.7.3 a closed immersion of affine schemes:

Spec @Xm(;m — Spec R, pm, -

Moreover we know from [19, §2.2] and (i) of Theorem 3.6.2 that Ox, ). is reduced
equidimensional of the same dimension as R, a4, , so that Spec(@xtri(;)w) is a union of
irreducible components Spec RZ:";\A of Spec R, pm, for some w' € S (we use the notation
of (ii) of Theorem 3.6.2). Pick up such a v’ € S, going back to formal schemes and using

(ii) of Theorem 3.6.2 we deduce a closed immersion X:f,)/l\/t. — X/m(\F)x which, composed

with the morphism O,, gives },“/IM. — T w,(0,0) < f(o,o), where we have used Lemma
3.7.4. But (iii) of Theorem 3.6.2 then implies w’ = w, which finishes the proof. O

Remark 3.7.9. We recall our assumptions on the point = = (r,d) = (1, (01,...,0,)) €
Xuni(7)(L): 4§ is locally algebraic, 51'5]-_1 and £0;0; ! are not algebraic for i # j and the
7-Sen weights of the Gx-representation V' associated to r are distinct for each 7 € 3. In
particular it follows from Remark 4.2.2 below that these assumptions are always satisfied
when V' is crystalline with distinct Hodge-Tate weights for each embedding 7 and the
eigenvalues (1, ..., ¢,) € L™ of o5l on D (V) (where ¢ is the crystalline Frobenius
on Deis(V)) are such that ¢;p;" ¢ {1, pKo @]} for i £ j.

Let x = (r,9) as in Remark 3.7.9. Keeping all the previous notation, the following
big commutative diagram of formal schemes over L, or alternatively of pro-representable
groupoids over Cp, contains most of what has been done in §3:

(3.33)
‘Xv/\f ~ w Ow XEI,w ~ XD,w XD,w ~ X\
tri(r)l‘ T',Mo T,Mo V',Mo D,Mo W+,]‘—. W, TpdR
') ') N ')
O ~ O O ~ oY
Xﬂr/}/l. Xr,M. XV,./\/I. XD,/\/l. XW+,}'. Xérde,
'a) ) 'a)

X, XU Xg—~ - X8

T

where zp4r = (™ H(D,),a (Fily+ ), Nw) € X,,(L) (depending on the choice of an iso-
morphism « : (L ®g, K)" — Dpar(Bar ®g, V') and where all the horizontal morphisms
which are not isomorphisms are formally smooth, all vertical morphisms are closed im-
mersions and all squares are cartesian. Moreover the three horizontal formally smooth
morphisms on the left just come from adding formal variables due to the framing [1.

From (ii) of Theorem 3.6.2, Proposition 2.3.3 and (3.33), we finally deduce the following
important corollary.

Corollary 3.7.10. Let © = (r,0) € X.i(T) satisfying the assumptions of Remark 3.7.9,
then the rigid analytic space Xi(T) is normal, hence irreducible, and Cohen-Macaulay at
x.

4. LOCAL APPLICATIONS

We derive several local consequences of the results of §2 and §3: further properties of

Xii(7) around a point  as in Remark 3.7.9, existence of all local companion points when
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r is crystalline and a combinatorial description in that case of the completed local ring
at x of the fiber of X,;(7) over the weight map.

4.1. Further properties of the trianguline variety. We prove several new geometric
properties of X,;(7) around a point z satisfying the assumptions of Remark 3.7.9.

We keep the notation of §3.7. If x € X,;(F) satisfies the conditions of Remark 3.7.9,
recall we have associated to z two permutations in S ~ S¥®l: the permutation w,
defined just before Proposition 3.6.4 and the permutation w defined just before Lemma
3.7.4.

Recall also that the map w’ : X;,;(T) — T, is smooth on the Zariski-open Uy (7) ([19,
Th.2.6(iii)]) but can be ramified in general (as follows from [5, Th.B]). The following
proposition is one more property of the map w'.

Proposition 4.1.1. Let x = (r,0) € Xi(F) satisfying the assumptions of Remark 3.7.9,
then the morphism W' is flat in a neighbourhood of x.

Proof. Increasing L if necessary, we can assume x € X.,;(7)(L). We use the notation of
§3. By base change from Theorem 3.4.4 using Proposition 3.5.1, the morphism of formal
schemes XE;“’M. — 7? X7 XVDV’TJ. is formally smooth, hence by Corollary 3.5.9 and
(3.28) so is Xsﬂ. — T XTX\w,xde where z,qr = (@™ H(D.), a H(Fily+ o), Nw) € X(L)
(depending on some choice of «). Since the morphism of schemes k1, : X,, — t is flat
by Proposition 2.3.3, it remains so after completion, and we deduce that the morphisms
of formal schemes 7? X7 X\w@p w— 7’; and thus XE M, — @ are flat. Since this last
morphism factors through X, r, (see the definition of ws just above (3.15)), we have a
commutative diagram of formal schemes (whose underlying topological spaces are just
one point):

w 0w
r,Me r,Me
7;11

and where the horizontal morphism is formally smooth (see the w-analogue of (3.28)).
Looking at the map induced by this horizontal morphism on the underlying complete
local rings, it is formally smooth, hence flat, hence faithfully flat (since it is a flat local

map between local rings). Together with the flatness of XE M, — i", it is then straight-

forward to check that the morphism of formal schemes Xy, — ﬁ" is also flat (use that
C®pM =04 M =0if B— C is a faithfully flat morphism of commutative rings). We

thus obtain that X(7), N 7. is flat by Corollary 3.7.8 and (3.30). Looking again at
the underlying complete local rings and using that completion of noetherian local rings
at their maximal ideal is a faithfully flat process, we deduce in the same way as above
that the morphism of local rings O7r 5 — Ox,, (7). 1s also flat, i.e. that the morphism
of rigid spaces w' : X,i(T) — 7" is flat at x, and hence in an affinoid neighbourhood of
x (flatness on rigid spaces being an open condition). O
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Remark 4.1.2. We see from (3.33) and the argument at the beginning of the proof of
Proposition 4.1.1 that we have:

o~

v (= O,w Tn
Xtri(r)m < A M, *>7:; X+~ X,

t W,TphdR

O TN
Xr,M. E Xt

o~

X

ZTpdR

where the horizontal morphisms are formally smooth, the vertical ones are closed immer-
sions and the square is cartesian.

Recall that W is the rigid analytic space over Q, parametrizing continuous characters

of Of. Let Wy, be its base change from Q, to L and let w : X,;(7) N T — W} where
the last morphism is restriction (of characters) to Oj. Note that, arguing as just after
(3.17), Proposition 4.1.1 implies that w is also flat in a neighbourhood of x. For A in
Cr, we say that &y : O — A* is algebraic if it is the restriction to O of an algebraic
character of K (cf. §3.3). Recall the following definition from [20, Def.2.11].

Definition 4.1.3. Let © € Xi(T) such that w(x) is algebraic. We say that Xiyi(T)
satisfies the accumulation property at x if, for any positive real number C' > 0, the set of
crystalline strictly dominant points ' = (r',¢") such that:

(i) the eigenvalues of @0l on Do (r') are pairwise distinct;
(ii) «’ is noncritical;
(iii) w(z) = (5’\((9;{)“ = 0w with k ;—k, ;. , > C forie{1,...,n—1}, 7 € Hom(K, L);

accumulate at x in X;i(T) in the sense of [2, §3.3.1].

Proposition 4.1.4. Let x € X.,i(F) satisfying the assumptions of Remark 3.7.9 and such
that w(x) is algebraic, then X(T) satisfies the accumulation property at x.

Proof. 1t follows from the above flatness of w at = and [14, Cor.5.11] that there is an
affinoid neighbourhood U of x in X,;(T) such that w(U) is open in W} Since Uy;(F) N U
is Zariski-open and dense in U, it accumulates in U at any point of U, in particular at z.
Arguing as in the first half of the proof of [20, Prop.2.12] replacing V' by Uy, (7), and using
that U is locally irreducible at x by Corollary 3.7.10 and the fact that the normal locus
of an excellent ring is Zariski-open, we can then assume that = is moreover in U,;(7) and
that U C Uy;(7). Then the result follows from [20, Lem.2.10] using that the algebraic
points of w(U) satisfying the conditions of loc.cit. accumulate at w(zx) since w(U) is open
in W} O

If w € S, let dy € Zsy be the rank of the Z-submodule of X*(7T") (here T is the
split torus of GG) generated by the w'(«r) — @ where a runs among the roots of G. Then
one easily checks that d,, = dimp t(L') — dimy ¥ (L)) = n[K : Q,] — dim t*'(L') for
any extension L' of L (see §2.5 for t'). We have the following result which extends [20,
Th.1.3].

Proposition 4.1.5. Let © = (r,0) € X.i(T) satisfying the assumptions of Remark 3.7.9

and such that r is de Rham.

(i) We have dimy(p) T, (7),0 = dim Xwi(7) — [K : Qpn® + dimye) T, apan - [0 particular

the rigid analytic space Xi(F) is smooth at x = (r,d) if and only if the scheme X, is
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smooth at xpar = (a1 (Ds),a  (Fily+ o), Nw) (which doesn’t depend on the choice of o
by G-equivariance of X, ).
(i) We have:

dimy (o) T im0 < dim Xwi (7) = duw, -1 +1g(wowo) + dimya) Terg oy 1) — 2 Qpln(n—1).

In particular if m(zpar) s a smooth point on U, and if dyy,—1 = lg(w) — lg(w,) then
Xi(T) is smooth at x.

Proof. Increasing L if necessary, we assume k(x) = L. (i) follows from Corollary 3.7.8

and Corollary 3.6.3 together with dim X;(7) = n? + [K : Q) "(”2+1) and dim X, = [K :
Q,n?. Since r is de Rham (which here is equivalent to r being crystabelline due to the
assumptions in Remark 3.7.9), the nilpotent endomorphism vy of W is 0 and we can

apply (i) of Proposition 2.5.3 which gives here:
dimL Twaxde S dlmL Tm,ﬂ'(.’ﬂde) + n[K : Qp] — dwwz—l + lg(wxwo)

This inequality plugged into the equality of (i) gives the inequality in (ii). The last

assertion in (ii) follows using dimU,, = [K : Q] ”(”2_1) + lg(w) and lg(w,wg) = [K :

@p] n(ngil) - lg(wx)- O

Remark 4.1.6. (i) The assumption on 7m(z,qr) in (ii) of Proposition 4.1.5 is always
satisfied when w = wy (since in that case U,, = G/B x G/B is smooth), i.e. when z is
a strictly dominant point on Xi(7) in the sense of [20, §2.1], and using d,, ,-1 = duw,u,
we have in that case:

(41) dln’lk(m) TXtri(F) z S dim Xtri(F) — dwsz —+ lg(wxwo)

5

The assumption dy,,, -1 = lg(wg) — lg(w,) = lg(wew, ') is satisfied if and only if w,wy
is a product of distinct simple reflections (as follows from [20, Lem.2.7]). Note that the
permutation w,, call it here w}*V, is in fact not the same as the permutation also denoted
w,, defined in [20, §2.3], call it w29, Indeed, unravelling the two definitions one can check
that w" = w2wy. In particular the upper bound in (4.1) is exactly that of [20, Th.1.3].
(ii) Both assumptions on 7(zpar) and on dy,,, -1 in (ii) of Proposition 4.1.5 are satisfied
when lg(w) — lg(w,) < 2. The one on 7(zpar) follows from [13, Th.6.1.19] (together
with [13, Cor.6.2.11]) and [45, 8.3(a)]. The one on d,,, -1 follows from writing w = s,w,
(case lg(w) — Ig(w,) = 1) or w = saspw, (case lg(w) — lg(w,) = 2) where s,, sz are (not
necessarily simple) reflections (see e.g. [45, §0.4]).

(iii) Assuming Conjecture 2.3.7 for w = wy, the inequality in (i) of Proposition 2.5.3 is an
equality for w = wy (see Remark 2.5.4) which then implies that (4.1) is also an equality.
In particular Conjecture 2.3.7 implies [20, Conj.2.8].

4.2. Local companion points. For r a fixed crystalline sufficiently generic deformation
of 7, we determine all the points of Xi,;(7) with associated Galois representation r.

For h = (h,;) € (Z")@] recall that 2P is the character z + [[,cx 7(2)" of (K*)™.
There is a natural action of S ~ SK@! on (Z")IK:Ql . for w = (w,);ex € S and h €
(ZM)F%l w(h) = (M i 75 \0i)ief1,...,

r de Rham with distinct Hodge-Tate weights and denote by h = (h,1 < -+ < hyp)rex
the Hodge-Tate weights of r. As in §3.7, by [19, Prop.2.9] there is w € S such that
wt(d) = w(h). We assume w = wy, i.e. x strictly dominant in the sense of [20, §2.1].

.....

.....
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By [19, Prop.2.9] again, if 2’ = (r,4’) is a companion point of z we see that there is
w’ € 8 such that wt,(8") = w'(h).

We now assume moreover that r is crystalline and as in Remark 3.7.9 we denote by
@ = (p1,...,9¢n) € k(x)" an ordering - also called refinement of r - of the eigenvalues

of @@l on D s(r). With such a refinement, we can construct a smooth unramified
character of (K*)" by formula:

unr(yp) := (unr(ey), ..., unr(p,))

Then it follows from [20, Lem.2.1] that there exists a refinement ¢ such that we have

§ = z*Munr(p). EBach companion point of x is of the form (r, z2*®unr(y)) for some

w=(w;); €S.

Remark 4.2.2. Denote by g : X,i(T) — X the canonical projection. It follows from
20, (2.5)] and the line just after that for any refinement ¢ of r the point:

z, = (7, sz(h)unr(g))

is in X,i(7) and from [49, Th.6.3.13] and the construction of Xi,;(7) that the set {z €
Xui(T) | g(z) = r} is exactly the union of the companion points of each z,, for all possible
refinements ¢ of 7.

We now assume moreover gpigoj’l ¢ {1, plKo@l} for 4 # j as in Remark 3.7.9. Recall
we have defined w, € S just before Proposition 3.6.4 by the relation ﬂ(xgde) € Uy,.
The following theorem is a local analogue (i.e. on the local eigenvariety X,(7)) of [16,
Conj.6.6] which concerned companion points on the global eigenvarieties built out of
spaces of p-adic automorphic forms.

Theorem 4.2.3. The set of companion points of x = (r,8) = (r, 2*®unr(p)) is given
by:
{xw = (r, zw(h)unr(g)), w, < w}.

Proof. Applying Corollary 3.7.8 and Proposition 3.6.4 (with L = k(z)) at the point z,,
(assumed to be in X,;(7)), we deduce the necessary condition w, < w. It is thus enough
to prove that all the points z,, € X7 x T;* for w = w, are actually in X;(7).

In [20, (2.9)] we have constructed a closed immersion of rigid spaces over L:
(4.2) i XRTT s X (7

(the left hand side is denoted %E B0 loc. cit. but we drop the [, see Remark 3.6.1 and
the beginning of §3.7). Then (7, (o1, ...,,)) € X2~ and the construction of v, implies
that this point is mapped to x € X;,;(7). Arguing as in the proof of [20, Lem.2.4], there

exists a smooth Zariski-open and dense rigid subset WP of X2~ consisting of pairs
(ry, (€14, - - Pny)) such that the ¢;, satisfy ;05 ¢ {1,pF oI} for i # j. As in the

proof of loc.cit. there is also a coherent locally free Oz n-o: ®q, Ko-module D on th_cr

together with a linear automorphism ® of D such that for all y € W,:h_cr:
(D, ®) ®0 o k(Y) = (Dexis(ry), o1 0%)).

Moreover, locally on W,—}’_Cr we can fix a basis ey, . . ., e, of D such that the Ozn-« ®q, Ko-
submodule (eq, ..., ¢e;) is ®-stable for all ¢ and:

O (e;) = ¢se; modulo (eq,...,e;1)
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where the ¢; € (’)VXT/;,,CY@l C (OW;_U®QPKO)X7 i € {1,...,n} correspond to the morphism

Wh-er s Xh=er —, 778 with the notation of [20, §2.2]. By the argument in the proof of
[20, Lem.2.4], we have a smooth morphism of rigid spaces over L:

h:Wh— — (G/B)"e

(recall G = Spec L Xgpecq, Resk/q,(GLn k) mapping a crystalline representation of Gx
to the Hodge filtration on D, written as in (3.9).

Forw € §, we write WF}}U—)“ C WE for the inverse image of the Bruhat cell (BwB/B)"e C
(G/B)"& under h. Then Wf};cr is locally closed in WP and the Wfl};“ for w € S set-
theoretically cover th’cr. From the definition of w, in §3.6 and the choice of the local
basis (e;); above we easily check that:

(4.3) (r,(P1,--,0n)) € Wflzcr@w:wm.

If we denote by W,—}?;“ the Zariski-closure of W,—}?;“ in WP and by (BwB/B)" that
of (BwB/B)"® in (G/B)", then we have h~'((BwB/B)18) = WP, Indeed, the in-
clusion Wh;e C h='((BwB/B)") is clear. Conversely, let y € h~'((BwB/B)") and
U an admissible open neighbourhood of y in th’“, then h(U) is admissible open in
(G/B)"¢ since the map h is smooth hence open ([14, Cor.5.11]). Since h(y) € h(U)
and h(y) € (BwB/B)"s, then h(U) contains a point in (BwB/B)"¢ as the latter is
Zariski-open and dense in (BwB/B)"s. This implies U N A~ ((BwB/B)") = U N
WF}};“ # (), from which it follows that y € W,%;“ since U is arbitrarily small, and
hence we have h™!((BwB/B)"g) C W;ﬁ;“. Then one easily checks from the usual de-
composition of (BwB/B)"s = (BwB/B)" into Bruhat cells that (4.3) together with

h~'((Bw'B/B)"s) = W;;,Cr for w" € S imply:

(4.4) (ry (Y1, 0n)) € Wf}?;cr = w = w,.

Now, consider the following morphism of rigid spaces over L:
(4.5) ot WP — X x T

(Ty’ (¢17y’ s 7907141)) — (Ty’ zw(h)unr(QDLz/? ce 790n,y)>'

Then ¢, (Xui(T)) is a Zariski-closed subset of WE= Tt is enough to prove that we have
an inclusion W;j;“ C L}:’%U(Xtri(?)), or equivalently Lh’w(W;}};CT) C Xui(7). Indeed, then

we also have W{‘;“ C 1y (Xui(T)), and since (7, (¢1,...,¢n)) € W;};“ when w = w, by

(4.4), we deduce Ty = thw((7, (P1,- -, ¢n))) € Xi(T). But we have Lh,w(W,lf;“) C Xui(7)
since in fact we have t (WP, ) C Uwi(T) (see (3.29) for Uyi(7)). This follows from
the fact that, when (ry, (P1y, ..., ¢ny)) € Wi, then z*®unr(py,, ..., ¢n,) € T, is

actually a parameter of r, (use Berger’s dictionnary between Des(r,) and Dyig(r,) as in
the discussion preceding [20, Lem.2.4]). O

Remark 4.2.4. A result analogous to Theorem 4.2.3 also holds assuming only that r
satisfies the assumptions in Remark 3.7.9 and is de Rham (which then implies it is in
fact crystabelline). We restrict ourselves above to the crystalline case for simplicity and

because this restriction is already in [20, §2] (that we use).
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4.3. A locally analytic “Breuil-Mézard type” statement. We formulate a multi-
plicity conjecture which is analogous to [35, Conj.4.2.1] except that X7 is replaced by X,
and Serre weights are replaced by irreducible constituents of locally Q,-analytic principal
series. We then prove the (sufficiently generic) crystalline case.

We keep the notation of §3.7 and fix a continuous 7 : Gx — GL,(kr). For § € T
we denote by Xii(T)s = Xui(T) X7n & the fiber at  of W' : Xiw(F) — T;* and by

wt

Xiri(T)wi(s) the fiber at wt(d) € ¢ of the composition X(T) LN T =t (here wt
is defined similarly to (3.16) but without the translation by —wt(J) and replacing the
artinian L-algebra A by an affinoid L-algebra A). We also denote by T/ wi(s) the fiber at

wt(8) of T 25 78 If r € X5(L), we recall that the local complete noetherian L-algebra
Ox. ., of residue field L and (equi)dimension n? 4 [K : Q,]n? represents the functor | X, | of
framed deformations of r on local artinian L-algebras of residue field L (see the beginning
of §3.6 and §3.7). We denote by Z(Spec (’A)xﬁ) (resp. Z%(Spec (’A)xﬁ) for d € Zo) the
free abelian group generated by the irreducible closed subschemes (resp. the irreducible
closed subschemes of codimension d) in Spec (’A)xw. If A is a noetherian complete local
ring which is a quotient of (535%7«, we set:

[Spec A] := > m(p, A)[Spec A/p] € Z(Spec @X?w>

p minimal prime of A

where the sum is over the minimal prime ideals p of A, m(p, A) € Z>, is the (finite) length
of A, as a module over itself and [Spec A/p] is the irreducible component Spec A/p seen
in Z(Spec Ox_,).

Let us first start with some preliminaries which will also be used in §5.3. We let
r € X7(L) be a trianguline deformation with integral distinct 7-Sen weights for each 7 € ¥
and define V', D and M as in §3.6. We fix a triangulation M, of M which possesses
a parameter in 7;". We define zpar := (o *(D.),a ' (Fily+.), Nw) € X (L) C X(L)
(depending on a choice of framing a) as just before Corollary 3.5.8 and w, ,, € S =
SIEU] a5 just before Proposition 3.6.4. We fix w € S such that x,qr € X (L) C X, (L)

that M, is the unique trian’é{ﬂation on M of parameter § by Proposition 3.7.1. Going
back to the commutative diagram (3.33), it follows from Corollary 3.3.9 that we have a
commutative diagram of affine formal schemes over L:

w Ow —~
‘iT,M. ‘CT,M. ‘iw
')

|

]
XTM.% T,M.HX-T

s>TpdR
)

K1

where t is the completion of ¢ at 0 and where the two upper squares are cartesian. This
diagram induces another analogous commutative diagram with the Spec of the underlying
complete local rings instead of the formal schemes. Taking everywhere (except for X,.)

the fibers over 0 € t(L) of this latter diagram and considering Remark 4.1.2, we obtain
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the following commutative diagram:

Spec R, v, < Spec ES’;Z. — > Spec O

\[ val'de

(4.6) Spec R, pm, < Spec FSM. —~ Spec O

X,{L'de

Spec @%w

where all the horizontal morphisms are formally smooth and where the two squares are
cartesian (as the vertical maps are closed immersions). Note that RE M, (resp. Rfﬁ.) is

. . Y W N
a formal power series ring over R, v, (resp. R, \,) and over Ox . - (resp. Ox, . ).

By the results of §§2.4, 2.5, the irreducible components of Spec @yyxde are the union of
the irreducible components of Spec @Zw/,wp s for w' € S such that zpar € Z,y (L) (this last
condition doesn’t depend on the choice of the framing «/). Likewise the irreducible compo-
nents of Spec @yw’mde are the union of those of Spec @Zw,@p e forw” € S such that w' < w
and Tpar € Zy(L). By pull-back and smooth descent, we obtain from (4.6) a bijection
between the irreducible components of Spec @YvadR (resp. Spec (’)X - dR) and the irre-

ducible components of Spec R, 4, (resp. Spec R, ,,). In particular Spec R, v, is equidi-
n(n—1) n( n+1
2

mensional of dimension n? + [K : Q)]

(equivalently of codimension [K : Q,)]
in Spec (535 ) and Spec E:,U M, 1s a union of irreducible components of Spec R, 4, . For
w' € S, denote by 3, € ZK@P]M B

ding Spec R, v, “ Spec Ox_, to the cycle [Spec @Zwurde] in §2.5 under this bijection
and set as in (2.16):

(Spec @x;,r) the cycle corresponding via the embed-

(47) w = Z oyt w//Bw// S ZKQP

w' €S

(Spec Ox )

Note that the cycles 3,,» and €, do not depend on the choice of the framing « and, using
(3.15), depend on ¢ only via the Ry x(6;)[7]. Since augwr = 0 for w” # wy (see the last
condition in (iii) of Theorem 2.4.7), we have €,,, = 3., and since moreover Z,, is smooth
(as it is isomorphic to G/B x G/B) we see that 3,, = €, is either 0 or irreducible. In
fact we have r de Rham (equivalently here r crystabelline) if and only if Ny = 0 if and
only if zpar € Zy, (L) if and only if 3., = €4, # 0.

Remark 4.3.1. We have a more precise description of €, in the crystalline case at

least (which will be used in §5.3). Denote by %;Vt@_cr C X7 the closed analytic subspace
associated to (framed) crystalline deformations of 7 of fixed Hodge-Tate weights given by

wt(d) and assume here that the fixed r is in %;Vt@_cr(L) C X#(L). Since the underlying
nilpotent operator is identically 0 on Z,, any deformation in X, x, (A) € X;(A) coming
from Z, . sar(A) (for Ain Cp) is de Rham, hence crystalline due to the assumption r
crystalline ‘and 0 € 7y (by an easy exercise) This implies that Qlwo = 3w, corresponds to
an irreducible closed subscheme of Spec @ @, of dimension n? + [K Qp]" . But

it follows from [52] that the scheme SpeCO -, is already irreducible of dimension
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+ [K : Q)21 Hence we deduce in that case an isomorphism:

(Spec @x?,r)-

n(n +1)

(4.8) Cuy — [Spec @xivt@_a’r] e ZHW]

ra

Corollary 4.3.2. With the notation as for (4.7) assume moreover that x := (r,0) is in
Xwi(T)(L). Let M, be the unique triangulation of M = Dyy(r)[3] of parameter § and
that w € S is such that wt(d) = w(h), then we have:

Z Puvwwgw (1) €0 € 7| K:Qp] =

w'eS

n(n+1)
2

[Spec @Xm(?) (Spec @x,r)

wt(8)s ]

Proof. This follows from Corollary 2.5.6, Corollary 3.7.8 and what is above, recalling that
the composition Xm( )o = X0, — X, N 7:; is the morphism w’ by (3.30). O

One can be a bit more precise. We have 2pqr € Zuw (L) = Zpar € Xu/ (L) = Wy g S0
(using Proposition 3.6.4 for the last implication). By (4.7) and the properties of the
integers a,s,» (see (iii) of Theorem 2.4.7) we deduce €, # 0 = 3,» # 0 for some
w' 2w = Wy W= W, X W' Since moreover Pugwwow (1) # 0 & w' < w, we
have in fact:

(49) [SpeC OXtri(?)wt@)J] = Z Pwow,wow’(l)Qw’ - Z[K:Qp}

<w’<w

n(n+1)

(Spec Ox._,.).

Wepgr 2
When r is moreover de Rham (i.e. Ny = 0), one can easily check using the usual
description of the Zariski-closure of Bruhat cells that we have equivalences (and not just
implications) zpar € Zuw (L) < Tpar € Xw (L) © Wy 2w’ and 3 # 0 & C # 0 &
Wy, .x = w'. In that case, we see in particular that all terms in the sum (4.9) are actually
nonzero.

After these preliminaries, we now move to our multiplicity conjecture.

Lemma 4.3.3. Let x = (r,0) be any point of X,i(T)(L) such that § € Ty, then we have
closed immersions:

Spec @Xm(;)w — Spec @Xtri(?)’r — Spec @xw-
Proof. The first closed immersion is obvious and the second is Proposition 3.7.3. ]

When r € X7(L) is trianguline, we say that r is generic if all the parameters § of r are
in 7;*. When r is crystalline with distinct Hodge-Tate weights for each 7 € ¥ and the
p; are the eigenvalues of go[Ko:@P] on Deis(r), this amounts to the conditions on the ¢; in
Remark 3.7.9.

For § = (61,...,0,) € T*(L), we consider the locally Q,-analytic principal series:

(4.10) Iy = (ndy 26 @ dre @ - @6,e" )"

where B(K) C GL,(K) is the subgroup of lower triangular matrices. Recall that I is
the L-vector space of locally Q,-analytic functions f : GL,(K) — L such that:

fludiag(ty, ... tn)g) = 01(t1)(0a(t2)e(t2)) - -+ (Gn(tn)e™ ' (ta)) f (9)

(where 7 is lower unipotent in B(K)) with the left action of GL,,(K) by right translations
on functions f. It follows from the theory of [58] (together with the appendix of [15])
that the representation I; is topologically of finite length and that the multiplicities of its

(absolutely) irreducible constituents are a mixture of multiplicities coming from Verma
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modules (i.e. Kazhdan-Lusztig multiplicities) and from smooth principal series. We
denote by I3 its (topological) semi-simplification. If IT is an absolutely irreducible locally
Q,-analytic representation of GL, (K) over L, we denote by msn € Z> its multiplicity
in I3,

The following conjecture was inspired by [18], [38] and especially [35, Conj.4.2.1].

Conjecture 4.3.4. For any generic trianguline r € Xz(L) and any absolutely irreducible
constituent I of a locally Q,-analytic principal series of GL,(K) over L, there exists a

nlp (Spec @%;,r) such that, for all § € T*(L), we have:

[Spec OXm s, (7«5 = Z m@HCT,H mn Z[K:Qp] (Spec @g?,r)-

unique cycle C.11 in 7K@l

n(n+3)

Remark 4.3.5. Conjecture 4.3.4 in particular implies that Spec OXm 5.(r8) 18 equidi-

mensional of dimension n? + [K : @p]”T (if nonzero) when r € X7(L) is generic trian-
guline. Note that if the cycles C, 11 are known for a given r (and all IT), then Conjecture
4.3.4 also tells exactly which points of the form (r,d) are on Xy;(7).

Let 6 € 7" be locally algebraic. We can write:
((51, 528, ce ,(SnEn_l) = Zkésm

where A € (Z™)5®l and §, is a smooth character. Then the representation I5 is isomor-

phic to ]:g(L[Z)(K) (U(8)®p5)(—A); ds) Where b is the Lie algebra of the lower triangular ma-

trices in G (see §3.1 for ) and where we use the notation of [58]. The hypothesis ¢ € 7’
implies that for every parabolic subgroup P(K) of GL, (K) containing B(K), the smooth

representation Ind— (K;(5sm)sm is irreducible (see [11, Th.4.2]). Together with [45, §5.1]

(whose notation we use) and the results of [58] as summarized (and slightly extended) in

[15, §2], this implies that the irreducible constituents of FE(LK"(K)(U(Q) ®u@) (), Sam)

are (up to multiplicity) the .FGL")K)(L( 1), dm) where p € (Z")HQ] is such that A 1 p

(the strong linkage relation 1 being here with respect to b).

Proposition 4.3.6. Assume r € X5(L) is generic trianguline with integral T-Sen weights
for each T € X. If the cycles C, 11 as in Conjecture 4.3.4 exist, then they are unique.

-----

0 locally algebraic and ¢ € 7;*. In particular if H is a constltuent of some [5° Where at
least one of the §; is not locally algebraic or where 0 ¢ 7", then [Spec (’A)Xm(;) s ) =0
and hence C,.;; = 0. Let II be an irreducible constituent of some I3® where § € 7
is locally algebraic and write (01, d2¢,...,0, s” 1) = 224, as above. Ey the discussion
before this proposition, we have Il = fg(LIZ ( (—p),dgm) for some A 1 u. Replacing
by the unique (still denoted) § € T;*(L) such that (01, dee, ..., d0,e" 1) = 214, we have
that IT occurs with multiplicity 1 in (the new) I§® as L(—p) occurs with multiplicity 1 in
U(g) @y (—n) (we use [15, Cor.2.7)). If I* = II, ie. I; = I3 is irreducible, i.e. p is

maximal for 1, then we must have C,; = [Spec Ox () 53] Otherwise, we must have

[Spec Oxm 5,n0)) = Crt + X My wCrrv where I = ,Fg(LK")(K) (L(—v),d4y) for u 1 v,

v # u. By 1nduct10n, we can assume the cycles C, 1 are known, and then we must have

CT’H = [SpeC @Xtri(?)@(?”,é)] — ZH’#H méynlcryn/. D
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We now fix r € X7(L) a trianguline deformation with integral distinct 7-Sen weights

for each 7 € ¥ and we let M, M,, Tpdr, Ws, 4, W, 0 as in the beginning of this section.
Taking the fibers over § € Spec @TL" t((s),é(L) in the commutative diagram (4.6) yields a

third diagram:

Xw »ZpdR

=w :D,
Spec R, ,,, < Spec R, »,, — Spec O«

—_— :l:l ~
Spec R, pm, < Spec R, 4, — Spec O

X,Tpdr

(4.11)

Spec @x,ﬂn

where all horlzontal morphisms are formally smooth, the two squares are cartesian and
=0

R, v, (resp. Rr Mm.) is a formal power series ring over Ry, (resp. RT M.) Using exactly
n(n+3) ~

ote (Spec Ox_)
the cycle corresponding, via the embedding Spec B, p, <> SpecOx_,, to the cycle
[Spec Oz, )] and we set as in (4.7):

the same arguments as with (4.6), for w’ € S we denote by Z,, € 2@l

n(n+3)

(4.12) Cw = Z awgwuan S Z[K:Qp]
w"eS

(Spec Ox._,.).

The cycles Z, and C,y again do not depend on « and depend on § only via the Ry, x(6;)[5]
(using (3.15)).

Denote by 6y = (60,i)ic{1,..n} € Tg" the unique element such that o, ;6,1 is algebraic for
all i € {1,...,n} and wt,(d9;) > Wt (Jo,i41) for all i € {1,...,n — 1} and all 7 € 2. It
follows from [45, §8.4] and [58] (with [15, §2]) that the 1rreduc1ble constituents of I5 are
parametrized by S in such a way that ms 11, = Piuww (1) where IT,/ is the constltuent
associated to w’ € S (recall that in I5 we ‘induce from the lower Borel). The cycle Cy a
priori depends on r;, M, and w'. The following result shows that it depends on slightly
less.

Proposition 4.3.7. With the above notation, the cycle C,» only depends on r and on the
constituent 1L, .

Proof. We can choose the framing o« such that the flag o '(D,) on (L ®q,

[e7

K)* ~ Dpqr(War(M)) is the standard one. For w’ € S such that z,qr € Z (L)
denote by P, C G the maximal parabolic subgroup containing B such that w'wg - 0 is
dominant with respect to M,, N B where M, is the Levi subgroup of P,.. Denote by
Snw € S, the subgroup of permutations which, seen inside & = S via the diagonal
embedding, belong to the Weyl group of M,,. Let us write §, = 2*d,,, with ., a smooth
character. For an element w € S, we denote by w(dg,) the smooth character defined by
W(0sm )i = Osma(i)- BY [15, Lem.6.2] we find that:

W€ Sy = 0#mg, 1, where dg 4 = 2M0(8gy )

One easily checks that there is a partition n = ny + --- + n, of n by integers n; > 1
such that S, . is the Weyl group of GL,, /;, X GL,,/1, X -+ x GL,, /1, inside GL,,/r. For
any reflection s in S, the closed point zpars := (sa™ (D), (Fily+ o), Ny ) is still
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in Z, (L) since in particular s(Z,,) = Z, by Remark 2.4.9. Hence the nilpotent en-
domorphism induced by Ny on the graded piece a ™ (Dy,y...in,)/@  (Dnysoin,_,) for
i € {1,...,r} is actually 0 since it must respect permutations of the induced flag. Ap-
plying Lemma 3.4.7 to each graded piece, we can define another triangulation sM,
on M which induces sa'(D,) on Dpar(War(M)). We can then define the cycles

n(n+3)

Zur 6, Curs € 7[K:Qp] ™5 (Spec @%w) as we defined Z,.,C,, replacing M, by sM, and
Zpar DY Tpar,s in the lower part of (4.11) (the part that is not concerned with w), and
note that Cy, s is well defined thanks to Remark 2.4.9. It then easily follows from [15,
Lem.6.2] that it is enough to prove C,y = Cy s in 7Ky 5 (Spec @xF’T).

From (4.12) it is enough to prove Z,» = Z,» ¢ for all w” < w' such that a,s ..~ # 0
and all reflections s € S, (note that Z,, # 0 if and only if Z, , # 0 for such
w” < w' by Remark 2.4.9). Denote by Z, (resp. Z,,) the equidimensional closed sub-

=0 =0
scheme of codimension 0 in Spec R, 4, (resp. in Spec R, _,,) defined as the pull-back of

Spec @Zw,,%dR (resp. Spec @an,zde,5>~ Let A € Cp, and (DS}.,DS}., Na) € Zwu,deR(A),
from s(Z,») = Z, (Remark 2.4.9) we deduce as previously that the nilpotent endo-
morphism induced by N4 on DS,)nﬁ._,mi/D&)nlJr,.,JrnH for i € {1,...,r} is actually 0
(since on each graded piece it must respect permutations of the induced flag and since
it is 0 on the diagonal as we are in Z,» C Z). Applying again Lemma 3.4.7 to each
graded piece, we can define a bijection s : Z,,(A) = Zg, (A) which is functorial in A
by permuting the triangulation My, of M4 according to s. Hence the two complete

local rings underlying Z;), and Z(,  are isomorphic. Since this bijection doesn’t touch

the Galois deformations, they are moreover isomorphic as quotients of @gw where @EW
is the affine ring of XI. This implies in particular that the two cycles Z,» and Z,» ¢ are

(n43)

the same in ZK@I5 (Spec @%w)- U

Theorem 4.3.8. Assumer € Xz(L) is generic crystalline with distinct T-Sen weights for
each 7 € 3. Then Conjecture 4.5.4 is true for r.

Proof. For any refinement R, that is any ordering (¢;,, ..., @;, ) of the eigenvalues (p;); of
@lEo:Q@l on D i (r), there is a unique triangulation M, z on M such that M; r/M;_1» =
Rk (unr(p;,))[1]. We denote by ax par the point of X (L) corresponding to M,z (fixing
the same framing « for all R).

Let § = (0;); € T/*(L). If (1, ) is not a point on Xi;(T) set C,. iy := 0 for all constituents
IT of I®. If (r,0) € Xui(T), then the assumptions imply d € 7, and § locally algebraic
and we set C,yp , := Cy for w' € § where C,, is defined using the triangulation M, of
Proposition 3.7.1 (and the associated xpqr) and where we use Proposition 4.3.7. Note
that M, = M, for a refinement R uniquely determined by (01, ...,d,). For all this to
be consistent, we have to check that if IT,, occurs in some other I$ with (r,d") ¢ X (7),
then we have C,, = 0. Consider such a §’ = (});, there exists a permutation w, € S, for
each 7 € ¥ such that wt.(d,, ;) < wt; (0, (;41)) (in Z) for all i and we set w := (w;), € S.
Then we have w’ < w using [45, §5.2] and [58]. Moreover there exists a unique refinement
R’ which is determined by (d7,...,6,) and it follows from Proposition 4.3.7 (and its
proof) that we can also define C,s using M, z: instead of M, = M,. Arguing exactly
as before (4.9), we have Cy # 0 & wy, . X w'. As (r,d) ¢ Xin(T), we must have
Wy on 4 w by Theorem 4.2.3. But then (since v’ < w) this implies W an £ w' and

thus C,, = 0.
70



It remains to check the equality of cycles in Conjecture 4.3.4 for (r,d) € Xu(T)(L)
(if (r,8) ¢ Xui(T)(L) it amounts to 0 = 0 by definition of the C,.p). But in that case,
defining w as before Lemma 3.7.4 (i.e. as we did above for ' but with §), we have by the
same argument as for Corollary 4.3.2:

n(n

Spec Oxums )] = O Popwasur (1)Cur € ZFH™ 5 (Spec O, ).

w'eS
Since the constituant I, appears in [3® with multiplicity msn,, = Pugwwow (1) (use
again [45, §8.4] and [58]), this finishes the proof. O

Remark 4.3.9. For r as in Theorem 4.3.8, the constituents II such that ms 11 # 0 for some
6 € T/'(L) are precisely (up to constant twist) the companion constituents associated to
rin [15, §6].

5. GLOBAL APPLICATIONS

Under the usual Taylor-Wiles hypothesis we derive several global consequences of the
results of §2 and §3: classicality of crystalline strictly dominant points on global eigen-
varieties, existence of all expected companion constituents in the completed cohomology,
existence of singularities on global eigenvarieties.

5.1. Classicality. We recall our global setting. Then we prove classicality of crystalline
strictly dominant points on global eigenvarieties under Taylor-Wiles assumptions.

We start by briefly reviewing the global setting of [20, §§3.1,3.2] and refer the reader
to loc.cit. for more details. We assume p > 2 and fix a totally real field F'", we write
¢y for the cardinality of the residue field of F'* at a finite place v and we denote by S,
the set of places of F'™ dividing p . We fix a totally imaginary quadratic extension F' of
F* that splits at all places of S, and let G := Gal(F/F). We fix a unitary group G in
n > 2 variables over F'* such that G xp+ F' = GL,/p, G(F'" ®g R) is compact and G
is quasi-split at each finite place of F". We fix an isomorphism i : G X p+ F' = GL,/p
and, for each v € S,, a place ¥ of F dividing v. The isomorphisms F,}} = Fj and i
induce an isomorphism i; : G(F,}) = GL,(F3) for v € S,. We let G, := G(F,}) and
Gy = lves, G(F;) ~ [yes, GLn(F5). We denote by K, (vesp. B,, resp. B, resp. T,)
the inverse image of GL, (Op,) (resp. of the subgroup of upper triangular matrices of
GL,(F}), resp. of the subgroup of lower triangular matrices of GL,(F3), resp. of the
subgroup of diagonal matrices of GL,(F};)) in G, under i; and we let K, = [loes, Ko
(resp. B, := Il,es, By, resp. By, := [lyes, Bo, resp. T = [l,es, 7). We fix a finite
extension L of Q, large enough to split all ) for v € S, and denote by g, b, b and t
the base change to L of the respective Q,-Lie algebras of G, B,, B, T, (so for instance
g~ Hvesp(g[n)[FJ:@] ~ (gl,)F" ). We denote by T, and T, , (v € S,) the base change
from Q, to L of the rigid analytic spaces over QQ, of continuous characters of respectively
T, and T,. We identify the decomposition subgroup of Gr at © with Gr, = Gal(F;/F;).

We fix a tame level U? = [[, U, C G(ALY) where U, is a compact open subgroup of
G(F;") and we denote by S(U?, L) the p-adic Banach space over L of continuous functions
G(FT)\G(A%,)/U? — L endowed with the linear continuous unitary action of G, by
right translation on functions. A unit ball is given by the Op-submodule S (UP, Oy) of con-
tinuous functions G(F+)\G(A%,)/UP — Oy, (alternatively S(U?, Op) ~ m S(U?, Op/mp,)
where S(U?, O /m,, ) denotes locally constant functions G(F*)\G(A¥,)/U? — Op/m, )
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and the corresponding residual representation is the kj-vector space S(U?, k) (a smooth
admissible representation of G,). We also denote by S(U?,L)™ c S(U?,L) the very
strongly admissible ([33, Def.0.12]) locally Q,-analytic representation of G, defined as
the L-subvector space of S (UP, L) of locally Q,-analytic vectors for the action of G,,.

We fix S a finite set of finite places of F'* that split in F' containing S, and the
set of finite places v 1 p (that split in F') such that U, is not maximal. We can as-
sociate to S a commutative spherical Hecke Op-algebra T which acts on §(UP,L)7
S(U?, Ly, S(U?,0p), S(UP, 0 /mj, ). We fix m* a maximal ideal of T% of residue
field kz, (increasing L if necessary) such that S(UP, L)% := (S(UP, L)ys )™ # 0 where
S(UP, L) s = Hm S(UP,Op/my, )ms. We denote by p = ps : Gr — GL, (kL) the unique
absolutely semi-simple Galois representation associated to m® and assume 7 absolutely
irreducible. We let R; g be the noetherian complete local Op-algebra of residue field &,
pro-representing the functor of deformations p of p that are unramified outside S and
such that p¥ oc = p® "1 where p" is the dual of p and ¢ € Gal(F/F™") is the complex

conjugation. Then the spaces S(U?, L),s and S(U?, L)% are natural modules over Ry s.

n

The continuous dual (S(U?,L)2%)Y of S(UP, L)% is a module over the global sec-
tions T'(X5,5, Ox, ;) where X5 := (Spf Rj )" and we denote by Y (U?,p) = Y (U?,p, 5)
(forgetting S in the notation) the schematic support of the coherent O,

5,8 X’J/_\vpyL_
module (Jg,(S(UP,L)2%))" on X5 x 1), where Jp, is Emerton’s locally Q,-analytic
Jacquet functor with respect to the Borel B, ([32]) and (—)¥ means the continuous dual.
This is a reduced rigid analytic variety over L of dimension n[F* : Q] which is a closed

analytic subset of X; g X T »,, Whose points are:

mS

{& = (p,6) € Xp5 x T, such that Homy, (8, .J5,(S(U?, L)s[m,] @k, k(x))) # 0}

where m, C R;g[1/p| denotes the maximal ideal corresponding to the point p € X5
(under the identification of the sets underlying X5 s = (Spf R5 )" and SpmR; s[1/p]).
If U'"” C UP and S contains S, and the set of finite places v { p that split in F' such that

U! is not maximal, then a point of Y (U?,p) is also in Y(U"”, ).

We let X::i(p,) be the product rigid analytic variety [T,es, Xui(p;) (over L) where p; :=
Plgr, and Xui(p;) is as in §3.7 (remember we drop [J everywhere, see loc.cit.). This is a
reduced closed analytic subvariety of (Spf Rﬁp)“g X fzx r where It; = ®v€ s, 5, (recall Rp,
is defined at the beginning of §3.7). Identifying B, (resp. T) with the upper triangular
(resp. diagonal) matrices of GL,(Fy) via i3, we let 0p, == |- [} ' @ |- |5 @ @] 3" be
the modulus character of B, and define as in [19, §2.3] an automorphism 1, : T, vl — Tv, L
by:

(5.1) 1oy(01,y .y 0n) = 0p, - (01,..., 0, .., 6™ h).

Then the morphism of rigid spaces:

X5 x Tpr — (SpfR; )" x T, 1

(:07 (év)v65p> = (p7 (61),17 e 751),11)1)65,7) — ((ﬂﬁ)vesp, (2171(61;,17 e 75v,n))v€Sp)

induces a morphism of reduced rigid spaces over L:

(5.2) Y(UP,p) — Xui(p,) = [[ Xui(ps)-
vES)
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We say that = = (p,0) = (p, (0)ves,) = (0, (0u,1,- -5 0vn)ves,) € Y(UP,p) is de Rham
(resp. crystalline) strictly dominant if p; := plg, is de Rham (resp. crystalline) and if
the image of = in each X4,(p;) via (5.2) is strictly dominant in the sense of [20, §2.1].
Equivalently wt,(d,;) > wt;(dy,41) forall ¢ € {1,...,n—1}, 7 € Hom(F3, L) and v € S,
(recall wt,(d,;) € Z by [19, Prop.2.9]).

Let 6 = (d,)ves, € T}LL such that wt,(d,;) € Z for all ¢, 7, v. Then we can write
0 = 0\0ym in T, where A = (Av)ves, € Hvesp(Z”)Hom(Ff”L), 0y = Ilyes, 2™ (recall 2
is 2 = [Lretom(ry,z) 7(2)* 1) and &g, is a smooth character of T, with values in k()
(the residue field of the point § € T},). Following Orlik and Strauch, we define the

strongly admissible locally Q,-analytic representation of G, over k(J) (see [19, §3.5] for
the notation, see also Remark 5.1.2 below):

(5.3) F&(6) = Fg ((U(0) @ug) (~ V)" 8nd5)

By By

where 0p, = [lyeg, 05, and —A is seen as a character of t and by inflation b—-tasa
character of b. If X is dominant, that is Xori = Ay rivr forall i, 7, v, we let:

(5.4) LA(0) = L(\) @y (Ind$r3,,05")

—sSm
BZ’

where L(\) is the irreducible finite dimensional algebraic representation of G, over L of
highest weight A relative to B, and (Ind%”—)OO is the usual smooth principal series. It is
a locally Q,-algebraic representation of Gpp over k(J) which coincides with the maximal
locally Q,-algebraic quotient of ]:g: (0) and also with the maximal locally Q,-algebraic

subobject of (Ind%’; éégpl)an.

Let © = (p,0) € X595 x T, with wt,(d,;) € Z for all 4,7, v, the representation (5.3)
allows us to reformulate the condition = € Y/(U?,p) as (see [16, Th.4.3]):

(5.5) Homg, (8, J, (S(U”, L)3x[m,] @x(y) k(x)))
~ Homg, (F5(8), S(U?, L)as[my] @iy k() # 0.

S
By m

A point z = (p,0) € Y(UP,p) which is de Rham strictly dominant is called classical
if there exists a nonzero continuous G/p-equivariant morphism in the right hand side of

(5.5) that factors through the locally Q,-algebraic quotient LA() of Fg" (0). Equiva-

lently (p,0) is classical if Homg, (LA(9), S(U?, L)ns[m,] @k k(x)) # 0 ie. if p comes
from a classical automorphic representation of G(Ag+) (satisfying the properties of |20,
Prop.3.4]). We then have the classicality conjecture.

Conjecture 5.1.1. Let © = (p,d) € Y(UP,p) be a de Rham strictly dominant point.
Then x is classical.

Remark 5.1.2. The careful reader may have noticed that the (generalization of the)
results of Orlik-Strauch that we use in [19], [20] and here are actually only stated in
[15, §2] and [16, §§2,3,4] for locally Q,-analytic representations of G(K') over L where
G is a split reductive algebraic group over K and L splits K. But looking at the form
of the group G,, we see that we rather need (in [19], [20] and here) locally Q,-analytic
representations of groups of the form G;(K;) x Go(K3) over L where Gy, i € {1,2}, is
split reductive over K; and the finite extensions K7, K, are not necessarily the same.

However, assuming that L splits K; and K5, an examination of the proofs of the results
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of [15, §2] and [16, §§2,3,4] (and of all the results of Orlik-Strauch and Emerton on which
they rely, see loc.cit.) shows that they all easily extend to the above case.

If + = (p,8) € X5 x T, is crystalline, we denote by (pg1...,05n) € k(z)" the
eigenvalues of @20 %l on D i(ps).

Theorem 5.1.3. Assume F/F* unramified, /1 ¢ F, U, hyperspecial if v is inert in F
and p(Gpyr)) adequate (166, Def.2.20]). Let x = (p,d) € Y(UP,p) be a crystalline strictly

dominant point such that gof,’igog’} ¢ {1,q,} fori# j andv € S,. Then x is classical.

Remark 5.1.4. Let x = (p,d) € Y(UP,p) be a point satisfying the assumptions in the
theorem, but without assuming that the point is strictly dominant. It follows from [16,
Prop.8.1(ii)] (see also [20, Theorem 5.5]) that there exists a point 2/ = (p,d’) € Y (U?, p)
that is strictly dominant, and hence classical by the above theorem. We hence can
still deduce that the Galois representation p is automorphic (though the point x is not
necessarily classical itself).

Proof. By the argument following [20, (3.9)], we can assume U? small enough, i.e.:
(5.6) G(F)N (hUPK,h™") = {1} for all h € G(A%}).

We now briefly recall the construction of the patched eigenvariety X,(p) of [19, §3.2]
and [20, §3.2] (to which we refer for more details, note that this construction uses the
above extra assumptions on F, UP and p). Fix an arbitrary integer ¢ > 1 and let
R be the maximal reduced and Z,-flat quotient of (&), sRz. )[x1...,24]. Denote by
Xoo = (Spf Roo)"® and likewise by Xz (vesp. Xp,) the reduced rigid fiber of Qe s\s, 15,
(resp. @veSpRﬁﬁ). We thus have X, = Xp x X5, x U9 where U := (Spf OL[y])"® is the
open unit disc over L. Then following [23] one defines in [19, §3.2], [20, §3.2] for a specific
value of the integer g a certain continuous R.-admissible unitary representation Il of
G, over L and an ideal a of R, such that Il[a] = S(UP, L)ys. We then define X,(p)

as the schematic support of the coherent O, Xpr—moduIe My = (Jp,(IIE="2"))¥ on

Xoo X ﬁ,’ - This is a reduced rigid analytic variety over L which is a closed analytic subset
of Xo x T}, 1, whose points are:

(5.7) {2 =(y,8) € Xoo x T, 1, such that Homg, (3, Jp, (IE="""[m,] ®s(, k(z))) # 0}

where m, C R[1/p] denotes the maximal ideal corresponding to the point y € X, (under
the identification of the sets underlying X, and SpmR.[1/p]). Moreover Y (U?,p) is the
reduced Zariski-closed subspace of X, (p) underlying the vanishing locus of al'(X, Ox.. ).
Define «(Xi(p,)) := Ilves, to(Xui(p5)) where 1,(Xui(p5)) is the image of Xii(p;) via the
automorphism id xu, of X5 x YA’% r in (5.1). For each irreducible component X of X5»,
there is a (possibly empty) union X5 —*"* (p,) of irreducible components of Xii(p,) such
that we have an isomorphism of closed analytic subsets of X, X T pL

(5.8) X,(0) = U (X7 > o X3 (5,)) x 7).

XP

Note that the composition:
Y (U”,p) = Xp(p) = X X e Xui(p,)) ¥ U? = e(Xuwi(p,)) — Xini(P,)

is the map (5.2).
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Now consider our point z = (p,0) € Y(UP?,p) and let X¥ C Xz be an irreducible
component such that z € XP x L(thf_a“t(ﬁp)) x U7 C X,(p) via (5.8). For v € S, let
T, € X4ui(py) be the image of z via:

B W(XE(5,)) } U7 f(XE(5,)) 5 Xaw(,) — X7

tri tri

For each v € S,, by Corollary 3.7.10 applied to Xi(p;) and x, (which uses the as-
sumptions on z;, see Remark 3.7.9) there is a wunique irreducible component Z, of
Xui(ps) passing through x,. If Z = [[,cg, Zy, from (5.8) we thus necessarily have

z € XP xu(Z) x U9 CXP x u(Xiy *(p,)) x U’ In particular, for V,, € X:i(p;) a suffi-

tri

ciently small open neighbourhood of z, in Xui(p;) we have [[,eq, Vo € Z C X XU —aut (Pp)

tri

and we see that the assumption in [20, Th.3.9] is satisfied. Hence x is classical by [20,
Th.3.9] (see also [20, Rem.3.13]). O

Remark 5.1.5. The assumptions on the ¢;; in Theorem 5.1.3 do not depend on the
choice of the place © above v. Moreover, here again as in Remark 4.2.4, assuming F'/F*
unramified, ¥/1 ¢ F, U, hyperspecial for v inert in F and ﬁ(QF(%)) adequate, a little
extra effort should produce classicality of de Rham strictly dominant points z = (p,d) =
(p, (0y)ves,) € Y(UP, p) such that ¢;'(8,) € T where ¢, is (5.1) and 7. is defined as in
§3.4 but with the field F,f = F}; instead of K.

5.2. Representation theoretic preliminaries. We give here some technical lemmas
related to locally analytic representation theory that will be used in the next section.

We keep the notation of §5.1 and set 1)) := T, N K}, = [[,egs, (T N K,). For a weight
= (fto)ves, € Ilyes, (Zm)HmF>L) denote by L(u) (resp. L(u)) the irreducible object of
highest weight 4 in the BGG category O (resp. O) of U(g)-modules with respect to the
Borel subalgebra b (resp. b) ([45, §1.1]) and for w € [[,eg, SF#%! set w-p := w(pu+p)—p
where p is half the sum of the positive roots of the algebraic group [l,eg, Spec L Xspecq,
Resp, /g, (GLy/F,) with respect to the Borel subgroup of upper triangular matrices. Write
wy = (Wo)ves, € [Toes, SFoQ] for the longest element. If € € fn (L) is of derivative
i, the theory of Orlik-Strauch [58] (extended as in Remark 5.1.2) gives us a locally Q,-
analytic representation of G, over L (with the notation in (5.3)):

GP T - ~ S Gv T -
JT:EP (L(_IJJ)v Esm53i> — ®U€Sp‘F§v (L(_Mv) ) ésm(sBj)
where the completed tensor product on the right hand side is with respect to the inductive

or projective tensor product topology (both coincide on locally convex vector spaces of
compact type, see [34, Prop.1.1.31] and [34, Prop.1.1.32(i)]).

Let II*" be a very strongly admissible locally Q,-analytic representation of G, over L
([33, Def.0.12]). Let u (resp. u) be the base change to L of the Q,-Lie algebra of the
unipotent radical U, of B, (resp. of the unipotent radical of B,) and Uy a compact open
subgroup of U,,.

Let M be an object of the category O. It follows from [58, Lem.3.2] that the action
of b on M extends uniquely to an algebraic action of B,. We endow the L-vector space
Homy (M, II*") with the adjoint action. More precisely, for b € B, and f € Hom (M, I1*")
we define bf € Homy (M, I1*") by the formula (bf)(m) := bf(b~'m) for m € M. The
subspace Homy ) (M, II*") is preserved by this action. Namely, for f € Homy g (M, II*"),
be B,, re€gand m € M, we have:

(bf)(¥m) = bf (b~"em) = bf(Ad(b_l)ﬂ;:m) = DA )ef (07 "m) = x(bf)(m)



so that bf € Homy(g) (M, II**). In particular, we deduce from this fact that b acts trivially
and B, smoothly on Homy g (M, I1*").

Denote by TpJr C T, the multiplicative submonoid of elements ¢ such that tUyt™! C Uy,
then it is straightforward to check that the actions of Uy and T, on Homy g (M, II*")
are compatible with the relations tugt™t € U, for t € Tp+. Hence we can endow
Homyg) (M, I1*")%° with the usual action of 7.\ defined by:

(5.9) fr—t-fi=0p,(t) > uotf

quUo/tU()t*l

Let € € fp,L(L) of derivative p and €, := @_“. The characters € : TpJr — L* and €,
determine surjections of L-algebras L[] = L and we denote their respective kernel by
m, and m,__(maximals ideal of the L-algebra L[T,]). We also set m; := ker(L[T] — L)
(resp. Mygm := ker(L[T,7/T] — L) where the surjection is determined by the trivial
character of T (resp. T, /T})) and we define for any integer s > 1 the characters:

1[s): TF 45 LT — LT /mg and Uslan: T — TF/T0 S LITF /T = LTS /70 /m3 0

The characters 1[s] and 1[s]s, can obviously be extended to T}, and we use the same symbol
to represent these extensions. Note that L[Tf]/m} (resp. L[T,f/T)]/mj,) is in C; and
that 1[s]sy is the maximal smooth quotient of 1[s] (which is necessarily unramified).

Lemma 5.2.1. Let M be an object of the category O and V' a smooth representation of T,
over L. There is an isomorphism of L-vector spaces (where Hom (M, L) C Hom(M, L)
is the object of the category O defined in [16, §3]):

Homg, (Fg? (Hom(M, L)*", V(351)), TI*") ~ Homy. (V, Homy(g) (M, 1))
which is functorial in M.

Proof. 1t follows from [16, Prop.4.2] and Remark 5.1.2 (we use here the very strongly
admissible hypothesis) that there exists a functorial isomorphism:

Homg, (fg: (Hom(M, L)*™,V(551)), Han) ~ Homq g,y (M @7, C*(Uy, V(85})), TI*").
The result comes from the canonical isomorphism:
Homq p,) (M ®1, C2(Up, V(35,)), II*") ~ Homp, (C*(U,, V(03})), Homy ) (M, TI*"))

and from the proof of [32, Th.3.5.6] which can be adapted to prove that there is an
isomorphism:

Homp, (CZ(Uy, V(65,)), Homy(g) (M, T1*)) = Homy (V, Homy g (M, II*")°).
U
Lemma 5.2.2. Let L(v) be an irreducible constituant of U(g) ®u) p. for any s € Z>y

we have isomorphisms of L-vector spaces:

Homg, (75" (L(=v), Ls)am€ons,)), 1) = Homy(g)(L(v), T1*)* m;_].

=sm

Proof. This is a direct consequence of Lemma 5.2.1 together with the fact that if N is a
L[T,/]-module, then Homp+ (1[s}smém, V) = N[m¢_ . O
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Lemma 5.2.3. For any s € Zsy the L-vector space Homy 4)(U(g) Quie) pt, 1) [m? |

=sm

is finite dimensional and we have an isomorphism of L-vector spaces:

HomGp (‘ng((U(g) ®U(E) _:u)v> l[s]smﬁsm(séj)a Han) = HomU(g)(U(g) ®U(b) 1, Han)UO [mi ]

=sm

Proof. We have:
Homy(q) (U (g) @uey 1) P [m | & Homy (p, 1) [m? ] = Hompg (i, (IT*)7)[mg_ ]

=sm =sm

~ Homyy (1, JB,,(Han»[m;m]

where the last isomorphism follows as in the proof of [32, Prop.3.2.12]. This shows the
first part of the statement since the last term is finite dimensional by the proof of [32,
Prop.4.2.33]. Now we have:

Homy (1, Jp, (I1*))[m | =~ (Jp, (1) @€ ) [mi][t = 0] ~ Homyps (1slam, J5, (1) @)
~ Homz+ (1[s]sme, /5, (IT™)).

The statement follows then from Lemma 5.2.1. O

Note that the case s = 1 of Lemma 5.2.3 gives in particular:

Homg, (]: ( ), II*") ~ Homy () (U(g) ®ue) p, 1) [m,_ ]

=sm

where fgz’: (€) is as in (5.3).

Lemma 5.2.4. For any s € Z>y the L-vector space Homy ) (U(g) ®u ) p, T*")0[m? |
is finite dimensional

Proof. This is a direct consequence of Lemma 5.2.3, the left exactness of the
functor Homy (g (—, I1%)%0 [mev ] the fact that each simple object of the category O is a
quotient of a Verma module and that each object of O has finite length. O

Assume now that II*" is such that, the functor Homy g (—, [I*") is exact on the category
O, which means that whenever we have a short exact sequence 0 — M; — My — M3 — 0
in O we also have a short exact sequence of L-vector spaces:

(510) 0— HOIIIU(g) (Mg, Han) — HomU(g)(Mz, Han) — HomU(g) (Ml, Han) — 0.

The hypothesis (5.10) occurs in the following important case.

Lemma 5.2.5. Assume that the continous dual II' is a finite projective Op[[K,]|[1/p]-
module. Then the functor M — Homy g (M, II*") is exact on the category of finite type
U(g)-modules.

Proof. Let M be a finite type U(g)-module. Arguing as in the proof of [20, Lem.5.1] and
using that M is of finite type, we have:
Homy ) (M, 1I*") = lim Homy ) (M, I1,.) ~ lim Homy, (q)(U:(g) ®u(g) M, I1,).
r—1 r—1
Moreover it follows from the proof of [60, Prop.4.8] that the functor M — U, (g) Qu g M
is exact for a sequence of rationals r € p® converging towards 1. By exactitude of li it
is thus enough to prove that the functor M, — Homy, 4)(M,,I1,) is exact (for such r) on

the category of finite type U,(g)-modules. This is exactly the same argument as in the

end of the proof of [20, Lem.5.1]. O
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We now assume moreover that I1*" is the locally Q,-analytic vectors of some continuous
admissible representation II of G, over L and satisfies property (5.10). If V' is an L[Tf]-
module, let V[m | := UV m? .

Lemma 5.2.6. The functor Homy g (—, II*")%[m | is ezact on the category O.

Proof. Let 0 — M; — My — M3 — 0 be a short exact sequence in O. By (5.10) and
the smoothness of the action of the compact group Uy, we have a short exact sequence of
L[T;]-modules:

(5.11) 0 — Homyg)(Ms, T*™)Y — Homy g (Mo, II*")° — Homy(g) (M, IT**)% — 0.

By the argument above [20, (5.10)], for My = U(g) ®u) + & Verma module, changing
Uy if necessary the L[T,f]-module Homy g (My, II**)% ~ Homyg(p, (II*")%0) is an
inductive limit of L[T7]-submodules on which some element z of 7.7 acts via a compact
operator (we use here, as in loc.cit., the above extra assumption on I1*"). Using the fact
that each object of O is a quotient of a Verma module, that objects of O have finite
length and the exactness of the functor Homy g (—, II*")Y on O, the statement is still
true for an arbitrary M. Since z commutes with 7., it follows easily from the theory of
compact operators that (5.11) remains exact on the generalized eigenspace associated to
€, i.e. after applying [mgsom]. O

Finally, we recall one more statement which is [10, Lem.10.3].

Lemma 5.2.7. Let w € [],eg, SFeQl sych that 1g(w) < lg(we) — 2. Then there exist
distinct elements w; € [l,eg, SJLF”QP] fori € {1,2,3} such that w < w; = w3, w =< Wy =
ws, lg(wy) = lg(wy) = lg(w) + 1 and lg(ws) = lg(w) + 2. Moreover wy and wy are the
only elements satisfying these properties.

5.3. Companion constituents. We recall the statement of the socle conjecture of [16,
§§5,6] in the crystabelline case and prove it in the crystalline case under (almost) the
same assumptions as those of Theorem 5.1.3.

We keep the notation of §5.1 and §5.2, in particular p > 2, G is quasi-split at finite
places and we fix UP, S and p as in loc.cit.. We fix a point p € X5 g such that there exists
a classical x € Y (UP,p) of the form z = (p,d) for some § € T, . Equivalently by [20,
Prop.3.4] the Galois representation p is associated to an automorphic form 7 = 7. ®c7y of
G(Ap+) such that 74" (tensored by the correct locally Q,-algebraic representation of G,)

occurs in the locally Q,-algebraic vectors of S (UP,L)ys. Wedenote by hg 1 < -+ < hgrn
the Hodge-Tate weights of p; for the embedding 7 € Hom(Fj, L) (they are all distinct) and
set hg; := (R ri)retom(ry,0) for all v, i. We define A = (Ay)ves, = (Av15- -5 Aun)ves, €
Hvesp(Zn)Hom(Fﬁ,L) with )\v,i = (AU,T,i)TEHOm(Ff,7L) and >\U,T,z’ = h{m—,n_g_l_i +i—1 (SO A s
dominant). Moreover we assume that p; for all v|p is crystabelline generic in the sense of
§4.3, which is equivalent to the condition that the semi-simple representation W (p;) =
P15, of the Weil group of Fy associated to ps in [36] satisfies (n;;ns.;)orecr, ¢ {1,| |p,}
for i # j (compare [16, §6] when all F; are Q,). This condition doesn’t depend on the
choice of © above v. Note that, when p; is crystalline, we have 7;,; = unr(p;,;) for all ¢

where the 5 ; are the eigenvalues of gp[F 50:Q] op Diis(ps), so we recover the condition in
Theorem 5.1.3.

We define a refinement R as a rule which to each v € S, associates an ordering R,

on the set of characters {ns;,7 € {1,...,n}}. Let R be a refinement, w = (wy)es, €
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[Toes, SlFo@l and define 85, = (O, w, Jves, € f 1 with (see §4.2 for zw»(1o)):

éRv,wv - (5731“1%717 s 7673@710@,71) =y ( wo(h U)<7]17,j1 OreCry, - .-, Mg, © recFa))
where (ji,...,Jn) is the ordering R, on {1,...,n}. Note that the derivative of 0z ,, is
precisely wwo- A and that 6 ,, o, (defined as before (5.3)) doesn’t depend on w, we denote
it by drem = (OR, sm)ves, € fp,L. Define also g := (p,0r.) € ng X f - Then it
follows from [22, Th.1.1] and (5.5) (and the intertwinings on (Indj p5 mop )°° in (5.4))
that the assignment R —— g, = (p,0r.,) induces a bijection between the set of

refinements and the set of classical points in Y (U?, 5) of the form (p, §) for some d € T, .
Note that the residue field of all the points xz ., (a finite extension of L) doesn’t depend
on R or w, and increasing L if necessary we assume it is L.

The structure of Verma modules ([45, §5.2]) and the theory of Orlik-Strauch (extended
as in Remark 5.1.2) imply that the irreducible constituents of:

T Gr ) = P2 (U(0) @y (0o X)), drands,)

are the locally Q,-analytic representations of G, over L:
(512) ‘Fg: (Z(_wlwo : >‘) 572 sm(S ) ®’U€S Jf ( ( w;wO,v : /\v)aé’Rv,smééj)

for w' = (w))ves, € Iles, ST such that w’ < w. For a refinement R and v € S,
denote by Tg u,, the image of Tg ,, in Xii(p;) via (5.2) and set:

(513) WR = (wR,v)veSp c H ST[LFﬁ:QP]
vESH
where wg, = Wag o € S »Ql {5 the permutation associated t0 T o € Xtri(Pp)

defined just before Proposmon 3.6.4. The following is a special case of the socle conjecture
of [16, Conj.6.1] (apart from the fact all F;; were Q,, in loc.cit.). Recall that m, C R; s[1/p]
is the maximal ideal corresponding to p.

Conjecture 5.3.1. Let R be a refinement and w € [[,cg, SFQ] then we have:

Homa, (75 (T(—witn - N, brandis! ) S(07, L)k lm,] ) 0
if and only if wr =2 w.

Remark 5.3.2. We point out that this conjecture is stronger than predicting the set of
companion points of x = (p, 2* 0r sm) € Y (U?,p), that is, Conjecture 5.3.1 implies:

(p, 2" drsm) € Y(UP,p) <= p = wwyp - A with wg < w.

In the following, we use the notation in the statement of Theorem 5.1.3.

Theorem 5.3.3. Assume F/F* unramified, $/1 ¢ F, UP small enough (see (5.6)) with
U, hyperspecial if v is inert in F and p(QF(m)) adequate. Let p € X55 coming from a
classical point in Y (UP,p) such that p; is crystalline and gpm-gogj ¢ {1,q,} fori# j and
v € S,. Then Conjecture 5.3.1 is true.

Proof. We use notation from the proof of Theorem 5.1.3 and we shorten IT%==an in 122

éRﬂUo in éRa TR, wo in TR, ng (f(—U)YUO ’ )\)7éR,Sm5_p) in H and U(Q) ®U (6) M in M(/,L)

The proof being a bit long, we divide it into several steps.
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Step 1: The only if part.

If Homg, (IL,, S(UP, L)% m,]) # 0 then it follows from [15, Cor.3.4] (and Remark 5.1.2)
that the point xg,, € X359 X fp,L sits in Y/ (UP,p). Denote by zg ., its image in Xi,i(7;)
via (5.2). By Theorem 4.2.3 this implies wg, = w, for all v, hence wg < w.

We are thus left to prove that Homg, (IL,,, S(UP, L)% [m,]) # 0 if wr < w.

Step 2: Reduce the claim to proving (5.15).

The action of R;s on S (UP, L)ys factors through a certain quotient R;s, hence we
can see p as a point of (Spf R;s)"8. Moreover we have a surjection Ry /aRo — Rjs
which induces a closed immersion (Spf R5s)" < X, and we can also see p as a point
on X. Still denoting by m, C Ry[1/p] the maximal ideal (containing the ideal a)
corresponding to the point p € X, (under the identification of the sets underlying X
and Spm R, [1/p]), from I [a] =~ S(UP, L)ys we get 112%[m,] ~ S(U?, L)4[m,]. Tt is thus
equivalent to prove Homg, (I1,,, 1125 [m,]) # 0 if wg < w. From Lemma 5.2.2 (applied with
p=Aand v = wwy - ) it is enough to prove Homy (g (L(wwy - A), II22[m,])"° Mg, ] #0
if wg = w. If V is an A-module and m a maximal ideal of A, define V[m>| := U1V [m?].
As L(wwy - A) is of finite type over U(g) we have:

(5.14)  Homyg)(L(wwp - ), Hgg[m;O])UO [mg°

7R,sm]

Usz1 Homyg) (L(wwo - A), T [ma]) 0 [mg? ],

Since the right hand side of (5.14) is nonzero if and only if
Homy g (L (wwo - A), T [m ) [mg,, ] # 0,
we see that it is enough to prove that

(5.15) Homy(g) (L(wwp - A), Hiﬁ[m;"])U‘) [mgjz!sm] # 0 if wr < w.

Step 3: Generalizing the claim.

We will prove (5.15) for more general points y € X, (p) than those coming from the global
eigenvariety. This will allow us to argue by descending induction (see Steps 6-10 below)
on the length of the Weyl group element wg. In order to formulate this more general
claim we introduce the following notation and assumptions:

For a point y € Xz X 1(Xui(p,)) x U? denote by r, (resp. m,, ) its image in X, (resp.
the corresponding maximal ideal of R[1/p]), by (1y)ves, its image in X5 and by e its
image in T pL- We assume that the image of y in Xz lies in the smooth locus of the
reduced rigid variety Xz», that y is crystalline generic (i.e. each r, is crystalline generic
as in the beginning of §5.3), and that the image of y in Xy,;(p;) is strictly dominant in
the sense of [20, §2.1].

We define p = (f1,)ves, € Ilves, (zn)Heom(Fo:L) a5 we defined A at the beginning of §5.3,
wy € [lyes, SFeQl as we defined wg in (5.13), and for each w € [Toes, SIF:Ql guch that
wy, =< w we define y,, € XP x 1(Xui(p,)) x U? as we defined wr,, (note that we use here

Theorem 4.2.3 and that y,, = y). We let €, be the image of y,, in pr (the derivative of
€, 18 ww-p1). As before the smooth part ¢, ., does not depend on the Weyl group element
w. We also define pf'T = (uUHT)UeSp with gl = (g0 — i+ 1)7eHom(F,,z) (compare with
vyl in (5.1)).
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Theorem 5.3.3 then will follow from the following claim:
Claim: For any point y as above we have

Homyg) (L (wwp - ), T2 [mp2]) 7 [m2

gw,sm]

# 0 if wr <X w.

Indeed this claim implies the theorem as the point x satisfies our assumptions on y, either
trivially or arguing as in the proof of [20, Cor.3.12].

Step 4: Identifying Homy g (M (wwy - p1), Hgg[mfj])Uo [m ]

Let w € [Tyes, SIF®l auch that w, < w and assume that y,, € X,(p). We have:

Homy g (M (wwo - o), TG [m ) [me ]~ Homy g (wuwp - pr, (L)) [m][me° ]
(5.16) ~  Homy ) (wwo - 1, JB,,(HZE))[mfj][mEZm]
C Jp, () M) [m]

where the second isomorphism follows from the proof of [32, Prop.3.2.12] as in [20, (5.5)].
Recall from the proof of Theorem 5.1.3 that we have introduced the coherent Ox -
module M, = Jp,(II22)" on X,(p). We easily check:

(517) JBp (Hig)[m?'j][mgz]v = MOO ®OXP(Z) @Xp(ﬁ)vyw

where Jp, (II52) [m?*][mZ° ] ~ I'&nsyt Jp, (T152)[m; Jfmg ] is the dual L-vector space (recall

from Lemma 5.2.3 that Jp, (I132)[m? J[mg ] is ﬁniteidimensional). Denote by X, (5)wwo-u
the fiber at wwg-u € £%8(L) of the composition X,(p) — Ty — t where T}, ;, ~» {8
is defined as in §4.3. We deduce in particular from (5.17):

(5.18)

Homy (o (wwo - 1, Jp, () [mp2][me 1Y~ M(wwp - 1) := Moo ®0, ) OX, @) s

Ty =w,sm
which is thus a finite type @Xp(ﬁ)wwo- yw-mmodule.

Step 5 We prove two multiplicity formulas (5.23) and (5.24).
We keep the notation and assumptions of Step 3. Denote in this proof by Ox_ ,, the
completed local ring at r, of the scalar extension from L to k(y,,) = k(y) (which contains
k(r,)) of the rigid space X«.

For d > 0 denote by Z%(Spec @xm,ry) the free abelian group generated by the irreducible

closed subschemes of codimension d in Spec @xwry' If £ is a finite type @%wry—module
such that its support has codimension > d define as in (2.13):

€] :=>"m(Z,&)[Z] € Z(Spec Ox__ ,,)

where the sum runs over all irreducible subschemes Z of codimension d in Spec @%oo,ry
and m(Z,&) = length 5 &y, (nz being the generic point of 7).

ooﬂ"y)’]Z

We have closed immersions:
(5.19) Spec OXp(ﬁ)wwO»myw

where the second one follows from (5.8), Proposition 3.7.3, Remark 3.6.1 and [53, Lem.2.3.3
& Prop.2.3.5]. It follows from the normality of Xz X ¢(Xi(p,)) x U? at g, (which follows

from Corollary 3.7.10) that we have isomorphisms of completed local rings @Xp(ﬁ),yw ~

— Spec @Xp(ﬁ),yw — Spec @way

(’A)xppm( Xoxi (5,)) XU,y from which we deduce taking fibers at wwy - u:

(5.20) O, @)t == Oop xe Xews (5,)) g X U910
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where ¢(Xui(P,))wwo-u 18 defined as X, (9)ww,. (see Step 3). In particular Spec O X (B Yo
is equidimensional of codimension d := [F'T : Q]"("H in Spec Oz r, Via (5.19) as so is
SPEC O(X i (5,))wug oo 11 SPEC O%;p,(m)m see §4.3.

In particular we deduce from (5.16) and (5.18) that the support of the finite type
Ox., r,~-module Homg(g) (M (wwp - 1), TIE2 [m2])[m2® ] has codimension > d.

=w,sm

Arguing as in the proof of [20, Th.5.5], it follows from Lemma 5.2.6 and from Lemma
5.2.5 that the functor Homg g (—, T182)% [mX][m2® ] from O to the category of Ruo[1/p]-

modules is exact. Thus for every short exact seiquence 0— M, — My —- M3 —0in O
we have a short exact sequence of R..[1/p]-modules:
(5.21) 0 — Homg(g) (Ms, T2 [mp°]) " [mg®

—w,sm

— Homy ) (M, T2 [my2]) 7 [mg®

] — Homy (g (Ma, T [m°]) % [mee |

=w,sm

< ] —0.

=w,sm

As @xmﬂ.y is noetherian, the dual of middle module is of finite type if and only if the
duals of the other two are. Hence the following equation holds in Z?(Spec @%wry):

| Homyy(g) (Ma, T2 [m29]) % [m2°

Tl/ gw,sm] i|

[HomU(g)<M17Han[ yDUO[me ]v]

=w,sm

+ {HomU( ) (M, IS [my ])UO [mew sm]v]'

In particular since the irreducible constituents of M (wwy - ) are the L(w'wq - ) for
w' < w (see [45, §5.2] or §2.4), we deduce in Z¢(Spec @xw@) by dévissage (see §2.4 for
Bry(T)):
[(M(wwo - )] = Y Puguwwew (D [L(w'wo - )]
w’' <w

where:

(5.22) L(w'wy - p) = Homyg)(L(w'wy - ), Hi‘;[m,‘f;’])UO [m> V.

=w,sm

We point out that the (’A)xoomy—module L(w'wg - 1) doesn’t depend on w such that w > w’,
S €y sm = Eur sm does not depend on w.

Moreover, as in Step 1 and Step 2 we deduce that L(w'wy - ) # 0 implies y,» € X,(p)
and hence w, < w’ by Theorem 4.2.3. We obtain the following multiplicity formula:

(5.23) M(wwq - p)] = Z Poowww (1) [L(w'wg - )] € Z%(Spec @xw,ry).

wy 2w’ 2w

Likewise, it follows from (5.20) and from (4.9) that we have:
(5.24) 0%, Pumgmin) = 2 Pugwaow ()€ € Z%(Spec Ox, 1, ).

wy W’ Sw
Here €, is the cycle in Z¢(Spec (93500 r,) obtained by pull-back along the formally smooth
projection Spec Ox —» Spec (9355 (ro), from the product over v € S, of the cycles
p

denoted €, in §4.3. Note that we have €, # 0 for w, < v’ < w. Moreover &, doesn’t
depend on w (such that w > w').

Step 6 Setting up an induction.
Fix X C Xz an irreducible component. We write 4 = XP N X3' for its (Zariski-open)

intersection Wlth the smooth locus of Xz.
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As the image of the point y of Step 3 in Xz lies in its smooth locus we may assume:
Y€ X, (0" = 1 x (Xua(p,)) X U7 1 X,(7) = 4 x 1 Xeaa(7,) ™) x U
for an appropriate choice of X?. Note that X,(p)* C X,(p) is Zariski-open. It follows
from the irreducibility of X, (p)** at y (which itself follows from Corollary 3.7.10) and the
argument in the proof of [20, Cor.3.12] using [20, Lem.3.8] that the coherent sheaf M
on X,(p) is free of finite rank in the Zariski-open dense irreducible smooth locus of an

affinoid neighbourhood of y in X,(p)*". We denote by m, > 1 this rank of M, (which
doesn’t depend on the chosen small enough neighbourhood of y).

We continue using the notation from Step 3. Recall that y is assumed to be dominant,
ie. y = vy, For any Weyl group element w the same argument as in the end of Step

2 and as in Step 1 (using Lemma 5.2.2; [15, Cor.3.4] and Remark 5.1.2) shows that
L(wwy - ) # 0 implies y,, € X,(p)*.

We now consider the following induction hypothesis for integers ¢ < lg(wy):

H,: fory € X,(p)* as above with ¢ < lg(w,), then [£(wwqg- )] # 0 for all w = w,, and
the rank of M, in the smooth locus of a small enough affinoid neighbourhood of
Yw in X, (p)*" is still m,,.

Obviously H, for all ¢ implies the claim formulated in Step 3.

Remark 5.3.4. The part of the induction hypothesis concerning the rank m, is a tech-
nical tool used in the induction. However, it seems to be an interesting statement in its
own right that this rank remains the same for all the y,,, as these points possibly lie on
different connected components of the (patched) eigenvariety.

Step 7: Induction basis.

It is easy to see that Hig(w,) holds.

We prove Hig(ug)-1, i.e. we consider the case lg(w,) = lg(wy) — 1. This amounts to
proving:

- [£(p)] # 0 and [L(wywo - p)] # 0
- M is free of rank m, (=rank of M, in the smooth locus around y = y,,) in the
smooth locus around y,,, .

Note first that the point y is smooth on X,(p) as the image of y = vy, in Xii(p;) is a
smooth point for every v € S, by (ii) of Proposition 4.1.5 and (ii) of Remark 4.1.6. Hence
M is free of rank m, at y and we deduce

M()] = Mo @0y Ox,3),00] = my[Ox,7),0]-
From (5.23) and (5.24) with w = wy we get:
(5.25) (M(p)] = [L()] + [L(wywo - )] = My Cupy + M€, € Z(Spec Ox,.r,)
using Py1(1) = Pruw, (1) = 1 (as wowy is a simple reflection).

Let us first prove [L£(u)] # 0 (which is a priori stronger than just £(u) # 0). Assume
[L(1)] = 0, then (5.25) gives [L(wywy - p)] = my€yy + my €y, # 0 so that y,, € X,(p)*.
But applying (5.23) and (5.24) with w = w, we get [L(wywo - pt)] € Z~o€&,, which is a
contradiction as m,&,,, # 0, thus [L(u)] # 0.

Now, by Lemma 5.2.2 applied with v = p, II** = II53[m; | for all s > 1, and using
that ]—"g;’ (L(— ,u),l[t]smgsmégi) is locally algebraic for all ¢ > 1 and that l[t]smgmégi is an
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unramified representation of 7},, we deduce injections of R..[1/p]-modules:

Homy(g) (L (1), T35 [m7e]) 7 [mZ | < Homp, (L(u), M3 [m7Y]) — Homp, (L(p), TI22).

Ty Esm

By the argument in the proof of [20, Th.3.9] we obtain that:

support(HomU(g)(L(u), Hgﬁ[mﬁj])Uo [mZ® ]V) C Spec @ﬂ

HT_
€sm P x 3{%‘ TxUI,ry
P

~ €y,

as subsets of Spec Ox,;, where the isomorphism follows from (4.8) (O, T,

being the completed local ring of the scalar extension from L to k(y)). Fromp(5.25) we
necessarily deduce [L(p)] € Z=oCy,. Since €, # 0, we then obtain [L(wywg - it)] # 0
from (5.25).

Finally the sheaf M, is free of some rank m; > 1 in a neighbourhood of y,, by (19,
Th.2.6(iii)]. Applying again (5.23) and (5.24) with w = w, we get [L(wywo - p)] = m, &, ,
which plugged into (5.25) together with [L(u)] € Z-o€,, forces m; = m,. This finishes
the proof of Hig(uwg)—1-

Step 8

For w € [l es, SF*%! endow Homy g (wwo- g, T2 [u] )Y (resp. Homy g (wwo- s, Jp, (I122)))
with the topology induced by Homp (wwq - p, 1122 [u]) ~ I122[u] (resp. with the topology
induced by Homp, (wwo-p, Jp, (I155)) =~ Jp, (I122)). The natural 7, -equivariant morphism:

(5.26) Homy (g (wwg - p1, Jg, (TT28)) — Homy g (wwp - 1, T2 [u]) 7

is continuous and identifies the left hand side with the space (Homy ) (wwp - 1, TI2 [u] )70 )
of [32, §3.2]. The injection:

(5.27)  Homy gy (L(wwg - 1), HZE)UO — Homy (g) (M (wwy - p), Hilol)UO
~ Homy (wwp - p, 15 [u])UO

with the induced topology on the left hand side is a closed immersion. Indeed, by a dévis-
sage it is enough to prove that, whenever we have a morphism M (v) — M (wwq - ) of
Verma modules, then the induced map Homy ) (wwy- g, T2 [u])¥0 — Homy g (v, 122 [u] )%
is continuous (and its kernel is thus closed), which easily follows from the continuity of
the action of g on II32. Since moreover (5.27) commutes with the actions of 7, and of
R..[1/p], by [32, Prop.3.2.6(iii)] we deduce a closed immersion compatible with 7}, and

R [1/p]:
(5.28) (Homy (g) (L(wwp - ), Hig)UO)fs — Homy g (wwo - p, Jp, (11%5)).

Taking continuous duals (5.28) yields a surjective morphism of coherent sheaves on
Xp(Phwwo-i:

(5.29) Mwwo-u = M ®(9Xp(ﬁ> OXP(?)wwo-u —» Ewwo-u-

The schematic support of Ly, defines a Zariski-closed rigid subspace Y,(0)wwo-u
in X, (0)wwyu and we denote by Z,(9)wwen S (Yp(P)wwo-n)™ the union of its irreducible
components of dimension dim X,(5)yw,.u- We see from the definition of L(wwy - i) in
(5.22) that we have just as in (5.18):

£(ww0 ' 'LL) = *wao-u ®OXP(F)1U1UO‘M OXp(ﬁ)wwO‘“’yw = »wa(yu ®0Yp(f)wwo-/t pr(ﬁ)wwO'#vyw'
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In particular £(wwg - 1) # 0 < Y € Yp(D)wwon & Yuw € (Yo (P)wwo) ™ and, arguing e.g.
as for Lemma 2.5.5:

(5.30) [L(wwo - )] # 0 Yu € Zp(Pluwwon < Yuw € Zp(D) s
where Zp(ﬁ)ﬁuo,u = Zp(P)wwou N Xp(ﬁ)ﬂp - Xp(ﬁ)wg.
Step 9

Assuming Hy (for some € <lg(wy)), we prove: for any crystalline generic strictly domi-
nant point y € X, (), we have:

(i) [L(wwy - p)] # 0 for those w = w, such that £ <lg(w);
(il) Mo free of rank m, in the smooth locus of a small enough affinoid neighbourhood

of yu in Xp(P)""

Note that the claim differs from H,: we do not assume lgw, > ¢. The proof of this
claim uses a Zariski-closure argument as in the proof of Theorem 4.2.3. We remark that
this closure argument has to make use of the notation introduced in Step 8 above, as
forming the cycle [L(wwy - )] we only take into account the components of maximal
dimension in the support of L(wwy - ).

Ad(i): Consider the smooth Zariski-open and dense subset:
o _ 1T e e _ 1T sl
= 11 Wy cxy =1 X

vES) vES)

pHT

we

and the closed immersion:

~,HT
._ . Attt —cr —
LyHT (= | I LyHT }:ﬁp — Xtri(pp)
vES)

where ¢,ur is as in (4.2). Since there is only one irreducible component of Xi;i(p,) passing
through each point of ¢ ur <Wﬁi HT*“) by Corollary 3.7.10 (and the definition of Wé; HT*“)7

we have that Wé‘p Hoenxroaut L;éT (Xui(pp)™ ) N Wfp "= i a nonempty union of
connected components of WFZ Moo Asin the proof of Theorem 4.2.3, we define the locally
closed subset:

GruHT —cr XP—aut T —cr, XP—aut H T —cr T —cr, XP—aut

‘/[/,M Cr’ = ‘/‘/,M ’ m ‘/‘/,v C ‘/i/ﬁ ’
ppzw : pp Py Wo pp

vES)

for each w = (wy)ves, € [loes, S,[LF’?’QP], and by the same argument as in loc.cit. using

W/LHT —cr,XP—aut
Pp

that the morphism from to the product of the flag varieties is still smooth

- g - 1. - T —er, XP—aut .
we get the decomposition (where ¥ is the Zariski-closure in W, =% ™" or equivalently
D
-~ ,,HT
pHT —cry
)
-, HT -~ ,,HT
”ru —cr,XP—aut __ ”ru —cr,XP—aut
(531) ﬁp7w — Hw/jw pp’w/

with Wﬁ‘; P’I;_Cf’xp_aut Zariski-open and dense.
Recall from (4.3) that, for y € 4? x ot ur (Wﬁ’i}HT_Cr’xLaUt)) x U9, we have:
(5.32) Y €W X utr (WL, ")) 5 U9 = w0 = w,

we thus deduce from (5.31) and (5.32) that we have:

(5.33) Y € U x 1t (WL, 7V 7)) X U9 = w =y,
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Now, for w = (wy)ses, € Ilues, S %! consider the morphism (recall Wﬁ‘; Mo g
reduced by [20, Lem.2.2]):

vty = 1 s, : WE”HT

veS) g
where ¢ ur , is defined in (4.5). Fix w € [,eg, Sl guch that ¢ < lg(w), it follows
from (5.32), H, and (5.30) that we have:

—cr 2
— X, x T,

P TR T 9 C (i X (10 g ) X id) TN (Zy(0) i ) © U x WA 1,

Ppsw wWwo-

But the second inclusion being a closed immersion by base change, we deduce:

P W TR U9 C (i X (10 e ) X 3A) T (Zp(B) g )

wWwo- b

Using (5.33), this exactly means that the companion point y,, of any crystalline generic
strictly dominant point y € X,(p)* such that w, < w and ¢ < lg(w) is always in
Zp(P) o Where p is defined as in Step 3. In particular we have [L(wwy - )] # 0 by
(5.30).

Ad(ii): Let U be an open affinoid in X,(p)"" containing y, for some w, < w and
¢ <lg(w). It follows from Corollary 3.7.10 that X,(p)" is irreducible at y,, hence so is
the Zariski-open smooth locus of U if U is small enough. As M is locally free of finite
rank at each point of this smooth locus (using [20, Lem.3.8] as at the beginning of Step
7), its rank is constant on this whole locus as it is irreducible (hence connected). Hence
it is enough to find one smooth point in U such that M, is free of rank m, at this point.
Now, consider:

U N (4 X (g, (WA, 72) < U9) € X, (P,

PpsW wwo-p?

-, HT
pHt—cr, XP—aut
Wﬁp,w
: o T er XP—aut :
with the Zariski-open dense subset U? x o(¢,mr (W5 = 7)) x U9 is nonzero. By
) D>
construction, any point in this last intersection is in particular a companion point z, of

7T —cr, XP —aut
P e
Py W

it contains ¥,,, and since it is open in P x ¢(z,mr ,,( )) x U9, its intersection

a point z in UP x ¢(e,mr ( . )) x U? (note that ¢,ur ,, is replaced here by ¢,ur).
By (5.32) (applied to z) and [19, Th.2.6(iii)], the point z,, lies in the smooth locus of U.
By (the second part of) H, applied to z, taking U small enough we have that M, is
free of rank m, at z,, where m, is the rank of M, in the smooth locus of an affinoid
neighbourhood of z in X,(p)*". However, shrinking again U if necessary, we can assume
that z also belongs to an affinoid neighbourhood of y in X,(p)*" such that M., is free of
rank m, in the smooth locus of this affinoid neighbourhood. This implies m, = m, and
finishes the proof of Step 9.

Step 10: The induction step.
Let ¢ <lg(wg) — 1, assuming H, we prove Hy_1.

By the two cases treated in the induction basis (Step 7) we may assume lg(w,) =
¢ —1 <lg(wy) — 2 and by Step 9 it remains to prove that:

- [L(wywo - p)] # 0
- M is free of rank m,, at y,,.

Choose w;, i € {1,2,3} as in Lemma 5.2.7 applied to w = w,. By H, and Step 9 we have

Yu;, € Xp(p)¥ for i € {1,2,3}. Moreover it follows from (ii) of Proposition 4.1.5 and (ii)
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of Remark 4.1.6 that the y,, are smooth points of X,(p)"’, hence M, is free at these
points. By H, and Step 9 again, its rank there is still m,, so as in Step 7 we have

I:M(wzwo ' /’L)] = [MOO ®0Xp(ﬁ) OXp(ﬁ)win,u,yywi] = my[OXp(ﬁ)wiwo-nywi] for Z e {]‘7 27 3}

Note that if w, < w" < ws, we have v’ € {w,, wy, ws, ws}. Moreover if w' < w; and
lg(w') > lg(w;) + 2, we also have Pyyu, wow = 1 (see e.g. [45, 8.3(a)]), and thus in
particular Py u, wew (1) = 1. Then, by (5.23) applied with w = w;, w = ws, w = w3 and
using [M(wswp - p)] = my[Ox, 5 ], we deduce the following equalities of cycles in
77(Spec Oz, ):

wiwq - pHYw,

1[0y Gomrns] = Ly - 1)) + [y - )], i € {1,2)

My (O, Bugugwis) = [L(wywo - )] + [L(wiwo - )] + [L(wawy - )] + [L(wswg - )],

By (5.24), we also have the equalities in Z%(Spec @xwry):

[O%, ) wsugues] = Cu, + Cuy, i€ {1,2}
[Ox, T, + €y + Copy + Ty

ﬁ)w3w0<u7yw3]
We then obtain the equalities in Z¢(Spec @xw,ry)i
(530 [Clwwo-p)]+ Lo p)] = myCu, +m,Cu,. i€ {12}

(5.35)  [L(wswo - p)] + [L(wiwg - p)] + [L(wawg - p)] + [L(wywo - )] = my &y +my &y,
+my €y, +my &y, .

Moreover we have [L(wywq - p)] = m;, &y, for some m;, € Z>o (if [L(wywo - p)] = 0 this is
obvious and if [L(wywy - )] # 0 argue as at the end of Step 7). The equality (5.34) for
1 = 1 then implies:

(5.36) [L(wiwg - )] + (my, —my)Ey, = myCy,.

Plugging (5.36) together with the expression for [L£(wywy - w)] given by (5.34) for i = 2
into (5.35) yields:

(5.37) [L(wswo - )] + (my — ), = My &y

Let 3, denote the cycles in Z¢(Spec @xww) obtained by pulling back along the morphism
Spec @xm,ry — Spec @xﬁpv(m)v the product over v € S, of the cycles denoted 3, in
§4.3. Then an examination of (4.7) (applied to w' € {wy, w;,ws, w3}) together with the
implication 3, # 0 = w, = w” and the last two assertions in (iii) of Theorem 2.4.7
(which imply in particular a,s,» = 0 unless w” < w’ and lg(w') — lg(w”) > 2) show we
have the equalities in Z¢(Spec @xm,ry)i

€y, = 3w, and €, =3, ic {1,2,3}.

If m; > m,, then we see from (5.36) that the cycle 3,, must appear with a positive
coeflicient in the cycle €, , which is impossible as €,,, = 3,, and w; # w,.

Likewise, if m; < m,, then from (5.37) the cycle 3,, must appear with a positive coeffi-

cient in €,,, = 3,,, which is again impossible as w3 # w,.

We thus deduce m;, = m,, > 1 and [L(w,wp - p1)] = m,&,, # 0. O
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Remark 5.3.5. (i) With a little extra effort, it should be possible to prove two small
improvements of Theorem 5.3.3. The first, as in Remark 4.2.4 and Remark 5.1.5, is
that it should be possible to delete the assumption p; crystalline for v|p (so keeping ps
crystabelline generic as in Conjecture 5.3.1). The second is that, as in [16, Conj.6.2] in the
case where all F; are Q,,, it should also be possible, under the same assumptions (or may-
be even deleting the assumption p; crystalline as above), to prove that any irreducible
locally Q,-analytic representation C' of G, which is a subquotient of a locally Q,-analytic
principal series of G, over L and such that Homg, (C, S(UP, L)%[p,]) # 0 is one of the
constituents (5.12) for some refinement R and some w such that wg < w.

(ii) Several special cases or variants of Theorem 5.3.3 were already known. The GL2(Q,)-
case in the case of the completed H' of usual modular curves goes back to [17]. In [28],
Ding finds some companion constituents for GL, in the completed H' of some unitary
Shimura curves by generalizing the method of [17]. Some very partial results for GL,,(Q,)
in the present global setting with all F.f = Q, (v € S,) were obtained in [29] and [16]. In
these works, there is no appeal to any patched eigenvariety, and hence one can sometimes
relax some of Taylor-Wiles assumptions. Finally, Ding proved the GlLs-case of Theorem
5.3.3 in [30] without using the local model of §3 (but using the patched eigenvariety

Xp(P))-

5.4. Singularities on global Hecke eigenvarieties. We prove that the global Hecke
eigenvarieties Y (UP,p) can have many singular points.

We use the global setting of §5.1 (p > 2, G quasi-split at finite places, U?, S and p as
in [oc.cit.) and denote by 7297 1, the base change from Q, to L of the rigid analytic spaces
over Q, of continuous characters of T]? Ifx = (p,d) € Y(UP,p) is a crystalline strictly
dominant point such that ¢z ;05 ; & {1,q.} fori # j, v € S, we define w, € [],cg, S
as we defined wg in (5.13).

Recall ([19, §3.2]) that there exists an integer ¢ > 0 and an embedding S, :=
OL[Z}] — Ro such that the map Y (U?,p) — X,(p) factors through X, () X (spt s..)re
Sp L, where Sp L — (Spf S )" is induced by the augmentation map Spf Oy — Spf S,..
Moreover (see [19, Th.4.2] and its proof), the map:

(538) Y(Up,p) — Xp(p) X(SpfSoo)rig SpL
induces a bijection of the reduced subspaces.

Proposition 5.4.1. Assume F/F* unramified, ¥/1 ¢ F, UP small enough with U, hy-
perspecial if v is inert in F and p(Gpyr)) adequate. Let x = (p,d) € Y(UP,p) be a
crystalline strictly dominant point such that gof,,zxpgj ¢ {1,q,} fori#j andv € S,. Then
the map (5.38) is an isomorphism of rigid analytic spaces in a neighborhood of x. In
particular, X,(p) X (spf s.)rie Sp L is reduced at such a point.

Proof. Since @Xp(ﬁ)@ ~ @xﬁpXL(Xtri(ﬁp))XUgw by Corollary 3.7.10, we now know that X,(p)
is Cohen-Macaulay at x (by loc.cit.). Then by the argument in the proof of [19, Th.4.8]
(which needs this Cohen-Macaulay property, this was overlooked in the proof of [20,
Cor.5.18]) based on [19, Prop.4.7(ii)], we obtain that the rigid fiber product X, (p) X gpf 5.y
Sp L (which still contains z) is Cohen-Macaulay and reduced in a neighbourhood of z. [

Note that Proposition 5.4.1 gives an immediate complement to [19, Th.4.8].
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Theorem 5.4.2. Assume F/Ft unramified, ¥/1 ¢ F, UP small enough with U, hyperspe-
cial if v is inert in F' and p(Gpyr)) adequate. Let x = (p,d) € Y(U?,p) be a crystalline

strictly dominant point such that @gﬂigog’} ¢ {1,q,} fori# j and v € S,. Then the rigid
variety Y (UP,p) is Cohen-Macaulay at x and the weight map Y (UP,p) — YA}E{L is flat at
x. Moreover, if wywo € [lyes, Sl s not a product of distinct simple reflections, then
Y (U?,p) is singular at x.

Proof. The Cohen-Macaulay statement follows from the proof of Proposition 5.4.1. Then
flatness of the weight map is a direct consequence of Lemma 2.3.2, applied to (the spectra
of) the local rings at x and w(x).

Let x as in the statement (without any assumptions on w,) and note first that x is
classical by Theorem 5.1.3. Thus by the argument in the proof of [20, Cor.3.12]) its image
in Xz lies in the smooth locus of Xz». Recall that it is enough to prove that z is singular
when viewed in X,(p) via Y (UP,p) — X,(p). This is the argument of the proof of [20,
Cor.5.18], except that there is a gap there since we need to know that X, () X (spf s yrie Sp L
is isomorphic to Y (U?, p) in a neighbourhood of x, which is Proposition 5.4.1 above. Then
the proof of [20, Cor.5.18] can go on, yielding that x is smooth on X,(p) if it is smooth
on Y (UP,p) (or on X,(p) X (spf sy Op L), equivalently that x is singular on Y (U?,p) if
it is singular on X, (p).

For w, = w, we define the companion point z,, € Y (U?,p) as we defined zg, in
§5.3 (it belongs to Y (UP,p) as a consequence of Theorem 5.3.3, see Step 1 in the proof
of loc.cit.) and we denote by 2’ the common image of the z,, in (the smooth locus of)
Xz x U9, Recall that the image of the “maximal” companion point z,,, in Xu(p,) sits
in Usi(p,) = Tlves, Uui(ps) (see (3.29)). By the argument in the proof of Theorem 5.1.3
(based on Corollary 3.7.10), we can find a neighbourhood V' of 2’ in the smooth locus of
Xz x UY and neighbourhoods U, and U, ,,, of respectively the image of  and of z,,, in
Xiri(p,) With Uy, € Uwi(p,) such that V x 1(U,) (resp. V X t(Upu,)) is a neighbourhood
of z (resp. of z,,) in X,(p). Note then that x is singular on X,(p) if and only if the
image x,, of z in U, C Xtri(ﬁp) is singular on X(p,,).

As in the proof of [20, Prop.5.9] consider the automorphism j,,, x : fp, L ST »,I, Where we
use the notation k of loc.cit. to denote the Hodge-Tate weights of (7;)ves, in decreasing
order for each v € S, and 7 : F; — L. We still denote by j,, x the automorphism

id X Ju, x of Xp, X T,... The argument in the proof of [20, Prop.5.9] based on [20, Th.5.5]
shows that:

T €V X t(Ju, x(Upuw, ngL f}?,wz,k,L» C X,(p)

where T Dkl © fz?, ;. is the closed rigid subspace defined as in [20, (5.11)] (and taking
the product over v € S,). In particular this implies as in [20, §5.3] that we have an
injection of k(z,)-vector spaces (tangent spaces):

Jwz k (Up,we ) . 7/—;7103271(’[1)73:1)
Then exactly the same proof as for [20, Cor.5.17] in [20, §5.3] shows that:
(539) dimk(xp) TXtri(ﬁp),CEp = lg(wxwo) — dwzwo + dim Xtri(pp)

where d,, € Zx for w € []yeg, SFo®l s defined as before Proposition 4.1.5 but for the

algebraic group [[,eg, Spec L Xspecq, Resk, /g, (GLn k). Since duy,w, < lg(wewy) if (and
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only if) w,wy is not a product of distinct simple reflections by [20, Lem.2.7], we obtain
that X (ﬁp) is singular at z,, in that case, which finishes the proof. O

Remark 5.4.3. (i) The same argument as in the first part of the proof shows that if
X,(p) is singular at a companion point z,, € Y (U?,p) — X,(p) of z, then Y (U?,p) is also
singular at x,,. Hence a natural question would be to ask which of the companion points
xy € X,(p) are still singular when w # wy. This is presumably related to Conjecture
2.3.7)Via Ox, ()20 =~ O xu(Xui(p,))x U9z, a11d Proposition 4.1.5 (see e.g. (iii) of Remark
4.1.6).

(ii) The equality (5.39) shows that, if we denote by z, the image of z € Y(U?,p) — X,(p)
in Xui(75), then dimys,) T'x,.3,),2, 15 as expected by [20, Conj.2.8]. In particular we thus
have many points where [20, Conj.2.8] holds.

(iii) When w,wy is a product of distinct simple reflections, then by work of Bergdall ([6])
it is expected that Y (UP,p) is indeed smooth at z. Our method a priori doesn’t give
information on Y (U?,7) in that direction.
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