Modular curves

Benjamin Schraen

1 First examples

1.1 Elliptic functions

A lattice of the field of complex number C is an additive subgroup of C generated by an
R-basis of C. Equivalently it is a discrete subgroup A such that C/A is compact. For
example, Z + Zi, Z + Ze* /3 or Z+/5 + Z(1 + i\/7) /2 are examples of lattices. However
the finite free Z-module Z + Z+/5 is not a lattice : it does not contain any basis of C as
a R-vector space nor is discrete.

A complex torus is a complex analytic group of the form &y = C/A where A is a
lattice of C.

Let A C C be a lattice in C. An elliptic function for A is a meromorphic function
on the Riemann surface £y. An elliptic function can also be viewed as a meromorphic
function f defined over C such that
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Recall that for P € C and f be a meromorphic function, we note the ordp(f) the
order of vanishing of f at P. We have ordp f > 0 if and only if P is a zero of f and
ordp f < 0 if and only if P is a pole of f.

A fundamental domain of the lattice A is a subset of C of the form M (P;w;,ws) =
{P + awy + bwsy | (a,b) € [0,1[*} where P a point of C and (wy,ws) is a basis of the
lattice A.

If we apply the Residues Formula to the functions z — f/(2)/f(z) and z — 2 f'(2)/ f(2)
on the boundary of a fundamental domain M (P;w;,ws) whose boundary does not con-
tain any zero or pole of f and such that moreover 0 ¢ M (P;wi,w2), we obtain
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This implies that for each elliptic function f of lattice A, we have the equalities

{ZpegA ordp f =0
>pes, Pordp [ = 0g,.

Theses formulas imply in particular that a non constant elliptic function must have at
least one pole and if this pole is unique in £, this pole must be of order at least 2.
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We now give our first concrete example of elliptic function.

Example 1.1. The Weierstrass function p, is the meromorphic function defined by the
following series, converging normally on every compact subset of C \ A :
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If f is an elliptic function, so are all the derivative in f and the rational functions in
these derivative. Consequently we can produce a large amount of elliptic functions from
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In order to determine the relations existing between all these elliptic functions, we
can compare their developments around 0. For A € A \ {0} and |z| < |A|, we have

zi)\:_:)lxz<i)n

n=0

with normal convergence on each compact. After derivation we obtain

B
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Let n(A) = min{|A| | A € A~ {0}}. For 0 < |z] < r < n(A), we have
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We introduce the notation Gi(A) = > caj0) = for k > 3. If k is odd, it is clear that
Gr(A) = 0 so that

1
p(z) = = + 2(271 + 1)Gapra(A) 2™
n>1

2
p'(2) = -+ > 2n(2n + 1)Gansa(A) 2"

n=1



Using these developments we see that
(p')? — 4p® + 60G4(A)p + 140G6(A)

is an elliptic function without pole and vanishing at 0, hence identically 0. Finally we
see that the elliptic function p satisfies the differential equation

(0')? = 4p® — ga(A)p — g6(A)
where g4 = 60G4 and gg = 140Gg.

For an elliptic function f, we define

deg(f) = Z ordp f = — Z ordp f.

Peé&y Pe &y
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Looking at poles, we deduce that deg(f — a) = deg f for all a € C so that deg(f) is
the number of roots counted with multiplicities of the equation p(z) = a in 5. As a
particular case, if f is non constant, for all a € C, the equation f(z) = a has a solution.
More geometrically, if f is non constant, deg f is the degree of the finite morphism of
Riemann surfaces £, — P!(C) defined by f.

Lemma 1.2. We have deg(p) = 2 and for a € C, p — a has exactly one zero of order
2 if and only if a = p(w) with 2w € A and w ¢ A. Otherwise p — a has exactly two
simple zeros Py and Py in Ey such that Py = — Py in Ex. We have deg(p’) = 3 and p’
has exactly three simple zeros which are the w € E5 such that p —p(w) has a double zero.

Proof. For all a € C, the function p — a has a unique pole of order —2 in £, so that
deg(p — a) = 2. The same argument shows that degp’ = 3. Consequently p — a has
either 1 zero of order 2 or two simple zeros in €. If w is a zero of order n > 1 of p’,
then w is a zero of order n + 1 of p — p(w). Consequently n = 1 and p’ has exactly 3
zeros. Moreover these zeros are exactly the values w such that p — p(w) has a zero of
order 2. The function p’ being odd, an element w € £y \ {0} such that w = —w in &y
satisfy p’(w) = 0. There are exactly three elements in £y having this property so that
we can conclude. O

Theorem 1.3. The field of elliptic functions of lattice A is the field C(p,p’) of rational
functions in p and p’. The subfield C(p) is exactly the field of even elliptic functions.

Proof. As p’ is an odd non zero elliptic function, each elliptic function can be uniquely
written as fi + p’fo with f; and fy even elliptic functions. It is therefore sufficient to
prove the second assertion. Let f be some even elliptic function. Let w € &£y. As
fis even, if w € %A, then ord, (f) is even. This implies that, multiplying f by some
polynomial in p, we can kill the poles of f, excepted poles at points of A. We are reduced
to prove that an even elliptic function having poles only at points of A is a polynomial
in p. If f is such a function, its Laurent development at 0 contains only even terms,



consequently we can find some polynomial P € C[X] such that f — P(p) is vanishing
at 0 and consequently has no pole on C. This implies that f — P(p) is constant and
vanishing at 0 hence is zero. O

Let A and A’ be two lattices in C and o € C be a complex number such that oA C A’.
Then the map £y, — £p+ defined by z — az is an endomorphism of complex analytic Lie
groups. The following result says we obtain all possible endomorphism by this process.

Proposition 1.4. Let f : Eo — Epr be an endomorphism of complex elliptic curves.
Then there exists a unique a € C such that oA C A and f(z) = az.

Proof. The quotient map my : C — C/A is a topological covering. The topological space
C being simply connected, there exists a unique continuous map f from C to C such
that ma o f = fomy and f(0) = 0. As f is a Lie group homomorphism, as are 7, and
mar, the map f is a Lie group homomorphism. Such a map is necessarily of the form
2+ az for some . Finally f sends Ker 7y inside Ker 7,/ which gives us f(A) ¢ A. [

Corollary 1.5. Two elliptic curves Ex and Epr are isomorphic if and only if the lattices
A and A’ are homothetic.

1.2 First examples of modular functions
Let H be the Poincaré upper half plane defined by
H:={r € C|Im7 > 0}.
If 7 € H we set A :=7Z71 + 7. It is a lattice of C. We note E; the elliptic curve &, .

Proposition 1.6. FEvery lattice of C is homothetic to a lattice of the form A for some
7 € H. Moreover two lattices A and A, are homothetic if and only if there exists
(2%) € SLy(Z) such that
, _ar+b
cr+d

In this case we have Ay = (c7 +d) A,
cet+d

Proof. Let (w1,ws2) be some basis of a lattice A. Up to exchanging w; and wy we can
assume that Im(w; /we2) > 0 and we have A = waA,,, /., This proves the first assertion.

For the second assertion, the lattices A, and A, are homothetic if and only if there
exists o € C* such that A = A, this is equivalent to the existence of & € C* and
(2%) € GLy(Z) such that

{7’/ = afat +b)
1 =aler +4d).



This system is equivalent to the existence of (¢4) € GLy(Z) such that 7/ = 2

cT+d”
Finally, if 7 € H and (2 %) € GLa(Z), we have ad — bc = £1 and ‘cl:jrrg € H if and only if
ad —bc=1. O

If v = (2%) € SLy(Z), we set

The law (y,7) + v - 7 is a left group action of SLa(Z) on H.

Corollary 1.7. The map 7 — E; induces a bijection between the orbit set SLo(Z)\H
and the set of isomorphism classes of complex elliptic curves.

The elliptic curves E and E.,.; are isomorphic but the Weierstrass equation associ-
ated to the lattices A, and A,; might be different. Namely, for a € C*, A a lattice of C
and k > 4, we have the law

Gi(al) = Oz_ka(A)

Consequently if we define a function Gy on H by the formula G(7) := Gk(A,), we obtain
a holomorphic function Gy defined over H and satisfiying the transformation law

a b ar +b\ k
v(c d) vr € H, Gy (CT+d> — (7 + d)F Gy (7).

Such a function is called a weakly modular form of weight k.

As a consequence, the function Gy is holomorphic and Z-periodic. Let D = {q €
C | |q| < 1} and D* := D ~ {0}. The holomorphic map H — D* defined by 7 ~ €™
is actually a covering map. This implies that, for all £ > 4, there exists a holomorphic
function G on D* such that Gy (1) = Gy (™).

Theorem 1.8. For k > 2, we have

- 2mi )2k N
Gar(q) = 2¢(2k) + 2((%_)1)! nz;l (02r-1(n)) q

where oy (n) =Y gs1 d™ L
din

Exercice 1.1. Prove that, for z € C, wcot(rz) = 3,,cz(z —n) L. Deduce Theorem 1.8.

The function Gy, is actually an holomorphic function on D, we say that it is a weakly
modular form of weight 2k which is holomorphic at infinity. We will call later such a
function a modular form of weight 2k.

The values of the function ¢ at positive even integers are given by the formula

1 (2mi)%*B
Vk > 1, C(2k) = —QW >0



where By, is the k-th Bernoulli number :

¢ By .,
i D=

n=0

Consequently we have

Garlq) =

2(2mi)2k (_ Boy,

@k— 1)1 | 20k " 7; "2’“1(”)‘1”) € (2mi)*Q @z Z[q].

The discriminant of the polynomial 4X3 — g4(7) X — g6(7) is an homogeneous polyno-
mial in the coefficients, so that it gives us a modular form of weight 12. More precisely
it is defined by

A7) = =(=ga(7))* = 27(=gs(7))* = 60°Ga(r)” — 27 140°G5(7)?).
Using the values By = —1/30 and Bg = 1/42, we obtain

Ag) = (2m)2(q +7(2)¢* +7(3)¢” +---) € (27i)*(Q ©2 Z[q]).

Actually we have (27) 12A € ¢Z[z]. Namely, we have
26.33(2m) " 12A = (1+ 2 -3-5A(¢))® — (1 — 2% - 3% 7B(¢))?

with A(q) = >_,>1 03(n)q" and B(q) = 3,51 05(n)q". However it is easy to check that
12 | 503(n) 4+ Tos(n) for all n > 1. Consequently

20.3%(2m)PA =232 5A(q) +2'- 32 7TB(q) = 0[2]° - 3.

The rational numbers 7(n) are actually integers and are called Ramanujan numbers.
They have fascinating arithmetic properties. Among them are

o If mAn =1, then 7(mn) =7(m)7(n) ;
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e for p a prime number, and n > 1, 7(p)7(p") = 7(p" 1) + ptr(p" 1) ;

i

o for p a prime number, |7(p)| < optl/2 .

o for p a prime number, p # 691, we have 7(p) = 1+ p'! [6]91. ..

This type of arithmetic properties are shared by lots of other functions which are
called modular forms.

Proposition 1.9. For t € H, we have A(T) # 0.



Proof. Let 7 € H. We know that the function p’ vanishes at the points of %AT NALIE
z is such a point, then p(2) is a zero of 4X3 — g4(7)X — g¢(7). Consequently, in order to
prove that A(7), it is sufficient to prove that p takes pairwise distinct values on

w1 w2 w1+ w2
2727 2

where (w1, ws) is a basis of A-. If w is one of these values, it is sufficient to show that the
elliptic function p — p(w) has only one zero. That is a consequence of the fact that, since
p'(w) =0, w is at least a double zero of p and of the equality deg(p — p(w)) = 2. O

We can consequently define

3
i) = HEE)

and j(7) := j(A;). This is a weakly modular form of weight 0, that is an holomorphic
function on H invariant under the action of H. Moreover, we have 17284, € 1 + ¢Z[q]
so that ) ]

J@)==+> cq" € a‘i‘Z[[Q]]' (2)

n=0

Consequently j is a meromorphic modular form of weight 0.

Let D={z€ H| |Rez| <1, |2z| > 1}.

Theorem 1.10. We have H = Ugegr,,(z) 9P-

Proof. If z € H and v = (2%) € SLy(Z), we have Im~(z) = (cz + d)"'Imz. The
set of elements of the form cz + d with (c,d) € Z? is a lattice of of C, which implies
that the set {(cz +d)~! | (¢,d) € Z?} ~ {(0,0)} is bounded. Consequently we can find
some 7y € SLy(Z) such that ImI'g(z) is maximal. The element (}1) on H preserves
imaginary part. Consequently we can find n € Z such that, for y1 = (§1)" 70, Im~1(2)
is maximal and [Re7yi(2)| < 1. Let 72 == (9 5') 7. We have |y2(2)| = [11(2)|"*. By
maximality, we conclude that |y1(z)| > |y1(2)|~! which implies |y1(2)| > 1. We have

H = U, esr,2) V(D). O

Corollary 1.11. The modular forms of weight 0 are the constant functions on H.

Proof. Let f be a modular form of weight 0. Up to translating f by a constant function,
we can assume that f(0) = 0. We deduce from this fact that and from Theorem 1.10
that is reaching is maximum on a compact of F. It follows from the maximum principle
that f is constant. O

Corollary 1.12. The function j is surjective, ie j(H) = C.



Proof. Let ¢ € C. Assume that there is a no 7 € H such that j(7) = ¢. The modular

3
form g3 — cA does not vanish on H. As ¢(4) > 0, we deduce that the function —%
4 g3—cA

a modular form of weight 0 and consequently is constant. Hence there exists d € C such
that g3 = d(g3 — cA) and (1 —d + dc)gi = 27dcg2. We can check that g3 and g2 are not

colinear, consequently dc =1—d+ dc =0 and d =1, ¢ = 0. However j(e%) =0. 0O

is

2 Modular curves as Riemann surfaces

2.1 Properly discontinuous actions on locally compact spaces

In this course, a locally compact topological space is a topological which is Hausdorff
and such that each point has a basis of neighbourhoods made of compact subsets. An
action of a group on a topological space is an action of group on the underlying set by
continuous (and hence bicontinuous) transformations. Topological groups will always
assumed to be Hausdorff.

Let X be a locally compact topological space and let I' be a topological group acting
continuously on X. We say I' acts properly on X if the map I' x X — X x X defined
by (g,x) — (z,g - x) is proper, ie such that the inverse image of a compact subset is
compact. It is equivalent to ask that for each pair (K7, K3) of compact subsets of X, the
subset {v € T, K1 Ny(K2) # (0} is compact. As a consequence, the graph of the action
is closed in X x X, which implies that the topological space '\ X is Hausdorff. In the
particular case where I is a discrete group, it acts properly if and only if for each pair
(K1, K>) of compact subsets of X, the subset {y € T', K1 Ny(K3) # (0} is finite.

Proposition 2.1. Let T" be a discrete group acting properly on X. For a pair (x,y) of
points of X such that x # y, there exist open neighbourhoods U and V of x and y such
that

{yel'[yU)NV #0} ={y T [y(z) =y}
Moreover for all x € X, the stabilizer I'y, of x is finite.

Proof. Let K1 and Ko be compact neighbourhoods of x and y. Let E be the finite set
of elements v € T' such that v(K;) N K2 # 0 and v(x) # y. Since X is Hausdorff, we
can find, for v € E some open subsets U, C K; and V, C K such that y(U,) NV, =0,
zeUyandy €V, Let U = NyeplU, and V = NyepVy. If y(U)NV # 0, then
V(K1) N Ky # 0. As v(Uy) NV, # 0 for v € E, we must have y(z) = y. The last
assertion is plain. ]

Corollary 2.2. IfT' is a discrete group acting properly and freely on X, then the quotient
map m: X — I\X is a topological covering of group T

Proof. Let y € I'\X and = € X such that m(x) = y. It follows from Proposition 2.1
that there exists an open subset U C X containing x such that U N~y (U) # 0 = v =e.



This implies that the restriction of # to U induces a continuous bijection from U to
V := w(U). As 7 is open, V is an open subset of I'\X containing y and 7 |y is an
homeomorphism from U to V. Finally we have 7= '(V) = [ ep7(U), which implies
that 7 is a topological covering of group I'. O

The following situation produces examples and of properly actions of discrete groups.
Let G be a locally compact topological group. It acts on itself on the right by (g, h) —
hg~!. As the corresponding map (g, h) — (g,hg') is an homeomorphism of G x G on
itself, this action is proper and so is the action of any closed subgroup K C G of GG on
G. Let X := G/K. Consequently the space X is Hausdorff and, the projection map
m: G — G/K being open, X is locally compact. The group G acts continuously on X
via (¢, hK) — ghK.

Lemma 2.3. A subset A C G/K is compact if and only if there exists a compact
subset B € G such that m~1(A) = BK. If moreover K is compact, then the projection
7:G — G/K is proper, ie A C G/K is compact if and only if m~(A) is compact.

Proof. The map 7 is continuous and if 771(A4) = BK, then A = 7(B). Consequently if
B is compact, then A is compact. Conversely assume that A is compact. Let (U;);er be
some open covering of 7~ 1(A) such that each U; is compact. Then (m(U;))ser is an open
covering of A and we can find some finite subset J C I such that A = {J;c;7(U;). Let
B = U,c; Ui. By continuity of m, we have m(B) = A so that 771(A) = BK. The last
assertion follows immediately. O

Corollary 2.4. Let G be a locally compact topological group and let K C G be some
compact subgroup. Then every closed subgroup of G acts properly on G/K. In particular
every discrete subgroup of G acts properly on G/K.

Proof. Tt is sufficient to prove that G acts properly on G/K. Let 7 : G — G /K be the
projection map. As K is compact, the map 7 is proper. Let K; and K5 be compact
subsets of G/K. Then

{g€GlgKi)NKy #0} =Gna ' (Ky)n M (Ky) ™!

is compact. The last assertion comes from the fact that a discrete subgroup of G is
closed in G. 0

2.2 Quotients of Poincaré upper half plane

Let G = SLa(R), X = H = {7 € C,Im7 > 0}. Then G acts continuously on H via

homographies
a b at +b
T = —
c d ct +d



yl/2 y=1/2g
0 y—1/2
subgroup K = SO2(R). Consequently there is a G-equivariant continuous bijection

The action is transitive since z 41y = ( ) and the stabilizer of ¢ is the compact

G/K — H.

It is actually an isomorphism since it has a continuous section given by

yl/2 y71/2x>

m+iy»—>( 0 412

Consequently each discrete subgroup I' of SLo(R) acts properly on H and the quotient
I'\H is separated. Note that the action of SLy(R) is the restriction to SL2(R) of an
action of GLa(C) on the projective line P!(C) in which H is embedded via 7 + (7 : 1).
The kernel of the action is the center {£I5} of SLa(R). This suggests to introduce the
following notation : if T is a subgroup of SLg(R), we define T its image in SLo(Z)/{+1Is}.

Let 0 € SLa(R) ~\ {£I2}. We say that o is elliptic if it has two (conjugated) eigen-
values in C \ R, it is hyperbolic if has two different real eigenvalues and parabolic in the
last case, ie. if it has a unique real eigenvalue.

Let T" be a discrete subgroup of SLa(R). An element 7 € H is an elliptic point of T’
if it is fixed by an elliptic element of I. An element ¢ € P'(R) is called a cusp of I if it
is fixed by a parabolic element of T'.

Proposition 2.5. Let I' C SLa(R) be some discrete subgroup.

(i) Let 7 € H be an elliptic point of T'. Then the stabilizer I'y of T in T' is a finite
cyclic group.

(ii) Let ¢ € PL(R) be a cusp of ' and let T be the stabilizer of T'. Then the quotient
group I'c/T.N{£1s} is isomorphic to Z and the elements of I'c~{xI2} are all parabolic.

Proof. The first point comes from the fact that the stabilizer of a point of H is conjugated
to a discrete subgroup of the stabilizer of 7 in SLo(R). This stabilizer is SO2(R) which
is isomorphic to the circle R/Z whose discrete subgroups are finite cyclic.

The group SLg2(R) acts transitively on P!(R). We can choose o € SLg(R) such
that o(co) = ¢ and then I'. = 0Too0™!. A direct computation shows that SLa(R)s =
{£L} x ({ }). Consequently SLy(R)./{£I;} ~ R and I'./T'. N {£I>} is isomorphic to a
subgroup of R. Let P(c) C SLo(R) be the subgroup generated by the parabolic elements

fixing ¢. Then
. 1 z -1
P(c)-a{:l: (0 1) |ZEER}U .

Moreover T'., and consequently P(c) N T, is a discrete subgroup of SLy(R). so that
(P(e)nT')/(T'N{=£I>}) identifies to a discrete subgroup of R. By assumption, (P(c)NI') ¢
{£Is} so that (P(c)NI')/(I'N{+£ly}) ~ Z. If ', contains non central elements which are
not parabolic, they are necessarily hyperbolic. Assume that there exists some hyperbolic

10



element p € I'.. We have p = o (a b )0_1 for some a € R* and b € R. Since p is

0a?
not parabolic, we must have |a| # 1 and, up to exchanging p and p~!, we can assume
that 0 < |a|] < 1. Let # € P(c) N T be a generator of (P(c) NTI')/(I' N {xl2}). Then
0 ==x0 (%) o"! with h # 0. Then we have

pp~t =+o ((1) “ih) o~ e Pe).

As |a®h| < |h|, we obtain a contradiction with the fact that § generates (P(c)NT)/(I'N
{£1}). O

If 7 € H is an elliptic point of I', the order of this elliptic point is the cardinal of the
cyclic group I'; /T N {£1>}.

We say that two subgroups I and I of SLy(R) are commensurable if the intersection
I' NIV is of finite index in both I' and I". If I" and I are commensurable, then I' is
discrete if and only if I is discrete. In this case, it follows from the proposition these two
subgroups have the same set of cusps. However they can have different elliptic points.

The group SLa(Z) is a discrete subgroup of SLa(R). We say that a discrete subgroup
of SLa(R) is an arithmetic subgroup if it is commensurable to SLa(R).

Proposition 2.6. Let I' C SLa(R) be an arithmetic subgroup. Then its set of cusps is
ezactly PH(Q).

Proof. We know that the set of cusps of I is the set of cusps of SLy(Z). As ({1) isa
parabolic element of SLy(Z) fixing oo, the point oo is a cusp of SLa(Z). Moreover the
orbit of oo under the action of SLy(Z) is exactly P1(Q) so that all points of P*(Q) are
cusps. Conversely if ¢ # oo is a cusp for SLo(Z), let v = (‘; Z) be some parabolic element
fixing c. Then c is a root of the non separable polynomial cz? + (d — a)z — b = 0 so that
¢ is a rational number. O

2.3 Other examples of arithmetic quotients

We can consider the case of the connected Lie group G = SL,(R), K = SO, (R) and
I' = SL,,(Z). Then the group I' acts properly on the topological space X := G/K. Using
polar decomposition we can check that the space X is homeomorphic to the space of
symmetric matrices of trace 0 in M, (R).

Here is an other example. Let G = U(n — 1,1)(R) be the unitary group of the
hermitian form g(z1,...,2,) = S0 2]? — [24]2 on C" and K = U(n— 1)(R) x U(1)(R)
the subgroup of element preserving the line Ce,. The subgroup I' :== GL,(Z) N U(n —
1,1)(R) is a discrete subgroup of G and it acts properly on X = G/K. The space is
X is now homeomorphic to the open unit disc in C*~! the map being defined by g —
(21,...,2n—1) where ge,, = z, ( ?:_11 zie; + en). The space X/K has a natural structure
of complex analytic space and the action of elements of G on it is by holomorphic
transformations.

11



2.4 Elliptic points for SLy(Z)

Lemma 2.7. Let v € SLy(Z) be a torsion element. Then ~y is +=1s or has order 4 and
characteristic polynomial X?+1 or has order 3 and characteristic polynomial X%+ X +1
or has order 6 and characteristic polynomial X — X + 1. Moreover v has order 6 if and
only if —v has order 3.

Proof. The eigenvalues of v are roots of unity. As det~ = 1, 1 is an eigenvalue of v if and
only if v = Iy and —1 is an eigenvalue of « if and only if v = —Is. We can assume that
the eigenvalues of 7 are different from 1 and —1 so that |Tr~y| < 2. This implies that
the characteristic polynomial of + is either X2 +1 or X2 4+ X + 1. The rest follows. [

Lemma 2.8. Two torsion elements of SLa(Z) are conjugated inside GLo(Z) if and only
if they have the same characteristic polynomial.

Proof. Let v1 and -5 be two torsion element having the same characteristic polynomial.
They have consequently the same order and we can assume they are both different from
+75. They generate isomorphic subrings A; := Z[vy1] and Ay = Z[y2] of My(Z) which
are isomorphic either to Z[X]/(X2 + 1) or to Z[X]/(X? + X + 1). As a consequence
they generate isomorphic principal rings. Let 6 be the unique isomorphism from A; to
A, sending v, onto 2. The group Z? carries two structures of A;-module. The first
one comes from the inclusion A C M3(Z) and the second one from the composite of 0
with the inclusion Ay C My(Z). Since A; is a finite free Z-module of rank 2, for both
structures of Aj-modules, Z2 is a projective Aj-module of rank 1. As A; is principal, for
both structures of A;-modules, Z? is a free A;-module of rank 1. Thus both structures
of Aj-module on Z? are isomorphic which implies that there exists M € GLa(Z) such
that My M~ = . O

Lemma 2.9. Let v be an elliptic element of SLa(Z). Then vy and y~' are not conjugated

in SLo(Z). If 1 and 72 are two elements of SLa(Z) having the same characteristic
polynomial, then 1 and 2 are conjugated in SLa(Z) or y1 and 7y L are conjugated in
SLo(Z).

Proof. Assume that v and y~! are conjugated in SL2(Z). In particular they are conju-
gated in SLo(R). As ~ is elliptic, v has a fixed point in H. Up to conjugation by an
element of SL2(R), we can assume that v fixes 4 and v € SO2(R). Then v and 7! are
two elements which are conjugated by an element of SLy(R). This implies that they have
the same oriented angle, which is consequently in wZ. This implies v = £, contradict-
ing the fact that ~ is elliptic. Now assume that v; and o have the same characteristic
polynomial. Then there exists P € GLg(Z) such that 49 = Py P~L If det(P) = 1,
we are done. If not, vy, and v, L are elliptic element having the same order. They have
consequently conjugated in GLy(Z) by a matrix of determinant —1. This implies that
v and 47! are conjugated in SLy(Z). O
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Corollary 2.10. Let v € SLy(Z) be an elliptic element. Then either

(i) the element v has order four and is conjugated in SLa(Z) to S = (9§ 1) or to
S = (_01 (1)) As a consequence its characteristic polynomial is X% + 1 ;

(ii) the element ~v has order 3 or 6. If it has order 3, it is conjugated in SLa(7Z)
toT = ((1) j) or to T™1 = (j (1)) If it has order 6, then —~ has order 3 and is
conjugated in SLa(Z) to T or T~1.

Moreover there are exactly two SLa(Z) orbits of elliptic points in H. One of them consists
of the elliptic points of order 2 and the other one of the elliptic points of order 3.

2.5 Compactifications

We fix I' C SLa(R) a discrete subgroup and define H* the union of H and of the set of
cups of I'. Even if the notation do not suggest it, it really depends on I

Example 2.11. If T is an arithmetic subgroup, we have H* = HUP!(Q).

We define a topology on H*. For r > 0, let Us, = {z € H, Im 2z > r} U {oo} and, if
ceRisacuspof I, let Uy, = {z € H, |z — (c+ir)| <r}U{c}. Let T be the set of all
open subsets of H and let

T =TuU |J {Ue,|r>0}
ceH*~\H

Lemma 2.12. The set T* is a basis of open neighbourhoods of a unique topology of H*.
Moreover H is open in H* and a subset of H is open in H* if and only if it is open in H.

Proof. The set T* is stable under finite intersections. O

The action of I" on H* is continuous.

Theorem 2.13. The topological space T\H* is locally compact.

Proof. Let np : H* — T'\H* be the projection. It is an open map which implies that
Y(T') = ap(H) ¢ X(I') is an open subset which is already known to be Hausdorff.
Consequently in order to prove that X (I") it is sufficient to prove that, for z € X (') \
Y (') and y € X(T') \ {z} we can find disjoint open subsets U and V such that z € U
and y € V. The following lemmas will be useful :

Lemma 2.14. Assume that oo is a cusp of I'. Then there exists v > 0 such that for all
v=(2%) € I' \Tu, we have |¢| = r. Moreover, for all v € T \ T and for all T € H,
we have Im 7 Im (1) < 1/r%.
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Proof. Let h > 0 such that ¢, .= ({ #) € Too. We fix M > 0. Assume that v = (2Y) €
I' \ T'w such that |¢| < M. Let n € Z such that 1 < d+ nhe < 1+ hle|] <1+ hM and
m € Z such that [Rev#1(i)| < &. If v = P97 = (% a1 hne ), We have

1
| 1) = ImA~ty (i) =
m (i) = Tm 75, (7) le|?2 + |d + hncl|?
so that v1(i) € K where K is the compact
K {€H| ! <Im7 <1, |R y<h}
=T <Im7 <1, [Ret| < ¢
(14 hM)2 + M2 2

As T" acts properly on H, the set {c € I" | o(i) € K} is finite, so that the number of

possible |¢| < M is finite. Therefore there exists r > 0 such that |c| > r as soon as
ab

(28) e T\ Tw.

Consequently if y = (¢%) € '\ I's and 7 € H, we have
(Im 7)? (Im 7)2 1 1

I I = < <75 < 5.
my(7)Im 7 let +d|? = cP(ImT)2 = |2 T r?

O]

Let ¢ € PY(R) such that np(c) = = and let 0 € SLy(R) such that o(c0) = ec.
The group oT'o~! is a discrete subgroup of SLy(R) and the map 7 + o(7) induces an
homeomorphism of X(cT'o~!) onto X(I'). Up to changing I' into ol'o~! and x into
Tere—1(00), we can assume that x = mp(oco) and that oo is a cusp of T'.

Suppose first that y € Y(I'). Then y = 7 (1) for some 79 € H. Let r > 0 be like in
Lemma 2.14. Let K C H be some compact neighbourhood of 7y. There exists some real
numbers 0 < A < B such that

Kc{reH|A<Im7 < B}.

Let U :== {r € H | Im7 > max(B,1/Ar?)} U {oo}. Then U is an open neighbourhood
of oo in H*. If v € I, we have Im~v(7) = Im 7 for all 7 € H, so that v(K)NU = (.
If v € T \ I, it follows from Lemma 2.14 that Im7Im~(7) < 1/r% for 7 € H so
that Im~(r) < B if 7 € K. This proves that y(K) NU = (). Consequently we have

mr(K) N7p(U) = 0 and 7p(K) and #p(U) are disjoint open neighbourhoods of y and
in X(I).

Suppose now that y # x is a cusp of X(I') so that y = #p(z) for some cusp ¢
of I'. We have I'c # I'co. Fix u > 0 and L, = {r € H | Im7 = u}. Let h > 0
be such that the matrix (§#) € T and set K = {r € L, | 0 < Rer < h} and
V= {r € H | Im7 > u}. The space K is compact and contained in H. Using
the previous case, we can consequently find some open neighbourhood U of ¢ in H*
such that K NTU = (). We can assume that U of the form U, for some real s > 0.
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Assume that there exists v € T" such that v(U) NV # (). Since U is connected, we have
Y(U)N Ly # 0. We can find 7' € T's, such that v/y(U)N K # (), which is a contradiction.

Finally we have to prove that each element of X (I') has a compact neighbourhood. It
is sufficient to prove that each 7 € H*, there exists a compact subset K C H* containing
7 such that 7 (K) is a neighbourhood of 7p(7) in X(T'). If 7 € H, it is a consequence of
the local compactness of H. We can consequently assume that 7 is a cusp of I' and, up to
conjugating I" in SLg(R), that 7 is co. Let r > 0 and let U := {r e H | Im7 > r} U{oc}.
Then U is a neighbourhood of co in H* so that #nr(U) is a neighbourhood of 7r(00) in
X (T). Let h > 0 be such that the matrix (} %) € T and

K={reH|Im7>r 0<Rer <h}U{oo}.

We have U C I'K so that mp(U) C #p(K) and 7p(K) is a neighbourhood of 7 (I'). Now
K is a compact subset of H*. Namely if (U;);ecs is an open covering of K. There exists
ip such that U,, is a neighbourhood of oo meaning that there exists ' > r such that
Usor N K C U;y. This implies that

{reH|r<Im7 <0< ReT < h}C U U;
i#i0
and the left hand side is a compact space, consequently there exists a finite subset

J C I~ {ip} such that K C U, U;cy Ui. This proves that K is a compact subset of
H*. O

2.6 Complex structures

If ' C SLy(R) is a discrete subgroup, we use the following notation
Y() =TI\H, X(I') =TI\H"

The elements of X (I') \ Y(I') are called the cusps of X(I') and the images in Y (I') of
elliptic points of I' are called the elliptic points of X (T).

Let I' C SL2(R) be a discrete subgroup. Let Op be the sheaf of holomorphic functions
on H. We note Op+ the sheaf of holomorphic functions on H which extend to continuous
functions over H*. More precisely if U C H* is an open subset, we set Op«(U) the set
of functions f € Og(U NH) such that, for all cusp ¢ € U, the restriction of f to some
(or equivalently any) U, for r > 0 has a limit at ¢, for the topology induces by H*.
Note that this is not the topology induced by H when ¢ # oco. It can be easily checked
that Og- is the subsheaf of the direct image of the sheaf of holomorphic functions Oy
by the inclusion j : H C H*. Namely this is the intersection of j.Op with the sheaf of
continuous functions on H* inside the sheaf of all functions on H*.

Let 7p be the quotient map H* — X(I'). We define a sheaf on the quotient space
X(I") by the formula

Ox(r) = (mrOg+)".
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Theorem 2.15. The ringed space (X(I'), Ox(ry) is a Riemann surface.

Proof. We have to prove that the ringed space (X (I'), Ox(r)) is locally isomorphic to C.
Let 2 € X(T). Assume that z is nor elliptic nor a cusp and let 7 € 7p'(z). Then 7y is
an isomorphism from some open neighbourhood U of 7 on some open neighbourhood of
r inducing an isomorphism from (V,Ox(r) |v) onto (U, Oy |y) proving the claim at a
neighbourhood of z.

Assume now that x is elliptic, let 7 € 7" (x) and let U be some open neighbourhood
of 7 in H such that v(U)NU # 0 = v € ;. Then T'; is a finite cyclic group. We can
assume that U is stable under I'; so that np induces an isomorphism I';\U = 7p(U).
Let A : H ~ D be a biholomorphic map sending 7 to 0. Let  be a generator of T,.
Then Ao~oA~!is an holomorphic automorphism of D fixing 0. From Schwarz Lemma,
it is of the form z — az for some a € C*. This implies that a is a primitive n-th root
of unity where n is the cardinal of T';. Let U’ be the image of A(U) under z s 2". We

have the following commutative diagram

U —2— AU)

lﬂ—r lez"

TI'F(U) é U’.

An holomorphic function f on A(U) is invariant under z — az if and only if it is of the
form z — ¢(2™) for some holomorphic function g on U’. This remark implies that the
bottom homeomorphism identifies 7 ,OF" with the sheaf Oy and proves that X (T) is
a Riemann surface on a neighbourhood of 7.

Finally assume that x is a cusp, that is 2 = np(c) for some cusp ¢ of I'. Replacing
I' by some conjugate subgroup of SL2(R), we can assume that ¢ = co. We know that
there exists > 0 such that 7p(Usx ) =~ I'o\Uso,r. Moreover there exists h > 0 such
that Too = (§ ’f)Z. The map g, defined on Us, -~ {00} by z = >/ is an holomorphic
covering of group I'no/(I'so N {%12}) inducing an isomorphism of Riemann surfaces from
Foo\(Usor ~ {00}) to D, —2zr/n \ {0} where D, is the open disk of radius s. Let f be
an holomorphic function on Us , \ {00} which is invariant under I'n. It is the inverse
image of an holomorphic function f on D, 2xr/n. The function f extends continuously
to oo if and only if f extends continuously to 0 and the unique continuous extension of
f to U is the inverse image of the unique extension of f to the disk. A continuous
function on the disk D, which is holomorphic on Dy ~\ {0} is actually holomorphic on
D,. This implies that ringed space (Uso,r, OEZ‘;W) is isomorphic to the ringed space of
holomorphic functions on D, 2x/». This achieves the proof. O

2.7 Arithmetic subgroups and congruence subgroups

We recall that an arithmetic subgroup of SLo(R) is a discrete subgroup which is com-
mensurable with SLa(Z).
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Let N > 1 and let I'(\V) := Ker(SLa(Z) — SL2(Z/NZ)). It is subgroup of SLy(Z)
with finite index. We define a congruence subgroup as a discrete subgroup I'(SL2(Z))
containing I'(/V) for some N > 1. A congruence subgroup is commensurable with SLs(Z)
and is consequently an arithmetic subgroup.

Remark 2.16. In SLy(R), there exist arithmetic subgroups which are not congruence
subgroups.

Let D={z€H||Rez| <1, |z| >1}.

Lemma 2.17. Let I C T be discrete subgroups of SLa(R) such that [T’ : T'] < +o0.
Then X (T) is compact if and only if X (") is compact.

Proof. The quotient map X (I') — X (T') is continuous surjective so one direction is clear.
It remains to prove that X (T') compact implies X (I"”) compact. Assume first that IV is
an invariant subgroup of I'. Then X (T') is the quotient of X (I'") under the finite group
G =T/I". We know that X (I") is locally compact. Let (U;);er be an open covering of
X (I") such that U; is compact for all i € I. The quotient map H* — X (T') is open. This
implies that the transition map 7 : X (I") — X (T') is open. As it is surjective, the family
(m(Ui))ier is an open covering of X(I'). By compactness of X (I'), there exists a finite
subset J C I such that X(I') = U;cy 7(U;). Let A = U;cy Ui It is a compact subset
of X(I') and X(T') = Uyeq 9(A), this proves that X(I") is compact. In the general
case, let T = U, ep 1" v~1. It is an invariant subgroup of I' which is of finite index
in I'. Consequently X (I'") is compact and the map X (I'") — X (I") is continuous and
surjective, proving that X (I") is compact. O

Corollary 2.18. IfT' is an arithmetic subgroup of SLa(R), then T\H* is compact.

Proof. By Lemma 2.17, it is sufficient to prove that X (SLy(Z)) is compact. It follows
from Theorem 1.10 that X (SL2(Z)) = 7gr,,(z)(D). Consequently it is sufficient to prove
that D is compact. This can be proved exactly as in the proof of Theorem 2.13. O

2.8 General results for Riemann surfaces

Let f: X — Y be a morphism between Riemann surfaces and let P € X. Then There
exists local charts (U, z) and (V,t) such that P € U, z(P) =0, Q = f(P) € V and
t(Q) = 0 and an integer ep € N such that f oz~ = t?/) on 2(U). The integer ep(f)
does not depend on the choice of (U, z) and (V,t). It is called the ramification index of
f at P. If f is not constant, the set {P € X | ep(f) > 1} is closed and discrete in X.

Theorem 2.19. Let f : X — Y be an holomorphic map between Riemann surfaces.
Assume that X is compact. Then f is constant or surjective. If f is surjective, the

quantity
> e
PeX
f(P)=@Q
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does not depend on Q. It is called the degree of f and noted deg f.

If f is constant, we set deg f = 0. We have the property deg(g o f) = (deg g)(deg f)
which is easy to check. The genus of a compact Riemann surface is the dimension of the
finite dimensional C-vector space g(X) := dim¢c H(X, Q).

Theorem 2.20 (Riemann-Hurwitz). Let X and Y be two compact Riemann surfaces
and let f: X =Y be a non constant holomorphic map. Then we have the formula

2(9(X) —1) =2(g(Y) = 1)deg f + Y _ (ep(f) = 1).

pPeX

Let X be a compact Riemann surface. A divisor of X is an element of the free
abelian group Div(X) = @,cx Z[z]. There is a structure of ordered abelian group of
Div(X) defined by

me[x] >0 Ve X, my>0.

zeX
If f is a non zero meromorphic function on X, f has finitely many poles and zeros and
its divisor is the element

div(f) == Z ord, (f)[x].
zeX

The function div defines a group homomorphism from C(X)* to Div(X) whose kernel
is the subgroup of non zero constant functions on X. A divisor which in the image of
div is called a principal divisor. The subgroup of principal divisors is noted Pr(X). The
degree map is the group homomorphism deg : Div(X) — Z such that deg([z]) = 1 for all
r € X. Let Div’(X) be the subgroup of divisors of degree 0, we have Pr(X)  Div’(X).
It follows from the residue formula that degodiv = 0. Consequently we can define the
quotients Pic(X) := Div(X)/Pr(X) and Pic’(X) := Div’(X) and we have an exact
sequence of abelian groups

0 — Pic’(X) — Pic(X) 2% 7 — 0.

If D =3 ,cx mg[z] is a divisor, we define L(D) as the C-vector subspace of C(X') defined
by

L(D) ={f € C(X) | D+ div(f) > 0} = {f € C(X) | V& € X, ords(f) = —ma}.
The C vector space is finite dimensional and we define ¢(D) = dimc L(D). It is easy to

check that if L(D) # 0, then deg D > 0.

More generally let £ be a line bundle on X and let s be a non zero meromorphic
section of £. For x € X, the local ring Ox . is a discrete valuation ring and £, is a
finite free Ox z-module of rank 1. Let t, € Ox, be an uniformizer at x. We define
ord;(s) == min{n € Z | t;"s; € L;}. This integer is well defined, does not depend on
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the choice of t,. Moreover if £ = Ox, it coincides with the usual order of s at . The
divisor of s is

div(s) = > ordy(s)[z].

zeX

The image [div(s)] of div(s) in Pic(X') does not depend on the choice of the section s and
is noted [£]. Consequently the degree deg(div(s)) depends only on £ and is called the
degree deg L of the line bundle £. Actually the map £ +— [£] induces an isomorphism
between the group of isomorphism classes of line bundles on X and Pic(X). The class of

the line bundle €2, is noted K x and is called the canonical class of the Riemann surface
X.

Theorem 2.21 (Riemann-Roch). Let X be a compact Riemann surface and let D be a
divisor of X. We have

D) —U(Kx —D)=1-g(X)+deg(D).
Corollary 2.22. We have deg Kx = 2g(X) — 2 and, if deg D > 2g(X) — 2, we have

(D) =1-g(X)+ deg(D).

2.9 The genus of arithmetic quotients

If I/ C T are two arithmetic subgroups, the projection H* — X (T") factors through a
surjective morphism between compact Riemann surfaces

7 X(T) — X(I).

This morphism is a finite morphisme between Riemann surfaces and its degree is equal
to
T:T] = [{£hL}: T'{£L}].

Consequently, for each @ € X(T'), we have

ir:1 if —LeD\T
Z ep(m) = degm = {[QF:F/]

Per1(Q) in the other cases.

Example 2.23. Let I' = SLy(Z). Then we have X (I') = Y(I') [[{T'oc}. The stabilizer

of the cusp oo is
1 n
e 1) ne)

This implies that z — q(z) = €27 is a local parameter at I'oo € X(I'). We defined a
holomorphic I'-invariant function

j:H— CcPYC)
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by z + (j(z) : 1). This function defines consequently a holomorphic map
j:Y(SLy(Z)) — C.
It follows from formula (2) that j can be extended into an holomorphic map
j: X(SLy(2)) — P1(C)

such that j(T'oo) = (1,0). As j is non constant, it is a surjection. Moreover this function
is a local isomorphism at I'co. As I'oo is the only point in the preimage of (1,0) showing
that it is has degree 1 and consequently is an isomorphism of Riemann surfaces. As a
consequence we proved that the function j : H — C is surjective and that j(z) = j(2/) if
and only if there exists v € SLy(Z) such that 2’ = ~(z2).

This example shows that the Riemann surface X (SLy(Z)) is algebraic. It is actually
a general fact.

From now we will sometime use the notation g(I') := g(X(I")) if " is an arithmetic
subgroup of SLa(R).

Example 2.23 implies that g(SL2(Z)) = 0. If we want to compute the genus of X (T")
for an arithmetic group I' using Riemann-Hurwitz formula, we need to compute the
ramification indices of the morphism X (I') — X (SLa(Z)).

Let P € H. Then the map 7y : H — Y(T') is ramified at P (ie has a ramification
index ep > 1) if and only if P is an elliptic point of I". In this case the ramification
index is exactly the order of the point P. When T is an arithmetic subgroup of SLs(Z)
this order is a divisor of 3 or 2 hence can be equal to 3 or 2. Assume that P € H is an
elliptic point of order 7 € {2,3} for SLa(Z). Then the map g1, (z) : H — Y(SL2(Z)) is
ramified of index 7 at P and the map 7 : H — Y(T') is ramified (automatically of index
i) at P if and only if P is an elliptic point of I". The factorisation

)

oy

Y (T
o
(7))

Y (SLy(Z

H
TSLoy

shows that 7 is ramified at 7p(P) if and only if P is not an elliptic point for I'. Namely
we have the factorisation of ramification indexes

ep(Tsryz)) = ep(Tr)eq(p) (7).

Using example 2.23, we deduce the following formula for the genus of an arithmetic
subgroup of SLy(Z).

Theorem 2.24. Let I' C SLa(Z) be an arithmetic subgroup. If i € {2,3}, let v;(I") be
the number of elliptic points of Y(I') of order i for T' and let v (T') be the number of
cusps of X(I'). Then we have the formula computing the genus of X(T) :

[SLo(Z) : T{£D}] 1) wn) v(l)

g(X(M) =1+ 5 - 5 T o
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Proof. Let m: X(I') = X (SL2(Z)) be the projection. It is a finite map between compact
Riemann surfaces of degree degm = [SLa(Z) : T{xI2}]. Let ¢ € {2,3} and let P €
7~ (z;) where x; € X(SL2(Z)) is the unique elliptic point of X (SLa(Z)) of order i. If
P is an elliptic point of X (I'), then ep(7w) = 1 and if P is not an elliptic point then
ep(m) = i. Let v/(T") be the number of points of 7~1(x;) which are not elliptic. We have
consequently degm = 14(T") 4+ iv/}(T"). Applying Riemann-Hurwitz formula (Theorem
2.20), we obtain

2(g(T) — 1) = 2deg(m)(9(SLa(Z)) = 1) + v4(0) + 25(T) + > (ep(m) —1).
Per—1(oc0)

Moreover we know that 3 per—1(o0) ep(m) = degm and g(SL2(Z)) = 0 so that

deg m — 15(T) n 2deg7r —u3(I)

2(g() — 1) = —2deg(r) + —= -

+ degm — Voo ()

which gives the formula. O

Example 2.25. We consider the case of the principal congruence subgroup I'(N). If
N > 2 is has no elliptic point. Namely, it is normal in SLy(Z), hence if it has an elliptic
point of order 2, it has to contain an elliptic element stabilizing i, namely + ((1) _01). And
none of these matrices is in I'(/V) for N > 2. An analogous reasoning shows that it does
not have order three elliptic points. The degree [SLa(Z) : T'(IV)] can be easily calculated,
it is Card SLo(Z/NZ) is N = 2 and 3 Card SLo(Z/NZ) if N > 3. Consequently

N73Hp|zv(1—,%) if N >3

=degm =
UN € TSLy(Z)/T(N) {6 if N = 2.

Finally I'(N) being normal in SLy(Z), the group SL2(Z) acts on X(I'(/V)) and acts
transitively on the cusps of X(I'(IV)). Consequently it is sufficient to compute the
ramification index of 7gr, (z)/r(v) at one cusps. Do it at co. We have

1 Nk
(0 49) ez wvss
F(N)oo_

N 1 2
+ k kezZy ifN=2.
0 1

Consequently the ramification index at cusps is equal to N and we have

7
Vo (T(N)) = 7

We can conclude that

g(T(N)) =1+ 1‘%(1\7 —6).
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There are other congruences subgroups that we can consider. For N > 1, we define

To(N) = {(i‘ Z) € SLy(Z) | N|c}, I'y(N) = {(‘CL Z) ETo(N) |a=1 [N]}.

Note that T'o(N) and I'1(N) are congruence subgroups since
[(N) € T1(N) € To(N) € SLy(Z).

We easily check that we have I'g(2) = I'1(2) and

[SLy(Z) : T1(N){£L}] = {}HPIN (1 - i%) i‘ ]]X f;)

[SLy(Z) : To(N)] =N [] (1 + ;) .

p|N

Proposition 2.26. If N > 4, the group T'1(N) has no elliptic element. We have
19(T'1(2)) = v3(T'1(3)) =1 and v»(T'1(3)) = v3('1(2)) = 0.

Proof. We have Try = 2[N] for v € I'1(IN). Consequently if vo(I'1(N)) # 0, we must
have N | 2, ie. N = 2. If v3(I'1(V)) # 0, we must have N = 3 and Try = —1 if
v € T'1(N) is elliptic. The equalities v2(I'1(2)) = v3(I'1(3)) = 1 are an exercice for the
reader. O

Lemma 2.27. Let N > 1. Then the morphism SLo(Z) — SLz(Z/NZ) given by reduc-
tion modulo N is surjective.

Proof. 1t is sufficient to check that the two matrices ({ 1) and (1) generate SLy(Z/NZ).
O

Lemma 2.28. Let I' C SLa(Z) be a congruence subgroup containing I'(N). Let I'y be
the image of I' in SLo(Z/NZ). Let Uy C GL2(Z/NZ) be the subset of elements of order
exactly N in (Z/NZ)?. Then there exists a bijection of finite sets

N\ PHQ) ~ Ty\Un/{z 1}

Proof. Let P C SLg(Z) be the subgroup of upper triangular matrices. The group P
is the stabilizer of (A : 0) in P}(Q) and the group SLy(Z) acts transitively on P'(Q).
Consequently P!(Q) ~ SLy(Z)/P and this bijection is compatible to the action of SLy(Z)
on P!(Q) and on SLy(Z)/P on the left. Since I'(N) is a normal subgroup of SLy(Z), we
have

T\ PY(Q) T\ SLy(Z)/T(N)P ~ T\ SL2(Z/NZ)/ Px.

The group SLy(Z/NZ) is acting transitively on Uy and the stabilizer of the vector ( 1))
is the subgroup of matrices of the form (7). This proves the assertion. O]
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Corollary 2.29. If ¢ € P}(Q), there exists coprime elements a and b in Z such that
¢ = (a:b). The vector () is well defined up to a sign, so that there is a well defined
map

PYQ) — Un/{*I}

a

(a:b) +— R

This map induces a bijection from the set of cusps of the group I'(N) to the finite set
Un/{£I2}.

Proposition 2.30. For N > 2, we have

%Zd}l o(d)p(N/d) if N>=5o0r N=3

dN
Voo(I'1(N)) = { 3 for N =4
2 for N =2
Voo (Lo(INV Zcp dAN/d).
d>1
dN

Proof. Two elements [§] and [ /} of Uy are in the same orbit of I'; (V) if and only if
there exists n € Z such that ¥ = b and o’ = (a + nb) in Z/NZ. Assume that b as
order d | N in Z/NZ, then there are exactly ¢(N/d) classes of a € Z for the equivalence
relation a ~ a’ < o’ € a+ bZ such that a A N = 1. There is ¢(d) elements of order d in
Z/NZ so that
Card (D1 (N)\Un) = Y _ o(d)p(N/d).
d>1
dIN

To obtain the formula, we have to prove that the group {£1I>} has no fixed point on
I'1(N)\ Uy for N =5 or N = 3. If the class [ | is a fixed point, then 2b =0 in Z/NZ
so that b = 0 or N is even and b = N/2. If b = 0, we have 2a = 0 in Z/NZ which
contradicts a Ab=1. If b = N/2 then, 2a =0 in Z/(N/2)Z. Assume N > 2, then a # 0
in Z/NZ and we must have 4 | N and a € Z(N/4). The condtion a A b = 1 implies
N = 4. A direct inspection shows that I'1(2)\Uz/{£I2} = I'1(2)\U2 has two elements
represented by [ ] and [ ] while I';(4)\Us/{£I>} has three elements represented by
(& ], [ ]and [4 ]. We can remark that the class of [J | in I'1(4)\Us is fixed by {+I}.

First of all we can remark that {£Is} is contained in I'g(IN) so that v (Ip(NV))
is the number of orbits of I'o(N) on Uy. Two elements [f] and { ,} of Uy represent
the same cusp of I'g(IV) if and only if there exists n € Z and o € (Z/NZ)* such that
¥ = a~'band a’ = aa + nb. The orbits of (Z/NZ)* acting on Z/NZ are parametrized
by positive divisors of N. Consequently for each orbit of I'g(/N) on Uy there is a well
defined positive divisor d of N such that an element of the form [ J ] is in the orbit. Two
elements [ § | and [¢'] are in the same orbit if and only if there exists o € 14 (N/d)Z

23



such that ¢’ = aa in (Z/dZ)*. This proves that there exists exactly

> o(d A (N/d))
d>1
dIN
orbits for the action of T'g(IN) on Uy. O

Example 2.31. The group I'1(5) has 4 cusps which are represented by the elements

[01}7 [02]7[10]7[20]

Corollary 2.32. We have, for N > 1,

14+ 1= 2) 1S o(o(N/d)  if N > 5;
g(T1(N)) = 2 ”N( p) 4Z$ﬁ¢(yﬂ /) if

0 if N € {2,3,4}.

Remark 2.33. Actually, g(I'1(V)) =0 if N <10 or N = 12. We have g(I';(11)) = 1,
g(I'1(13)) = 2, g(I'1(14)) = 1...
Exercice 2.1. Prove that ¢(I'1/(N)) =0« N € {1,2,3,4,5,6,7,8,9,10, 12}.

The congruence subgroups of the form I'g(N) can have a lot of elliptic points. They
are counted by the following result.
Theorem 2.34. We have, for N > 3,
0 if4| N
[y~ (1 + (%)) in other cases
0 if9| N
[~ (1 + (7?3)) in other cases

v2(To(N)) = {

v3(Lo(IV)) = {

Example 2.35. If p is a prime, the map X(I'o(p)) — X (SL2(Z)) ~ P}(C) has degree
p+ 1. The curve X (I'g(p)) has two cusps which are the equivalence classes of oo and 0.
The map is unramified at co but has ramification index p at 0. Moreover we have

13 it =11]1)2
2 if p=5[1]2
g(X(To(p)) = { Bt ifp=T7[1]2
L ifp = —1]1]2
0 if p € {2,3}.

The curves Xo(p) for p € {2,3,5,7,13} are isomorphic to P*(C). The curves Xo(p) for
p € {11,17,19} are elliptic curves and, for p > 23, they have genus > 2.
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3 Modular forms

3.1 Definitions

Let T" C SLa(R) be an arithmetic subgroup and let k € Z.

Definition 3.1. A function f : H — C is weakly modular of weight k& and level T" if it
is meromorphic and if

v <‘2 2) €T, f (“”2) = (cz+ d)¥f(2).

cz +

ab) € SLy(R). For z € H, we define j(g,2) = (cz + d). We have
h(z))j(h, z). This proves that if we define

(f Ik 9)(2) = j(g,2) " * f(g(2)),

the map (g, f) — (f |x g) defines a right action of SLa(R) on the space of holomorphic
functions on H. The space of weakly modular functions of weight k£ and level IT" is the
subspace of I'-invariant functions for this action.

Let g = (
Jlgh,z) = j(g,

Let f be a weakly modular function of weight k and level I'. Assume that oo is a
cusp of I'. There exists h > 0 such that (}#) € I's. The map z — g(z) = % is an
holomorphic covering H — D*. Then f(z + h) = f(z) and there exists a meromorphic
function f defined on D* such that f = f o ;. We say that f is meromorphic at oo
(resp. holomorphic at co, resp. cuspidal at co) if f is meromorphic (resp. holomorphic,
resp. holomorphic and vanishing at 0) on D. The following Lemma shows that this

definition does not depend on the choice of the real number h > 0.

Lemma 3.2. Let f be an holomorphic function on D* and let n € N*. Then f is mero-
morphic (resp. holomorphic) on D if and only if z — f(z") is meromorphic (resp. holo-
morphic) on D.

Proof. The function f is meromorphic on D if and only if there exists an integer m > 0
such that z — 2" f(z) is holomorphic on D. Consequently it is sufficient to consider the
case of holomorphic function. However an holomorphic function on D* is holomorphic
on D if and only if it has a limit in 0 and f has a limit in 0 if and only if z — f(2")
has. O

Let ¢ be a cusp of T, there exists o € SLy(R) such that ¢ = o(c0). So that co is a
cusp of 0 'T'e. A function f is weakly modular of weight k and level I' if and only if
f |x o is weakly modular of weight & and level 0~ 'T'oc. We say that f is meromophic at
¢ (resp. holomorphic at ¢, resp. cuspidal at ¢) if f | o is meromophic at oo (resp. holo-
morphic at 0o, resp. cuspidal at oo). This definition does not depend on the choice of o
such that ¢ = o(00).
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Definition 3.3. A modular form of weight k£ and level I' is a weakly modular function
of weight k and level I' which is holomorphic on H and holomorphic at all the cusps
of I'. We say that a modular form f is cuspidal if it is cuspidal at all the cusps of T
A meromorphic modular form of weight k and level I' is a weakly modular function of
weight k and level I' which is meromorphic at all the cusps of T'.

We note My(I') the C-vector space of modular forms of weight &£ and level I' and
Sk(T) its subspace of cuspidal forms.

A very useful notion related to modular curves is the notion of Fourier series or
g-development. Let f be a weakly modular form of weight k& and level I" and let ¢ be
a cusp of I and let o € SLy(R) such that ¢ = o(0c0). Assume in a first time that the
cusp is regular which means that there exists a real A > 0 such that ((1) h) e o~ 'T'.0 and
generates 0 'T.o. The function f, on D* such that f | o= f. oqy, is meromorphic with
at most one pole at 0 which means that it can be written as a Laurent series

felan) = Z angp, -
n=—m
This Laurent series does not depend on the choice of ¢ and is called the Fourier series
of f at the cusp c. If c is not regular, then we can find a generator of o~ 'T'c of the

form (Bl _hl) If k is even, there exists a meromorphic function f. on D* such that

fooqn=f |k o which is called the Fourier series of f at c. However if k is odd, we have
f(z+h) = —f(z) and we define the Fourier series of f at c as being the unique Laurent
series f. such that f.oqop = f |k 0.

Remark 3.4. There are few classical congruence subgroups having irregular cusps.
Namely if T" has some irregular cusp, then —Iy ¢ I'. Moreover this implies that there
exists an element v = (51 _hl) in I" such that Try = —2. Consequently, for all N > 1,
the group T'g(IN) has only regular cusps. As elements of the groups I'y (V) and I'(N) are
such that Tr~ = 2 [N], the existence of irregular cusps implies N | 4. Since —1I» € I'(2),
the groups I';(4) and I'(4) are the only congruences subgroups among I'o(N), T'1(N),
I'(V) having potentially irregular cusps. We can check that all the 6 cusps of I'(4) regular
and that, among the three cusps of I';(4), there is only one irregular cusp, represented
by [3].

Exercice 3.1. Assume that —I5 ¢ I'. Prove that a point of I'\Uy represents an irregular
cusp if and only it is fixed by —I.

When I' is an arithmetic group having oo as a cusp, we will sometime abuse and
speak about the Fourier expansion of a modular form f for the Fourier expansion at oo.

Example 3.5. It follows from Theorem 1.8 that, for £ > 2, the function Ggi is a
modular form of weight 2k and level SLy(Z). The function A is a cuspidal modular form
of weight 12 and level SLy(Z). We can remark that Goi(oo) = 2¢(2k) > 0, so that Ga
is not cuspidal. As the group SL2(Z) has a unique cusp, we can conclude that for k > 2,
we have MQk(SLQ(Z)) = CGy ® SQk(SLQ(Z))
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3.2 Dimension of spaces of modular forms

Let T’ be some arithmetic group. The map 7 : H — Y(T') is a non constant map
between two Riemann surfaces. Consequently if f is a meromorphic function on Y (I'),
the function 7*(f) := f o 7 is weakly modular of weight 0. Conversely if g is a weakly
modular function of weight 0 on H, then there exists a unique meromorphic function f
on Y (I') such that g = 7*(f).

Moreover one can check from the definition of the complex structure on X (I') (and
the proof of Theorem 2.15) that, for f a meromorphic function on Y (I'), then f is a
meromorphic function on X (I') if and only if 7*(f) is a weakly modular function of
weight 0 which is meromorphic at all cusps.

We remark that if w is a differential form on Y (I'), then 7*w = fdz for a unique
meromorphic function f on H and the map 7* induces an isomorphism from the complex
vector space of meromorphic differentials on Y (I') and the C-vector space of weakly
modular functions of weight 2 on H. Namely, it is sufficient to check that

a b ’ . —92
(c d) dz = (cz +d)"“d=.

Lemma 3.6. Let w be a meromophic differential form on Y (I'). Then w is a meromor-
phic differential form on X(I') if and only if 7*w = fdz with f a weakly modular form
of weight 2 which is meromorphic at all cusps.

Proof. We will use the local description given in the proof of Theorem 2.15. We can
restrict ourselves to prove that for f a meromorphic weakly modular function of weight
2 on H, the meromorphic differential w on Y (I') which is such that 7*w = fdz is
meromorphic at the cusp m(oo) if and only if f is meromorphic at co. Let r, h and f
be as in the proof of Theorem 2.15. Let ¢ the function z — e2mz/h Jefined on Foo\Uso,r
which is a local coordinate on X (I') at the neighborhood of 7(o0). Consequently it is
sufficient to check that 7*(dg) = ¢(z) dz for some holomorphic function on Us,, which

is meromorphic in ¢g. That is indeed the case since we have 7* dq = %q dz. ]

This computation shows that if w is a differential form on X (I') and 7*w = f(7)dr,
thenw is holomorphic at a cusp c if and only if f is cuspidal at ¢. Consequently, we have
an isomorphism of C-vector spaces

HY(X(T), Q) ~ Sy(I)
showing that dimc¢ S2(I") = g(I).

Theorem 3.7. Let k € 7Z and let T' be an arithmetic subgroup of SLa(Z). Then the
space My(T") is finite dimensional over C. Let g be the genus of X (I'), voo(y)™® the

number of reqular cusps of T, voo(I)™8 the number of irreqular cusps and v (T') =
Voo (D)8 + 1o (T) 178, We have
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(i) if k <0, then M(I') =0 ;
(ii) if k is even,
dime My(T) = (k= 1)(g — 1) + (1= =) |+ sve(D);
o 200
g if k=2

dimc Sk(I') = {(k “Dg-D+>, {% (1 — é)J + %Voo@)?

(iii) if k > 3 is odd and —I5 ¢ T,
k 1 k k—1 .
mm@Mﬂm:4k—)@—1y+ng(1—)J+2¢§+2¢ya

B 1N k=2 . k-1
dmmsgmzqk—n@-4y+§jb(1—>J+2%$+24$s

€z

Proof. We will only give details in the case even case. Let k € Z. We already showed
that the map f ~ f(7)(d7)®" induces a bijection from the set of weakly modular forms
meromorphic at cusps of weight 2k and meromorphic sections of (Q%(F))‘@’C . We need to

determine at which condition on the poles of f(7)(d7)®*, the form g is holomorphic at
a point of H or at a cusp.

Let P € H and Q = 7p(P). Let w = f(7)(d7)®* the corresponding form on X (T').
As 7 — P is a local parameter on H at P, 7/ = (7 — P)°P is a local parameter at () on
X (T). Writing locally w = g(7')(d7")®*, we have

f(T)(dT)®k _ g((T o P)ep)ellg(,r o P)k(ep—l) dr

so that
ordp f =epordg g+ k(ep — 1) = epordgw + k(ep — 1).

Consequently, f is holomorphic at P if and only if

1 1
ordp f 2 0 < ordgw = —k (1 — ) & ordg(g) = — {k <1 - )J .
ep ep

Now we assume that P is a cusp. We can assume that P = oo. Let Q) = np(P). Let

L h). Then gy, is a local parameter of X (I)

h > 0 be such that T is generated by (0 1

at ). Consequently we can write

F(T)(A7)® = g(qn)(dgn)®*

locally at Q. As dgp, = %qh dr, we obtain the equality

-\ k
Flanar = glan) (%) dk@n)™
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ie ordp f = k + ordg w. Consequently f is holomorphic at P if and only if
ordgw > —k.
Consequently we define the divisor D of X(T") by
D= Y {k (1— ;)J Pl+ > k[P
PeY (I) PeX(I)\Y(T)
We just proved that f € Moy (T) if and only if £(7)(d7)®¥ is a section of the line bundle
Q) © O(D).
Consequently My (") is finite dimensional and
dime Mo (T') = (kK + D).
We can compute the degree of this divisor

deg(kK + D) = k(2¢9(T") — 2) + Pezyjm Vc (1 - elp)J + kvoo(T).

We see that deg(kK + D) < 0 if k < 0, proving My (T') = 0 for £ < 0. Moreover, as I"
is an arithmetic group, we have v (I') > 0 so that deg(kK + D) > 2(g(T") — 2). We can
apply Riemann-Roch Theorem and conclude that

dim¢ M%(F) =1- g(F) + deg(k‘K + D)
which gives the desired formula. O

Remark 3.8. 1. In the case of even k, the sum over z is actually over elliptic points
of I' since e, = 1 when z is not elliptic.

2. If —I ¢ T', then T has no elliptic point of order 2, this is why only elliptic points
of order 3 appear in the formula for odd k.

3. If —I, ¢ I, it can be proved that v (I')™® is indeed an even integer.

3.3 Example

If I' = SLy(Z), we have



We already met the modular form Gop, € Moy (') for k > 2. Its g-expansion is

(2mi)? DN
=) a2 | g,
Ck—1)! & | 4

d>1

Gak(z) = 2¢(2k) + 2

Comme ((2k) # 0, the form Gy is not cuspidal and we have My, (I') = CGoy for
k€{2,3,4,5}. In general
Mo (') = CGay @ Sar(T).

Let g4 = 60Gy4, gs = 140Gs and A = g3 — 27g3. We already proved that A # 0 and
that A is cuspidal modular form of weight 12. More generally the two forms G4 and Gg
generate all modular forms for the group SLs(Z).

Theorem 3.9. Recall that here T’ = SLy(Z).
(i) The multiplication by A induces an isomorphism
My _12(T) = Sk().
(ii) Each element of @y>o Mar(I') is a polynomial in G4 and Gg :

P Mok (T') = C[G4, Ge).
k>0

3.4 Hecke operators

Let 'y C T'; be two congruence subgroups and let f € My(T';) be some modular form.
Then f € Mg(T'2). When T'y is a normal subgroup of 'y, we can define an action of I'y
on Mjy(T2) such that My(T'y) = My (I2)"t. Namely if v = (¢}4) € GLo(Q) 4 and f is a
function on H, we define

FIe(2) = det(7)* ez +d)F f (az - b) |

cz+d
This defines a right action of the group GL2(Q)4+ on functions over H.

Lemma 3.10. If I's is a normal congruence subgroup of the congruence subgroup I'y,
then My(T'9) is stable under the action of 'y and we have

M (T'y) = My, (o)t

More generally if T is a congruence subgroup of SLa(Z) and oo € GLa(Q) 4, then a™ T
contains a congruence subgroup I and

Mk(l“)[a]k C Mk(l“’).
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Proof. Essentially an exercice. For the existence of I, we can remark that there exists
N > 1 such that T(N) C T. Let M such that both Ma and Ma~! are in My(Z), then
we have

ol (NM?)a~ c T(N)

which implies the claim. O

We can consequently define the C-vector spaces

My= |J M(D), Si= | Su@)
ICSLy(Z) PCSLy(Z)

where the union are on congruence subgroups of SLy(Z). The lemma implies that the
group GL2(Q)4 acts on the right on these spaces via (v, f) — f[V]k-

Let’s consider now two congruence subgroups I'y and I'y and some a € GLy(Q).
The group I'y acts on the left on the double class I'1al’y and there is a bijection

Fl\I‘lafg ~ (FQ N a_lfla)\Fg

proving that these sets are finite. We can consequently write
T
I‘laFQ = Hl“lai.
i=1

If f € My(T'1), then the function Y ;_; flou]r does not depend on the choice of the
representatives a; but only on the double class I'yal's. We can consequently define

fIT1al'ag = if[ai]k.
i=1

The following result is easy to check :
Lemma 3.11. If f € My(T'1), then f[l'1als]xy € Mi(T2) and the map f — f[l'1al9)y
sends Sk(I'1) into Sk(I'2).

An Hecke operator is an operator of the form f +— f[I'1al's].

Composition law Consider three congruences subgroups I'1, I's and I's. For a and
in GL2(Q), the subset I';al'y 53 of GLa(Q) is stable by multiplication on the left by
elements of I'; and on the right by elements of I's, it is consequently a union of double
classes. More precisely, if I'al's = [I;_; T'1a; and T'28T's = [ T'28;, we have

[alxpl'y = U Iy a;B;
(3,5)
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so that T'yal'9fT's is a finite union of double classes. Let v be such that I'1yI's C
FlaI‘gﬁI‘g. Then

t
I'ys = [[ Ty
=1

and each I';7; is of the form I'yo;f; for certain pairs (7, 7). The important point is that
one [ can correspond to several (i, ) and we define

m(a, B;v) = #{(4,7) | T1aif; = L1y}

Lemma 3.12. The quantity m(a, ;) does not depend on the choice of the a;, ; and
1, but only on the double cosets I'yal's, I'ofl's and I'1~41's.

Proof. Indeed an elementary manipulation shows that m(a, 8;7) is the number of I'y
orbits in I'ya 'y, N T A3 which does not depend on the choice of ;. O

These multiplicity numbers determine the composition law of Hecke operators.

Proposition 3.13. In Homc¢ (M (T'1), Mk(T's)) we have an equality

[T1al)g o [T261s]x = > m(a, B;7)[L17T 5]k
Fl’ngCFlaFQﬂFg

Here is an other point of view concerning the composition of Hecke operators. For I'
a congruence subgroup, let

My = Z[I'\ GLy(Q)4] = P Z[Ia].

It is the free abelian group generated by the left orbits of I' acting on GL2(Q)+. The
group GL2(Q)+ acts naturally by multiplication on the right on this Z-module. Moreover
the group GL2(Q)+ acts transitively on a basis of this space containing the trivial class
I'. Consequently, a GL2(Q)+-equivariant endomorphism of My is characterized by the
image of the element [I']. As the stabilizer of this element is exactly I'. It is not
complicated to check that the submodule of I'-invariant elements in Mt is exactly the
submodule generated by the element of the form

Z[FO&Z']

where [[T'a; is a double class of T' in GL2(Q)4. More precisely if I'al" is a double class
in GL2(Q)+ let [['al’] be the element of Mp defined by

[Call = [Toy]

where [[T'o; is a decomposition of T'al" in left classes. Let R(T") be the Z-submodule of
Mr generated by these double class elements. Then we have
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Lemma 3.14. We have an equality R(I') = Mk and the map ¢ — ¢([I']) induces an
isomorphism
EndGLQ(Q)+ MF ~ R(F)

This lemma implies that the Z-module R(T") has actually a structure of ring with
multiplication coming from the composition in Endgr,,q), Mr. Let’s determine explic-
itly this composition law. To determine the sum of double classes corresponding to the
composite of [['al'] with [['T] it is sufficient to understand what is the image of [I'] by
[Cal] o [[ATY. Tt is exactly

Y aipl= > mla,B;7) ).

(4,9) I'yI'clal'pT°
Consequently the map
R(T) = Ende(My(I))

sending [['al’] on the Hecke operator [I'al']y is a ring homomorphism.

Example of SLy(Z) Let I' = SL2(Z). We define H(T') C Endgr,(g), Mr as the sub
algebra generated by the double coset included in M3 (Z). It is the abstract Hecke algebra
of group I'.

In this case the Z-module Mr can be identified with the free abelian ring with basis
the set of lattices in Q2. Namely we make correspond a class I'a to the lattice ‘aZ?.

The double classes of SLa(Z) in M2 (Z) are in bijection with pairs of positive integers
(d1,d2) such that d; | d2. To (di, dz2) corresponds the double class of the diagonal matrix

(‘f)l do2). Let T'(dy,d2) be the element of H(T') corresponding to this double class and
for n > 1, we define

Tn)= S T(d,db).

dida=n

The operator T'(n) corresponds to the formal sum of double classes of SLy(Z) in Ma(Z)
of determinant n. For k > 2, we define Ty (n) and Ty (d;, d2) their images in End¢ My(T).

Remark 3.15. The operator T'(n,n) is easy to compute : it corresponds to a double
class generated by a central element, it is consequently a single left class and we have

Tk (TL, n) = ’I’Lk_QIMk(F).
Proposition 3.16. In the abstract Hecke algebra, we have the equalities
(i) If m An =1, then T(mn) =T (m)T(n);
(ii) if p is prime and n > 1, we have

T(p™)T(p) =T (") + pT(p,p)T(P");
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(iii) for general m > 1 and n > 1 we have

T(m)T(n) = d|%/:\n dT(d,d)T (d?) :
d>1

Proof. 1t is sufficient to understand the action of T'(n) on the space Mr identified to the
Z-module of lattices in Z?. If « € My(Z), we have det o = n if and only if the lattice
taZ? is of index n in Z?. Consequently we have the formula, for a lattice A in Q2.

A= Y (A
ANCA
[A:N]=n

The first formula is then a consequence of the fact that if m An = 1, and A” C A is
sublattice of index mn, there exists a unique intermediate lattice A” C A’ C A such that
[A : A'] = n. The second formula can be proved by some analogous reasoning and the
third formula is a consequence of the first two. ]

Corollary 3.17. The algebra H(T') is commutative and so are Hy(T') for all k > 2.

From the commutativity, there is no danger to write Ty (m)(f) for f | Tip(m).

We can now compute the effect of Hecke operators on the g-development of modular
forms for SLy(Z).

Proposition 3.18. Let f € My(SL2(Z)) and let 3¢ an(f)q" be its q-development.
For m > 1, we have

n=0
with
an(Te(m)f) = Y akfla:j; (f)
almAn
a1
Proof. Let

The map ¢ — ‘gZ? induces a bijection from S,, on the set of lattices in Z? of index n,

so that
Tk(n) = Z 9]k
gESH
The result follows from a direct computation. O

Example 3.19. If p is a prime, we have

Tie() (O and™) =D apng” + "1 ang®™

n=>0 n=>0 n=0
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3.5 Adelic quotients

Let Ag be the ring of adeles of Q. Let P be the set of prime numbers in Q. By definition
Ag is the ring

Ag = {(zy) € H Qy | for almost all p € P, z, € Zp}.
vEPU{oc0}

It can be described as an inductive limit over finite subsets S C P :

@HQPHZ x R).

peES pé¢S

We consider the inductive limit topology on this set where each product [, g Qp Hp¢ 5 LipX
R is endowed with the product topology. The topology of Ag has a basis whose elements
are the [[pep Up [1p¢s Zp % la,b] for S a finite subset of P, U, an open subset of Q, and
a < b two real numbers.

For this topology, the ring Ag is a topological ring. The diagonal injection Q — Ag
is a morphism of rings whose image is discrete in Ag. We use this injection to identify
Q to a discrete subring of Ag. It can be checked that the quotient Ag/Q is compact
and isomorphic, as a topologique group, to [, Z, x (R/Z).

Let Aé C Ag be the closed subring of elements (7y),cpufoc} Such that zo, = 0.

It is called the subring of finite adeles. Let Z be the profinite completion of Z,
7= L Z/nZ. There is a decomposition 7 ~ [1, Z, identifying Z to an open Subrlng

ofAf.

The field Q injects dlagonally in Af Q— Af We have to be careful here : the
two diagonal injections Q — A and Q — Ag are not compatible ! We have an equality

=Q+ 7. As 7 is dense in Z, we conclude that Q is dense in Aé.

The group of invertible elements Aé is the set of elements (z,) such that x, € Z)

excepted for a finite number of primes p. More generally, if n > 1, we define GL,,(Ag)
as the set of invertible matrices of M,,(Ag). It can be described as the set

{(gv) € [J GLn(Qu) | gp € GLn(Zy) for almost all primes p}.
v

This is indeed a generalisation since A@ = GL;(Aq). In order to define a topology on
these sets, we embed GL,(Ag) into M, (Ag) x Ag via the map M + (M, det(M)™1).
Its image is a closed subset of M,,(Ag) x Ag since it is the set of pairs (M, a) such that
adet(M) = 1. We consider the topology on GL, (Ag) which is induced by the product
topology of M,,(Ag) x Ag on GL,(Ag). A base for this topology is given by the subsets

11 Us I GLn(Zp) x

pES  p¢S
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where S is a finite set of prime numbers, U, is an open subset of GL,,(Q,) and U is an

~

open subset of GL2(R). For example the group GL,(Z) ~ [, GL,(Z,) is an open and
compact subgroup of GLn(Aé). Moreover we have a decomposition of topological groups

GL,(Ag) ~ GLn(Aé) x GLp(R). The image of the diagonal embedding GL,(Q) —
GL,(Ag) is discrete.

Now we consider especially the case where n = 2. We endow the group SLQ(A(f@)

with the topology induced by the topology of GLQ(A(@). Note that it is also the topology
induced from the inclusion (with closed image) SLQ(AE&) C Mg(Aé).

Lemma 3.20. The diagonal inclusion SLa(Q) C SLg(Aé) has a dense image.

Proof. For any ring A, the map

A3 — SL2 (A)

1 z 1 0 1 =z
@v.2) = g 1), 1) o 1

is surjective. Replacing A with Aé, we obtain a continuous and surjective map (Aé)?’ —
SLQ(A(S). The image of Q% under this map is exactly SL2(Q). The desired result is then
a consequence of the density of QQ inside Aé. O

Lemma 3.21. We have Aé = @jZX. If H C (Aé) is a compact open subgroup of Af,
the quotient (Aé)X/QiH is finite.

Proof. The first assertion is a direct consequence of the fact that Z is a PID. For the
second assertion, we remark that H is a subgroup of the maximal compact subgroup
Z*. As H is open in ZX, the quotient 7~ /H is finite. It follows from the first assertion
that (Aé)X/QiH is isomorphic to a quotient of Z* /H. O

Lemma 3.22. Let K C GLg(Aé) be a compact open subgroup. Then the double quotient
GLQ(Q)+\GL2(A(f@)/K is finite. Moreover if det(K) = Z*, this double quotient is a

~

singleton. If K C GLa(Z), we can write
GLy(A)) = [[ CL2(Q) 4 gi K
i=1

for finitely many g; € GLQ(Z).

Proof. We can consider the map GL2(Q)4\ GLQ(A{@)/K — (Aé)x/(@X det(K) induced
by the determinant. Assume that x and y are two elements of GLg(Aé) such that
QZ det(z) det(K) = QZ det(y) det(K). We want to prove that GL2(Q) 12K = GL2(Q) 1y K.
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As det(GL2(Q)+) = QF, we can assume that det(z) = det(y). Multiplying by y~' on
the right, it is sufficient to prove that GL2(Q) zy ' (yKy ') = GL2(Q)(yKy~'). Now
zy~! € SLy(A}) and we deduce from Lemma 3.20, that SLy(A) = SLa(Q)((yKy ') N

SLQ(AE&)) since yKy~1 N SLQ(A(S)) is an open subgroup of SLQ(A(@).

We can remark that a continuous morphism G — H between topological groups
having a continuous section s : H — G is open. This is the case of det, a section being
given by z — (£ 7). Consequently the group det(K) is compact and open inside Aé. It
is consequently contained in 7. The finiteness and the last assertion are consequence
of Lemma 3.21. O

Let K C GLQ(A@ be a compact open subgroup. Up to conjugation, we can assume

that K C GLy(Z) which we always do in the sequel. Let Ko == O3(R) C GLy(R). It
is a maximal compact subgroup and let K := SO2(R) be its neutral component (the
connected component of the neutral element).

We define
Xk = GL2(Q)\ GL2(Ag) /(K K ).

The introduction of this double quotient is easily justified by the analogy with class
field theory (that we can recover by replacing GLy with GL1). As K K, is compact and
GL2(Q) is discrete, the topological space X is locally compact. Let X = GLa(R)/Kx
which is locally compact topological space. As K, contains matrices of negative deter-
minant, the action of GLg(R)4 is transitive on X,. Consequently we have an homeo-
morphism

Xk =~ GLy(Q)4+\(Xoo x GL2(A))/K).

~

Using Lemma 3.22, we see that there exists ¢g1,..., g, € GL2(Z) such that

T
Xk =[] Ti\ X
=1

where I'; = GLo(Q) 4+ N g; Kg; ' C GLQ(A(&). As g; € GLy(Z), we have

~

I'; C GLy(Q)4 N GLy(Z) = SLy(Z).

Moreover, a basis of neighborhoods of 1 in GLy(Z) is given by the subgroups K(N) =
Ker(GLy(Z) — GLo(Z/NZ)) with N > 1. As K is an open subgroup of GLy(Z), there
exists some N > 1 such that K(N) C K. As GL2(Q)1 N K(N) = I'(N), we must
have I'(N) C T'; for all 1 < ¢ < r showing that the groups I'; are actually congruences
subgroups.

The space X is almost really Poincaré upper half plane H. Namely stabiliser of
i in GL2(R)4 for his action on H is the subgroup of similitudes Z(R)SO2(R) with Z
the center of GLg(R). There is a isomorphism of topological group A, x O2(R) ~
Z(R)S02(R) C GL2(R)4, where Ay, ~ R is the neutral component of Z(R), inducing
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a diffeomorphism Ao x H ~ Xo. As Ay is actually contained in the center of GLa(Ag)
and since GL2(Q)+ N K x Ay, = {1}, we obtain a diffeomorphism

Aso X (ﬁ Y(FQ) ~ Xp.
i=1
The space X is consequently “almost” a disjoint union of modular curves Y (I';). If we
assume moreover that det(K) = Z*, then r = 1 and
A x Y (I') =~ X = GL2(Q)\ GL2(Aqg) /(K x O2(R))
where T is the congruence subgroup GL2(Q)4+ N K.
Example 3.23. For N > 1 define

Ko(N) = {(‘CL 2) € GLy(Z) | c e NZ}, Ki(N) = {(‘c‘ 2) e Ko(N)|a—1¢ NZ}.
Both Ky(N) and K;(N) are compact open subgroups of GLy(Z). Moreover Iy(N) =
GL2(Q)+NKp(N) and ' (N) = GL2(Q)+ N K (N). Consequently we have isomorphisms

The groups Ko(N) and K1 (N) can be decomposed as products indexed by prime numbers
Ki(N) =[], Ki(N), where K;(N), is the compact open subgroup of GL2(Qp) defined

by
Ko}, = {M A= (; :) [p]vm}

Ki(N)p = {M | M = ((1) :) [p]vp(m}

If K C GLy(Z), we have GLQ(A@ = GL2(Q)4+ K so that the inclusion GL2(Q) C
GLa (Aé) induces two bijections

I\ GLy(Q)+ = K\ GLa(A}),
I'\ GLy(Q)+/T =+ K\ GLa(Af)/K.

Moreover if K is a product [], K) with K}, a compact open subgroup of GL2(Qp),
then we have

K\ GLy(A}) ~ lim ] K,\ GLa2(Qy),
SCPpeS

K\ GLa(Af)/K =~ égl I] &,\ GL2(Qy) /K,
CPpeS
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where S is a finite subset of P. These isomorphisms are induced by injections

[lpes Kp\ GL2(Qp)/Kp — K\ GL?(A@/K
HpeS Kygp — Kuis(g)

where 1g(g) is the element h € GLQ(A(S) such that hy, =g, if pe Sand h, =1ifp ¢ S.
In particular we have a injection of rings

LIKy\ GLa(Qy)/ K] = Z | K\ GLo(AL) /K| .

Note R(K,) = Z[K,\ GL2(Q,)/K)] is a ring after identification with the set of GL2(Q))-
equivariant endomorphisms of Z[K,\ GL2(Q))].

To summarise, we have an isomorphism of rings

ling (@ R(Kp)) ~ R(T)
SCP \peS
where R(K,) = Z[K,\ GL2(Qp)/Kp] and I' = GLa(Q)4 N [T, Kp.

3.6 Hecke operators for more general congruence subgroups

Now we fix N > 1 et we define I' = I'; (V). We have to be more careful when defining
Hecke algebras if we want to keep having commutative algebras. Let

A{(N) = {(Z Z) € M2(Z)NGL2(Q)4+ | N|c,a=1[N]and d € (Z/NZ)X}.

Moreover we denote Ay the subset of M3(Z) N GL2(Q)4 consisting of matrices of de-
terminant prime to V.

Proposition 3.24. The inclusion A1(N) C A induces a bijection
I1 (N)\AL(N)/T1(N) = SLa(Z)\An/ SLa(Z). (3)

Let HN)(T'1(N)) be the subalgebra of R(T'1(N)) generated by elements [I'1(N)al'y(N)]
with o € A1(N). The map [I'1(N)al'1(N)] — [SLa(Z)aSLa(Z)] induces an injective
morphism of rings

HIV(T1(N)) = H(SLa(Z))
whose image is generated by element T'(n) and T'(m,m) with n and m prime to N.
Proof. Let o € Aq(N) and (op)pep its image in GLQ(AE&). If p{ N, then K{(N), =

GL2(Z,) so that
K1(N)popK1(N)p = GLa(Zp)ap GLa(Zy).
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If p| N, then o, € K1(N), so that
Ki(N)pop K1(N)p = K1(N)p,  GLa(Zp)ay GL2(Zyp).
This implies that, for @ and £ in A;(N), we have
GLa(Z)a GLy(Z) = GLo(Z) 8 GLa(Z) = K1 (N)aK (N) = K1 (N)BEK,(N).
This implies the injectivity of the map (3). (...) O
The algebra H)(I';(N)) is consequently commutative and acts on M (I'1(V)) for

all £ > 1. We denote by ’H,(CN) (I'1(N)) its image in Ende (Mg (I'1(N)).

Let dy | da be two elements of N such that m = dids is prime to N. Let T'(dy,d2)
the element HN)(I';(N)) corresponding to the element of H(SLy(Z)) written with the
same symbol. For n prime to N, we define

TTn):: 2:: IKdl,dQ)
dy|d2
dido=n

It follows from proposition 3.24 that we have, for pt N

T("T(p) = TE") + pT(p,p)T(P" ).

More generally, if T' € End Mr, we denote by T} the image of T in the ring of endomor-
phisms of My(T").

Remark 3.25. We have to care to the fact that the operator T'(p,p)r does not act on
M (T'1(N)) by multiplication by p*~!, contrary to the case of SLa(Z).

Definition 3.26. Let d € (Z/NZ)* and let o € To(N) such that

d-1
a= < 0 d> [N].

We define (d) € R(I'1(N)) the element corresponding to the double class I'1(N)al'1 (V).
It is actually a simple class depending only on d.

Let pt N and let o, defining (p). We have

pa = (3 ;;) N]

and SLo(Z)pa SLa(Z) = SLa(Z) (§ 5 ). This implies that the element T'(p, p) € H™) (It (N)
corresponds to the double class of the matrix pa. Specializing in End My (I'1(N)), we
obtain the relation

k71<

T(p,p)r =" (P)k
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and
T(p™)T(p)r = TE™ )k + " )T (™).

Finally, if all prime divisors of m > 1 are also divisors of N (that we note m | N°*°) we
define

T(m) = ['1(N) (3 ;) Ty(N)] € R(Ty (V)

and we define H(I'; (IV)) as the sub-algebra of R(I'1(N)) generated by H)(I';(N)) and
all other operators (d) for d € (Z/NZ)* and T'(m) for m | N*°.

Theorem 3.27. Let m > 1 and let m = m/m” with m' prime to N and m" | N*.
Then T(m/)T(m") = T(m")T(m'). Moreover the algebra H(T'1(N)) is commutative and
generated by elements T'(n), n > 1 and (d) for d € (Z/NZ)*

Proof. See [Shi, Thm. 3.34]. O

Action of Hecke operators on g-developments

Theorem 3.28. Let f € M(I'1(N)) be a modular form with q-development

f(z) = Z en(f)"

n=0

Then, for m > 1, we have

(f [ T(m)i)(z) = Y ealf | T(m)r)g"
n=0
with
en(f 1 T(m)g) = Y d* leme((d)f)

dlnAm

with the convention that (d) =0 if d AN # 1.
Proof. See for example [Shi, p. 80]. O

Let x be some character of (Z/NZ)*. We define My(I'1(IV),x) as the x-isotypic
subspace of M (T'1(N)) for the action of (Z/NZ)* defined by operators (d). More
precisely

My (T1(N),x) = {f € Mp(T1(N)) [(d)f = x(d)f}-

As a particular case, we can check that My (T'o(N)) = My(T1(V), xo) with xo the trivial
character. As an example, we obtain, for f € M (I'1(N), x),

T( ) f — Zn}O a’]m(f)qn +pk_1X(p) Zn}() an(f)qnp if p 1’ N
o 2nz0 apn( )" if p| N.
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3.7 Petersson inner product

On Poincaré upper half space H, we have the hyperbolic measure du(z + iy) = d‘ZQdy.

This measure is invariant under the action of the group GL2(R);. The fundamental
domain D = {z € H | |z|] > 1, |Rez| < 1/2} has a finite volume for this measure.

Let I' C SLy(Z) be some congruence subgroup. We can construct a fundamental
domain for the action of I' by defining

Dr = Uy(D)

with ~ varying in among representants of I'{+1I>}\ SLa(Z).

Let ¢ be some function defined on Y (I') = I'\H. We say that ¢ is integrable if ¢ is
measurable and if the integral

A el = ]Zl [ 1étai-)lan

is convergent (with SLo(Z) = I[j—; I'a;). We define

Vol(T) = [ du = [SLa(Z) : T{+L}] / dp.

Dr D
Theorem 3.29. Let f € My(T') and let g € Sk(I'). Then the function

2 f(2)g(2) Im(2)"
1s integrable and the formula

(f,9) = Vol(I) ™! L 1(2)9(2) Im(z)" dp
N

defines an hermitian inner product which is invariant under the action of I

Proof. See for example [DS, §5.4]. O

The normalization of the inner product implies that, if IV C T, the injection Sy (') c
Si(T") is isometric. Consequently we obtain some inner product on Sy.

Lemma 3.30. Let o € GL2(Q)4 and let o’ = (det a)a~t. Then we have, for f and g
m Sk,

(fladk, g) = (f, gle/Tx)-

Proof. This is [DS, Prop. 5.5.2]. O

From this lemma, we can deduce :
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Proposition 3.31. Let I' be a congruence subgroup. For f € Si(I') and g € Sk(I"), we
have

(f[CaTl,g) = (f, g[Ca'T]).

Corollary 3.32. For n AN = 1, the endomorphism T(n)i of Sp(I'1(N)) is normal.
Moreover we have, {(d)* = (d~1).

We can deduce from this corollary and from the commutativity of the algebra
H(I'1(N)) that the space Si(I'1(N)) has an orthogonal basis in which all the opera-
tors T'(n) for n A N =1 and (d) are diagonal.

The case of SLy(Z) is particular. Namely in this case, the space Si(SL2(Z)) has a
unique such base. Namely each eigenspace for the action of Hy(SLa(Z)) is one dimen-
sional. This can be checked by the formula c;(f | T(n)i) = cn(f) for f € Si(SLa2(Z)).

3.8 Old forms and newforms

Let 1 < M | N with N = dM and let ag == (29). We have o 'T1(M)ay C T1(N)
which implies that
f € Sp(T'i(M)) = flaalk € Sk(T1(N)).

More generally, for d | N, we define a map

Se(Ti(N/d))? —  Sk(T'1(N))
(f,9) = f +gladlk-

The subspace of old forms in Si(I'1(IN)) is the subspace generated by the images of all
iqfor d | N, d> 1.

Sk(T1(N))°M == " Im(ig).
e

It is easily checked that we have

SpT1(N)) = " Tm(Gp).
pIN

The subspace of newforms is the orthogonal of the space of old forms for Petersson inner

product
Si(T1 (V)" = (S (L1 (V)

Proposition 3.33. The subspaces Si,(I'1(N))°'4 and Sp(T1(N))"Y of Si(T'1(N)) are
stable under the action of the Hecke algebra H(T'1(N)).

Proof. See [DS, Prop. 5.6.2]. O

The main technical result of the theory of newforms is the following. A complete
proof is in [DS] (see [DS, Thm. 5.7.1]).
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Lemma 3.34. Let f € Si(I'1(V)) be such that a,(f) =0 when n AN =1, then we can
write f =3, n ip(fp) with fy, € Sp(T'1(N/p)).

Let f € Sp(I'1(N))"" be a new form which is an eigenvector for operators T'(n) for
n AN = 1. It follows from the explicit action of Hecke operators on g-development that

an(f) = ar(Ti(n)f) = (T (n))as (f).

We deduce from Lemma 3.34 that f # 0 implies a1(f) # 0 and that f is unique up to
a scalar. This implies that f is an eigenvectors of all other elements of H(I'1(NV)). A
newform which is an eigenvector for all T'(n), n A N = 1 is called proper. Moreover if
a1(f) = 1, we say that f is normalized. Consequently we proved :

Theorem 3.35 (Atkin-Lehner). The C-vector space Si(I'1(N))" has a basis of com-
mon eigenvectors for the operators T(n) and (d) when n AN =1 and d € (Z/NZ)*.
Moreover each common eigenspace has dimension 1 and is generated by a unique nor-
malized proper newform.

This theorem of Atkin and Lehner is usually called “weak multiplicity one theorem”.
The “strong multiplicity one theorem” is a bit more involved. Here is its statement :

Theorem 3.36 (Atkin-Lehner). Let f € Sp(I't(N))"V and g € Sp(I'1(M))**" be two
proper forms corresponding to systems of eigenvalues

1/Jf :Hk<F1(N>) —>(C, lbg :Hk(Fl(M)) — C.

Assume that (T (p)) = g(T(p)) for all prime number p except a finite number of
them. Then N = M and f = g.

This theorem implies that if ¢ : Hy(I'1(N)) — C is a system of eigenvalues then it
corresponds to a unique newform f in level Ny | N. This level Ny is called the conductor

of .

3.9 Hecke eigensystems

Let Hi(T'1(N))c be the sub-C-algebra of Endc My(I'1(N)) generated by Hy(T'1(N)).
There is consequently a surjective map H(I'1(N)) ® C — Hy(I'1(N))c. This map is not
a priori a bijection.

Theorem 3.37. Assume thatk > 1. The Hy(T1(N))c-module My (T'1(N))" := Home (Mg (T1(N)),C)
is free of rank 1.

Corollary 3.38. We have dimc Hy(T'1(N))c = dime Mg (T'1(N)). Moreover each char-
acter of C-algebra Hi(I'1(N))c — C corresponds to a unique eigenform f € Mp(T'1(N)).
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Proof. We consider the bilinear pairing

Hi(T1(N)) x Mp(T1(N)) —  C
(T7 f) — Cl(f‘T)

This is a perfect pairing. Namely if ¢;(f|T) = 0 for all T € Hy(I'1(N))c, we have
en(f) = ca1(f|Tk(n)) = 0 for alln > 1. This implies that f is constant but, since k > 1, we
have f = 0. If T' € Hy(['1(IV))c is such that forall f € M(I'1(N)), we have ¢1(f|T) = 0,
then ¢, (f|T) = c1(fITT(n)) = c1((f|T(n))|T) = 0 for all f € Mp(I'1(N)) and n > 1.
As above, this implies that f|T' = 0 for all f € My(I'1(N)) and finally 7" = 0. The two
spaces Hy(I'1(N))c and M (I'1(NN)) begin finitely dimensional over C, this is enough to
prove that the pairing is perfect. The pairing induces an isomorphism Hj(T'1(N)) =
My (T'1(N))" which is Hy(T'1(NV))c-equivariant and this proves the claim. O

If \: Hp(T'1(N))c — C is a character, we define
Mi(T1(N))[A = {f € Mk(D1(N)) [ VT € Hi(T1(N))c, fIT = NT)f}.

We can also define the sub-Z-algebra hi(I'1(N)) C Endc Si(I'1(N)) generated by
the operators T}, and (d), the sub-C-algebra hy(I'1(N))c generated by hx(I'1(N)). The
same proof shows that Si(I'1(N))c is a free hg(I'1(INV))c-module of rank 1.

We will admit the following result, which will be proved only for Se(I'1(N)).

Theorem 3.39. In C-vector spaces My(I'1(N)) (resp. Sk(I'1(N))), there exists a sub-
Z-module generated by a basis of My(I'1(N)) (resp. Sk(I'1(N))) which is stable under
the action of Hi(I'1(N)).

Corollary 3.40. The Z-algebras Hi(T'1(N)) (resp. Hi(T1(N))) is a finite free Z-module
of rank dimc My (I'1(N)) (resp. dime Sk(I'1(V))).

Proof. Let Ly be a finite free Z-module stable by Hp(I'1(N)) such that My(I'1(N)) ~
L; ® C. As Lj, is torsion free, we have

Endc Mg (T'1(N)) ~ C® Endg Ly
which implies the isomorphism Hy(I'1(V))c ~ C®@ Hi(T'1(N)). O

This result has the following consequence. Let f € My(I'1(IN)) be an eigenform which
is moreover normalised (ie that ¢1(f) = 1). Then the coefficients ¢, (f) are algebraic
integers and generate a finite extension of Q denoted Ky. Namely let X : Hy(I'1(IV)) — C
be the character sending an operator 7" on the eigenvalue A\(T"). The image of A in C is
a subring which is a quotient of Hy(T'1(N)) and consequently a finite free Z-module. It
generates a number field and its elements are algebraic integers.

Now let o € Gal(Q/Q). Then o o X is an other character Hy(T'1(N)) — Q C C. As
M;(T'1(N))" is finite free of rank 1 over Hy(I'1(N))c, the subspace My (I'1(N))[o o ] is
non zero, which means that it contains a unique normalised eigenform o (f). This form
is called the conjugate of f under o.
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Remark 3.41. If f € My(I'o(N)), the fact that the operators T'(n) for n A N = 1 are
autoadjoint and the strong multiplicity one theorem imply that Ky is totally real.

Example 3.42. Here are some explicit example in weight 2 :

ha(To(23)) = Z[X555],  ha(To(29)) = Z[V2], ha(To(31)) ~ Z[15L5].

4 Some complement of algebraic geometry

4.1 Schemes and functors
Let X be a scheme. If A is a ring, we recall that the set of A-points of X is the set
X(A) == Hom(Spec A4, X).

Consequently a scheme gives rise to a covariant functor from the category of rings to
the category of sets. The category of rings being antiequivalent to the category of affine
schemes, it is equivalent to consider the contravariant functor Y +— Hom(Y, X) from the
category of affine schemes to the category of sets. More generally, given a scheme S, we
can define the set of S-points of X by

X (S) =Hom(S, X).

A contravariant functor from a category C to the category of sets is called a presheaf on
the category C. The presheaves over a category C form a category denoted C. The main
interest of this construction is the following result.

Theorem 4.1 (Yoneda). Let C be a category. The functor from C to the category 9
sending X to the presheaf Hom(—, X) is fully faithfull.

Consequently we can identify a scheme X with its functor of points Hom(—, X') over
the whole category of schemes. Actually the case of schemes is more special and we
can even identify a scheme X to its functor of points over the full subcategory of affine
schemes. It is a consequence of Theorem 4.1 and of the following lemma.

Lemma 4.2. Let X be a scheme and let (U;)icr be a covering of X by affine open
subschemes and, for each (i,j) € I?, let (Vlkj)ke[” be a covering og U; N U; by affine
open subschemes. The the following sequence of functors is exact

Hom(X, —) — [[Hom(U;,—) = [ Hom(V}, ).
i€l (i,5)el?
kel; ;

Consequently we obtain the following result.
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Corollary 4.3. Let Sch be the category of schemes and AfF the category of presheaves
over the category Aff of affine schemes. Then the functor X — Hom(—, X) from Sch to
Aff is fully faithful. More generally, if S is a scheme and Sch,g and Aff ;s denote the
categories of S-schemes and of S-schemes which are affine, then the functor from Sch g

to ﬁ; defined by X — Homg(—, X) is fully faithful.

In summary, we can identify a scheme (resp. an S-scheme) to its functor of points
over the category of affine schemes (resp. S-schemes which are affine).

Definition 4.4. Let S be a scheme. An S-group scheme is a contravariant functor
G Aff(/)g — Gr from the category of S-schemes which are affine to the category of
groups whose underlying presheaf is a scheme.

When G is a group scheme, we use the same symbol G to describe its underlying
scheme. In other words, a group scheme is a scheme G such that, for each map Spec A —
S, the set G(A) has, functorially in A, a group structure.

If G is a group scheme, the multiplication maps m4 : (GxgG)(A) ~ G(A) x G(A) —
G(A) induce a multiplication morphism m : GxgG — G. The family (e4 € G(A))4 gives
rise to a neutral section eg € G(S). Moreover there exists an inverse map i : G — G
corresponding to the inverse map on each G(A). The data (m, eg, i) encodes the structure
of group scheme over G. We have to be careful to the fact that the set G itself is not a
group !

Example 4.5. a) We can define a group scheme G, by G,(A) = (A4, +) for each ring
A. The underlying scheme is isomorphic to Spec Z[T']. The multiplication map m comes
from the ring homomorphism m* : Z[T] — Z[T|®zZ[T] defined by m*(T) = 1@T+T®1.

b) The multiplicative group G, is defined by the formula G,,(A) = (A%, x). We
have G, ~ Spec Z[T, T~ and m*(T) =T @ T.

c) A generalization of G, is
GLy(A) ={M € Mpy(A) | det(M) € A*}.
It is a group scheme since GLy ~ Spec Z[(T; ;)1<i,j<n, det_l}.

d) If H is a finite group, we can define the constant group scheme H(A) = {my(Spec A) —
H} with the obvious group structure coming from H. It is a group scheme corresponding

to [1,epy SpecZ.

e) For N > 1, we can define uy(A) = {z € A| ¥ = 1}. We have

N ~ Spec Z[T] /(TN —1).
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4.2 Unramified, smooth and étale morphisms

Definition 4.6. Let f : X — S be a morphism of schemes. We say that f is smooth if,
for all x € X, there exists an open neighbourhood U of x, an open neighbourhood V' of
s = f(x) and a closed immersion i : U — Ay, such that f(U) CV, flu =poi wherep
is the canonical projection Ay, — V' and the schematic image of j is defined by an ideal
generated by functions g1, ..., g, on Ay, such that

We have the following equivalent characterization of smooth morphisms.

Proposition 4.7. A morphism f: X — S is smooth if and only if it is locally of finite
presentation, flat and geometrically reqular, which means that for each point s € S and
each map Speck — s with k an algebraic closed field, the scheme X X gSpeck is reqular.

Proof. See [BLR90, Prop. 2.3.8] and [BLR90, Prop. 2.2.15]. O

It follows from the definition that, for a smooth morphism f : X — S, the sheaf
of Ox-modules Q}{ /s is locally free of finite rank. It follows from Proposition 4.7 that

its rank at a point x € X is equal to dim, f~'(f(z)). This implies that the function
x + dim, f~1(f(x)) is locally constant when f is smooth. The function = + rk Qﬁ(/sx =

dim, f~(f(x)) is called the relative dimension of the smooth morphism f.
A morphism f: X — S is called étale if it is smooth of relative dimension 0.

Corollary 4.8. A morphism f : X — S is étale if and only if it is locally of finite
presentation, flat and Qﬁ(/s =0.

We say that a morphism f : X — S is unramified or net if it is locally of finite
presentation and if Qﬁ( /s = 0. In particular a morphism is étale if and only if it is flat
and unramified if and only if it is smooth and unramified.

It is useful to have a characterization of unramified, smooth and étale morphism in
terms of the functor of points.

Theorem 4.9. Let f: X — S be a morphism locally of finite presentation. The map f
is unramified (resp. smooth, resp. étale) if and only if for all S-scheme Y which is affine
and for all closed subscheme Yy C'Y defined by some ideal I such that I?> =0, the map

Homg(Y, X) — Homg(Yp, X)
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is injective (resp. surjective, resp. bijective).

X
/J(f

—
>
— S

< X

Proof. See [BLR90, Prop. 2.2.6]. O

We deduce easily from this characterization that being unramified, smooth or étale
is preserved by composition and base change.

Proposition 4.10. Let h: X — S and g:Y — S be morphisms and f : X —Y a map
of S-schemes. Assume that g is unramified. Then if h is smooth (resp. étale), so is f.

x 1.y
AV
S

Let f : X — S be a morphism of schemes and let x € X. We say that f is unramified
(resp. smooth, resp. étale) at x if it is so for f|y for some open neighbourhood U of x.

The smoothness of a morphism between smooth schemes can be read on the sheaves
of differentials.

Proposition 4.11. Let f : X — Y be a morphism between smooth S-schemes. Let
x € X. The following assertions are equivalent :

(i) f is smooth at x ;

(it) the morphism of Ox z-modules (f*Q%,/S)x — Qﬁ(/s’x is injective and its image
s a direct factor ;

(iii) the k(x)-linear map (f*Q%//S) ® k(z) — Q%(/S ® k(zx) is injective.

Proof. See [BLR90, Prop. 2.2.8]. O

Corollary 4.12. Let f : X — Y be a morphism between smooth S-schemes. Let x € X.
The following assertions are equivalent :

(i) f is étale at x ;
(ii) the morphism of Ox ;-modules (f*Q%,/S)x — Q}(/SJ is an isomorphism ;

(iii) the k(x)-linear map (f*Q%,/S) ® k(z) — Q%(/S ® k(x) s bijective.
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Corollary 4.13. Let f : X — S be smooth of relative dimension r at x € X. There
exists an open neighbourhood U of x and a factorisation

U%Ag

N

Example 4.14. a) Let L/K be a finite field extension. Then the map Spec L —
Spec K is unramified if and only if L is a separable extension of K.

with g étale.

b) Let A C B be complete discrete valuation ring. Then Spec B — Spec A is un-
ramified if and only if kg is a finite separable extension of k4 and an uniformizer of A
is an uniformizer of B.

¢) An immersion if unramified if and only if it is locally of finite presentation.

Example 4.15. a) Let S be a scheme and let £ be a locally free sheaf of Og-
modules. Then the map of schemes V(£) — S is smooth of relative dimension equal to
the rank of £.

b) Let k be a field of characteristic different from 2 and set S = Speck[z], X =
Speck[z,y]/(y?> — z). Then the map X — S is étale at each point different from the
closed point (0,0). Actually the map is ramified at (0,0) since the localisation at (x,y)
of k[z,y]/(y? — z,x) ~ k[y]/(y?) is not reduced.

c) Let k be a field and set S = k[z] and X = k[z,y, 2]/(zvy — z). The map X — S is
smooth of relative dimension 1 at all point excepted at (0,0, 0).

Definition 4.16. Let G be some S-group scheme. We say that it is finite flat (resp. finite
étale) if its underlying scheme is finite flat (resp. finite étale) over S.

Example 4.17. a) Let H be a finite group. The constant group scheme H is obvi-
ously finite étale over Spec Z.

b) Let S be a scheme and let uy s = uy x S. The S-group scheme py g is finite
flat since S[X]/(X" — 1) is finite flat over S. However it is étale over S if and only if
N € O(S)*. Namely we can assume that S = Spec A and consequently pn s = Spec B
with B = A[X]/(X"™ —1). Then uy.s is étale over S if and only if Q}B/A = 0. We have
an exact sequence

The image of XV — 1 in Q}4[X}/A ~ A[X]dX being NXN~1dX. Consequently Q}B/A =0

if and only if NX™~! generates the A[X]-module A[X]/(X" —1) which is equivalent to
N € A*. Namely assume that we can write

1=Qi(X)NXN1 4+ (X)) (XN —1).
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Doing X = 1 shows that N € A*. Conversely if N € A™!, we have 1 = —(XV — 1) +
N7IX(NXN-D,

4.3 Cohomology and base change

Let f: X — S be a proper map of locally noetherian schemes. Then we know that, for
each n > 0 and each coherent sheaf F on X, the sheaf R"f,F is coherent.

Proposition 4.18. Let S = Spec A be some affine noetherian scheme and let f : X — S
be a proper map. Let F be a coherent sheaf over X which is moreover S-flat. Then there
exists a finite compler K®* = [K® — ... — K™"| of finite projective A-modules and, for
all p = 0, an isomorphism of functors

HP(X xg (=), F®a (=) ~ HY(K* ®a(-))
over the category of A-algebras.

Proof. The scheme X being quasi-compact, we can choose U = (U;);er a covering of
X by affine open subschemes. Let C* = C*(U,F) the alternated Cech complex of U
with coefficients in F. As X is separated, it is a complex of flat A-modules with degrees
concentrated in [0, Card I]. Moreover for each B-algebra, the complex

C* ®4 B = C*((U; xspec a Spec B)er, F @4 B)

computes the cohomology of the pull back of F over X Xgpec 4 Spec B. The result is
then the consequence of the following results of homological algebra :

Lemma 4.19. Let A be a noetherian ring. Let C*® be a complex of A-modules concen-
trated in degrees [0,n] and such that H'(C®) is of finite over A for 0 < i < n. Then
there exists a complexr K® = [K? — --- — K" of A-modules such that K* is finite free
if i > 1 and a quasi-isomorphism K®* — C*®. Moreover if all the A-modules C? are flat,
then K° is a finite projective A-module.

Proof. We construct by decreasing induction on m a complex [K™ — -+ — K"] of finite
free A-modules and a morphism of complexes

Km am Km-H dmt! dn—1! K"

lf’m J{f’rnqtl lfn

om o Cm-i—l om+t! on—1 cn

such that the induced maps H¥(K*) = H*(C*®) are isomorphisms for m +1 < k < n
and surjection for £ = m. For the case m = n, we choose for K" a finite free A-module
and a surjective A-modules homomorphism K" — H"(C*®). By the freeness of K",
this map can be lifted into a map f™ : K™ — C". Assuming that the construction
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is done for the rank m > 1. We choose a finite free A-module K|"~' and a map
g™t K1 — Ker @1 inducing a surjection on H™~(C*®) and we choose an other
finite free A-module K3~ and a surjective map K5"~' — (™)~ 1(Im 0™ !). This map
can be lifted into a map A1 : KJ*™1 — C™~1. We define K™~ ! :== K" '@ K" and
fmt = (g™t hm=1). At the last step, we replace K° by K°/(Ker f° N Ker d®).

Finally we have to prove that K is finite projective when all the C? are flat. Let
L*® be the cone of the morphism of complexes K* — C*® so that we have a long exact
sequence of complexes of A-modules

<o — HY(K®) - HY(C®) — H(L®) - H" (K®*) — - -

The complex (L®, D®) is acyclic. Moreover L' is flat except perhaps if i = —1. We
deduce from the flatness and acyclicity of L*® that the A-modules Im D? are all flat for
i 2= 0. We obtain a short exact sequence of A-modules

0L ' sImmD°

with LY and Im DY so that L=! = K© is a flat A-module. Now a flat module of finite
type is projective. O

Lemma 4.20. Let f : K* — C® be some quasi-isomorphism of finite complezxes of flat
A-modules. Then, for all A-algebra B, the morphism

K*®4B—=C*®4 B
1 a quasi-isomorphism.

Proof. Let (L*®, D®) be the cone of f. The complex L*® is finite and acyclic complex of
flat A-modules. Consequently all the A-modules Ker D = Im D~ ! are flat. This implies
that the complex L® ® 4 B is acyclic. As L®* ® 4 B is the cone of the map K*®4 B — C*,
we deduce that the map K®* ®4 B — C*® ® 4 B is a quasi-isomorphism. 0

O]

Corollary 4.21. Let f : X — S be a proper map between locally noetherian schemes.
Let F be some coherent sheaf over X which is S-flat. Then, for all p > 0, the map
s+ dimyg) HP(f71(s), F |y-1(5)) is upper semi-continuous and the map s — xs(F) =
> opso(—1)P dimy g HP(f~Y(s), F |f-1(s)) is locally constant.

Proof. The problem is local on S so that we can assume that S = Spec A is affine. Let
K* be a complex obtained by Proposition 4.18. For s € S, we have

Xs(F) = Z(—l)p dimy, ) KP ®4 k(s).

p=0
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The A-modules KP? are projective of finite type so that the function s — xs(F) is locally
constant. On the other hand, we have

dimk(s) Hp(fil(s), F ‘f*1(5)> = dimk(s) KP XA /{7(8) — rk(dp X Idk(s)) — I‘k(dpil & Idk(s))

Consequently it is sufficient to prove that the maps s — rkdf @ Idy () are lower semi-
continuous on S. That is a consequence of the following statement

rk d" @ Idy () < 7 < A7(d" ® Idy() = 0. m

Let f: X — S be a morphism of schemes and let F be an abelian sheaf on X. For
g : T — S, a morphism of schemes, we can consider the following cartesian square

Xr 24 X

b

T 25
By adjunction properties there is a functorial map F — g¢.(¢')"'F. Applying f. and
taking account f o g = go f’, we deduce a functorial map f.F — g.f.(¢')"'F and, by
adjunction, (¢") " fo.F — fL(¢') ' F. The two functors g~' and (¢')~! are exact and right
adjoints so that they send injective objects to injective objects of the category of abelian
sheaves. The formalism of derived functors gives us, for all p > 0, a functorial map
g 'RPf.F — RPf/(¢")"'F. Now assume that F is quasi-coherent. If we compose this
map with the map RPf.(¢') "' F — RPf.(¢')*F deduced from the canonical map (g’')~! —
(¢')*, we obtain a map g~ 'RPf.F — RPf!(g')*F which has a canonical factorisation

08 g R foF — RPfl(g)*F.

We say that R fuF commutes with base change if the maps 6 are isomorphisms for all
g (and T).

If s € Sis a point and 7' = Speck(s) and g is the map corresponding to s € S, we
have X1 = f~1(s) and (¢')*F = Flg-1(s)- We write 68 = 05 the map

91; RPf,LF® k’(S) — Hp(f_l(s),f’ffl(s)).

If S = Spec A is a noetherian affine scheme, if f is proper and if K*® is as in Propo-
sition 4.18, we can check that RP f,F commutes with base change if and only if, for all
A-algebra B, the map

HP(K®)®a B — HP(K*®4 B)

is an isomorphism.

Corollary 4.22. Let f : X — S be a map of locally noetherian schemes. Assume S
reduced and connected. Let F be a coherent sheaf on X which is S-flat. The following
assertions are equivalent :
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(i) the map s — dimy HP(f~1(s), F |f-1(s)) is constant ;
(ii) the sheaf RP f.(F) is locally free and for all s € S, the canonical map
RP[(F) @ k(s) = HP(f71(5), F |5-1(s)

s an tsomorphism.

Moreover, under these conditions, both RP f.(F) and RP~1 f.(F) commutes to base change,
which means that for all g : T — S, and i € {p — 1,p}, we have

g R [ (F) = RfL(()F),
where ' and ¢’ are defined in the following cartesian diagram

XxgT 25 X

!

T—2 S

Proof. The implication (i) = (i) is clear. We prove (i) = (ii). Assume that the map
s +— dimyg) H?(f 7 (s), F |y-1(s)) is constant. The statement is local on S so that we
can assume that S = Spec A and consider a complex K*® obtained from Proposition 4.18.
We will use several times the following lemma :

Lemma 4.23. Let A be a reduced noetherian ring. If M is an A-module of finite type
such that the map from Spec A to Z sending p to dimyp) M @4 k(p) is locally constant,
then M is projective.

Proof. Fix p € Spec A and let n = dimy,) M ®4 k(p). Let f : A" — M a morphism
of A-modules inducing an isomorphism k(p)”® — M ®4 k(p). It follows from Nakayama
Lemma that this map induces a surjection f, : Ay — My. As M is of finite type, there
exists an open neighbourhood U of p in Spec A such that, for all ¢ € U, the map f,
is surjective. Consequently up to localizing A, we can assume that f; is surjective and
that dimyq) M ®a k(q) = n for all ¢ € Spec A. Consequently, if N = Ker f, we have
N C gA™ for all q € Spec A. As A is reduced, this implies that N = 0. O

From our assumption we can deduce that the ranks of d” ® Idy) and Pl ® Idys)
are locally constant. This implies that the A-modules K?/ImdP~! and KP*!/ImdP
are projective A-modules and consequently that the submodules Kerd? C KP and
Ker d?~! ¢ KP~! are direct factors. Consequently we have a decomposition of A-modules

KP=Imd"'@® H,® L,, Kerd =Imd" '@ H,.

This implies that
HP(K®* ®a B) ~ H,®4 B~ HP(K®)®4 B.
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Moreover we have a decomposition
Kl =Kerd? '@ L, 4
so that
HP"YK* ®4 B) ~Ker(d’™ ) @4 B/Im(d"~' @ 1dg) = HP "' (K*) ®4 B
since by right exactness of the tensor product, Im(d?~2 ® Idg) ~ Im(d?~2) ®4 B. O

Theorem 4.24. Let f : X — S be a proper morphism between locally noetherian
schemes. Let F be a coherent sheaf over X which is S-flat. Let p > 0 and let s € S be a
point such that the base change map 6F : (RP f.F) @ k(s) — Hp(f_l(s),]:|f_1(s)) is sur-
jective. Then there exists an open neighbourhood U of s such that RP f.F commutes with
base change over U. As a consequence, 0%, is an isomorphism for all s' € S. Moreover
the following conditions are equivalent

(i) the sheaf RP f.F is locally free on U ;

. ~1 . oo
(ii) for all 8" € U, the map 6%, is surjective.

Proof. The assertion is local on S so that we can assume that S = Spec A for a noetherian
ring A. Let K*® be a perfect complex of A-modules computing R® f,F. Let ZP = Ker dP,
BP = ImdP~', HP = ZP/BP and ZP(s) = Kerd? ® Idy(s) and BP(s) = ImdP~!' ® Idjs)-
For all p > 0, the map BP ® k(s) — BP(s) is surjective, so that the surjectivity of
H? ® k(s) — ZP(s)/BP(s) is equivalent to the surjectivity of ZP — ZP(s). Up to
localizing A, we can assume that Z? is a direct factor of K and consequently a finite
projective module. This follows from the following Lemma :

Lemma 4.25. Let A be a local noetherian ring and f : M — N a morphism of finite
free A-modules. Let k be the residue field of A, if (Ker f) @4 k — Ker(f ®4 Idg) is
surjective, then Ker f is a direct summand of M.

Proof. Let M1 = Ker(f ®41d;) and M5 a direct summand of the k-vector space M ® 4 k.
By assumption, we can lift a k-basis of M7 in a family of elements of Ker f. Choosing
an other lift of a basis of M9, we find two submodules M; and My of M such that
M; C Kerf and M; ®4 k ~ M; for i € {1,2}. Using Nakayama Lemma and the
fact that M is finite free, we can conclude that M = M; ® My so that M7 and M
are finite free. Using the fact that N is finite free and that Ms ®4 k — N ®4 k is
injective by definition of My, we can conclude that the map M, — N is injective and
that Ker f N M2 = 0. Finally Ker f = M is a direct summand of M. O
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Let B be some A-algebra. Looking at the following diagram, we see that this implies
that RPf,F commutes to base change over Spec A :

BP@yB ——— ZP@y B ———— HP®4 B ——— 0

| ; |

0 —— Im(* ! ®1dg) —— Ker(d’ ® Idg) —— HP(Xp,F ®4 B) —— 0.

Now assume morever (i). Then BP is a direct factor of ZP and thus of KP. This implies
that ZP~! is a direct factor of KP~! and, by what preceeds, that RP~!f,F commutes
with base change over U. This gives (ii).

Conversely we assume (ii). Let s € U. The map 62! is surjective, this implies as
above that ZP~! is locally a direct factor of KP~1. Looking at the diagram

ZP @4 k(s) —— KP'®4 k(s) —— BP®4 k(s) —— 0

| [ |
0 —— 2P 1(s) —— KP1Q®4k(s) ——— BP(s) ——— 0

we see that the right vertical map has to be an isomorphism. Now a diagram chasing in
the following diagram

0 — Tor{' (k(s), KP/BP) — BP ®4 k(s) — KP ®4 k(s) —> (KP/BP) ®4 k(s) — 0

k U b

0 BP(s) KP @4 k(s) —> KP ®4 k(s)/BP(s) —— 0

shows that Torly(k(s), K?/BP) = 0, the module KP/BP being of finite type, this implies
that K?/BP is flat at s and that BP is locally a direct factor of KP and H? is consequently
flat at s. Conversely, if H? is locally free, the A-module BP? is locally a direct factor
of ZP and KP, which implies that ZP~! is locally a direct factor of KP~! which implies
easily that the map ZP~1 ®4 k(s) — ZP~1(s) is surjective. O

Corollary 4.26. Let f : X — S be some proper and smooth map with geometrically
connected fibers. Then the map of coherent sheaves Og — f.Ox is an isomorphism.

Proof. The assumption is local on S, and we can reduce ourselves to the situation where
S is a noetherian scheme. For each s € S, we have Ho(f_l(S),Of—l(s)) = k(s) since
the fibers are proper and geometrically connected. This implies that the coherent sheaf
Ox satisfy the hypotheses of Theorem 4.24 for p = 0. This implies that f.Ox is locally
free of rank 1 and the map Og — f.Ox is surjective at every point so that it is an
isomorphism. ]
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5 Elliptic curves

5.1 Algebraic curves over a field

Divisors Let k& be a field. A curve over k is a k-scheme which is of finite type,
separated, reduced and equidimensional of dimension 1.

The group of divisors of C is the free abelian group generated by the closed points
of C. We denote it Div(C') and its elements have the form ) - m,(x). It is an ordered
group for the relation

Z mz(x) > 0< Vo e C,m, > 0.
zeC

Remark 5.1. Let Z be a closed subscheme of C' which is finite over k. Then the
underlying space of Z is a finite set of closed points of C' and Z is the disjoint union
of its localizations Z,. Each Z, is the spectrum of local artinian k(x)-algebra I'(Z,, O)
and we define

2] = 18(D(Zs, 0))(2).

reZ

Such a divisor [Z] is called an effective divisor.

We define a group homomorphism from Div(C') to Z, called degree, by the formula
deg(z) = [k(z) : k]. The kernel of deg is denoted Div’(C) c Div(C).

Remark 5.2. It [Z] is an effective divisor of C, we have deg([Z]) = dim; I'(Z, O).

Principal divisors and class group From now on we will assume that C' is smooth
over k and irreducible (or equivalently connected).

For z € C' a closed point, the local ring Oc, is a discrete valuation ring. Let v, be
its valuation that we extend to the fraction field k(C). If f € k(C)*, the divisor of f is
defined by div(f) = > ,ccv2(f)(x). Since all the v, are valuation, the map div induces
a group homomorphism from k(C)* to Div(C). We say that two divisors D; and Ds
of C' are linearly equivalent, and we note it D1 ~ Do, if their difference is in the image
of div. We define C1(C) := Div(C)/div(k(C)*) the group of linear equivalence classes.
Clearly two smooth irreducible curves which are isomorphic have isomorphic groups of
divisors.

Example 5.3. If C = A}, then Cl(C) = 0.

The case of proper and smooth curves Let C' be a proper, smooth and irreducible
curve. In this case, for f € k(C)*, we have

deg(div f) = 0.
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As a consequence the subgroup of principal divisors is contained in DivO(C’) and the
degree map factors through C1(C). Let C1°(C) be its kernel which identifies to the
quotient Div?(C)/ div(k(C)>).

Example 5.4. If C = P}, we have C1°(C') = 0 and deg induces an isomorphism C1(C) ~
Z.

Invertible sheaves and divisors Let C be a smooth and irreducible curve over k.

Let x € C be a closed point. As C is a regular scheme of dimension 1, the sheaf
Z(z) = Ker(O¢ — k(x)) is a locally principal ideal of O¢. Let L(x) := Hom(Z(z), O¢)
be its dual. If D = > mg(x) € Div(X) is a divisor, we can construct two invertible
sheaves

I(D) = Q I(x)*™, L(D):=ZI(D)".
zeC
Let K¢ be the sheaf associated to the presheaf U +— FracI'(U,O¢) on C. It is the
constant sheaf associated to the k-algebra k(C).

If £ is an invertible subsheaf of ICo, there is a canonical isomorphism of invert-
ible sheaves between £7! and the subsheaf of K defined by {a € K, al C O}. This
isomorphism is compatible with the tensor product and is involutive, so that we can
canonically identify each invertible sheaf £(D) to a subsheaf of . The map D +— L(D)
induces actually a bijection between Div(C') and the set of invertible subsheaves of K¢.
If U = Spec A is an affine open subset of C, then the space of sections of the sheaf £(D)
on U is

HO(U,L(D)) = {f € k(C) | div(f|v) + Dlv > 0}.

It is now clear that a divisor D is principal if and only if the sheaf £(D) is isomorphic
to Oc.

Lemma 5.5. Let F be a coherent sheaf of Ko-modules. Then there exists n € N such
that F ~ K.

Proof. Let j be the inclusion of the generic point 1 of C in C'. The canonical map
of sheaves a : F — j,j*F is an isomorphism. Namely it is sufficient to be checked
sufficiently small non empty open subsets of C'. Consequently we can assume that F is
generated by its global sections on some non empty open subset U C C. Tthe space of
these global sections of F over U is a finite dimensional k(C')-vector space. Consequently
it is a free Ky-module for which it is easy to check that a is an isomorphism. O

From Lemma 5.5 we conclude that if £ is an invertible sheaf on C', then there exists
an isomorphism L®p, K ~ K. This shows that every invertible sheaf on C' is isomorphic
to a subsheaf of K. From this analysis we can conclude that the map D — £(D) induces
an isomorphism of groups

C1(C) = Pic(C).
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Using this isomorphism we can define the degree of an invertible sheaf £ as the degree
of a divisor D such that £ ~ L(D).

The Riemann-Roch theorem Let C' be an irreducible proper and smooth curve
over k. We define the genus of C' as being the integer g(C) := dimy H'(C, O¢).

Theorem 5.6. Let L be an invertible sheaf on C.

(i) If H°(C, L) # 0, then deg L > 0.
(ii) We have an equality of dimensions

dimy, H°(C, £) — dimy HY(C, L) = deg L +1 — g.

(i4i) There is an isomorphism of k-vector spaces between H*(C, L) and H°(C, L™ ®0,.
Q1)
Corollary 5.7. We have dengc/k = 2(9 — 1). Moreover, if degL > 2(g — 1), then

HY(C,L) =0 and
dimy HY(C, L) =1 — g + deg L.

Proof. We compute deg Qé Jk by applying theorem 5.6 to the invertible sheaf £ = QIC Ik
Moreover if deg £ > 2(g — 1) then, deg(£L™! ®p,. Qlc/k) < 0 and

HY(C,L) = H(C,L™! @0, Qi) = 0. O
We will use the following other consequence of the Riemann-Roch Theorem (see
[Har77, Cor. IV.3.2]):

Theorem 5.8. Let C be a proper smooth and geometrically connected curve over k. If
deg £ > 29(C) + 1, the sheaf L is very ample. This implies that the canonical map

C — P(H(C, L))
sending a point x to the kernel of H°(C, L) — H°(x, L|(y}) is well defined (the kernel is

an hyperplane) and is a closed embedding.

5.2 Elliptic curves over a field

Let k be a field. An elliptic curve over k is a pair (F,0) where E is a proper smooth
connected curve over k of genus 1 and 0 € E(k). If (E,0) is an elliptic curve and K/k
is an extension, then E is a regular scheme, so that the connected components of Ex
coincide with its irreducible components. Moreover E having a k-rational point, we
conclude that F is automatically geometrically irreducible.
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Group law on an elliptic curve

Theorem 5.9 (Abel-Jacobi Theorem). Let (E,0) be an elliptic curve over k. Then the
map P+ [P] — [0] induces a bijection from E(k) to C1°(E).

Proof. Assume that [P]—[0] ~ [Q]—[0], then there exists f € k(E)* such that [P]—[Q] =
div(f). We have deg £(Q) = 1 so that by Corollary 5.7 the space H°(C,L(Q)) has
dimension one and coincides with the space of constant functions. As f is an element of
this space, f € k* and div(f) = 0. This implies P = Q.

Let D € Div'(E). Corollary 5.7 implies that dim H°(C, £(D + (0))) = 1. Let f be a
non zero element of this space. By definition

div(f) + D + (0) > 0.

As a positive divisor of degree 1 is necessarily of the form (P) for some P € E(k), there
exists a point P € E(k) such that div(f) + D + (0) = (P), hence D ~ (P) — (0). O

Using the Abel-Jacobi map we define a group law on the set E(k), that is for (P, Q) €
E(k)?, the point P + Q is the unique element of E(k) such that

(P+Q)+(0) ~ (P)+(Q)

It follows from Theorem 5.9 that (E(k),+) is an abelian group with neutral element 0.

Weierstrass equations Let (F,0) be an elliptic curve over k. Then there exists
a closed embedding E — P(H°(E, £(3(0)))) ~ P%. Giving an explicit form to this
embedding leads us to the notion of Weierstrass equation.

By Corollary 5.7, for n > 1, the k-vector space H(E,Og(n(0))) has dimension
n. Consequently there exists elements x and y in k(E) such that (1,z) is a basis of
H°(E,0g(2(0))) and (1,z,y) is a basis of H*(E, £(3(0))). Actually the rational func-
tions x and y are defined over E ~\ {0} and satisfy vo(z) = —2, v9(y) = —3. Therefore
(1,z,y,22) is a basis of HY(E, £(4(0))) and (1, z,y, 22, zy) is a basis of H(E, L(5(0))).
Finally as vg(23) = vo(y?) = —6, there exists (a1, a, as, a4, ag, o) € k> x k* such that

Y2 + arzy + asy = ax® + agx? + agx + ag.

Replacing « and y by non zero scalar multiples, we can assume that o = 1. Then the
rational function x and y satisfy a so called Weierstrass equation

v+ arzy + asy = 23 4 asx® 4+ asx + ag. (4)

Equation (4) is clearly an irreducible polynomial in k[z,y]. Therefore the closure in P?
of its vanishing locus is an irreducible algebraic curve. Using Theorem 5.8 applied to
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L£(0)®3, we construct an embedding of E into P?(k) which lies in this algebraic curve
and gives an isomorphism. In other words E \ {0} is an affine curve isomorphic to

Spec k[z, y]/(y2 + a1y + asy — (xs + asx® 4+ ayzx + ag))-

Conversely consider an equation of the form (4). Let E be the closure in P} of its
vanishing locus. Then FE is an irreducible algebraic curve over k. It has a unique point
“at the infinity”. Call it 0. Then F is smooth over k if and only if the affine curve
E ~ {0} is smooth over k.

Conversely it can be directly checked that, given some affine smooth Weierstrass
equation (4), then its schematic closure in ]P’i is a proper and smooth algebraic curve of
genus 1. As its infinite point is k-rational, we obtain an elliptic curve. We can also use
the adjonction formula stating that a closed smooth curve in IF’% defined by an equation
of degree d has genus @ + 1. This is a consequence of Bezout Theorem and the
classification of invertible sheaves on P%.

5.3 Elliptic curves over an arbitrary base

Let S be a scheme. A curve over S is map of schemes f : C — S which is separated,
flat of finite presentation with all its fibers equidimensional of dimension 1. A curve
f:C — S is proper is f is proper and smooth if f is smooth. From the flatness of f,
we know that the map from S to Z defined by s — 1 — x5(O¢) is locally constant. This
locally constant map is called the genus of f: C — S.

Let £ be an invertible sheaf over C. By the flatness of f, the map s — xs(£) is
locally constant on S. By Theorem 5.6 so is the map deg L : s — deg E\f_1(s) which is
called the degree of L.

An elliptic curve over S is a pair (E,0) where E is proper and smooth curve over S
of genus 1 with connected fibers and 0 € E(S) is a section of f : E — S. The existence
of a section and the smoothness of F/S implies that the geometric fibers of E/S are
irreducible. As a consequence the structural map Og — fOpg is an isomorphism.

Abel-Jacobi Theorem for elliptic curves over S Let E/S be an elliptic curve.
The relative Picard group of E/S is defined the cokernel Pic(E/S) of the group homomor-
phism f* : Pic(S) — Pic(E). Using the section 0, we can define a group homomorphism
0* : Pic(E) — Pic(S). As 0 is a section of f, the map f* is injective and Pic(9S) is
identified to a subgroup of Pic(E).

As 0 is a section of f, the composition of the inclusion Ker 0* into Pic(E) with the

quotient map is an isomorphism Ker 0* — Pic(E/S) so that we can identify Pic(E/S)
to a subgroup of Pic(FE).

Let Pic(E)? the kernel of the degree map. The image of f* is clearly contained in
Pic(E)? so that the degree map factors through Pic(E/S) and we define Pic(E/S)° C
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Pic(E/S) as the kernel of this degree map. Now consider P € E(S) a section. We
use the same symbol to denote its schematic image which is a closed subscheme of E
isomorphic to S. The annihilator Z(P) of this closed subscheme is a locally principal
ideal of Op and we define the invertible sheaf £(P) as Z(P)~!. Using the case of an
elliptic curve over a field, we check that deg L(P) = 1.

Theorem 5.10. The map P — L(P) ®p, L£(0)~! induces a bijection from E(S) to
Pic(E/S)°.

Proof. First of all, let us remark that the functor U — E(U) is a sheaf for the Zariski
topology on S. As a first step, we prove that the functor — Ker(0* : Pic(Ey) — Pic(U))
is also a sheaf for the Zariski topology on S.

Lemma 5.11. The functor — Ker(0* : Pic(Ey) — Pic(U)) is a sheaf for the Zariski
topology on S.

Proof. Let (U;)ier be some open covering of S. For each i € I let £; be some invertible
sheaf on Ey,. We assume that these data satisfy 0*L; ~ Oy, and L[y, , ~ Lj|y,; on
Uij = U; NU;. We have to check that there exists a family of isomorphisms

aij: Lilu,; = Ljlvs,

such that
V(i,j, k) € I°,  aiklu,,, = klu, . © @ijlu, . (5)

Namely this is the sufficient and necessary condition for the existence of an invertible
sheaf £ on E such that E|EU”- ~ L;. We know that the set Iso(L;|u, ;,L;j|v; ;) is non
empty. It is consequently in natural bijection with the group Aut(L;|y, ;). As £; is an
invertible sheaf, we have

Aut(Ljlu, ;) ~ H (U, :05) = H°(S, 0%)

since f,Op = Og. We can deduce from these bijection that the functor 0* induces a
bijection

ISO(»Ci‘Ui,jy»Cj’Ui,j) ~ Aut(@s).
We choose «a;; such that 0*a;; = Idy, ;. This choice is unique satisfies the desired
compatibility (5). O

We can deduce from this lemma that the functor U + Pic(Ey/U)° is a sheaf for the
Zariski topology on S. This implies that it is sufficient to prove the theorem locally for the
Zariski topology so that we can assume that S is affine. Both functors A — E(Spec A)
and A Pic’(E4/Spec A) commute with inductive limits so that we can assume that
S = Spec A with A a noetherian ring.

Let Pic(E/S)M) € Pic(E/S) be the preimage of 1 under deg. After translation by
Og(0) it is equivalent to prove that the map P — L(P) is bijective.
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Let £ be some invertible sheaf of degree 1 over E. The fibers of f are one dimensional,
so that the formation of R!'f, commutes with base change. Applying Theorem 5.6 to
geometric fibers of f, we see that R'f,£ = 0 and thaf f,L£ is an invertible sheaf of
formation compatible to base change. This implies that locally f.L has a section and
that HY(Spec A, fL) ~ A. Let s € HY(E, L) ~ H°(Spec A, f.L) be a generator of this
A-module. The section s induces an injective map of sheaves Op — L and let Z be
the schematic support of the coherent sheaf £/Opg. It is easy to check that Z does not
depend on the choice of s so that we can write it Z,. As Z, is a proper scheme of locally
of finite presentation and as its fibres over S are finite, it is a finite S-scheme. We claim
that the map Z, — S is an isomorphism so that Z, is the image of a unique element of
E(S). As L is locally generated by an element we can, up to shrinking S, assume that
Oz, ~ L/Og. It is sufficient thus to prove that the coherent sheaf f,(L£/OF) is locally
isomorphic to Og. We use the following exact sequence of cohomology

0— £.05 = £.05 % £.(£/Op) — R £,0p — R'f.L = 0.

Using Theorem 4.24, we can check that R! f,Op is locally free of rank 1. This is enough.
Now we have a short exact sequence

0 — O — L— 0z, —0.

If we take its tensor product with £7!, we see that £L71 ~ I(Z;) and L ~ L(Z;).
Conversely if P € E(S), the support of L(P)/Og contains the section P, so that Z,(p) =
P. Finally the map £ — Z  is reciprocal to P +— L(P). O

The bijection E(S) ~ Pic’(E/S) is clearly functorial. Moreover for each map S’ — S,
the induced map Pic’(E/S) — Pic’(Eg/S’) is a group homomorphism. This implies
that the functor S — E(S) is a contravariant functor from the category of S-scheme to
the category of groups and that there is a natural structure of group scheme over E.
More precisely there exists a map of schemes F xg ¥ — FE inducing the group structure
on E(T) for each S-scheme T. Moreover there exists a map of S-schemes £ — E
inducing the inverse on F(T') for each S-scheme T and we check easily that 0 € E(S) is
the neutral section for this structure of S-group scheme.

Weierstrass equations for elliptic curves over a general scheme Let E/S be
an elliptic curve over a scheme S. For n > 1, the Og-sheaf f,£(0)®" is locally free of
rank n. Replacing S by an affine open subscheme Spec A, we can assume that

HO(S, f.L(0)%?) = A® Az, H°(S, f.L(0)®) = A® Az & Ay,

where the embedding of HO(S, £,£(0)®") in H(S, £,£(0)®"*+1) is induced by a global
section, well defined up to an element of A, of H°(S, f.£(0)) ~ A. The elements x and
y satisfy some Weierstrass equation in HO(S, £,.£(0)°) :

y2 + a1y + azy = mg + a2m2 + aqx + ag
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for elements a1, as, as, a4, ag in A. Using Riemann-Roch theorem and [Gro61b, Prop. 2.6.1],
we can prove that the sheaf £(0) is relatively ample. This implies ([Gro61a, Prop. 4.6.2])
that we have an immersion

E < P(H"(Spec A, £.£(0)?))

whose image is contained in the locus defined by the equation

V22 + arzyz + azyz? — 2® — asx’z — anxzlags’.
As the fibers of this locus are all reduced and irreducible of dimension 1, we conclude
that we must have an isomorphism

E ~ Proj (A[J:, y, 2/ (*z + a1xyz + azyz? — 23 — aga’z — a4x22a6z3)) .
Let S = SpecZlay, as, a3, a4, ag) and

E = Pr0jzja, a3.a3,a4,a6] (Z[al, ag, a3, as, ag) [z, y, 2]/ (y*2 + a1vyz

tagyz? — 2% — asx’z — a4:vz2a6z3)>

the universal Weierstrass equation over S. We define S™V as the set of points s € s

such that E Xgsisa smooth curve. As E is proper over S , the subset S"V is open in

S and it is easy to check that it contains points of all characteristics. Let E"Y be the
restriction of E to S"Y. The local existence of a Weierstrass equation for an elliptic
curve implies the following result :

Theorem 5.12. Let E/S be an elliptic curve. For all s € S there exists an open
neighbourhood U of s in U and a map ¢ : U — S"™V inducing an isomorphism E ~
U XSuniv Euniv.

We can use this “reduction to the universal case” to prove the following consequence
of Grothendieck-Serre duality :

Corollary 5.13. Let f : E — S be an elliptic curve. The sheaves le*Q}E/S and f*Q}E/S
are locally free of rank one.

Proof. The assertion is local on S. The fibers of f being of dimension 1, we know
that R! f*Q%E /g commutes with base change and has stalks of rank 1 by Riemann-Roch
theorem. If the base if reduced we can conclude that R f*Q}E /s is locally free. As SUniv
is reduced, the result is true for E™V — SV Consequently it is true for E/S since
the formation of R! f*Q}E g commutes with base change. Consequently the sheaf f*Q}LJ /s
commutes with base change and has stalks of rank 1 by Riemann-Roch Theorem. As
there is no cohomology in degree —1, the sheaf is automatically locally free. O
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5.4 Elliptic curves over C

Let A € C be a lattice and let p be the Weierstrass function associated to this lattice.
We proved the following equation

(p")? = 4p” — ga(A)p — g6(A)
and that the polynomial 4X3 — g4(A)X — ge(A) is separated. This proves that the
projective curve defined by the Weierstrass equation
Y?Z = 4X% — g4(M)X 2% — gs(A)

is smooth and is consequently an elliptic curve that we call E5 (the neutral element is
as usual the point (0:1:0)). Consequently the set E)(C) has a structure of a compact
Riemann surface and the map

. EAZ(C/A — EA(C)
s )P

is a morphism of compact Riemann surfaces. Using Lemma 1.2 or directly Theorem 1.3
we see that the map W, is an isomorphism of Riemann surfaces.

L

Theorem 5.14. The map Y, is an isomorphism of groups.

Proof. Tt is enough to prove that Wy (P) + U (Q) =0 < P+ Q = 0 and U, (P) +
Upa(Q)+ Pp(R)=0< P+ Q+ R =0. The two cases are similar, let’s do the second
one. Saying that W (P) 4+ UA(Q) + YA (R) = 0 means that there exists some rational
function f € k(Ey) ~ C(X)[Y]/(Y? —4X3 + g4(A)X + gs(A)) on Ex whose divisor is
(TA(P)) + (TA(Q)) 4+ (TA(R)) — 3(0). This implies that the elliptic function f(p,p’) on
Ep has divisor (P) + (Q) + (R) — 3(0). The conclusion follows from formulas (1). O

Theorem 5.15. If (E,0) is an elliptic curve defined over C, then there is a lattice A
such that (E,0) ~ (Ej, (0:1:0)).

Proof. We know that E' is defined by a Weierstrass equation

sz + a1xyz + a3y22 =23 + aszz + a43322 + a623.
Via a well chosen change of variable we can assume that F is defined by the equation

v’z = 4a® — Az — B.

We can consider the quantity j = Alfgfgz. It follows from Corollary 1.12 that there

exists a lattice 7 € C such that j(7) = j, ie

1728g4(7)>  1728A°
94(7)? — 27g6(1)2 A3 —27B%’

We deduce from this equality that there exists ¢ € C* such that A = c*g4(7) = ga(c7'A;)
and B = %g6(7) = g6(c"1A;). This implies that E ~ E, 1, ~ Ej. O
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Corollary 5.16. Let E be some elliptic curve defined over C. Then, for N > 1, the
N-torsion subgroup of E[N](C) of E(C) is a free Z/NZ-module of rank 2.

Proof. This is a direct consequence of Theorems 5.15 and 5.14. Namely there exists a
lattice A C C such that E(C) ~ C/A as a group and

(C/A)[N]=N"'Z/7Z ~ 7Z/NZ x Z./NZ.

5.5 The multiplication [N]

Let E and E’ be two elliptic curves on S. An isogeny from E to E’ is a morphism of
group schemes from E to E’ which is non constant on each connected component of S.
If S = Speck for k a field, it is simply a non constant group schemes homomorphism.

The Lie algebra (see [DG70, §I1.3]) Let S be a scheme. We define S[¢] as the
finite locally free S-scheme corresponding to the coherent S-algebra Og[X]/(X?). If
X is an S-scheme, the tangent bundle T g of X/S is the S-scheme representing the
functor Homg(S[e], X). If u € X(S) is a section, the tangent space of X/S at w is the
pullback of T'y,g along u. When G is an S-group scheme, the Lie algebra Lie(G/S) of
G/ S is the tangent space of G/S at the neutral section. We have canonical isomorphism
Tas =~ V(Qé/s) and Lie(G/S) ~ V(e*Qé/S) so that if G/S is smooth, the S-scheme
Lie(G/S) can be identify to a vector bundle over S.

The scheme Lie(G/S) has a natural structure of scheme in Og-modules. However
it has a second group structure coming from the structure of group scheme over G.
Namely, for each open subset U C S, we have

Lie(G/S)(U) = Ker(G(S[e]) — G(S)).

It follows from [DG70, Cor. 3.9.3, 3.5.1] that these two group laws coincide. In particular

we can deduce that if G/S is a group scheme, then, for N € N*, the map [N] of
multiplication by N in G induces a map Lie(G/S) M, Lie(G/S) which coincides with

the multiplication by N € Og. Equivalently :

Corollary 5.17. Let G/S be a group scheme and let N € N*, then the map of Og-
modules [N]* : e*QlG/S — e*QlG/S coincide with the multiplication by N € Og.

Corollary 5.18. If f : G — S is a smooth group scheme of finite presentation and if
N € T'(S,0g5)*, then the map of S-schemes [N]: G — G is étale.

Proof. As G/S is smooth, we have to show that, for z € G, the map [N] induces an
isomorphism from Qé/s ® k([N]z) to QlG’/S ® k(x). We can work in the fibre over
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f(z) and consequently we are reduce to the case where S is Speck for k a field. As
Qé/k QK ~ Qék,/k, for k' an extension of k, we can assume that k = k(x). As y — xy
induces an automorphism of G//k, we can even assume that z is the neutral element. It
is then a consequence of Corollary 5.17. O

Multiplication Flatness is often a delicate notion to prove. We will use the following
two criterions.

Theorem 5.19. Let f : X = Y be a quasi-finite map between two reqular schemes of
the same dimension. Then f is flat.

Proof. This is a local statement. We are consequently reduced to prove that if A and
B are two noetherian local regular rings and f : A — B is a local map such that
B/myB is a finite dimensional k4-vector space, then B is a flat A-module. It is [Gro64,
Cor. 17.3.5.(ii)] but we can sketch a proof.

Let (z1,...,24) be a regular sequence generating my, then (f(z1),...,f(xq)) is a
B-regular sequence. Then we proceed inductively using the following result ([Gro64,
Prop. 16.5.5]): if A is a local Cohen-Macaulay ring and = € m4, then x is A-regular if
and only if A/xA is has dimension dim A — 1 and then A/zA is Cohen-Macaulay. [

Theorem 5.20. Let E/S be an elliptic curve and let N > 1. The map [N] from E to
E is finite flat of degree N?. Moreover it is étale if and only if N is invertible over S.

Proof. Locally on S, the curve F is obtained by pullback from the universal curve over
Spec Z[a1, az, a3, aq, as]. Consequently we can assume that S is an affine open subset of
SpecZlay, az, a3, a4, as) and E is the universal curve over S. In particular S is irreducible
and its generic point has characteristic 0.

In a first step, we will assume that S = S[1/N] and prove that [N] is finite étale of
degree N?. As E is smooth over S and [N] induces an isomorphism [N]*QL /s =0l /8
the map [N] is étale. As E/S is proper, the map [N] is proper. Being quasi-finite and
proper between noetherian schemes, it is automatically finite. This proves that [N] is
finite étale. As S is irreducible, its degree is constant. As the generic point of S is of
characteristic zero, S(C) # (), consequently we can choose a C-points to compute its
degree which consequently N2.

Now we can handle the general case. We will first check that [N] is quasi-finite. Let
T be a geometric point of S, we want to check that [N] is non constant on Ez even when
the characteristic of T divides N. We can choose M > 2 prime to the characteristic of .
Then [N] induces an automorphism of Ker[M] and we know that Ker[M] is non trivial
since [M] is étale of degree M?2. Consequently [N] is a non constant map from Ez to Eg,
this scheme being irreducible of dimension 1, the map is finite flat. Consequently the
endomorphism [N] is a quasi-finite and proper map from E to E, hence a finite morphism.
As E is a regular scheme, we can conclude that [N] is a finite flat endomorphism of E
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and since F is noetherian, locally free. By the previous computation we know that it
has degree N2. O

Corollary 5.21. Let E/S be an elliptic curve. Let N € N*. The group scheme E[N] is
finite locally free over S and it is étale if and only if N € T'(S,Og)*.

5.6 Duals

An isogeny f : E1 — Es between S-elliptic curves is a finite locally free map such that
f(0) =0.
Let f : Eh1 — FE5 be an isogeny. For each S-scheme T, we have a commutative
diagram
E\(T) «+— E5(T)

lz lz

Pic(Ey 1 /T) «p— Pic"(Byr/T)
T

where f7 is the pullback along fr. This pullback is naturally a group homomorphism
and by functoriality we deduce that there exists an S-group schemes homomorphism
f': Ey — E; inducing f7 on the T-points for all S-scheme 7". This homomorphism is
called the dual map of f.

Theorem 5.22. Let f : By — FEy be some isogeny of degree N > 1. Then f' is an
isogeny of degree N and f'o f = [N].

Proof. We will first consider the case where S = Speck with k£ some algebraic closed
field. As f is flat, for all P € E(k), we have an isomorphism f*L(P) ~ L(f~(P)). Let

switch to class groups. We have to prove the following relation in the class group of E :

[FHFP))] = [f7H0)] ~ N(P) = N(0).

We have an equality of finite subschemes f~1(f(P)) = P+f~1(0). Moreover let Py,... P,
be the elements of the support of f~1(0). As f is finite locally free of degree N, we have
deg[f~1(0)] = N so that [f~1(0)] = 3; mi(P;) with 33, m; = N. Then [P + f~1(0)] =
i mi(P + Q;). Consequently we have

@) = [F7H0)] =D ma(P + Qi) — mi(Q)

~ Zmi(P) —m;(0) = N(P) — N(0).

The case of fields is proved. Before proving the general case, we need some intermediate
results. 0

I learned the following presentation of rigidity results in Brian Conrad’s notes.
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Lemma 5.23. Letp: X — S and q : Y — S two S-schemes such that p is proper
surjective of finite presentation with geometrically connected fibres. Assume that, for
each geometrical point s — S, the application fs: X5 — Yz is constant, then there exists
a unique section y € Y (S) such that f =yop.

Proof. The map p is surjective and closed, hence it is a quotient map in the category
of topological spaces. This implies that there exists a continuous map y : S — Y such
that f = y o p. To upgrade y in a morphism of scheme, we need to define a morphism
of sheaves Oy — y,0g. However we have a canonical isomorphism Og = p,Ox and
a canonical isomorphism 7,05 — (y o p)«Ox = fiOx. It is natural to choose the
composite Oy — f.Ox <= y.,Og. We still have to check that this defines a map in the
category of locally ringed spaces, more precisely that for each y € Y, the induces map
Oy,y — Ogq(y) is local. However choosing z in the fiber of p over ¢(y), the composite

Oy’y — Os’q(y) - OX,x

which corresponds to f is local, this implies that the first map is local too. It is plain
that, with these definitions, f = y o p. Unicity if left to the reader. ]

Corollary 5.24. Let p : X — S be some S-scheme proper and of finite presentation
with geometrically connected fibres and let G be some S-group scheme. Let f and g two
morphisms of S-schemes from X to G. Assume that, for all geometric point 3 — S, we
have fz = gs then there exists a section y € G(S) such that g = (yop)f. Moreover, if
there is some x € X(S) such that f(x) = g(z), then f =g.

End of the proof of Theorem 5.22. The two maps [IN] and f? ot coincides over each geo-
metric point of S, consequently it follows from Corollary 5.24 that [N] = fto f. We have
to check that f% is flat. We know that [N] is flat and f is flat and surjective (since it is
on each fibre), consequently f is faithfully flat. This implies that f! is flat and faithfully
flat since it is surjective. Everything being of finite presentation, the map f! is locally
free, its degree can be deduced from the formula

deg(f') deg(f) = deg(f' o f) = deg([N]) = N2.
O

Theorem 5.25. Let f: E1 — Fy be some isogeny between S-elliptic curves. Then f is
a morphism of S-group schemes.

Proof. Let N = deg f. It is sufficient to check that for P and @ in E(S), then f(P+Q) =
f(P)+f(Q). We can fix P € E(S) and consider g : 1 — Es the morphism of S-schemes
defined on points by @ — ¢(Q) = f(P+ Q) — f(P) — f(Q). A direct computation,
using the facts that f' and [N] are homomorphisms of S-group schemes shows that
ftog = 0. Consequently the morphism ¢ factors through the finite S-scheme Ker f*.
A map of S-schemes from a proper S-scheme with geometrically connected fibres to an
affine S-scheme is necessarily constant, hence g = 0. O
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Unicity of the group law We will use the following rigidity result (cf. [KMS85,
Thm. 2.4.2]) :

Theorem 5.26. Let S be a scheme and E1 and Eo two elliptic curves over S. Let f
be a morphism of S-group schemes from Ey to Eo. Then, Zariski locally on S, we have
either f =0 or f is finite locally free.

Corollary 5.27. Let (E/S,0) be an elliptic curve. There exists a unique structure of
S-group scheme over E having 0 as neutral section.

Proof. Let m : ExgFE — E be the multiplication map of some S-group scheme structure
on E having 0 for neutral section. Let £ be the base change of E/S by E — S,
that is &€ = F xg E. We define the endomorphism of E-scheme of €& by f(P,Q) =
(P,m(P,Q) — P). This is clearly an automorphism of £/F sending 0 to 0 hence by
Theorem 5.25 a morphism of E-group schemes. If P € E(S), we let fp the automorphism

of F induced by f along the base change S L, B. We conclude from Theorem 5.26 that
the locus of x € E such that f, = Idg is open and closed. As fy = Idg and that each
connected component of F intersect the zero section, we conclude that f = Idg and
consequently that m(P,Q) = P + @ for all P,Q in E(S). O

Remark 5.28. This result can also be deduced from Theorem 5.25.

Compatibility of duality and addition

Theorem 5.29. Let E1 and FEo be two elliptic curves over S. Let f and g be two
isogenies By — Fy. The (f + g)t = ft + ¢t

Proof. 1t is enough to prove that, for £ some invertible sheaf of degree 0 over Fs, then
(f+9)L~[fLagL

in Pic(E1/S). Viewing f and g as Ej-sections of the elliptic curve Fs, we are reduced to
the case of some elliptic curve f: E — S, P and @ two S-sections of E. It is therefore
enough to prove that, for £ an invertible sheaf of degree 0 over E, then

(P+Q)'LR0L~PL®Q L.

The sheaf £ is isomorphic to a sheaf of the form L£(R) ® L£(0)™! ® f*Lo for Ly some
invertible sheaf over S. It is then a direct computation (see [KM85, Thm. 2.6.2]). [

Corollary 5.30. We have [N]' = [N] for all N € Z.

Proposition 5.31. Let S be a scheme. Let f : E1 — Ey and g : E1 — E3 be two
isogenies between elliptic curves over S. There exists an isogeny h : E9 — F3 such that
g =ho f if and only if Ker f C Kerg.
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Proof. 1t is clear that the relation g = h o f implies Ker f C Kerg. Conversely let us
assume that Ker f C Ker g. We will consider in a first time the case where Fs = F3 and
f =[N] for some N > 1. Considering E;-points, we have a commutative diagram

9B
E1 (El —> E2 (El)

N4

Ey(Er)

where gg, is a group homomorphism vanishing on the N-torsion, which implies the
existence of a group homomorphism « such that gg, = aoN. Let h = a(Idg,) € E3(E)).
Then h is a morphism of S-schemes from E; to E3. As gp, = aoN = Noa=a+ - -+ «a,

~—_——

N
we have

g:gE1(IdE1):h+“'+h:[N]oh'
N

Then h(0) is consequently an S-section of Ker[N]. Replacing h by h + h(0), we can
assume that h(0) = 0. This implies that h is a group homomorphism and finally that

g=[N]oh=ho[N].

In the general case, the inclusion Ker f C Ker g implies Ker(fof!) C Ker(gof*). Since
fo ft = [deg f], the previous case shows the existence of h such that go f! = ho fo ft.
Now f! being an isogeny is faithfully flat, hence an epimorphism in the category of
schemes. This implies that g = ho f. O

Theorem 5.32. Let S be a connected scheme and E an elliptic curve over S. Then the
ring End F is a domain. Moreover if f € End E, there exists an integer Tr f such that
f+ ft=[Trf]. In the domain End E, the element f is annihilated by the polynomial
X2 —(Tr f)X +deg f and we have the relation

(Tr f)* < 4deg f.

Proof. If f is a non zero element of End F, the connectedness of .S implies that f is an
isogeny and consequently a surjective map. Consequently the composite of two non zero
elements of End E is non zero. The relation

[deg(f + 1dp)] = (f +1dg) o (f' + 1dg) = [deg /] + f + ' + 1dg
shows that we have to and can define
Tr f == deg(f + Idg) — deg f — 1.
Moreover if (m,n) € Z? such that mf + n # 0, then

0 < deg(m +nf) = m? + mnTe(f) + n®deg f.
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This implies that for 7> € Q such that f + 7 # 0, we have

2
(m) —l—%Trf#—dengO

n

which implies that the discriminant of this polynomial is non positive, that is
(Tt )2 — ddeg f < 0.
The fact that f is annihilated by X2 — Tr(f)X + deg f is a direct computation. O

Corollary 5.33. Let S be scheme and E some elliptic curve over S. Let f be some
automorphism of E and let N > 1 be some integer such that f|pn) = Idgn). Then we
have

e if N >3, then f =1dg ;

e if N=2and S is connected, then f = +1dg.

Proof. We can assume that S is connected. As f is an automorphism, it has degree 1
so that Tr f € {0,£1,4+2}. Moreover the inclusion Ker[N] C Ker(f — Idg) implies the
existence of some g € End E such that

f=1Idg +go[N].

Taking trace and degree, we obtain the relations Tr f =2+ NTrgand 1 =14+ NTrg+
N?degg. These two relations and the inequality N|Trg| < 4 imply that N2 degg < 4.
Consequently if N > 3, we have ¢ = 0 and f = Idg. Assume now that N = 2 and
f # Idg. Then g # 0 and Trg = —2. We conclude that f is annihilated by the
polynomial (X + 1)? and that f = —Idg. O

5.7 Frobenius morphism

Let p be a prime number and let X be a scheme of characteristic p. The absolute Frobe-
nius endomorphism of X is the morphism of schemes Fx from X to X whose underlying
continuous map is Idx and acting on the structural sheaf by the ring endomorphism
x +— xP. The formation of Fx is clearly functorial in X.

If X is an S-scheme with S of characteristic p, we define the S-scheme X ®/9) as
the pullback of X along the absolute Frobenius endomorphism of S. The universal
property of the fibre product of schemes implies that the absolute Frobenius F'x factors
in Fg|x o Fly/s where Fx/g is an S-morphism from X to X (/8 which is called the
relative Frobenius homomorphism. On a picture, we have the following commutative
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diagram
Fx

Example 5.34. Let S = Speck for some field k algebraically closed of characteristic 0
and let X = Speck|z,y]/(y? — 2 —ax—b). Then X /) = Spec k[z, y]/(y?> —x* —aPz—b)
and the morphism Fy,5 acts on k points by the formula

X(k) — X@5(k)
(z,y) —  (a%,97).

Of course if Fs = Idg (as scheme morphisms), then X ®/%) = X and Fx;s = Fx.

In greater generality, if ¢ = p/ is some power of p, we define F§ = F)O(f for X a
scheme of characteristic p. We let X(@/5) be the pullback of some S-scheme X along Fg
and FY factors through F'§ /g from X to X (a/$).

Moreover if G is some S-scheme, then Fg /s is a morphism of S-group schemes. In

the particular case of an elliptic curve E/S, the morphism F Zj /s from E to E@/9) is an

1
E/S)/s"

The Verschiebung homomorphism is the dual isogeny Vg /g = Fg/g from E®/9) to E.

For ¢ some power of p, we define VEq/S = (Fg/s)t. We have Vg/s o Fg/s = [¢] so that

isogeny of degree ¢ which is never étale and annihilates the cotangent space 0*Q2

V}% /s is an isogeny of degree q.

Theorem 5.35 (Hasse). Let g be some power of p and let S = SpecF,. Let E be some
elliptic curve over S, then we have

ICard E(F,) — (¢ + 1)| < 21/4.

Proof. Let F, be an algebraic closure of F,. As F g /s acts trivially on the differen-

tial, the morphism f := Idp — F}. is étale. As a finite étale map, we have deg f =
Card Ker(f] E(E))' As F} acts on E(F,) as the g-Frobenius element of Gal(F,/F,), we
conclude that

Card E(F,) = deg(Idg — F) =1+ q — Tr(F}).

The inequality follows from

|Tr F|> < 4deg F}. = 4q.
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5.8 The Weil pairing

Let E/S be some elliptic curve and let f : F1 — FE3 be some isogeny. We will define a
morphism of S-schemes

(= —)f : Ker f xg Ker ft— Gm,s
such that, for all S-scheme T,

e the induced map on T-points is bilinear

Ker fr x Ker f&. — I'(T, O7)™;

e it is alternating :
VPEKGI‘fT, VQEKGI'JC%, (PaQ)f(va)ftzlv
it is degenerate, it induces a isomorphism of S-group schemes

Ker f ~ Homg_gp(Ker 1 Gm,s);
e it is compatible to composition, that is, for another isogeny ¢ : F5 — FE3, we have
VP € Ker fr, VQ € Ker(f'og')r, (P,Q)gor = (P,g"(Q));-
Moreover (—, —) factors through pn s C Gy, g with N = deg f.

The construction of the map is as followed on S-points. We use Abel isomorphism
to identify Fy(S) to Pic?(E2/S) and Ker f% to the isomorphism classes of line bundles £
on Ey such that f*L£ ~ Opg,. Note that the following diagram shows that each element
in Pic®(Ey/S) killed by f* comes from a unique element of Pic®(Ey) which is killed by
f*

0 —— Pic(S) —— Pic’(Fy) —— Pic®(Ey/S) —— 0
H l = l =
0 —— Pic(S) —— Pic®(Fy) —— Pic®(Fy/S) —— 0.
Then if P € Ker fg and £ € Ker f!, we fix a an isomorphism between f*L ~ Op,.
Then the sequence of isomorphisms
Op, 3 'L " [*L "= Op, = Op,
a~! t_p t* pa
defines a global automorphism of Op,. This automorphism is given by the multiplication

by an element
(Pu ‘c)f € F(S’ f*OEl)X = F(Su OS)X'

We refer to [Oda69, Thm. 1.1] for the checking of the predicted properties of the
pairing. When F; = Ep and f = [N], we use the notation ey (P, Q) for (P,Q)n)-
Moreover in this case the bilinearity proves that ey factors through uy s and we have,
for f an endomorphism of E, for every S-scheme T and (P, Q) € E[N|(T),

en(f(P),Q) =en(P, f1(Q)),  enx(f(P),f(Q)) =en(P,Q))"/.
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5.9 The Tate module

The fundamental group Let S be a connected locally noetherian scheme. An étale
covering of S is a finite étale scheme over S. Fix 5§ a geometric point of S and let Fz be
the covariant functor from the category of étale coverings of S to the category of finite
sets sending X to Xz := X xg 3. It is proved in [SGAO03, §V] that the automorphism
group 71(S,S) of the functor Fs has a natural structure of profinite group so that Fz
induces an equivalence of categories between the category of étale coverings of .S and the
category of finite sets endowed with a continuous action of 71 (5,5). The profinite group
m1(S,35) is called the fundamental group of the scheme S based at 3.

As a consequence, for two geometric points s and ', the groups 71(5,5) and 71 (S, 3)
are canonically isomorphic as are the functors F' — F5 and F +— Fy.

Example 5.36. Let S = Spec K for a field K and fix 3 = Spec K some algebraic
closure of K. The finite étale coverings of K correspond to finite étale K-algebras and
the functor Fs is the functor Spec A — Hom K,alg(A,F). Then the fundamental group
71(S,3) is in this case the absolute Galois group Gal(K/K) of K.

Let f : S1 — S be a map of connected locally noetherian schemes and let 5 be
some geometric point of S;j. The functor Fl.5 is canonically isomorphic to Fgo f*.
This implies that each automorphism of Fs induces an automorphism of Fo5 so that we
obtain a group homomorphism

7T1(f) : 7T1(51,§) — 7T1(SQ,f OE).

Example 5.37. Let S be a locally noetherian connected normal scheme and let K =
k(S) be its fraction field. Let K be an algebraic closure of K giving rise to 5 a geometric
point of S localised at Spec K. Then the morphism

Gal(K/K) — m(S,3)

is surjective and its kernel corresponds to the maximal Galois extension of K which is
unramified at all codimension 1 points of S ([SGA03, Prop. V.8.2]).

Let S be locally noetherian scheme and let 5 be a geometric point of S. If G is
a finite étale group scheme over S, then the fiber G5 is a finite group. Moreover the
multiplication on G is a morphism of finite étale S-schemes G xg G — G. It induces a
morphism of groups Gz x Gz — G5 which commutes with the action of 1 (.S,35) (since
71(S,5) is the automorphism group of the functor F +— F5). Conversely, it follows
from the fact that F' — F% is an equivalence that the data of a finite group H with a
continuous action of 71 (.S, 5) (compatible with the group structure) comes from a unique,
up to unique isomorphism, pair (G, i) where G is a finite étale group scheme G over S
and i is a 71(95,8)-equivariant group isomorphism Gz ~ H.

75



The Tate module of an elliptic curve Let S be locally noetherian connected scheme
and let F'/S be an elliptic curve. If N > 1 is some integer which is invertible on S, the S-
group scheme E[N] is finite étale over S and its geometric fibres are free Z/NZ-modules
of rank 2. Consequently the datum of E[N] is equivalent to the continuous linear action
of m1(S,s) on E[N|(S) ~Z/NZ x Z/NZ.

If £ is a prime number, invertible over S, the Tate module of E is the free Zy,-module
of rank 2 defined as

T,E = lim E[¢")(5)

where transition maps are x +— fx. It is a finite free Z,-module with a continuous
linear action of the profinite group m1(.S,5). We also define its rational version V;F =
Q¢®z,T,E which is an f-adic representation of dimension 2 of the profinite group (5, 3).

Good reduction of elliptic curves Let K be a field, v : K* — Z a discrete valuation
on K and O, its valuation ring. It follows from example 5.37 that the fundamental group
of Spec O, is isomorphic to the quotient of the decomposition group of v by the inertial
group at v. Let ’s recall that this means the following : we fix some algebraic closure K
of K and an extension ¥ of v to K (which is not discrete anymore). Let k be the residue
field of O, and k the residue field of Oy. The decomposition group of T is the stabilizer
Dz of v in Gal(K /K) and the inertia group of v is the subgroup I3 of D7 acting trivially
on k. A representation of Gal(K /K) is said to be unramified at v is the action of Iy is
trivial for one, or equivalently any, extension T of v.

If F is an elliptic curve defined over K, we say that E has good reduction at v, if there
exists an elliptic curve £, over Spec O, and an isomorphism E ~ Spec O, Xspec K Eu-
As the ring O, is normal, it follows from the description of its fundamental group that,
for £ invertible on Spec O,, the Galois representation over V, FE is unramified at v.

Actually a reciprocal is true. The following result is called Néron-Ogg-Shavarevich
criterion (see [ST68, Thm. 1]).

Theorem 5.38. Let £ be a prime number which is invertible in k. Then an elliptic
curve E over K has good reduction at v if and only if the action of Gal(K/K) on V,E
s unramified at v.

In our situation it is known that we have a group isomorphism Dy/I; ~ Gal(k/k).
Moreover, if E has good reduction at v, the fibre of a E, at Speck is an elliptic curve
over k denoted FEj. For £ invertible in k, we have a canonical isomorphism

TgE >~ TgEk

compatible with the homomorphism Dy — Gal(k/k). Consequently the action of a
decomposition group at v is completely determined by the special fibre Ej.

When k is a finite field, the group Gal(k/k) is procyclic and topologically generated
by a Frobenius automorphism.
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Theorem 5.39. Let E be an elliptic curve defined over a finite field Fy. Let Frob,
be the q-Frobenius automorphism of F, some algebraic closure of F,. Let £ be a prime
number invertible in F, and let py group homomorphism Gal(F,/F,) — GL(V,E). Then
the characteristic polynomial of py(Froby) is

X% —a,X +q, aqg =q+1— Card E(F,).

It is very characteristic that this polynomial has integer coefficient and does not
depend on the prime number ¢. Moreover Hasise Theorem tells us that its roots in C are
conjugate and have complex norm equal to ¢2.

6 Models of modular curves

6.1 Moduli problems for elliptic curves

Let [£1l] be the contravariant functor from the category of schemes to the category of
sets associating to a scheme S the set [E1]](S) of isomorphism classes of elliptic curves
over S. A naive definition of the moduli space of elliptic curves would be the scheme
representing the functor [£1l]. Unfortunately this functor is not representable. Namely
assume that we can represent it by some scheme X. This would mean the following :
for each scheme S, there exists a functorial isomorphism

Homg, (S5, X) ~ [EU](5).

In particular, if L/ K is a field extension, the map [Ell](K) — [E1l](L) should be injective.
This would imply that two elliptic curves defined over K which becomes isomorphic over
L should be isomorphic. Here is however a counter example. Consider K = Qand L = Q
and, for i € {1,2} let E; be the elliptic curve defined by the Weierstrass equation

Y2z =2’ + (—1)'2%
These two elliptic curves are isomorphic over Q, an isomorphism being
(x:y:2z)— (—z:iy: 2),
but they are not isomorphic over Q. For example, we can check that F»[3](Q) ~ Z/3Z,

generated by (0, 1), but E1[3](Q) = 0 (check for example that Card E;(F7) = 4).

The non representability of this moduli problem is linked to the existence of non
trivial isomorphisms of elliptic curves. A good approach to representability of moduli
problems has to keep track of these automorphisms. There are several solutions to this
problem. The first one is to add some “level structure” to elliptic curves so the objects
we want to classify have no automorphisms. We can hope to be able to prove that the
corresponding functor is representable. The other solution is to not add any structure
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but to forget the idea to work with schemes and instead to work with a category of
elliptic curves. The notion of “stack” achieves this task.

In this course, we will follow the classical textbook of Katz and Mazur ([KM85])
and adopt an intermediate position consisting to work with the stack of elliptic curves
without telling it and use it to study moduli problems with level structure which may
or may not be representable.

Let S be scheme. We define £llg as being the category whose objects are pairs (7 f)
where T is an S-scheme and f : F — T is an elliptic curve over T. We will often use
the notation E,7 to denote such an object. A morphism from Ej,7, to Ey/r, in this
category will be a cartesian diagram

E1*>E2

]

T1 4>T2

where the top horizontal arrow induces an isomorphism Ey — Eo x7, T} of elliptic curves
over T7.

A moduli problem is a contravariant functor P from the category £llg to the category
of sets.

We will say that a moduli problem P is relatively representable if, for all E ;7 in Ellg,
the presheaf on the category of T-schemes defined by T' +— P(Eq/ /1) is representable
by a scheme PE,1-

Let P be a property of morphism of schemes which is stable under base change. We
will say that a relatively representable moduli problem P has property P if, for all E,7,
the map Pg . — T has property P.

We say that a moduli problem is representable if the functor P is representable by
some object B/ p) in the category Ellg. If P is representable, the S-scheme M(P)
represents the presheaf

Schy — Sets
T — {(E/T,a) ‘ a € /P(E/T)}/:

Examples of moduli problems Let S be a scheme and let N € N* be invertible
over S. Let E,5 be an elliptic curve. A full level N structure over S is an isomorphism
of locally finite group schemes

(Z/NZ)% ~ E[N].

We denote by [['(NV)](E/s) be the set of all full level N structures over E. We obtain a
presheaf E/p — [['(N)](E/r) over Ellg. This is our first example of moduli problem.

We can define some other moduli problems [I'1 (V)] and [I'o(N)] over £llg. We define
[C1(N)](E/s) as the set of all monomorphisms of finite étale group schemes (Z/NZ)g —
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E[N] and [['o(N)](E/s) as the set of all closed subgroup schemes H C E[N] such that
for all geometric point 5 — S, the fiber Hs is cyclic of order N. It is plain that [I'1 (V)]
and [['g(V)] are examples of moduli problems. Note that we can identify [I'1 (NV)](E/s)
with the set of all sections of E[N] which are of order N at each geometric point.

Proposition 6.1. If N is invertible over S, the three moduli problems [I'(N)], [['1(NV)]
and [Co(N)] are relatively representable and finite étale.

Proof. We will begin by the proof that [['(/V)] is relatively representable. It is sufficient
to prove that it is representable in the case where S is a connected scheme. In this case,
the data of a morphism from the constant group (Z/N )?g to E[N] is equivalent to the
data of group homomorphism

a: (Z/NZ)* — E[N](S).

Such a group homomorphism is determined by the two sections corresponding to the
images of elements of a basis of (Z/NZ)?, let say «(1,0) and a(0,1). Consequently the
functor [I'(NV)] is a subfunctor of the functor E[N] x s E[N]. Recall that the Weil pairing
en induces a perfect pairing

E[N](S) x EIN](S) = pn(S).

so that two elements u and v of E[N](S) generates the groupe E[N](S) if and only if
en(u,v) is a primitive root of unity, that is an element of order N in pn(S). Let py C pn
be the subfunctor of i consisting of primitive roots of unity. It is represented by a closed
subcheme of p1y. Namely py is represented by the scheme Spec Og[X]/(XY —1) and u)
by the scheme Spec Og[X|/(®n (X)) where & (X) is the N-th cyclotomic polynomial.
We conclude that the set [['(N)](E/g) is the set of sections of the closed subscheme of
E[N] x g E[N] defined as the inverse image of py, under ey : E[N] xg E[N] — py. This
proves that [['(IV)] is relatively representable and that

[T(N)]Eg,s = (E[N] x5 E[N]) Xy pin-

As [I(N)] g, is a closed subscheme of the finite étale S-scheme E[N]x g E[N], it is finite
over S. As the map uy — S is étale, it follows from Proposition 4.10 that the map ey
is étale and, by base change, that [['(N)]g,; — py is étale. As uy — S is étale too, so

is [['(N)]Eg,s — S. The two other cases are similar. O

Rigid moduli problems Let P be a moduli problem on the category £llg, we say
that P is rigid if for E/p an object of £llg and a € P(E,7) and ¢ an automorphism of
E)p, if ¢*(a) = a, then ¢ = Id.

If P is a representable moduli problem, then it is rigid. Namely assume that P
is representable by E,\( and let ¢ be an automorphism of some elliptic curve fixing
some a € P(E/r). Then the pair (E/r,a) corresponds to some unique morphism f :
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E;p — E, . However by definition f o ¢ gives rise to the same element o € P(E,7).
Consequently f o = f. However, f being a base change morphism, we have ¢ = Idg.

Consequently the existence of the automorphism [—1] shows that the functors [['o(V)],
or [I'(N)] for N < 2 cannot be representable. In a positive direction, we will prove a bit
later :

Theorem 6.2. Let S be a scheme and let P be a relatively representable affine and rigid
moduli problem. Then P is representable.

6.2 Examples of representable moduli problems

Proposition 6.3. Let S be a scheme over Spec Z[3]. Let (E/S,0) be some elliptic curve
and P € E[4](S) a section of order 4 over each connected component of S. Then there
exists a unique d € I'(S,Og)* and a unique isomorphism of elliptic curves

f:(E/S,0) = Eq:= (Projs Oslx,y, 2] /(dy*z — 2® — (d — 2)x*z — x2%),(0: 1 : O))
such that d(d —4) € T'(S,05)* and f(P)=(1:1:1) and f([2](P))=(0:0:1).

Proof. The unicity of f is a consequence of the rigidity of the moduli problem [I';(4)].
The unicity of d comes from the fact that an isomorphism of elliptic curves between Fy
and Eg is necessarily of the form (x : y : z) — (ax + bz : cy : z). However if such an
isomorphism fixes (1:1:1) and (0:0:1) we have a =c=1 and b =0, so that d = d'.

Having unicity we can just prove existence of d and f locally on S, everything can
then be glued. Consequently we can assume that S = Spec A and F is given by some
Weierstrass equation of parameter (a1, as,as, as,ag). As 2 € A*, we can make a change
of variable so that a; = ag = 0 and we can ask that [2](P) = (0:0: 1) so that ag = 0.
Let P = (zp :yp : 1). As E[4] is finite étale over S, the section P is of order 4 at each
geometric point of S, so that (zp,yp) € (I'(S, Og)*)?. This implies that we can rescale
the variables « and y so that xtp = yp = 1. Then F has a Weierstrass equation of the
form

dy2z = 2 + asx’z + agx2?

with d € I'(S, Og)*. As P has order 4, the invertible sheaf M := L(3(0) —2(P) — ([2]P))
is isomorphic to the pullback of an invertible sheaf on S. We are free to shrink S and
to assume that M is trivial. We conclude that p,M (where p : E — S) is free of rank
1. From compatibility with base change, it is isomorphic to p.L(3(0) — (P) — ([2]P))
and to a direct factor p,£(3(0)). We can conclude that y — x is a generator of its global
sections. This implies the equality

23+ agx? + agr — da® = x(x —1)?

giving a4 = 1 and as —d = —2. The condition d(d — 4) € T'(S,Og)* is then the precise
condition to obtain a smooth curve over S. O
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Corollary 6.4. The moduli problem [I'1(4)] over Ellz[l] is representable by the pair
2
(E, P) where E is the elliptic curve defined by

dy?z =2+ (d—2)2* + z
over the scheme M(I'1(4)) = SpecZ [%, d, (d(d — 4))_1} and P € E[4](M(I'1(4))) is the
section of homogeneous coordinates (1:1:1).

Corollary 6.5. The functor [I'(4)] over EllZ[l] is representable.
2

Proof. Let (E/M(I'1(4)), P) be the elliptic curve with point of order 4 representing
[['1(4)]. Let’s consider the morphism of M(I';(4)) schemes

ea(P,—)  Bl4] = pg pqry (a))

and let M(T'(4)) be the inverse image of u; the closed subschemes of primitive roots
of unity. Let E’ be the inverse image of E on M(I'(4)) and P; the pullback of P as a
section of E'[4]. We define P, € E'[4](M(T'1(4)) coming from the tautological section
M(T'(4)) — E[4]. The pair (Py, P») is a I'(4)-structure on E’ and the triple (E/, P;, P»)
obviously represents the functor [I'(4)]. O

Let E/S be some elliptic curve. A full level 3 structure over E is an isomorphism of
group schemes between the constant groupe scheme (Z/3Z x Z/3Z)s and E[3](S). Such
an isomorphism is characterized by a group homomorphism

a: (Z/3Z) x (Z]3Z) — E(S)
or equivalently by two section P; = «(1,0) and P> = a(0,1).

Proposition 6.6. Let S be a scheme over SpecZ {%} Let E/S be some elliptic curve

over S. Let (Py,Py) be some full level 3 structure over E. Then there exists unique
section B,C € T'(S,0g)* such that B®> = (B+C)? and a unique isomorphism of elliptic
curves from E to

Projg Oglz,y, 2]/ (¥ 2 + arzyz + azyz® — x3)

with a1 = 3C — 1 and a3 = —3C? — 3BC — B sending Py onto (0:0: 1) and P> onto
(C: B+ C :1). Moreover we have Cagz(a? — 27a3) € T'(S,0g)*.

Proof. The unicity is analogous to the case of Proposition 6.3. We have essentially to
prove the existence and we can work locally on S and assume that S = Spec A and F is

given by an equation

yzz +a17ryz + agyz2 =3 + agxzz + CL4CCZ2 + ag.
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Up to a change a variable, we can assume that P; = (0 : yp, : 1). Moreover, P; being
a section of order 3, we can assume, up to shrinking S, that £(3(0) — 3(Py)) is trivial
and that there exists unique a and b in A such that y +axz+b € I'(S, p.L(3(0) — 3(Fy)).
Replacing y by y 4+ ax + b we obtain a new equation which is of the form

yzz +a1xyz + agyz2 = 3.

Moreover there exists a’ and b’ such that y + o’z + V' generates T'(S, p.L(3(0) — 3(FP2)).
As (P1, P,) is a full level 3 structure, we have P, # +P; after evaluation at each geo-
metric point of S, consequently a direct computation over an algebraically closed field of
characteristic different from 3 shows that @’ € T'(S,Og)*. We can then make a change
of variable so that E has an equation of the form

vz + arzyz + azyz? = 28 (6)

with P = (0,0) and y—z— B € I'(S, p.L(3(0) —3(F2)) so that P, = (C, B+ C) for some
C € T'(S,05)* (to see that C is invertible, check it at each geometric point). Then,
replacing y by  + B in (6), we have

2® —(x+B)* —a(x+ B)x —az(x + B) = (x — C)?

which gives

3C :1—|—a1 al =3C -1
-3C? =2B+mB+az = {az =-3C°-3BC-B.

Finally a direct computation shows that the equation (6) defines a smooth curve over S
if and only if az(a? — 27a3) € T'(S, 0g)*. O

Corollary 6.7. The moduli problem [I'(3)] is representable over EllZ[l] by the triple
3

(E, P1, Py) where E is the elliptic curve of equation
Y’z + arwyz + agyz”® = a°
over M(T'(3)) := SpecZ [%,B,C, (Caz(a? — 27a§))_1} /(B® - (B+C)3) and P, = (0 :
0:1), L=(C:B+C:1).
6.3 Quotients by a finite group

A reference for the results recalled in this section is [SGA03, exp V, §1,2].

Let X be a scheme and let G be a finite group acting on S. A morphism of scheme
p: X — Y is a quotient of X by G if it has the following properties

o forallge G,pog=p;
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e the map p is a quotient in the category of topological spaces ;
e the map Oy — p,Ox induces an isomorphism of sheaves Oy = p*(’)g;(.
If p: X — Y is a quotient, then the scheme Y represents the functor Hom(X, —)¢,

the map p is consequently unique up to unique isomorphism and is called the quotient
of X by G and we write Y = G\ X.

If X = Spec A is affine, let B = A®. Then the map of schemes Spec A — Spec B is a
quotient. Moreover if C' is a flat B-algebra, then C = (A®p C) so that the formation
of quotient commutes to flat base change.

Proposition 6.8. Let X be a scheme and G a finite group acting on X. Then the
quotient of X by G exists if and only if every orbit of G is contained in an open affine
subset of X.

Proof. See [SGAO03, Prop. V.1.8]. O

Concerning the finitness properties of the quotient we have ([SGA03, Cor. V.1.5]) :

Proposition 6.9. Let Z be a scheme and let X be some Z-scheme and G a finite group
acting on X by automorphism of Z-schemes and let X — Y be a quotient. If X is of
finite type over Z, then X is finite over Y. Morever if Z is locally noetherian, then Y
is of finite type over Z.

Decomposition and inertia groups Let X be a scheme and let G be a group acting
on X. If x € X, the decomposition subgroup at x is the stabilizer G4(x) of . The inertia
subgroup at x is the kernel of Gy4(z) — Aut(k(x)).

Proposition 6.10. Let X be a scheme and G be a finite group acting on X. Assume
that the quotient Y := G\X exists. If G;(x) = {e}, then the quotient map p is étale at
x. Conwversely if moreover X is connected and G acts faithfully on X, then p étale at x
implies G;(x) = {e}.

Proof. See [SGA03, Prop. 2.2 & Cor. 2.4]. O

Etale G-torsors Let X — Y be morphisme and scheme. Let G be a finite group
acting on X via automorphisms over Y. We say that the action of G on X is locally
trivial if, locally for the Zariski topology on Y, X is isomorphic to the product G x Y
with action of G given by g - (h,y) = (gh,y). When Y is a quotient of X by G, it is
very unlikely that X is locally trivial over Y. However if we replace the Zariski topology
by the étale topology, it can often be the case. We won’t define here formally the étale
topology which is not a usual topology but a Grothendieck topology. Instead we will
use the notion of étale G-torsor as defined below.
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Proposition 6.11. Let Y be a locally noetherian scheme, X a scheme overY and G a
finite group acting on X by Y -automorphisms. The following assertions are equivalent

(i) the scheme X is finite over Y, the quotient of X by G exists and is isomorphic
toY and all inertia groups of G are trivial ;

(ii) there exists a surjective finite étale map Y1 — Y such that, if X1 = X xy Y1,
there exists a G-equivariant isomorphism of Y1-schemes between X1 and G X Y7.

Proof. See [SGA03, Prop. 2.6]. O

If X satisfies the equivalent properties of Proposition 6.11, we say that X is an étale
G-torsor over Y.

Descent for étale G-torsors Let X — Y be a quotient map for a finite group G.
If Z is an “object” over Y, ie a sheaf or a scheme, we can pull back Z to X to obtain
an object over X endowed with an action of G. The problem of “descend” is to give
some explicit criterion characterizing the G-equivariant objects over X obtained by this
process. We will focus on the case where X — Y is an étale G-torsor.

Let G be some finite group and let S’ — S be some étale G-torsor. If X’ is some
S’-scheme, a descent data over X' relative to S’ is an action of G on X’ such that the
structure map X’ — S’ is G-equivariant. If moreover F’ is a coherent sheaf over X',
a descent data over the pair (X', F’) is a descent data on X’ and, for each g € G an
isomorphism 6 : g* 7' = F' such that 6, = 6}, o h*0,.

If X is an S-scheme, then the pullback X’ = X xg S’ has a natural descent data.
An element g € G acts on X’ by Idy x g. Let F be a coherent sheaf X. Let F’ be the
pullback of 7 on X’. Then F’ has a natural descent data given by

eg R Idr: g*f, ~ Og ®og F = Og ®og F.
Theorem 6.12. Let S’ — S be an étale G-torsor.

(i) The functor X — X' from the category of affine schemes over S to the category
of affine schemes with descent data over S’ is an equivalence of categories.

(ii) The functor (X, L) — (X', L) from the category of pairs (X, F) where X is a
projective S-scheme and L a relatively ample invertible sheaf over X to the category of
sitmilar pairs with descent data over S’ is an equivalence of categories.

Proof. This can be proved directly or as a consequence of a more general result for maps

S" — S which are faithfully flat and quasicompact ([SGA03, Thm. VIII.2.1] and [SGA03,
Prop. VIIL.7.8]). O
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Example 6.13. If E’ is some elliptic curve over S’ with a descent data compatible with
the structure of elliptic curve, then E’ descends to an elliptic curve over S. Namely we
can apply Theorem 6.12 with the relatively ample invertible sheaf £(0).

6.4 Proof of the representability theorem 6.2

In this section, we prove Theorem 6.2.

Let P be some moduli problem over £llg. We say that a finite group G acts on P
if for each object E,r in Ellg, there is an action of G' on the set P(Ell,r) and if the
transition maps P(E,r) — P(E}T,) are G-equivariant.

Lemma 6.14. Let S be a locally noetherian scheme. Let P be some moduli problem
over Ellg which is affine and rigid. Let G be a finite group and let Q be an other moduli
problem over Ellg such that

o the functor Q is representable by an elliptic curve BE(Q), rq(0) over an affine S-
scheme M(Q);

o the group G acts on Q and tor each E, in Ells, the T-scheme QE/T representing
the Q-structures on E/T is an étale G-torsor over T.

Then the functor P is representable.

Proof. The functor P is relatively representable and the functor Q is representable.
This implies that the functor P x Q is representable. Namely it is easy to check that it
is representable by the base change E of E(Q)/m(o) to M(P, Q) == Pgg)/m(o)- The
group G acts on Q, consequently it acts on M(Q), E(Q), M(P, Q)... The inertia groups
of G acting on M(P, Q) are trivial. Namely it is sufficient to check that G acts freely
on the functor of points of M(P, Q). Let Spec A be an affine S-scheme. Then

M(P? Q)(A) = {(E/SpecAvavﬁ) | (057/8) € p(E/SpecA) X Q(E/SpecA)}/ =.

Let g € G. If g(E)spec 4, @, ) = (E)spec 45 @, ), there exists an automorphism ¢ of F
such that p*(a) = a and ¢*(8) = gB. As P is rigid, we have ¢ = Idg so that g8 = p.
However, O Speca 7 Spec A is a G-torsor and Q(F/gpec 4) coincides with the set of
sections of this map. Therefore if g8 = 8 we have g = e@. This proves that the action
of G is faithful on the functor P x Q.

The moduli problem P being relatively representable and affine, the scheme M (P, Q)
is affine over M(Q) and M(Q) is affine. This implies that M(P, Q) is affine over S.
Hence the quotient G\ M (P, Q) exists and it follows from Proposition 6.11 that the map
M(P, Q) — G\M(P, Q) is an étale G-torsor. We now define

M(P) = G\M(P, Q).
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As G acts on E, there is a descent data on E and it follows from example 6.13 that this
elliptic curves descends along M(P, Q) — G\M(P, Q). Let E be the elliptic curve over
M(P) obtained by this descent process.

Let auniv € P(E) be the universal P-structure over E, ie the first component of the

element (Quniy, B/\un:,) corresponding to the identity map of E. We want to prove that
it is the image of a unique element ayniy € P(E/rq(p)) by P(E/pmp)) — P(E/ am(p,0))-
This will follow from the fact that the map

PE/ ) = PE/Mmr.0)

is injective with image the subset of the fixed points of G. Consider the map Og ey
M(P). The base change of E to Og Jampy admits a canonical Q-structure corresponding
to a map

QE v(py — M(P, Q)

so that we have a G-equivariant commutative diagram

QE pep) M(P, Q)

M(P)

However both vertical maps are étale G-torsors. This implies that the horizontal map is
an isomorphism (it is finite étale of degree 1). Consequently, as a G-set, P(E/rp,0))
is isomorphic to

PE)os, ) = PEmMP) X QE/MmP)).
This proves our assertion.

The functor P being relatively representable and affine, the elements P(E,r) are
in bijection with the section of the affine scheme 7 : Pg p = T consequently P(Er)
corresponds to the global section of the quasicoherent sheaf W*O'])E/T. The element

Qtuniv corresponds to a G-invariant section of the quasicoherent sheaf f *W*O’]DE/M(P) over

M(P, Q) consequently it descends uniquely to M(P).

Now we have to check that the E /M(P) Tepresents P with universal class ayniyv i€
that for all & € P(E/r), there is a unique morphism of S-schemes 7' — M (P) such that
FE is isomorphic to the pullback of E and such that iy is sent on «.

Let (Er,a) with o € P(E)r). Let E' be the base change of £ along Qp,, — T
and let Buniv € Q(E}QE ) be the universal Q-structure. Then there exists a unique
/T

map Qp,, — M(P, Q) corresponding to the triple (E 7, a, Buniy) which is plainly G-
equivariant. The composite

O,y = M(P. Q) = M(P)
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is G-equivariant, so that we obtain a commutative diagram

Qp, —1 M(P,Q)

iﬂ./ Jﬂ'univ

T —L s mep).

We have to check that (f*E, f*auniv) is isomorphic to (E/7, «). We have 7*(f*E, f*auniv) ~
(f")*(E, Guniv, Buniv) which is (B, o, Buniv) by definition of f’. Consequently we have
™ (f*E, f*auniv) = 7 (E/7,a) and this isomorphism commutes to the action of G. By

descent, this induces an isomorphism f*E ~ E. Now, P being rigid and 7 a G-torsor,
we have (f*E, f*ouniv) =~ (E/7, a).

Finally we have to check that f is unique. This is left to the reader who may also
consult [KM85]. O

Finally we can prove the representability theorem.

Theorem 6.15. Let S be a locally noetherian scheme and let P be some relatively
representable affine and rigid moduli problem. Then P is representable.

Proof. Assume that we can decompose S = S’ U S” with S’ and S” open subschemes of
S and that there exists Q' and Q" representable functors over Ellg: and Ellg satisfying
the properties of Lemma 6.14. Then the restrictions P|g and Pgr of P to Ellg and
Ellgn are representable by elliptic curves E’/ A and E’/’ - 1t is mow clear that the
schemes M’ and M” can be uniquely glued into an S-scheme M representing the functor
T {(E/p,a € P(E/r))}/ =~ Then the elliptic curves E’ and E” can be glued into an
elliptic curve E over M as can be the universal P-structures. The object that we obtain
represents the functor P.

We just have to observe that such a decomposition of S can always be obtain. We
take S = S {%} and Q" = [['(3)]|engy, 8" =S [%} and Q" = [['(4)]|en, - By construction,
for each E;7, the map [I'(3)]g,, — T is an étale GLa(F3)-torsor (if 3 € I'(T, Or)*) and
[L'(4)]g,, — T is an étale GLo(Z/4Z)-torsor (if 2 € I'(T, Or)™). O

Theorem 6.16. Let P be some relatively representable finite étale and rigide moduli
problem over Ells. Then P is representable by an elliptic curve E )y py and M(P) is a
smooth and affine curve over S.

Proof. The assertion is local on the base, so that we can assume that 3 or 2 is invertible.
Then M(P) is isomorphic to G\M (P, Q) for a well chosen representable functor Q.
Actually M(P, Q) is finite étale over M(Q). Now we can choose Q being I'(3) or I'(4)
but we checked that M(Q) is a smooth affine curve over S in both cases. Consequently
M(P, Q) is finite étale over T. Since M(P, Q) is a G-torsor over P we can conclude
that M(P) is affine and smooth over S. O
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Corollary 6.17. If N > 3, the moduli problem [F(N)”Ellz[l] is representable by a
~

smooth and affine curve M(T(N)) over Z[+]. If N > 4, the moduli problem [Fl(N)]\g”Z[ ']
~

is representable by a smooth and affine curve M(I'1(N)) over Z[+].

6.5 The C-points of moduli spaces of elliptic curves

We constructed a bijection between SLo(Z)\H and the set of isomorphism classes of
elliptic curves defined over C. The isomorphism sends the orbit of z € H to the complex
elliptic curve E; := Ey_ where A, = Z1 + Z.

We can construct a level N structure on F; depending naturally on 7 by the formula

(Z/NZ)* —  Er[N]
(a,b) +— a +bE.

We will now determine to which condition the two pairs

(o () o (5 ()

are isomorphic. These pairs are isomorphic if and only if there exists o € C* such that
OéAT = AT/
1
N € Nt Ay
ek +hn

This is the case if and only if there exists a matrix (Z b) € GL2(Z) such that 7/ =

d
alar +b) and 1 = a(cr + d) with ™7’ € 7+ NA,; and a=! € 1+ NA,, ie. the
matrix Z Z is actually in I'(INV). This proves that the points of Y (IN) corresponds
to equivalence classes of elliptic curves with full level N structure. However we don’t
obtain all full level N structures by this process. Namely if (E, (P,Q)) is a full level N
structure the Weil pairing ey (P, Q) is invariant by any automorphism of E. As we have

e (21, 22) _ xp 2 02
NAN'N PLN “vol(d)

we have ey (%, %) = exp (—%)
Let Ay = Z[1/N, X]/(®n(X)) with ®x the N-th cyclotomic polynomial. Fix { €
Ap a primitive N-th root. If F/S is an elliptic curve with S an Apy-scheme, define

(LN (E/S) ={(P,Q) € [L(N)|(E/S), en(P,Q) = (}.
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Then we can easily check that have a bijection
Y(N) ~{(E,a), a € [[(N)](E/S)}/ ~

where (E,«) ~ (E', ') if and only if there is an isomorphism E ~ E’ pulling back o' to
a.

Theorem 6.18. For N > 3, the moduli problem [I'(N)]¢ is representable over Ell4, by
an elliptic curve €/ M(L'(N)¢) with M(T'(N)¢) an affine smooth curve over Spec Ay with
geometrically connected fibers. Moreover let v be the embedding of Ax in C sending ¢ to

e%, there exists an isomorphism of Riemann surfaces between Y (N) and (M(I'(N)¢) x,

C)* given on C-points by
1 7
(N E. (= Z)).
( )TH< (N N)>

Proof. The scheme Spec Ay represents the functor of primitive roots of unity. Conse-
quently there exists a morphism of scheme M(T'y) — Spec Ax which is defined on the
sets on points by (E, (P1, P»)) — en(P1, P»). The Spec An-scheme M(I'(INV)¢) is nothing
else than M(T'(N)) viewed as a Spec A-scheme via the above map.

We have essentially to prove the existence of the isomorphism between Y (N) and
(M(T'(N)¢) x, €)**. In order to do that, it is sufficient to construct a morphism of
Riemann surfaces

MD(N))(©)™ = Y (T(N)) (7)

which, on C-points is given by (6.18). Namely this will be a bijective morphism between
Riemann surfaces, hence an isomorphism because of the complex analytic local inversion
theorem.

In order to prove the existence of (7), we use the following result, which is a version
“in family” of the complex uniformisation theorem.

Proposition 6.19. Let S be a smooth C-scheme and let E be some elliptic curve over
S. Then there exists a line bundle V on S, a rank 2 local system A on S®*", a map of
sheaves A < V* and a holomorphic map V(VV:*") — E* inducing, for all s € S(C),

V& k(s)/As ~ Es.
Such a pair is called an uniformisation of E*".

Let (A — V) be some uniformisation of E*" as in the Proposition. Locally on S*"
(for the analytic topology), the sheaf A is isomorphic to Z2. Up to localising on S, we
can fix an isomorphism of local systems Z? ~ A. The map A < V induces a morphisme
of vector bundles

AR Og —» V.

The map is surjective since, for each point s € S(C), the image of A; in V®k(s) contains
a basis. Now if we fix an isomorphism 1 : Z? ~ A, we obtain a surjective map of vector
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bundles O% — V with V a line bundle. This is equivalent to a map S — IP’}C. Moreover,
for s € S(C), we know that A, contains a basis of the R-vector space V ® k(s). This
implies that the map S(C) — P!(C) takes its values in P!(C) \P}(R), identified to C R
via x +— (z : 1). Moreover it is easily checked that the map S* — C\ R is holomorphic.
Namely there is an holomorphic section h of V such that ¥((0,1)) = hy((1,0)) so that
the map s — h(s) is holomorphic. Obviously the map S*" — C \ R depends on the

choice of the trivialisation 1. Namely if v = (9 Y) € GL2(Z), then ¢ o v~! is another

trivialisation and h(y o y~1) = z}};(%)IS As a consequence, we can always choose v so

that the map h(v) takes its values in H C C \ R.

If we apply the snake Lemma to the morphism of sheaves over S#" :

0 A 1% E 0
oo
0 A 1% E 0
we obtain an isomorphism of local systems
A®Z/NZ ~ E[N]. (8)

Now assume that we have a full level N structure on E, ie an isomorphism (Z/NZ)? ~
E[N], we can consider trivialisation ¢ such that (8) induces the isomorphism coming from
the level structure. Note that the existence of such a trivialisation comes from our condi-
tion en (P, Q) = ¢ on the level structure. Two such trivialisations differ by composition
with an element of I'(V). Consequently the holomorphic map S** — Y (N) = I'(N)\H
that we obtain does not depend on the trivialisation of A (compatible with the level
structure). Such a construction is local on S, but by uniqueness it can be glued into an
holomorphic map S*" — Y (V). It is a simple exercice (left to the reader) to check that
this is exactly the desired map on the points. O

Proof of the Proposition (sketch). We define V := R! f,Op. Note that V is a line bundle
whose formation commutes with base change. We define A := R!f,Z. It follows from
Ehresmann Theorem that R!f,Z is a local system on S*" whose formation commutes
with base change. It is sufficient to compute his rank when S is a point and F is a
complex torus. This shows that R!f.Z is a local system of rank 2. Now the short exact

sequence on E?" :

0—7Z— Op ep(2mi)

O —0
shows that we have a long exact sequence
0—A—V— R{OS — R*.Z —0.

As the sheaf R!f,OF is isomorphic to the Picard group Picg /s and since the kernel of
deg is divisible, we conclude that we obtain a short exact sequence

0 — A —V — Picjy,g — 0.
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Now we can use the Abel-Jacobi isomorphism E ~ Pic% /s in order to obtain the desired
map V(VY) — E22, O

There is an analogous result for the moduli problem [[';(/N)] but, in this case, the
moduli space is defined over Z[1/N].

Theorem 6.20. For N > 4, the moduli problem [['1(N)] is representable over Ellzj /n

by an elliptic curve E/M(T'1(N)) with M(I'1(N)) an affine smooth curve over Spec Z[1/N]
with geometrically connected fibers. Moreover there exists an isomorphism of algebraic

varieties over C between Yp, (ny and M(T'(N)¢) x C given on C-points by

P(N)r (ET, ;) .

6.6 Coarse moduli schemes

Let S be a scheme and let P be some moduli problem over £llg which is relatively
representable and affine. We construct a coarse moduli scheme for P by the following
process. Locally on S, we define

M(P) = G\M(P, Q)

where Q is a representable moduli problem which is moreover a finite étale torsor of
group G. We can check that this definition does not depend on the choice of the functor
Q, it is unique up to unique isomorphism so that it can be defined locally and glued over

S.

Proposition 6.21. Let S = SpecZ[1/N] and assume that P is moreover finite étale
and surjective. Then M(P) is normal and finite flat over S, of relative dimension 1.

Proof. All these assertions are local on the base. We can consequently assume that
M(P) = G\M(P, Q). We have a commutative diagram

M(P,Q) —— M(P)
M(Q) >> S
We know that the horizontal bottom arrow is smooth and affine and the left vertical
arrow is finite étale and surjective. Then the diagonal arrow is smooth and affine. As
the top horizontal arrow is a quotient by a finite group, we can conclude that M (P) is

normal and torsion free over .S, consequently S-flat. The finiteness is a consequence of
the fact that M(P, Q) is finite over S and that S is noetherian. O
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More general moduli problems Let H C GLy(Z/NZ) be some subgroup. We define
the H-structure moduli problem. Let E/g be some elliptic curve with N invertible over
S. The moduli problem [I'(N)] is relatively representable we can consider the S-scheme
[['(N)]E, s which is smooth and finite étale over S. The finite group GL2(Z/NZ) acts on
[I'(NV)] and consequently acts on [['(V)]g,s. Thus we can define set

[H](E/s) = Homg (S, H\[['(N)]Eg,s)-

The functor [H] is a moduli problem which is relatively representable and finite étale over
Ellzp/ny- Assume that S is connected and locally noetherian and fix 5 some geometric
point of S. We can give the following interpretation of the elements of [H]|(E/g) : they
are the H-orbits (on the left) of group isomorphisms

(Z/NZ)* = E[N]s
which are stable under the action of the fundamental group m1(.S,3) (on the right).

Using this description we can check that the moduli problem [I'g(V)] is isomorphic
to [H] with H the subgroup of upper triangular matrices and [['1 (V)] corresponds to
the subgroup of upper triangular matrices with upper left entry equal to 1.

As the formation of quotients commutes to flat base change and the map SpecC —
SpecZ[1/N] is flat, we have natural isomorphism of Riemann surfaces

H\M(T'(N))(C) = M(H)(C)
which induces an isomorphism
Xr,; — M(H)(C)

with Ky the compact open subgroup Ky C GLg(z) defined as the inverse image of H
by the reduction map R
GL2(Z) — GLa(Z/N7Z).

The classifying map Let P be a relatively representable and affine moduli problem
over llg. Each isomorphism class (E/p, ) with a € P(E,r) gives rise to a classifying
map

T — M(P)
that is a morphism of S-schemes defined locally on T as follows. As usual we fix Q some
representable moduli problem which is an étale G-torsor for some finite group G. We
consider the universal Q-structure over F /28, giving rise to a map Qp,,. — M(P, Q).

Since Q is a finite étale G-torsor, the G-equivariant map Qg v T is a quotient, so
that the following diagram can be completed



The bottom horizontal map is then the classifiying map.
Consequently each pair (E,r, a) gives rise to a canonical T-point of 2g .. € M(P)(T).

Proposition 6.22. Let k be some algebraically closed field. The map (Ey, o) — oy
induces a bijection from the set of isomorphism classes of pairs (E/k,a) and the set
M(P)(k).

Proof. 1t follows from properties of quotient of schemes by finite groups that we are
reduced to check that the set of isomorphism classes of pairs (E/;, ) are in bijection
with the orbits of G on k-points of M(P, Q). As P x Q is representable, the k-points
of M(P, Q) are in bijection with isomorphism classes of triples (E/;, a, 8) with 3 some
Q-structure on E/;. The conclusion comes from the fact that, Q being a G-torsor, the
group G acts transitively on triples (E/, o, 3) with fixed isomorphism class (£, ). O

6.7 The j-line

The discriminant Recall that we defined S = Spec Zlay, az, a3, ay, ag] the scheme of
parameters of Weierstrass equations and S"™ the open subscheme of smooth equations.
We recall that there is a universal projective curve E over S defined by the projective
equation

yzz +a1xyz + a3y22 =3 + a29322 + a4xz2 + agz?’.

Proposition 6.23. Up to sign, there exists a unique A € Z[a1, a2, as,as, ag] such that
S\ S = fA =0}.

Proof. Let ES™ be the smooth locus of f : E — S. We have to check that the closed
subspace f (E ~ E*™) is of pure codimension 1. The conclusion follows then from the
fact that S is the spectrum of a factorial ring. However E ~ E*™ is defined by three
equations in PZ, its irreducible components are consequently of codimension < 3. As
all fibers of f contains smooth points, we deduce that the irreducible components of
E ~ E™ have codimension < 2. As f is flat and has generically smooth fibers, we
conclude that irreducible components of f (E ~ Esm) have codimension < 1. Finally, S
being irreducible and S"™ non empty, the closed subset S ~. S™V is of pure dimension
1. O

This A is called the discriminant and can be calculated explicitely as follows.

Define

by = a% + 4ag
by = arasz+2ay
b@ = CL% + 4CL6.

Over S[1/2], there is a isomorphism of projective curves

~

Proj O§[1/2] (21,91, 21)/ (Y321 = 423 + box? 21 + 2bg2127 + bg2}) 5 E
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given by (x:y:2)— (x1:y1:21) = (2 : 2y + a1z + azz : 2).

By unicity, we conclude that A must be a Z[1/2]* multiple of the discriminant of
the polynomial
23 + box? + 2byx + bg.

Up to %1, we find that there exists a unique such multiple which is non zero on S @y Fs.
It is

A = —blbg — 8b3 — 27b3 + babybg
where bg = atag — ajasay + dasag + azad — a3 (see [Tat74, §2] or [Sil86, I1L]).

Moreover if we set ey = b% — 24bs and ¢ = —b% + 36b9by — 216bg, then we have an
isomorphism over S[1/6] :

~

Proj O§[1/2] (22,2, 22] /(Y220 = a5 — 2Tequaz? — Hlcezd) = E.

We define the j-invariant as a regular function over S™V by the formula
o
Proposition 6.24. Let T be a scheme and let w1 and m be two morphisms T — SV
such that f E™™Y ~ 13 B | then we have jo 71 = j omo.

Proof. This is a consequence of Riemann-Roch Theorem and the formula of change of
variable from [Tat74, p. 181]. O

This implies that for each elliptic curve E,7, there exists a unique morphism j :
T — A' such that, if U C T is an open subset such that F v is obtained by pullback
from some 7 : U — S"V, then j|y = j om. A consequence of the unicity is that, if
[ is automorphism of E/,p, we have j o f = j. This implies that j factors through a
morphism
§:M(1) — AL

Theorem 6.25. Assume that k is an algebraically closed field, then j induces a bijection

M(1)(k) > k.

Proof. See for example [Sil86, Prop. I11.1.4]. O

Theorem 6.26. The map j induces an isomorphism of schemes

jiM(1) S AL
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Proof. The scheme M (1) is normal and flat over Z. As M(I'(3)) — M(1) is finite and
surjective, the scheme M (1) has to be of dimension 2. Consequently Serre normality
criterion ([Gro65, Thm. 5.8.6]) implies that M (1) is Cohen-Macaulay. It follows from
Theorem 6.25 that the map j is quasi-finite. A quasi-finite map between two schemes of
same dimension, the source being Cohen-Macaulay and the target a regular scheme, is
flat. Consequently j is finite flat. Looking at complex points, we see that j has degree 1
on a dense subset of M(H). Consequently j is a finite flat morphism of degree 1, hence
an isomorphism, from M (H) to its image in M(1). As Theorem 6.25 shows that j is
surjective on closed points and both schemes are finitely generated over Z, j is surjective
and consequently an isomorphism. O

This implies that the coarse moduli scheme M (1) is affine and smooth over Spec Z.

More generally we have the following result :

Theorem 6.27. Let H C GLo(Z/NZ) be a subgroup. Then the coarse moduli prob-
lem M(H) is affine and smooth over SpecZ[1/N] of relative dimension 1. Moreover if
det(H) = (Z/NZ)*, then its geometric fibers are connected.

Proof. See [DR73, Prop. 6.7]. O

6.8 Compactification of moduli problems

The goal of this section is to “compactify” the modular curves M (H) as we compactified
their complex analytic analogues X (H).

The coarse moduli scheme M (1) is an open subscheme of a proper and smooth scheme
over SpecZ. Namely it is isomorphic to A% through j and A% can be compactified by
PL.

Let H C GL2(Z/NZ) be a subgroup. We define a scheme M (H) as the normalisation
of P%[N—l} into M (H) via the finite map

f:M(H)— M(1).

More precisely let U C IP’%[ N-1] be some affine open subset and let U’ = U N A%[ N-1] and

V! = f~1(U"). Let U = Spec A. The map f being finite, V' is an open affine subset of
M (H). Let B be the integral closure of A in O(V’) which is finite extension of O(U’).
The ring B is a finite A-module. Namely, we know that Z is an universally japanese ring
(by [Gro65, Cor. 7.7.4]) which means that if A is a finitely generated Z-algebra which
is a domain and if K’ is a finite extension of the fraction field K of A, then the integral
closure of A in K’ is a finite A-module (see [Gro64, §23] for more details). Here A is
clearly a finitely generated Z-algebra. Since M (H) is a normal scheme, the ring B can be
described as the integral closure of A in the fraction ring of O(V’) which is a finite sum
of finite extension of Frac A. Consequently we can define V := Spec B. It is a normal
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scheme and the map V' — U is finite. We can remark that all the connected components
of Spec B are normal schemes of dimension 2. Consequently they are Cohen-Macaulay
and Spec B is Cohen-Macaulay. The map Spec B — Spec A is consequently a finite
map between equidimensional schemes of the same dimension, with A regular and B
Cohen-Macaulay. Thus B is flat A-module.

From the normality of M (H), we deduce that, U = U’ implies V' = V’. This implies
that, if (U;) is finite open affine covering of M (1), we obtain a family (V;) of affine
schemes which can be glued into a normal scheme M (H) with a finite flat map

M(H) — M(1)

and there exists a natural open embedding M (H) — M (H) inducing an isomorphism

Note that M (1) is proper, so that M (H) is a proper Z-scheme. It deserves to be thought
as the “compactification” of M (H).

Remark 6.28. The scheme M (H) has a moduli interpretation as a (coarse) moduli
space parametrising elliptic curves with additional structure. We can give a similar
moduli interpretation of the M (H). However we have to work not only with elliptic
curve but with generalised elliptic curve making the theory more technical. However this
description can be very useful if we want to describe the singularities appearing when
we normalise M (H) over SpecZ (and not only Spec Z[N~1]. The interested readers can

have a look to [DR73].

It is a bit more complicated that this process gives us a smooth curve.

Theorem 6.29. The Z[1/N]-scheme M(H) is proper and smooth over SpecZ[1/N].

Before proving this theorem, let’s introduce the cuspidal divisor. This is the closed
subscheme Cuspy = (M(H) ~ M(H))*. Since M(H) is a norma scheme, Cuspy
coincide with the inverse image of oo := M(1) ~ M (1) which is isomorphic to SpecZ.
This proves that Cuspy is a finite flat Z-scheme. This is an effective divisor in M (H).

Proposition 6.30. The divisor Cuspy is a disjoint union of irreducible divisors.

Proof. Namely let U = Spec A be some affine open subset of W containing co. Then
Cuspy is contained in the inverse image of U which is the normalisation of A in the
fraction ring of O(V') where V' is the inverse image of U’ = U N M(1) in M(H). The
fraction ring of O(V”) is finite sum of fields and B is consequently the finite sum of the
normalisation of A in each of these fields. This proves the assertion. O

Theorem 6.29 can be deduced from a variant of Abhyankar Lemma ([SGA03, Prop. XIIL.5.2]).
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Let X be a normal scheme and let D C X be an irreducible regular closed subscheme
of codimension 1. Let U = X \ D and let f : V — U be some finite étale morphism. We
say that f is tamely ramified along D if, for z € D the generic point, n a generization
of x in U and 7' a generic point of V' such that f(n') = 7, the extension k(n’)/k(n) is
tamely ramified over the discrete valuation ring Ox , C k(n). In other word, the inertia
index of all primes of k(n) over x are prime to the characteristic of the residue field k(z).

Theorem 6.31. Let X be a regular scheme and let D C X an irreducible reqular closed
subscheme of codimension 1. Let f:Y — X be finite flat morphism which is étale over
X D with Y normal and f tamely ramified along D. Then the ramification index e of
f along D is prime to the characteristic of all closed points of D. Moreover there exists
an étale map h : X' — X whose image contains D, an element x € T'(X', Ox/) such that
h=Y(D) = {z = 0} such that Y x x X' is isomorphic to Spec Ox/[T]/(T¢—z) — Spec X'.

Proof. See [Con, Lemm. 1.44+Erratum]. O

Proof of Theorem 6.29. We can apply Theorem 6.31 if we know that there exists some
open subset U of M(1) such that the map M(H) — M (1) is étale on U ~. Cusp. It is
therefore sufficient to check that the map M(H) — M (1) is finite étale on some open
subset of M (1) complement of a finite union of closed subsets of the form {j = a}
for a € Z. The map M(H) — M(1) is finite étale of degree [GL2(Z/NZ) : H{+£1}].
Consequently it is finite étale at a geometric point = : Speck — M (1) if and only if its
fiber has exactly dy points over z. This is the case if and only if Aut(E,) = {xl2}. It
can be checked on Weierstrass equations that this is true as soon as j(E;) ¢ {0,1728}.
Consequently the map M(H) — M(1) is étale outside of {j = 0} U {j = 1728}. Then
Theorem 6.31 implies that there exists some étale map Spec A = X' — m whose
image contains oo and such that X’ ST0] M(H) is isomorphic to A[X]/(X€¢ — z) for
some v € A. As e is prime to the residual characteristic of all the points of Cuspy,
we deduce that A[X]/(X€¢ — z) is a finite étale A-algebra. It follows that the map
M(H) — M(1) is étale on the neighbourhood of Cuspy; and consequently that M (H)
is a smooth Z[N ~!]-scheme. O

Example 6.32. If p € {11,17,19}, the scheme M(Fo(p))Q is an elliptic curve having
good reduction outside of p.

For example, M (T'g(11)) is the projective scheme over Z[117!] defined by
Yz 4yt =23 — 222 — 10222 — 2023, (9)

Namely, it is an equation defining M (I'g(11))c =~ Xo(11). Moreover the discriminant of
this Weierstrass equation is —11°, so that it defines a proper and smooth scheme over
Z[117Y] which has to coincide with My(11).

Note that this equation defines a projective scheme over Z which is normal. However
this scheme is not smooth over Z. Namely its fiber at 11 is the curve define by the
equation

(y — 52)* = (x — 52)° + 3(x — 52)%
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It has a singular point at (5:5: 1). Moreover we can check that the scheme defined by
(9) is not regular at this point.

Similarly the scheme M (T1(11)) is an elliptic curve over Z[117!] defined by the
equation

vz 4yt = a3 — 2?2 (10)

The same equation defines a normal projective scheme over Z. It has a singular fiber at

11 of singular point (—3 : 5: 1). This time the equation (10) defines a regular scheme in
PZ (even if is not smooth over SpecZ).

7 A geometric description of Hecke operators (in weight

2)

7.1 Cohomology of compact Riemann surfaces

Let X be some compact Riemann surface. Let (X)) be the finite dimensional C-vector
space of holomorphic differential on X and let H'(X,Z) be the first cohomology group
of X and H;(X,Z) its first homology group. These two groups are finite free of rank
g = g(X) and there is a natural group isomorphism H'(X,Z) ~ Hom(H;(X),Z). By
integration, we can define a group homomorphism

Hi(X) — Q(X)' = Home(Q(X), C).

Namely if v : [0,1] — X is a differential map, we can define the integral fvw of a
differential form w on 7. As holomorphic forms are closed, we have [ w = [ w if
v1 and 79 are two homotopic paths in X (see for example [FK80, §1.4]). Consequently
the map v +— [ induces a group homomorphism from m(X) to Q(X)". As H:(X,Z)
is canonically isomorphic to the abelianization of 71(X), we obtain the desired map
H(X) = Q(X).

We will admit without proof that this map induces an isomorphism
Hi(X,R) ~ Hi(X,Z) @z R = Q(X)".

(for a proof see [FK80, §II1.2] but treating directly the case of X a complex elliptic curve
via complex uniformisation can be instructive.)

By duality, we deduce an injection of C-vector spaces

QX)— HY(X,C)~ H'(X,7)

and a decomposition H'(X,C) = Q(X) @ Q(X) where z — Z is the map defined by
Sei®z Y ¢ ®% on HY(X,Z) ®zC.
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7.2 Hecke operators

Let I" be some congruence subgroup and recall that we have an isomorphism of C-vector
spaces S2(I') >~ Q(X(I')). We want to give a geometric description of Hecke operators

on QX (I)).
If T C T, then the map 7 : X(I'') — X(I') is a ramified covering of Riemann surfaces.

If w is an holomorphic form on X (I"), we can define an holomorphic form Tr7(w) on
X(I') as follows.

o If 7 is étale, we use the fact that, for some sufficiently small open subset U in
X (), #=Y(U) is a disjoint union Uy U - - - U U, of open subset of X (I'') isomorphic
to U, and we define Tr m(w) = >, (7*w)|y, where we identify U; to U via 7|y, .

o In the general case, let Y C X (I') be the open subset over which 7 is étale and let
7' = T|z-1(y). Then we can consider the differential form Tr7'(w|;-1(y)). A local
computation (around ramification points of 7) shows that it extends uniquely to
an holomorphic form on X(T').

We obtain a map of complex vector spaces Q(X (I'")) — Q(X(T)).

Now we focus on the case where I' = T';(N). Let p be a prime number and let

ap = ((1) 2). There is a map of Riemann surfaces X(ozpl“l(N)a;l) — X (I'1(N)) induced

by the action of oy, on H. This gives rise to a map
ap : X(C1(N) Nl (N)ay, ') = X(T1(N)).

If w is an holomorphic differential on X (I't (N)), we can “pull” w on X ('t (N )N, Iy (N) o, 1)
in order to obtain an holomorphic differential ajw on X(I't(N) N apl'(NV)ay, 1Y and
“push” this holomorphic differential on X (') via Tr 7 where 7 : X (It (N)Nap 'y (N)oy, ') —
X(I'1(N)) induced by the inclusion of I'1 (N) N apfl(N)a;1 in I'; (N). We obtain a new
holomorphic differential on X (I') which is the image of w via the Hecke operator T),. It

is important to note that we use two maps from X (I';(N) N apfl(N)oz;l) to X(I'1(N))

) N apF1 (N

/ \ (11)

(T1(N))

Now it is a simple computation to check that the following diagram is commutative

X(Ty(N

*

QX (T1(N))) —2= QX (T1(N) Nl (N)a, b))

&) J{’I‘I‘ﬂ' !

QX(I1(N)))
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Namely assume that w comes from the holomorphic differential f(z)dz on H with f €
S2(I'1(N)). Then Tr ey (w) corresponds to

> g ap(f(z)dz).

9€(T1(N)NapT1(N)ay, I\ (V)

However if v = (2Y) € GL2(Q)+, we have v*(f(z) dz) = f(gjig (Zj;g)cg dz = f[v]2(2) d=.
This implies the result.

Proposition 7.1. The lattice H'(X(I'1(N)),Z) inside Q(X(I'1(N))) is stable under the
action of T,.

Proof. Tt is sufficient to prove that if 7 : X’ — X is a map between two compact Riemann
surfaces we can define to morphisms 7* : HY(X,Z) — HY(X',Z) and H (X', Z) —
H'(X,7) which are compatible with the inclusion H!(X,Z) < Q'(X) and with 7* and
Tr 7 on differential forms. The map 7* is just the contravariance of the cohomology. We
can define 7, using the covariance of the cohomology with compact support and, since
X is compact, that H(X,Z) = H(X,Z). The compatibility of 7* with H!(X,Z) <
Q(X) is easy. The compatibility of m, is a bit more painful to check, we will admit
it. O

We can finally give a proof of Theorem 3.39 in weight 2.

Corollary 7.2. In So(T'1(N)), there is a lattice stable under Hao(N)z.

Proof. The algebra Ha(N)z is generated by the operators T}, and T'(p,p) for p a prime
number and by the diamond operators (d) for d prime to N. We take H(X(T'1(N)), Z)
as a lattice. The stability under T}, is a consequence of Proposition 7.1. The stability
under T'(p,p) and (d) is easier. Namely the operators T'(p,p) and (d) on Q(X(I'1(N)))

coincide with the pull back by the matrices <g g) and gq € I'g(N) where g4 is reduced

to (dal 2) modulo N (these both matrices normalise I'; (V). O

From Corollary 7.2, we know that, for an eigensystem 1 : Ha(N)g — Q, the numbers
ap = Y(T},) are algebraic integers. We would like to give them some geometric meaning.
Let’s take the example of g1(N) = 1. Then M;(N) is an elliptic curve E defined over
Z[N~1]. Moreover we have an exact sequence of cohomology groups

0 — HY(E(C),Z) — H'(E(C),0p) — HY(E(C),0%) — H*(E(C),Z).

As the image of the first map is a lattice, as the group H?(E(C),Z) is torsion free
and since Pic’(E(C)) is divisible (isomorphic to M;(N)(C)), we obtain a short exact
sequence

0 — HY(FE(C),z) — HY(E(CT),0p) — Pic’(E(C)) — 0.
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Using the snake Lemma and the Abel-Jacobi isomorphism E(C) ~ Pic’(FE(C)), we
obtain, for each prime number ¢, an isomorphism

HY(E(C),Z) ®2 /17 ~ E(C)[{] ~ E@Q)[/].

If p is a prime number non dividing N¥, the group scheme E[/] is finite étale over Spec Z,,
which gives us an isomorphism

E(Q)[(] ~ EFy)[].

The action of the Hecke T}, on H'(E(C),Z) ® Z/¢Z comes, under this isomorphism, from
an explicit isogeny of Ep,. This will give us a géométric interpretation of the algebraic
integers modulo /.

However, in the general case, the genus of X7(/N) can be bigger than 1 and we have
to replace the elliptic curve by an other group scheme attached to the curve M;(N) :
its Jacobian variety.

7.3 Jacobian varieties of modular curves

The Picard functor We will only describe a very particular case. A more general
situation is described in [BLR90, §8,9].

Let S be a scheme and X/S a proper and smooth curve. We assume that X is
geometrically connected and that the map f : X — S has a section. Under these
assumptions, we know that Og = f,Ox and that f,Ox commutes to base change. The
Picard functor of X/S is the contravariant functor associating to each S-schme T', the
set

Picx/g(T') == Coker(Pic(T") — Pic(X x5 T)).

As in the case of elliptic curves, given a section € : S — X to f, we have a group
homomorphism

Picys(T) ~ {L£ € Picl X) | e*L ~ Og}.
Similarly, we have a degree map deg : Picy;s — Z and we define Pic& /g as its kernel.

Theorem 7.3 (Weyl, Grothendieck). The functor Picg(/s is representable by a projective
and smooth S-scheme of relative dimension the genus of the relative curve X/S. Its fibres
are geometrically connected.

Remark 7.4. This theorem is still true without assuming the existence of the section
€:S5 — X. However, in the general case, the definition of Picy,g is more involved.

This theorem implies that Picg( /s is a projective S-group scheme called the jacobian
of the curve X. We will note it J(X/S). This is a particular case of abelian variety.
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Abelian varieties An abelian variety over a scheme S is a projective and smooth
S-group scheme with geometrically connected fibres. An elliptic curve is an abelian
variety of relative dimension 1. Conversely, it can be proved that an abelian variety of
dimension 1 is an elliptic curve, so that the notion of abelian variety is a generalisation of
the notion of elliptic curve. If X/S is a projective and smooth curve with geometrically
connected fibres, its jacobian is an abelian variety over S.

Example 7.5. There is a generalisation of the complex uniformisation theorem. An
abelian variety over C is a complex torus. More precisely, if A/C is an abelian variety
of dimension g. There exists a lattice A C CY and an isomorphism of complex analytic
groups

CI/A ~ A(C)>".

However if g > 2, all lattices A C C9 don’t come from abelian varieties ([Mum08, Part
I]).
As for elliptic curves, we have the following result.

Theorem 7.6. Let A/S be an abelian variety. Let N > 1. The multiplication by N map
[N]: A — A is finite and locally free of degree N9 and étale if moreover N € T'(S,Og)*.

When S is a regular scheme with generic points of characteristic 0, it can be proved
exactly as for elliptic curves.

An isogeny between abelian varieties is a morphism of group schemes which is finite
and locally free.

Fonctorialities of jacabians Let f: X — Y be a morphism between projective and
smooth curves with geometrically connected fibres. The functoriality of the Picard group
gives a natural map

o JY/s) — J(X/S)

which is a morphism of abelian varieties. It sends an invertible sheaf £ on f*£. We
can give an other description of this map in terms of divisors. Assume that S = Speck
where k is an algebraically closed field. The description of invertible sheaves on X in
terms of divisors gives us a group homomorphism

J(Y/S)(k) ~ Div2(Y)/ div(k(Y)*).

Then we have

f*( > "Q(Q>)_ donglf M @I= Y. > ngep(f).

QeY (k) QeY (k) QeY (k) Pef~1(Q)

However we can also define a morphism f, : J(X/S) — J(Y/S). This morphism
is defined as follows. We can assume that S is connected. If f is constant, then f
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is finite and locally free. As the fibres of X/S and Y/S are connected, X and Y are
connected and the degree d of f is constant. Let £ be some invertible sheaf over X.
Let Spec A be some affine open subset in Y and let Spec B = f~!(Spec A). Then B
is finite projective A-module of rank d and Ll|gpec p comes form a projective B-module
M of rank 1. Consequently A% M is a projective A-module of rank 1. The A-modules
AiﬂM can be glued on Y to give rise to an invertible sheaf AL on Y. It can be checked
that A(L® L") ~ AL ® AL and that deg(AL) = deg(L), this gives a group morphism
Pic’(X/S) — Pic’(Y/S). We can do this construction on all sets of T-points, which
gives a morphisme of abelian varieties

fe : J(X/S) — J(Y/S).
The following functorialities are easily checked

(gof) =f"og" (90f)s=gx0 fs

Moreover, we have f* o f, = [deg f].

If S = Speck with k an algebraically closed field. The description of f. on divisors
is, for f non constant,

f*( > nP(P)) = > np(f(P)).

PeX (k)

Let k be a field. If G/k is a smooth group scheme of relative dimension g, the sheaf
of differentials Qf, is free of rank g. Namely by smoothness the sheaf Qé Jk is locally

free of rank g. The global freeness comes from the fact that Q%; is G-equivariant so that
QL ~ O¢ ® (Q¢ ® k(e)) (see [DGT70, LProp 6.8.1] for details). In greater generality, if
m: G — S is a group scheme with neutral section ¢, then Qlc/s ~ (" Qgys)-

Assume that 71 : X — S is a smooth and projective curve with geometrically
connected fibres. Then we can define morphism of S-schemes f : X — J(X/S) sending
a section s € X (T) to the invertible sheaf of degree 0 : £(s) ® L£(¢)~! on X. Writing
g : J(X/S) — S for the structural map, we obtain a morphism Qﬁ(x/s)/s — f*Qﬁ(/S
and, by pushforward, a map

WQ?*QIJ(X/S) — le*Q,l)(/S'

I claim that this map is an isomorphism of coherent sheaves. Namely, let wy, g =
e*Q}](X/S) (with e the neutral section), then Qb(X/S) ~ miwy/s and wy,g ~ WQV*Qlj(X/S).
We have to check that the map wx,g — W17*9§ /s is an isomorphism. However, we know
that Lie(J(X/S)/S) ~ V(wx/s). The description of the functor of points of J(X/S)
tells us that

Lie(.J(X/S)/S)(T) = Ker(J(X/S)(T[e]) = J(X/S)(T)).
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As the set of isomorphism classes of line bundles on a scheme Y is in natural bijection
with H'(Y, O3 ), we deduce that Lie(J(X/S)/S) ~ V((R'm ,Ox)") and an isomorphism
of coherent sheaves (R .)YOx ~ wy/g (note that R f,Ox is locally free since X/S
is proper and smooth). We obtain a map (R!'f,0)Y — 7[-1:*9%(/5' To prove that this
map is an isomorphism can be checked fibrewise. We are reduced to the situation where
S = Speck for a field k£ and this is then a consequence of Serre duality.

If S = Speck, this implies that the map
HO(J(X/k)7 Q}](X/k)) — HO(X> Q%{/k)

is an isomorphism.

7.4 Applications to spaces of modular forms

We fix some integer N and we consider the curve X = M;(N) which is projective
and smooth over Spec Z|N~!] with geometrically connected fibres. Let J;(N) be the
jacobian of M;j(N), which is an abelian variety over Spec Z[N ~!]. Note that, with our
naive definition of the Picard functor, we need the existence of section on X. This can

be realised by cusps. However we won’t go in this details.

Assume that N > 4, so that M;(N) is the moduli space M(I'1(N)). Let £ be the
universal elliptic curve over M(I'1(V)). Let p be a prime number not dividing N and
let M1(N,p) = [Lo(p)lg/am(r;(n))- The map Mi(N;p) — M(I'1(N)) is finite and étale
if we inverse p. Moreover the scheme M;(N;p) — M(I'1(N)) represents the functor
sending a Z[(Np)~!]-scheme S to the set of isomorphism classes of triple (E, P, H) where
E is an elliptic curve over S, P is a section of order N of E[N] and H C E[p] is a finite
étale subgroup-scheme of order p.

There are actually two maps M;(N;p) — M(T'1(N)). The first one, that we name
71, is the map (F,P,H) — (E,P) obtained by forgetting H. The second one, that
we name 7o, is the map (E,P,H) — (E/H,P) where E/H is the quotient of FE by
the subgroup H and P is the image of P by the group homomorphism E[N](S) —
(E/H)[N](S). Note that the isogeny £ — E/H has degree p, so that the previous
homomorphism is injective since p f N and the image of P in (E/H)[N](S) has order
N. We have two morphisms of Spec Z[(Np)~!]-schemes

M1 (N;p)
M(I'1(N)) M(I1(N)).

The complex points of M (N;p) are in bijection with ¥ (I'1(N) Nyl (N)a;t). So that
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on complex points, we have to maps of Riemann surfaces

Y (T1(N) Nyl (N)eg, )

Y(I'1(N)) Y (T1(N))

Now it is a simple computation to check that it coincides, after restriction to Y (I';(NV))
and Y(I'1(N) N ozpfl(N)a;l) with the maps of the diagram (11).

We define T}, := w2, o w7 € End J1(N)znp)-1y- This is an endomorphism of the
abelian variety Ji(N)z(np)-1]- It induces an endomorphism of the complex vector space

HO(J(N)c, 2, nye) = HY(Yi(N), Qy, (v))-

This endomorphism preserves Sa(I'1(N)) and coincides with the Hecke operator T),.

If d NN =1, we can also define an endomorphism (d) of J;(N). It is the endomor-
phism (d), where (d) is the endomorphism of M;(N) given by (E,P) — (E,dP) on
points and extended uniquely to M;(N) by normalisation. The operators T, and (d)

commutes, this gives us an action of the algebra H;N) (T'1(N)) on the abelian variety

JL(N).

8 Galois representations

8.1 Some generalities

Let K be a field and K some algebraic closure of K. We use the notation Gg for the
topological group Gal(K®/K) of the separable closure K* of K in K. It is a totally
disconnected topological group.

Let ¢ be some prime number. A (-adic representation of Gi is a pair (p, V) where
V is a finite dimension Qy-vector space and p is a continuous group homomorphism
Gk — GLg,(V). A morphism of ¢-adic representations (p1, V1) — (p2, V2) is a Qq-linear
map f: V3 — Vs such that

Vg € Gr, p2(g9)of=fopig)

If E is a finite extension of Qy and (p, V') is an f-adic representation of G, we say that
(p, V) is an E-representation if V' has an additional structure of E-vector space and if
p(9x) € GLe(V).

Remark 8.1. There is an obvious bijection between the set of isomorphism classes of
FE-representations of G and the set of conjugation classes of continuous homomorphisms

gK — GLn(E)
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The dimension of an E-representation of Gx is the dimension of V' as an E-vector
space.

Let (p,V) be some E-representation of Gx. Then there exists some Opg-lattice V°
(a finite free Op-module such that V°[}] = V) in V which is stable under the action of
the group Gg. Namely let V° be some Og-lattice in V. Then V° is an open subset of
V. This implies that the subgroup

H:={geGk|pg)V°CV°}

is contained open in Gi. As G is compact, the subgroup H is of finite index in G.
We can find elements gy, ..., g, such that

,
Gk =[] Hy:
i=1

and the set Y7, p(¢;)V° is a lattice in V' which is stable under the group Gg.

So we can fix an Opg-lattice V° C V which is stable under the action of Gg. If
n > 1 is an integer, the sub-lattice £"V° is also stable under Gx and the group Gx acts
continuously on the finite group V°/¢"V°. This implies that the morphism

Gr & GLp, (V°) = GLo, (V°/("V°)

factors through a finite quotient of Gg.

First of all, we will give some example of ¢-adic representations of Galois groups.

Example 8.2. 1) Assume that ¢ is different from the characteristic of K. The
group G acts on K and preserves the subgroups g (K) of £"-th roots of 1. If we fix a
primitive £"-th root of 1, we obtain a group homomorphism g (K) ~ Z/¢"Z. Moreover
the extension K (e (K))/K is finite so that the action of G on pm (K) factors through
a finite quotient of Gx. The raising to the /-th power gives us a map pign+1(K) — pen (K)
which is surjective and commutes to the action of Gi. Consequently the group G acts
on the projective limit
Ty(p) = Jm pugn (K).
n>=1

It is a Zy-module which can be check to be free of rank 1 (a compatible system of primitive
{"-th roots of unity provides a basis). Moreover the surjection Ty(u) — pen (K) induces

an isomorphism

Y1) /" Top) = pion ()
of finite modules on which G acts through a finite quotient. This proves that the
action of Gg on Typ(p) is continuous. We define Vy(p) = Tp(p) ®z, Q. This is an
(-adic representation of Gx of dimension 1. There is a canonical isomorphism Q ~
GLg, (Ve(w)) so that this representation is given by a continuous character x, : Gk — Q;'.
This character is called the cyclotomic character, its image is actually contained in the
maximal compact subgroup Z;, C Q; .
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2) Let x be a Dirichlet character. This is character x : (Z/NZ)* — C*. Actually,
since the image of y is a finite subgroup of C*, it is contained in some number field
E C C. We can associate to x a group homomorphism

Go - Gal(Q((n)/Q) = (Z/NZ)* % E*.

Now if X is a finite place of E, we can compose this character with E* C E to obtain
a 1-dimension Ey-representation of Gg.

3) Let E be an elliptic curve defined over the field K. If ¢ is different from the
characteristic of K, we defined the Tate module

T)E = lim E[¢("](EK)

vk

and we proved that Vy(E) = Ty(E) ®z, Q, is 2-dimensional Qg-vector space and the
group Gx acts Qg-linearly and continuously on V;(FE).

4) More generally if A is an abelian variety defined over K and /¢ is different from
the characteristic of K, we can define the f-adic Tate module of A as being

Ty(A) = lim A[¢")(K)

n>1

and Vy(A) == Ty(A) ®z, Q¢ is an f-adic representation of G of dimension 2 dim(A).
When K is a number field, the ¢-adic representation V;(A) encodes lots of geometric and
arithmetic informations about A. This topic is related to Tate conjecture which is still
widely open.

Now we will focus on the case where K is a number field. Let X be the set of
finite places of K. Let v € X, it corresponds to a non zero prime ideal p, C Og. The
residue field k, = Ok /p, is finite and let Nv = pi‘,‘eg(”) be its cardinal (here p, is the
unique prime number such that p, N Z = (p,)). Let w be a place of Q above v and
let D,, C Gk be the decomposition group at w and I, C D,, its inertia subgroup. We
have then a group isomorphism D, /I, ~ Gal(k,/ky). Let Frob, € Gal(k,/k,) be the
element inducing z +— 2V? on k,, it is actually a generator of this group (which is cyclic
of order Nv). We say that an f-adic representation (p, V) of G is unramified at w if
p(Ly) = {1}. In this case the element p(Frob,) is well defined (it does not depend of a
lifting of Frob,, in D,,). Note that for two places w and w’ above v, the subgroups D,
and D,y are conjugated in Gx. Moreover, if h is such that hD,h~! = D,,, and mw
is a lifting of Frob,,, then hF/‘;)Bwhfl is a lifting of Frob,,. This proves that, if (p, V) is
unramified at a place w above v, it is unramified at all places w above v and that the
conjugacy class of p(Frob,,) does not depend on the choice of w. We use the notation
F, ¢ for this conjugacy class.

Example 8.3. 1) Assume that x is a Dirichlet character. The conductor of x is the
smallest integer N such that x comes from a character of (Z/NZ)*. The finite places of
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Q correspond to the prime numbers and the ¢-adic Galois representation associated to
X is unramified exactly at the prime numbers which does not divide N{. If p is such a
prime, then F,,, = x(p) € Z;.

2) Let x¢ be the f-adic cyclotomic character. Then x, is unramified at all prime
numbers different from ¢ and F),,, = p € Z'.

3) Let (p, Ve(E)) be the f-adic representation associated to an elliptic curve E defined
over Q. Then (p, Vy(F)) is unramified exactly at the prime numbers p which are different
from ¢ and such that F has good reduction at p. Namely, in this case, the torsion group
E[¢™] is a finite étale group scheme over Spec Zy, so that the action of the inertia subgroup
of Gal(Q,/Q,) on E[("] is trivial. If p is such a prime, then F},, is a conjugation class in
GL2(Qy) whose characteristic polynomial is X2 — a,X + p where a,, is the Hasse defect
p+1—|E[F)]

We will slightly generalise this situation. Let F' be a finite extension of @y and let
E C F be a subfield which is also a number field. A F-representation (p, V') is said
E-rational if there exists a finite subset S C Xk such that p is unramified outside of S
and if, for all v € ¥\ S, the conjugacy class F},, has a characteristic polynomial which
is in E[X].

Now let F be some number field and X\, \ two places of E and E\, Ey be the
completions of E at A and X. Let (p,V) (resp. (p/,V')) be some E\-representation
(resp. Ey-representation) of Gx. These two representations are said to be compatible
(even if they are defined on vector spaces corresponding to different scalar fields) if
they are both E-rational and if there exists a finite subset S C g such that, for all
v € Xk \ S the two representations p and p’ are unramified at v and the characteristic
polynomials of F),, and F)y, coincide in E[X].

Remark 8.4. Using Chebotarev density theorem, we can prove that if (p, V') is some E-
rational F\-representation, and if )’ is a finite place of E, there is at most one semisimple
Ey-representation of Gx which is compatible with (p, V).

Let (px, Vi) be a family of E)-representations of G indexed by the finite places of
E. Such a family is said to be compatible if the representations are pairwise compatible.
Such a family if said to be strictly compatible if there exists a finite subset S C X g such
that for all pair of places (A, \') of E and for all place v ¢ S and not above the same
prime number that A\ and X, the representations py and py: are unramified at v and the
characteristic polynomials of Fy, , and F},, , coincide.

Example 8.5. If F is an elliptic curve defined over Q, the system of Galois represen-
tations (Vy(F)), where ¢ is varying among the prime numbers, is a strictly compatible
system of Galois representations. Actually all the examples given previously are com-
patible systems of Galois representations.

If (pa, V) is a strictly compatible system of Galois representations, we can define a
(partial) L-function. Namely fix a finite subset S C Xk as in the definition. If v ¢ S,
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we can find some place A such that v and A\ are not over the same prime number and
consider the characteristic polynomial P,(X) which does not depend on X\ by definition.
The partial L-function of the system is (without considering any convergence issues)

1

He) = vl;g det(1 — px(Frob,) Nv=#)"

In the case of the system associated to Dirichlet character, we recover the Dirichlet L-
function of the character, in the case of an elliptic curve, we recover the L-function of
the elliptic curve etc. It is therefore natural, since we can construct an L-function with
Eulerian product associated to a proper modular form, if it is possible to associate a
strictly compatible system of Galois representations to a proper modular form.

According to the following theorem, the answer is yes.

Theorem 8.6 (Eichler, Shimura, Kuga, Deligne). Let k > 2, N > 1 and let f €
Sk(T1(N)) be a normalised modular eigenform. Let

fl@)=q+> and"

n=2

be its Fourier series. Let Ky be the number field generated by the coefficients of f and
let X be a finite place of Ky over some prime number £ of Q. Then there exists a Galois
representation (ps.x, Vi) of Gg such that

(1) the representation py  is unramified at all prime numbers p which does not divide
N ;

(ii) if p is a prime number which does not divide N{, then the characteristic polyno-
mial of pyx(Frob,) is X% — a,X + x(p)p*~1 where x is the character of (Z/NZ)* such
that (d)f = x(d)f ford e (Z/NZ)*.

Then the system (pyx, V) is a strictily compatible system of 2-dimensional Galois
representations.

We will give a proof of this theorem in the case where k = 2. In this case (due to
Eichler and Shimura), the construction of the Galois representation can be done using
the Jacobian variety attached to a modular curve. The general case (due to Deligne) is
more complicated, we have then to replace the Jacobian variety by the étale cohomology
(with coefficients) of the modular curves.

8.2 Construction of the Galois representation in weight 2
Let f € So(I'1(N), x)"" be a new eigenform. Let Ji1(NNV),q be the jacobian variety of

the proper and smooth modular curve X; (). It is an abelian variety defined over Q of
dimension g (N).
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If £ is a prime number, we can consider the f-adic Galois representation

VeJi(N) = Ty (N) @z, Qe TpJi(N) = lim Ji (N)[(")(Q) =~ Z7

where g = g1 (V). There is a continuous action of Gal(Q/Q) on TyJ; (N) and Ty Jy (N) /0" ~
Ji(N)["(Q) for all n > 1.

Let H(N)( T';1(N))z be the image of the algebra HN)(I';(N)) in End Sa(T'1(N)). As
(N

seen previously, there is a natural action of H, )( I'1(N))z on Ji(N)g which is compatible
with the isomorphism So(T'1(N)) ~ HY(X1(N)c, Q1) ~ HO(J1(N)g, Q') ®@¢ C.

(N
The new eigenform f gives rise to character 7—[2 ( 1(V))z — K; whose image is
an order O inside K;. Let py be the kernel of this map, this is a prime ideal of

’H(N)( I'{(N))z — K. We define, for a prime number ¢,

T(f) = T (N) ooy, O Veld) = Tel) 92, Qe

Proposition 8.7. The Zy ®7 O¢-module Ty(f) is finite free of rank 2. Consequently the
Q¢ ®q K ¢-module Vy(f) is finite free of rank 2.

Proof. For n > 1, we have isomorphisms of Hg )(Fl(N ))z-modules

To(f)/€" = 1 (N)[€")(Q) = Ji(N)[€")(C)

the second isomorphism coming from the fact that J;(N)[¢"] is a finite Q-scheme. More-
over, it follows from the uniformisation of abelian varieties over C that

JUIN)[)(C) = Ju(N)(C)[¢"] = Hi(J1(N)(C), Z) @ Z/ " L.
This isomorphism is compatible to the action of HgN)(Fl(N ))z. Namely this ring is
acting by endomorphisms of Q-schemes on Ji(N). Therefore, we are done if we can
prove that H;(J1(N)(C),Z) ® Oy is isomorphic to (’)]20 up to torsion, ie if

Hl(Jl (N)((C)a Z)®’HéN>(F1(N))Z
and let A\; be the composite

H (L))
K is a two dimensional K y-vector space. Let 7 : Ky < C

A .
1M (T (N) 25 Ky D C.

it is sufficient to prove that Hy(J1(N)(C),Z) ®z,, C is a 2-dimensional vector space.
By duality, it is sufficient to prove that the sub-C-vector space of H!(J;(N)(C),C) of
vectors v such that

VT e HMV(T1(N))z, T = A (T)v

is 2-dimensional.

Let’s recall that we constructed by integration a C-linear injective map

So(T1(N)) = Hom(H;(X1(N),Z),C) ~ H'(X1(N),Z) ® C
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which is moreover a map of HéN) (T'1(N))-modules. Let S3(I'1(N)) be the image of

S5(T'1(N)) under the R-linear automorphism of H'(X1(N),Z)® C inducing the identity
on H'(X1(N),Z) and the complex conjugation on C. As H;(X1(N),Z) is generated by
some R-basis of Homc(S2(I'1(N)),C), we can check that we have

HY(X{(N),C) = S3(T'1(N)) @ S2(T1(N)).

Note that this decomposition can also be seen as a consequence of the Hodge decom-
position. Let T be the complex conjugate of 7. It follows from the discussion following
Corollary 3.40 that S2(I'1(INV))[A;] is one-dimensional. Consequently

HY(X1(N),C)[A] ~ Sa(T1(N))[Ar] @ Sa(T'1 (V) [A]
is 2-dimensional over C. ]

Let A : Ky — Q¢ be an embedding of K ¢ in an algebraic closure Qy of Q; and let
Ky ) be the closure of A\(Ky) in Q. This is a finite extension of Qy. We define

VA(S) = V() ®q, Kpa-
This is a 2-dimensional K \-representation of Gal(Q/Q).
Theorem 8.8. The Ky y-representation V\(f) is unramified outside of NZ.

Proof. The scheme Ji(N), the jacobian variety of the proper and smooth Z[N~!]-
scheme M;(N) is an abelian scheme over Spec Z[N~!]. Consequently the group scheme
J1(N)[€"] is finite étale of rank 2g (with g = g1(N)) over SpecZ[(N/¢)~']. This im-
plies that the action of the group Gal(Q/Q) = m(Spec@Q,SpecQ) factors through
71 (Spec Z[(N€)~1], Spec Q) which coincides with Gal(L/Q) where L C Q is the largest
sub-extension unramified outside of N/. This implies the claim. O

8.3 Eichler-Shimura congruences

Theorem 8.8 implies half of theorem 8.6 when k£ = 2. It remains to prove that, for a
prime p not dividing N/, we have

Tr(Frob, [ VA(f)) = ap(f),  det(Froby, | VA(S)) = px(p)-

In order to prove theses relations, we will use the fact that J;(N) has a good reduction
at the prime p, ie that Ji (V) Xgpecz SpecF), is a proper and smooth Fj,-scheme. Then,
for p N, the automorphism T, of J;(IN)g can be extended to an automorphism over
Spec Z[(Np)~!]. We want to extend it into an automorphism of .J; () over Spec Z[N ~1].
One of the difficulty is that we didn’t give a definition of a structure of level p in
characteristic p (the p-torsion group of an elliptic curve in characteristic p is not étale).
This is possible but beyond the framework developed here. We will thus use the following
trick :
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Proposition 8.9. Let R be a complete discrete valuation ring and let A be an abelian
variety over R. Let K = Frac R be the fraction field of R and k the residue field of R. If
T € End Ak is an automorphism of the generic fiber Ax of A, then T extends uniquely
into an endomorphism of A.

Proof. The uniqueness is a direct consequence of the density of Ax in A. By étale
descent, we are reduced to the case where k is separably closed. By unicity, we can
consider U the largest open subset of A on which is defined a morphism U — A extending
T. As A is projective and smooth, by the valuative criterion of properness, the set U
contains all points of codimension 1, hence the generic point of the special fiber Ay,
so that we have U N Ay # (). We have Ax C U, so that it is sufficient to prove that
A C U. Let V = A, N U which is a non zero open subset of Ay. As Aj is of finite
type over Speck, in order to show that A, = V, it is sufficient to show that V' contains
all the closed points of Ag. Let x € A(k) be such a point. As Ay is irreducible, we
have V' N (V — x) # 0. This implies that we can write x = y — z with y and z inside
V (k). By smoothness of U over Spec R, we can find g € U(R) lifting y and Z € U(R)
lifting z so that £ := § — 2 € A(R) is a point lifting 2. We can define a morphism
T : U+ — A as the composition of the translation by —%, T and translation by
T(gy) —T(2). As T is a group homomorphism on Ag, we know that 7" and T" coincide
in restriction to U N Ax = (U + ) N Ax = Ag. By density of Ax in A, they have to
coincide on U N (Z + U) and we can extend T to U N (Z + U). By maximality of U, we
have € U(R). This implies that = € U(k). Finally we have proved that U = A. O

We deduce from this result that, for p t N, the endomorphism 7}, of J1(N)q, extends
uniquely into an endomorphism of J1(N)z,. After restriction to the fiber over IF,, we
obtain an endomorphism 7, of the abelian variety J1(N)g, .

8.4 Frobenius actions

In order to abbreviate notation, we will use Jg, == Ji(N)p, and k = F,,. Let Fx, ) JF,
X1(N)r, = X1(N)r, be the absolute (or relative) Frobenius. We define, using covariance
and contravariance properties of jacobians, two morphisms

F = FX1(N)/IFP,* : JIFP — JIFpa V= F)*(l(N)/Fp : JFF — J]Fp-

As Fx,(n)r, is finite locally free of degree p, we deduce that F' and V' are two isogenies
of Jgp, such that Vo F'= FoV = [p] Jr, - Consequently F' and V are endomorphisms of
the abelian variety Jp, of degree pY. Let’s describe them on some k-points of Jp, .

Let (E, P) be an k-point of M;(N), ie E is an elliptic curve over k and P € E[N](k)
is a point of order N. Then the image of (E, P) by Fi, (n))/r, is the point (E®), p)
where E®) is the inverse image of E by the Frobenius endomorphism of Spec k and P(®)
is the image of P by the relative Frobenius F/, : £ — E®_ If D = YonQ(Q) is an
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effective divisor on M;(N)g, (which can be seen as an effective divisor on M1 (N)y  with
support in Mi(N)r,), then

F(D) = ZnQ(FMl(N)/JFp(Q))
Q
where Fiy, vy, 1s described above. We also have

V(D)=3 > pnq(R)

Q ReF,! @)

My (N)/Fp

since the ramification index of Fy, )k, is p at all points of M1 (N)g,.

Ordinary elliptic curves If k£ is an algebraically closed field of characteristic p, an
elliptic curve E defined over k is ordinary if the following equivalent conditions are
satisfied

o Elpl(k) ~Z/pZ;
e Vn> 1, Epr(k) ~ Z/p"Z ;

Ker Vg ~Z/pZ

e the map Vg is étale.

In a curve F is not ordinary, we say that it is supersingular.

Proposition 8.10. Let E be a supersingular elliptic curve. Then its j-invariant j(E)
is contained Fp2 C k. This implies that there is only a finite number of isomorphism
classes of supersingular elliptic curves.

Proof. If E is supersingular, the finite flat group E[p] has no k-points, it is consequently
a connected k-scheme. This implies that the inclusion E[p] C E factors through E[p] —
Spec Op,o where Op is the local ring of E at 0. In other words, as a scheme, E[p]
is isomorphic to Spec Opo/I™ where I is the maximal ideal of Opgy. As Efp] is a
degree p? over Speck, we have n = p?. This implies that E[p] has a unique subgroups
scheme of order p, which is Spec Ogo/IP. As a consequence, the subgroup schemes
Ker(F® : E®) — E®)) and Ker(V : E® — E) being both subgroup schemes of order
pin E® [p] are actually equal. This implies that the map V : E®) — FE factors through
F® and induces (for degree reasons) an isomorphism between E and E®") :

E® _FP pe?)
X ll
E

As a consequence j(E®")) = J(E)?* = J(E) and j(E) € Fpa. O



Remark 8.11. We can prove that for each prime number p, there exists at least one
supersingular curve in characteristic p (which is then defined over F2).

Corollary 8.12. For N > 4, the set of points of M1(N)(k) which are of the form (E, Q)
with E supersingular is finite.

Proof. Namely M;(N)(k)\M1(N)(k) is finite and the set of points of the form (E, Q) is
in contained in j'(F,2) which is finite. O

Let R be a discrete valuation ring of residual characteristic p and generic character-
istic 0. Let K be the fraction field of R. Let GG be a finite flat group scheme over Spec R
which is killed by p.

Lemma 8.13. The map H — Hpg induces a bijection from the set of finite flat subgroups
of G to the set of finite flat subgroups of G .

Proof. We can define a map in the other direction. If M C G is a finite flat subgroup.
We can define M the schematic closure of M in G. As R is a principal ring, the R-
scheme M is flat. Moreover My ~ M since M C Gk is closed. Conversely if H C G
is finite and flat over Spec R, we have Hx C H. For degree reasons, this inclusion is an
equality. O

Now we assume moreover that the residue field k& of R is algebraically closed. Let
E/r be an elliptic curve over R such that the special fiber Ej is ordinary. Then the
torsion group scheme E|p| is finite flat over R and E[p|(k) ~ Z/pZ. This implies that
the group of connected components m(E[p]) is isomorphic to Z/pZ. Consequently there
exists a surjective morphism of group schemes

E — (Z/pZ)R.

By Cartier duality, we deduce an injection of group schemes (up)r — E[p]. As p, is a
connected group scheme (since R[X]/(XP — 1) is a local ring), we have (u,)r C E[p]°.
Comparing the degrees of these two group schemes, it is an equality. Now up to replace
R by R’ where R’ is the integral closure of R in a finite extension K’ of K, we can assume
that E[p|(R') ~ Z/pZ, this gives us a section to the map F — (Z/pZ)r and induces an
isomorphism of group schemes over R’ :

Elplp =~ (up)rr X (Z/pZ) -

Now we can prove the main theorem, often known as “Eichler-Shimura” congruence.

Theorem 8.14. In End Jg,, we have an equality

T, =F+ (V.
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Proof. Assume that N > 4, so that we have a moduli interpretation of the scheme
My(N) = M(T1(N)).

As Jp, is a geometrically reduced scheme of finite type over IF;,, it is sufficient to prove
this equality for the corresponding endomorphisms of the group of k-points of Jp,. Let
Q € M;(N)(k) be a point, then we have a morphism M;(N), — Jj which, on k-points is
given by P (P)—(Q). Using the group scheme structure on Jr,, we deduce a morphism
M, (N); — Ji which is given, on k-points, by (Pi,...,P,) — Y0, ((P;) — (Q)). Using
Riemann-Roch theorem, we an check that this map is surjective on k-points.

Let U C M;(N )E be the open and dense subset corresponding to ordinary points.
Assume moreover that the point @ (fixed a bit earlier) is ordinary. Then the map
U9 — Ji is morphism of k-scheme with dense image. Therefore, in order to prove
FEichler-Shimura relation, it is sufficient to prove that

Tp((z) = () = (F + (p)V)((x) - (2))

for k-points 2 and 2’ in U. The points z and 2’ correspond to pairs (F, Q) and (F’, Q")
where E and E’ are ordinary elliptic curves defined over F, and Q, Q' are points of E
and E’ of order N. However, we have a moduli description of the operator T}, only on
points in characteristic prime to p, for example in characteristic 0. We will therefore
“lift” the points x and z’.

As the scheme M;(N) is smooth over Z[N 1], the points  and 2’ can be lifted into
points Z = (£,Q) and 2/ = (£',Q’) in W (k) where € and £ are two elliptic curves over
Spec W (k) whose special fibers are respectively isomorphic to E and E’ (and Q and Q'
are two sections of order N which specialise to @ and Q). Let Ky be the fraction field

of R = W(k). As the Picard group Picg/l1 ) is proper over the discrete valuation ring

R, we have a group isomorphism

- 0 W D0

Now we will consider the point of Pic?\/hW(R) lifting (z) — (2) corresponding to # and

2. Tt is the isomorphism class of the line bundle £(#) ® £(2')~' where Z and 2/ are

Spec R-sections of M;(N)p, and its image in Pic?\/l (N)(Ko) is the class of the divisor
1

(€, Q) — (Eky» Q")). We can use our description of the action of T}, in characteristic
0:

Tp((€k0, @) = €k @) = D Exo/H, Q)= Y (Ek,/H.Q).

HCE[p] HCE [p]

If H C &[p], we can show that the quotient curve Ex,/H has good reduction over R
(by thé Néron-Ogg-Shafarevich criterion for example) and let £/H be a model of it over
Spec R (we could equally define £/H as the quotient of £ by the finite flat subgroups
scheme H and check that it is an elliptic curve over R).
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By the Lemma 8.13, the finite subgroup schemes of order p in £[p|x, C £k, are in
bijection with the finite flat subgroup chemes of £[p]. Consequently we have

T,((%) — (@)= > (§/H,Q+H)— Y (&'/H,Q +H)

HCE[p) H'CE [p]

where both sums are taken on finite flat subgroup schemes of order p. Finally we obtain

L((x) = @)= > (/e Q+H)— > ((&/H)%Q +H).

HCE[p] H'CE'[p)

Let E be some elliptic curve defined over k = F, and assume moreover that E is ordinary.
Then Elp] is isomorphic, as a group scheme, with j, X Z/pZ. As p, is connected and its
underlying space is reduced to a point, we see that F[p] has only two subgroup schemes
of order p : they are p, and Z/pZ. We have consequently to understand how many
finite flat subgroup schemes of £[p| are reducing on p, or on Z/pZ. Note that, since £
is ordinary, the group scheme structure of £[p] is the following : we have an extension

0— Ep]° = Ep] = E[p]* — 0.

Moreover there is a finite extension K of Kg such that £[p]®® is isomorphic to the constant
étale group Z/pZ and E[p]° is isomorphic to . The E[p|o, contains exactly p+1 finite
flat subgroups of order p. Among them, only one is connected, it is p,. The other one
are étale and isomorphic to Z/pZ.

First of all, we compute (£/H); when H = p,. Since the Frobenius morphism
E — E® is not étale, its kernel is a subgroup of order p which has to be fp- This
implies that £/, is isomorphic to E (P)| the pull back of F along the Frobenius of Spec k.
Moreover the image of the point @ € E|[p] is the pullback of @ along the Frobenius and
the pair (E/up, Q + pp) is isomorphic to the pair (E® Q@) and it is easy to check that

(B, Q0) — (5)?, (@)
is the image of (£, Q) — (E’',Q’) under F, in J(k).

Conversely the Verschiebung map V : £ — E®™") is étale and has for kernel Z /PZ.
Thus if Hy, = 7Z/pZ, we have E/H ~ E®™Y) where E®™) is the elliptic curve defined on
k by pullback along the inverse of the Frobenius on Spec k (since Spec k is algebraically
closed the Frobenius endomorphism of Speck is an automorphism). Moreover let Q1
be the image of @ in E/H (k). On the other hand, let Q(p_l) be the unique point of
E® ) (k)[N] such that the image of Q® ") by the relative Frobenius E®™") — E is Q.
Let’s recall that FE(p—l)/kOVE‘/k = [p] and that we use Vi, in order to identify £/H with

E®™) . Under this identification, we have Q1 = Vg /4(Q). So that FE(p—l)/k(Ql) = pQ
and FE<p—1>/k(p_1Q1) = (. This gives us the equality Q(p_l) =p Q1. As
1 -1 -1
V(@) - @)= > (B/HQV )= > (B/H (@)% ),(@)" )

HCE]Ip) H'CFE'[p]
H étale H' étale

=p((E@ ) p~tQr) — (B)® ) p7'Q))
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we obtain
PV ((x) — () = p(E® ), Q1) — (BN® ), Q1))
and finally
T,((z) — (2')) = Fu((z) — (2)) + pVa((x) — ()

which is the desired formula. O

Remark 8.15. During the proof, in order to construct the quotient of an elliptic curve
by a finite flat subgroup, we used without proof the following result.

Proposition 8.16. Let R be a discrete valuation ring. Let E be some elliptic curve over
R and H a finite flat subgroup of E. Then There exists, up to isomorphism, a unique
pair (E', f) where E' is an elliptic curve over R and f : E — E' is an isogeny of kernel
H.

8.5 Some consequences

Corollary 8.17. Let £ be a prime number and let p be another prime number which does
not divide N{. Then the action of Gal(Q/Q) over J1[¢"](Q) is unramified the endomor-
phism Frob, on J1[0")(Q) is killed by the polynomial with coefficients in End Ji(N)

X%~ T, X + (p)p.

Proof. As ¢ is different from p and p does not divide IV, the finite flat group scheme
Ji(N)[f"] is étale on SpecZ,. This implies that we have a Gal(Q,/Q,)-equivariant
isomorphism

JUN)E(@Q) = Ji(N)[€")(Qp) == Jy(N)[E")(Fp) C Jr,, (Fyp).
The action of Frob, on the set on the right hand side coincides with the restriction of
the endomorphism F' on Jp,. However, it follows from Theorem 8.14 that we have, in
End Jp,, the factorisation

X —T,X + (p)p = (X — (p)V)(X — F). m

Corollary 8.18. Let f € So(I'1(N)) be some normalised eigenform. Let ¢ be a prime
number and X a place of Ky dividing £. Then the 2-dimensional Galois representation
P s unramified at p{ N{ and

det(X — pya(Froby)) = X? — ap (/)X + x(p)p.

Proof. We know that the K¢ y-vector space V) (f) is 2-dimensional and a direct factor of
Vi(f). Consequently the endomorphism p¢ »(Frob,) is killed by X2 — a,(f)X + x(p)p.
If psA(Frob,) is not a scalar endomorphism, we are done. If py \(Frob,), the argument
has to be completed. We won’t do it here. It would require to define the Weil pairing on
J1(N)[¢"] and to check that the adjoint of the operator F' with respect to this pairing is
p)V. O
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We can take an explicit example. Let f € S3(I'0(11)) = S2(I'1(11)) be the unique
cuspidal normalised eigenform. Then K; = Q. Let p # 11 be a prime number. Then
Vp(f) is the Tate module of the elliptic curve E = M;(11). The characteristic polynomial
of Frob, acting on V,(f) is X? — a,X + p. On the other hand, since M;(11) has good
reduction outside of 11, we know that the cardinal of the finite group E(F,) is p+1 —
ap(f). This shows that a,(f) is equal to

p— Card{(z.y) € F, | y* +y =2* — 2},

Moreover, we can deduce from Hasse Theorem that [a,(f)| < 2/p if p # 11. This
inequality can be generalised to modular forms of arbitrary weight k£ (replacing % by
%), but we need to generalise the construction of Galois representations V;(f) using
étale cohomology ([Del69]). The inequality is then a consequence of Weil’s conjecture

([Del74], [Del80]) proved by Deligne.
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