
A survey on divisible convex sets

Yves Benoist

Abstract

We report without proof recent advances on the study of open properly
convex subsets Ω of the real projective space which are divisible i.e. for which
there exists a discrete group Γ of projective transformations which acts co-
compactly on Ω.

1 Introduction

The main objects I would like to describe in this lecture1 are called divisible convex sets
in [53]. They also come sometimes in other disguises as compact convex real projective
structures or as projective tilings in real projective geometry.

These divisible convex sets I want to discuss here are very concrete and their definition is
quite easy: those are properly convex open subsets Ω of the n-dimensional real projective
space for which there exists a discrete group Γ of projective transformations which acts
cocompactly on Ω. To a non specialist, this subject might look very narrow. We will
disprove that impression and show how rich this topic is. The history of the convex
divisible sets began 50 years ago with Benzecri thesis published in [7]. Since then our
understanding of these divisible convex sets has considerably progressed. They are now
related to many different kinds of mathematics as dynamical systems, Coxeter groups,
representation theory, differential geometry, geometric group theory, partial differential
equations, moduli spaces, quasisymmetric spaces, ...

Even if the definition of the divisible convex sets is quite easy, the proof that they
do exist is not easy at all. Hence the construction of examples is an important part of
this topic (see theorems 3.1, 6.4, 8.1 and 8.2). Recall that the same is true for lattices in
semisimple Lie group: they do exist but the proof of their existence needs deep arguments.
Once we know that convex divisible sets do exist, we study their properties: one will focus

1Conference on discrete groups in Beijing, July 06
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on the algebraic properties of the group Γ, on the regularity properties of the boundary
of the convex set Ω, on the topological properties of the quotient orbifold Γ\Ω, on the
natural Finsler metric on this orbifold, on the ergodic properties of the corresponding
geodesic flow, on the parametrization of the corresponding moduli spaces...

Before begining this survey, just a few words on our notations. Let m ≥ 2. Instead
of working on the real projective m-space P

m, it will be more convenient for us to work
on its two-fold cover the projective m-sphere S

m which is the set of half-lines in the real
vector space V := R

m+1. The group of projective transformations of S
m is the group

G = SL±(m + 1, R) of real matrices of determinant ±1.
A subset Ω of S

m is convex if its intersection with any great circle is connected. It is
properly convex if moreover its closure Ω does not contain two opposite points. It is strictly
convex if moreover its boundary ∂Ω does not contain any open segment i.e. any open arc
of great circle. An open properly convex set is divisible if the group Aut(Ω) = {g ∈
G / g(Ω) = Ω} of automorphism of Ω contains a discrete subgroup Γ which acts properly
and cocompactly on Ω i.e. such that the quotient Γ\Ω is compact. Choosing a compact
fundamental domain F for the action of Γ on Ω, the images γ(F ) of the fundamental
domain by the elements of Γ gives then a projective periodic tiling of Ω.

Instead of working on the projective sphere S
m, it is sometimes, but not very often,

simpler to work directly in the vector space V = R
m+1. Hence one introduces the open

convex cone C which is the inverse image of Ω in V −{0} and its automorphism group
Aut(C) = {g ∈ GL(Rm+1) / g(C) = C}. We will say that C is properly convex, strictly
convex, divisible... when Ω is. One can prove that C is divisible if and only if there exists
a discrete subgroup of Aut(C) which acts properly and cocompactly on C. Hence those
two points of view are truly equivalent.

I did my best to make this survey short. If it were reasonably expanded, this text would
fill hundreds of pages. I hope the reader would at least get from it a feeling of the tools
used in this topic which inherits not only the flavour of rank one lattices and of higher
rank lattices but also a new spiciness...
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2 Symmetric convex sets

The simplest examples of divisible properly convex sets are the symmetric ones. Those
are special instances of symmetric spaces. Let us first say a few words on them, after
some basic definitions.

2.1 Hilbert distance and properness of the action

Every properly convex open set Ω in S
m is endowed with a distance dΩ called Hilbert

distance and defined by, for every x, x′ in Ω, dΩ(x, x′) = log([x; x′; a; a′]) where a and
a′ are the two points in ∂Ω such that a, x, x′, a′ are aligned in this order and where
[x; x′; a; a′] = xa′

xa
x′a
x′a′

is the cross-ratio of these four points (see for instance [11], [18] or
[38]).

Note that every element of Aut(Ω) is an isometry for the Hilbert distance of Ω. Since
the balls of dΩ are compact the action of Aut(Ω) on Ω is always proper. Hence any discrete
subgroup Γ of Aut(Ω) always acts properly on Ω. To prove that such a group divides Ω,
one has just to check that the action is cocompact i.e. to find a compact subset F of Ω
whose translates by Γ cover Ω.

2.2 Real projective structures

Any group Γ which divides a properly convex set Ω is finitely generated. Then, according
to Selberg lemma, it contains a subgroup Γ′ of finite index which is torsion free i.e. does
not contain elements of finite order. Replacing Γ by Γ′ one can suppose that Γ is torsion
free. The compact quotient M := Γ\Ω is then a C∞-manifold.

The identification of the universal cover ˜M of M with Ω induces a real projective
structure on M i.e. a maximal atlas of charts with values in the projective sphere S

m
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and with transition functions locally given by projective transformations of S
m. Such a

projective structure on M is called a properly convex real projective structure.
Recall that a real projective structure on M is “equivalent” to the data (h, D) where

h : π1(M) → G is a morphism called holonomy and D : ˜M → S
m is an equivariant local

diffeomorphism called the developing map.
Hence, a properly convex real projective structure is a real projective structure for

which the developping map is a diffeomorphism onto a properly convex subset of S
m.

2.3 Hyperbolic spaces

The simplest example of a convex divisible set is the round open disk H
2 in dimension 2.

The group Γ is then a discrete cocompact subgroup of PGL(2, R). The existence of such
subgroups and the pictures of the corresponding tilings of the disc are well-known since
Klein and Poincaré in the second half of the nineteenth century. They are the starting
point of hyperbolic geometry.

More generally, for all m ≥ 2, the round open ball H
m ⊂ S

m is a divisible convex set.
More precisely, this convex set H

m is the set of half-lines in the Lorentz cone Λm+1 :=
{x ∈ R

m+1 / q(x) > 0 and x1 > 0} where q(x) = x2
1 − x2

2 − · · · − x2
m+1. Its group

of automorphisms is the group Aut(Hm) = O+(1, m) of orthogonal transformations of q
which preserve H

m. Hence our space H
m, endowed with its Hilbert distance, is nothing else

than the hyperbolic m-space or, more precisely, the “projective model of the hyperbolic
m-space”. The group Γ is then a discrete cocompact subgroup of O+(1, m)

The existence of such groups Γ was first known only for some small values of m. Those
were groups generated by reflections with respect to the faces of some polyhedron in H

m.
As was shown later on by Vinberg, this “Coxeter group construction” can not work for
m large.

The construction of such groups Γ for any integer m ≥ 2, goes back to Siegel in [50] in
the early fifties and is obtained thanks to arithmetic groups (see for instance the chapter
2 of [6] for a self-contained proof).

2.4 Symmetric convex cones

Hence the hyperbolic m-space H
m is an example of convex divisible set Ω. Note that for

this example the group Aut(Ω) of automorphisms of Ω acts transitively on Ω. One says
that Ω is homogeneous. Even more, for each point x in Ω, there exists a symmetry with
respect to x, i.e. an automorphism sx of Ω of order 2 such that x is the only fixed point
of sx in Ω; one says that Ω is symmetric. In fact the symmetric convex sets are exactly
the homogeneous convex sets for which the automorphism group Aut(Ω) is reductive. As
before, we will say that C is homogeneous or symmetric when Ω is.

Those symmetric convex cones where classified by Koecher in the sixties using the
classification of Jordan algebras (see [21], [39] and [54]).

A properly convex set Ω in S
m is said reducible if the cone C is reducible i.e. if it can be

written as the sum C = C1 + C2 of two convex cones Ci living in proper subspaces Vi of
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V . Otherwise, they are said irreducible. When C = C1 + C2, the cone C is symmetric if
and only if C1 and C2 are symmetric. One can also show that, in this case, C is divisible
if and only if C1 and C2 are divisible.

Theorem 2.1 (Koecher, 1965) The irreducible symmetric convex cones in R
m1 are

given by the following list with n ≥ 3 .
- The half-line Λ1 := {x ∈ R / x > 0 } (with m1 = 1)
- The Lorentz cones Λn := {x ∈ R

n / x2
1 − x2

2 − · · · − x2
n > 0 and x1 > 0} (with m1 = n)

- Πn(R) = {positive symmetric n×n real matrices} (with m1 = (n2 + n)/2)
- Πn(C) = {positive hermitian n×n complex matrices} (with m1 = n2)
- Πn(H)={positive hermitian n×n quaternion matrices} (with m1 =2n2−n)
- Π3(O), a symmetric cone such that Lie(Aut(Π3(O))) = e6(−26) ⊕ R (with m1 = 27).

Any symmetric cone is a product of irreducible symmetric cone.

Around the same time, Borel proved in [8] that every reductive real Lie group contains
a discrete cocompact subgroup. As a consequence, all the symmetric convex sets are
divisible. Hence Koecher list gives many example of divisible convex sets.

Later on, all the homogeneous convex sets where classified by Vinberg ([55]). No new
examples of divisible convex set arise from this list since Vinberg proved that, when Ω is
homogeneous, one has the equivalence:

Ω is symmetric ⇐⇒ The group Aut(Ω) is unimodular.
Hence when Ω is homogeneous but not symmetric, its automorphism group can not contain
a discrete cocompact subgroup and Ω is not divisible.

The theory of divisible convex sets splits naturally in two different parts: the strictly
convex (see chapter 4) and the non strictly convex case (see chapter 9). Hence it is
important to notice that, among the symmetric convex sets the only ones which are
strictly convex are the hyperbolic m-spaces. Those are also the only one with a boundary
of class C1.

3 First examples

Up to now all the examples of convex divisible sets that we have seen are symmetric and
the theory might look as nothing but a special case of the theory of cocompact lattices in
semisimple Lie groups.

3.1 Kac-Vinberg examples

In fact, in his thesis, Benzecri tried to prove that in dimension m = 2 all the convex
divisible sets are symmetric (i.e. are either the triangle or the hyperbolic disk). However
his proof needs a regularity hypothesis on the curve ∂Ω that bounds Ω. More precisely
he needs that locally ∂Ω is the graph of some convex function F whose derivative f is
“absolutely continuous”. We will see again this important condition in theorem 4.6.
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A few years later, Kac and Vinberg ([33]) were able to construct the first examples of
divisible convex set which are not symmetric. Their examples were two-dimensional and
the groups Γ were Coxeter groups.

3.2 Coxeter groups

In the early seventies, Vinberg understood the general condition under which a group
Γ generated by projective reflections fixing the faces of some convex polyhedron P of
the sphere S

m will divide some properly convex open set Ω with P as a fundamental
domain. Quickly stated this theorem says that a convex polyhedron P and its images
by a group Γ generated by projective reflections through its faces tile some open convex
set Ω of the projective sphere , as soon as two natural necessary local conditions are
satisfied. First, “around each 2-codimensional face of P”: some rotations must have
angle 2π

m
. Second, “around each vertex of P”: the corresponding Coxeter group must be

finite. More precisely :

Theorem 3.1 (Vinberg, 1970) Let P be a convex polyhedron of S
m and, for each face

s of P , let σs = Id−αs⊗vs be a projective reflection fixing this face s. Choose the signs of
αs such that P is the intersection of the half-spheres αs ≤ 0. Suppose that these projective
reflections satisfy, for every faces s, t such that codim(s ∩ t) = 2

αt(vs) ≤ 0 and ( αt(vs) = 0 ⇔ αs(vt) = 0 )
αt(vs)αs(vt) = 4 cos2( π

ms,t
) with ms,t ≥ 2 integer.

Suppose also that for every vertex x of P , the group Γx generated by σs for s containing
x is a finite group.

Then the group Γ generated by all these reflections σs is discrete, the polyhedra γ(P ),
for γ in Γ, tile a convex open subset Ω of S

m and hence Γ divides Ω.

See [56] or chapter one of [6] for more details on this theorem which is a generalization
of a famous theorem of Tits (see [9]).

Note that the condition on the finiteness of the groups Γx can be easily checked using
the list of finite Coxeter groups (see [9] or [57]).

Note also that Ω is properly convex as soon as the vectors vs generate V and the linear
forms αs generate V ∗.

The first explicit examples where this theorem applies and gives a divisible properly
convex set Ω which is not symmetric is Kac-Vinberg example and its natural generalisa-
tions. In these examples, the polyhedron P is a simplex of dimension m ≤ 4.

We will see more examples later on.
Even if this construction gives examples of non symmetric divisible convex open sets

only in small dimension... it is worth studying the general properties of the divisible convex
sets. We will see later on how these properties will help us in constructing examples in
every dimension!
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4 Strict convexity and regularity of ∂Ω

As Benzecri already understood in his thesis, the regularity of ∂Ω is an important issue
in this topic.

4.1 Strict convexity and Gromov hyperbolicity

Before quoting Benzecri theorem, let us quote a more recent result which relates the
regularity of ∂Ω and the strict convexity of Ω. This result will be a corollary of the
following theorem.

Theorem 4.1 ([4].I) Let Γ be a discrete group which divides some properly convex open
set Ω in S

m. Then Ω is strictly convex if and only if the group Γ is Gromov hyperbolic.

For a precise definition of “Gromov hyperbolicity” see [23] and [27]. Roughly it means
that, “for some δ > 0, the 3 sides of any geodesic triangle in the Cayley graph of Γ meet
a mutual ball of radius δ”.

As a consequence of this theorem, the strict convexity of Ω is a property of the abstract
group Γ.

Note that Γ divides also the dual convex set Ω∗ i.e. the convex set whose inverse image
in R

m+1 is the dual cone C∗ := {f ∈ V ∗/∀x ∈ C−{0} f(x) > 0}. Since the strict
convexity of Ω∗ is equivalent to the C1 regularity of ∂Ω, one gets the following criterion

Corollary 4.2 ([4].I) A divisible properly convex open set has a boundary of class C1 if
and only if it is strictly convex.

4.2 Closedness of the orbit of Ω

The main tool introduced by Benzecri to study the regularity of the boundary of a divisible
properly convex set is to endow the space of properly convex subset of S

m with the
Hausdorff distance and to study the G-orbit of Ω in this metric space.

Theorem 4.3 (Benzecri, 1960) Let Ω be a divisible properly convex open set in S
m.

Then the G-orbit of Ω in the space of properly convex subset of S
m is closed.

Since H
m is in the closure of the G-orbit of any properly convex open subset of S

m whose
boundary is of class C2, on gets the following corollary (see [7], [24] and also [31],[51]).

Corollary 4.4 (Benzecri, 1960) The only divisible properly convex open set in S
m

whose boundary is of class C2 is the hyperbolic space H
m.
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4.3 The geodesic flow and the regularity theorem

One can describe more precisely the regularity of ∂Ω. The important tool one has to
introduce for that is the geodesic flow of the Hilbert metric.

Theorem 4.5 ([4].I) Let Γ be a torsion free discrete group which divides some strictly
convex open set Ω in S

m. Then the geodesic flow ϕt of the Hilbert metric on the quotient
manifold M = Γ\Ω is Anosov.

Note that this flow ϕt is of class C1 and that the geodesics of the projective structure,
i.e. the straight lines, and the .

See [29] for a precise definition of Anosov flows. Roughly it means that “the normal
bundle to the flow is a direct sum of two continuous subbundles, one contracted and one
expanded by the flow ϕt.

One can show that this flow ϕt is topologically transitive i.e. it has a dense orbit in
M . However, one can show that when Ω is not H

m, then the flow ϕt does not preserve
any finite measure on M which is absolutely continuous with respect to the Lebesgue
measure.

Using then the thermodynamical formalism for this Anosov flow ϕt as in [44], using
the Zariski density of Γ (theorem 5.2 below), and using some properties of Zariski dense
subgroups of G as in [2], one gets as corollary the following regularity theorem for the
boundary of Ω.

Theorem 4.6 ([4].I) Let Ω be a divisible strictly convex open set in S
m. Suppose that Ω

is not the hyperbolic space H
m. Then

a) There exists α ∈ (0, 1) such that the boundary ∂Ω is C1+α.
b) The maximum αmax of these α satisfies αmax < 1.
c) The curvature of ∂Ω is concentrated on a subset of zero measure.

The condition C1+α means that the normal map n : ∂Ω → S
m−1 is α-Hölder. The

curvature is the measure on ∂Ω pull-back of the Lebesgue measure on S
m−1 by this normal

map.
In dimension m = 2, the point a) is due to Kuiper in [41] and the point c) is due to

Benzecri in [7]: this is the absolute continuity assumption that we already mentioned in
section 3.1.

Recently, O.Guichard ([28]) has given a formula for αmax thanks to the eigenvalues of
the elements of Γ. As a consequence he has proven that this constant αmax is the same
for ∂Ω and for ∂Ω∗.

5 Irreducibility of Ω and irreducibility of Γ

Let us now study some algebraic properties of Γ. A subgroup Γ of G is said irreductible
if there are no Γ-invariant non trivial subspaces in R

m+1. It is said strongly irreducible if
all subgroups of finite index are also irreducible.
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5.1 Vey irreducibility theorem

It is clear that if a strongly irreducible group Γ divides some properly convex set Ω then Ω
is irreducible (see the definition in 2.4). Vey proved in [53] the converse of this assertion:

Theorem 5.1 (Vey, 1970) Let Γ be a discrete group which divides some properly convex
open set Ω in S

m. If Ω is irreducible then Γ is strongly irreducible.

This theorem is very useful, since every convex divisible cone is a product of irreducible
convex divisible cones.

The main point in the proof is to check that the representation of Γ in V is semisimple
i.e. that every Γ-invariant subspace of V has a Γ-invariant supplementary subspace.

Once this is checked, it is easy to conclude, since every Γ-invariant decomposition
V = V1 ⊕ V2 gives a one parameter group at of elements of G acting by homotheties on
each factor. These transformations commute with Γ. For t small, a compact fundamental
domain F of Γ in Ω has still its image at(F ) inside Ω. Hence one has at(Ω) = Ω which
contradicts the irreducibility of Ω.

5.2 The density theorem

According to Vey irreducibility theorem, the Zariski closure S of Γ is semisimple. The
following statement describes this Zariski closure.

Theorem 5.2 ([4].II) Let Γ be a discrete group which divides some properly convex
open set Ω in S

m. If Ω is irreducible and is not symmetric then Γ is Zariski dense in
SL(m + 1, R).

This means that Γ is not contained in any proper algebraic subgroup of SL(m + 1, R).
As a corollary, Γ does not preserve any non zero bilinear form on R

m+1.
The main point in the proof is to check that the Zariski closure S of Γ has an open orbit

in the vector space R
m+1. One uses then Kimura-Sato classification of prehomogeneous

vector space ([37]).

To finish this chapter, let us mention [47] which gives other algebraic properties for
important families of groups preserving properly convex sets.

6 Moduli spaces of representations

Let us now describe an important feature of this topic. It will give us, for our groups Γ,
a geometric interpretation of some connected components of the space of representations
of Γ. This kind of interpretation is quite exceptional. Except for rigidity phenomena, the
only other known examples are for π1 of compact surfaces as in [10] and [43].
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6.1 Koszul openness theorem

Let Γ0 be a finitely generated group. One wants to understand the space

FΓ0
:= {ρ ∈ Hom(Γ0, G) faithful with discrete image Γ := ρ(Γ0)

dividing a properly convex open set Ωρ in S
m }

and more precisely the moduli space XΓ0
which is the quotient

XΓ0
= G\FΓ0

for the action of G on FΓ0
by conjugation on the target.

Recall that from the begining, one has G = SL±(m + 1, R).

Theorem 6.1 (Koszul, 1970) FΓ0
is open in Hom(Γ0, G).

Note that this theorem is a combination of Koszul original theorem in [40] and of
Thurston holonomy theorem for (G, X)-structure (see [25] for this theorem).

To prove Theorem 6.1, Koszul gives a necessary and sufficient condition for a real
projective structure on a compact manifold M to be properly convex. Note that M
inherits from S

m a tautological oriented real line bundle L. This condition is the existence
of a positive section s of L whose graph is “convex with positive hessian” (see also [42]
and [45]). The theorem 6.1 is then a corollary since this condition is open.

Thanks to his openness theorem, Koszul was also able to construct a few examples of
divisible properly convex sets which are non symmetric in dimension m ≤ 4. Even if these
examples are obtained by a method different from Vinberg Coxeter group construction,
they are very similar.

However, we will see in section 6.3 how this theorem 6.1 will allow us to construct
examples of non symmetric convex divisible sets in any dimension m ≥ 2.

6.2 The closedness theorem

What is quite surprising is that the converse of Koszul theorem is true under a very mild
hypothesis. Choose some ρ0 in FΓ0

.

Theorem 6.2 ([4].III) If ρ0 is strongly irreducible, then FΓ0
is closed in Hom(Γ0, G).

Hence FΓ0
is a union of connected components of Hom(Γ0, G).

Recall that the condition “ρ0 is strongly irreducible” means that the restriction of ρ0 to
any subgroup of finite index is still irreducible. One can check, thanks to Vey irreducibility
theorem (theorem 5.1), that this condition does not depend on the choice of ρ0 and is
equivalent to the fact that all the subgroups of finite index of Γ0 have trivial center.

This converse was proven by Choi and Goldman when m = 2 in [16] and by Inkang
Kim when m = 3 and Γ0 is hyperbolic in [36].

The proof of the closedness theorem uses old and recent results on Zariski dense sub-
groups of a semisimple Lie groups as in [1], [2] and [48] and [49].
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6.3 The existence theorem

In the middle of the eighties, Johnson and Millson in [32] constructed interesting defor-
mation of discrete cocompact subgroups of O+(1, m)

Theorem 6.3 (Johnson, Millson, 1980) For any m ≥ 2, there exist discrete cocom-
pact subgroups Γ0 of O+(1, m) such that the identity representation ρ0 : Γ0 → G can be
included in a continuous family ρs : Γ0 → G of representations whose images ρs(Γ0), for
s 6= 0 is Zariski dense.

It was only ten years later, that this construction was linked with Koszul openness
theorem in the following existence statement.

Theorem 6.4 ([3]) For any m ≥ 2, there exist discrete subgroups Γ of G which divide
some non symmetric strictly convex open set Ω in S

m.

In this construction Γ is isomorphic to a cocompact lattice in O+(1, m), that is why,
by theorem 4.1, this divisible convex set Ω is strictly convex.

We will see in section 8.2 a geometric interpretation of these examples.

7 Parametrization in dimension 2

In this section, we will suppose m = 2 and Γ torsion free. Hence Γ is isomorphic to the
fundamental group Γ0 of a compact surface Σg of genus g. We will suppose that g > 1.
The case g = 1 being very easy. One wants to parametrize all the properly convex open
sets Ω in S

2 which are divided by a group isomorphic to Γ0. Hence one wants to describe
the moduli space XΓ0

defined in section 6.1.

7.1 Goldman parametrization

The first description of XΓ0
for Γ0 := π1(Σg) with g > 1 is due to Goldman in [26].

Theorem 7.1 (Goldman, 1990) The moduli space XΓ0
is diffeomorphic to R

16g−16.

Note that the dimension of this moduli space is 8|χ| where χ = 2−2g is the Euler char-
acteristic of Σg, instead of 3|χ| for the Teichmüller space: the number 3 = dim(SL(2, R))
has been replaced by 8 = dim(SL(3, R)).

Goldman parametrization of XΓ0
in [26] is very similar to the Fenchel-Nielsen parame-

trization of the Teichmüller space. The main point is to check that if one fixes 3(g − 1)
disjoint free homotopy classes of curves on Σg, then one can cut Σg along the unique
embedded geodesics in these classes and get that way a decomposition of Σg in 2(g − 1)
pairs of pants endowed with a projective structure with hyperbolic geodesic boundary.
Here hyperbolic means that the holonomy of the geodesic is a diagonalizable matrix with
three positive distinct eigenvalues and that the corresponding lift in Ω of the geodesic
connects an attractive fixed point to a repulsive fixed point of this holonomy.
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One checks that the projective structure on each pair of pants with fixed hyperbolic
holonomy for the three boundary components is parametrized by R

2. The holonomy
of each geodesic is parametrized by R

2 and the glueing along each geodesic is also
parametrized by R

2. Hence one gets 2(2g − 2) + 4(3g − 3) = 8|χ| parameters.

Goldman has also constructed a natural symplectic structure on this moduli space
and even, with Darvishzadeh in [20], an almost Kähler structure. Hong Chan Kim has
described in [35] this natural symplectic structure.

7.2 Choi classification

Let us quote now Choi classification theorem in [13] which allows to reduce the classifica-
tion of all real projective structures on a compact surface Σg to Goldman’s parametrization
of properly convex real projective surface with hyperbolic geodesic boundary, parametriza-
tion we described in the previous section.

Theorem 7.2 (Choi, 1995) Every real projective compact surface Σg, with g > 1
decomposes uniquely along disjoint embedded closed geodesics with hyperbolic holonomy
into maximal compact surfaces with convex interior.

These pieces are either properly convex or are annuli.

The real projective annuli with convex interior and hyperbolic geodesic boundaries are
very easy to describe: they are quotients of a closed half plane with origin removed.

Hence, this theorem tells us that, in dimension 2, among the real projective manifolds,
the most interesting ones are those obtained as quotient of a properly convex divisible set
Ω. One does not know if the same is true in dimension 3.

7.3 Hitchin parametrization

Hitchin has parametrized in [30] one component, called Hitchin component, of the moduli
space of representations of Γ0 := π1(Σg) in SL(m + 1, R).

When m = 2, according to the closedness theorem which is, in this case, due to Choi
and Goldman (see also [14]), this component is exactly XΓ0

.
If one fixes a complex structure on Σg, Hitchin parametrization, which uses Higgs

bundles, identifies XΓ0
with the vector space H0(Σg, K

⊗2 ⊕ K⊗3) of couples: a quadratic
and a cubic differential form on the Riemann surface Σg. Note that, according to Riemann-
Roch theorem, this complex vector space is of complex dimension 3(g−1)+5(g−1) = 4|χ|.

7.4 Labourie-Loftin parametrization

Independently, Labourie in [42] and Loftin in [45] , obtained another parametrization of
XΓ0

. Let Ω be a strictly convex subset of S
2 divided by a group isomorphic to Γ0.

The main idea is to use a deep result of Cheng and Yau in [12]: the existence and unicity
up to homothety of an affine sphere asymptotic to the cone C above Ω. As explained in
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[42], one can give an easier proof of Cheng Yau theorem in this special case. By unicity,
this affine sphere is Γ0-invariant. The “Blaschke metric” and the “Pick invariant” of this
affine sphere are also Γ0-invariant. They induce on Σg first a conformal structure on Σg

and then a cubic differential form on this Riemann surface.

Theorem 7.3 (Labourie, Loftin, 2000) The above “Blaschke-Pick” map is a bijection
from XΓ0

to the space of complex structures on Σg endowed with a cubic differential form.

Hence the space XΓ0
is a fiber bundle over the Teichmüller space. The fiber is a

5(g−1)-dimensional complex vector space and the Teichmüller space is a ball in a 3(g−1)-
dimensional vector space. Hence we can check again that XΓ0

is of dimension 8|χ|.

8 More examples

Up to now, all the known non symmetric irreducible divisible properly convex open sets Ω
of S

m were strictly convex and the corresponding group Γ was isomorphic to a cocompact
lattice in O+(1, m).

8.1 Groups generated by reflections

It is natural to compute more examples of groups generated by reflections along the faces
of a given convex polyhedron P as in theorem 3.1, than those for which P is a simplex.

Using polyhedra combinatorially equivalent to product of simplices, one constructs a
few interesting new examples:

Example 8.1 ([4].IV) For m = 3, 4, 5 and 6, there exist non symmetric irreducible
divisible properly convex open sets Ω of S

m which are not strictly convex.

For m = 4, one can also construct with this method (see [5]) a divisible strictly convex
open set Ω with Γ not isomorphic to a lattice in O+(1, 4).

8.2 The bending construction

One can interpret geometrically the examples constructed in theorem 6.4 as a bending
deformation of a hyperbolic compact n-manifold M along a compact embedded totally
geodesic hypersurface N .

Before explaining this construction, let us mention that similar bending deformations
are useful to construct flat conformal structures on M : think of O+(1, n) as being inside
O+(1, n + 1) instead of being inside G.

Let us explain now this bending construction, (see [26] for the case of surfaces) : One
starts with a fixed real projective compact n-manifold M which contains a connected
compact embedded totally geodesic hypersurfaces N . Note that the holonomy of N
preserves some great hypersphere S

m−1 inside S
m. We assume that it also preserves some

point p outside this hypersphere. This assumption is clearly satisfied in the hyperbolic
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case with p equal to the “orthogonal” of S
m−1. This assumption allows us to select a

system of charts near N such that the glueing maps preserves S
m−1 and p.

One can construct for every real t > 0 a projective transformation ϕt between two open
neighborhoods U and V of N such that in these charts ϕt is given by the diagonal matrix
at := diag(t, . . . , t, t−m) ∈ G. Note that the restriction of ϕt to N is the identity.

The bending construction depends on this real t > 0 called the bending parameter:
- One first cuts M along N , getting that way a real projective manifold M ′ whose boundary
is totally geodesic and equal to two copies of N .
- One then “enlarges” M ′ near the first copy of N thanks to the open neighborhood U
and also near the second copy of N thanks to the open neighborhood V .
- Finally, one glues back U and V thanks to ϕt.

One can check, for example using theorem 6.2, that a real projective structure obtained
by bending from a properly convex real projective structure is also properly convex.

Let us now describe the holonomy ht of the bended structure thanks to the initial
holonomy h1. To compute the fundamental group Γ of M thanks to the fundamental
group Γ0 of N , there are two cases:
- When M ′ has two connected components M1 and M2 with fundamental groups Γ1 and
Γ2, the group Γ is the amalgamated product Γ = Γ1 ∗Γ0

Γ2. In this case the holonomy
representation ht of the bended structure is equal to h1 on Γ1 but is obtained from h1 by
conjugation with at on Γ2.
- When M ′ is connected with fundamental group Γ′, the group Γ is the HNN-extension
of Γ′ with respect to the two morphisms from Γ0 into Γ′. Hence Γ is generated by Γ′ and
an extra element c that correspond to a curve in M ′ connecting a base point in the two
copies of N . In this case the holonomy representation ht of the bended structure is equal
to h1 on Γ′ and the holonomy of c is ht(c) = ath1(c).

8.3 Kapovich examples

Using a variation of a construction of Gromov-Thurston in [34], Kapovich has constructed
new examples in any dimension m ≥ 4.

Theorem 8.2 (Kapovich, 2005) For all m ≥ 4, there exist divisible strictly convex
open sets Ω of S

m for which the group Γ is not isomorphic to a lattice in O+(1, m).

The idea is to improve the bending construction of section 8.2.
One starts with an hyperbolic compact n-manifold M with a dihedral group D2d of

isometries with d ≥ 4 such that this group contains d reflections along totally geodesic
hypersurfaces M1, . . . , Md which intersect along a codimension 2 submanifold M0 and
such that one can cut M along these hypersurfaces in isometric pieces.

One constructs a n-manifold N by glueing “isometrically” 2(d+1) of these pieces around
M0. One shows then that there exists on N a projective structure whose restriction to
each of the pieces is the one given by the hyperbolic structure. Otherwise stated, there is
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a way to adjust the 2(d + 1) real bending parameters along each half-hypersurface in such
a way that the charts fit together around M0.

Using a generalization of Vinberg theorem 3.1 one proves that this projective structure
is properly convex.

Using Mostow rigidity, Gromov and Thurston have checked that the π1 of N is not
isomorphic to a lattice in O+(1, 4) eventhough it is Gromov hyperbolic.

According to theorem 4.1, this structure is strictly convex.

9 Dimension 3

Let us now describe the structure of the 3-dimensional properly convex divisible sets which
are not strictly convex.

9.1 Properly embedded triangles

Let us begin by quoting another application of theorem 4.3 which is true in any dimension.

Corollary 9.1 (Benzecri, 1960) Let Ω be a divisible properly convex open set in S
m.

If Ω is not strictly convex, then Ω contains a properly embedded triangle.

A properly embedded triangle (PET) of Ω is a 2-dimensional triangle T included in Ω
whose boundary ∂T is included in ∂Ω.

Let us see now how, in dimension 3, these PETs allow us to describe Ω, Γ and M .

9.2 Totally geodesic JSJ-decomposition of M

When Ω is strictly convex, according to theorem 4.1, the group Γ is Gromov hyperbolic
and hence does not contain any Z

2-subgroup. Moreover, according to Perelman result,
the quotient manifold M should be diffeomorphic to a quotient of H

3 by a cocompact
subgroup of O+(1, 3).

The following theorem relates, when Ω is not strictly convex, the PETs of Ω, the
subgroups of Γ isomorphic to Z

2 and the Jaco-Shalen-Johannson decomposition of M .

Theorem 9.2 ([4].IV) Let Γ be a discrete group which divides an irreducible properly
convex set Ω of S

m. Suppose m = 3 and Ω is not strictly convex. Then :
Every Z

2-subgroup of Γ stabilizes a unique PET.
Every PET is stabilized by a unique maximal Z

2-subgroup of Γ. The PETs are disjoints.
Every segment of ∂Ω is on an edge of a PET. The vertices of the PETs are dense in ∂Ω.

Hence, when Γ is torsion free, the PETs project in the compact quotient M := Γ\Ω onto
an union of finitely many embedded disjoint tori and Klein bottles. The decomposition of
M along these totally geodesic embedded tori or Klein bottles is nothing but a geometric
realization of the Jaco-Shalen-Johannson decomposition of M .
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As a consequence of this theorem and of Thurston’s geometrization theorem ([52]), the
interior of all the components of this decomposition are diffeomorphic to a quotient of H

3

by a subgroup of O+(1, 3) of finite covolume. Moreover this decomposition is unique.
This part of the statement is analogous to Goldman’s decomposition of convex real

projective surface in pairs of pants with geodesic boundaries used in theorem 7.1.

The main point when proving Theorem 9.2 is to check that the image in M of each
PET is compact. For that one proves that the lamination on M given by these PETs has
a transverse measure and one studies the action of Γ on the corresponding R-tree using
Rips theory.

One can find pictures of these divisible convex sets Ω in [4].IV.

Some moduli spaces of convex projective structures on non closed surfaces have been
recently studied in [17], [22] and in [46].

Some moduli spaces of convex projective structures on 3-manifolds have also been
recently studied in [15] and in [19].

But very few is known in higher dimension.
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