
INTRODUCTION TO RANDOM WALKS ON
HOMOGENEOUS SPACES

YVES BENOIST AND JEAN-FRANÇOIS QUINT

Abstract. Let a0 and a1 be two matrices in SL(2, Z) which span
a non-solvable group. Let x0 be an irrational point on the torus T2.
We toss a0 or a1, apply it to x0, get another irrational point x1, do
it again to x1, get a point x2, and again. This random trajectory
is equidistributed on the torus. This phenomenon is quite general
on any finite volume homogeneous space.
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1. Introduction

1.1. Empirical measures. Let A be a finite set of continuous trans-
formations of a locally compact metric space X and Γ be the semi-
group generated by A, i.e. the set of products gn · · · g1 with gi in
A. For x0 in X, we want to understand the behavior of the Γ-orbit
Γx0 := {gx0 | g ∈ Γ} and to decide wether this orbit is dense or not.
More precisely, we ask :

(1.1) Can one describe all the orbit closures Γx0 in X?

We want also to get more quantitative information on the way these
orbits densify in their closure. One very intuitive way to express quan-
titatively this densification is by using the empirical measures: let µ be
a probability measure on Γ whose support is equal to A, for instance
one can choose µ := |A|−1

∑
g∈A δg to be the probability measure on A

which gives same weight to each element of A. We start with a point
x0 in X and we consider a trajectory

x1 = g1x0 , x2 = g2x1 , . . . , xn = gnxn−1 , . . .

where the elements gi are chosen independently in A with law µ. The
empirical measures are the probability measures

νn := 1
n
(δx0 + δx1 + · · ·+ δxn−1),

i.e. for every continuous function ϕ ∈ C(X), νn(ϕ) is the orbital average

νn(ϕ) = 1
n
(ϕ(x0) + · · ·+ ϕ(xn)).

We want to know, for almost every trajectory starting at x0 :

(1.2) Do the empirical measures νn converge? What is the limit?

All the measures we will consider in this paper will be Borel measures
i.e. measures on the σ-algebra of Borel subsets. We endow the set
M(X) of finite measures on X with the weak topology: A sequence
of probability measures νn on X converges toward a measure ν if, for
any continuous compactly supported function ϕ on X, νn(ϕ) converges
towards ν(ϕ).
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1.2. Stationary measures. For every measure ν on X we define the
convolution µ ∗ ν to be the average of translates

µ ∗ ν =
∫
A
g∗ν dµ(g).

In other terms, for every compactly supported function ϕ on X, one
has

µ ∗ ν(ϕ) = |A|−1
∑

g∈A ν(ϕ ◦ g).

The measure ν is said to be µ-stationary if µ ∗ ν = ν. Intuitively,
when ν is a probability measure, if you choose a point x on X with law
ν and apply one step of the random walk whose jumps have law µ then
the law of the new point is µ ∗ ν. Hence the µ-stationary probability
measures are the laws which are invariant under the random walk.

According to Breiman law of large numbers Proposition 3.8, the
empirical measures νn are asymptotically stationary. More presisely
Breiman law says that every weak limit ν∞ of a subsequence of νn is a
µ-stationary measure.

Hence Question (1.2) splits into two parts. The first part of the
question is :

Prove there is no escape of mass for the empirical measures νn?(1.3)

More precisely Question (1.3) asks : Does any weak limit ν∞ have total
mass ν∞(X) = 1? Or, equivalently, for every ε > 0, does there exist a
compact set Kε ⊂ X such that, for all n ≥ 1, one has νn(Kε) ≥ 1− ε.
This condition is a strong recurrence property for the random walk. In
many of our examples, the space X will be compact and the answer to
Question (1.3) will be automatically “Yes”.

The second part of the question is

(1.4) Describe all the µ-stationary probability measures ν on X?

A µ-stationary probability measure ν is said to be µ-ergodic if it
is extremal among the µ-stationary measures. This means that the
only way to write ν as an average ν = 1

2
(ν ′ + ν ′′) of two µ-stationary

probability measures ν ′ and ν ′′ is with ν ′ = ν ′′ = ν. Every µ-stationary
measure can be decomposed as an integral average of µ-ergodic µ-
stationary measure. Hence, in order to answer to Question (1.3) we
may assume ν to be µ-ergodic.

The last question we would like to understand is :

(1.5)
Describe the topology of the set of µ-ergodic µ-
stationary probability measures on X.
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1.3. Two examples. In general, one can not expect to be able to
answer to these five questions. We will explain why in this survey:
even when A is a single transformation, i.e. even when the dynamics
is deterministic, one can not expect to get a full answer to these five
questions because of the chaotic behavior of many dynamical systems.

However, even when A contains more than one transformation, we
will see that in some cases one can fully answer to these five questions.
In most of our examples the space X will be a homogeneous space for
the action of a locally compact group G and Γ will be included in G.

We describe in this section two concrete examples for which a com-
plete answer to these five questions has been obtained recently. These
examples are special cases of a general phenomenon that we will de-
scribe in Chapter 5.

First example: X is the d-dimensional torus

X = Td = Rd/Zd,

Γ is a subsemigroup of SL(d,Z) whose action on Rd is strongly irre-
ducible i.e. such that no finite union of proper vector subspaces of Rd

is Γ-invariant, and µ is a probability measure on Γ whose support A is
finite and spans Γ. For instance one can choose d = 2 and

µ = 1
2
(δa0 + δa1) where a0 =

(
2 1
1 1

)
and a1 =

(
1 1
1 2

)
.

A point x0 in X is said to be rational if it belongs to Qd/Zd and
irrational if not. We denote by νX := dx1 . . . dxd the translation in-
variant probability on Td. It is called the Lebesgue probability or the
Haar probability.

For this example the answer to our five questions is positive.

Theorem 1.1. Let x0 be an irrational point on X.
a) The Γ-orbit Γx0 is dense.
b) For µ⊗N-almost every sequence (g1, . . . , gn, . . .) in Γ, the trajectory
xn := gn · · · g1x0 equidistributes towards νX .
c) The sequence 1

n

∑n−1
k=0 µ

∗k ∗ δx0 converges to νX .
d) The only atom-free µ-stationary probability measure ν on X is νX .
e) Any sequence of distinct finite Γ-orbits equidistributes towards νX .

Point a) is due to Guivarc’h and Starkov [20] and Muchnik [27].
Point c), d) and e) are due to Bourgain, Furman, Lindenstrauss and
Mozes [7], in case Γ is proximal i.e. contains matrices with a leading
real eigen value of multiplicity one, and is due to [2] in general. Point
b) is in [4].
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In Point a), we note that the Γ-orbits of rational points are finite.
Point b) means that, for almost every independent choices of matrices
gn with law µ, the empirical measures converge towards νX . In Point
d), “atom-free” means “ν({x}) = 0 for all x in X”. We note that the
atomic µ-ergodic µ-stationary probability measures are supported by
the Γ-orbits of rational points. Point e) means that a sequence of Γ-
invariant probability measures νYn on distinct finite Γ-orbits Yn always
converges towards νX .

In this example, the semi-direct product G := SL(d,Z) n Td acts
transitively on X and the stabilizer of 0 is the group Λ := SL(d,Z).
One has then the identification X = G/Λ.

Second example: X is the set of covolume one lattices ∆ in Rd,
i.e. the set of discrete subgroups ∆ of Rd with a Z-basis e1, . . . , ed such
that det(e1, . . . , ed) = 1. The group G := SL(d,R) of real unimodular
matrices acts transitively on X and the stabilizer of the point Zd ∈ X
is the group Λ := SL(d,Z). Hence one has the identification

X = G/Λ = SL(d,R)/SL(d,Z).

Γ is a subsemigroup of SL(d,Z) which is Zariski dense in SL(d,R) i.e.
such that the adjoint action of Γ on the Lie algebra g of G is irreducible.
µ is a probability measure on Γ whose support A is finite and spans Γ.
For instance, as above, one can choose d = 2 and

µ = 1
2
(δa0 + δa1) where a0 =

(
2 1
1 1

)
and a1 =

(
1 1
1 2

)
.

A point x0 in X is said to be rational if it is included in λQd for
some λ > 0, and irrational if not.

With these notation the answer to our five questions can be stated
exactly in the same way as in Theorem 1.1.

Theorem 1.2. Let x0 be an irrational point on X.
a) The Γ-orbit Γx0 is dense.
b) For µ⊗N-almost every sequence (g1, . . . , gn, . . .) in Γ, the trajectory
xn := gn · · · g1x0 equidistributes towards νX .
c) The sequence 1

n

∑n−1
k=0 µ

∗k ∗ δx0 converges to νX .
d) The only atom-free µ-stationary probability measure ν on X is νX .
e) Any sequence of distinct finite Γ-orbits equidistributes towards νX .

Theorem 1.2 is a special case of more general results in [2], [3] and [4]
that we will describe in Chapter 5. It is very surprising that, already
in this example with d = 2, the proof of the topological statement
Theorem 1.2.a) relies on the random walk approach. In more concrete
words, the only way we are able to prove that the irrational Γ-orbits
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Γx0 are dense in X is to walk at random on these orbits and to prove
that these random trajectories equidistributes towards νX and hence
are dense in X.

The main aim of this paper is to sketch a proof of Theorem 1.1 based
on [2], [3], [4] and [5]. While the method in [7] to prove Theorem 1.1.d)
relies on a deep analysis of the Fourier coefficients of the stationary
measure ν, our method relies on more ergodic theoretic tools like the
martingale theorem. That is why it gives also a proof of Theorem 1.2.

But more importantly the aim of this paper is to recall, for a wider
audience, much simpler examples for which the answers to these five
questions are well-known. The intuitions and the tools behind these
classical examples will be also useful to a more advanced reader who
wants to understand our proof of Theorem 1.1.

In chapter 2 we recall the behavior of a few simple deterministic
dynamical systems.

In chapter 3 we recall a few properties of stationary measures for a
few simple non-deterministic dynamical systems.

In chapter 4 we give a short proof of the equidistribution of random
trajectories on the torus based on the classification of the stationary
measures. We also sketch a proof for this classification.

In chapter 5 we explain how these two examples are instances of a
much more general phenomenon. This phenomenon is even true for p-
adic Lie groups. We end this survey by a nice application, Proposition
5.7, to an equidistribution property for a Markov chain in the space of
lattices choosing randomly at each step a lattice of index p.

2. Deterministic dynamical system

Let X be a locally compact metric space. When a random walk
on X is deterministic, i.e. when the probability measure µ is a Dirac
mass µ = δg for some continuous transformation g of X, a µ-stationary
measure ν on X is nothing but a g-invariant measure, i.e. it satisfies
ν = g∗ν.

In this section we would like to recall a few basic examples of de-
terministic dynamical systems and we would like to describe on these
examples the deep relationship between the closed invariant subsets,
the statistical behavior of trajectories and the invariant probability
measures.

2.1. The doubling map. A very simple example is the doubling map

m2 : x 7→ 2x on the circle X = T = R/Z.
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2.1.1. Invariant subsets. There are many closed m2-invariant subsets
in T. Let us explain why.

To construct these invariant subsets, we introduce a coding of (T,m2)
with the one-sided Bernoulli dynamical system (B, T ) on the alphabet
A = {0, 1}. This means that B is the compact space B = AN whose
elements are sequences b = (b1, . . . , bn, . . .) with bi ∈ A, and T : B → B
is the shift transformation T (b) = (b2, . . . , bn+1, . . .). Since the coding
map

ξ : B → X ; b 7→ ξ(b) =
∑

i≥1 bi2
−i

intertwines T and m2, i.e. since one has

ξ ◦ T = m2 ◦ ξ,
the image Y = ξ(C) of a closed T -invariant subset is a closed m2-
invariant subset. Here are a few examples obtained that way:
∗ Y = {2nx0 | n ≥ 1} where x0 is rational.

∗ Y = {2nx0 | n ≥ 1} ∪ {2−n | n ≥ 0} where x0 =
∑

i≥1 2−i
2
.

∗ Y = {ξ(b) | bibi+1 = 0 , ∀i ≥ 1}.
∗ Y = ξ(C) where C is the closure of the orbit TNb0 of the one-sided
Thue-Morse sequence b0 := 0110100110010110... for which b0,n is the
parity of the number of 1 in the dyadic expansion of n−1. This last
example is important because it is ”minimal with zero entropy”.

2.1.2. Invariant measures. There are uncountably many different m2-
ergodic m2-invariant probability measure µp on T with p ∈ (0, 1). Let
us explain why.

To construct intuitively these probability measures µp, just write the
asymptotic dyadic expansion of x as x =

∑
i≥1 bi2

−i with bi in {0, 1}
and choose the coefficients bi of this expansion independently so that
µp({x | bi = 1}) = p.

In a more formal way, one uses the one-sided Bernoulli dynamical
system (B, βp, T ) on the alphabet (A,αp) with A = {0, 1} and αp =
(1 − p)δ0 + pδ1. This means that B = AN, that βp is the product
probability measure βp = α⊗N

p and that T is the shift transformation.
These probability measures βp are T -invariant i.e. T∗(βp) = βp.

Since the coding map intertwines T and m2, the image probability
measures µp := ξ∗(βp) are m2-invariant.

2.1.3. Empirical measures. All the probability measures µp may occur
as limit of empirical measures. Let us explain why.

It is easy to check that these probability measures µp are m2-ergodic.
According to Birkhoff ergodic theorem, for µp-almost every x, the em-

pirical measures 1
n

∑n−1
k=0 δ2kx converge to µp.
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Note that the orbit {2nx | n ≥ 1} of such a point x is dense and that
the statistical behavior of its orbits depends heavily on p. For instance
the proportion of 1 in the dyadic expansion (bi) of x tends to p. In
particular these measures µp are supported by disjoint Borel subsets
Xp ⊂ T.

One can also construct points x in T for which the empirical measures
do not have any limit and more precisely such that all the µp are limit
of subsequences of empirical measures.

Let us end this section with an informal comment. Notice that the
Bernoulli dynamical system (B, βp, T ) is also the space of trajectories
for a head and tail games, a fair game when p = 1

2
and an unfair game

when p 6= 1
2
. The fact that a dynamical system can be described by

this pure probabilistic game is refered as a chaotic behavior : there is
no more order in the doubling map than in the head and tail game!

2.2. The cat map. Another very simple example is Arnold cat map

a0 : (x1, x2) 7→ (2x1 + x2, x1 + x2) on the 2-torus X = T2 = R2/Z2.

This map is invertible. We will just explain in this section that the
dynamics of this example is as chaotic as the dynamics of m2.

2.2.1. Invariant subsets. There are many closed a0-invariant subsets in
T2. Let us explain why.

To construct these invariant subsets, we will first construct a nice
invariant subset Y0 of X by Smale horseshoe construction we will then
introduce a coding of (Y0, a0).

The matrix a0 has two real eigenvalues k±2
0 where k0 is the golden

ratio k0 = 1+
√

5
2

and the corresponding eigenspaces E± = Re± ⊂ R2 are
given by e+ = (k0, 1) and e− = (−1, k0). Let R ⊂ T2 be the rectangle
defined, thanks to the euclidean scalar product 〈., .〉, by

R = {v + Z2 ∈ T2 | 0 ≤ 〈v, e+〉 ≤ k−1
0 and 0 ≤ 〈v, e−〉 ≤ k0}.

This rectangle has been chosen so that the intersection R ∩ a0R is the
union of two rectangles R0 ∪R1 where

R0 = {v + Z2 ∈ T2 | 0 ≤ 〈v, e+〉 ≤ k−1
0 and 0 ≤ 〈v, e−〉 ≤ k−1

0 }
R1 = {v + Z2 ∈ T2 | 0 ≤ 〈v, e+〉 ≤ k−1

0 and 1 ≤ 〈v, e−〉 ≤ k0}

and that both rectangles R0 and R1 are sitting at the extremities of
both R and a0R. We choose Y0 to be the invariant subset

Y0 = ∩n∈Za
−n
0 R.
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R a0R
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Figure 1. The cat map

The coding of (Y0, a0) uses the two-sided Bernoulli dynamical system

(B̃, T ) on the alphabet A = {0, 1}. This means that B̃ is the compact

space B̃ = AZ whose elements are biinfinite sequences b = (. . . , bn, . . .)

with bn ∈ A, and T : B̃ → B̃ is the shift transformation given by
T (b) = (. . . , bn+1, . . .). The coding map is the bijection ξ given by

ξ : B̃ → Y0 ; b 7→ ξ(b) = ∩n∈Za
−n
0 Rbn .

It intertwines T and a0, i.e. one has

ξ ◦ T = a0 ◦ ξ.

Hence the image Y = ξ(C) of any closed T -invariant subset of B̃ is a
closed a0-invariant subset. Here are a few examples obtained that way:
∗ Y = {ξ(b) | bn = bn+` , ∀n ∈ Z} where ` ≥ 1.
∗ Y = {an0x0 | n ≥ 1} ∪ {0} where x0 is a vertex of R.
∗ Y = {ξ(b) | bnbn+1 = 0 , ∀n ∈ Z}.
∗ Y = ξ(C) where C is the closure of the orbit T Zb0 of the two-sided
Thue-Morse sequence b0 := ...1001011001101001... for which b0,n is the
parity of the number of 1 in the dyadic expansion of max(−n, n−1).

2.2.2. Invariant measures. There are uncountably many different a0-
ergodic a0-invariant probability measure µp on T2 with p ∈ (0, 1). Let
us explain why.

The construction is the same as in the previous section. One can
choose for µp the image µp := ξ∗(βp) by the coding ξ of the product
probability measure βp = α⊗Z

p where αp is the probability (1−p)δ0+pδ1

on the alphabet A. Since the probability measures βp are T -invariant
and since the coding map ξ intertwines T and a0, the image probability
measures µp := ξ∗(βp) are a0-invariant.

2.2.3. Empirical measures. As in the previous section these probability
measures µp are a0-ergodic. They allow us to construct points x in T2
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with different statistical behaviors; one can construct also points x in
T2 for which all the µp are limit of subsequences of empirical measures.

2.3. Linear maps on the torus. We recall in this section the dyna-
mical behavior of more general linear transformations on the d-dimen-
sional torus X = Td which preserve the Haar measure νX .

Proposition 2.1. (Auslander) Let g ∈ SL(d,Z) be a matrix with
no eigenvalues being a root of unity. Then for νX-almost any x in
X, the sequence (gnx)n≥1 is dense in X. More precisely this sequence
equidistributes towards νX .

For this deterministic dynamical system we do not expect equidis-
tribution for the orbits of all the irrational points but only for almost
all of them. Indeed, in the previous section, we have constructed many
exceptional points i.e. irrational points whose orbit is not dense.

Proof. This proposition is a consequence of Birkhoff ergodic theorem.
We only have to check that νX is g-ergodic i.e. the fact that,

for any Borel subset Y ⊂ X with g−1Y = Y , one has νX(Y ) = 0 or 1.

As an analog of the two approaches that we mentioned can be used to
prove Theorem 1.1.d), we will give two proofs of this fact. The first
one relying on harmonic analysis is very short. The second one relying
on ergodic theory is more flexible for generalization. �

First proof. We follow [1]. Look at the Fourier coefficients of the func-
tion 1Y ,

cn =
∫
Y
e−2iπnx dνX(x) , where n ∈ Zd.

Since Y is g invariant, those coefficients are constant on the orbits of g
in Zd. Since no eigenvalues of g are roots of unity, all the orbits of g in
Zdr{0} are infinite. By Riemann-Lebesgue lemma these coefficients go
to 0 when |n| → ∞. Hence cn = 0 for all n 6= 0, and by injectivity of the
Fourier transform, the function 1Y is νX-almost everywhere constant,
i.e. νX(Y ) = 0 or 1. �

Second proof. According to Birkhoff ergodic theorem, for any νX-inte-
grable function ϕ ∈ L1(X, νX), the limit

ϕ∗(x) = lim
n→∞

1
n

∑n
k=1 ϕ(gkx) exists for νX-almost all x ∈ X,

and the map ϕ→ ϕ∗ has norm 1 in L1(X, νX): one has ‖ϕ∗‖L1 ≤ ‖ϕ‖L1 .
As a consequence one also has

ϕ∗(x) = lim
n→∞

1
n

∑2n
k=n+1 ϕ(gkx) for νX-almost all x ∈ X.
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The stabilizer Sϕ := {y ∈ Td | ϕ(y + .) = ϕ(.) νX-almost surely} is a
closed subgroup of Td. The assumption on the eigenvalues of g implies,
by induction on d, that the group

E− := {v + Zd ∈ Td | lim
n→∞

gnv = 0} is dense in Td.

By construction, when ϕ is continuous, the stabilizer of ϕ∗ contains
E−, hence equals Td, and the function ϕ∗ is νX-almost surely equal
to νX(ϕ). Since the continuous functions are dense in L1(X, νX), for
any ϕ in L1(X, νX), one also has ϕ∗ = νX(ϕ). In particular, for our
g-invariant set Y , one has 1Y = 1∗Y = νX(Y ), i.e. νX(Y ) = 0 or 1. �

2.4. Affine maps on the torus. In contrast to the previous section
we describe now two simple deterministic dynamical systems for which
one can classify the invariant measures.

The first one is a translation

τα : x 7→ x+ α on the circle X = T = R/Z.

When α ∈ T is irrational, there exists only one τα-invariant probability
measure ν : the Haar measure νX = dx.

Proof. For n ∈ Z r {0}, the Fourier coefficient cn :=
∫

T e
−2iπnx dν(x)

satisfy cn = e2iπnαcn and hence cn = 0, and ν = νX . �

One says that this dynamical system is uniquely ergodic. In this case
all the orbits are dense and all the empirical measures converge to ν.

The second example is the transformation

τ ′α : (x1, x2) 7→ (x1 + α, x1 + x2) on the 2-torus X = T2.

When α ∈ T is irrational, this dynamical system is also uniquely er-
godic :

The only τ ′α-invariant probability ν on X is the Haar measure νX .

Proof. The transformations rt : (x1, x2) 7→ (x1, x2 + t) commute with
τα. After regularization, one can assume that ν is smooth along the
orbits of the group {rt | t ∈ T}. The image of ν by the first projection
(x1, x2) 7→ x1, which is τα-invariant, is the Haar measure on T. Hence
the probability ν is absolutely continuous with respect to νX , and its
Fourier coefficients decay to zero at infinity. One can then use the same
argument as in the first proof of Proposition 2.1. �
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2.5. Unipotent flow. Here is another famous, and much more sophis-
ticated, deterministic dynamical system for which one can classify the
invariant measures.

In this example, G is a real Lie group, Λ is a lattice in G i.e. a dis-
crete subgroup of finite covolume, X = G/Λ and Γ is a subgroup gen-
erated by Ad-unipotent one-parameter subgroups i.e. one-parameter
subgroups ut = etN where N is an element of the Lie algebra g of G
whose adjoint matrix adN is nilpotent. For instance

G = SL(2,R), Λ = SL(2,Z) and Γ = {ut =
(

1 t
0 1

)
| t ∈ R}.

The following Theorem generalizes Margulis answer to the Oppen-
heim conjecture.

Theorem 2.2. (Ratner) a) For every x in X, there exists a closed
subgroup H of G with Γ ⊂ H such that the orbit closure Y := Γx
is a H-orbit Y = Hx and this orbit carries a H-invariant probability
measure νY .
b) Every Γ-ergodic Γ-invariant probability measure ν on X is equal to
one of those probability measures νY .
c) Assume Γ is a Ad-unipotent one-parameter group Γ = {ut | t ∈ R}.
Then, for any x in X, and any bounded continuous function ϕ on X,
the orbital averages

νT (ϕ) := 1
T

∫ T
0
ϕ(utx) dt

converge when T →∞ towards νY (ϕ) with Y = Γx.

We omit the proof. One important point in the proof, is the fact
that no mass of an orbit of a Ad-unipotent flow escape to infinity
i.e. the answer to question (1.3). This point is called “Dani-Margulis
recurrence phenomenon”. See [11].

Another important point in the proof of b) when Γ is a Ad-unipotent
flow, is called the “polynomial drift”. Roughly one applies Birkhoff
ergodic theorem for the ut-invariant measure ν, one gets a set of full
measure for ν, one compares how two orbits utx and uty of nearby
points x and y on this set diverge from one another, and one deduce that
ν is also invariant under another one-parameter group at normalizing
ut. See [29], [30], [31] and [25].

3. Stationary measures

Let X be a locally compact metric space, G be a locally compact
group acting continuously on X, and µ be a probability measure on
G. Let A be the support of µ and Γ be the closure of the semigroup



RANDOM WALKS 13

generated by A. We recall that a probability measure ν on X is µ-
stationary if one has µ ∗ ν = ν. We gather in this chapter a few
classical properties of µ-stationary probability measures.

3.1. Existence of stationary measures.

Proposition 3.1. (Kakutani) When X is compact, there always ex-
ists a µ-stationary probability measure ν on X.

Proof. Since X is compact, the set P(X) of probability measures on X
is also compact for the weak convergence. For any x ∈ X, we introduce
the sequence of probability measures

ν ′n := 1
n

∑n−1
k=0 µ

∗k ∗ δx.

By weak compactnes of P(X), there exists a subsequence of ν ′n which
converges weakly to some probability ν ′∞ ∈ P(X). Since

µ ∗ ν ′n − ν ′n = 1
n
(µ∗n ∗ δx − δx) −−−→

n→∞
0 ,

the limit ν ′∞ is µ-stationary. �

3.2. Stationary measures on countable sets.

Lemma 3.2. Any µ-ergodic µ-stationary probability measure ν sup-
ported by a countable set is Γ-invariant and is supported by a finite
set.

Proof. This follows from the maximum principle : Choose a point x of
maximum mass ν({x}) = p. The formula ν({x}) =

∫
Γ
ν({g−1x}) dµ(g)

implies that, for µ-almost all g, g−1x also has maximal mass. Hence
the set of points of maximal mass which is finite is also Γ-invariant. �

3.3. The limit probability measures. In order to study station-
ary measures, we introduce the one-sided Bernoulli dynamical sys-
tem (B, β, T ) with alphabet (A, µ). This means that B = AN is
the space of trajectories b = (b1, . . . , bn, . . .) with bn ∈ A, that β
is the product probability measure β = µ⊗N and that T is the shift
T : b 7→ (b2, . . . , bn+1, . . .). The following proposition tells us that the
data of a stationary measure ν is equivalent to the data of an equivari-
ant family b 7→ νb of probability measures.

Proposition 3.3. (Furstenberg) Let ν be a µ-stationary probability
measure on X. Then, the limit νb := lim

n→∞
(b1 · · · bn)∗ν exists, for β-

almost any b in B,and satisfies the equivariance property :

νb = (b1)∗νTb,
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and one can recover ν as the average

ν =
∫
B
νb dβ(b).

Proof. For the existence of the limit, apply Doob martingale theorem
to the sequence Fn : b 7→ (b1 · · · bn)∗ν of P(X)-valued functions on B.
Since ν is µ-stationary, this sequence is a bounded martingale with
respect to the σ-algebras Bn = 〈b1, · · · , bn〉. �

3.4. Abelian group actions. It is clear from the definition that every
Γ-invariant probability measure ν on X is µ-stationary.

When the acting semigroup Γ is abelian, the converse is true :

Corollary 3.4. (Choquet, Deny) When Γ is abelian, every µ-statio-
nary probability measure ν on X is Γ-invariant

Proof. There are many proofs of Choquet Deny theorem. We just ex-
plain how to deduce this theorem from Hewitt-Savage zero-one law.

Let Σ be the group of permutations σ of N with finite support i.e.
such that σ(n) = n for n outside a finite set. This group Σ acts on B
by the formula

σ(b) = (bσ−1(1), . . . , bσ−1(n), . . .).

According to Hewitt-Savage Theorem, the action of Σ on (B, β) is
ergodic. Since Γ is abelian, the function b 7→ νb is constant on the
Σ-orbits and hence νb is β-almost surely constant equal to its average
ν. Hence for µ-almost every b1 in Γ one has (b1)∗ν = ν. Since the
stabilizer of ν in G is closed, ν is Γ-invariant. �

However, even when Γ = N or N2, the classification of the Γ-invariant
probability measures on X may be quite difficult. We have already seen
examples for deterministic dynamical systems.

Another famous example is Furstenberg’s conjecture for the doubling
and tripling maps

m2 : x 7→ 2x , m3 : x 7→ 3x on the circle X = T.

This conjecture, still open, says that the only atom-free probability
measure ν on T which is invariant by both m2 and m3 is the Haar
probability.

3.5. Solvable group actions. According to a result by Guivarc’h and
Raugi, when Γ is discrete nilpotent all µ-stationary probability mea-
sures are still Γ-invariant. However this is not always the case when Γ
is solvable.

Example of a µ-stationary measure which is not Γ-invariant.
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We play head and tail with the two contractions

c0 : x 7→ x
3

, c1 : x 7→ x+2
3

on the interval X = [0, 1]

i.e. we choose µ = 1
2
(δc0 + δc1 ) and Γ is the semigroup spanned by c0

and c1. In this case the Cantor set

K := {x =
∑

i≥1 2bi3
−i | bi = 0 or 1}

is a closed Γ-invariant subset. Let β = µ⊗N be the Bernoulli measure
on the space B := {0, 1}N and ξ : B → K be the coding map given
by ξ(b) =

∑
i≥1 2bi3

−i. The probability measure νX := ξ∗(β) is µ-
stationary but is not Γ-invariant.

Eventhough the stationary probability measure νX is not Γ-invariant,
one can easily answer to the five questions in this example :

Lemma 3.5. a) For all x in X, the orbit closure Γx is equal to Γx∪K.
b) The only µ-stationary probability measure ν on X is νX .
c) For all x0 in X, for β-almost all b in B, the empirical measures
νn = 1

n
(δx0 + · · ·+ δxn−1) converge to νX , where xn = bn · · · b1x0.

Proof. a) The 2n intervals Iw, image of [0, 1] by a word w of length
`(w) = n in c0, c1, are disjoint of size 3−n and the Cantor set K is
equal to the intersection K = ∩n≥1 ∪`(w)=n Iw.
b) The equation µ∗n ∗ ν = ν means that each of the intervals Iw with
`(w) = n have weight ν(Iw) = 2−n. This proves that ν = νX .
c) One may use the uniqueness of ν and Breiman law of large numbers

Proposition 3.8.
One may also notice that, because of the contraction property, one

has only to check our statement for one point x0 in X. The coding
map ξ : B → K intertwins the two contractions

C0 : b 7→ 0b , C1 : b 7→ 1b of the space B = {0, 1}N,

with c0 and c1, i.e. one has

ξ ◦ C0 = c0 ◦ ξ and ξ ◦ C1 = c1 ◦ ξ

Then Birkhoff ergodic theorem applied to (B̃, β̃, T−1) tells us : for
β-almost every b0 and b in B, the trajectory

n 7→ (bn, . . . , b1, b0,1, . . . , b0,n, . . .)

equidistributes towards β. Our result follows. �

By construction in this example the limit measures νb are Dirac
masses νb = δξ(b). We say that ν is µ-proximal.
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3.6. Stationary measures on projective spaces. The last example
we would like to discuss is the linear action on the projective space. Its
behavior is very similar to the solvable example in section 3.5.

In this example we set V = Rd and G = SL(V ), X is the real
projective space X = P(V ), Γ ⊂ G is a subsemigroup, µ is a probability
measure on G whose support A spans Γ. We make two assumptions
on this semigroup. First, the action of Γ on V is strongly irreducible
i.e. no finite union of proper subspaces of V is Γ-invariant. Second, the
action of Γ on V is proximal i.e. one can find a sequence γn ∈ Γ such
that γn

‖γn‖ converges to a rank one matrix π. We denote by ΛΓ ⊂ X the

set of lines which are images Imπ of such a rank one matrix.

Proposition 3.6. (Furstenberg)
a) For all x in X, the orbit closure is Γx = Γx ∪K.
b) There exist only one µ-stationary probability measure νX on X.
c) For β-almost every b in B, there exists a line Vb ∈ P(V ) such that any
cluster point π ∈ End(V ) of the sequence b1···bn

‖b1···bn‖ has image Vb = Im(π);

it satisfies the equivariance property Vb = b1VTb and the limit measures
are Dirac masses given by (νX)b = δVb

.
d) For all x0 in X, for β-almost all b in B, the empirical measures
νn = 1

n
(δx0 + · · ·+ δxn−1) converge to νX , where xn = bn · · · b1x0.

The statement of Proposition 3.6 is motivated by Lemma 3.5. We
omit the proof which is a tricky application of Proposition 3.3 combined
with the proximality assumption. See [17] or [6].

In the following corollary we keep the same group G and measure µ
but consider its action on the vector space X = V .

Corollary 3.7. The only µ-stationary probability measure ν on V is
the Dirac mass δ0.

Proof. Let µ̌ ∈ P(G) be the image of µ by the map g 7→ g−1. According
to Proposition 3.6.c applied to the action of µ̌ on V ∗, for every v in
V r {0}, and β-almost all b in B, the sequence bn · · · b1v goes to ∞.
On the other hand, the dynamical system (b, v) 7→ (Tb, b1v) on B × V
preserves the probability measure β⊗ν. Hence, by Poincaré Recurrence
Lemma, for ν-almost all v in V , and β-almost all b in B, this sequence
b1 · · · bnv is recurrent. This implies ν(V r {0}) = 0 as required. �

3.7. Breiman law of large number. We say that the action of µ on
X is uniquely ergodic if there exists only one µ-stationary probability
measure on X.

Proposition 3.8. (Breiman) Assume X is compact and there exists
only one µ-stationary probability measure ν on X. Then, for all x0 in
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X, for β-almost every b in B, one has the convergence of the empirical
measures 1

n
(δx0

+ · · ·+ δxn−1
) −−−→
n→∞

ν, where xn = bn · · · b1x0.

We recall that (B, β) is the one-sided Bernoulli space and that Bn
is the σ-subalgebra Bn = 〈b1, . . . , bn〉. We will use Kolmogorov law of
large numbers which says

Lemma 3.9. (Kolmogorov) For n ≥ 1, let ϕn : B → R be a Bn-
measurable function such that E(ϕn | Bn−1) = 0, and sup

n≥1
‖ϕn‖L2 <∞.

Then the average 1
n
(ϕ1+· · ·+ϕn) converges β-almost surely to 0.

The classical strong law of large numbers is the special case where
ϕn(b) = ϕ(bn) with ϕ a centered (square-)integrable function on A.

Proof of Lemma 3.9. The sequence ψn =
∑n

k=1 ϕk/k is a martingale
which is bounded in L2 :

E(ψ2
n) =

∑n
k=1 E(ϕ2

k)/k
2 ≤

(∑
k≥1 k

−2
)

sup
n≥1

E(ϕ2
n) <∞.

Hence by Doob martingale theorem, it converges almost surely. Apply
Kronecker Lemma, i.e. Abel summation method, to conclude. �

Proof of Proposition 3.8. See [8]. Choose

ϕn(b) = ϕ(xn)− µ ∗ ϕ(xn−1)

where ϕ is a continuous function on X. According to Lemma 3.9 with
a shift in the indices, the average

1
n

∑n
k=1(ϕ(xk)− µ ∗ ϕ(xk))

converges β-almost surely to 0. Hence any weak limit ν∞ of a subse-
quence of empirical measures νn := 1

n
(δx0

+ · · ·+ δxn−1
) is µ-stationary.

Since the action of µ on X is uniquely ergodic, µ∞ = ν is the only pos-
sibility. Since P(X) is weakly compact, νn converges weakly towards
ν. �

This argument is very general and is very useful even when the action
of µ on X is not uniquely ergodic.

4. Random walk on the torus

In this chapter we describe the main ideas in the proof of Theorem
1.1. The space X is the d-dimensional torus X = Td, Γ is a subsemi-
group of SL(d,Z) whose action on Rd is strongly irreducible, and µ is
a probability measure on Γ whose support A is finite and spans Γ. If
needed, we might replace µ by a convolution power µ∗n0 .



18 YVES BENOIST AND JEAN-FRANÇOIS QUINT

4.1. Empirical measures on the torus. We will first explain in this
section how Theorem 1.1.d) implies Theorem 1.1.a) and 1.1.b).

We know that the Haar probability νX is the only atom-free µ-
stationary probability measure on X and we want to deduce that the
empirical measures νn of irrational points converge towards νX (and
hence the irrational Γ-orbits are dense).

Since we know, by the proof of Breiman law of large number, that any
weak limit ν∞ ∈ P(X) of a subsequence of νn is µ-stationary, we only
have to check that such a measure ν∞ has no atom. By Lemma 3.2 such
an atom is on a finite orbit hence is rational with denominator say k ≥
1. Replacing ν by k∗ν, we only have to prove that ν∞({0}) = 0. This
follows from the following proposition which controls the proportion of
time for the excursions near 0. We denote by d the euclidean distance
on Td.

Proposition 4.1. For any ε0 > 0, one can find r > 0 such that, for
all x0 in Td r {0}, for β-almost every b in B,

lim sup
n→∞

1
n
|{k ≤ n | d(xk, 0) ≤ r}| ≤ ε0.

The trajectories of the random walk on X are parametrized by cou-
ples (b, x) ∈ B ×X. We recall that xk = bk · · · b1x0.

Proof. We fix a small radius r0 > 0 and introduce the compact subset
Y of Td r {0}

Y = {x ∈ Td | d(x, 0) ≥ r0}.
We introduce various times: The first return time in Y is

τY = τY (b, x0) = inf{k > 0 | xk ∈ Y } ∈ N ∪ {∞},

the nth return time in Y is

τY,n = τY,n(b, x0) = inf{k > τY,n−1(b, x0) | xk ∈ Y },

the nth excursion time outside Y is, when τY,n−1 <∞,

σY,n = σY,n(b, x0) = τY,n − τY,n−1,

so that one has the equality τY,n =
∑n

p=1 σY,p.

Since A is compact, the quantity M := max
g∈A

log ‖g‖ is finite. At

each step of the walk the distance to 0 can not decay faster than by a
factor e−M . Hence if one reaches the ball B(0, r) starting from Y , the
excursion time must be larger than T := M−1 log r0

r
. That is why the

time

σTY,n := σY,n1{σY,n≥T}
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satisfies the upper bound for the cardinality :

|{k ≤ n | d(xk, 0) ≤ r}| ≤
∑n

p=1 σ
T
Y,p

Now Proposition 4.1 follows from the following two lemmas �

For a function F on B × X and x in X we write Ex(F ) for its
expectation Ex(F ) =

∫
B
F (b, x) dβ(b). We denote by Px := β ⊗ δx the

corresponding probability measure.
The first lemma tells us that the first return time has uniformly a

finite exponential moment.

Lemma 4.2. There exists α > 0 such that sup
x∈Y

Ex(e
ατY ) <∞.

The second lemma tells us that, if the expectations of the large first
return time have a uniform bound then the orbit averages of this large
first return time have asymptotically the same uniform bound.

Lemma 4.3. If one chooses r > 0 such that the number T := M−1 log r0
r

satisfies sup
x∈Y

Ex(σ
T
Y ) ≤ ε0 then, for all x0 in Td r {0}, for β-almost all

b in B, one has lim sup
n→∞

1
n

∑n
p=1 σ

T
Y,p ≤ ε0.

We will be able to choose such an r > 0 thanks to Lemma 4.2.

Proof of Lemma 4.2. During each excursion that it spends outside Y ,
the random walk behaves like the linear random walk on the vector
space Rd. We will take for granted Furstenberg positivity of the first
Lyapounov : after replacing µ by some power µ∗n0 and choosing r0

small enough, one can find δ > 0 and a < 1 such that the function
u(x) := d(x, 0)−δ on Td r {0} satisfies∫

G
u(gx) dµ(g) ≤ a u(x) for all x 6∈ Y.

By induction, using the Markov property and the fact that the sets
{τY > n−1} are Bn−1-measurable, one gets the bound, for x0 6∈ Y and
n ≥ 1

Ex0(u(xn)1{τY >n}) ≤ aEx0(u(xn−1)1{τY >n−1}) ≤ · · ·
≤ an−1Ex0(u(x1)) ≤ an−1eδMu(x0),

and hence one has

Px0({τY > n}) ≤ rδ0 Ex0(u(xn)1{τY >n}) ≤ an−1eδM .

This proves that the function τY has an exponential moment. �
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Proof of Lemma 4.3. For ε > 0 we estimate, choosing α > 0 small
enough, using the Markov property, and using the bound et ≤ 1+t+t2et

for t > 0,

Px0({τTY,n ≥ n(ε0+ε)}) ≤ e−αn(ε0+ε) Ex0(
∏n

p=1 e
ασT

Y,p)

≤ e−αn(ε0+ε) (sup
x∈X

Ex(e
ατT

Y ))n

≤ e−αn(ε0+ε) (1+αε0+O(α2))n ≤ e−αnε/2.

Since this series converges, we can apply Borel-Cantelli Lemma. �

4.2. Equidistribution of finite orbits. We explain in this section
how Theorem 1.1.d) implies Theorem 1.1.b) and 1.1.e).

We know that the Haar probability νX is the only atom-free µ-
stationary probability measure on X and we want to deduce that any
sequence νYn of invariant probability on distinct finite orbits Yn con-
verge towards νX (the proof of 1.1.b) is similar).

Since any weak limit ν∞ ∈ P(X) of a subsequence of νYn is µ-
stationary, we only have to check that such a measure ν∞ has no atom.
As in the previous section, we only have to prove that ν∞({0}) = 0.
This follows directly from the following corollary.

Corollary 4.4. For any ε0 > 0, one can find r > 0 such that, for all
finite Γ-orbit Y ⊂ Td r {0}, one has νY (B(0, r)) ≤ ε0

Proof. Integrating over B, the conclusion of Proposition 4.1 one gets
the following statement: For any ε0 > 0, one can find r > 0 such that,
for all x0 in Td r {0}, for β-almost every b in B,

lim sup
n→∞

1
n

∑n−1
k=0 Px0({d(xk, 0) ≤ r}) ≤ ε0.

Averaging this statement, for x0 in Y , one gets νY (B(0, r)) ≤ ε0. �

4.3. Stationary measures on the torus. In this section, following
the general strategy of [3], we sketch the proof of Theorem 1.1.d), i.e.
the fact that the Haar probability νX is the only atom-free µ-stationary
probability measure on X. For a rigorous proof see [3].

4.3.1. Reduction to the Key Step. We start with an atom-free µ-statio-
nary µ-ergodic probability measure ν on X = Td, and we want to
prove that ν = νX . In order to lighten the notations we assume that
the action of Γ on V = Rd is proximal, (this is certainly the case when
d = 2). From Furstenberg propositions 3.3 and 3.6, we know that, for
β-almost every b in B, we have a limit probability measure νb ∈ P(Td)
and a limit line Vb ⊂ Rd. The key step of the proof is



RANDOM WALKS 21

Key Step. For β-almost all b in B, the probability νb is Vb-invariant.

We mean “νb is invariant by translations x 7→ x+ v with v ∈ Vb”.

Proof of (Key Step =⇒ ν = νX). The stabilizer of νb in Td is a closed
subgroup. According to the Key Step, its connected component Sb is a
non-zero subtorus of Td, and one has Sb = b1(STb). Let F be the set of
non-zero subtori of Td. By construction, the image η of β by the map
b 7→ Sb is a µ-ergodic µ-stationary probability measure on the countable
set F . Hence by Lemma 3.2 the support of η is finite and Γ-invariant.
This contradicts the strong irreducibility of Γ unless Sb = Td. Hence
one has νb = νX . Since by Proposition 3.3, the probability ν is the
average of the νb, one gets ν = νX . �

In order to prove the Key Step, we need more notations. We choose
a vector

vb ∈ Vb , ‖vb‖ = 1 and set θ(b) = log ‖b0vTb‖.
Since Vb is a line, one has then

b0vTb = ±eθ(b)vb for β-almost all b ∈ B.
In order to lighten the notations, we assume that we can choose these
signs ± to be positive.

4.3.2. Non degeneracy of the νb. Before checking the Key Step, we need
to know

Lemma 4.5. For β-almost all b in B, for all x in Td, one has

νb(x+ Vb) = 0.

Proof. The main point is to prove that νb is atom-free. For that we
check a recurrence property for the action of µ on X ×X r ∆X where
∆X is the diagonal. This property is very similar to the recurrence
property for the action of µ on Td r {0} in Proposition 4.1. �

4.3.3. The fibered dynamical system. We introduce the following fi-
bered dynamical system (BX , βX , TX) which is well adapted to the
study of the random walk on X

BX = B ×X , βX =
∫
B
δb ⊗ νb dβ(b) , TX(b, x) = (Tb, b−1

1 x).

We note that the probability measure βX is TX-invariant. Inspired
by [12], we desintegrate the probability measure νb along the leaves
x+ Vb ⊂ Td using the parametrization of the leaves

R→ x+Vb ; t 7→ x+tvb.
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For βX-almost all (b, x) in B × X, the conditional measures along
these leaves give Radon measures σ(b, x) on R which are well-defined
modulo normalization. The Key Step can be restated as an invariance
by translation of these conditional measures. We denote by τt the
translation on R i.e. τt(s) = s+t.

Key Step bis For βX-almost every (b, x) in B ×X, and ε0 > 0, one
can find t ∈ (0, ε0) such that

(τt)∗σ(b, x) = σ(b, x).

Our aim now is to sketch the proof of the Key Step bis. By con-
struction the map σ satisfies the following two crucial properties that
we plan to use :

Fact 4.6. There exists a Borel set E ⊂ BX , βX(E) = 1 such that

((b, x) ∈ E , (b, x+ tvb) ∈ E)) =⇒ σ(b, x) = (τt)∗σ(b, x+ tvb).

Fact 4.7. For βX-almost every (b, x) in B ×X, one has

σ(b, x) = (eθ(b))∗σ(TX(b, x)).

Thanks to Fact 4.6 we have roughly to find many pairs of points
(b′, x′), (b′, x′+ tvb′) in E sitting on the same leaf and on which σ takes
the same value.

As a consequence of Fact 4.7, one also has, for n ≥ 1

σ(b, x) = (eθn(b))∗σ(T nX(b, x))(4.1)

where θn(b) is the Birkhoff sum

θn(b) := θ(b) + · · ·+ θ(T n−1b).

4.3.4. Piece of fibers. Another crucial point in our approach is the fact
that our fibered dynamical system is not invertible. In order to lighten
the notations, we assume that |A| = 2 . The fibers of T nX contain then
2n elements and are parametrized by

An −→ T−nX (T nX(b, x))

a 7→ hn,b,x(a) := (aT nb, a1 · · · anb−1
n · · · b−1

1 x)

where aT nb := (a1, . . . , an, bn+1, bn+2, . . .) ∈ B. According to Formula
(4.1), one will be able to control the function σ on the “piece of fibers”

An,b := {a ∈ An | |θn(aT nb)− θn(b)| < 1}.

Eventhough this piece of fiber is very small, one has
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Lemma 4.8. (Equidistribution of pieces of fibers) Let K ⊂ BX

be a Borel subset. Then for βX-almost all (b, x) ∈ BX , the limit

ψb,x = lim
n→∞

1

|An,b|
∑

a∈An,b
1K(hn,b,x(a))

exists and satisfies
∫
BX ψb,x dβ(b, x) = βX(K).

The proof of Lemma 4.8 relies on an interpretation of similar av-
erages as conditional expectations against an increasing sequence of
σ-subalgebras and on Doob martingale theorem.

Using Lusin theorem, for ε > 0 small, we find a compact subset
K ⊂ E with βX(Kc) < ε2 on which the functions θ, σ, and (b, x) 7→ Vb
are continuous. Lemma 4.8 tells us that a large proportion of points of
the pieces of fibers are sitting in K. Using Egoroff theorem, for ε > 0
small, we find a compact subset L ⊂ E with βX(Lc) < ε on which the
average in Lemma 4.8 is larger than 1−ε, uniformly for n ≥ n0.

4.3.5. Exponential drift. This argument is analogous to the polynomial
drift in Section 2.5, but we replace the orbit of the unipotent flow by
the pieces of fibers of T nX and we replace Birkhoff ergodic theorem by
Doob martingale theorem.

More precisely, by Lemma 4.5, for a set of full measure of points
(b, x) in L, one can find a sequence yp = x + vp ∈ X with (b, yp) ∈ L,
with vp ∈ V converging to 0, and vp 6∈ Vb. For all p, we can wait up to
some time n = np so that

θn(b)‖b−1
n · · · b−1

1 vp‖ ' ε0,

where ' stands for “equal up to a uniform multiplicative constant”.
We know that a proportion at least 1 − 2ε of the words a ∈ An,b
parametrize points of the two fibers which belong to K:

(b′, x′) = hn,b,x(a) ∈ K and (b′, y′) = hn,b,yp(a) ∈ K.
In order to lighten the notations, we have not explicitely writen all the
dependances in p. We can write

y′ = x′ + v′ with v′ = a1 · · · anb−1
n · · · b−1

1 vp

Using twice the law of the angles below, one can control the size of this
drift vector v′ by the product of two norms up to a fixed multiplicative
constant, i.e. one has

‖v′‖ ' ‖a1 · · · an‖ ‖b−1
n · · · b−1

1 vp‖
' eθn(aTnb) ‖b−1

n · · · b−1
1 vp‖

' eθn(b) ‖b−1
n · · · b−1

1 vp‖ ' ε0



24 YVES BENOIST AND JEAN-FRANÇOIS QUINT

Using similar computations one can also check that the direction of
v′ is very near Vb′ . Extracting, we can assume that θn(aT nb) − θn(b)
converges to θ0. Say θ0 = 0 to simplify notations. Passing to the limit
we get points

(b′∞, x
′
∞) ∈ K , (b′∞, x

′
∞ + v′∞) ∈ K with v′∞ = t∞vb′∞ , t∞ ' ε0.

and the equality

σ(b, x) = σ(b′∞, x
′
∞) = (τt∞)∗σ(b′∞, x

′
∞ + v′∞) = (τt∞)∗σ(b, x),

This concludes the Key Step bis.

4.3.6. Law of the angle. In general when g is a matrix and w a vector
one has

‖gw‖ ' ‖g‖ ‖w‖
except when w is near some “repulsing hyperplane” that we denote
by X<

g ∈ P(V ∗). A key fact used in the previous exponential drift
argument was a control of the norm of the drift vector ‖v′‖ for a large
proportion of the words a, up to a uniform multiplicative constant.
This control follows from the following asymptotic law which allows
us, for any vector w in V , to bound below, for a large proportion of
the words a, the angle between X<

a1···an
and w.

We denote by µ̌ ∈ P(G), the image of µ by g 7→ g−1 and by ν∗ the
unique µ̌-stationary probability measure on P(V ∗).

Lemma 4.9. (Law of the angles) For β-almost all b in B, for all
ϕ ∈ Cc(P(V ∗)) one has

lim
n→∞

1

|An,b|
∑

a∈An,b
ϕ(X<

a1···an
) =

∫
P(V ∗)

ϕ(y) dν∗(y).

We note that the space X = G/Λ does not occur in the statement
of the law of the angles.

If the left hand-side were an average over the whole fiber An, then
the rough meaning of this law would just be that ν∗ can be obtained by
the image of µ̌⊗N by Furstenberg coding map B → P(V ∗); b 7→ ξ∗(b).
But the left-hand side is an average over a piece An,b of the fiber An

whose relative size goes to 0.
The proof of the law of the angle requires then a precise understand-

ing of the Birkhoff sum θn(b). We need to know that they satisfy,
exactly like the random walk on R, the law of the iterated logarithm,
the large deviations principle, and the local limit theorem. Hence, the
pioneering papers of LePage [22] and Guivarc’h-Raugi [19] on random
products of matrices, see also [6], give us the main tools in order to
prove our law of the angles in [3].
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4.4. Random walk on the space of lattices. The proof of Theorem
1.1 that we have just described works also for Theorem 1.2. There is
almost nothing to change. We just have to replace the torus Td by the
space X := SL(d,R)/SL(d,Z) = G/Λ of unimodular lattices in Rd, and
the action of Γ on Rd by the adjoint action on the Lie algebra V := g
of G. In this section, we would just like to explain how to deal with
two new difficulties.

4.4.1. Empirical measures on the space of lattices. The first new diffi-
culty comes from the non-compactness of SL(d,R)/SL(d,Z). We have
to be sure that there is no escape of mass for the empirical measures
i.e. we have to answer to Question (1.3). To overcome this difficulty,
we check that ν∞(X) = 1, using a similar argument as in Proposition
4.1 with a proper function u : X → [0,∞). This proper function u is
exactly the one used by Eskin and Margulis in [14] in order to prove
recurrence properties for the random walk on X. For more general
spaces X = G/Λ in the next Chapter, we will have to use a proper
function u that we constructed in [5].

4.4.2. Reduction to the Key Step. We start with an atom-free µ-statio-
nary µ-ergodic probability measure ν on X = SL(d,R)/SL(d,Z), and
we want to prove that ν = νX .

One still has, for β-almost all b in B, limit probabilities νb ∈ P(X)
and limit lines Vb ⊂ g. These limit lines are generated by nilpotent
matrices vb. The Key Step is then exactly the same as in section 4.3.1.

Key Step. For β-almost all b in B, the probability νb is Vb-invariant.

We mean “νb is invariant by translations x 7→ exp(v)x with v ∈ Vb”.

The second new difficulty occurs when we want to prove the impli-
cation (Key Step =⇒ ν = νX) since there are now uncountably many
probability measures which are invariant and ergodic under a unipotent
one-parameter subgroup.

We explain how to overcome this difficulty when d = 2 i.e. for
X = SL(2,R)/SL(2,Z). According to the Key Step and to Theorem
2.2, there are two cases.

In the first case, the νb are G-invariant β-almost surely. Since by
Proposition 3.3, the probability ν is the average of the νb, one gets
ν = νX as we wanted.

In the second case, β-almost surely, the νb are averages of probability
measures νY for closed unipotent orbits Y ⊂ X. We want to show that
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this case does not occur. The group G = SL(2,R) acts on the set F of
closed unipotent orbits in X. In our example, this action is transitive,
hence one can write

F = G/U0 with U0 = {ut =
(

1 t
0 1

)
| t ∈ R}.

We write the decomposition of νb in Vb-ergodic components :

νb =
∫
F νY dηb(Y ),

where ηb ∈ P(F). Because of the equivariance property in Proposition
3.3, one has the equivariance property

ηb = (b1)∗ηTb for β-almost all b in B.

Hence the average

η :=
∫
B
ηb dβ(b)

is a µ-stationary probability measure on F ' R2 − {0}, contradicting
Corollary 3.7.

5. Finite volume homogeneous spaces

In this chapter, we describe with no proof a general situation in
which one can compute all the orbit closures, all the limits of empirical
measures, and all the stationary measures. The proofs are in [2], [3],
[4] and [5].

5.1. General Lie groups.

Theorem 5.1. (Orbit closures) Let G be a real Lie group, Λ be
a lattice in G, X = G/Λ and Γ be a compactly generated closed sub-
semigroup of G. We assume that the Zariski closure of the adjoint
semigroup Ad(Γ) ⊂ GL(g) is semisimple with no compact factor.

For every x in X, there exists a closed subgroup H of G with Γ ⊂ H
such that the orbit closure Y := Γx is a H-orbit Y = Hx and this orbit
carries a H-invariant probability measure.

We will denote by νY the H-invariant probability measure on the
orbit Y = Hx.

This result on orbit closures answers a question by Shah [32] and
Margulis [24]. In case AdΓ itself is a semisimple subgroup of GL(g)
with no compact factor, this result follows from Ratner’s Theorem.

Theorem 5.1 can be strengthen in the following equidistribution re-
sult.
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Theorem 5.2. (Equidistribution of trajectories) Let G, Λ and
Γ be as in Theorem 5.1. Let µ be a compactly supported Borel proba-
bility measure on Γ whose support is compact and spans a dense sub-
semigroup of Γ. Let g1, . . . , gn, . . . be a sequence of independent identi-
cally distributed random elements of Γ with law µ. Then, for every x
in X, almost surely,

1
n

∑n−1
k=0 δgk···g1x −−−→n→∞

νY with Y = Γx.

In Theorem 5.2, “almost surely” means for µ⊗N-almost every choice
of the sequence g1, . . . , gn, . . .

This result may be seen as a random analogue of the equidistribution
properties of unipotent flows on homogeneous spaces, due to Ratner
[30] and Dani-Margulis [11].

As a consequence, we get the following equidistribution in law which
suffices to prove Theorem 5.1.

Theorem 5.3. (Equidistribution in law) Let G, Λ, Γ and µ be as
in Theorem 5.2. Then, for every x in X, one has

1
n

∑n−1
k=0 µ

∗k ∗ δx −−−→
n→∞

νY with Y = Γx.

Intuitively µ∗k ∗ δx is the law at time k of a random walk starting
from x with independent jumps of law µ. The left-hand side is the
average of these laws before time n.

Theorem 5.4. (Stationary measures) Let G, Λ, Γ and µ be as in
Theorem 5.2. Every µ-ergodic µ-stationary probability measure ν on X
is Γ-invariant and is equal to one of those probability measures νY .

The Γ-invariance of the µ-stationary measure ν was conjectured by
Furstenberg who called this property “stiffness”. See [18].

Our methods also allow us to describe the topology on the set SX(Γ)
of those Γ-invariant and Γ-ergodic probability measures νY . As we
will see in Corollary 5.6, the following Theorem 5.5 is very efficient to
compute the limit of a sequence in SX(Γ).

In order to give a simpler statement we assume that Γ has discrete
centralizer.

Theorem 5.5. (Limit of stationary measures) Let G, Λ and Γ be
as in Theorem 5.1. Assume the centralizer L of Γ in G is discrete.
a) The set SX(Γ) is countable and is compact.
b) If (νYn) ⊂ SX(Γ) converges to νY∞ ∈ SX(Γ), then, for n large, one
has Yn ⊂ Y∞.
c) Every closed Γ-invariant subset of X is a finite union of orbit clo-
sures Yi = Γxi.
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In particular, if (Yn) is a sequence in SX(Γ) such that, for any Y ∈
SX(Γ) with Y 6= X, for all but finitely many n, one has Yn 6⊂ Y , then
νYn −−−→

n→∞
νX , that is the orbits Yn become equidistributed in X when

n is large.
Theorem 5.5 is an analogue of the main theorem of Mozes and Shah

in [26] (see also [15]) which asserts, in case G is a real Lie group, if E is
the space of finite volume homogeneous subsets of X which are invari-
ant and ergodic under some Ad-unipotent one-parameter subgroup of
G, then the set E ∪ {δ∞} is compact.

5.2. Semisimple Lie groups. Let us state a particular case of these
theorems such that the answer to our five questions can be stated
exactly in the same way as in Theorem 1.1.

Corollary 5.6. We assume that G is a connected semisimple real Lie
group with no compact factor, Λ is an irreducible lattice in G and Γ is
a Zariski dense subgroup of G. Let x0 be a point of X whose Γ-orbit is
infinite.
a) The Γ-orbit Γx0 is dense.
b) For µ⊗N-almost every sequence (g1, . . . , gn, . . .) in Γ, the trajectory
xn := gn · · · g1x0 equidistributes towards νX .
c) The sequence 1

n

∑n−1
k=0 µ

∗k ∗ δx0 converges to νX .
d) The only atom-free µ-stationary probability measure ν on X is νX .
e) Any sequence of distinct finite Γ-orbits equidistributes towards νX .

The assumption “Λ irreducible” means that the image of Λ in any
proper quotient G/G′ by a non-compact normal subgroup G′ is dense.

Corollary 5.6.e) extends previous results by Clozel, Oh and Ullmo in
[10] about equidistribution of Hecke orbits (see also [16]).

5.3. p-adic Lie groups. These results can also be extended to prod-
ucts of real and p-adic Lie groups, see [3] and [4]. In this section we
give a basic example in order to explain the significance of these p-adic
extensions.

Last Example: X is again the set of covolume one lattices ∆ in
Rd. Hence one has the identification

X = G/Λ = SL(d,R)/SL(d,Z).

We consider the following Markov chain. Let p ≥ 2 be an integer.
We start with any lattice x0 ∈ X. This lattice contains finitely many
lattices of index p. We choose uniformly at random one of them that
we renormalize by an homothety of ratio p−1/d in order to get a new
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lattice of covolume 1 called x1 ∈ X. We do it again with x1, get a
lattice x2, and again.

Proposition 5.7. For every x0 in X, almost every random trajectory,
x0, x1, x2, . . . in X equidistributes towards the Haar probability νX

Proof. Since this Markov chain commutes with G, it is enough to prove
this equidistribution for νX almost every x0 ∈ X. Since the probability
νX is P -invariant where P is the corresponding Markov operator. Our
statement follows from Birkhoff ergodic theorem applied in the space
of trajectories of this Markov chain.

We only have to check that νX is P -ergodic, i.e. the fact that

for any Borel subset Y ⊂ X invariant by passing to any
subgroup of index p, one has νX(Y ) = 0 or 1.

In order to lighten the notations we assume that p is prime. We intro-
duce the group Gp = SL(d,R)×SL(d,Qp) , its lattice Λp = SL(d,Z[1

p
])

and the quotient space

Xp := Gp/Λp = SL(d,R)× SL(d,Zp)/SL(d,Z).

One has a natural G-equivariant fibration with fiber SL(d,Zp)

πp : Xp → X.

By assumption, the set Yp := π−1
p (Y ) is invariant by translation by

the diagonal matrix g = diag(p, · · · , p, p1−d) ∈ SL(d,Qp). According
to Moore ergodic theorem, see [23] or [33], the Gp-invariant probability
measure νXp on Xp is g-ergodic, hence νXp(Yp) = 0 or 1. And one has
also νX(Y ) = 0 or 1. �

5.4. Conclusion. To conclude this survey we would like to point out
that improvements of the main results might be possible. Here are five
questions related to the five theorems of section 5.1.

Question 1 The first question deals with Theorem 5.1. Is the de-
scription of orbit closures in Theorem 5.1 still true when the Zariski
closure of Ad(Γ) is only supposed to be spanned by its one-parameter
Ad-unipotent subgroups?

Question 2 The second question deals with Theorem 5.2. Is the de-
scription of empirical measures in Theorem 5.2 still true when µ is not
supposed to have compact support?

Question 3 The third question deals with Theorem 5.3. Can the
Cesaro average been removed from the conclusion of Theorem 5.3, i.e.
does one also have lim

n→∞
µ∗n ∗ δx = νY ?
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Question 4 The fourth question deals with Theorem 5.4. Assume
X = Td and Γ ⊂ SL(d,Z). Is is true that all µ-stationary probability
measures ν on X are Γ-invariant, when the Zariski closure of Γ in
SL(d,R) is only supposed to be reductive?

Question 5 The fifth question deals with Theorem 5.5. Assume X =
G/Λ to be compact. Let k ≥ 1 large enough. For all ϕ ∈ Ck(X),
is there a speed, as in [13], in the convergence, lim

n→∞
νYn(ϕ) = νY (ϕ)

i.e. is there a bound for the error term of the form C ‖ϕ‖Ck V ol(Yn)−α

where C and α are positive constants and where the volume Vol(Yn) is
computed with respect to a fixed Riemannian metric on X?
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Y.Benoist et JF. Quint, Seminaire Bourbaki 1058 (2012), 1-17.
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