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Abstract

Recent work of the authors and their collaborators has uncovered
fundamental connections between the Dirichlet-to-Neumann map,
the spectral flow of a certain family of self-adjoint operators, and
the nodal deficiency of a Laplacian eigenfunction (or an analogous
deficiency associated to a non-bipartite equipartition). Using a
more refined construction of the Dirichlet-to-Neumann map, we
strengthen all of these results, in particular getting improved
bounds on the nodal deficiency of degenerate eigenfunctions. Our
framework is very general, allowing for non-bipartite partitions,
non-simple eigenvalues, and non-smooth nodal sets. Consequently,
our results can be used in the general study of spectral minimal
partitions, not just nodal partitions of generic Laplacian
eigenfunctions.



Main goals

We consider the Dirichlet Laplacian −∆Ω = −∆ in a bounded
domain Ω ⊂ R2, where ∂Ω is piecewise C 1.

Our goal is to analyze the relations between spectral properties of
this Laplacian and partitions D of Ω by k open sets {Di}ki=1,
which are spectral equipartitions in the sense that:
In each Di ’s the ground state energy λ1(Di ) of the Dirichlet
realization of the Laplacian in Di is the same;
In addition they satisfy a pair compatibility condition (PCC):
For any pair of neighbors Di ,Dj , there is a linear combination of
the ground states in Di and Dj which is an eigenfunction of the
Dirichlet problem in Int(Di ∪ Dj).



Nodal partitions and minimal partitions are typical examples of
these PCC-equipartitions.
A difficult question is to recognize which PCC-equipartitions are
minimal. This problem has been solved by
Helffer–Hoffmann-Ostenhof–Terracini in the bipartite case (which
corresponds to the Courant sharp situation) but the problem
remains open in the general case.

Our main goal is to extend the construction and analysis of the
spectral flow and Dirichlet-to-Neumann operators, which was done
for nodal partitions in Berkolaiko-Cox-Marzuola [BCM], to
spectral equipartitions that satisfy PCC.
In this talk, I refer mainly to two papers Helffer-(P)Sundqvist
(CPDE) and Berkolaiko-Cox-Helffer-(P)Sundqvist.



The construction of [BCM]

Let Ω ⊂ R2 and λ∗ be some eigenvalue of the Dirichlet Laplacian
−∆Ω, with corresponding eigenfunction φ∗.
We let

Γ = {x ∈ Ω : φ∗(x) = 0} ,

and
D = (D1, . . . ,Dν)

the components of Ω \ Γ, where ν = ν(φ∗) is the number of these
components. Finally let k∗ be the the minimal label of λ∗.



The Dirichlet-to-Neumann operator

Assume that E ⊂ R2 is a bounded domain with Lipschitz boundary
(nodal domains and later our more general partitions have this
property), and that λ is not in the spectrum of −∆E . Given g on
∂E , let u be the unique solution to{

−∆u = λu in E ,

u = g on ∂E .

Then the Dirichlet-to-Neumann operator DNE (λ) is defined as an
unbounded operator on L2(∂E )

DNE (λ)g :=
∂u

∂ν
,

where ν is a unit normal vector pointing out of E .



The theorem1 of Berkolaiko-Cox-Marzuola can be reformulated as
follows:

Theorem BCM

If ε > 0 is sufficiently small, then

k∗ − ν(φ∗) = 1− dim ker(−∆Ω − λ∗) + MorDN(Γ, λ∗ + ε) (1)

1This theorem was initially obtained with another proof based oon the
Maslov index by G. Cox, C. K. R. T. Jones, and J. L. Marzuola in [CJM2015].



Here

I Mor counts the number of negative eigenvalues of an operator
(the so-called Morse index of the operator),

I DN(Γ, λ) is for λ 6∈ σ(−∆Ω) defined by

DN(Γ, λ) =
k∑

i=1

RΓ,∂Di
DNDi

(λ)E∂Di ,Γ

I E∂Di ,Γ is the operator from L2(Γ) to L2(∂Di ) that first extends
by 0 on ∂Ω to get a function on Γ ∪ ∂Ω and then restricts to
∂Di

I RΓ,∂Di
the extension by 0 operator to ∂Ω∪ Γ composed by the

restriction operator from L2(Γ ∪ ∂Ω) to L2(Γ).



Spectral flow for a family with delta potentials on Γ

To characterize the negative eigenvalues of DN(Γ, λ∗ + ε) it is
fruitful to study the family of operators −∆Ω,σ, 0 ≤ σ < +∞,
induced by the bilinear form

Bσ(u, v) =

∫
Ω
∇u · ∇v dx + σ

∫
Γ
u v ds, u, v ∈ H1

0 (Ω).

Indeed, if we denote by {λk(σ)}+∞
k=1 the set of eigenvalues of

−∆Ω,σ, in increasing order, then [BCM] shows that if ε > 0 is
sufficiently small, then −σ is an eigenvalue of DN(Γ, λ∗ + ε) if,
and only if, λ∗ + ε = λk(σ) for some k ∈ N.

They also show that each analytic branch of the eigenvalues is
increasing with σ. Moreover, as σ → +∞, the eigenvalues λk(σ)
converges to the eigenvalues of −∆Ω,+∞ which is the Laplacian in
Ω with Dirichlet boundary conditions imposed on ∂Ω ∪ Γ.



Due to the construction, the eigenvalue λ∗ is in fact the lowest
eigenvalue of −∆Ω,+∞, with multiplicity ν(φ∗).

Thus,

lim
σ→+∞

λk(σ)

{
= λ∗, if 1 ≤ k ≤ ν(φ∗),

> λ∗, if k > ν(φ∗).

By the definition of k∗, the operator −∆Ω,0 = −∆Ω has exactly
≤ k∗ − 1 + dim ker(−∆Ω − λ∗) eigenvalues ≤ λ∗, and so exactly
k∗ − 1 + dim ker(−∆Ω − λ∗)− ν(φ∗) of them will pass λ∗ + ε, for
ε > 0 sufficiently small.



Equipartitions: Notation and definitions

We consider a bounded connected open set Ω in R2. A k-partition
of Ω is a family D = {Di}ki=1 of mutually disjoint, connected, open

sets in Ω such that Ω = ∪ki=1Di .

If D = {Di}ki=1 is a k-partition and the eigenvalues λ1(Di ) of the
Dirichlet Laplacian in Di are equal for 1 ≤ i ≤ k , we say that the
partition D is a spectral equipartition.



Nodal partitions

Since an eigenfunction uj , restricted to each nodal domain Di

satisfy the eigenvalue equation −∆uj = λjuj , with the Dirichlet
boundary condition on ∂Di , each nodal partition is indeed a
spectral equipartition.

By the Courant nodal theorem, µ(uj) ≤ j . We say that the pair
(λj , uj) is Courant sharp if µ(uj) = j , i.e. has nodal deficiency 0.



Minimal partitions (after [HHOT2009])

For any integer k ≥ 1, and for D in Ok(Ω), we introduce the
energy of the partition,

E(D) = max
i
λ1(Di ).

Then we define
Lk(Ω) = inf

D∈Ok

E(D) .

We call D ∈ Ok a minimal spectral k-partition if Lk(Ω) = E(D).

In general, every minimal spectral partition is an equipartition (see
Helffer-Hoffmann-Ostenhof-Terracini [HHOT2009]).

Nodal sets and minimal partitions are regular (Bers [Be1955],
H.-Hoffmann-Ostenhof-Terracini [HHOT2009]).



Odd and even points

To simplify we assume in this talk that Ω is simply connected.
Given a partition D = {Di} of Ω, we denote by X odd(D) the set of
odd critical points, i.e. points x` for which ν` is odd.

Figure: Example with one odd point and one even point



Nodal partitions have no odd points. Minimal partitions can have
odd points.

We say that Di and Dj are neighbors, which we write Di ∼ Dj , if
the set Dij := Int(Di ∪ Dj) \ ∂Ω is connected.

We say that D is admissible (or bipartite) if we can color the
partition with two colors with the property that two neighbors have
a different color.

Nodal partitions are always admissible, since the eigenfunction
changes sign when going from one nodal domain to a neighboring
nodal domain.



Weak Compatibility condition between neighbors

Let D = {Di}ki=1 be a regular equipartition of energy λ := E(D).

Definition of WPCC

A regular equipartition D = {Di}ki=1 satisfies the weak pair
compatibility condition, (for short WPCC), if, for any pair (i , j) s.t.
Di ∼ Dj , there is an eigenfunction uij 6≡ 0 of −∆Dij

s. t.

I −∆Dij
uij = λuij ,

I the nodal set of uij is given by ∂Di ∩ ∂Dj .



Strong Compatibility condition between neighbors

Definition of SPCC

A regular equipartition D = {Di}ki=1 satisfies the strong pair
compatibility condition, (for short SPCC), if there exist positive
ground states ui of −∆Di

s. t. for any pair (i , j) such that
Di ∼ Dj , uij = ui − uj is an eigenfunction of −∆Dij

.

Nodal partitions and spectral minimal partitions satisfy the SPCC.

When Ω is simply connected (WPCC) implies (SPCC). (see
[HHO2007]).

We also refer to Berkolaiko-Kuchment-Smilansky [BKS2012] for
conditions implying (SPCC).



Avoiding the ”ε”
The improved theorem obtained by
Berkolaiko-Cox-Helffer-Sunqvist reads

Theorem [BCHS] (nodal case)

The eigenfunction φ∗ has nodal deficiency

δ(φ∗) =MorDNnew (Γ, λ∗), (2)

and the corresponding eigenvalue λ∗ has multiplicity

dim ker(∆ + λ∗) = dim kerDNnew (Γ, λ∗) + 1. (3)

The version of the Dirichlet-to-Neumann map DNnew (Γ, λ∗)
appearing in the above theorem has some more involved form than
the one used in [BCM, CJM2015], but consequently gives us a
stronger result.



Construction of DNnew(Γ, λ∗)

We denote the nodal domains of φ∗ by D1, . . . ,Dk .
When defining the Dirichlet-to-Neumann map, one must take into
account that λ∗ is a Dirichlet eigenvalue on each Di . Introducing
the notation Γi = ∂Di ∩ Ω, we define the closed subspace

S =

{
g ∈ L2(Γ) :

∫
Γi

gi
∂φ∗,i
∂νi

= 0, i = 1, . . . , k

}
(4)

of L2(Γ), where gi denotes the restriction of g to Γi , φ∗,i is the
restriction of φ∗ to Di , and νi is the outward unit normal to Di .



For sufficiently smooth g ∈ S , each boundary value problem
−∆ui = λ∗ui in Di ,

ui = gi on ∂Di ∩ Ω,

ui = 0 on ∂Di ∩ ∂Ω,

(5)

has a solution ugi .



Defining a function γ
N
ug on Γ by

γ
N
ug
∣∣
Γi∩Γj

=
∂ugi
∂νi

+
∂ugj
∂νj

(6)

for all i 6= j , we let

DNnew (Γ, λ∗)g = ΠS

(
γ
N
ug
)
, (7)

where ΠS denotes the L2(Γ)-orthogonal projection onto S .



The solution to the problem (5) is non-unique, but the choice of
particular solution ugi is irrelevant for the definition on account of
the projection in (7).
We can use this freedom to give a more explicit definition of the
Dirichlet-to-Neumann map that does not involve ΠS .



Extension to equipartitions

The analysis of this case has been considered in two papers
Helffer-Sundqvist and Berkolaiko-Cox-Helffer-Sundqvist. More
recently other approachs have been explored by
Berkolaiko-Canzani-Cox-Marzuola in the paper : Stability of
spectral partitions and the Dirichlet-to-Neumann map (ArXiv July
2022).



Details if time permits

For a two-sided, weakly regular partition each Di is a Lipschitz
domain, so we can define trace operators and solve boundary value
problems in a standard way.
To extend the notion of a “nodal partition” to partitions that are
not necessarily bipartite, it is convenient to introduce signed weight
functions — which will also be used to define a generalized
two-sided Dirichlet-to-Neumann map on the partition boundary set.



Definition of valid weights

Given a two-sided, weakly regular partition D = {Di}, with

Γi := ∂Di ∩ Ω.

We call valid weight a family of functions χi defined on ∂Di which
can be obtained by the following construction:
Given an orientation of each ∂Di , and an orientation of each
smooth component of Γ, we define χi on each smooth component
of ∂Di to be +1 if the orientation of ∂Di agrees with the
orientation of the corresponding smooth component of Γ, and
equal to −1 otherwise.



One example



Note that χi is constant on each smooth segment of Γi .
There are two ways χi can change sign on Γi :

I it can change sign at a corner.

I it can take different signs on different connected components.

It is easily shown that a partition is bipartite if and only if the
weights χi ≡ 1 are valid and so non-constant weights are essential
for the study of non-bipartite partitions.
Valid weights have a natural geometric interpretation in terms of
the cutting construction in [HPS] where one removes a portion Γ∗

of the nodal set from the domain Ω in such a way that the
resulting partition of Ω \ Γ∗ is bipartite.



We now introduce a weighted version of the Laplacian, −∆χ,
corresponding to the bilinear form defined on the domain Dom(tχ)
consisting of u ∈ L2(Ω) such that

ui := u
∣∣
Di
∈ H1(Di ),

ui = 0 on ∂Di ∩ ∂Ω

χiui = χjuj on Γi ∩ Γj for all i , j = 1, . . . , k,

and given by

tχ(u, v) =
k∑

i=1

∫
Di

∇ui · ∇vi .



The Laplacians ∆χ for different valid weights can be shown to be
unitarily equivalent. Hence, if the partition is bipartite, ∆χ is
unitarily equivalent to the Dirichlet Laplacian on Ω.
Furthermore, the nodal sets of the eigenfunctions of ∆χ are
independent of χ, justifying the following definition.

Definition

A two-sided, weakly regular partition D is said to be χ-nodal if it is
the nodal partition for some eigenfunction of ∆χ. The defect of a
χ-nodal k-partition is defined to be

δ(D) = `(D)− k, (8)

where `(D) denotes the minimal label of λ∗ in the spectrum of
−∆χ.

We can show that a partition is χ-nodal if and only if it satisfies
the strong pair compatibility condition.



Finally, we will define a χ-weighted version of the two-sided
Dirichlet-to-Neumann map, denoted DN(Γ, λ∗, χ). The full
definition is rather delicate because λ∗ is a Dirichlet eigenvalue and
Γ has corners. We just mention here that (similarly to the
Laplacian ∆χ), the Dirichlet-to-Neumann maps defined with
different valid {χi} are in some sense unitarily equivalent.



The main result is the following.

Theorem

A two-sided, weakly regular partition D satisfies the SPCC if and
only if it is χ-nodal.
In this case it has defect

δ(D) = MorDN(Γ, λ∗, χ),

and the corresponding eigenvalue λ∗ of −∆χ has multiplicity

dim ker(∆χ + λ∗) = dim kerDN(Γ, λ∗, χ) + 1.



THANK YOU.
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spectrum and to the monotonicity formula.
Calc. Var. 22, 45–72 (2005).

G. Cox, C. K. R. T. Jones, and J. L. Marzuola.
A Morse index theorem for elliptic operators on bounded
domains.
Communications in Partial Differential Equations 40,
1467–1497 (2015).

B. Helffer, T. Hoffmann-Ostenhof.
Converse spectral problems for nodal domains.
Mosc. Math. J. 7(1), 67–84 (2007).



B. Helffer, T. Hoffmann-Ostenhof.
On a magnetic characterization of minimal spectral partitions.
J. Eur. Math. Soc. (JEMS), 1, 461–470 (2010).

B. Helffer, M. Hoffmann-Ostenhof, T. Hoffmann-Ostenhof,
M. P. Owen.
Nodal sets for ground states of Schrödinger operators with
zero magnetic field in non-simply connected domains.
Comm. Math. Phys. 202(3), 629–649 (1999).

B. Helffer, T. Hoffmann-Ostenhof, S. Terracini.
Nodal domains and spectral minimal partitions.
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