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Abstract

We study the 3D Neumann magnetic Laplacian in the presence of
a semi-classical parameter and a non-uniform magnetic field with
constant intensity. We determine a sharp two terms asymptotics
for the lowest eigenvalue, where the second term involves a
quantity related to the magnetic field and the geometry of the
domain. In the special case of the unit ball and a helical magnetic
field, the concentration takes place on two symmetric points of the
unit sphere. This is continuation of earlier work with (or by)

A. Morame and X. Pan.



The problem

Let Q C R? be an open and bounded set with a smooth boundary
0. Let us consider a smooth magnetic B :  — R3 such that

VYxeQ, |B(x)|=b

where b > 0 is a constant. W.l.o.g, we assume that b = 1. Let
A(x) be a magnetic field such that

curlA=B.

We are interested in the analysis of the first eigenvalue \;(A, h) of
the Neumann realization of

3
Pp = Dpa =Y (hDy + Aj(x))* .
j=1



We introduce the following assumptions.

Assumption [C1]

F:z{xé(‘)Q|B~N(x):0},
is a regular submanifold of 012.

» The "magnetic curvature” along [ satisfies
knB(x) = [dT(B-N)(x)| #0, VxeT .

Here d” is the differential defined on functions on 99 and
N(x) is the unit inward normal of €.



Assumption[C2]
The set of points where B is tangent to [ is finite.

These assumptions are rather generic and for instance satisfied for
ellipsoids, when B is constant. When |B| is constant, the above
assumptions hold for the sphere with a helical magnetic field.



Let us introduce the constant 7 g involving the “magnetic
curvature”,

Yo,8 := inf Yo0,8(x),
xel
where
~ —2/3~ ¢1/3 2/3 \1/3
To.8(x) = 272000 P kg ()3 (1~ (1 60) T(x)- B(x)) .

Here T(x) is the oriented, unit tangent vector to [ at x, dg €]0, 1|
and 7y > 0 are spectral quantities relative to the De Gennes and
Montgomery operators which will be introduced later.



The case B constant

When B is constant, the following two-term asymptotics of \1(B)
has been established by Helffer-Morame and Pan (2002-2004).

HMP Theorem (2004)

When B is constant and satisfies (C1)-(C2), there exists 77 > 0
such that \Y(A, h) satisfies as h — 0

(*) AV(A, h) = ©oh + Fogh + O(h3¥1).



Since the proof in 2003-2004 of the theorem, let us mention three
contributions:

» With variable B(x), various contributions by N. Raymond.

» Fournais-Persson Sundqvist gave a finer analysis in the case of
the sphere (2009).

» F. Hérau, N. Raymond (2022) gave the analysis of the gap
between the first and second eigenvalues.



(2D)-case. Old and new

We recall that the (2D)-case was solved earlier by Lu-Pan

(1999-2000), Helffer-Morame (2001) (after preliminary works by
Bernoff-Sternberg (1998)).

Since these works, many improvements have been obtained by

» Fournais-Helffer (2006) (complete expansion of the ground
state),

» Bonnaillie-Hérau-Raymond (2022) (analysis of the tunneling
in the case of a symmetric domain).



The aim of this new paper with A. Kachmar is to extend the proof
of the [HMP] Theorem under the weaker assumption that |B(x)| is
constant.

HKP Theorem

Under the assumptions (C1)-(C2), if |B| is constant, then the
asymptotics (*) holds for A\I'(A, h).

An upper bound was given by X. Pan in [Pan6] (2009).

An interesting example of a non-constant magnetic field but with a
constant intensity is the helical magnetic field occurring in the
theory of liquid crystals. Up to the action of an orthogonal matrix
(see Pan [Pan4]), it is given for some 7 > 0

1 1
B =curln; = —7mn;, n;(x,x,x3) = (7 cos(7x3), —sin(7x3), 0).
T T

We now recall the now standard properties of the two important
(1D)-models.



The de Gennes model

We refer to [DaHe, HelMo2] for the proof of these now standard
properties which are presented below. For £ € R, we consider the
harmonic oscillator on R :

H(&) == D7 + (t =€),

with Neumann boundary condition at 0. We denote by () its
first eigenvalue. & — (&) admits a unique and non degenerate
minimum at &y. This leads to introduce

©p = inf u(€) = (o), Jo = 4" (&), where & = /.

£eER

Moreover % < Bp<land0<dg<1. Oqis called the de Gennes

constant.



The Montgomery model

Here we refer to Helffer-Morame [HelMol] and Pan-Kwek
[PanKw]. In [HMP]-Theorem, the constant 7y > 0 is related to the
Montgomery model whose spectral analysis has a long story before
the problem in superconductivity and after.

For p € R, we introduce, in L?(IR), the operator

S(p) = D2 + (%~ p)?,

and denote its first eigenvalue by 1"°"(p). Then

Mon ( Ll\’Ion(

Vo= inf pu = ,
0= inf y p) =1 £0)

where pg € R is the unique minimum non degenerate of /M.



Model operator for non-uniform magnetic fields

Given real parameters 7, (,~ and ¢, we consider the operator

'D(/J’;;LHC := (hD, —sin0 t — cos 0 (ns + Cr)t)?
+(hDs+c059t—sin9(ns+gr)t+7r§2)2
+h2D?

on R? x RT (actually in a neighborhood of (0,0, 0)).
Roughly speaking

» r corresponds to a signed distance to
> s parametrizes I'.

» t corresponds to the distance to the boundary 012,



When 7 = ¢ = 0, we recover the model studied in [HelMo4].
Hence our aim is to compare this situation with that when

n = ¢ = 0. Our main result on this model (see below), is an
important new step in our derivation of the lower bound matching
with the asymptotics (*).

We start like in the case n = ( = 0 and consider the following
scaling

1 1.
F,s=h3s, t=h2t.

W=

r=nh



After division by h, this leads to (forgetting the hats)

hyn,C 1 . 1 2
P = (h6 D, —sin@t — h3 cos @ t(ns + Cr))
2
+ (h%Ds +cosft+ h%'yé — h3 sin @ t(ns + Cr)) + D?

on R x R x RT.
Hence we have

h.n, h,n,
o(PO;’Qg ) = ho(Pp” qg ).

Unlike the case where 7 = ( = 0, we can no more perform a partial
Fourier transform in the s-variable.



But we can rewrite this operator as in the following form
semi-abstract form.

New form

h 1 1. hy
2 _’”’C = th + (t — hs LL%Q)Z + h3 (L27’;:g)2 ,
where

Li.yo =sinD, —cosb (3r*+ Ds) ,

ngg :=cos D, +sind (3r* + Ds) — he(Cr+ns)t.

Note that to compare with the case considered 7 = ( = 0 we have

h,n, 1
L2;’7’,;g = Loy 9 — hs(Cr+ns)t,
where L., g := Lg;’g’g.

When 1 = ¢ = 0, this is the operator studied in [HelMo4] modulo
a Fourier transformation with respect to the s variable.



Proposition by Helffer-Morame [HelMo4]

For any ¢ €]0, %[ and M > 0, there exist positive constants C and
ho such that, for all § € R, |y| < M, and h €]0, ho], any u with
suitable support!, we have,

(PR20u, u) > (€ + h3 ™ (v,0) — C(hs + ht 1)) |lul?,
where

1 2
c(v,0) -:( )353|W| (3o sin2 0 + cos? 0)3 B

Lue C§°(] — Goh®, Goh’[xR x Ry), where Gy > 0 is given.



We can not directly compare Ph’""C and Ph’o’0 but this can be
y ~,0

7

done by introducing a small perturbatlon of P ’9 whose spectrum
is just lifted. To achieve this goal we mtroduce for T>0

1
Pl gr = D2+ (t — hoLig)> + (1 — h")h3(Lose)?,

where we have modified the coefficient of (Ls . ¢)? by h'/3+7.
Heuristically this leads to a maximal shift of the bottom of the
spectrum by O(h'/3+7).

In particular we show

(PrGu, u) > (Pl o u,u) — C(n? + ¢2)h* 7 |tu]|? |

What remains to prove is too technical to be exposed here.



Upper bounds

Fortunately, the same quasi-mode constructed in [HelMo4] (see
also Pan for a different formulation) yields an upper bound of the
first eigenvalue A1 (A, h) matching with the asymptotics (*).
More precisely, under Assumptions (C1)-(C2), we can prove that:

M(A,h) < ©oh +Foghs + O(h3*),

for some constant n* > 0.

However, while computing the energy of the quasi-mode, we
observe additional terms (not present in [HelMo4]) due to the
non-homogeneity of the magnetic field which should be treated
carefully.



Many THANKS for your attention.
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