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‘Théorie spectrale et analyse non-linéaire’
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1 Abstract of the course

1.1 Introduction

Our aim is to describe in these notes how the techniques of the well-developed
semi-classical theory can be applied to provide a precise solution to some
problems in the theory of superconductivity. From a spectral point of view
the problem is that of the bottom of the spectrum of the Schrödinger operator
with magnetic fields.

The reader is supposed to have a good knowledge of elementary spectral
analysis, of Hilbertian analysis and of the theory of distributions (Sobolev
spaces). For the spectral theory, the books by Reed and Simon [ReSi] is more
than enough and the reader can also look at [LB] (in french) or to the notes
of an unpublished course [Hel7].

When Schrödinger operators with magnetic fields are concerned, one
should also mention the surveys by [Hel3, Hel4], Mohamed-Raikov [MoRa],
[Hel5] for the relations with superconductivity and the book by B. Thaller
[Tha]. Other aspects in semi-classical analysis are presented in the books by
D. Robert [Ro2], Kolokoltsov [Ko] (in connection with results of the Maslov’s
school) and A. Martinez (in the spirit of microlocal analysis) [Ma] .
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2 On the Schrödinger operators with mag-

netic fields

2.1 Preliminaries

Let Ω be an open set in Rn, ~A = (A1, A2, . . . , An) a C∞ vector field on Ω,
corresponding to the so called magnetic potential, and V (which may depend1

on h) a C∞(Ω) real valued function, corresponding to the so called electric
potential, and let h > 0 is a small parameter (playing the role of the Planck
constant, or in other contexts of the inverse of the intensity of the magnetic
field). The vector ~A corresponds more intrinsically to a 1-form

ωA =
∑

j

Ajdxj . (2.1)

One can then associate to ωA a 2-form called the magnetic field σB :

σB := dωA =
∑

j<k

Bjkdxj ∧ dxk . (2.2)

When n = 2, the unique B12 defines a function, more simply denoted by
x 7→ B(x), also called the magnetic field.

When n = 3, the magnetic field is identified with a magnetic vector ~B, by
the Hodge map :

~B = (B1, B2, B3) = (B23,−B13, B12) . (2.3)

All these objects can be defined more generally on a Riemannian manifold
(with notions like connections, curvature, ....) but it is outside the aim of
this short course.

We would like to discuss the spectrum of selfadjoint realizations of the
Schrödinger operator in an open set Ω in R

n :

Ph,A,V,Ω =

n∑

j=1

(hDxj
− Aj)

2 + V (x) .

1Typically, one can meet V (x;h) = V0(x) + hV1(x).
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2.2 Selfadjointness

Our main interest is the analysis of the bottom of the spectrum of Ph,A,V,Ω.
The open set Ω can be bounded or the whole space Rn. Many physically
interesting situations correspond to n = 2, 3. In the case of a bounded open
set Ω, we can consider the Dirichlet realization or the Neumann condition
(other conditions appear also in the applications).

The Dirichlet realization

The Dirichlet realization corresponds to taking the so-called Friedrichs ex-
tension associated with the quadratic form :

C∞
0 (Ω; C) ∋ u
7→ QD

h,A,V,Ω(u) :=
∫
Ω

(|∇h,Au|2 + V (x)|u(x)|2) dx , (2.4)

whose existence follows immediately from the proof of the existence of a
constant C such that :

∫

Ω

(
|∇h,Au|2 + V (x)|u(x)|2

)
dx ≥ −C‖u‖2 , ∀u ∈ C∞

0 (Ω) , (2.5)

with
∇h,A = h∇− i ~A .

In this case, we say that the quadratic form is semibounded (from below).
When Ω is regular and bounded, the form domain of the operator is

VD(Ω) = H1
0 (Ω) ,

and the domain of the operator, which is denoted by PD
h,A,V , is

D(PD
h,A,V ) = H1

0 (Ω) ∩H2(Ω) .

The Neumann realization

The Neumann realization corresponds to taking the Friedrichs extension of
the quadratic form :

C∞(Ω; C) ∋ u 7→ QN
h,A,V,Ω(u) :=

∫

Ω

(
|∇h,Au|2 + V (x)|u(x)|2

)
dx , (2.6)
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whose existence follows immediately from the proof of the existence of a
constant C such that :

∫

Ω

(
|∇h,Au|2 + V (x)|u(x)|2

)
dx ≥ −C‖u‖2 , ∀u ∈ C∞(Ω) . (2.7)

When Ω is regular (bounded), the form domain of the operator is

VN (Ω) = H1(Ω) , (2.8)

and the domain of the operator, which is denoted by PN
h,A,V , is

D(PN
h,A,V ) = {u ∈ H2(Ω) | ~n · (h∇− iA)u = 0 on ∂Ω }. (2.9)

Here ~n is the normal derivative to ∂Ω, this condition :

~n · (h∇− iA)u = 0 on ∂Ω , (2.10)

is called the magnetic-Neumann boundary condition.

The case of R
n

In the case of Rn, it is more difficult to characterize the domain of the operator
in general. When V ≥ −C, it is easy to characterize the form domain which
is

V(Rn) = {u ∈ L2(Rn) | ∇h,Au ∈ L2(Rn) , (V + C)
1

2u ∈ L2(Rn) } . (2.11)

In the general case, if the operator is semi-bounded on C∞
0 (Rn) in the sense

of (2.5), it has been proved by Simader [Sima] (see also [Hel7]) that the
operator is essentially selfadjoint. The original proof is for the case without
magnetic field, but we prove below that one can modify it to accomodate the
magnetic case also. The essential self-adjointness means that the Friedrichs
extension is the unique selfadjoint extension in L2(Rn) starting from C∞

0 (Rn)
and the domain D(Ph,A,V ) satisfies in this case :

D(Ph,A,V ) = {u ∈ L2(Rn) , Ph,A,V u ∈ L2(Rn)} . (2.12)

We include here the proof of essential self-adjointness.

Theorem 2.1. Suppose that P = −(∇−iA)2+V is semibounded on C∞
0 (Rn)

and that V ∈ C0(Rn), A ∈ C1(Rn). Then P is essentially self-adjoint.
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Proof.
We may assume, since P is semibounded, that

〈u | Pu〉 ≥ ‖u‖2, ∀u ∈ C∞
0 (Rn). (2.13)

This inequality extends by density to functions u ∈ H1
comp(R

n) (the H1 func-
tions of compact support)

‖∇Au‖2 +

∫

Rn

V (x)|u(x)|2 dx ≥ ‖u‖2, ∀u ∈ H1
comp(R

n). (2.14)

According to the general criterion of essential selfadjointness it suffices to
verify that the range R(P ) is dense. Suppose that f ∈ L2(Rn) is such that

〈f | Pu〉 = 0, ∀u ∈ C∞
0 (Rn). (2.15)

We have to show that f = 0.
We first observe that (2.15) implies that (−(∇− iA)2 + V )f = 0 in the

sense of distributions. Standard elliptic regularity theory for the laplacian
implies that f ∈ H2

loc(R
n).

We now introduce a family of cut-off functions, ζk, by

ζk(x) := ζ(x/k), ∀k ∈ N, (2.16)

where ζ ∈ C∞
0 (Rn) satisfies 0 ≤ ζ ≤ 1, ζ = 1 on B(0, 1) and supp ζ ⊂ B(0, 2).

For any u ∈ C∞
0 (Rn) we have the identity

∫
∇A(ζkf) · ∇A(ζku) dx+

∫
ζ2
kV (x)f(x)u(x) dx

= 〈f | P (ζ2
ku)〉 +

∫
|∇ζk(x)|2f(x)u(x) dx

+

∫
ζk(x)∇ζk(x) ·

[
f(x)∇Au(x) − u(x)∇Af(x)

]
dx (2.17)

When f satisfies (2.15) we get
∫

∇A(ζkf) · ∇A(ζku) dx+

∫
ζ2
kV (x)f(x)u(x) dx

=

∫
|∇ζk(x)|2f(x)u(x) dx

+

∫
ζk(x)∇ζk(x) ·

[
f(x)∇Au(x) − u(x)∇Af(x)

]
dx. (2.18)
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This formula can be extended to functions u ∈ H1
loc, in particular, we can

take u = f and obtain

‖∇A(ζkf)‖2 +

∫
ζ2
kV (x)|f(x)|2 dx

= Re
{
‖∇A(ζkf)‖2 +

∫
ζ2
kV (x)|f(x)|2 dx

}

=

∫
|∇ζk(x)|2 |f(x)|2 dx . (2.19)

Using (2.14), (2.19) and taking the limit k → ∞, we get

‖f‖2 = lim
k→∞

‖ζkf‖2

≤ lim sup
k→∞

(
‖∇A(ζkf)‖2 +

∫

Rn

V (x)|ζk(x)f(x)|2 dx
)

= lim sup
k→∞

∫
|∇ζk(x)|2 |f(x)|2 dx = 0. (2.20)

This finishes the proof of the theorem.

2.3 Spectral theory

All the operators introduced above are selfadjoint. If one denotes by P one
of these operators, one can analyze its spectrum, defined as the complement
in C of the resolvent set ρ(P ) corresponding to the points z ∈ C such that
(P − z)−1 exists. The spectrum σ(P ) is a closed set contained in R. The
spectrum contains in particular the set of the eigenvalues of P . We recall
that λ is an eigenvalue, if there exists a non-zero vector u ∈ D(P ) such
that Pu = λu. The multiplicity of λ is the dimension of Ker (P − λ).
We call discrete spectrum σd(P ) the subset of the λ ∈ σ(P ) such that λ is
an eigenvalue of finite multiplicity. Finally we call essential spectrum of P
(which is denoted by σess(P )) the closed set :

σess(P ) = σ(P ) \ σd(P ) . (2.21)

In this course, we will be mainly interested in the analysis of the bottom of
the spectrum of P as a function of the various parameters (mainly h). De-
pending on the assumptions, this bottom could correspond to an eigenvalue
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or to the bottom of the essential spectrum.
Using the MiniMax characterization (see appendix C), this bottom is deter-
mined by

inf(σ(Ph,A,V )) = inf
u∈V\{0}

Qh,A,V (u)/‖u‖2 , (2.22)

where V denotes the form domain of the quadratic form Qh,A,V .
It is consequently enough, in order to determine if the bottom corresponds
to an eigenvalue, to find a non-trivial u in the form domain V, such that

Qh,A,V (u) < inf(σess(Ph,A,V )))‖u‖2 . (2.23)

An easy case when (2.23) is satisfied is when σess(Ph,A,V )) = ∅, corresponding
to the case when P has compact resolvent. For verifying this last property, it
is enough to show that the injection of V in L2 is compact. This is in partic-
ular the case (for Dirichlet and Neumann) when Ω is regular and bounded.
In the case, when Ω is unbounded, it is possible to determine the bottom of
the essential spectrum using Persson’s Lemma (see Appendix D).

Example 2.2. .
Let us consider Ph,V := −h2∆+V on Rm, where V is a C∞ potential tending
to 0 at ∞ and such that infx∈Rm V (x) < 0.
Then if h > 0 is small enough, there exists at least one eigenvalue for Ph. We
note that the essential spectrum is [0,+∞[. The proof of the existence of this
eigenvalue is elementary. If xmin is one point such that V (xmin) = infx V (x),
it is enough to show that, with φh(x) = exp(−λ

h
|x − xmin|2) and λ > 0, the

quotient 〈Phφh | φh〉
‖φh‖2 tends as h→ 0 to V (xmin) < 0.

Actually, we can produce an arbitrary number N of eigenvalues below the
essential spectrum, under the condition that 0 < h ≤ hN .

2.4 Lieb-Thirring inequalities

In order to complete the picture, let us mention (confer [ReSi], p. 101) the
following theorem due to Cwickel-Lieb-Rozenbljum :

Theorem 2.3. .
There exists a constant Lm, such that, for any V such that V− ∈ L

m
2 (Rm),

(and such that −∆ + V has a self-adjoint realization) and if m ≥ 3, the
number N− of strictly negative eigenvalues of PV = −∆ + V is finite and
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bounded by

N− ≤ Lm

∫

{x |V (x)<0}
(−V (x))

m
2 dx . (2.24)

This shows that we could have, when m ≥ 3, examples of negative po-
tentials V (which are not identically zero) and such that the corresponding
Schrödinger operator PV has no eigenvalues. A sufficient condition is indeed

Lm

∫

{V <0}
(−V (x))

m
2 dx < 1 .

If λ ≤ inf σess(P ), it is natural to count the number of eigenvalues strictly
below λ :

N(λ) = #{λj < λ | λj ∈ σ(P )} , (2.25)

each eigenvalue being counted with multiplicity.
In this situation, it is useful to have either universal estimates (Cwickel-Lieb-
Rozenbljum) or semiclassical asymptotics (see Robert [Ro2] or Ivrii [Iv]).

More generally, we are interested in controlling the more general moments
(also called Riesz means) defined for s ≥ 0 by

N s(λ) =
∑

j:λj<λ

(λ− λj)
s . (2.26)

Theorem 2.4. (see [LieTh])
For all n, s with n

2
+ s > 1, there exists a constant C, such that, if V satisfies

V− ∈ L
n
2
+s(Rn), then the eigenvalues of P = −∆ + V satisfy

∑

j:λj<0

(−λj)s ≤ C

∫

{V <0}
(−V )

n
2
+sdx . (2.27)

The same is true with magnetic field.

This inequality (for s = 1) has played an important role in the analysis
of the stability of the matter in physics.

Remark 2.5.

Note that these estimates are also true, with the same constants, with −∆
replaced by −∆A =

∑n
j=1(Dxj

− Aj)
2. But this is not a consequence of the

direct comparison of −∆ + V and −∆A + V , but it comes simply from the
fact that the proof for the case without magnetic field can be extended with
the same constants.
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Remark 2.6.

If we reinsert the semi-classical parameter by looking at Ph,V = −h2∆ + V
one can establish (Helffer-Robert [HeRo2]) under suitable assumptions on V
the asymptotic estimate

∑

j:λj<0

(−λj)s ∼ Cs,nh
−n
∫

{V <0}
(−V )

n
2
+sdx . (2.28)

The effect of a magnetic field is also discussed in this paper and in [LaWe].
Note that in this case the semi-classical Laplacian −h2∆ is replaced by

−∆h,A = −(h∇− iA)2 , (2.29)

and that the main term is independent of the magnetic potential.

2.5 Diamagnetism

Everything being universal in this discussion, we take h = 1. For Schrödinger
operators, the inclusion of a magnetic field raises the energy. That is the
consequence of the following basic inequality.

Theorem 2.7 (Diamagnetic inequality).
Let A : Rn → Rn be in L2

loc(R
n) and suppose that f ∈ L2(Rn), is such that

(∇ + iA)f ∈ L2(Rn). Then |f | ∈ H1(Rn) and
∣∣∇|f |

∣∣ ≤
∣∣(∇ + iA)f

∣∣ (2.30)

in the sense of distributions.

In the proof we will clearly need to differentiate the absolute value. We
state this result as a proposition.

Proposition 2.8.

Suppose that f ∈ L1
loc(R

n) with ∇f ∈ L1
loc(R

n). Then also ∇|f | ∈ L1
loc(R

n)
and with the notation

sign z =

{
z
|z| , z 6= 0

0, z = 0,
(2.31)

we have

∇|f |(x) = Re {sign (f(x))∇f(x)}. (2.32)

In particular, ∣∣∇|f |
∣∣ ≤ |∇f |.
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Proof of Proposition 2.8.
Suppose first that u ∈ C∞(Rn) and define |z|ǫ =

√
|z|2 + ǫ2 − ǫ, for z ∈ C

and ǫ > 0. Then |u|ǫ ∈ C∞(Rn) and

∇|u|ǫ =
Re (u∇u)√
|u|2 + ǫ2

. (2.33)

Let now f be as in the proposition and define fδ as the convolution fδ =
f ∗ ρδ with ρδ being a standard approximation of the unity for convolution.
Explicitly, we take a ρ ∈ C∞

0 (Rn) with

ρ ≥ 0,

∫

Rn

ρ(x) dx = 1,

and define ρδ(x) := δ−nρ(x/δ), for x ∈ Rn and δ > 0. Then fδ → f ,
|fδ| → |f | and ∇fδ → ∇f in L1

loc(R
n) as δ → 0.

Take a test function φ ∈ C∞
0 (Rn). We may extract a subsequence {δk}k∈N

(with δk → 0 for k → ∞) such that fδk(x) → f(x) for almost every x ∈
suppφ. We restrict our attention to this subsequence. For simplicity of
notation we omit the k from the notation and write limδ→0 instead of limk→∞.

We now calculate, using dominated convergence and (2.33)

∫
(∇φ)|f | dx = lim

ǫ→0

∫
(∇φ)|f |ǫ dx

= lim
ǫ→0

lim
δ→0

∫
(∇φ)|fδ|ǫ dx

= − lim
ǫ→0

lim
δ→0

∫
φ

Re (fδ∇fδ)√
|fδ|2 + ǫ2

dx

Using the pointwise convergence of fδ(x) and ‖∇fδ −∇f‖L1(supp φ) → 0, we
can take the limit δ → 0 and get

∫
(∇φ)|f | dx = − lim

ǫ→0

∫
φ

Re (f∇f)√
|f |2 + ǫ2

dx. (2.34)

Now, φ∇f ∈ L1(Rn) and f(x)√
|f |2+ǫ2

→ sign f(x) as ǫ → 0, so we get (2.32)

from (2.34) by dominated convergence.
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Proof of Theorem 2.7.
Since A ∈ L2

loc(R
n) and f ∈ L2(Rn), the assumption (∇+ iA)f ∈ L2(Rn) im-

plies that ∇f ∈ L1
loc(R

n). Therefore, we can use Proposition 2.8 to conclude
that (2.32) holds for f . Since Re {sign (f)iAf} = 0, we can rewrite (2.32)
as

∇|f | = Re {sign (f)(∇ + iA)f} , (2.35)

and therefore, since |z| ≥ |Re (z)| for all z ∈ C, we get (2.30).

Using Theorem 2.7 we now get, by the variational characterization of the
ground state energy, the comparison for Dirichlet eigenvalues,

inf σ
(
PD
A,Ω + V

)
≥ inf σ

(
−∆D

Ω + V
)
. (2.36)

Also a similar result is true in the case of Neumann boundary conditions :

inf σ
(
PN
A,Ω + V

)
≥ inf σ

(
−∆N

Ω + V
)
, (2.37)

This inequality admits a kind of converse, showing its optimality (Lavine-
O’Caroll-Helffer) (see [Hel1])

Proposition 2.9.

Suppose that Ω ⊂ R2 is simply connected. Let λA be the ground state of PA,
then λA = λA=0 if and only if B = 0 (when Ω is simply connected).

When Ω is not simply connected, the condition B = 0 is NOT sufficient
and one should add a quantization condition on the circulation of ~A along
any closed path.
Let us just present an heuristic proof (see for example [Hel2] for a rigorous
proof or [Hel1] in connection with the Aharonov-Bohm effect) which permits
to understand this last point. For u ∈ H1, one can write u = ρ exp iφ. One
has :

|(∇− iA)u|2 = |∇ρ|2 + ρ2|∇φ− A|2 .
If we apply this identity to u = uA where uA is a normalized ground state,
we obtain :

λA =

∫

Ω

(
|(∇− iA)uA|2 + V |uA|2

)
dx

=

∫

Ω

(
|∇ρA|2 + V |ρA|2

)
dx+

∫

Ω

(
ρ2
A|∇φ− A|2

)
dx

≥ λ0 +

∫

Ω

ρ2
A|∇φ− A|2 dx .
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When λA = λ0, we get ∇φ = A, which implies the various statements. One
can indeed deduce from the last property that ωA is closed and due to the
fact that φ is defined modulo 2π, we get

1

2π

∫

γ

ωA ∈ Z (2.38)

on any closed path γ.
Conversely, if this condition is satisfied, the multivalued function φ defined
by :

φ(x) =

∫

γ(x0,x)

ωA ,

where γ(x0, x) is a path in Ω joining x0 and x, permits to define the C∞

function on Ω
Ω ∋ x 7→ U(x) = exp(−iφ(x)) . (2.39)

The associated multiplication operator U gives a the unitary equivalence with
the problem with A = 0.

Remark 2.10.

It is instructive to look at the model of the circle and at the magnetic Lapla-
cian −( d

dθ
− ia)2, where a is a real constant corresponding to the magnetic

potential. So the magnetic field is zero and the spectrum can be easily found
to be described by the sequence (n−a)2 (n ∈ Z) with corresponding eigenvec-
tors θ 7→ exp(inθ).
We immediately see that, confirming the general statement, the ground state
energy, which is equal to dist (a,Z)2, increases when a magnetic potential
is introduced. We also observe that the multiplicity of the groundstate is 1
except when d(a,Z) = 1

2
. We note finally that if we take λ = 1, the number

of eigenvalues which is strictly less than 1, is 1 for a = 0, and 2 for a ∈]0, 1[.
This illustrates our previous comment on the Cwickel-Lieb-Rozenblium in-
equality in Remark 2.5.

As discussed above, the diamagnetic inequality (2.30) implies that ground
state energies go up when a magnetic field is applied. Consider a fixed A
and the ground state energy e1(B) of the operator (∇− iBA)2 + V (either
in a domain and with boundary conditions, or on Rn). One can now ask the
more general question of whether the function B 7→ e1(B) is monotone non-
decreasing. This is generally not true, see Erdös [Er2] for a counterexample.
However, for large B positive results can be obtained.
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We consider the Neumann operator PN
1,BA,V in a domain Ω and assume

that Ω, V are such that PN
1,BA,V has compact resolvent for all (sufficiently

large) B > 0. So the spectrum of PN
1,BA,V consists of a sequence of eigenvalues

(of finite multiplicity) tending to infinity, in particular, the degeneracy of the
ground state is finite. Let B ∈ R and let n be the degeneracy of the ground
state µ1(B). By analytic perturbation theory (see for instance [Ka] or [ReSi,
Chapter XII]), there exists ǫ > 0, n analytic functions

(B − ǫ, B + ǫ) ∋ β 7→ φj(β) ∈ H2(Ω) \ {0} ,

for j = 1, · · · , n, and n analytic functions

(B − ǫ, B + ǫ) ∋ β 7→ Ej(β) ∈ R ,

such that
PN

1,βA,V φj(β) = Ej(β)φj(β) ,
Ej(B) = µ1(B) .

We may choose ǫ sufficiently small in order to have the existence (but not
necessarily the uniqueness) of j+, j− ∈ {1, . . . , n} such that

For β > B: Ej+(β) = min
j∈{1,...,n}

Ej(β)

For β < B: Ej−(β) = min
j∈{1,...,n}

Ej(β) . (2.40)

Define the left and right derivatives of µ1(B):

µ′
1,±(B) := lim

ǫ→0±

µ1(B + ǫ) − µ1(B)

ǫ
. (2.41)

Proposition 2.11.

For all B ∈ R, the one-sided derivatives µ′
1,±(B) exist and satisfy

µ′
1,±(B) = −2 Re 〈φj± |A · (−i∇−BA)φj±〉 .

Proof.
Clearly, µ′

1,±(B) = E ′
j±(B). We will prove that

E ′
j±(B) = −2 Re 〈φj± |A · (−i∇−BA)φj±〉 .

But this result is just first order perturbation theory (Feynman-Hellman).
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Theorem 2.12.

Suppose that Ω is bounded with smooth boundary. Let g be a function such
that for all ǫ ∈ (−1, 1) we have

|g(β + ǫ) − g(β)| → 0 (2.42)

as β → ∞.
Suppose that A, V are smooth functions and that Ω, A, V are such that

there exists α ∈ R such that µ1(B) = αB + g(B) + o(1), as B → +∞. Then
the limits limB→∞ µ′

1,+(B) and limB→∞ µ′
1,−(B) exist and

lim
B→∞

µ′
1,+(B) = lim

B→∞
µ′

1,−(B) = α . (2.43)

Remark 2.13.

Let γ ∈ [0, 1), then g(β) = βγ satisfies (2.42). Thus, if there exist powers
γ1, . . . , γm ∈ [0, 1) and α, α1, . . . , αm ∈ R, such that (as B → ∞),

µ1(B) = αB +
m∑

j=1

αjB
γj + o(1),

then Proposition 2.12 implies that

lim
B→∞

µ′
1,±(B) = α .

Proof of Theorem 2.12.
Clearly2, for all B, we have µ′

1,+(B) ≤ µ′
1,−(B). So it suffices to prove that

α ≤ lim inf
B→∞

µ′
1,+(B) , (2.44)

lim sup
B→∞

µ′
1,−(B) ≤ α . (2.45)

Let ǫ > 0. Then

µ′
1,+(B) = −2 Re 〈φj+(B) |A · (−i∇−BA)φj+(B)〉

=
1

ǫ
〈φj+(B) |

(
PN

1,(B+ǫ)A,V − PN
1,BA,V − ǫ2A2

)
φj+(B)〉 .

2Using the fact that µj± is an analytic choice of the eigenvalues in a neighborhood of
B,

17



Therefore, the variational principle implies

µ′
1,+(B) ≥ µ1(B + ǫ) − µ1(B)

ǫ
− ǫ‖A‖2

L∞(Ω) .

By assumption there exists a function f : R+ → R+, with limβ→∞ f(β) = 0,
and such that

|µ1(β) − (αβ + g(β))| ≤ f(β) .

Thus,

µ′
1,+(B) ≥ α +

g(B + ǫ) − g(B)

ǫ
− f(B) + f(B + ǫ)

ǫ
− ǫ‖A‖2

L∞(Ω) . (2.46)

Therefore, (using (2.42))

lim inf
B→∞

µ′
1,+(B) ≥ α− ǫ‖A‖2

L∞(Ω) .

Since ǫ > 0 was arbitrary, this finishes the proof of (2.44).
The proof of (2.45) is similar (taking ǫ < 0 reverses the inequalities) and

is omitted.

2.6 Kato’s inequality and consequences

In order to obtain stronger results on essential self-adjointness than Theo-
rem 2.1 a useful tool is the so-called Kato inequality. We present it in the
magnetic version. For the applications to self-adjointness questions we refer
to [ReSi, Vol.2, Section X.4].

Theorem 2.14 (Kato’s magnetic inequality).
Let A ∈ C1(Rn,Rn). Then, for all f ∈ L1

loc(R
n) with (∇− iA)2f ∈ L2

loc(R
n)

we have the inequality

∆|f | ≥ Re {sign (f)(∇− iA)2f}, (2.47)

where sign f was defined in (2.31).

The proof uses the derivative of the absolute value
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Theorem 2.15 (Kato’s inequality).
Let f ∈ L1

loc(R
n) such that ∆f ∈ L1

loc(R
n). Then we have the inequality

∆|f | ≥ Re {sign (f)∆f}, (2.48)

in the sense of distributions, where sign f was defined in (2.31).

The proof of Theorem 2.15 follows the same steps as the proof of Proposi-
tion 2.8. That is, one first considers smooth functions f and the regularized
absolute value |z|ǫ =

√
|z|2 + ǫ2− ǫ and calculates directly. One then consid-

ers a sequence fδ of smooth approximations to f . Taking first δ and then ǫ
to zero one obtains the desired inequality. We leave the details to the reader
(see [ReSi, Vol.2, Section X.4]).

Proof of Theorem 2.14.
We only give the proof under the extra regularity assumption, A ∈ C2(Rn).
In that case the assumption (∇ − iA)2f ∈ L2

loc(R
n) and standard elliptic

regularity implies that f ∈ H2
loc(R

n), in particular that

∆f,∇f ∈ L1
loc(R

n). (2.49)

Suppose now that u is smooth. Then we can calculate as follows, using
|z|ǫ =

√
|z|2 + ǫ2 − ǫ,

∇|u|ǫ =
Re {u∇u}√
|u|2 + ǫ2

=
Re {u(∇ + iA)u}√

|u|2 + ǫ2
. (2.50)

We therefore find

√
|u|2 + ǫ2 ∆|u|ǫ = div (

√
|u|2 + ǫ2 ∇|u|ǫ) −

∣∣∇|u|ǫ
∣∣2

= Re
{
∇u(∇ + iA)u+ u div ((∇ + iA)u)

}
−
∣∣∇|u|ǫ

∣∣2

=
∣∣(∇ + iA)u

∣∣2 −
∣∣∇|u|ǫ

∣∣2

+ Re
{
iAu (∇ + iA)u+ udiv ((∇ + iA)u)

}
(2.51)

By (2.50),
∣∣(∇ + iA)u

∣∣2 ≥
∣∣∇|u|ǫ

∣∣2, so (2.51) implies that, for smooth u,

∆|u|ǫ ≥ Re
u(∇ + iA)2u√

|u|2 + ǫ2
. (2.52)
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The end of the proof now follows the same lines as the proof of Proposi-
tion 2.8, i.e. (2.52) holds for suitably smoothened versions fδ of f . By taking
the limit δ → 0 followed by the limit ǫ→ 0, in the sense of distributions, one
arrives at (2.47).

If one only knows that A ∈ C1, it is not immediate to conclude (2.49).
The details in this case can be found in [ReSi, Vol.2, Section X.4].

2.7 Very rough estimates for the Dirichlet realization

When n = 2, it is immediate to show the inequality

‖∇h,Au‖2 = 〈Ph,A,Ωu | u〉 ≥ h

∫

Ω

B(x)|u(x)|2dx , ∀u ∈ C∞
0 (Ω) , (2.53)

which is interesting only if assuming B ≥ 0.
Here the basic point is to observe that :

hB(x) = i[h∂x1
− iA1, h∂x2

− iA2] . (2.54)

We then write

hB(x)u(x) ū(x) = i(X1X2u)(x) ū(x) − i(X2X1u)(x) ū(x) ,

with Xj = h∂xj
− iAj .

Integrating over Ω and performing the integration by parts :

h

∫

Ω

B(x)|u(x)|2dx = −i〈X1u | X2u〉 + i〈X2u | X1u〉 .

It remains then to use Cauchy-Schwarz Inequality.
This leads for the Dirichlet realization and when B(x) ≥ 0, to the easy but
useful estimate :

inf σ(PD
h,A) ≥ h inf

x∈Ω
B(x) := hb . (2.55)

Note that the converse is asymptotically (as h → 0) true. The proof is
rather easy. In a system of coordinates, where x = 0 denotes a minimum of
B which is assumed to be inside Ω, and in a gauge where

~A(x1, x2) = −1

2
b(−x2, x1) + O(|x|2),
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we consider the quasimode

u(x; h) := b
1

4h−
1

2 exp
(
− ρ

√
b
|x|2
h

)
χ(x) ,

where χ is a cutoff function equal to 1 in a neighborhood of 0. The optimal ρ
is computed by minimizing over ρ the energy corresponding to the constant
magnetic field b and to h = 1 :

(∫
(|(∂y1 + i

b

2
y2)uρ(y)|2 + |(∂y2 − i

b

2
y1)uρ(y)|2 dy

)
/‖uρ‖2 ,

with
uρ(y) = b

1

4 exp
(
− ρ

√
by2
)
. (2.56)

One easily gets that this quantity is minimized for ρ = 1
2

and that the
corresponding energy is b.
The control of the remainders is easy, and we get :

inf σ(PD
h,A) ≤ hb+ O(h

3

2 ) . (2.57)

So we have proved3 (in the 2-dimensional case) :

Theorem 2.16. .
The smallest eigenvalue λ(1)(h) of the Dirichlet realization PD

h,A,Ω of Ph,A,Ω
satisfies :

λ(1)(h)

h
= b+ o(1) . (2.58)

Exercise 2.17.

Show that (for Dirichlet) in the case when the magnetic field is constant, one
has

λ(1)(h)

h
= b+ O(exp−S

h
) , (2.59)

for some h > 0.
Hint.
Take a centered gaussian which is as far as possible from the boundary.

3We leave to the reader the proof for the case when the minimum of |B(x)| is attained
at the boundary. One can for example take a sequence of Gaussians centered at a sequence
of points tending to one point of the boundary, where B takes its minimum. This affects
only the remainder term.
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Let us state Theorem 2.16 in a more general case (cf [Mel], [Ho, Vol.
III, Chapter 22.3] and [HelMo2]). Let us extend at each point Bjk as an
antisymmetric matrix (more intrinsically, this is the matrix of the two-form
σB). Then the eigenvalues of iB are real and one can see that if λ is an
eigenvalue of iB, with corresponding eigenvector u, then ū is an eigenvector
relative to the eigenvalue −λ. If the λj denote the eigenvalues of iB counted
with multiplicity, then one can define

Tr +B(x) =
∑

j:λj(x)>0

λj(x) . (2.60)

The extension of the previous result is then :

Theorem 2.18. .
The smallest eigenvalue λ(1)(h) of the Dirichlet realization PD

h,A,Ω of Ph,A,Ω
satisfies :

λ(1)(h)

h
= inf

x∈Ω
Tr +(B(x)) + o(1) . (2.61)

The idea for the proof is to first treat the constant field case, and then to
make a partition of unity. For the constant field case, after a change variable,
we will get, with ∂j = ∂/∂xj , for n = 2d, the model

d∑

j=1

[−(∂j)
2 − (∂j+d + ibjxj)

2] ,

and for n = 2d+ 1, the model

−∂2
2d+1 +

d∑

j=1

[−(∂j)
2 − (∂j+d + ibjxj)

2] ,

with
d∑

j=1

|bj | = Tr +B .

2.8 Other rough lower bounds.

Let us start the analysis of the question with very rough estimates. In the
case of Dirichlet, n = 2, and if B(x) 6= 0 (say for example B(x) > 0), we
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can use (2.53) which gives a comparison between selfadjoint operators in the
form (for any ρ ∈ [0, 1])

PD
h,A ≥ ρ(PD

h,A) + (1 − ρ)hB(x) . (2.62)

The operator on the right hand side of (2.62) is now a new Schrödinger
operator, which has this time an “effective” electric potential (1 − ρ)hB.
In order to find a lower bound for the smallest eigenvalue of the Dirichlet
realization, it is enough to optimize over ρ a rough lower bound for the
operator :

ρ(PD
h,A) + (1 − ρ)hB(x) .

Remark 2.19.

According to the diamagnetic inequality, we will instead look for a lower bound
of the lowest eigenvalue of the Dirichlet realization of the operator

−ρh2∆ + (1 − ρ)hB(x) .

This leads to the following proposition, which improves Theorem 2.16 :

Proposition 2.20. .
Under the condition that x 7→ B(x) is ≥ 0, analytic and strictly larger that
b = infx∈ΩB(x) at the boundary, then there exists ϑ > 0 and C > 0 such
that :

λ(1)(h) − bh ≥ 1

C
h1+ 1

ϑ , (2.63)

where b = infx∈R2 B(x).

Proof.
We use Remark 2.19 for some ρ ∈]0, 1

2
]. We observe that for any ρ, we have

λ(1)(h) ≥ ρh2λ1(ǫ) + (1 − ρ)hb ,

where λ1(ǫ) is the lowest eigenvalue of the Schrödinger operator −∆+Vǫ (see
(2.27) and [BeHeVe]) with Vǫ(x) = 1

2ǫ
(B(x) − b) and ǫ = ρh.

We now apply the Lieb-Thirring bounds for −∆ + Vǫ. This gives4, for any
λ > 0,

∑

j:λj(ǫ)<λ

(λ− λj(ǫ)) ≤ C

∫

{Vǫ(x)<λ}
(λ− Vǫ(x))

2dx .

4We actually apply the inequality with (Vǫ − λ) replaced by (Vǫ − λ)− and combine
with the minimax principle.

23



where λj(ǫ) denotes the sequence of eigenvalues of −∆ + Vǫ.
Note that the fact that we consider the first moment instead of the counting
function is due to the fact that we would like to avoid the unfortunate condi-
tion on the dimension appearing in the Cwickel-Lieb-Rozenblium estimate.

We now take λ = 2(λ1(ǫ) + η) with η > 0 and get :

λ1(ǫ) + η ≤ 4C(λ1(ǫ) + η)2

(∫

{Vǫ<2(λ1(ǫ)+η)}
dx

)
.

This gives
1

4C
≤ (λ1(ǫ) + η)

(∫

{Vǫ<2(λ1(ǫ)+η)}
dx

)
,

for any η > 0. Taking the limit η → 0, we obtain first that λ1(ǫ) > 0 and

1

4C
≤ λ1(ǫ)

(∫

{Vǫ<2λ1(ǫ)}
dx

)
.

We now use the analyticity assumption, the set {Vǫ < 2λ1(ǫ)} is the set
{B(x)−b < 2(ǫλ1(ǫ))}. But it is easy to show by using Gaussian quasimodes
as in Example 2.2, that (ǫλ1(ǫ)) tends to zero, as ǫ→ 0. But the measure of
{B(x) − b < µ} as µ → 0+ is of order µϑ for some ϑ > 0, if B(x) is analytic
(see, for this standard result which can be shown for example via Lojaciewicz
inequalities, [BeHeVe]).
So we get :

ǫ

4C
≤ C(ǫλ1(ǫ))

1+ϑ .

Coming back to our initial problem, we finally obtain that : ∀ρ ∈]0, 1
2
],

λ(1)(h) − (1 − ρ)hb ≥ h

C
(ρh)

1

1+ϑ .

This can be rewritten in the form :

λ(1)(h) − hb ≥ 1

C
ρ

1

1+ϑh
2+ϑ
1+ϑ − bρh ,

or

λ(1)(h) − hb ≥ hρ
1

1+ϑ

(
1

C
h

1

1+ϑ − bρ
ϑ

1+ϑ

)
.

If we take ρ = γh
1

ϑ and γb small enough, we get (2.63) for h small enough.
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Remark 2.21. .
The optimality of this inequality will be discussed later in particular cases.
In particular, we will discuss the case when B(x) = b and the case when
B(x) − b has a non degenerate minimum.

Remark 2.22.

When b = 0, we can take ρ = 1
2
, and get, for some θ > 0 :

λ(1)(h) ≥ 1

C
h2−θ .

Results in [HelMo3], [Mon], [Ue2] or [LuPa1] show that this is optimal.
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3 Models with constant magnetic field in di-

mension 2

Before we analyze the general situation and the possible differences between
the Dirichlet problem and the Neumann problem, it is useful– and it is ac-
tually a part of the proof for the general case– to analyze what is going on
for particular models.

3.1 Preliminaries.

Let us consider, in a regular domain Ω in R2, the Neumann realization (or
the Dirichlet realization) of the operator Ph,bA0,Ω with

A0(x1, x2) = (
1

2
x2,−

1

2
x1) . (3.1)

Note that the Neumann realization is the natural condition considered in the
theory of superconductivity. We will assume b > 0 and we observe that the
problem has a strong scaling invariance :

Ph,bA0
= h2P1,bA0/h . (3.2)

As a consequence, the semi-classical analysis (b fixed) is equivalent to the
analysis of the strong magnetic field (h being fixed) case. If the domain is
invariant by dilation, one can reduce the analysis to h = b = 1. Let us
denote by µ(1)(h, b,Ω) and by λ(1)(h, b,Ω) the bottom of the spectrum of the
Neumann and Dirichlet realizations of Ph,bA0

in Ω. Depending on Ω, this
bottom can correspond to an eigenvalue (if Ω is bounded) or to a point in
the essential spectrum (for example if Ω = R

2 or if Ω = R
2
+). The analysis

of basic examples will be crucial for the general study of the problem.

3.2 The case of R
2

We would like to analyze the spectrum of PBA0
more shortly denoted by :

SB := (Dx1
− B

2
x2)

2 + (Dx2
+
B

2
x1)

2 . (3.3)

We first look at the selfadjoint realization in R2. Let us show briefly, how
one can analyze its spectrum. We leave as an exercise to show that the spec-
trum (or the discrete spectrum) of two selfadjoint operators S and T are the
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same if there exists a unitary operator U such that U(S±i)−1U−1 = (T±i)−1.
We note that this implies that U sends the domain of S onto the domain of
T .
In order to determine the spectrum of the operator SB, we perform a suc-
cession of unitary conjugations. The first one U1 is defined, for f ∈ L2(R2)
by

U1f = exp(iB
x1x2

2
)f . (3.4)

It satisfies
SBU1f = U1S

1
Bf , ∀f ∈ S(R2) , (3.5)

with
S1
B := (Dx1

)2 + (Dx2
+Bx1)

2 . (3.6)

Remark 3.1. .
U1 is a very special case of what is called a gauge transformation. More
generally, as was done in the proof of Proposition 2.9 (see (2.39)), we can
consider U = exp(iφ), where exp(iφ) is C∞.
If ∆A :=

∑
j(Dxj

− Aj)
2 is a general Schrödinger operator associated with

the magnetic potential A, then U−1∆AU = ∆Ã where Ã = A+ gradφ. Here
we observe that B := curlA = curl Ã. The associated magnetic field is
unchanged in a gauge transformation. We are discussing in our example the
very special (but important!) case when the magnetic potential is constant.

We have now to analyze the spectrum of S1
B. Observing that the operator

has constant coefficients with respect to the x2-variable, we perform a partial
Fourier transform with respect to the x2 variable

U2 = Fx2 7→ξ2 , (3.7)

and get by conjugation, on L2(R2
x1,ξ2

),

S2
B := (Dx1

)2 + (ξ2 +Bx1)
2 . (3.8)

We now introduce a third unitary transform U3

(U3f)(y1, ξ2) = f(x1, ξ2) , with y1 = x1 +
ξ2
B
, (3.9)

and we obtain the operator

S3
B := D2

y +B2y2 , (3.10)
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operating on L2(R2
y,ξ2

).
The operator depends only on the y variable. It is easy to find for this
operator an orthonormal basis of eigenvectors. We observe indeed that if
f ∈ L2(Rξ2) (with ‖f‖ = 1), and if φn is the (n + 1)-th eigenfunction of the
harmonic oscillator, then

(x, ξ2) 7→ |B| 14 f(ξ2) · φn(|B| 12 y)

is an eigenvector corresponding to the eigenvalue (2n + 1)|B|. So each
eigenspace has an infinite dimension. An orthonormal basis of this eigenspace
can be given by vectors ej(ξ2)|B| 14 φn(|B| 12 y) where ej (j ∈ N) is a basis of
L2(R).
We have consequently an empty discrete spectrum and the bottom of the
spectrum (which is also the bottom of the essential spectrum) is B. The
eigenvalues (which are of infinite multiplicity!) are usually called Landau
levels.

3.3 Towards the analysis of R2,+ : an important model

Let us begin with the analysis of a family of ordinary differential operators,
whose study will play an important role in the analysis of various examples.
For ξ ∈ R, we consider the Neumann realization HN,ξ in L2(R+) associated
with the operator D2

x + (x − ξ)2. It is easy to see that the operator has
compact resolvent and that the lowest eigenvalue µ(ξ) of HN,ξ is simple. For
the second point, the following simple argument can be used. Suppose by
contradiction that the eigenspace is of dimension 2. Then, we can find in
this eigenspace an eigenstate such that u such that u(0) = u′(0) = 0. But
then it should be identically 0 by Cauchy uniqueness.
We denote by ϕξ the corresponding strictly positive L2-normalized eigenstate.
The minimax characterization shows that ξ 7→ µ(ξ) is a continuous function.
It is a little more work (see Kato [Ka] or the proof below) to show that
the function is C∞ (and actually analytic). It is immediate to show that
µ(ξ) → +∞ as ξ → −∞. We can indeed compare by monotonicity with
D2
x + x2 + ξ2.

The second remark is that µ(0) = 1. For this, we use the fact that the
lowest eigenvalue of the Neumann realization of D2

t + t2 in R+ is the same as
the lowest eigenvalue of D2

t + t2 in R, but restricted to the even functions,
which is also the same as the lowest eigenvalue of D2

t + t2 in R.
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Moreover the derivative of µ at 0 is strictly negative (see (3.12) or (3.18)).
It is a little more difficult to show that

lim
ξ→+∞

µ(ξ) = 1 . (3.11)

The proof can be done in the following way. For the upper bound, we
observe that µ(ξ) ≤ λ(ξ), where λ(ξ) is the eigenvalue of the Dirichlet real-
ization. By monotonicity of λ(ξ), it is easy to see that λ(ξ) is larger than one
and tend to 1 as ξ → +∞. Another way is to use the function exp−1

2
(x−ξ)2

as a test function.
For the converse, we start from the eigenfunction x 7→ φξ(x), show some
uniform decay of φξ(x) near 0 as ξ → +∞ and use x 7→ χ(x+ ξ)φξ(x+ ξ) as
a test function for the harmonic oscillator in R.

All these remarks lead us to the observation that the infimum of the
spectrum, infξ∈R inf σ (HN,ξ), is actually a minimum [DaHe] and strictly less
than 1. Moreover one can see that µ(ξ) > 0, for any ξ, so the minimum
is strictly positive. To be more precise on the variation of µ, let us first
establish (Dauge-Helffer [DaHe] motivated by a question of C. Bolley (see
[BoHe]))

µ′(ξ) = −[µ(ξ) − ξ2]ϕξ(0)2 . (3.12)

To get (3.12), we observe that, if τ > 0, then

0 =
∫

R+
[D2

tϕξ(t) + (t− ξ)2ϕξ(t) − µ(ξ)ϕξ(t)]ϕξ+τ (t+ τ)dt

= −ϕξ(0)ϕ′
ξ+τ(τ) + (µ(ξ + τ) − µ(ξ))

∫
R+
ϕξ(t)ϕξ+τ (t+ τ) dt .

Observing that
ϕ′
ξ+τ(τ) = ϕ′′

ξ(0)τ + O(τ 2)

as τ → 0, and using the equation satisfied by ϕξ, we can take the limit τ → 0
to get the formula.

Remark 3.2.

In the case of the Dirichlet realization, we have a similar formula :

λ′(ξ) = −
(
(ϕDξ )′(0)

)2
,

where ϕDξ is the ground state of the Dirichlet realization and this shows im-
mediately the monotonicity. Note that (ϕDξ )′(0) 6= 0 (by Cauchy uniqueness
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theorem), so λ′ is strictly negative.
This formula is actually a particular case of a general formula (called Rel-
lich’s Formula) for the Dirichlet realization of Schrödinger operator.

¿From (3.12), it follows that, for any critical point ξc of µ in R
+

µ′′(ξc) = 2ξcϕ
2
ξc(0) > 0 . (3.13)

So the critical points are necessarily non degenerate local minima. It is then
easy to deduce, observing that limξ→−∞ µ(ξ) = +∞ and limξ→+∞ µ(ξ) = 1,
that there exists a unique minimum ξ0 > 0 such that

Θ0 = inf
ξ
µ(ξ) = µ(ξ0) < 1 . (3.14)

Moreover
Θ0 = ξ2

0 . (3.15)

Finally, it is easy to see that ϕξ(x) decays exponentially at ∞.

Around the Feynman-Hellmann formula.

Let us give additional remarks on the properties of ξ 7→ µ(ξ) and ϕξ(·) which
are related to the Feynman-Hellmann formula. We differentiate with respect
to ξ the identity5 :

HN(ξ)ϕ(·; ξ) = µ(ξ)ϕ(·; ξ) . (3.16)

We obtain :

(∂ξH
N(ξ) − µ′(ξ))ϕ(·; ξ) + (HN(ξ) − µ(ξ))(∂ξϕ)(·; ξ) = 0 . (3.17)

Taking the scalar product with ϕξ in L2(R+), we obtain the so-called Feynman-
Hellmann Formula

µ′(ξ) = 〈 ∂ξHN(ξ)ϕξ | ϕξ〉 = −2

∫ +∞

0

(t− ξ)|ϕξ(t)|2dt . (3.18)

Taking the scalar product with (∂ξϕ)(·; ξ), we obtain the identity :

〈(∂ξHN(ξ) − µ′(ξ))ϕ(·; ξ) | (∂ξϕ)(·; ξ)〉
+ 〈(HN(ξ) − µ(ξ))(∂ξϕ)(·; ξ) | (∂ξϕ)(·; ξ)〉 = 0 . (3.19)

5We change a little the notations for HN,ξ (this becomes HN (ξ) ) and ϕξ (this becomes
ϕ(·; ξ)) in order to have an easier way of writing the differentiation.
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In particular, we obtain for ξ = ξ0 that :

〈
(∂ξH

N(ξ0)ϕ(·; ξ0) | (∂ξϕ)(·; ξ0)
〉

+
〈
(HN(ξ0) − µ(ξ0))(∂ξϕ)(·; ξ0) | (∂ξϕ)(·; ξ0)

〉
= 0 . (3.20)

We observe that the second term is positive (and with some extra work
coming back to (3.17) strictly positive) :

〈(∂ξHN(ξ0))ϕ)(·; ξ0) | (∂ξϕ)(·; ξ0)〉 < 0 . (3.21)

Let us differentiate once more (3.17) with respect to ξ.

2(∂ξH
N(ξ) − µ′(ξ))∂ξϕ(·; ξ) + (HN(ξ) − µ(ξ))(∂2

ξϕ)(·; ξ)
+(∂2

ξH
N(ξ) − µ′′(ξ))ϕ(·; ξ) = 0 . (3.22)

Taking the scalar product with ϕξ and ξ = ξ0, we obtain from (3.21) that

µ′′(ξ0) = 2 + 〈 ∂ξHN(ξ0)ϕ(·; ξ0) | ∂ξϕ(·; ξ0)〉 < 2 . (3.23)

Proposition 3.3.

The eigenvalue µ(ξ) and the corresponding eigenvector φξ are of class C∞

with respect to ξ.

Proof :
This result (actually the analyticity) is proved in the book of Kato [Ka].

3.4 The case of R2,+

For the analysis of the spectrum of the Neumann realization of the Schrö-
dinger operator with constant magnetic field SB in R2,+, we start like in the
case of R2 till (3.8). Then we can use the preliminary study in dimension 1.
The bottom of the spectrum is effectively given by :

inf σ(SN,R
2,+

B ) = |B| inf µ(ξ) = Θ0|B| . (3.24)

Similarly, for the Dirichlet realization, we find (See Problem F.7, for de-
tails) :

inf σ(SD,R
2,+

B ) = |B| inf
ξ∈R

λ(ξ) = |B| . (3.25)

31



3.5 The case of a corner

After preliminary results devoted to the case Ω = R+ ×R+ and obtained by
[Ja] and [Pan1], a more systematic analysis have been performed by V. Bon-
naillie in [Bon]. Let us mention her main results. We consider the Neu-
mann realization of the Schrödinger operator with h = 1, b = 1 in a sector
Ωα : {(x1, x2) ∈ R2 | |x2| ≤ tg (α

2
)x1}. One can first show, using Persson’s

Theorem (see for example [Ag]) that the bottom of the essential spectrum is
equal to Θ0. So the question is to know if there exists an eigenvalue below
the essential spectrum. One result obtained in [Bon] is that :

lim
α→0

µcorn(α)

α
=

1√
3
. (3.26)

Computing the energy of the quasimode uα (following an idea of Bonnaillie-
Fournais [Bon])

Ωα ∋ (x, y) = (ρ cosφ, ρ sinφ) 7→ uα(x, y) := c exp(i
ρ2β2φ

2
) exp(−βρ

2

4
) ,

with β = α√
3+α2

and c such that the L2-norm in the sector is 1, one has the
universal estimate

µcorn(α) ≤ α√
3 + α2

, (3.27)

which gives (3.26) above (the lower bound is more difficult). This also answers
the question of the existence of an eigenvalue below Θ0 under the condition
that

α√
3 + α2

< Θ0 .

3.6 The case of the disk.

The case of Dirichlet boundary conditions was considered by L. Erdös in
connection with an isoperimetric inequality [Er1]. By using the techniques
of [BoHe], one can then show [HelMo3] the following proposition which is a
small improvement of his result

Proposition 3.4. .
As R

√
b large, the following asymptotics holds :

λ(1)(b,D(0, R)) − b ∼ 2
3

2π− 1

2 b
3

2R exp(−bR
2

2
) . (3.28)
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The Neumann case is treated in the paper by Baumann-Phillips-Tang
[BaPhTa] (Theorem 6.1, p. 24) (see also [PiFeSt] and [HelMo3]) who prove
the

Proposition 3.5.

µ(1)(b,D(0, R)) = Θ0b− 2M3
1

R
b

1

2 + O(1) . (3.29)

Here we recall that Θ0 was introduced in (3.14), and that M3 > 0 is a
universal constant. Notice that an improvement of (3.29) has been obtained
in [FoHel3].

Remark 3.6.

Another interesting case is the exterior of the disk. One first observes that
the bottom of the essential spectrum is b and one can show that as b is large,
there exists at least one eigenvalue below b. One shows also in [HelMo3] that
the above formula for the smallest eigenvalue is still valid by changing 1

R
into

− 1
R

(with a weaker control of the remainder term). This permits to verify
that it is indeed the algebraic value of the curvature which appears for all the
models.
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4 Harmonic approximation

In this section we discuss one of the basic techniques for analyzing the ground-
state energy (also called lowest eigenvalue or principal eigenvalue) of a Schrö-
dinger operator in the case when the electric potential V has non degenerate
minima. Except some aspects related to magnetic fields, this part is very
standard and we refer to [CFKS, Hel1, DiSj] for a more complete description
of the results.

4.1 Upper bounds

4.1.1 The case of the one dimensional Schrödinger operator

We start with the simplest one-well problem:

Ph,v := −h2d2/dx2 + v(x) , (4.1)

where v is a C∞- function tending to ∞ and admitting a unique minimum
at 0 with v(0) = 0.
Let us assume that

v′′(0) > 0 . (4.2)

In this very simple case, the harmonic approximation is an elementary exer-
cise. We first consider the harmonic oscillator attached to 0 :

−h2d2/dx2 +
1

2
v′′(0)x2 . (4.3)

This means that we replace the potential v by its quadratic approximation
at 0, namely 1

2
v′′(0)x2, and consider the associated Schrödinger operator.

Using the dilation x = h
1

2 y, we observe that this operator is unitarily equiv-
alent to

h

[
−d2/dy2 +

1

2
v′′(0)y2

]
. (4.4)

Consequently, the eigenvalues are given by

λn(h) = h · λn(1) = (2n+ 1)h ·
√
v′′(0)

2
, (4.5)

and the corresponding eigenfunctions are

uhn(x) = h−
1

4u1
n(
x

h
1

2

) (4.6)
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with 6

u1
n(y) = Pn(y) exp−

√
v′′(0)

2

y2

2
, (4.7)

which can be obtained recursively by

u1
n = cn(

d

dy
−
√
v′′(0)

2
y)u1

n−1 ,

where cn is a normalization constant.
We now return to the full operator Ph,v. For simplicity we will only consider

the first eigenvalue. We consider the function uh,app.1

x 7→ χ(x)uh1(x) = c · χ(x)h−
1

4 exp−
√
v′′(0)

2

x2

2h
,

where χ is compactly supported in a small neighborhood of 0 and equal to 1
in a smaller neighborhood of 0. Note here that the H1-norm of this function
over the complementary of a neighborhood of 0 is exponentially small as
h→ 0.
We now get

(
Ph,v − h ·

√
v′′(0)

2

)
uh,app.1 = O(h

3

2 ) . (4.8)

The coefficients corresponding to the commutation of Ph,v and χ give expo-
nentially small terms and the main contribution is

‖(v(x) − 1

2
v′′(0)x2)χ(x)uh1(x)‖L2

which is easily estimated, observing that

|v(x) − 1

2
v′′(0)x2| ≤ C|x|3 , for |x| ≤ 1 ,

as O(h
3

2 ). The spectral theorem applied to (4.8) gives the existence of an
eigenvalue λ(h) of Ph,v such that

∣∣∣λ(h) − h ·
√
v′′(0)

2

∣∣∣ ≤ C · h 3

2 .

6We normalize by assuming that the L2-norm of uh
n is one. For the first eigenvalue, we

have seen that, by assuming in addition that the function is strictly positive, we determine
completely uh

1 (x).
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In particular, we get the inequality

λ1(h) ≤ h ·
√
v′′(0)

2
+ C h

3

2 . (4.9)

Combining with other techniques, one can actually prove that

∣∣∣λ1(h) − h ·
√
v′′(0)

2

∣∣∣ ≤ C · h 3

2 (4.10)

4.1.2 Harmonic approximation in general : upper bounds

In the multidimensional case, we can proceed essentially in the same way.
The analysis of the quadratic case

H(hDx, x) := −h2∆ +
1

2
〈Ax | x〉

can be done explicitly by diagonalizing A via an orthogonal matrix U . There
is a corresponding unitary transformation on L2(Rn) defined by

(Uf)(x) = f(U−1x) ,

such that

U−1HU =
∑

j

(
−(h∂yj

)2 +
1

2
λjy

2
j

)
.

Using the Hermite functions as quasimodes we get the upper bounds by

h
∑

j

√
λj

2
+ O(h

3

2 ) as in the one-dimensional case.

4.1.3 Case of multiple minima

When there are more than one minimum, one can apply the above con-
struction near each of the minima. The upper bound for the ground state
is obtained by taking the infimum over all the minima of the upper bound
attached to each minimum.

4.2 Harmonic approximation in general: lower bounds

Here we follow Simon’s approach (see [Sim2] and also [CFKS]). Another
approach is described in [Hel1] and another variant in [DiSj]. The reader can
look at Chapter 11 of [CFKS].
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Given a covering of Rn, by balls of radius R, B(xj , R) (j ∈ J ), and a
corresponding partition of unity, such that, for an R-independent constant,

∑
j∈J (φRj )2 = 1 ,∑n
ℓ=1

∑
j∈J |Dxℓ

φRj |2 ≤ C
R2 ,

(4.11)

we can write that, for all u ∈ C∞
0 ,

〈Ph,V u | u〉 =
∑

j

〈Ph,V φRj u | φRj u〉 − h2
∑

j,ℓ

‖|Dxℓ
φRj |u‖2

≥
∑

j

〈Ph,V φRj u | φRj u〉 − C
h2

R2
‖u‖2 . (4.12)

We now suppose R ∈]0, 1]. We can in addition assume that either the balls
are centered at the minima of V (denoted by xjk , k ∈ K), or that the balls
are at a distance at least 1

C
R of these minima.

In the first case, we observe that :

| 〈Ph,V φRj u | φRj u〉 − 〈P k
h,V φ

R
j u | φRj u〉 | ≤ CR3‖φRj u‖2 ,

where P k
h,V is the quadratic approximation model at the minimum xjk , i.e.

the operator obtained by replacing V by its quadratic approximation

V k(x) = inf V +
1

2
〈V ′′(xjk)(x− xjk | (x− xjk〉 ,

if the ball is centered at the minimum.

In the second case, using the fact that the minima of V are non-
degenerate, we get :

|〈Ph,V φRj u | φRj u〉 ≥
R2

C
‖φRj u‖2 .

The optimization between the two errors leads to the choice of

h2

R2
= R3 ,

37



that is R = h
2

5 , and we then observe that R2

C
= h

4
5

C
, which is dominant in

comparison with h as h→ 0. We then get the lower bound

λ1(h) ≥ inf V + h(inf
k
µ1(h, x

jk)) − Ch
6

5 , (4.13)

where the infimum is over the various minima xjk (assumed to be non degen-
erate) and µ1(h, x

jk) denotes the lowest eigenvalue of the harmonic approxi-
mation at xjk P k

h,V .
Note that in the case of a manifold there is another term which leads to a
small change in the argument (see Simon [Sim2]). The Laplacian has indeed

the form
∑

ij g
− 1

2∂xi
ggij∂xj

g−
1

2 after a change of function in order to come
back to the selfadjoint case.

4.3 The case with magnetic field

Let us consider two situations.

4.3.1 V has a non degenerate minimum.

The first case is the case when V has a non degenerate minimum at 0. In
this case the model which gives the approximation is

n∑

j=1

(hDxj
− A0

j )
2 +

1

2
〈V ′′(0)x | x〉 ,

where A0
j is a linear magnetic potential attached to the constant magnetic

field Bjk = Bjk(0),

A0
j (x) =

1

2

(
∑

k

Bjkxk

)
,

so that in a suitable gauge (note that by a linear gauge, one can first reduce
to the case when A(0) = 0)

A(x) − A0(x) = O(|x|2) .

After the dilation x = h
1

2 y, we get

h

(
n∑

j=1

(Dyj
− A0

j)
2 +

1

2
〈V ′′(0)y | y〉

)

,
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whose spectrum can be determined explicitly (see [Mel], [Ho] (Vol III) and
more specifically for this case [Mat]). One then gets easily the upper bound.

2-dimensional harmonic oscillator.

Let us treat the 2-dimensional case as an exercise. We start from

D2
x1

+ (Dx2
+Bx1)

2 +
λ1

2
x2

1 +
λ2

2
x2

2 .

A partial Fourier transform, leads to

D2
x1

+ (ξ2 +Bx1)
2 +

λ1

2
x2

1 +
λ2

2
D2
ξ2 .

A dilation leads to the standard Schrödinger operator

D2
t +D2

s + (

√
λ2

2
s+Bt)2 +

λ1

2
t2 .

So we have proved the isospectrality of the initial operator to a standard
Schrödinger operator, with potential

V new(s, t) = (

√
λ2

2
s +Bt)2 +

λ1

2
t2

Its groundstate is immediately computed as

λ(B) =
√
λ(0)2 +B2 with λ(0) =

(√
λ1 +

√
λ2

)
/
√

2 .

In this explicit formula, one immediately sees the diamagnetic effect an-
nounced in Subsection 2.5 and also that

λ(B) − |B| ≤ λ(0) ,

which is more specific of the quadratic case (paramagnetic inequality).
The fact that this last inequality (which says that the groundstate energy of
the Pauli operator is lower than in the case without magnetic field) cannot
be extended for more general situations has been shown by Avron-Simon and
Helffer using the Aharonov-Bohm effect.
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Lower bounds.

The lower bound is obtained similarly once we have observed that

Re 〈Ph,A,V u | u〉
=
∑

j〈Ph,A,V φRj u | φRj u〉 − h2
∑

j,ℓ ‖|Dxℓ
φRj |u‖2 .

(4.14)

We have then, for the balls containing the minima, to replace the magnetic
potential by its affine approximation at the momentum and to control the
remainder. Note that there is a “small” additional difficulty (of the same
type as for the manifold case) for controlling the term corresponding to the
approximation of the magnetic potential.
Let us more precisely describe what is going on. A new control is only
necessary for the balls centered at one of the minima. The idea is that the
harmonic approximation at the minimum (we choose one of the minima, take
coordinates such that 0 is the minimum of V , so V (0) = ∇V (0) = 0) has to
be replaced by

P app,0
h :=

∑

ℓ

(hDxℓ
− Alinℓ (x))2 +

1

2
Hess V (0)x · x .

We recall from the previous paragraph that this spectrum is known and equal
to h times the spectrum computed for h = 1, as immediately seen by the
dilation x =

√
hy.

After a gauge transformation, we can assume that

A(x) −Alin(x) = O(|x|2)

and note that the magnetic field attached to Alin(x) is the value of the
magnetic field attached to A at 0.

We now take R = h
2

5 and write

〈Ph,A,V φRj u | φRj u〉 ≥ 〈P app,0φRj u | φRj u〉 − Ch
6

5‖φRj u‖2

− |
∫

|(A(x) − Alin(x))φRj u| · |(h∇− iAlin(x))φRj u| dx .

This leads first (omitting the reference to R which is now chosen) to

〈Ph,A,V φju | φju〉 ≥
〈P app,0φju | φju〉 − Ch

6

5‖φju‖2 − Ch
4

5‖φju‖ · ‖(h∇− iAlin(x))φju‖dx .
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Using then Cauchy-Schwarz with some (to be determined) weight ρ(h), we
obtain

〈Ph,A,V φju | φju〉
≥ 〈Papp,0φju | φju〉 − Ch

6

5‖φju‖2

− Ch
4

5

(
1

ρ(h)2
‖φju‖2 + ρ(h)2‖(h∇− iAlin(x))φju‖2

)

≥ (1 − h
4

5ρ(h)2) 〈Papp,0φju | φju〉 − Ch
6

5‖φju‖2 − C h
4

5

1

ρ(h)2
‖φju‖2 .

The choice of ρ(h) = h−
1

5 leads to

〈Ph,A,V φRj u | φRj u〉 ≥ (1 − h
2

5 ) 〈Papp,0φRj u | φRj u〉 − Ch
6

5‖φRj u‖2 .

We are now essentially in the same situation as in the case without magnetic
field.

4.3.2 Magnetic wells

We would like to describe a case where no electric potential is present. We
consider the rather generic case when B(z) ∈ C∞(Ω) satisfies, for some
z0 ∈ Ω :

B(z) > b := B(z0) > 0, ∀ z ∈ Ω \ {z0}, (4.15)

and we assume that the minimum is non degenerate :

HessB(z0) > 0 . (4.16)

We introduce in this case the notation :

a = Tr

(
1

2
HessB(z0)

)1/2

. (4.17)

Theorem 4.1. .
If A ∈ C∞(Ω; R2), and if the hypotheses (4.15) and (4.16) are satisfied,
then

µ(h) = [b+
a2

2b
h]h + o(h2) . (4.18)
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The detailed proof can be found in [HelMo3]. It is based on the analysis
of the simpler model where near 0

B(z) = b+ αx2 + βy2. (4.19)

In this case, we can also choose a gauge A(z) such that

A1(z) = 0 and A2(z) = bx+
α

3
x3 + βxy2 . (4.20)

When the assumptions are not satisfied, and that B vanishes. Other
models should be consider. An interesting case is the case when B vanishes
along a line. This model was proposed by Montgomery [Mon] in connection
with subriemannian geometry.

4.4 Higher order expansion

After a dilation x =
√
hy, we can look at

−∆y +
1

h
V0(

√
hy) + V1(

√
hy) ,

that we can rewrite, using the Taylor expansion at 0 of V0 and V1 by formal
expansions : ∑

j

h
j
2Hj(y,Dy) .

This approach was developed by B. Simon [Sim2] and variants have been also
described by Helffer-Mohamed [HelMo2].
We can then find a complete expansion by recursion. One can look for a

formal quasimode in the form h−
n
4

(∑
j∈N

h
j
2φj(x/

√
h)
)

associated to an ap-

proximate eigenvalue
∑

j∈N
αjh

j and determine the αj ’s and φj ’s by recursion.

Another idea will be to introduce a Grushin’s problem. A third idea is
to construct WKB expansions. This will not be detailed in this course.
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5 Decay of the eigenfunctions and applica-

tions

5.1 Introduction

As we have already seen when comparing the spectrum of the harmonic
oscillator and of the Schrödinger operator, it could be quite important to
know a priori how the eigenfunction attached to an eigenvalue λ(h) decays
in the classically forbidden region (that is the set of the x’s such that V (x) >
λ(h)). The Agmon [Ag] estimates give a very efficient way to control such
a decay. We refer to [Hel1] or to the original papers of Helffer-Sjöstrand
[HelSj1] or Simon [Sim2] for details and complements.

Let us start with very weak notions of localization. For a family h 7→ ψh
of L2-normalized functions defined in Ω, we will say that the family ψh lives
(resp. fully lives) in a closed set U of Ω if for any neighborhood V(U) of U ,

lim
h→0

∫

V(U)∩Ω

|ψh|2dx > 0 ,

respectively

lim
h→0

∫

V(U)∩Ω

|ψh|2dx = 1 .

For example one expects that the groundstate of the Schrödinger opera-
tor −h2∆ + V (x) fully lives in V −1(inf V ). Similarly, one expects that, if7

limh→0λ(h) ≤ E < inf σess(Ph,V ) − ǫ0 (for ǫ0) and ψh is an eigenvector as-
sociated to λ(h), then ψh will fully live in V −1(] −∞, E]). This is the way
one can understand that in the semi-classical limit the quantum mechanics
should recover the classical mechanics.
Of course the above is very heuristic but there are more accurate mathemat-
ical notions like the frequency set (see [Ro2]) permitting to give a mathemat-
ical formulation to the above vague statements.

Once we have determined a closed set U , where ψh fully lives (and hope-
fully the smallest), it is interesting to discuss the behavior of ψh outside U ,
and to measure how small ψh decays in this region.

To illustrate the discussion, one can start with the very explicit example of
the harmonic oscillator. The ground state x 7→ ch−

1

4 exp−x2

h
of −h2 d2

dx2 + x2

7This is in particular the case when lim inf |x|→+∞ V (x) > inf V .
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lives at 0 and is exponentially decaying in any interval [a, b] such that 0 6∈
[a, b]. This is this type of result that we will recover but WITHOUT having
an explicit expression for ψh.

5.2 Energy inequalities

The main but basic tool is a very simple identity attached to the Schrödinger
operator Ph,A,V .

Proposition 5.1. :
Let Ω be a bounded open domain in Rm with C2 boundary. Let V ∈ C0(Ω̄; R),
A ∈ C0(Ω̄; Rm) and φ a real valued lipschitzian function on Ω̄. Then, for any
u ∈ C2(Ω̄; C) with u/∂Ω = 0, we have

∫
Ω
|∇h,A(exp φ

h
u)|2 dx+

∫
Ω
(V − |∇φ|2) exp 2φ

h
|u|2 dx =

Re
(∫

Ω
exp 2φ

h
(Ph,A,V u)(x) · u(x) dx

)
.

(5.1)

Proof :
In the case when φ is a C2(Ω)- function and A = 0, this is an immediate
consequence of the Green-Riemann formula :

∫

Ω

∇v · ∇w dx = −
∫

Ω

∆v · w dx−
∫

∂Ω

(∂v/∂n)w dσ∂Ω . (5.2)

This gives in particular :
∫

Ω

∇v · ∇w dx = −
∫

Ω

∆v · w dx , (5.3)

for all v, w ∈ C2(Ω) such that w/∂Ω = 0 or (∂v/∂n)/∂Ω = 0.
This can actually be extended to v, w ∈ H1

0 (Ω).
We then observe (we treat the case when A = 0) :

Re
∫

exp 2φ
h

(−h2∆u) · u dx = Re
∫

(h∇u) · (h∇ exp 2φ
h
u) dx

= Re
∫

((h∇−∇φ) exp φ
h
u) · (h∇ + ∇φ) exp φ

h
u) dx

=
∫
|(h∇ exp φ

h
u)|2 dx −

∫
|∇φ|2| exp φ

h
u)|2 dx .

The case when A is not zero is treated similarly.
To treat more general φ’s, we just write φ as a limit as ǫ → 0 of φǫ = χǫ ⋆ φ
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where χǫ(x) = χ(x
ǫ
) ǫ−m is the standard mollifier and we remark (this is a

standard result about Lipschitz functions) that ∇φ is almost everywhere the
limit of ∇φǫ = ∇χǫ ⋆ φ. In the case when A is not zero, we have in addition
to use
∫

Ω

∇h,Av · ∇h,Aw dx = −
∫

Ω

∆h,Av · w dx− h

∫

∂Ω

(h∂v/∂n − i ~A · ~nv)w dσ∂Ω .

(5.4)

Remark 5.2.

This identity is adapted to the Dirichlet realization. We will need a similar
identity for the Neumann realization. In this case, we will instead of the
condition u/∂Ω = 0 take the Neumann (magnetic) condition.

5.3 The Agmon distance

The Agmon metric attached to an energy E and a potential V is defined
as (V − E)+dx

2 where dx2 is the standard metric on Rn. This metric is
degenerate and is identically 0 at points living in the ”classical” region:
{x | V (x) ≤ E}. Associated to the Agmon metric, we define a natural
distance

(x, y) 7→ d(V−E)+(x, y)

by taking the infimum :

d(V−E)+(x, y) = inf
γ∈C1,pw([0,1];x,y)

∫ 1

0

[(V (γ(t)) −E)+]
1

2 |γ′(t)|dt , (5.5)

where C1,pw([0, 1]; x, y) is the set of the piecewise (pw) C1 paths in Rn con-
necting x and y

C1,pw([0, 1]; x, y) = {γ ∈ C1,pw([0, 1]; Rn) , γ(0) = x , γ(1) = y} . (5.6)

When there is no ambiguity, we shall write more simply d(V−E)+ = d.
Similarly to the Euclidean case, we obtain the following properties

• Triangular inequality

|d(x′, y) − d(x, y)| ≤ d(x′, x) , ∀x, x′, y ∈ R
m . (5.7)

45



•
|∇xd(x, y)|2 ≤ (V − E)+(x) , (5.8)

almost everywhere.

We observe that the second inequality is satisfied for any derived distance
like

d(x, U) = inf
y∈U

d(x, y) .

The most useful case will be the case when U is the set {x | V (x) ≤ E}.
In this case d(x, U) measures the distance to the classical region. All these
notions being expressed in terms of metrics, they can be easily extended on
manifolds.

5.4 Decay of eigenfunctions for the Schrödinger oper-

ator.

When uh is a normalized eigenfunction of the Dirichlet realization in Ω sat-
isfying Ph,A,V uh = λhuh then the identity (5.1) gives roughly that exp φ

h
uh

is well controlled (in L2) in a region

Ω1(ǫ1, h) = {x | V (x) − |∇φ(x)|2 − λh > ǫ1 > 0} ,

by exp
(
supΩ\Ω1

φ(x)
h

)
. The choice of a suitable φ (possibly depending on h)

is related to the Agmon metric (V − E)+ dx2, when λh → E as h→ 0. The
typical choice is φ(x) = (1− ǫ)d(x) where d(x) is the Agmon distance to the
”classical” region {x | V (x) ≤ E} . In this case we get that the eigenfunction
is localized inside a small neighborhood of the classical region and we can
measure the decay of the eigenfunction outside the classical region by

exp(1 − ǫ)
d(x)

h
uh = O(exp

ǫ

h
) , (5.9)

for any ǫ > 0.
More precisely we get for example the following theorem

Theorem 5.3. :
Let us assume that V is C∞, semibounded and satisfies

lim inf
|x|→∞

V > inf V = 0 (5.10)
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and
V (x) > 0 for |x| 6= 0 . (5.11)

Let uh be a (family of L2-) normalized eigenfunctions such that

Ph,A,V uh = λhuh , (5.12)

with λh → 0 as h→ 0. Then for all ǫ and all compact K ⊂ Rm, there exists
a constant Cǫ,K such that for h small enough

‖∇h,A(exp
d

h
· uh)‖L2(K) + ‖ exp

d

h
· uh‖L2(K) ≤ Cǫ,K exp

ǫ

h
, (5.13)

where x→ d(x) is the Agmon distance between x and 0 attached to the Agmon
metric V · dx2.

Useful improvements in the case when E = min V and when the minima
are non degenerate can be obtained by controlling more carefully with respect
to h, what is going on near the minima. It is also possible to control the
eigenfunction at ∞. This was actually the initial goal of S. Agmon [Ag].

Proof:
Let us choose some ǫ > 0. We shall use the identity (5.1) with

• V replaced by V − λh,

• φ = (1 − δ)d(x, U), with δ small enough possibly depending on ǫ,

• u = uh, and

• Ph,A,V replaced by −∆h,A + V − λh.

Let
Ω+
δ = {x ∈ Ω , V (x) > δ} , Ω−

δ = {x ∈ Ω , V (x) ≤ δ} .
We deduce from (5.1)

∫
Ω
|∇h,A(exp φ

h
uh)|2dx+

∫
Ω+

δ

(V − λh − |∇φ|2) exp 2φ
h
|uh|2 dx

≤ supx∈Ω−
δ
|V (x) − λh − |∇φ|2|

(∫
Ω−

δ

exp 2φ
h
|uh|2 dx

)
.

Then, for some constant C independent of h ∈]0, h0] and δ ∈]0, 1], we get

47



∫
Ω
|∇h,A(exp φ

h
uh)|2dx+

∫
Ω+

δ

(V − λh − |∇φ|2) exp 2φ
h
u2
h dx

≤ C ·
(∫

Ω−
δ

exp 2φ
h
|uh|2 dx

)
.

Let us observe now that on Ω+
δ we have (with φ = (1 − δ)d(·, U))

V − λh − |∇φ|2 ≥ (2 − δ)δ2 + o(1) .

Choosing h(δ) small enough, we then get for any h ∈]0, h(δ)]

V − λh − |∇φ|2 ≥ δ2 .

This permits to get the estimate
∫
Ω
|∇h,A(exp φ

h
uh)|2dx+ δ2

∫
Ω+

δ

exp 2φ
h
|uh|2 dx

≤ C ·
(∫

Ω−
δ

exp 2φ
h
|uh|2 dx

)
,

and finally
∫
Ω
|∇h,A(exp φ

h
uh)|2dx+ δ2

∫
Ω

exp 2φ
h
|uh|2 dx

≤ C̃ · exp a(δ)
h
,

where a(δ) = 2 supx∈Ω−
δ
φ(x). We now observe that limδ→0 a(δ) = 0 and the

end of the proof is then easy.

Remark 5.4.

When V has a unique non degenerate minimum the estimate can be improved
when λh ∈ [0, C0h], by taking δ = Ch, for some C ≥ 1 and φ = d −
Ch inf(log( d

h
), logC). We observe indeed that V , d and |∇d|2 are equivalent

in the neighborhood of the well.

Applications:
As a first corollary, we can compare different Dirichlet problems correspond-
ing to different open sets Ω1 and Ω2 containing a unique well U attached to an
energy E. If for example Ω1 ⊂ Ω2, one can prove the existence of a bijection
b between the spectrum of S(h,Ω1) in an interval I(h) tending (as h→ 0) to E
and the corresponding spectrum of S(h,Ω2) such that |b(λ)−λ| = O(exp−S/h)
(under a weak assumption on the spectrum at ∂I(h)). S is here any constant
such that

0 < S < d(V−E)+(∂Ω1, U) .
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This can actually be improved (using more sophisticated perturbation the-
ory) as O(exp−2S/h).

Let us just give a hint about the proof. If (u
(2)
h , λ

(2)
h ) is a family of spectral

pairs of the Dirichlet realization of the Schrödinger in Ω2. Then if χ is a cutoff
function with compact support in Ω1, which is equal to 1 on a neighborhood
of U , then we can use χu

(2)
h as a quasimode. We observe indeed that

(−∆h,A + V − λ
(2)
h )(χu

(2)
h ) = −2(∇χ) · (∇h,Au

(2)
h ) − h2(∆χ)u

(2)
h .

Then the choice of χ and the Agmon estimates on u
(2)
h permit to show that

the right hand side is exponentially small as stated.

Remark 5.5.

It can be useful to extend the properties of the eigenvectors to the decay
properties of the kernel of the resolvent of the operator. The reader is invited
to look in [DiSj].

5.5 The case with magnetic fields but without electric

potential

In this case, there is no hope to use the result for V , which does not create any
localization. The idea is that the role previously played by V (x) is replaced
by h|B(x)| (or more generally to x 7→ Tr +(B(x)). This is due to (2.53) in
the case n = 2 (B(x) of constant sign) and to their extensions. The Agmon
distance will be attached to h

[
Tr +(B(x)) − infx Tr +(B(x))

]
dx2.

The proof is in two steps: treatment of the case with constant magnetic field
and then partition of unity for controlling the comparison with this case.
This explains, due to the presence of h before |B|, that the decay is measured
through a weight in exp− φ√

h
, where φ should satisfy :

|∇φ|2 ≤ Tr +(B(x)) − inf
x

Tr +(B(x)) ,

outside a neighborhood of the magnetic well, that is the set of points where
Tr +(B(x)) = infx Tr +(B(x). We will come back to this in Section 7.
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6 On some questions coming from supercon-

ductivity

6.1 Introduction to the problem in superconductivity

This problem is physically described in all the basic books in physics (see
for example Saint-James-De Gennes [SdG]). A lot of articles appear which
are devoted to this question. For mentioning some, let us cite the contribu-
tions by Bernoff-Sternberg [BeSt], which remain at a formal level, the paper
by Bauman-Phillips-Tang [BaPhTa] treating in detail the case of the disk
and the papers by Giorgi-Phillips [GioPh], Lu-Pan [LuPa1, LuPa2, LuPa3,
LuPa4, LuPa5] and Del Pino-Fellmer-Sternberg [PiFeSt] for a mathemati-
cally rigorous analysis in general domains, and more recent contributions
by Helffer-Morame [HelMo3, HelMo4, HelMo5], Fournais-Helffer [FoHel1,
FoHel2, FoHel3], Bonnaillie [Bon] ....

Let us describe the mathematical problem. It is naturally posed for do-
mains in R

3, but for cylindrical domains in R
3, it is natural (but not com-

pletely justified mathematically) to consider a functional which is defined
in a domain Ω ∈ R2, where Ω is the section of the cylinder. This explains
why we consider models in R2. The behavior of the sample can be read
on the properties of the minimizers (ψ,A) in H1(Ω; C) ×H1(R2; R2) of the
Ginzburg-Landau functional G :

Ĝ(ψ , A) =

∫

Ω

{|(∇− iκA)ψ|2 +
κ2

2
(|ψ|2 − 1)2} dx+κ2

∫

R2

|curlA−H|2 dx .
(6.1)

Here Ω is a regular bounded set, ψ is called the order parameter and A is a
magnetic potential defined on Rn. H is a magnetic vector field when n = 3
and is called the external magnetic field or the applied magnetic field. In
the case n = 2, we identify this magnetic field to a function (thinking that
it is the intensity of a magnetic field vector, which is parallel to the axis of
the cylinder). It is initially defined on Rn but in the case when Ω is simply
connected, one can reduce everything to Ω and consider the functional

G(ψ , A) =

∫

Ω

{|(∇− iκA)ψ|2 +
κ2

2
(|ψ|2 − 1)2} dx+ κ2

∫

Ω

|curlA−H|2 dx .
(6.2)

Here we will always assume that Ω is connected and simply connected.
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The parameter κ is a characteristic of the sample. Traditionally one makes
the distinction between Type I materials, corresponding to κ small, and the
Type II materials, corresponding to large κ. Mathematically, this leads to
the analysis of various asymptotic regimes like κ→ 0 or κ→ +∞. It is this
last case that will be analyzed here. In order to measure the dependence on
the size of the external magnetic field, we write H = σHe.

As Ω is bounded, the existence of a minimizer is rather standard, we
will prove this existence in the next section. The minimizer should satisfy
the Euler-Lagrange equation, which is called in this context the Ginzburg-
Landau system [SdG].

This equation reads

(∇− iκA)2ψ = −κ2(1 − |ψ|2)ψ
curl 2A = − i

2κ
(ψ∇ψ − ψ∇ψ) − |ψ|2A

}
in Ω ; (6.3a)

(∇κAψ) · ν = 0
curlA − H = 0

}
on ∂Ω . (6.3b)

Here, for A = (A1, A2), curlA = ∂x1
A2 − ∂x2

A1, and

curl 2A = (∂x2
(curlA),−∂x1

(curlA)) .

Notice that the weak formulation of (6.3) is

Re

∫

Ω

(∇− iκA)φ · (∇− iκA)ψ − κ2(1 − |ψ|2)φψ dx = 0 , (6.4a)
∫

Ω

(curlα)(curlA − H) dx =
i

κ

∫

Ω

Im
(
ψ(∇− iκA)ψ

)
α dx , (6.4b)

for all (φ, α) ∈ H1(Ω) ×H1(Ω; R2).
Due to the gauge invariance of the functional, it is better to restrict

(without loss of generality) to the smaller set H1(Ω,C) ×H1
div(Ω), where

H1
div(Ω) =

{
V = (V1, V2) ∈ H1(Ω)2

∣∣

div V = 0 in Ω , V · ν = 0 on ∂Ω
}
. (6.5)

The space H1
div(Ω) inherits the topology (norm) from H1(Ω; R2).

The analysis of the system (6.3) can be performed by PDE techniques.
We note that this system is (weakly) non linear, that H1(Ω) is compactly
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imbedded in L6(Ω) and that, if divA = 0, curl 2A = (−∆A1,−∆A2). One
can show in particular that the solution in H1(Ω,C)×H1

div(Ω) of this “ellip-
tic” system is actually, when Ω is regular, in C∞(Ω).

It is well known that there exists a unique vector field F in H1
div(Ω) such

that

curl F = He and div F = 0 , in Ω,

F · ν = 0 on ∂Ω.

We observe that (0, σF) is a trivial critical point of the functional G, i.e. a
trivial solution of the Ginzburg-Landau system. It is therefore natural to
discuss as a function of σ, whether this pair is a local or a global minimizer.
When σ is large, one can show [GioPh] (see Subsection 6.3) that this solu-
tion is effectively the unique global minimizer. One says that in this case
the superconductivity is destroyed. In other words, the order parameter is
identically zero in Ω. It is then natural to try to follow the property of the
minimizers when decreasing σ starting from +∞ and to determine when the
trivial solution (also called the normal solution) is no more a global minimum
or a local minimum.

In the analysis, we will need the following standard result (see for example
[Tem]) on the curl-div system

Proposition 6.1.

If Ω is bounded, regular and simply connected, then curl defines an isomor-
phism from H1

div(Ω) onto L2(Ω).

6.2 Existence of a minimizer

Using the discussion in the previous section it is natural to impose the con-
dition that A ∈ H1

div(Ω).

Theorem 6.2. Suppose that Ω is bounded and simply connected with smooth
boundary. For all κ ∈ R and H ∈ L2(Ω), the functional G on H1(Ω)×H1

div(Ω)
has a minimizer.

Proof.
Let (ψn,An) ∈ H1(Ω) ×H1

div(Ω) be a minimizing sequence, i.e.

lim
n→∞

G(ψn,An) = inf
(ψ,A)∈H1(Ω)×H1

div
(Ω)

G(ψ,A). (6.6)
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Step 1. {(ψn,An)} is bounded in H1(Ω) ×H1(Ω).
By using that G is the sum of three positive terms, we get the existence of a
constant E0 > 0 such that

Tn ≤ E0, (6.7)

where Tn is any of the three terms
∫

Ω

|(∇− iκAn)ψn|2 dx,
∫

Ω

(|ψn|2 − 1)2 dx,

∫

Ω

|curlAn −H|2 dx .

Since H is a fixed function in L2(Ω) and divAn = 0, we get from Propo-
sition 6.1 that An is uniformly bounded in H1(Ω).

Notice, using Cauchy-Schwarz and the inequality 2ab ≤ ǫa2 + ǫ−1b2 for
any ǫ > 0, that

∫

Ω

(|ψn|2 − 1)2 dx =

∫

Ω

|ψn|4 − 2|ψn|2 + 1 dx

≥ ‖ψn‖4
4 − 2‖ψn‖2

4

√
|Ω| ≥ 1

2
‖ψn‖4

4 − 2|Ω|.

Therefore, ψn is uniformly bounded in L4(Ω), and therefore—using again the
Cauchy-Schwarz inequality—in L2(Ω).

The boundedness of An in H1(Ω) implies, by the Sobolev embedding the-
orem, that An is uniformly bounded in L4(Ω). Combined with the L4-bound
on ψn this gives uniform boundedness of Anψn in L2(Ω). So, considering the
uniform bound, ∫

Ω

|∇ψn − iκAnψn|2 dx ≤ E0,

this implies that {ψn}n is uniformly bounded in H1(Ω).
Step 2. A weak limit is a minimizer.
We now extract a subsequence, again denoted by {(ψn,An)}, converging
weakly in H1(Ω) ×H1(Ω) to some (ψ,A) ∈ H1(Ω) ×H1(Ω). Of course, by
passage to the limit

divA = 0, in Ω

in the sense of distributions. Furthermore, since the inclusion H1(Ω) →
Hs(Ω) is compact for all s < 1 and the restriction Hs(Ω) → L2(∂Ω) is
continuous for all s > 1/2, we also get

A · ν = 0, on ∂Ω.
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Thus A ∈ H1
div(Ω). We can estimate,

∫

Ω

|curlA−H|2 dx = lim
n

〈curlA−H | curlAn −H〉L2×L2

≤ ‖curlA−H‖2 lim inf
n

‖curlAn −H‖2.

Therefore,

∫

Ω

|curlA−H|2 dx ≤ lim inf
n

∫

Ω

|curlAn −H|2 dx. (6.8)

The same type of calculation gives that

∫

Ω

|(∇− iκA)ψ|2 dx ≤ lim inf
n

∫

Ω

|(∇− iκAn)ψn|2 dx. (6.9)

The compactness of the Sobolev embedding H1(Ω) → Lp(Ω), for p = 2, 4
implies that

∫

Ω

(|ψ|2 − 1)2 dx,= lim
n

∫

Ω

(|ψn|2 − 1)2 dx. (6.10)

Combining (6.6) with (6.8), (6.9) and (6.10) shows that (ψ,A) is a minimizer.

6.3 The result of Giorgi-Phillips

Let us give a rather simple proof of this result.
The first important property is

Proposition 6.3.

If (ψ,A) is a minimizer of G, then for (almost) all x ∈ Ω,

|ψ(x)| ≤ 1 . (6.11)

Sketch of a proof via the maximum principle.
Assuming the regularity of the minimizer (up to the boundary), we can apply
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the Maximum principle to the function u(x) = |ψ(x)|2. We observe that u
satisfies8

1

2
∆u+ κ2u(1 − u) = |∇κAψ|2 . (6.12)

This equation is a direct consequence of the first Ginzburg-Landau equation.
We multiply it by ψ̄ and take the real part. The formula is then a consequence
of the identity

Re
(
∆κAψ · ψ̄

)
=

1

2
∆(|ψ|2) − |(∇− iκA)ψ|2 ,

with ∆κA = (∇− iκA)2 .
This in particular implies :

1

2
∆u+ κ2u(1 − u) ≥ 0 . (6.13)

Now if u admits a maximum which is > 1 then we get a contradiction as
follows. If this maximum is attained at one point of Ω, we have indeed
∆u ≤ 0 and κ2u(1 − u) < 0 in contradiction with (6.13). If the maximum
was attained at the boundary, we should use in addition the fact that u
satisfies the usual Neumann boundary condition.

Instead of giving the necessary justifications for the above proof, we prefer
the following attractive short argument from [DGP].

Proof of Proposition 6.3.
With the notation [t]+ = max(t, 0), we define Ω+ := {x ∈ Ω : |ψ(x)| > 1},
and the following functions on Ω+,

f :=
ψ

|ψ| , ψ̃ := [|ψ| − 1]+f .

Notice that [t]+ = t+|t|
2

, so applying Proposition 2.8 twice, we see that

[|ψ| − 1]+ ∈ H1(Ω), and ∇[|ψ| − 1]+ = 1Ω+
∇[|ψ| − 1]+ = 1Ω+

∇|ψ|.
8Here we cheat a little because we do not control in detail a possible problem near the

zeroes of ψ. But this is not a deep problem because we have to show here that u can not
be too large so the zero set of u cannot be a problem.
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Let χ ∈ C∞(R) be increasing and satisfy,

χ(t) = 0 on t ≤ 1/4, χ(t) = 1 on t ≥ 3/4,

and define
G(z) = χ(|z|) z|z| , f̃ := G(ψ).

Then, since G is smooth with bounded derivatives, the chain rule gives that
f̃ ∈ H1(Ω) (see for instance [LiLo, Theorem 6.16]). Furthermore, ψ̃ = [|ψ| −
1]+f̃ , so

(∇− iA)ψ̃ = 1Ω+
f̃∇|ψ| + [|ψ| − 1]+(∇− iA)f̃

Now, clearly,

1Ω+
(∇− iA)ψ = 1Ω+

(∇− iA)(|ψ|f̃) = 1Ω+

{
f̃∇|ψ| + |ψ|(∇− iA)f̃

}

So therefore,

Re
{

(∇− iA)ψ̃ · (∇− iA)ψ
}

= 1Ω+

(∣∣∇|ψ|
∣∣2 + (|ψ| − 1)|ψ|

∣∣(∇− iA)f̃
∣∣2
)
.

Here we used that on Ω+, we have |f | = |f̃ | = 1, and therefore

f∇f + f∇f = ∇|f |2 = 0,

so 1Ω+
f∇f takes values in iR2.

Thus we have, by the weak form of the first Ginzburg-Landau equation,
and the support of ψ̃ǫ

0 = Re
{∫

Ω

(∇− iA)ψ̃(∇− iA)ψ + ψ̃(|ψ|2 − 1)ψ dx
}

=

∫

Ω+

∣∣∇|ψ|
∣∣2 + (|ψ| − 1)|ψ|

∣∣(∇− iA)f̃
∣∣2 + (1 + |ψ|)(|ψ| − 1)2|ψ| dx.

Since the integrand is non-negative, we easily conclude that Ω+ has measure
zero.

We now assume that we have a non normal minimizer for G. This means
that

G(ψ,A) ≤ κ2

2
|Ω| (6.14)
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and ∫

Ω

|ψ|2dx > 0 . (6.15)

Condition (6.14) implies the following inequality :
∫

Ω

|(∇− iκA)ψ|2 dx+ κ2

∫

Ω

|curlA−H|2 dx ≤ κ2

∫

Ω

|ψ(x)|2 dx . (6.16)

We will now show that this last inequality will permit the control of∫
Ω
|(∇− iκσF)ψ|2 dx.
Without loss of generality, we can assume that A satisfies the additional

condition
divA = 0 in Ω , A · ν = 0 on ∂Ω . (6.17)

We now use the result Proposition 6.1 on the curl-div system to conclude
that there exists a constant CΩ such that

‖V‖2
L2 ≤ CΩ ‖curlV‖2

L2(Ω) , ∀V ∈ H1
div(Ω) . (6.18)

We now compare
∫
Ω
|(∇ − iκσF)ψ|2 and

∫
Ω
|(∇ − iA))ψ|2. A trivial

estimate is
∫

Ω

|(∇− iκσF)ψ|2 ≤ 2‖(∇− iκA)ψ‖2 + 2κ2‖(A− σF)|ψ| ‖2 . (6.19)

Implementing (6.11) and (6.18) gives
∫

Ω

|(∇− iκσF)ψ|2 ≤ 2

∫

Ω

|(∇− iκA)ψ|2 + 2CΩκ
2‖curl (A− σF)‖2 . (6.20)

This leads to
∫

Ω

|(∇− iκσF)ψ|2 ≤ (2 + 2CΩ)κ2

∫

Ω

|ψ|2dx . (6.21)

But ψ satisfies (6.15), so we finally obtain

µ(1)(σκF) ≤ (2 + 2CΩ)κ2 . (6.22)

But we will see in the next section, by semi-classical techniques that there
exists C0(Ω) > 0 and h0(Ω) > 0 such that if

σκ ≥ 1

h0
, (6.23)
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then

µ(1)(σκF) ≥ 1

C0(Ω)
σκ . (6.24)

So we have shown that if, for some pair (κ, σ) satisfying (6.23), a non normal
minimizer exists then

σ < (2 + 2CΩ)C0(Ω)κ .

This can be reformulated in the following way

Theorem 6.4 (Giorgi-Phillips).
Suppose that H = σHe, where He > 0, in the definition of the Ginzburg-
Landau functional. If Ω is simply connected, there exists a constant C(Ω) > 0
such that if

σ > C(Ω) max(κ,
1

κ
) ,

then G has as unique minimizer (up to gauge transform) the normal solution
(0, σF).

Remark 6.5.

We emphasize that the result is true for any κ > 0. But as t = κσ tends
to 0, µ(1)(tF) is O(t2). We will analyze this question in the next subsection.
As observed in [GioPh], one can improve the theorem, assuming κ ≤ 1 by
saying that there exists C(Ω) such that if σ > C(Ω), then G has as unique
minimizer (up to gauge transform) the normal solution (0, σF).

Remark 6.6.

The fact that curlF is constant does not play an important role. A weaker
assumption of non vanishing of curlF will be enough for showing that as
σ → +∞ the unique minimizer is the normal solution. See Remark 2.22.

6.4 Perturbation theory and analysis of the weak κ

situation

In this subsection, we present some results of X. Pan [Pan3] (see also Bolley-
Helffer for the analysis of a 1-dimensional reduced model).

If A satisfies the two conditions A · ν = 0 on ∂Ω and divA = 0 in Ω, the
domain the Schrödinger realization is fixed and the dependence with respect
to κ is analytic. We can then apply Kato’s theory (analytic perturbation
theory) to the analysis of the groundstate energy. For κ = 0, ∆A is simply
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the Neumann realization of the Laplacian in Ω. The groundstate energy is
0 and this is an eigenvalue of multiplicity 1 (Ω is assumed to be connected).
The associated eigenfunction can be chosen as

ϕ0 =
1

|Ω| 12
. (6.25)

We consequently know that, for κ small (κ ∈] − κ0,+κ0[) enough, the
groundstate eignevalue remains simple and admits the expansion

µ(1)(κA) ∼
∑

j≥1

κjµj ,

as κ→ 0.

But the diamagnetic inequality immediatly implies that µ1 = 0. So we
know that

µ(1)(κA) ∼
∑

j≥2

κjµj , (6.26)

and it is interesting to compute µ2.
This can be done by using formal expansions in the following way. We look
for an eigenvalue admitting expansion (6.26) and an eigenfunction

ϕ(1)(κA)(x) ∼
∑

j≥0

κjϕj . (6.27)

Moreover, we actually do not loose in generality by adding the condition that
ϕj is orthogonal to ϕ0 for j ≥ 1. This can be rewritten in the form

∫

Ω

ϕjdx = 0 ,

for j = 1, . . . , n.
We now write formally that

−∆κAϕ
(1)(κA) − µ(1)(κA)ϕ(1)(κA) ∼ 0 . (6.28)

We note that with our choice of gauge

−∆κA = −∆ + 2iκA · ∇ + κ2|A|2 .
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We denote by R0 the operator defined by

R0 := Π0∆
−1Π0 ,

where Π0 is the projector on the first eigenfunction.
Computing the coefficients of each powers of κ in (6.28), we get the equa-

tions (we just write the first equations....). The coefficient of κ0 is 0. Let us
look as the coefficient of κ

−∆ϕ1 = −2iA∇ϕ0 = 0 . (6.29)

We can consequently choose ϕ1 = 0.
Let us now look at the coefficient of κ2. Taking account of the previous
equation, we obtain :

−∆ϕ2 − µ2ϕ0 + |A|2ϕ0 = 0 . (6.30)

This equation can be solved if and only if

µ2 =

∫

Ω

|A|2dx .

This gives the value of µ2, which is non zero iff the magnetic field curlA is
non identically 0. We are also very happy to verify that µ2 is positive, as
predicted by the diamagnetic inequality. For this value of µ2, one can then
define ϕ2 by

ϕ2 :=
1

|Ω| 12
R0|A|2 .

It is easy to see that one can continue to solve uniquely the equations. The
necessary condition for solving determines indeed at each step µj.

Remark 6.7.

In the previous subsection, we can apply this result with κ replaced by κσ, and
A replaced by F. In this case, we note that one solution σ(κ) of µ(σκF) = κ2,
admits the expansion (for κ small)

σ(κ) ∼
∑

j

σjκ
j ,

with

σ0 = µ
− 1

2

2 , µ2 =

∫

Ω

|F|2dx .
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6.5 Critical fields and Schrödinger operators with mag-

netic field

This leads (assuming that He is constant and of intensity one) to the
definition

HC3
(κ) = inf{σ > 0 : (0, σF) is the unique global minimizer of G}. (6.31)

So HC3
(κ) is the bottom of the set

N (κ) := {σ > 0 : (0, σF) is the unique global minimizer of G} . (6.32)

The first result that we would like to mention is essentially due to Lu-Pan
(cf also Bauman-Phillips-Tang [BaPhTa] for the case of the disk). These
theorems are related to the analysis of the Neumann realization of −(∇ −
iA)2. It is useful to observe the strong connections between the critical field
HC3

(κ) and the smallest eigenvalue µ(1)(A) of this realization. One first
observes the following elementary lemma (cf [LuPa1]) :

Lemma 6.8. .

• If µ(1)(κσF) < κ2, then G has a non trivial minimizer.

• If G has a non trivial minimizer (ψκ,σ,Aκ,σ) then µ(1)(κAκ,σ) < κ2.

Let us give the proof which is easy and enlightening. For the first state-
ment, it is easy to see that if u1 is a normalized eigenfunction associated
with µ(1)(κσF) and if we consider the pair (λu1, σF) we get, for 0 < |λ|
small enough, an energy which is strictly less than the energy of the normal
solution (0,F). We have indeed

G(λu1, σF) − G(0, σF) = |λ|2(µ(1)(κσF) − κ2) + |λ|4
∫

Ω

|u1(x)|4 dx .

For the second statement, we observe that

µ(1)(κAκ,σ)‖ψκ,σ‖2 = ‖(∇κAκ,σ
ψκ,σ‖2 ≤ κ2‖ψκ,σ‖2 +G(ψκ,σ,Aκ,σ)−G(0, σF) .

This gives the inequality with ≤ instead of <. A finer analysis, observing
that

∫
|ψκ,σ|4 dx > 0 if ψκ,σ is not trivial, gives the stronger result. The

lemma is proved.
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Remark 6.9.

The previous proof gives also an upper bound for the infimum of the Ginzburg-
Landau functional (ψ,A) 7→ G(ψ,A). Optimizing with respect to λ in the
proof of the previous lemma gives indeed :

inf
ψ,A

G(ψ,A) ≤ κ2|Ω|
2

− 1

4

(µ(1)(κσF) − κ2)2

∫
|u1(x)|4 dx

.

Remark 6.10.

The second important remark is that ψκ,σ is, using the first Ginzburg-Landau
equation, a solution of :

−(h∇− i
Aκ,σ

σ
)2ψκ,σ + Vκ,σψκ,σ −

1

σ2
ψκ,σ = 0 , (6.33)

where
h = 1/(κ · σ) , Vκ,σ = σ−2|ψκ,σ|2 .

If one shows by a priori estimates that Aκ,σ

σ
is near F and that ψκ,σ is small in

L∞ in the asymptotic regime considered here (properties established mainly
in [LuPa4] and improved in [HePa]), it is not too surprising to think that
the analysis which will be presented in the next section of the ground state of
−(h∇−iF)2 as h→ 0 will still be valid for the order parameter corresponding
to the minimizer.

Remark 6.11.

All these questions are still the object of active research. Natural questions
are :

• Does the equation in σ,

µ(1)(κσF) = κ2 ,

have a unique solution for κ large enough?

• Is this unique solution the critical field HC3(κ) ?

Notice that Theorem 2.12 can be used to give an affirmative answer to the
first question if one can prove a sufficiently precise asymptotic expansion for
the lowest eigenvalue µ(1)(κσF). We refer to [FoHel2, FoHel3] for the most
recent results around the analysis of this third critical field.
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7 Main results on semi-classical bottles and

proofs

7.1 Introduction

If one can naturally refer to Kato and, at the end of the seventies’s to Avron-
Herbst-Simon [AHS] or Combes-Schrader-Seiler [CSS] for the mathematical
analysis of the problem, the implementation of semi-classical techniques for
the analysis of the ground state appears first in [HelSj7] and then in [HelMo2].
Very roughly, it is shown in [HelMo2] that, if Ω = Rn, h|curlA(x)| plays the
role of an effective electric potential. By this we mean that the analysis of the
operator : −h2∆ + h|B(x)|, can give a good information for the localization
of the ground state. The boundary case was less analyzed. Of course the
case of the Dirichlet realization does not lead to really new phenomena in
comparison with the case Ω = Rn, at least if the condition

b < b′ , (7.1)

is satisfied, where we used the notations :

inf
x∈Ω

|B(x)| = b , inf
x∈∂Ω

|B(x)| = b′ . (7.2)

7.2 Main results

We recall that we have given a rough asymptotic estimate for the Dirichlet
realization in dimension 2 (see Theorem 2.16) and that by the minimax this
gives an upper bound in the case of Neumann. The first “rough” theorem
for Neumann is the following :

Theorem 7.1.

lim
h→0

1

h
inf σ(PN

h,A,Ω) = min(b,Θ0b
′) . (7.3)

The points where the minima of |B| are sometimes called magnetic wells
for the energy b. The decay of the ground state outside the wells can be
estimated (cf [Br], [HeNo2]) as a function of the Agmon distance associated
to the so called Agmon metric (|B| − b)dx2, where dx2 denotes the euclidean
metric. Note that this metric is degenerate.
We recall that this estimate is very easy to get from (2.53) in the special case
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when n = 2 and when the magnetic field has a constant sign. Here 〈· | ·〉
denotes the scalar product in L2(Ω) and ‖ · ‖ the corresponding norm.
In the general case. one can get a similar result but with a remainder in
O(h

5

4 )‖u‖2 (cf [HelMo3], Theorem 3.1).
As in the case when A = 0 but an electric potential V is added, it is

possible to discuss the various asymptotics in function of the properties of B
near the minima (cf [HelMo2, HelMo3, Mon, Shi, Ue1, Ue2] or more recently
[KwPa]). As we shall see later, this property is no more true in the case of
the Neumann realization. The infimum b of |B(x)| on Ω is not necessarily the
right quantity for analyzing the bottom of the spectrum as (7.1) is satisfied.
Of course, by direct comparison of the variational spaces corresponding to
Dirichlet and Neumann, one knows that the smallest eigenvalue µ(1)(h) of
the Neumann realization PN

h,A,Ω of Ph,A,Ω is bounded from above by λ(1)(h)
(but the lower bound (2.58) is not correct in general).

One important theorem that we would like to present is

Theorem 7.2. .
If the magnetic field is constant and not zero, then any ground state corre-
sponding to the Neumann realization is localized as h→ 0 near the boundary
of Ω.

This theorem is general and does not depend on the dimension.
These two theorems are not satisfactory in the sense that they are not

necessarily optimal. In the case n = 2, we can state [HelMo3]

Theorem 7.3. .
Let us assume that n = 2. If the magnetic field is constant and not zero,
then any ground state corresponding to the Neumann realization is localized
as h→ 0 near the boundary of Ω at the points of maximal curvature.

This gives the general answer for the case of dimension 2. The case
of dimension 3 was more difficult and only solved quite recently [HelMo4,
HelMo5].

Although the methods of proof can also lead to localization results for
the ground state (see [HelMo3], [HelMo4], [HelMo5]) or more generally for
minimizers of the Ginzburg-Landau functional (see [LuPa1]-[LuPa5], [HePa]),
but this will not be discussed here. This is actually explored in [Pan3].
In the Dirichlet case, the inequality (2.53) was (at least when the condition
B(x) > 0 is satisfied) the starting point of the analysis of the decay. This is
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no more the case when Neumann boundary conditions are assumed, but we
can keep the general strategy as developed in [HelMo3].
We assume that Ω is a bounded, regular open set and that

B(x) > 0 . (7.4)

7.3 Upper bounds

The upper bounds are based on the construction of suitable quasimodes.
Gaussians can be used in the case when b < Θ0b

′. In the case when Θ0b
′ < b

one should use trial functions obtained by multiplying a boundary tangen-
tial Gaussian by a “normal” solution constructed with the help of the first
eigenfunction of the model on R+ (see Subsection 3.3). More precisely, we
can take near one point x0 of the boundary, where |B(x)| = b′, a system of
coordinates x 7→ (s, t) such that t(x) denotes the distance to the boundary
and s(x) is a parametrization of the boundary with s(x0) = 0. In these
coordinates, the “principal part” will look like

h2D2
t + (hDs − b′t)2

on the half plane t > 0. (It is better to think that we should consider
S1×]0, t0] with Neumann at t = 0 and Dirichlet at t = t0).
The first guess in order to have a lower energy is to look for

(t, s) 7→ h−
1

4e
iρ0

s√
hu0(h

− 1

2βt)

where R+ ∋ v 7→ u0(v) is the eigenvalue for the half-line model with ξ = ξ0
and magnetic field equal to 1 (β and ρ0 being suitably chosen) in order to
get the minimal energy (for the moment it is an L∞-eigenfunction).

This leads to

β2D2
v + (ρ0 −

b′

β
v)2u0 = Θ0b

′v .

So we should take the pair (β, ρ0) with β =
√
b′ and ρ0 = ξ0β.

It then remains to localize the candidate in the s variable closely to s = 0
and to localize in the t direction with a cut-off function t 7→ χ(t) with compact
support in [0, t0) and to localize in the s direction with a function s 7→ χ0(s)
with support in a neighborhood of 0. So the trial function that we choose
(for an h independent constant and for α > 0 arbitrary) is

φ0(t, s; h) = C h−
5

16 χ(t)χ0(s) exp−α s
2

h
1

4

exp

(
iξ0

√
b′
s√
h

)
u0

(
(b′/h)

1

2 t
)
.
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Computing the energy of this trial function, this leads to :

µ(1)(h) ≤ min(b,Θ0b
′) h+ o(h) , (7.5)

which is enough for the analysis of the decay. Note also that the upper bound
involving b = inf B can also be obtained by using [HelMo3].

7.4 Lower bounds

Let 0 ≤ ρ ≤ 1. We first claim that there exists C such that, for any δ0 > 0,
we can, by scaling a standard partition of unity of R2, and by restricting it
to Ω, find a partition of unity χhj satisfying in Ω,

∑

j

|χhj |2 = 1 , (7.6)

∑

j

|∇χhj |2 ≤ C δ−2
0 h−2ρ , (7.7)

and
supp(χhj ) ⊂ Qj = B(zj, δ0 h

ρ) , (7.8)

where B(c, r) denotes the open disc in R2 of center c and radius r. Moreover,
we can add the property that :

either suppχj ∩ ∂Ω = ∅ , either zj ∈ ∂Ω . (7.9)

According to the two alternatives in (7.9), we can decompose the sum in
(7.6) in the form : ∑

=
∑

int

+
∑

bnd

,

where “int” is in reference to the j’s such that zj ∈ Ω and “bnd” is in
reference to the j’s such that zj ∈ ∂Ω.

The second point is to implement this partition of unity in the following
way :

qNh (u) =
∑

j

qh(χ
h
ju) − h2

∑

j

‖ |∇χhj | u ‖2 , ∀u ∈ H1(Ω) . (7.10)
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Here qNh (or qNh,A, if we want to keep the reference to the magnetic potential)
denotes the quadratic form :

qNh,A(u) =

∫

Ω

|h∇u− iAu|2 dx , (7.11)

and we recall that ‖ · ‖ denotes the L2-norm in Ω.
This formula is usually called IMS formula (see [CFKS]) but is actually much
older (see [Mel], [Ho]).
If aNh,A is the associated sesquilinear form, (7.10) is the consequence of the

identity, for any function χ ∈ C∞(Ω) and any u ∈ H1(Ω) :

qNh,A(χu) = Re aNh,A(u, χ2u) + h2‖ |∇χ|u ‖2
L2(Ω) . (7.12)

We will also use later the property that, for any function χ ∈ C∞(Ω) and
any u in the domain of PN

h,A,Ω, that is for any u in the space

D(PN
h,A,Ω) := {v ∈ H2(Ω) | ν · (h∂ − iA)u/∂Ω = 0

we have

qNh,A(χu) = Re 〈PN
h,A,Ω u | χ2u〉L2(Ω) + h2‖ |∇χ| u ‖2

L2(Ω) . (7.13)

We can rewrite the right hand side of (7.10) as the sum of three (types
of) terms.

qh(u) =
∑

int

qh(χ
h
ju) +

∑

bnd

qh(χ
h
ju) − h2

∑

j

‖ |∇χhj | u ‖2 , ∀u ∈ H1(Ω) .

(7.14)
For the last term in the right hand side of (7.14), we get using (7.7) :

h2
∑

j

‖ |∇χhj | u ‖2 ≤ C h2−2ρ δ−2
0 ‖u‖2 . (7.15)

This measures the price to pay when using a fine partition of unity : If ρ is
large, the error is big as h2−2ρ. We shall see later what could be the best
choice of ρ or of δ0 for our various problems (note that the play with δ0 large
will be only interesting when ρ = 1

2
).
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The first term in the right hand side of (7.14) can be estimated from
below by using (2.53). The support of χhju is indeed contained in Ω. So we
have : ∑

int

qh(χ
h
ju) ≥ h

∑

int

∫
B(x)|χhju|2 dx . (7.16)

The second term in the right hand side of (7.14) is the more delicate and
corresponds to the specificity of the Neumann problem. We have to find a
lower bound for qh(χ

h
ju) for some j such that zj ∈ ∂Ω. We emphasize that

zj depends on h, so we have to be careful in the control of the uniformity.
Let z be a point in ∂Ω. The boundary being regular, we can, by a change of
coordinates in a small neighborhood of this point, rewrite the form qh,A for
u’s with support in this neighborhood of z :

qh,A(u) =

∫

x̃2>0

∑
gk,ℓ(x̃)(ih∂x̃k

ũ+Ak(x̃)ũ)·(ih∂x̃ℓ
ũ+ Aℓ(x̃)ũ) det(g(x̃)) dx̃ .

Here we can assume that the new coordinates of z are (0, 0) and we can
also assume that the matrix g is the identity at z :

gk,ℓ(0) = δk,ℓ .

Of course g depends on z, but all the estimates we could need on the deriva-
tives of g will be uniform in z.
The game is now to compare for u’s with support in a ball of the type
B(z, 2Cδ0h

ρ) qh,A(u) with the quadratic form :

qh,Ã(ũ) =

∫

x2>0

|(ih∂x1
− 1

2
B(z)x2)u|2 + |(ih∂x2

+
1

2
B(z)x1)u|2 dx .

We have omitted for simplicity the tilde’s in the right hand side. The com-
parison is not direct but as an intermediate step, we have to use a gauge
transformation (multiplication by exp−iφj

h
) associated to a C∞ function φj

such that :
ωA = ωAnew,j

− dφj ,

with
Anew,j(zj) = 0 ,

|Anew,j(x) −
1

2
(B(zj)(−x2, x1))| ≤ C|x|2 .
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In this formula, ωA is the one-form attached to the vector field A (cf (2.1)).
Let us emphasize that C is independent of j. Let us also introduce for the
next formula : Alinj := 1

2
(B(zj)(−x2, x1)).

By comparison in each ball with the constant magnetic field case, we get,

qh,A(χhju) ≥ (1 − Ch2θ − Cδ0h
ρ)qh[Alinj ](exp{− i

h
φj}χhju)

− Ch−2θ‖|x|2χhju‖2

≥ (1 − Ch2θ − Cδ0h
ρ)qh[Alinj ](exp{− i

h
φj}χhju)

− Ch4ρ−2θ‖χhju‖2 .

We can now use the result concerning the half -plane in order to get :

qh,A(χhju) ≥ (1 − Ch2θ − Cδ0h
ρ)hΘ0

∫
B(zj)|χhju|2 dx− Ch4ρ−2θ‖χhju‖2 .

(7.17)
We now put together all the estimates and obtain :

qh,A(u) ≥ h
∑

int

∫
B(x)|χhju|2dx

+(1 − Ch2θ − Cδ0h
ρ)hΘ0

∑
bnd

∫
B(zj)|χhju|2 dx

−Ch4ρ−2θ
∑

bnd ‖χhju‖2

−Cδ−2
0 h2−2ρ‖u‖2 .

(7.18)

We have now to optimize our choices of ρ, θ and δ0. If we just want to
get a lower bound of the spectrum, we can first write :

qh,A(u) ≥ hmin (b,Θ0b
′) ‖u‖2

−
(
Ch2θ+1 + Cδ0h

ρ+1 + Ch4ρ−2θ + Cδ−2
0 h2−2ρ

)
‖u‖2 .

Taking ρ = 3
8
, θ = 1

8
, δ0 = 1, we get :

qh,A(u) ≥
(
min(b,Θ0b

′)h− Ch
5

4

)
‖u‖2 . (7.19)

So, taking u = u1
h, where u1

h is a groundstate, we obtain from (7.19) :

Proposition 7.4. .
There exist constants C > 0 and h0 > 0 such that, for all h ∈]0, h0] :

µ(1)(h) ≥ (min(b,Θ0b
′) )h− Ch

5

4 . (7.20)
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But for the control of the decay, we need also to take in (7.18) ρ = 1
2
,

θ = 1
8
, and δ0 large. This gives an estimate which may look weaker but will

be more efficient.

Proposition 7.5. .
There exists C and h0 and, for all δ0 > 0, there exists C(δ0) such that, for
h ∈]0, h0], the following inequality :

qh,A(u) ≥ h
∑

int

∫
B(x)|χhju|2dx

−C(δ0)h
∑

bnd

∫
|χhju|2 dx

−Ch
δ2
0

∑
int

∫
|χhju|2dx .

(7.21)

is satisfied, for all u ∈ H1(Ω).

7.5 Agmon’s estimates

We first observe that if Φ is a real and uniformly Lipschitzian function and
if u is in the domain of the Neumann realization of Ph,A, then we have by a

simple integration by part (see (5.1) and replace φ/h by φ/
√
h) :

Re 〈Ph,Au | exp 2Φ

h
1
2

u〉
= Re 〈(h

i
∇−A)u | (h

i
∇− A) exp 2Φ

h
1
2

u〉
= 〈(h

i
∇− A) exp Φ

h
1
2

u | (h
i
∇− A) exp Φ

h
1
2

u〉 − h‖|∇Φ| exp Φ

h
1
2

u‖2

= qh,A(exp Φ

h
1
2

u) − h‖|∇Φ| exp Φ

h
1
2

u‖2 .

(7.22)

We now take u = uh an eigenfunction attached to the lowest eigenvalue
µ(1)(h). This gives :

µ(1)(h)‖ exp
Φ

h
1

2

u‖2 = qh,A(exp
Φ

h
1

2

u) − h‖|∇Φ| exp
Φ

h
1

2

u‖2 . (7.23)

It remains to reimplement the previous inequality in this new one and to
use the upper bound (7.5).

Let us take Φ(x) = αmax(d(x, ∂Ω), h
1

2 ), where α > 0 has to be deter-
mined. Let us use Proposition 7.5. We first write :

qh,A(exp Φ

h
1
2

u) ≥ h
∑

int

∫
B(x)| exp Φ

h
1
2

χhju|2dx
−C(δ0)h

∑
bnd

∫
|χhj exp Φ

h
1
2

u|2 dx
−Ch

δ2
0

∑
int

∫
| exp Φ

h
1
2

χhju|2dx .
(7.24)
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Let us consider the case when

Θ0b
′ < b . (7.25)

The inequality (7.5) becomes :

µ(1)(h) ≤ Θ0 b
′ h + o(h) . (7.26)

Using (7.22), we now obtain :
(

(b− Θ0b
′) − o(1) − C

δ2
0

− α2

)∑

int

∫
| exp(

Φ

h
1

2

)χhju|2 dx

≤ C(δ0)
∑

bnd

∫
|χhju|2 dx . (7.27)

Taking δ0 large enough,, h0 small enough and α <
√
b− Θ0b′, we finally get

the existence of C such that, for h ∈]0, h0], the estimate :

‖ exp
α d(x, ∂Ω)

h
1

2

uh‖ ≤ C‖uh‖ , (7.28)

is satisfied.
This gives the elements of the proof for the following theorem ([LuPa2,
HelMo3] and [PiFeSt]) :

Theorem 7.6. .
Under condition (7.25), there exists C > 0, α > 0, such that if uh is the
ground state of PN

A,h,Ω, then :

‖ exp
α d(x, ∂Ω)

h
1

2

uh(x)‖H1(Ω) ≤ C‖uh‖L2 . (7.29)

Note that the condition (7.25) is always satisfied when B is constant
because b = b′ and Θ0 < 1.

Remark 7.7. .
On the contrary, when b < Θ0b

′ the ground state decays exponentially out-
side neighborhoods of points where B(x) = b. Note that in this case the
boundary condition does not affect the localization of the ground state or
the asymptotics of the ground state energy (exponentially small effect). The

decay is then estimated by the weight exp−α0dB−b(x)√
h

, where dB−b is the Ag-

mon distance to the minima of B(x) for the potential B(x) − b.
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A Discussion about reduced spaces and gauge

invariance

The first remark is that given Â on an open set Ω̂, one can always find a
gauge transform such that :

div Â = 0 in Ω̂ , Â · ν on ∂Ω̂ . (A.1)

The proof is standard and very simple. Given a general Â, we look for ϕ̂
such that :

div
(
Â + grad ϕ̂

)
= 0 ,

(
Â + ∇ϕ̂

)
· ν on ∂Ω̂ . (A.2)

This reads
∆ϕ̂ = −div Â in Ω̂ , ∂νϕ̂ = −Â · ν on ∂Ω̂ . (A.3)

This a non-homogeneous Neumann problem, whose solution is unique if we
add the condition that ∫

bΩ
ϕ̂ dx = 0 . (A.4)

The proof can be in two steps. We first reduce to the homogeneous case by
choosing ψ̂ in Ω̂ such that

∂νψ̂ = Â · ν on ∂Ω̂ . (A.5)

Then χ̂ = φ̂+ ψ̂, should be a solution of

∆χ̂ = div Â + ∆ψ̂ , ∂νχ = 0 on ∂Ω̂ .

This last equation can be solved if the right hand side is orthogonal to con-
stants, that is, if ∫

bΩ

(
div Â + ∆ψ̂

)
dx = 0 .

But this is an immediate consequence of (A.5). We then find the unique
solution χ̂ by adding the condition

∫

bΩ
χ̂ dx =

∫

bΩ
ψ̂ dx .

Remark A.1.

We note that in this proof the simplyconnectedness of Ω̂ is not used.
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B Variations around the spectral theorem

We just come back to the way one can deduce from the existence of quasi-
modes information on the spectrum of a selfadjoint operators.

B.1 Spectral Theorem

We refer for this part to any standard book in Spectral Theory (for example
Reed-Simon [ReSi] or Lévy-Bruhl [LB]). We recall only that if λ 6∈ σ (A),
then

‖(A− λ)−1‖ ≤ 1

d(λ, σ (A))
. (B.1)

This implies immediately that if there exists ψ ∈ D(A) and η ∈ R such
that ‖ψ‖ = 1 and ‖(A − η)ψ‖ ≤ ǫ, then there exists λ ∈ σ (A) such that
d(λ, η) ≤ ǫ. We emphasize here that there is no assumption of discreteness
of the spectrum.

B.2 Temple’s Inequality

Let A be a selfadjoint operator on an Hilbert space and ψ ∈ D(A). Suppose
that λ is the unique eigenvalue of A in some interval ]α, β[. Suppose in
addition that

η = 〈ψ | Aψ〉 ∈]α, β[

and let
ǫ = ‖(A− η)ψ‖ .

Then it is easy to show that :

η − ǫ2

β − η
≤ λ ≤ η +

ǫ2

η − α
. (B.2)

For the proof we can reduce to the case when η = 0 and simply observe that
(A−α)(A−λ) and (A−β)(A−λ) are positive operators. We can then apply
this positivity property for the vector ψ. Note that this gives an additional
information, only if ǫ is small enough, more precisely

ǫ2 ≤ (β − η)(η − α) . (B.3)
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B.3 Distance between true and approximate eigenspaces

There is a need to generalize this lemma to more general situations and
have an information on the corresponding eigenspaces. We follow here the
presentation of [DiSj].

Let E and F be closed subspaces in a Hilbert space H. Let ΠE and ΠF

be the orthogonal projections on E and F respectively. We can then define
the non-symmetric distance ~d(E,F ) as

~d(E,F ) = sup
x∈E , ‖x‖=1

d(x, F ) . (B.4)

This can be recognized as

~d(E,F ) = sup
x∈E , ‖x‖=1

‖x− ΠFx‖ = ‖(I − ΠF )| E‖ = ‖ΠE − ΠFΠE‖ . (B.5)

Observing that ‖A‖ = ‖A∗‖ in L(H) we finally get :

~d(E,F ) = ‖ΠE − ΠFΠE‖ = ‖ΠE − ΠEΠF‖ . (B.6)

It is easy from the first definition9 to verify that :

~d(E,G) ≤ ~d(E,F ) + ~d(F,G) . (B.7)

Note that ~d(E,F ) = 0 if and only if E ⊂ F .
We then have the following lemmas

Lemma B.1.

If ~d(E,F ) < 1, then (ΠF )|E : E 7→ F is injective and (ΠE)|F has a bounded
right inverse.

The injectivity is easy. If x ∈ E and ΠFx = 0, we get

‖x‖ = ‖x− ΠFx‖ ≤ ~d(E,F )‖x‖ ,
9First observe that

d(x,G) ≤ d(x, F ) + ~d(F,G)‖ΠF x‖ .
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which implies x = 0.
On the other hand, if x ∈ E, we look for y = ΠF z, z ∈ E, such that
x = ΠEy = ΠEΠF z. Writing this as :

x = (I − (ΠEΠF − I))z = (I − (ΠEΠF − ΠE))z ,

we get that if ~d(E,F ) < 1 then

z = (I − (ΠEΠF − ΠE))−1x .

So the right inverse is given by :

(ΠE)−1,r
|F = ΠF (I − (ΠEΠF − ΠE))−1 . (B.8)

Lemma B.2.

If ~d(E,F ) < 1 and ~d(F,E) < 1, then (ΠF )|E and (ΠE)|F are bijective and
~d(E,F ) = ~d(F,E).

Proof.
We have

~d(E,F )2 = sup
x∈E , ‖x‖E=1

(1 − ‖(ΠF )|Ex‖2) .

This implies
inf

x∈E , ‖x‖E=1
‖(ΠF )|Ex‖2 = 1 − ~d(E,F )2 .

This implies that (ΠF )|E is injective with bounded left inverse. Similarly, its
adjoint is (ΠE)|F and has the same property. It follows that they are bijective
and have the same norm. The same property is true for their inverse. But
the last identity can be written as

‖(ΠF )−1
|E‖−2 = 1 − ~d(E,F )2 ,

and we have similarly

‖(ΠE)−1
|F ‖−2 = 1 − ~d(F,E)2 ,

This achieves the proof of the lemma.

Proposition B.3.

Let A be a selfadjoint operator in a Hilbert space H. Let I ⊂ R be a compact
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interval and let ψj (j = 1, . . . , N) N linearly independent vectors in H and
µj (j = 1, . . . , N) in I such that :

Aψj = µjψj + rj , with . (B.9)

Let a > 0 and assume that σ (A) ∩ [(I +B(0, 2a)) \ I] = ∅. Then if E is the
space spanned by the ψj’s and if F is the eigenspace associated to σ (A) ∩ I,
we have

~d(E,F ) ≤ (
∑

j

‖rj‖2)
1

2/(a(λminS )
1

2 ) , (B.10)

where λminS is the smallest eigenvalue of the N×N matrix : S := (〈ψi | ψj〉)ij.

Proof.

Let λ ∈ C \ ({µ1, . . . , µN} ∪ σ (A)). Let I = [α, β]. Then by assumption :

(A− λ)ψj = (µj − λ)ψj + rj ,

which can be written as :

(A− λ)−1ψj = (µj − λ)−1ψj − (A− λ)−1(µj − λ)−1rj . (B.11)

If γR is the oriented boundary of (I +B(0, a)) × i[−R,+R], we have :

ΠFψj =
1

2iπ

∫

γR

(µj − λ)−1ψjdλ− 1

2iπ

∫

γR

(A− λ)−1(µj − λ)−1rjdλ .

The first integral of the right hand side is equal to ψj and the second one
tends as R → +∞ to

1

2iπ

∫ β+a+i∞

β+a−i∞
(A−λ)−1(µj−λ)−1rjdλ−

1

2iπ

∫ α−a+i∞

α−a−i∞
(A−λ)−1(µj−λ)−1rjdλ .

With λ = β + a+ it or λ = α− a+ it, we have

‖(A− λ)−1(µj − λ)−1rj‖ ≤ ‖rj‖
a2 + t2

.

Hence

‖ΠFψj − ψj‖ ≤ ǫ

π

∫ +∞

−∞

1

a2 + t2
dt =

‖rj‖
a

.
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Now if u =
∑

j αjψj ∈ E, then

‖u‖2 = 〈Sα | α〉 ≥ λminS ‖α‖2 .

So

‖ΠFu− u‖ ≤
∑

j

|αj|‖ΠFψj − ψj‖ ≤ ‖α‖
(
∑

j ‖rj‖2)
1

2

a
≤

(
∑

j ‖rj‖2)
1

2

a(λminS )
1

2

‖u‖ .

The proposition follows.

Remark B.4.

If σ (A) ∩ I is discrete of finite multiplicity and if the right hand side above
is strictly less than 1, then we conclude that A has at least N eigenvalues in
I.

B.4 Another improvement for the localization of the

eigenvalue

We only consider the case when N = 1 (and in this case this is essentially
a variant of Temple’s inequality, see for more general situations the book
[Hel1] p. 38-39) and suppose that we have shown that for some normalized
ψ generating the one dimensional vector space E, we have

(A− µ)ψ = r ,

with ‖r‖ ≤ ǫ.
We assume that we have applied the previous proposition and that we have
also proven that, for ǫ small enough, ~d(E,F ) = ~d(F,E) < 1.

Of course we get by the spectral theorem that for the unique eigenvalue
λ in I, we have |λ − µ| ≤ Cǫ, but what we would like to show is that the
approximation is actually much better, i.e. of order O(ǫ2).

If λ is the eigenvalue and if v := πFψ, we start from the identity :

λ = 〈Av | v〉/〈v | v〉 .

So we now write

λ− µ = 〈(A− µ)v | v〉/〈v | v〉 ,

77



that we would like to compare with the quantity 〈(A − µ)ψ | ψ〉 which will
be in many examples explicitly computable. Let us estimate the difference.
Using the projection πF , we obtain :

‖v‖2 = ‖ψ‖2 − ‖v − ψ‖2

which leads to the estimate :

| ‖v‖2 − 1 | ≤ d(E,F )2 .

In the same way, we observe that :

〈(A− µ)v | v〉 = 〈(A− µ)ψ | ψ〉 − 〈(A− µ)(v − ψ) | (v − ψ)〉

which leads to the estimate :

〈(A− µ)v | v〉 = 〈(A− µ)ψ | ψ〉 − 〈r | (v − ψ)〉

and finally to

|〈(A− µ)v | v〉 − 〈(A− µ)ψ | ψ〉| ≤ ǫd(E,F ) .

This leads to

|λ− µ| ≤ 1

1 − d(E,F )2
ǫd(E,F ) , (B.12)

C Variational characterization of the spec-

trum

C.1 Introduction

The max-min principle is an alternative way for describing the lowest part
of the spectrum when it is discrete. It gives also an efficient way to localize
these eigenvalues or to follow their dependence on various parameters.

C.2 On positivity

We first recall the following definition
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Definition C.1. .
Let A be a symmetric operator. We say that A is positive (and we write
A ≥ 0), if

〈Au | u〉 ≥ 0 , ∀u ∈ D(A) . (C.1)

The following proposition relates the positivity with the spectrum

Proposition C.2. .
Let A be a selfadjoint operator. Then A ≥ 0 if and only if σ(A) ⊂ [0,+∞[.

Example C.3. .
Let us consider the Schrödinger operator P := −∆ + V , with V ∈ C∞ and
semi-bounded, then

σ(P ) ⊂ [inf V,+∞[ . (C.2)

C.3 Variational characterization of the discrete spec-

trum

Theorem C.4. .
Let A be a selfadjoint semibounded operator. Let Σ := inf σess(A) and let
us consider σ(A)∩] − ∞,Σ[, described as a sequence (finite or infinite) of
eigenvalues that we write in the form

λ1 < λ2 < · · · < λn · · · .

Then we have
λ1 = inf

φ∈D(A),φ 6=0
‖φ‖−2〈Aφ | φ〉 , (C.3)

λ2 = inf
φ∈D(A)∩K⊥

1
,φ 6=0

‖φ‖−2〈Aφ | φ〉 , (C.4)

and, for n ≥ 2,
λn = inf

φ∈D(A)∩K⊥
n−1

,φ 6=0
‖φ‖−2〈Aφ | φ〉 , (C.5)

where
Kj = ⊕i≤j Ker (A− λi) .

One can prove actually that, if the right hand side of (C.3) is strictly
below Σ, then, the spectrum below Σ is not empty, and the lowest eigenvalue
is given by (C.3).
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C.4 Max-min principle

We now give a more flexible criterion for the determination of the bottom of
the spectrum and for the bottom of the essential spectrum. This flexibility
comes from the fact that we do not need an explicit knowledge of the various
eigenspaces.

Theorem C.5. .
Let A be a selfadjoint semibounded operator of domain D(A) ⊂ H. Let us
introduce

µn(A) = sup
ψ1,ψ2,...,ψn−1

inf8
<
:
φ ∈ [span (ψ1, . . . , ψn−1)]

⊥;
φ ∈ D(A) and ‖φ‖ = 1

9
=
;

〈Aφ | φ〉H . (C.6)

Then either
(a) µn(A) is the n-th eigenvalue when ordering the eigenvalues in increas-
ing order (and counting the multiplicity) and A has a discrete spectrum in
] −∞, µn(A)]
or
(b) µn(A) corresponds to the bottom of the essential spectrum. In this case,
we have µj(A) = µn(A) for all j ≥ n.

Remark C.6. .
In the case when the operator has compact resolvent, case (b) does not
occur and the supremum in (C.6) is a maximum. Similarly the infimum is a
minimum. This explains the traditional terminology “ Max-Min principle”
for this theorem.

Note that the proof gives also the following proposition

Proposition C.7. .
Suppose that there exists a and an n-dimensional subspace V ⊂ D(A) such
that

〈Aφ | φ〉 ≤ a‖φ‖2 , ∀φ ∈ V , (C.7)

is satisfied. Then we have the inequality :

µn(A) ≤ a . (C.8)
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Corollary C.8. .
Under the same assumption as in Proposition C.7, if a is below the bottom of
the essential spectrum of A, then A has at least n eigenvalues (counted with
multiplicity).

Exercise C.9. .
In continuation of Example 2.2, show that for any ǫ > 0 and any N , there
exists h0 > 0 such that for h ∈]0, h0], Ph,V has at least N eigenvalues in
[inf V, inf V + ǫ]. One can treat first the case when V has a unique non
degenerate minimum at 0.

A first natural extension of Theorem C.5 is obtained by

Theorem C.10. .
Let A be a selfadjoint semibounded operator and Q(A) its form domain 10 .
Then

µn(A) = sup
ψ1,ψ2,...,ψn−1

inf8
<
:
φ ∈ [span (ψ1, . . . , ψn−1)]

⊥;
φ ∈ Q(A) and ‖φ‖ = 1

9
=
;

〈Aφ | φ〉H . (C.9)

Applications

• It is very often useful to apply the max-min principle by taking the
minimum over a dense set in Q(A).

• The max-min principle permits to control the continuity of the eigen-
values with respect to parameters. For example the lowest eigenvalue
λ1(ǫ) of − d2

dx2 +x2+ǫx4 increases with respect to ǫ. Show that ǫ 7→ λ1(ǫ)
is right continuous on [0,+∞[. (The reader can admit that the corre-
sponding eigenfunction is in S(R) for ǫ ≥ 0).

• The max-min principle permits to give an upperbound on the bottom
of the spectrum and the comparison between the spectrum of two op-
erators. If A ≤ B in the sense that, Q(B) ⊂ Q(A) and11

〈Au | u >≤ 〈Bu | u〉 , ∀u ∈ Q(B) ,

then
µn(A) ≤ µn(B) .

Similar conclusions occur if we have D(B) ⊂ D(A).

10associated by completion with the form u 7→ 〈u | Au〉H initially defined on D(A).
11It is enough to verify the inequality on a dense set in Q(B).
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Example C.11. (Comparison between Dirichlet and Neumann).
Let Ω be a bounded regular connected open set in Rm. Then the N -th
eigenvalue of the Neumann realization of PA,V = −∆A + V is less or equal
to the N -th eigenvalue of the Dirichlet realization. The proof is immediate
if we observe the inclusion of the form domains.

Example C.12. (Monotonicity with respect to the domain).
Let Ω1 ⊂ Ω2 ⊂ R

m two bounded regular open sets. Then the n−th eigenvalue
of the Dirichlet realization of the Schrödinger operator in Ω2 is less or equal
to the n-th eigenvalue of the Dirichlet realization of the Schrödinger operator
in Ω1. We observe that we can indeed identify H1

0(Ω1) with a subspace of
H1

0 (Ω2) by just an extension by 0 in Ω2 \ Ω1.
Other applications appear in Problems F.4 and F.7 (questions 3 and 4). Note
that this monotonicity result is wrong for the Neumann problem.

D Essential spectrum and Persson’s Theorem

We refer to [Ag] for proofs and generalizations.

Theorem D.1. .
Let V be a real-valued potential such that there exist a ∈]0, 1[ and C with :

‖V u‖2 ≤ a‖∆u‖2 + C‖u‖2 , ∀u ∈ C∞
0 (Rm) . (D.1)

Let H = −∆+V be the corresponding self-adjoint, semibounded Schrödinger
operator with domain H2(Rm). Then, the bottom of the essential spectrum
is given by

inf σess(H) = Σ(H) , (D.2)

where

Σ(H) := sup
K⊂Rm

[
inf

‖φ‖=1
{〈φ | Hφ〉 | φ ∈ C∞

0 (Rm \ K)}
]
, (D.3)

where the supremum is over all compact subsets K ⊂ Rm.

Essentially this is a corollary of Weyl’s Theorem and the property that

σess(H) = σess(H +W ) , (D.4)

for any regular potential W with compact support. There are other exten-
sions in case with boundary (see [Bon]).
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E Boundary coordinates.

Let Ω be a smooth, simply-connected domain in R2. Let γ : R/|∂Ω| → ∂Ω
be a parametrization of the boundary with |γ′(s)| = 1 for all s. Let ν(s) be
the unit vector, normal to the boundary, pointing inward at the point γ(s).
We choose the orientation of the parametrization γ to be counter-clockwise,
so

det
(
γ′(s), ν(s)

)
= 1 .

The curvature k(s) of ∂Ω at the point γ(s) is now defined by

γ′′(s) = k(s)ν(s) .

The map Φ defined in the introduction,

Φ : R/|∂Ω| × (0, t0) → Ω ,

(s, t) 7→ γ(s) + tν(s) , (E.1)

is clearly a diffeomorphism, when t0 is sufficiently small, with image

Φ
(
R/|∂Ω| × (0, t0)

)
= {x ∈ Ω

∣∣ dist (x, ∂Ω) < t0} =: Ωt0 .

Furthermore, t(Φ(s, t)) = t.

If ~A is a vector field on Ωt0 with B = curl ~A we define the associated fields
in (s, t)-coordinates by

Ã1(s, t) = (1 − tk(s)) ~A(Φ(s, t)) · γ′(s) , Ã2(s, t) = ~A(Φ(s, t)) · ν ′(s) ,
(E.2)

B̃(s, t) = B((Φ(s, t)) . (E.3)

Then ∂sÃ2 − ∂tÃ1 = (1 − tk(s))B̃. Furthermore, for all u ∈ W 1,2(Ωt0), we
have, with v = u ◦ Φ,
∫

Ωt0

|(−i∇− ~A)u|2 dx (E.4)

=

∫ {
(1 − tk(s))−2

∣∣∣(−i∂s − Ã1)v
∣∣2 +

∣∣(−i∂t − Ã2)v
∣∣2
}

(1 − tk(s)) dsdt ,
∫

Ωt0

|u(x)|2 dx =

∫
|v(s, t)|2(1 − tk(s)) dsdt .
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Lemma E.1.

Suppose Ω is a bounded, simply connected domain with smooth boundary and
let t0 be the constant from (E.1). Then there exists a constant C > 0 such

that, if ~A is a vector potential in Ω with

curl ~A = 1 on ∂Ω , (E.5)

and with Ã defined as in (E.2), then there exists a gauge function ϕ(s, t) on
R/|∂Ω| × (0, t0) such that

Ā(s, t) =

(
Ā1(s, t)
Ā2(s, t)

)
:= Ã−∇(s,t)ϕ =

(
γ0 − t+ t2k(s)

2
+ t2b(s, t)

0

)
, (E.6)

where

γ0 =
1

|∂Ω|

∫

Ω

curl ~A dx ,

and b satisfies the estimate,

‖b‖L∞(R/|∂Ω|×(0,
t0
2

)) ≤ C‖curl ~A− 1‖C1(Ωt0
) . (E.7)

Furthermore, if [s0, s1] is a subset of R/|∂Ω| with s1 − s0 < |∂Ω|, then we
may choose ϕ on (s0, s1) × (0, t0) such that

Ā(s, t) =

(
Ā1(s, t)
Ā2(s, t)

)
:= Ã−∇(s,t)ϕ =

(
−t+ t2k(s)

2
+ t2b(s, t)

0

)
, (E.8)

with b still satisfying the estimate (E.7).

Proof.
Notice first that

∫ |∂Ω|

0

A1(s, 0) ds =

∫ |∂Ω|

0

~A · γ′(s) ds =

∫

Ω

curl ~A dx .

Let us write

ν = curl ~A− 1, ν̃(s, t) = ν(Φ(s, t)) , ν̃ ′ =
ν̃

t
.
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Then ‖ν̃ ′‖L∞ ≤ C‖ν‖C1(Ωt0
) and

∂sÃ2 − ∂tÃ1 = (1 − tk(s))(1 + tν̃ ′) .

Define

ϕ(s, t) =

∫ t

0

Ã2(s, t
′) dt′ +

( ∫ s

0

Ã1(s
′, 0) ds′ − sγ0

)
. (E.9)

Then ϕ is a well-defined continuous function on R/|∂Ω| × (0, t0). We pose
Ā = Ã−∇ϕ and find

Ā(s, t) =

(
Ā1(s, t)
Ā2(s, t)

)
=

(
Ā1(s, t)

0

)
,

∂tĀ1(s, t) = −(∂sÃ2 − ∂tÃ1) = −(1 − tk(s))(1 + tν̃ ′) ,

Ā1(s, 0) = γ0 .

Therefore,

Ā1(s, t) = γ0 − t+
t2k(s)

2
−
∫ t

0

t′(1 − t′k(s))ν̃ ′(s, t′) dt′ ,

and we get (E.6) by applying l’Hôpital’s rule to the integral.
In the case where we only consider a part (s0, s1) × (0, t0) of the ring

R/|∂Ω| × (0, t0), we have trivial topology and therefore any two vector fields
generating the same magnetic field are gauge equivalent. Therefore the con-
stant term, γ0, can be omitted. From a more practical point of view, one can
see that we can omit the term sγ0 in (E.9) since we do not need to ensure
the periodicity of the function ϕ.
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F Exercises in Spectral Theory

Exercise F.1. (Quasimodes).
Let us consider in R+, the Neumann realization in R+ of

P0(ξ) := D2
t + (t− ξ)2,

where ξ is a parameter in R. We would like to find an upper bound for Θ0 =
infξ µ(ξ) where µ(ξ) is the smallest eigenvalue of P0(ξ). Following the book
of the physicist Kittel, one can proceed by minimizing 〈P0(ξ)φ(·; ρ) | φ(·; ρ)〉
over the normalized functions φ(t; ρ) := cρ exp−ρt2 (ρ > 0). For which value
of ξ is this quantity minimal? Deduce the inequality :

Θ0 <

√
1 − 2

π
.

Problem F.2. 12

Let V be in C∞
0 (Rm) (m = 1, 2). Show that the essential spectrum of PV =

−∆ + V is [0,+∞[.
Let us assume in addition that

∫

Rm

V (x) dx < 0 . (F.1)

Find ψ ∈ D(PV ) such that

〈PVψ | ψ >L2(Rm)< 0 .

When m = 1, consider the family ψa = exp−a|x|, a > 0, and, when m = 2,
ψa(x) = exp−1

2
|x|a, a > 0.

Deduce that PV = −∆ + V has a negative eigenvalue.

Problem F.3. .
Let us consider in R2 the disk Ω := D(0, R) and the Dirichlet realization in
Ω of the Schrödinger operator

S(h) := −∆ +
1

h2
V (x) , (F.2)

12These counterexamples come back (when m = 1 to Avron-Herbst-Simon [AHS] and
when m = 2 to Blanchard-Stubbe [BS]).
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where V is a C∞ potential on Ω satisfying :

V (x) ≥ 0 . (F.3)

Here h > 0 is a parameter.
a) Show that this operator has compact resolvent.
b) Let λ1(h) be the lowest eigenvalue of S(h). We would like to analyze
the behavior of λ1(h) as h → 0. Show that h → λ1(h) is monotonically
increasing.
c) Let us assume that V > 0 on Ω; show that there exists ǫ > 0 such that

h2λ1(h) ≥ ǫ . (F.4)

d) We assume now that V = 0 in an open set ω in Ω. Show that there exists
a constant C > 0 such that, for any h > 0,

λ1(h) ≤ C . (F.5)

One can use the study of the Dirichlet realization of −∆ in ω.
e) Let us assume that :

V > 0 almost everywhere in Ω . (F.6)

Show that, under this assumption :

lim
h→0

λ1(h) = +∞ . (F.7)

One could proceed by contradiction supposing that there exists C such that

λ1(h) ≤ C , ∀h such that 1 ≥ h > 0 . (F.8)

and establishing the following properties.

• For h > 0, let us denote by x 7→ u1(x ; h) an L2-normalized eigenfunc-
tion associated with λ1(h). Show that the family u1(· ; h) (0 < h ≤ 1)
is bounded in H1(Ω).

• Show the existence of a sequence hn (n ∈ N) tending to 0 as n→ +∞
and u∞ ∈ L2(Ω) such that

lim
n→+∞

u1(· ; hn) = u∞

in L2(Ω).
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• Deduce that : ∫

Ω

V (x) u∞(x)2 dx = 0 .

• Deduce that u∞ = 0 and make explicit the contradiction.

f) Let us assume that V (0) = 0; show that there exists a constant C, such
that :

λ1(h) ≤
C

h
.

g) Let us assume that V (x) = O(|x|4) près de 0. Show that in this case :

λ1(h) ≤
C

h
2

3

.

h) We assume that V (x) ∼ |x|2 near 0; discuss if one can hope a lower
bound in the form

λ1(h) ≥
1

C h
.

Justify the answer by illustrating the arguments by examples and counterex-
amples.

Problem F.4. (Harmonic oscillator in a symmetric interval).
Let Ha be the Dirichlet realization of −d2/dx2 + x2 in ] − a,+a[.
(a) Briefly recall the results concerning the case a = +∞.
(b) Show that the lowest eigenvalue λ1(a) of Ha is decreasing for a ∈]0,+∞[
and larger than 1.
(c) Show that λ1(a) tends exponentially fast to 1 as a → +∞. One can use
a suitable construction of approximate eigenvectors.
(d) What is the behavior of λ1(a) as a → 0. One can use the change of
variable x = ay and analyze the limit lima→0 a

2λ1(a).
(e) Let µ1(a) be the smallest eigenvalue of the Neumann realization in
] − a,+a[. Show that µ1(a) ≤ λ1(a).
(f) Show that, if ua is a normalized eigenfunction associated with µ1(a), then
there exists a constant C such that, for all a ≥ 1, we have :

‖xua‖L2(]−a,+a[) ≤ C .

(g) Show that, for u in C2([−a,+a]) and χ in C2
0(] − a,+a[), we have :

−
∫ +a

−a
χ2u′′(t)u(t)dt =

∫ +a

−a
|(χu)′(t)|2dt−

∫ +a

−a
χ′(t)2u(t)2dt .
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(h) Using this identity with u = ua, a suitable χ which should be equal to 1
on [−a + 1, a− 1] , the estimate obtained in (f) and the minimax principle,
show that there exists C such that, for a ≥ 1, we have :

λ1(a) ≤ µ1(a) + Ca−2 .

Deduce the limit of µ1(a) as a→ +∞.
(i) Improve c). In order to get finer results, one can try to find a formal
solution at ±∞ in the form exp x2

2
|x|ρ∑j≥0 cj |x|−j.

Problem F.5. (Avron-Herbst [CFKS])
The aim of this problem is to analyze the spectra of the operators

H± := − d2

dx2
+ q(x)2 ± q′(x) ,

where q(x) is a polynomial :

q(x) = xm +
m−1∑

j=0

ajx
j .

a) Show that these operators are with compact resolvent if and only if m ≥ 1.
b) Observing that

H± = (
d

dx
± q(x))(− d

dx
± q(x)) ,

discuss the kernel of H± in function of m.
c) Observing that

H±(
d

dx
± q(x)) = (

d

dx
± q(x))H∓ ,

show that H+ and H− have the same spectrum except possibly 0.
d) Treat completely the case m = 1.
e) We assume now that q(x) = x + gx2 with g 6= 0. Show that the corre-
sponding operators are unitary equivalent (up to a multiplicative factor) to
semiclassical Schrödinger operator.
f) Show that in this case H+ and H− are unitary equivalent.
g) Show that there exists a unique eigenvalue λ(g) which is o(1) as g → 0.
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h) Show that this eigenvalue is actually exponentially small.
i) (More difficult) Find an equivalent of λ(g) in the form

λ(g) ∼ α|g|k exp− S

g2
,

for suitable α > 0, k ∈ R and S > 0.

Problem F.6. (semi-classical analysis and Airy operator)
One would like to understand the problem on R+ given by the Dirichlet real-
ization PD(h) of

P (h) := −h2 d
2

dx2
+ v(x) ,

with v′(x) ≥ c > 0 on R+.
a) Show that the operator has compact resolvent.
b) We first analyze the case v(x) = x, h = 1 (In this case the operator is
called the Airy operator A(x,Dx)). Show that, for the Dirichlet realization
AD of A in R+, there exists a sequence (µj)j∈N∗ of eigenvalues tending to ∞.
Show that the lowest one µ1 is strictly positive. What is the form domain
Q(AD) of the Airy operator?
c) Show that the corresponding eigenfunctions uj are in C∞(R+).
d) Show that the eigenvalues are of multiplicity 1.
e) We admit that

D(AD) = {u ∈ H1
0 (R+) ∩H2(R+); xu ∈ L2(R+)}

= {u ∈ H1
0 (R+) , x

1

2u ∈ L2(R+) , A(x,Dx)u ∈ L2(R+)} .

Show that the eigenvectors are in S(R+).
Another approach could be to analyze the Fourier transform of χuj where χ
is equal to 1 for x large and is equal to 0 in a neighborhood of 0.
f) Describe the spectrum of AD(x, hDx) for any h > 0.
g) We come back to the general case. Transpose for PD(h) what was done for
the one-well problem via the harmonic approximation, the harmonic oscilla-
tor being replaced by the Airy operator. The student can use if needed that
(AD(x,Dx)−µ1) is a bijection from S0(R+)∩{Ru1}⊥ onto S(R+)∩{Ru1}⊥
where

S0(R+) = {u ∈ S(R+) s. t. u(0) = 0} .
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Problem F.7. (Schrödinger operator in R2
+ with Dirichlet conditions).

The aim of this problem is to analyze the spectrum ΣD(P ) of the Dirichlet
realization of the operator

P := (Dx1
− 1

2
x2)

2 + (Dx2
+

1

2
x1)

2,

in R+ × R.

1. Show that one can a priori compare the infimum of the spectrum of P
in R2and the infimum of ΣD(P ).

2. Compare ΣD(P ) with the spectrum ΣD(Q) of the Dirichlet realization
of Q := D2

y1 + (y1 − y2)
2 in R+ × R.

3. We first consider the following family of Dirichlet problems associated
with the family of differential operators : α 7→ H(α) defined on ]0,+∞[
by :

H(α) = D2
t + (t− α)2 .

Compare with the Dirichlet realization of the harmonic oscillator in
] − α,+∞[.

4. Show that the lowest eigenvalue λ(α) of H(α) is a monotonic function
of α ∈ R.

5. Show that α 7→ λ(α) is a continuous function on R.

6. Analyze the limit of λ(α) as α→ −∞.

7. Analyze the limit of λ(α) as α→ +∞.

8. Compute λ(0). For this, compare the spectrum of H(0) with the spec-
trum of the harmonic oscillator restricted to the odd functions.

9. Let t 7→ u(t;α) the positive L2-normalized eigenfunction associated
with λ(α). Let us admit that this is the restriction to R+ of a function
in S(R). Let, for α ∈ R, Tα be the distribution in D′(R+ × R) defined
by

φ 7→ Tα(φ) =

∫ +∞

0

φ(y1, α)uα(y1)dy1 .

Compute QTα.
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10. By constructing starting from Tα a suitable sequence of L2-functions
tending to Tα, show that λ(α) ∈ ΣD(Q).

11. Determine ΣD(P ).
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Vol. 58 (1985).

[HeNo2] B. Helffer and J. Nourrigat. Décroissance à l’infini des fonctions
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