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Applications to (2D)-problems

The transmission boundary condition which is considered in addition to
the other conditions Dirichlet, Neumann and Robin appears in various
exchange problems such as molecular diffusion across semi-permeable
membranes [37, 34], heat transfer between two materials [12, 18, 9], or
transverse magnetization evolution in nuclear magnetic resonance (NMR)
experiments [20]. In the simplest setting of the latter case, one considers
the local transverse magnetization G (x , y ; t) produced by the nuclei that
started from a fixed initial point y and diffused in a constant magnetic
field gradient g up to time t.
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Applications to (2D)-problems

This magnetization is also called the propagator or the Green function of
the Bloch-Torrey equation [39] (1956):

∂

∂t
G (x , y ; t) = (D∆− iγgx1)G (x , y ; t) , (1)

with the initial condition

G (x , y ; t = 0) = δ(x − y), (2)

where D is the intrinsic diffusion coefficient, ∆ = ∂2/∂x2
1 + . . .+ ∂2/∂x2

d

the Laplace operator in Rd , γ the gyromagnetic ratio, and x1 the
coordinate in a prescribed direction.
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Applications to (2D)-problems

The 1D-situation

In the first part of the talk, we present the one-dimensional situation
(d = 1), in which the operator

D2
x + ix = − d2

dx2 + ix

is called the complex Airy operator and appears in many contexts:
mathematical physics, fluid dynamics, time dependent Ginzburg-Landau
problems and also as an interesting toy model in spectral theory (see [3]).
We consider a suitable extension A+

1 of this differential operator and its
associated evolution operator e−tA

+
1 . The Green function G (x , y ; t) is

the distribution kernel of e−tA
+
1 .
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Applications to (2D)-problems

For the problem on the line R, an intriguing property is that this non
self-adjoint operator, which has compact resolvent, has empty spectrum.
However, the situation is completely different on the half-line R+. The
eigenvalue problem

(D2
x + ix)u = λu,

for a spectral pair (u, λ) with u in H2(R+), xu ∈ L2(R+) has been
thoroughly analyzed for both Dirichlet (u(0) = 0) and Neumann
(u′(0) = 0) boundary conditions.
The spectrum consists of an infinite sequence of eigenvalues of
multiplicity one explicitly related to the zeroes of the Airy function (see
[36, 27]).
The space generated by the eigenfunctions is dense in L2(R+)
(completeness property) but there is no Riesz basis of eigenfunctions.
Finally, the decay of the associated semi-group has been analyzed in
detail through Gearhard-Prüss like theorems.
The physical consequences of these spectral properties for NMR
experiments have been first revealed by Stoller, Happer and Dyson [36],
then by De Sviet et al. and D. Grebenkov [16, 19, 22].
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Applications to (2D)-problems

In this talk, we not only consider the Dirichlet and Neumann problem but
will consider another problem for the complex Airy operator on the line
but with a transmission property at 0 which reads (cf Grebenkov [22]),{

u′(0+) = u′(0−) ,
u′(0) = κ

(
u(0+)− u(0−)

)
,

(3)

where κ ≥ 0 is a real parameter.
The case κ = 0 corresponds to two independent Neumann problems on
R− and R+ for the complex Airy operator.
When κ tends to +∞, the second relation in (3) becomes the continuity
condition, u(0+) = u(0−), and the barrier disappears.
Hence, the problem tends (at least formally) to the standard problem for
the complex Airy operator on the line.
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Applications to (2D)-problems

We summarize the main (1D)-result for the transmission case in the
following:

Theorem

The semigroup exp(−tA+
1 ) is contracting. The operator A+

1 has a
discrete spectrum {λn(κ)}. The eigenvalues λn(κ) are simple and
determined as (complex-valued) solutions of the equation

2πAi′(e2πi/3λ)Ai′(e−2πi/3λ) + κ = 0, (4)

where Ai′(z) is the derivative of the Airy function.
For all κ ≥ 0, there exists N such that, for all n ≥ N, there exists a
unique eigenvalue of A+

1 in the ball B(λ±n , 2κ|λ±n |−1), where
λ±n = e±2πi/3a′n, and a′n are the zeros of Ai′(z).
Finally, for any κ ≥ 0 the space generated by the eigenfunctions of the
complex Airy operator with transmission is dense in L2(R−)× L2(R+).
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Applications to (2D)-problems
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Figure: Numerically computed pseudospectrum in the complex plane of the
complex Airy operator with the transmission boundary condition at the origin
with κ = 1. The red points show the poles λ±

n (κ).

Bernard Helffer (LMJL, Université de Nantes) (after Almog, Henry, Grebenkov-Helffer-Henry, Grebenkov-Helffer, Almog-Grebenkov-Helffer,...)Spectral theory and semi-classical analysis for the complex Schrödinger operator Talk at Luminy June 2017



9

Applications to (2D)-problems

Basic properties of the Airy function

We recall that the Airy function is the unique solution of

(D2
x + x)u = 0 ,

on the line such that u(x) tends to 0 as x → +∞ and
Ai(0) = 1/

(
3
2
3 Γ( 2

3 )
)
. This Airy function extends into an holomorphic

function in C .
Ai is positive decreasing on R+ but has an infinite number of zeros in
R−. We denote by an (n ∈ N) the decreasing sequence of zeros of Ai.
Similarly we denote by a′n the sequence of zeros of Ai′. Moreover

an ∼
n→+∞

−
(
3π
2

(n − 1/4)

)2/3

, (5)

and

a′n ∼
n→+∞

−
(
3π
2

(n − 3/4)

)2/3

. (6)
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Applications to (2D)-problems

Ai(e iαz) and Ai(e−iαz) (with α = 2π/3) are two independent solutions
of the differential equation(

− d2

dz2 − iz

)
w(z) = 0 .

Considering their Wronskian, one gets

e−iαAi′(e−iαz)Ai(e iαz)− e iαAi′(e iαz)Ai(e−iαz) =
i

2π
, ∀ z ∈ C . (7)

Note the identity

Ai(z) + e−iαAi(e−iαz) + e iαAi(e iαz) = 0 , ∀ z ∈ C . (8)

Bernard Helffer (LMJL, Université de Nantes) (after Almog, Henry, Grebenkov-Helffer-Henry, Grebenkov-Helffer, Almog-Grebenkov-Helffer,...)Spectral theory and semi-classical analysis for the complex Schrödinger operator Talk at Luminy June 2017



11

Applications to (2D)-problems

The Airy function and its derivative satisfy different asymptotic:
(i) For | arg z | < π,

Ai(z) =
1
2
π−

1
2 z−1/4 exp

(
−2
3
z3/2

)(
1 +O(|z |− 3

2 )
)
, (9)

Ai′(z) = −1
2
π−

1
2 z1/4 exp

(
−2
3
z3/2

)(
1 +O(|z |− 3

2 )
)
. (10)

(ii) For | arg z | < 2
3π ,

Ai(−z) = π−
1
2 z−1/4

(
sin
(
2
3
z3/2 +

π

4

)
(1 +O(|z |− 3

2 ) (11)

− 5
72

(
2
3
z

3
2

)−1

cos
(
2
3
z3/2 +

π

4

)
(1 +O(|z |− 3

2 )

)

Ai′(−z) = −π− 1
2 z1/4

(
cos(

2
3
z3/2 +

π

4
)(1 +O(|z |− 3

2 )) , (12)

+
7
72

(
2
3
z3/2

)−1

sin(
2
3
z3/2 +

π

4
)(1 +O(|z |− 3

2 ))

)
.
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Applications to (2D)-problems

Analysis of the resolvent of A+ on the line for λ > 0

On the line R, A+ is the closure of the operator A+
0 defined on C∞0 (R)

by A+
0 = D2

x + ix .
This is now standard. A detailed description of the properties of A+ can
be found in my book in Cambridge University Press (2013).

One can give the asymptotic control of the resolvent (A+ − λ)−1 as
λ→ +∞.

We successively discuss the control in L(L2(R)) and in the
Hilbert-Schmidt space C2(L2(R)).

Note that the norm of the resolvent (A+ − λ)−1 depends only on the real
part of λ.
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Applications to (2D)-problems

Control in L(L2(R)).

Here we follow an idea present in an old paper of I. Herbst, the book of
Davies and used in Martinet’s PHD (see also my book at Cambridge
University Press).

Proposition

For all λ > λ0 ,

‖(A+ − λ)−1‖L(L2(R)) ≤
√
2π λ−

1
4 exp

(
4
3
λ

3
2

)(
1 + o(1)

)
. (13)

We can also have a control in the Hilbert-Schmidt norm (Martinet,
Bordeaux-Montrieux). For complex λ, replace λ by Reλ.
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Applications to (2D)-problems

Analysis of the resolvent for the Dirichlet realization in the
half-line.

It is not difficult to define the Dirichlet realization A±,D of D2
x ± ix on

R+ (the analysis on the negative semi-axis is similar). One can use for
example the Lax Milgram theorem and take as form domain

V D := {u ∈ H1
0 (R+) , x

1
2 u ∈ L2

+} .

It can also be shown that the domain is

DD := {u ∈ V D , u ∈ H2
+} .

This implies

Proposition

The resolvent G±,D(λ) := (A±,D − λ)−1 is in the Schatten class C p for
any p > 3

2 (see [17] for definition), where A±,D = D2
x ± ix and the

superscript D refers to the Dirichlet case.
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Applications to (2D)-problems

More precisely we provide the distribution kernel G−,D(x , y ;λ) of the
resolvent for the complex Airy operator D2

x − ix on the positive semi-axis
with Dirichlet boundary condition at the origin. Matching the boundary
conditions, one gets

G−,D(x , y ;λ) = G−0 (x , y ;λ) + G−,D1 (x , y ;λ), (14)

where G−0 (x , y ;λ) is the resolvent for the Airy operator D2
x − ix on the

whole line,
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Applications to (2D)-problems

G−0 (x , y ;λ) =

{
2πAi(e iαwx)Ai(e−iαwy ) (x < y),

2πAi(e−iαwx)Ai(e iαwy ) (x > y),
(15)

and

G−,D1 (x , y ;λ) = −2π Ai(e iαλ)

Ai(e−iαλ)
Ai
(
e−iα(ix+λ)

)
Ai
(
e−iα(iy+λ)

)
. (16)

The resolvent is compact. The poles of the resolvent are determined by
the zeros of Ai(e−iαλ), i.e., λn = e iαan , where the an are zeros of the
Airy function: Ai(an) = 0 . The eigenvalues have multiplicity 1 (no
Jordan block).
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Applications to (2D)-problems

As a consequence of the analysis of the numerical range of the operator,
we have

Proposition

||G±,D(λ)|| ≤ 1
|Reλ|

, if Reλ < 0 ; (17)

and
||G±,D(λ)|| ≤ 1

|Imλ|
, if ∓ Imλ > 0 . (18)

This proposition together with the Phragmen-Lindelöf principle (see
Agmon [2] or Dunford-Schwartz [17])

Proposition

The space generated by the eigenfunctions of the Dirichlet realization
A±,D of D2

x ± ix is dense in L2
+.

It is proven by R. Henry in [29] that there is no Riesz basis of
eigenfunctions.
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Applications to (2D)-problems

The Hilbert-Schmidt norm of the resolvent for λ > 0

At the boundary of the numerical range of the operator, it is interesting
(and this will be important later for the transmission problem) to analyze
the behavior of the resolvent. Numerical computations lead to the
observation that, for λ real,

lim
λ→+∞

||G±,D(λ)||L(L2+) = 0 . (19)

As a new result, we can prove [25]

Proposition

When λ tends to +∞, we have

||G±,D(λ)||HS ≈ λ−
1
4 (log λ)

1
2 . (20)

Note that it gives a control of the resolvent at the boundary of the
numerical range (See Dencker-Sjöstrand-Zworski for problems in Rn).
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Applications to (2D)-problems

About the proof

The Hilbert-Schmidt norm of the resolvent can be written as

||G−,D ||2HS =

∫
R2

+

|G−,D(x , y ;λ)|2dxdy = 8π2

∞∫
0

Q(x ;λ)dx , (21)

where

Q(x ;λ) =
|Ai(e−iα(ix + λ))|2

|Ai(e−iαλ)|2
×

×
x∫

0

∣∣Ai(e iα(iy + λ))Ai(e−iαλ)−Ai(e−iα(iy + λ))Ai(e iαλ)
∣∣2 dy .
(22)
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Applications to (2D)-problems

Using the identity (8), we observe that

Ai(e iα(iy + λ))Ai(e−iαλ)−Ai(e−iα(iy + λ))Ai(e iαλ)
= e−iα

(
Ai(e−iα(iy + λ))Ai(λ)−Ai(iy + λ)Ai(e−iαλ)

)
.

(23)

Hence we get

Q(x ;λ) = |Ai(e−iα(ix+λ))|2
x∫

0

∣∣∣∣Ai(e−iα(iy + λ))
Ai(λ)

Ai(e−iαλ)
−Ai(iy + λ)

∣∣∣∣2 dy .
(24)

Then you have to do a fine asymptotic analysis for this expression.
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Applications to (2D)-problems

The complex Airy operator with a semi-permeable barrier:
definition and properties

We consider the sesquilinear form aν defined for u = (u−, u+) and
v = (v−, v+) by

aν(u, v) =

∫ 0

−∞

(
u′−(x)v̄ ′−(x) + i xu−(x)v̄−(x) + ν u−(x)v̄−(x)

)
dx

+

∫ +∞

0

(
u′+(x)v̄ ′+(x) + i xu+(x)v̄+(x) + ν u+(x)v̄+(x)

)
dx

+κ
(
u+(0)− u−(0)

)(
v+(0)− v−(0)

)
, (25)

where the form domain V is

V :=
{
u = (u−, u+) ∈ H1

− × H1
+ : |x | 12 u ∈ L2

− × L2
+

}
,

and ν ∈ R.
The space V is endowed with the Hilbertian norm

‖u‖V :=
√
‖u−‖2H1

−
+ ‖u+‖2H1

+
+ ‖|x |1/2u‖2L2 .
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Applications to (2D)-problems

We first observe that for any ν ≥ 0, the sesquilinear form aν is
continuous on V .

As the imaginary part of the potential V (x) = ix changes sign, it is not
straightforward to determine whether the sesquilinear form aν is coercive.

Due to the lack of coercivity, the standard version of the Lax-Milgram
theorem does not apply. We shall instead use the following generalization
introduced in Almog-Helffer [6].
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Applications to (2D)-problems

Theorem

Let V ⊂ H be two Hilbert spaces s.t. that V is continuously embedded in
H and dense in H . Let a be a continuous sesquilinear form on V × V ,
and ∃α > 0 and two bounded linear operators Φ1 and Φ2 on V s.t.
∀u ∈ V , {

|a(u, u)|+ |a(u,Φ1u)| ≥ α ‖u‖2V ,
|a(u, u)|+ |a(Φ2u, u)| ≥ α ‖u‖2V .

(26)

Assume further that Φ1 extends to a bounded linear operator on H .
Then ∃ a closed, densely-defined operator S on H with domain

D(S) =
{
u ∈ V : v 7→ a(u, v) can be extended continuously on H

}
,

s.t. ∀u ∈ D(S) , ∀v ∈ V ,

a(u, v) = 〈Su, v〉H .
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Applications to (2D)-problems

Moreover, from the characterization of the domain, we deduce the
stronger

Proposition

There exists λ0 (λ0 = 0 for κ > 0) such that (A+
1 − λ0)−1 belongs to the

Schatten class Cp for any p > 3
2 .

Note that if it is true for some λ0 it is true for any λ in the resolvent set.
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Applications to (2D)-problems

The following statement summarizes the previous discussion.

Proposition

The operator A+
1 acting as

u 7→ A+
1 u =

(
− d2

dx2 u− + ixu−, −
d2

dx2 u+ + ixu+

)
on the domain

D(A+
1 ) =

{
u ∈ H2

− × H2
+ : xu ∈ L2

− × L2
+

and u satisfies transmission conditions (3)
}

is a closed operator with compact resolvent.

∃λ > 0 s. t. A+
1 + λ is maximal accretive.
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Applications to (2D)-problems

Remark

We have
ΓA+

1 = A−1 Γ , (27)

where Γ denotes the complex conjugation:

Γ(u− , u+) = (ū− , ū+) .

Remark (PT-Symmetry)

If (λ, u) is an eigenpair, then (λ̄, ū(−x)) is also an eigenpair.
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Applications to (2D)-problems

Integral kernel of the resolvent

Lengthy but elementary computations give:

G−(x , y ;λ, κ) = G−0 (x , y ;λ) + G1(x , y ;λ, κ) , (28)

where G−0 (x , y ;λ) is the distribution kernel of the resolvent of the
operator A∗0 := − d2

dx2 − ix on R and

G1(x , y ;λ, κ) =

{
−4π2 e2iα[Ai′(e iαλ)]2

f (λ)+κ Ai(e−iαwx)Ai(e−iαwy ) , for x > 0 ,

−2π f (λ)
f (λ)+κAi(e iαwx)Ai(e−iαwy ) , for x < 0 ,

(29)
for y > 0, and

G1(x , y ;λ, κ) =

{
−2π f (λ)

f (λ)+κAi(e−iαwx)Ai(e iαwy ) , x > 0 ,

−4π2 e−2iα[Ai′(e−iαλ)]2

f (λ)+κ Ai(e iαwx)Ai(e iαwy ) , x < 0 ,
(30)

for y < 0.
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Applications to (2D)-problems

Hence the poles are determined by the equation

f (λ) = −κ , (31)

with f defined by

f (λ) := 2πAi′(e−iαλ)Ai′(e iαλ) . (32)

Remark

For κ = 0, one recovers the conjugated pairs associated with the zeros a′n
of Ai′.

We have indeed
λ+
n = e iαa′n , λ−n = e−iαa′n , (33)

where a′n is the n-th zero of Ai′.
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Applications to (2D)-problems

We also know that the eigenvalues for the Neumann problem are simple.
Hence by the local inversion theorem we get the existence of a solution
close to each λ±n for κ small enough (possibly depending on n) if we
show that f ′(λ±n ) 6= 0. For λ+

n , we have, using the Wronskian relation (7)
and Ai′(e−iαλ+

n ) = 0 ,

f ′(λ+
n ) = 2π e−iα Ai′′(e−iαλ+

n )Ai′(e iαλ+
n )

= 2πe−2iαλ+
n Ai(e−iαλ+

n )Ai′(e iαλ+
n )

= −iλ+
n .

(34)

Similar computations hold for λ−n . We recall that

λ+
n = λ−n .

Remark Very recently, we prove [AGH] that the eigenvalues are always
simple.
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Applications to (2D)-problems

Completion of the proof of the properties of the operator for
the semi-permeable case

For the analysis of the resolvent, it is enough to compare the resolvent
for some κ, with the resolvent for κ = 0, and to show that the
asymptotic behavior as λ→ +∞ is the same. For κ = 0, it is easy to see
that we are reduced to the Neumann case on R+. We can also observe
that the behavior of the resolvent are the same for Dirichlet and
Neumann as λ→ +∞.

Finally, we observe that we have the control of the resolvent on enough
rays (the other rays being chosen outside of the numerical range) and the
Phragmen-Lindelöf argument can now be used.

Then a general theorem (see the book of Agmon) gives us the
completeness.
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Applications to (2D)-problems

Applications to (2D)-problems

In higher dimension, an extension of the complex Airy operator is the
differential operator that we call the Bloch-Torrey operator or simply the
BT-operator:

−D∆ + igx1 ,

where ∆ = ∂2/∂x2
1 + . . .+ ∂2/∂x2

d is the Laplace operator in Rd , and D
and g are real parameters. More generally, we will study the spectral
properties of some realizations of the differential operator

A#
h = −h2∆ + i V (x) , (35)

in an open set Ω, where h is a real parameter and V (x) a real-valued
potential with controlled behavior at ∞, and the superscript #
distinguishes Dirichlet (D), Neumann (N), Robin (R), or transmission (T)
conditions.
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Applications to (2D)-problems

More precisely we discuss
1 the case of a bounded open set Ω with Dirichlet, Neumann or Robin

boundary condition;
2 the case of a complement Ω := {Ω− of a bounded set Ω− with

Dirichlet, Neumann or Robin boundary condition;
3 the case of two components Ω− ∪ Ω+, with Ω− ⊂ Ω− ⊂ Ω and

Ω+ = Ω\Ω−, with Ω bounded and transmission conditions at the
interface between Ω− and Ω+;

4 the case of two components Ω− ∪ {Ω− , with Ω− bounded and
transmission conditions at the boundary.
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Applications to (2D)-problems

The state u (in the first two items) or the pair (u−, u+) in the last items
should satisfy some boundary or transmission condition at the interface.
We consider the following situations:

the Dirichlet condition: u|∂Ω = 0 ;
the Neumann condition: ∂νu|∂Ω = 0 , where ∂ν = ν · ∇, with ν
being the outwards pointing normal;
the Robin condition: h2∂νu|∂Ω = −Ku|∂Ω , where K ≥ 0 denotes the
Robin parameter;
the transmission condition:

h2∂νu+ |∂Ω− = h2∂νu− |∂Ω− = K(u+ |∂Ω− − u− |∂Ω−) ,

where K ≥ 0 denotes the transmission parameter. In the last case,
we should add a boundary condition at ∂Ω+ which can be Dirichlet
or Neumann.
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Applications to (2D)-problems

Ω# denotes Ω if # ∈ {D,N,R} and Ω− if # = T .
L2

# denotes L2(Ω) if # ∈ {D,N,R} and L2(Ω−)× L2(Ω+) if # = T .

In the first part of this talk, we have described various realizations of the
complex Airy operator A#

0 := − d2

dτ2 + iτ in the four cases.
The boundary conditions read respectively:

u(0) = 0 (Dirichlet)
u′(0) = 0 (Neumann)
u′(0) = κ u(0) (Robin )
u′−(0) = u′+(0) = κ (u+(0)− u−(0)) (Transmission)

(with κ ≥ 0 in the last items).

For all these cases, we have proven the existence of a discrete spectrum
and the completeness of the corresponding eigenfunctions.
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Applications to (2D)-problems

We have started the analysis of the spectral properties of the BT
operator in dimension 2 or higher that are relevant for applications in
superconductivity theory (Almog, Almog-Helffer-Pan, Almog-Helffer), in
fluid dynamics (Martinet), in control theory
(Beauchard-Helffer-Henry-Robbiano) and in diffusion magnetic resonance
imaging (Grebenkov) . The main questions are

definition of the operator,
construction of approximate eigenvalues in some asymptotic regimes,
localization of quasimode states near certain boundary points,
numerical simulations.
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Applications to (2D)-problems

Some of these questions have been already analyzed by Y. Almog (see [3]
(2008) and references therein for earlier contributions), R. Henry in his
PHD (2013) (+ ArXiv paper 2014) and Almog-Henry (2015) but they
were mainly devoted to the case of a Dirichlet realization in bounded
domains in R2 or particular unbounded domains like R2 and R2

+, these
two last cases playing an important role in the local analysis of the global
problem.
We consider Ah and the corresponding realizations in Ω are denoted by
AD

h , AN
h , AR

h and AT
h . These realizations will be properly under the

condition that, when Ω is unbounded, there exists C > 0 such that

|∇V (x)| ≤ C
√

1 + V (x)2 . (36)
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Applications to (2D)-problems

Our main construction in [Grebenkov-Helffer 2016] is local and
summarized in the following

Main (2D)-theorem

Let Ω ⊂ R2 as above, V ∈ C∞(Ω;R) and x0 ∈ ∂Ω# such that

∇V (x0) 6= 0 , ∇V (x0) ∧ ν(x0) = 0 , (37)

where ν(x0) denotes the outward normal on ∂Ω at x0 .
Assume that, in the local curvilinear coordinates, the second derivative
2 v20 of the restriction of V to the boundary at x0 satisfies

v20 6= 0 .

For the Robin and transmission cases, we assume that for some κ > 0

K = h
4
3κ . (38)

Bernard Helffer (LMJL, Université de Nantes) (after Almog, Henry, Grebenkov-Helffer-Henry, Grebenkov-Helffer, Almog-Grebenkov-Helffer,...)Spectral theory and semi-classical analysis for the complex Schrödinger operator Talk at Luminy June 2017



38

Applications to (2D)-problems

Main theorem continued

If µ#
0 is a simple eigenvalue of the realization “#” − d2

dx2 + ix in L2
# ,

and µ2 is an eigenvalue of Davies operator − d2

dy2 + iy2 on L2(R),

then there exists a pair (λ#
h , u

#
h ) with u#

h in the domain of A#
h , such that

λ#
h = i V (x0) + h

2
3
∑
j∈N

λ#
2j h

j
3 +O(h∞) , (39)

(A#
h − λ

#
h ) u#

h = O(h∞) in L2
#(Ω) , ||u#

h ||L2 ∼ 1 , (40)

where

λ#
0 = µ#

0 | v01|
2
3 exp

(
i
π

3
sign v01

)
, λ2 = µ2|v20|

1
2 exp

(
i
π

4
signv20

)
,

(41)
with v01 := ν · ∇V (x0) .

We can also discuss a physically interesting case when κ in (38) depends
on h and tends to 0 .

Bernard Helffer (LMJL, Université de Nantes) (after Almog, Henry, Grebenkov-Helffer-Henry, Grebenkov-Helffer, Almog-Grebenkov-Helffer,...)Spectral theory and semi-classical analysis for the complex Schrödinger operator Talk at Luminy June 2017



39

Applications to (2D)-problems

The proof of this theorem provides a general scheme for quasimode
construction in an arbitrary planar domain with smooth boundary ∂Ω. In
particular, this construction allowed us to retrieve and further generalize
the asymptotic expansion of eigenvalues obtained by de Swiet and Sen
for the Bloch-Torrey operator in the case of a disk. The generalization is
applicable for any smooth boundary, with Neumann, Dirichlet, Robin, or
transmission boundary condition. Moreover, since the analysis is local,
the construction is applicable to both bounded and unbounded
components.
We prove in Almog-Grebenkov-Helffer the existence of the eigenvalues
and the rate of the associated semi-group.

Bernard Helffer (LMJL, Université de Nantes) (after Almog, Henry, Grebenkov-Helffer-Henry, Grebenkov-Helffer, Almog-Grebenkov-Helffer,...)Spectral theory and semi-classical analysis for the complex Schrödinger operator Talk at Luminy June 2017



40

Applications to (2D)-problems

Main results for the exterior problem

We consider the Dirichlet or Neumann exterior problem and use the
notation # for D (Dirichlet) or N (Neumann). We introduce at ∞ the
Assumption that ∑

1≤|α|≤2

|Dα
x V (x)| ≤ C . (42)

This is for example satisfied if

V (x) = ĝ x1 , (43)

outside a ball B(0,R).
We add at the (bounded) boundary ∂Ω the assumptions of [4].
The potential V satisfies

|∇V (x)| > c > 0 , ∀x ∈ Ω . (44)

Let ∂Ω⊥ denote the subset of ∂Ω where ∇V is orthogonal to ∂Ω:

∂Ω⊥ = {x ∈ ∂Ω# : ∇V (x) = (∇V (x) · ~ν(x))~ν(x)} , (45)

where ~ν(x) denotes the outward normal on ∂Ω at x .
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Applications to (2D)-problems

Let # ∈ {D,N} and D# be defined in the following manner{
D# = {u ∈ H2

loc(R+) | u(0) = 0} # = D

D# = {u ∈ H2
loc(R+) | u′(0) = 0} # = N .

(46)

Then, we define the operator

L#(j) = − d2

dx2 + i j x ,

whose domain is given by

D(L#(j)) = H2(R+) ∩ L2(R+; |x |2dx) ∩D# , (47)

and set
λ#(j) = inf Reσ(L#(j)) . (48)

Bernard Helffer (LMJL, Université de Nantes) (after Almog, Henry, Grebenkov-Helffer-Henry, Grebenkov-Helffer, Almog-Grebenkov-Helffer,...)Spectral theory and semi-classical analysis for the complex Schrödinger operator Talk at Luminy June 2017



42

Applications to (2D)-problems

Next, let
Λ#
m = inf

x∈∂Ω⊥
λ#(|∇V (x)|) , (49)

In all cases we denote by S# the set

S# := {x ∈ ∂Ω⊥ : λ#(|∇V (x)|) = Λ#
m } . (50)
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Applications to (2D)-problems

When # ∈ {D,N} it can be verified by a dilation argument that, when
j > 0 ,

λ#(j) = λ#(1) j2/3 . (51)

Hence
Λ#
m = λ#(jm) , with jm := inf

x∈∂Ω⊥
(|∇V (x)|) , (52)

and S# is actually independent of #:

S# = S := {x ∈ ∂Ω⊥ : |∇V (x)| = jm } . (53)
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Applications to (2D)-problems

We next make the following additional assumption:
At each point x of S#,

α(x) = detD2V∂(x) 6= 0 , (54)

where V∂ denotes the restriction of V to ∂Ω, and D2V∂ denotes its
Hessian matrix.
It can be easily verified that (44) implies that S# is finite. Equivalently
we may write

α(x) = Πn−1
i=1 αi (x) 6= 0 , (55a)

where
{αi}N−1

i=1 = σ(D2V∂) , (55b)

where each eigenvalue is counted according to its multiplicity.
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Applications to (2D)-problems

The main results are

Theorem

Under the previous Assumptions, we have

lim
h→0

1
h2/3 inf

{
Re σ(AD

h )
}

= ΛD
m , ΛD

m =
|a1|
2

j2/3m , (56)

where a1 < 0 is the rightmost zero of the Airy function Ai .
Moreover, for every ε > 0 , there exist hε > 0 and Cε > 0 such that

∀h ∈ (0, hε), sup
γ≤ΛD

m

ν∈R

‖(AD
h − (γ − ε)h2/3 − iν)−1‖ ≤ Cε

h2/3 . (57)
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Applications to (2D)-problems

In its first part, this result is essentially a reformulation of the result
stated in [3]. Note that the second part provides, with the aid of the
Gearhart-Prüss theorem, an effective bound (with respect to both t and
h) of the decay of the associated semi-group as t → +∞ . The theorem
holds in particular in the case V (x) = x1 where Ω is the complementary
of a disk (and hence SD consists of two points). Note that jm = 1 in this
case.
A similar result can be proved for the Neumann case.
In the case of the Dirichlet problem, this theorem was obtained in [7,
Theorem 1.1] for the interior problem and under the stronger assumption
that, at each point x of SD , the Hessian of V∂ := V/∂Ω# is positive
definite if ∂νV (x) < 0 or negative definite if ∂νV (x) > 0 , with
∂νV := ν · ∇V . This was extended in [4] to the interior problem without
the signe condition of the Hessian.
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Applications to (2D)-problems

Approximating models in Rd or Rd
+

The models are (Rd or Rd
+)

−h2∆ + iJ · x

and (in Rd
+)

−h2∆ + i

jx1 +
∑
j≥2

αjx
2
j


with αj 6= 0.
Because these operators are with separate variables, we can use the
semi-group estimates for the 1D-problems and get an estimate for the
semi-group defined by tensor product for the dD-problem. The operators
are then defined as infinitesimal generators of the semi-group. Resolvent
estimates are then deduce from the estimates for the semi-group and
direct estimates.
We refer to [3, 29, 25, 4] for the spectral analysis of these models.
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Applications to (2D)-problems
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