
A walk in Georgi Raikov’s mathematical world
Promenade dans l’univers mathématique de Georgi Raikov.
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Introduction

It is of course impossible to present the whole contribution of
G. Raikov to spectral theory and mathematical physics.
Hence I just propose1 a walk through Georgi’s world which
sometimes has intersected my own world but most of the time
explores other domains.
May be a good picture says more than a long talk, so let us start
by reconsidering the picture realized by Constanza Rojas-Molina.

1Thanks to Vincent Bruneau for his help



When Constanza meets Georgi’s world

Figure: Picture realized by Constanza Roja-Molina



About his (academic) life.

Gueorgui (Georgi) Dimitrov Raikov is born in 1954 in Bulgaria.

He becomes student in Russia starting from 1975. He defended in
1986 his PHD (Maths and Physics) in Saint-Petersbourg
(Leningrad at the time) with M.S. Birman as advisor.
The title of the thesis was:
The spectrum of some linear problems of magnetic hydrodynamics.

After coming back in Bulgaria, he defended a ”bulgarian” Doctoral
Thesis (Mathematics) in 1992 with the title:
Non-classical eigenvalue asymptotics for the Schrödinger operator
with electromagnetic potential.



Academic Appointments.

I Research Fellow: Department of Mathematical Physics,
Institute of Mathematics, Bulgarian Academy of Sciences:
January 1987 - December 1992;

I Senior Research Fellow: Department of Analysis, Geometry
and Topology; Department of Real and Functional Analysis;
Department of Mathematical Physics, Institute of
Mathematics, Bulgarian Academy of Sciences:
since December 1992;

I Associate Professor: Department of Mathematics, University
of Chile, Santiago, Chile: August 2002 - July 2006;

I Associate Professor: Faculty of Mathematics, Catholic
University of Chile, Santiago, Chile: August 2006 - May 2012;

I Professor: Faculty of Mathematics, Catholic University of
Chile, Santiago, Chile: since June 2012;



Visiting Positions.

I University of Bordeaux 1, France: 1 semester, 1994, and
numerous one month visits.

I University of Nantes, France: 1989, then 3 semesters, 1995,
1999, and 2000;

I University of Reims, France: 2 semesters, 1996 - 1997;

I Purdue University, USA: 1 semester, 2001;

I University of Chile, 2 semesters, 2001 - 2002;

Numerous contacts with France where he was hoping to get a
position at the end of the nineties.



Many Collaborators around the world

M.S. Birman, J. Behrndt, M. Holzman, V. Lotoreichik, F. Klopp,
S. Warzel, V. Bruneau (13), A. Pushnitski (3), J.-F. Bony (5),
A. Khochman, M.A. Astaburuaga, P. Briet (8), C. Fernandez,
T. Lungenstrass, C. Villegas-Blas, P. Miranda (4), D. Parra,
H. Kovarik, P.D. Hislop, E. Soccorsi (3), E. Cardenas, I. Tejeda,
W. Kirsch (3), D. Krejcirik, N. Dombrowski, F. Germinet,
J.M. Combes, M. Dimassi, A. Mohamed(Morame).



Zoom inside the picture



At the end of the eighties, G. Raikov starts to move from the study
of the magnetohydrodynamic to the analysis of Schrödinger with
magnetic field. The common point remains spectral theory.
It seems that a visit of Georgi in Nantes in 1989 plays some role in
the change of interest as is mentioned in the introduction of the
survey he wrote with my former student A. Mohamed (Morame), a
survey finally achieved in 1994 !
A. Morame wrote to me three days ago the following:
C’est une bonne chose de rendre hommage à G. Raikov! C’est toi
qui trouvais que ses travaux et son premier passage à Nantes
représentaient une opportunité de collaboration avec moi. ...Nous
nous sommes mis d’accord sur un ”survey”, ... de rendre ”lisible”
pour les écoles de l’Est et de l’Ouest certains résultats
fondamentaux sur Schrödinger avec Champ Magnétique. A ma
grande surprise, il connaissait mieux que moi les travaux des
grenoblois2.
I also visited Bulgaria during this period (invited by V. Petkov) and
met G. Raikov at this occasion.

2Y. Colin de Verdière, J.P. Demailly.



On Schrödinger with magnetic field

Our basic object is the Schrödinger operator with constant
magnetic field b and possibly perturbed by an electric potential V .
The physical cases correspond to the dimension 2 and the
dimension 3. For lack of time, we will mainly consider the
(2D)-case.

HB := H(A,V ) = (−i ∂
∂x

+
by

2
)2 + (−i ∂

∂y
− bx

2
)2 + V

The problem could be in R2, but also in an open set (possibly an
exterior domain). One can also consider perturbations of the
constant magnetic fields.



The case V = 0.

Let Λq (q ≥ 0) the Landau-Levels3

Λq = (2q + 1)b

which describe the spectrum when V = 0. Each of these
eigenvalues has infinite multiplicity.
We can introduce the spectral projector Πq relative to the Landau
level Λq relative to H0

3Bn in the picture



Perturbing by a potential V

When adding a potential V say with compact support it is
standard that the essential spectrum is conserved. But eigenvalues
can appear outside the Landau levels. It is then natural to ask if
there is only a finite number of such eigenvalues or in the case it is
infinite the question is how to count them. For this we need a
magnifying glass in the neighborhood of one Landau level.
In this context, and to consider the operator

ΠqVΠq ,

The questions are the following:

I What is the link between the spectrum of ΠqVΠq and the
eigenvalues close to Λq as q → +∞.

I What is the nature of the operator ΠqVΠq and how can we
analyze its spectrum.



For notational convenience, we define

Λ−1 = Λ̃−1 = −∞

For q ∈ Z+, we consider Λ̃q ∈ (Λq,Λq+1), which is not an
eigenvalue of H(V ,A). We can then introduce

N+
q (λ) = N(Λq+λ,Λ̃q) , λ ∈ (0, Λ̃q − Λq)

and
N−q (λ) = N(Λ̃q−1,Λq−λ) , Λq − λ ∈ (Λ̃q−1,Λq) .

Further let λ+
k,q (resp. λ−k,q) be the non increasing (resp. non

decreasing) sequence set of the eigenvalues of H(V ,A) lying in
(Λq, Λ̃q) (resp. in (Λ̃q−1,Λq)) and counted with multiplicity.



Set
mq(V ) = #(σ(H(V ,A)) ∩ (Λq−1,Λq)) .

Assume that V ≥ 0. Then the discrete eigenvalues of H(V ,A)
may only accumulate to a Landau Level from above (from below
for H(−V ,A)). Accordingly, we can choose Λ̃q so that
σ(H(V ,A)) ∩ (Λ̃q,Λq+1) = ∅.



Raikov-Warzel–Fixed Landau level.

Theorem of Raikov-Warzel (2002) and extensions
Filonov-Pushnitski (2006) [1]

Assume that V ∈ C 0(R2), suppV = Ω where Ω ⊂ R2 is a
bounded domain and V > 0 on Ω. Then for any q ∈ Z+ we have

mq(±V ) = +∞ ,

and, as q → +∞,

log
(
±
(
λ±k,q(±V )−Λq

))
= −k log k+

(
1+log(bCap(Ω)2/2)

)
k+o(k) .

This is actually an improvement of Raikov and Warzel [RaWa]
which were only counting the eigenvalues and giving the main term
of the asymptotic. At about the same time, one should mention a
contribution by Melgaard and Rozenblum in any dimension.
See also Filonov-Pushnitski for this version of the statement.



Main steps of the initial result

We just consider the particular case. The first step is to introduce
convenient orthonormal bases of the subspaces ΠqL

2(R2).
For x = (x , y) ∈ R2, q ∈ Z+ and k ∈ Z+ − q, we set

ϕq,k(x) := ck,q,b(x + iy)kL
(k)
q (

b(x2 + y2)

2
) exp(−b(x2 + y2)/4) ,

where

L
(α)
q (ξ) =

q∑
m=0

Cq−m
q+α

(−ξ)m

m!
, ξ ≥ 0. ,

are the generalized Laguerre polynomials.



We can introduce the integral kernel of Πq

Kq(x, x′) =
+∞∑
k=−q

ϕq,k(x)ϕq,k(x′) ,

and we have

Kq(x, x′) =
b

2π
L

(0)
q

(b|x− x′|2

2

)
exp

(
−b

4

(
(|x−x′|2+2i(x ′y−xy ′)

))
.



The next step consists in investigating the eigenvalue asymptotics
of the so-called Toeplitz operator ΠqVΠq.
We have seen another example in the talk of A. Pushnitski.
Here we observe [Ra0] (1990), assuming of V is radial, that the
eigenvalues of ΠqVΠq are given by

〈Vϕq,k , ϕq,k〉 =
q!

(k + q)!

∫ +∞

0
V
(
(
√

(2ξ/b, 0)
)
e−ξξkL

(k)
q (ξ)2 dξ .

This permits to obtain asymptotics of the corresponding
eigenvalues.
We cannot hope such an explicit formula in more general cases.
The question is then to insert these explicit expressions in a more
general calculus. The Berezin-Toeplitz calculus will play this role.



The last step consists in comparing the spectrum of ΠqVΠq with
the spectrum of H(V ,A).

Comparison proposition

Let E ′ ∈ (Λq,Λq+1), q ∈ Z+. Assume that V satisfies ”suitable
assumptions” including V ≥ 0. We can start with V with compact
support ! Then for any ε ∈ (0, 1) we have as E → O+

n+(E ; (1− ε)ΠqVΠq) +O(1)
≤ N(Λq + E ,E ′;H(V ))

≤ n+(E ; (1 + ε)ΠqVΠq) +O(1) .

The proof is based on the Birman Schwinger principle which gives

N(Λq + E ,E ′;H(V ))

= n+(1;V 1/2(Λq + E − H(0))−1V 1/2)

−n+(1;V 1/2(E ′ − H(0))−1V 1/2)
−dim Ker

(
H(V )− E ′) .



[PuRaVi] (2013) and [LuRa] (2014)

Theorem of G.R. with A. Pushnitski and T. Lungenstrass

Assume that V satisfies

|V (x)| ≤ C < x >−γ

with γ > 0.
Then there exists Ĉ > 0 such that

σ(H(A,V )) ⊂ ∪q∈Z+

(
Λq − ĈΛ

− inf(1,γ)/2
q ,Λq + ĈΛ

− inf(1,γ)/2
q

)



Then under suitable assumptions one can obtain more precise
results by considering for example

lim
q→+∞

Λ
−1/2
q

∫
ρ(λ)dµq(λ) ,

where

µq([α, β]) = rank1
[Λq+Λ

−1/2
q α,Λq+Λ

−1/2
q β]

(H) .

The limit is proved to be ∫
ρ(λ)dµ(λ) ,

where the measure µ is associated with b and the Radon
transform of V

Ṽ (ω, r) :=
1

2π

∫ +∞

0
V (rω + tω⊥)dt , ω ∈ S1, r > 0

by

µ(O) =
1

2π
|Ṽ−1(b−1O)| ,

where | · | denotes the Lebesgue measure.



About other problems considered by Georgi.

I have not discussed

I various contributions for the strong magnetic field limit

I His analysis of the spectral shift function, the scattering phase
and the analysis of resonances (contributions with V.
Bruneau, P. Briet, J-F. Bony,....) (or scattering poles)

An important element in the analysis of these problems is the
crucial role of the Berezin-Toeplitz operators as effective
Hamiltonians in different asymptotic regimes.



The spectral shift function (SSF) is present at the top right corner
of the picture.



May be you see it better with a zoom

or with a mathematical definition:

Tr
(
f (HV )− f (H0)

)
=

∫
R
ξ(HV ,H0;λ) f ′(λ) dλ ,

for each f ∈ C∞0 (R) with the convention that ξ(HV ,H0;λ) = 0
for λ < inf σ(HV ).



A book !

The Berezin–Toeplitz Calculus is the main subject of a book that
Georgi was preparing in collaboration with Vincent Bruneau who
was his main collaborator since 2004 (13 common papers !). We
have seen that a primitive version of this calculus already plays an
important role in [RaWa]. Setsuro Fujie has also recalled in his talk
that a preliminary version of this book was taught in Japan.



V. Bruneau was writing in the introduction of the last version of
the book:
The aim of the book was to provide an overview of these results to
which the authors have contributed. Unfortunately the Covid-19
did not let Georgi Raikov bring this book project to fruition. In
March 2021, Georgi Raikov, instigator of this book, succumbed to
Covid-19 when we had written most of the three Chapters 2, 3
and 4.



Dear Vincent, the best way to honour Georgi’s memory is surely to
achieve the book. I know that you are almost done !

Figure: Picture of Oberwolfach in 2018



Thanks to Georgi..

and

thanks for your attention.
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