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Abstract

Inspired by some questions presented in a recent ArXiv preprint
(version v1) by T. Chakradhar, K. Gittins, G. Habib and N.
Peyerimhoff, we analyze their conjecture that the ground state
energy of the magnetic Dirichlet-to-Neumann operator tends to
+∞ as the magnetic field tends to +∞. More precisely, we explore
refined conjectures for general domains in R2 or R3 based on the
previous analysis in the case of the half-plane and the disk by
Helffer-Nicoleau. This is a work in collaboration with Ayman
Kachmar and François Nicoleau.



Presentation

Let Ω be a bounded domain of Rn, n ≥ 2, with smooth boundary.
For any u ∈ D′(Ω), the magnetic Schrödinger operator on Ω is
defined as

HA u = (D − A)2u = −∆u − 2i A · ∇u + (A2 − i div A)u, (1)

where D = −i∇, −∆ is the usual positive Laplace operator on Rn

and A =
n∑

j=1

Ajdxj is the 1-form magnetic potential. We often

identify the 1-form magnetic potential A with the vector field−→
A = (A1, ...,An).

We assume that A ∈ C∞(Ω;Rn). The magnetic field is given by
the 2-form B = dA.



Since zero does not belong to the spectrum of the Dirichlet
realization of HA, the boundary value problem{

HA u = 0 in Ω,

u|∂Ω = f ∈ H1/2(∂Ω),
(2)

has a unique solution u ∈ H1(Ω).
The Dirichlet-to-Neumann map (D-to-N map) is defined by

ΛA : H1/2(∂Ω) 7−→ H−1/2(∂Ω)
f 7−→ (∂~νu + i〈A, ~ν〉 u)|∂Ω ,

(3)

where ~ν is the outward normal unit vector field on ∂Ω.



More precisely, we define the D-to-N map using the equivalent
weak formulation :

〈ΛAf , g〉H−1/2(∂Ω)×H1/2(∂Ω) =

∫
Ω
〈(D − A)u, (D − A)v〉 dx , (4)

for any g ∈ H1/2(∂Ω) and f ∈ H1/2(∂Ω) such that u is the unique
solution of (2) and v is any element of H1(Ω) so that v|∂Ω = g .
Clearly, the D-to-N map is a positive operator.



We recall that when Ω is bounded and regular he spectrum of the
D-to-N operator is discrete and is given by an increasing sequence
of eigenvalues

0 ≤ µ1 ≤ µ2 ≤ ... ≤ µn ≤ ...→ +∞ .

Due to the variational characterization, the ground state energy

µ1 := λDN(A,Ω)

can be expressed as

λDN(A,Ω) = inf
u∈C∞(Ω), ‖u‖∂Ω=1

‖(−i∇− A)u‖2
Ω ,

where ‖u‖Ω and ‖u‖∂Ω denote the L2-norms in L2(Ω;C) and
L2(∂Ω;C) resp.



Comparison with the Neumann magnetic problem

Our analysis is parallel with the analysis of the Neumann magnetic
problem for which there is a huge literature in the last forty years
including two books (Fournais-Helffer, N. Raymond).
In this case the Neumann magnetic ground state is given by

λNe(A,Ω) = inf
u∈C∞(Ω), ‖u‖Ω=1

‖(−i∇− A)u‖2
Ω ,



We were also inspired by the recent work of T. Chakradhar, K.
Gittins, G. Habib and N. Peyerimhoff, (see [5], Example 2.8).

We consider the following magnetic 1-form defined in the unit disk
D(0, 1) ⊂ R2 by :

A0(x , y) = (−ydx + xdy), (5)

It has been proven by Helffer-Nicoleau the following

Theorem HN1

One has the asymptotic expansion as b → +∞,

λDN(bA0) = αb1/2 − α2 + 2

6
+O(b−1/2) , (6)

where −α is the unique negative zero of the so-called parabolic
cylinder function D 1

2
(z) .



We recall that the parabolic cylinder functions Dν(z) are the
(normalized) solutions of the differential equation

w ′′ + (ν +
1

2
− z2

4
) w = 0 ,

which tend to 0 as z → +∞.

At last, the positive real α appearing in this theorem is
approximately equal to

α = 0.7649508673....



The main idea for treating the case of more general domains,
following what has been done in Surface Superconductivity, is to
use the previous result for disks, the radius being locally chosen as
the inverse of the curvature when it is positive.



The starting point is in the case of the disk BR of radius R and
curlA = 1,

λDN(bA,BR) = α̂b1/2 − α̂2 + 1

3
R−1 +O(b−1/2) ,

with
α̂ = α/

√
2 .

The analysis in [24] can be adapted to the case BextR , the exterior
of the disk BR (see also another work in progress with F. Nicoleau
[25]), and we get

λDN(bA,BextR ) = α̂b1/2 +
α̂2 + 1

3
R−1 +O(b−1/2) .

Hence we can also consider boundary points with negative
curvature.



To cover later all the cases with one notation we introduce for
R ∈ R

λDN(b,R) =


λDN(bA0,BR) if R > 0

α̂b1/2 if R = 0
λDN(bA0,Bext−R) if R < 0 ,

and observe that

λDN(b,R) = α̂b1/2 − α̂2 + 1

3
R−1 +O(b−1/2) .



Comparison with Neumann
The result for Neumann was (Baumann-Phillips-Tang [3] 1998,
Bernoff-Sternberg, Lu-Pan, Helffer-Morame, Fournais-Helffer,....) ,
for some ”spectral invariant” C1 > 0,

λNe(b,R) = 2Θ0b − C1b
1
2R−1 +O(1) .

For the half-plane (formally R = +∞)

λNe(b,+∞) = 2Θ0b .

This corresponds with the analysis of the spectrum of the
Neumann realization in {t > 0}

D2
t + (Dx + 2bt)2

After partial Fourier transform and dilation, we get the family

h(ξ) := D2
t + (ξ + t)2

We get
Θ0 = inf

ξ
µ(ξ)

where µ(ξ) is the Neumann ground state energy of hNe(ξ).



For the D-to-N operator we have to solve in R+

h(ξ)uξ = 0 , uξ(0) = u0(ξ) ,

and then compute u′ξ(0).

Here we see how the special function Dν appears



Saint-James picture in the case of the disk
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Figure: The magnetic Neumann eigenvalues



Our second result for the disk is concerned by diamagnetism. We
recall that by diamagnetism we mean that λDN(bA0) is minimal for
b = 0. This result has been proved in full generality in
ter Elst-Ouhabaz [10] (see also Helffer-Nicoleau [23] for variants of
this result).
We prove a strong diamagnetism result:

Theorem HN 2

The map b 7→ λDN(bA0,B1) is increasing on (0,+∞).

Notice that the corresponding problem is open in the case of
Neumann (see Fournais-Helffer (2007), Helffer-Léna (2024)) (only
proven for b ≥ b0 or for 0 < b ≤ b1).



Constant magnetic field in the disk

In polar coordinates (r , θ), the D-to-N map is defined by :

ΛbA0 : H
1
2 (S1) → H−

1
2 (S1)

Ψ → ∂rv(r , θ)|r=1.
(7)



Writing

v(r , θ) =
∑
n∈Z

vn(r)e inθ , Ψ(θ) =
∑
n∈Z

Ψne
inθ, (8)

we see that vn(r) solves:{
−v ′′n (r)− v ′n(r)

r + (br − n
r )2vn(r) = 0 for r ∈ (0, 1),

vn(1) = Ψn.
(9)

A bounded solution to the differential equation (9) is given by:

vn(r) = e−
br2

2 rnLn− 1
2
(br2) for n ≥ 0, (10)

where Lαν (z) denotes the generalized Laguerre function. For
n ≤ −1, thanks to symmetries in (9), we get a similar expression
for vn(r) changing the parameters (n, b) into (−n,−b).



We recall that the generalized Laguerre functions Lαν (z) satisfy the
differential equation:

z
d2w

dz2
+ (1 + α− z)

dw

dz
+ νw = 0, (11)

and are given by

Lαν (z) =
Γ(α + ν + 1)

Γ(α + 1)Γ(ν + 1)
M(−ν, α + 1, z), (12)

where M(a, c , z) is the Kummer’s confluent hypergeometric
function, defined as

M(a, c , z) =
+∞∑
n=0

(a)n
(c)n

zn

n!
. (13)

Here (a)n = Γ(a+n)
Γ(a) .



For 0 < a < c , we have the following formula:

M(a, c , z) =
Γ(c)

Γ(c − a)Γ(a)

∫ 1

0
eztta−1(1− t)c−a−1dt . (14)

The derivative of the Kummer’s function with respect to z is given
by:

∂zM(a, c , z) =
a

c
M(a + 1, c + 1, z) . (15)



Now, let us return to the study of the Steklov eigenvalues.
Obviously, they are given by

λn =
v ′n(1)

vn(1)
for n ∈ Z. (16)

Thus, using (10) and (12), we see that the Steklov spectrum is the
set:

σ(Λ(b)) = {λ0(b)} ∪ {λn(b), λn(−b) }n∈N∗ , (17)

where for n ≥ 0,

λn(b) = n − b + 2b
∂zM( 1

2 , n + 1, b)

M( 1
2 , n + 1, b)

. (18)



Figure: The magnetic Steklov eigenvalues λn(b) (left) and the ground
state energy λDN(b) (right).



Constant magnetic field in general domains

We will prove the following theorem

Theorem HKN1

Let Ω be a regular domain in R2 and A be a vector potential with
a magnetic field B = curl A such that B is C 1 on Ω and B = 1 on
a neighborhood of ∂Ω. Then, the ground state energy of the
D-to-N map ΛbA satisfies

λDN(bA,Ω) = α̂ b
1
2− α̂

2 + 1

3
max
x∈∂Ω

k(x)+O(b−1/6) , b → +∞ ,

where k is the curvature of ∂Ω.



For comparison, the result in the case of the Neumann problem
was:

Theorem LuPan–HeMo

Let Ω be a regular domain in R2 and A be a vector potential with
a magnetic field B = 1. Then, the Neumann ground state energy
satisfies

λNe(bA,Ω) = Θ0b − C1b
1/2 max

x∈∂Ω
k(x) +O(1) , b → +∞ ,

where k is the curvature of ∂Ω.



Coming back to ground state energy estimates

We will also consider the case of variable magnetic field in 2D and
in 3D in the same spirit as for the analysis of the Neumann
problem appearing in surface superconductivity [32, 20, 37, 38, 21].

.

Theorem HKN2

Let Ω be a regular domain in R2, A be a magnetic potential with
non vanishing magnetic field B(x) in ∂Ω, then the ground state
energy of the D-to-N map ΛbA satisfies

λDN(bA,Ω) = α̂( inf
x∈∂Ω

|B(x)|)
1
2 b

1
2 + o(b

1
2 ) . (19)



Neumann case

Theorem LuPan

Let Ω be a regular domain in R2, A be a magnetic potential with
non vanishing magnetic field B(x) in Ω, then the ground state
energy of the Neumann realization of the magnetic Laplacian
satisfies

λNe(bA,Ω) = b min( inf
x∈Ω
|B(x)|,Θ0 inf

x∈∂Ω
|B(x)|) + o(b) . (20)



Extension to (3D)

We have a similar theorem for variable magnetic fields in 3D which
is in correspondence with known results obtained in the analysis of
the ground state energy of the Neumann realization of the
magnetic Laplacian (see [33, 21, 38]:



Theorem HKN3

Let Ω be a regular bounded domain in R3, A be a magnetic
potential with non vanishing magnetic field B(x) in ∂Ω, then the
ground state energy of the D-to-N map ΛDN

bA satisfies

lim
b→+∞

b−1/2 λDN(bA,Ω) = inf
x∈∂Ω

(
λDN(ϑ(x))|B(x)|

1
2

)
, (21)

where, for x ∈ ∂Ω,

I ϑ(x) is defined by 〈 ~H(x) |~ν〉 = −|B(x)| sinϑ(x) .

I ~H(x) is the magnetic vector field associated with B(x)
considered as a 2-form by the Hodge-map

I ~ν is the exterior normal at x ∈ ∂Ω,

I λDN(ϑ) is the ground state energy relative to the half space
when the magnetic field is constant.



There are two important consequences

I When B is constant with magnitude 1, it follows that

lim
b→+∞

b−1/2 λDN(bA,Ω) = α̂.

I More generally, if we know only that |B(x)| is constant, as for
the helical magnetic field B(x) = (cos(τx3), sin(τx3), 0)
encountered in liquid crystals [35, 17] (Pan, Helffer-Kachmar),
then

lim
b→+∞

b−1/2 λDN(bA,Ω) = inf
x∈∂Ω

λDN(ϑ(x)) .

If ∂Ω is homeomorphic to S2, then

inf
x∈∂Ω

λDN(ϑ(x)) = α̂



Recent results by Z. Shen.

Using some parallel between Dirichlet, Neumann problem and the
Dirichlet-to-Neumann problem, Z. Shen (2025) has considerably
enlarged the number of results by considering possibly vanishing
magnetic fields. Here we meet quantities which play an important
role for other problems on magnetic bottles:

mr (x) :=
∑
|α|≤r ,i ,j

|Dα
x bij(x)|

and the results are obtained in any dimension. The asymptotics
are nevertheless limited to the main term.



It is also interesting to look at the Robin problem [12], whose
variational definition is

H1(Ω) 3 u 7→
(
‖(−i∇− A)u‖2

Ω + γ

∫
∂Ω
|u|2
)
/
( ∫

Ω
|u|2dx

)
.

The problem is interesting in itself but also for technical reasons
for the analysis of the D-to-N operator.

See Kachmar (2006) Robin condition is called De Gennes condition
and more recently Fahs-Le Treust-Raymond-Vu Ngoc (2025).



Happy 75-76-77 birthdays Grigori !
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