
Courant or Pleijel theorems for Hörmander’s operators
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Motivated by some of the results by Eswarathasan–Letrouit in [17]
and connected open problems initially discussed with C. Letrouit,
we consider in this work with Rupert Frank the Dirichlet realization
in an open set Ω ⊂ Rn of a subLaplacian (also called Hörmander’s
operator)

−∆Ω
X :=

p∑
j=1

X ?
j Xj ,

where the Xj (j = 1, · · · , p) are C∞ real vector fields satisfying
the so-called Hörmander condition [36] which reads:

Assumption (CH(r))

For some r ≥ 1 the Xj and the brackets up to order r generate at
each point x ∈ Ω the tangent space TxΩ.

Note that the terminology ”subRiemannian Laplacian” or in short
”subLaplacian” is posterior to the work of L. Hörmander and
corresponds to the development of the subRiemannian geometry
starting of the middle of the eighties .



More generally, we can consider a connected C∞ Riemannian
manifold M of dimension n with a given measure µ (with a
C∞-density with respect to the Lebesgue measure in a local
system of coordinates) and a system of p C∞ (p ≤ n) vector fields
satisfying Assumption (CH(r)).
These operators are known to be hypoelliptic (Hörmander 1968) in
Ω.
Under additional conditions at the boundary which is supposed in
this case to be C∞ and satisfying the

Non-characteristic assumption

A system X is said non-characteristic for an open set Ω, if for each
point x ∈ ∂Ω there exists a vector field Xi that is transverse to the
boundary at x ,

we have regularity up to the boundary (see Derridj [15] 1971 and
the talk by Brian Street in this conference). Note that we will not
need for our results this condition which is rather strong due to
topological considerations.



Maximal hypoellipticity.

These operators are also known to be maximally hypoelliptic
(Rotschild-Stein 1976).
There is a characterization of the polynomials of vector fields
which are maximally hypoelliptic using a Rockland’s like criterion
initially introduced by Helffer-Nourrigat in 1979. The proof in full
generality of this criterion was recently proven by
Androulidakis–Mohsen-Yuncken (2022).
We do not need this characterization here, but the
pseudo-differential calculus introduced by Rothschild-Stein (1976),
in the version given by L. Rothschild in the equiregular case (1979)
will be important in the proof of Faber-Krahn’s inequality.



Main questions

The operator has compact resolvent provided Ω is bounded and we
can consider for its discrete spectrum all the questions that have
been solved along the years concerning the Dirichlet realization
−∆Ω of the Euclidean Laplacian. We focus in this talk on

I Courant’s theorem: comparison between the minimal labelling
k of an eigenvalue λk and the number νk of the nodal
domains of the eigenfunction in the eigenspace corresponding
to λk .

I Pleijel’s theorem



Åke Pleijel (1913-1989)

Appointed professor of mathematics at Lund University on 4
August 1952, he took up the appointment on 1 December that
year. He served as dean of the Faculty of Mathematical and
Natural Sciences from 1 July 1957 to 30 November 1961 and
served again in the academic year 1964-1965. The 1959
International Handbook of Universities lists Lund University with
Åke Pleijel as Dean of the Faculty of Mathematics and Natural
Sciences with a staff of 102.



Courant’s Theorem

As well known, Courant’s theorem (1920)1 states that in the case
of the Dirichlet Laplacian in Ω ⊂⊂ Rn, an eigenfunction associated
with the k-th eigenvalue has at most k nodal domains:

νk ≤ k .

If one looks at the standard proof of Courant’s theorem, this
mainly appears as a consequence of

I a restriction statement (the restriction of an eigenfunction to
its nodal domain is the ground state of the Dirichlet
realization of the Laplacian in this domain),

I the minimax characterization of the eigenvalue,

I the Unique Continuation theorem (UCT).

Hence the difficulty is to determine under which conditions, we can
extend these results to the sub-Riemannian Laplacians.

1Richard Courant 1888-1972



Restriction

Having rather few informations about the nodal sets (i.e. the
boundary of the nodal domains) we adapt to the subRiemannian
case a proof of the restriction Lemma proposed by
E. Müller-Pfeiffer (1985) which permits to avoid regularity
assumptions at ∂Ω.

Restriction Lemma

If u is an eigenfunction, the restriction of u to one of its nodal
domains is the first eigenfunction of the associated Dirichlet
(Sub)-Laplacian.



Unique Continuation

In the C∞ category K. Watanabe [60] proves UCT in dimension 2,
but H. Bahouri [2] gives a discouraging counter-example with two
vector fields in R3.
Nevertheless, J. M. Bony at the end of the sixties [3] proved that
(UCT) holds when the vector fields are analytic.
Hence Courant’s theorem holds in the analytic category as proved
by Eswarathasan–Letrouit in [17].
Actually, using our restriction lemma, we can extend statements
given in [17] to the case when the boundary is not necessarily
non-characteristic.



Weak version of Courant’s theorem (Mangoubi)

We have:
νk ≤ k + Mult(λk)− 1 .

This version is only using the variational characterization, the
interior regularity and the restriction Lemma.



Pleijel’s Theorem

In the same spirit, one can hope for an asymptotic control of
ν(k)/k . In the case of the Dirichlet Laplacian in Ω ⊂ Rn, Pleijel’s
theorem (Pleijel 1956) says that, if n ≥ 2, there exists an
Ω-independent constant γ(n) < 1 such that

lim sup
k→+∞

νk
k
≤ γ(n) .



In the case of the Euclidean Laplacian, the proof of Pleijel’s
theorem is a nice combination of Weyl’s formula which gives the
asymptotic behavior as λ→ +∞ of the counting function

N(λ,−∆Ω
eucl) ∼Wn|Ω|λn/2 ,

and Faber-Krahn inequality establishing that

λ1(−∆Ω
eucl) ≥ |Ω|−2/n λ1(−∆B1) ,

where B1 is the ball of unit volume.
One can then establish that

γ(n) = W−1
n λ1(−∆B1)−n/2 < 1 , (1)

for n ≥ 2.



If we consider the generalization to the subLaplacians, we can be
optimistic on the side of Weyl’s formula. Since the pioneering work
of Guy Métivier (1976) [48, 49], we are rich in results, at least if
we add to Assumption (CH(r)) some equiregularity condition,
which permits at each point to approximate the Xj by the
generators of a nilpotent Lie Algebra Gx . More precisely the vector
fields satisfy the following condition

Equiregularity assumption (CEq)

For each j ≤ r the dimension of the space spanned by the
commutators of the Xk of length ≤ j at each point is constant.

In the modern language of sub-Riemannian geometry, this is called
an equiregular distribution.



Métivier’s Weyl formula

We denote by Dj the span of all vector fields obtained as brackets
of length ≤ j of the Xk ’s.
We set nj := dim(Dj), which, by assumption (3) above does not
depend on the point x ∈ M.
A family (Y1, . . . ,Yn) of n vector fields is said to be adapted at
x ∈ M if for any j ≤ r , Span(Y1(x), . . . ,Ynj (x)) = Dj(x).



We can then introduce the homogeneous dimension

Q :=
r∑

j=1

j (nj − nj−1) , (2)

with the convention that n0 = 0.
Under Assumptions (CH(r)) and (CEq) , G. Métivier (1976) shows
(using in particular the techniques of Rothschild-Stein and
Rothschild [57, 56]) that there exists a constant c(M, µ) such that
as λ→ +∞

N−∆M,µ
X

(λ) := #{j : λj(−∆) ≤ λ} ∼ c(M, µ)λ
Q
2 . (3)



Note that in the case r = 2, connected results are obtained in the
eighties Menikoff–Sjöstrand [46, 47], Métivier [48], Abderemane
Mohamed [50] and Métivier’s theorem (together with many other
results) has been revisited at the light of subRiemannian geometry
in Colin de Verdière–Hillairet–Trélat [10, 11, 12] (2018-2022).



Faber-Krahn’s inequality.

On the other side, our knowledge is rather poor concerning
Faber–Krahn’s inequality. In the case of the Heisenberg group, one
can think of a result by P. Pansu [53] concerning the isoperimetric
inequality. We follow another way by revisiting the nilpotenzation
procedure permitting to deduce Faber–Krahn inequalities for
sub-Laplacians from Faber–Krahn inequalities for sub-Laplacians
on nilpotent groups. Combining with Weyl’s formulas we get a
sufficient condition for the validity of the theorem which relies on
the corresponding Faber–Krahn constants to be established for
Dirichlet realizations of subLaplacians in open set of nilpotent
groups.



The second part will be devoted to the analysis of this question for
the nilpotent groups Hn × Rk where Hn is the Heisenberg group.
Unfortunately, we fail in the case (n, k) = (1, 0), except if we
admit a celebrated Pansu conjecture but fortunately we succeed
assuming roughly that k + n is large enough.



Combining our result about Faber–Krahn inequalities with
Métivier’s Weyl-type formula, we obtain a sufficient condition for
the validity of a Pleijel-type bound; The upper bound on
lim supk→∞ νk/k is of the form(∫

M
(cFKx )−

Q
2 dµ(x)

)(∫
M
cWeyl
x dµ(x)

)−1

, (4)

where

I cFKx is a certain local Faber–Krahn constant, defined in terms
of the nilpotentization of −∆M,µ

X at x ∈ M,

I cWeyl
x is a certain local Weyl constant, defined in terms of the

same nilpotentization.

This strengthening of our original result (2023) is due to Y. Colin
de Verdière.



The role of the Borel measure

D 7→
∫
D
cWeyl
x dµ(x)

on M is emphasized in the work of Colin de
Verdière-Hillairet-Trélat [12], where it is called the Weyl measure.

Similarly, here we introduce what may be called the Faber–Krahn
measure

D 7→
∫
D

(cFKx )−
Q
2 dµ(x) .



It is interesting to compare (4) with the Pleijel formula (1), to
which it reduces in the case of open subsets of Rn. More generally,
in the Riemannian case (where p = n and where µ is the
Riemannian volume measure) the expression (4) reduces to (1) and
we recover the result of Bérard and Meyer [5].
According to (4), a sufficient condition for the validity of Pleijel’s
theorem is the following bound on the “local Pleijel constants”:(

cFKx

)−Q
2
(
cWeyl
x

)−1
< 1 for all x ∈ M ;

We emphasize that the latter condition involves the corresponding
Faber–Krahn constants for Dirichlet realizations of sub-Laplacians
in open set of nilpotent groups.

Hence in the second part of the talk we will describe what we have
obtained in this particular case.



On nilpotent approximation
Here we refer to Métivier [48], Rothschild–Stein [57]). and the
presentation of Rothschild [56] (based on former assumptions and
definitions given by Folland [18]). Since this period in the
seventies, a huge literature has developed the so-called
sub-Riemannian geometry analyzing in particular this nilpotent
approximation.

We consider the situation presented in the introduction and
assume that Assumptions (CH(r)) and (CEq) are satisfied.
We impose (to simplify in this talk) in addition that

Yj = Xj for j = 1, · · · , p .
Given a flag (special basis of TxM adapted to the Dj and

completing the basis of D1) at x ∈ M we can define canonical
privileged coordinates at x by the mapping θx given by

θx(y) := u = (ui ) if y = exp(
∑

uiYi ) · x , (5)

where exp denotes the exponential map defined in some small
nhbd of x .



It is known that under assumption (2) above, around any x ∈ M it
is possible to choose a flag that is adapted at any point in a nhbd
of x . Thus we identify a nhbd of x ∈ M with a nhbd of 0 in Rn. It
has been shown by G. Métivier that everything depends smoothly
on x .



We now introduce the notion of nilpotentized measure d µ̂x at
x ∈ M. There is a definition in the formalism of sub-Riemannian
geometry but we prefer to explain here ”by hand ” how it can be
constructed for our specific choice of privileged coordinates. On Rn

we have the Lebesgue measure

du =
∏
i

dui ,

and in these local coordinates the measure dµ is in the form

dµ = a(x , u)du ,

where (x , u) 7→ a(x , u) is C∞ in both variables x and u.
In a small nhbd of 0, the nilpotentized measure at x can be defined
by

d µ̂x := a(x , 0)du . (6)

Then we denote by Yi ,x , the image of Yi by θx , which is simply Yi

written in the local canonical coordinates around x .
It can be shown that θx is also C∞ with respect to x .



On Rn, with coordinates u = (ui ), we introduce the family of
dilations given by

δt(ui ) = (twiui ) ,

where wi is defined as follows: there exists a unique j ∈ {1, . . . , n}
such that nj−1 + 1 ≤ i ≤ nj , and we set wi = j .
We then define the homogeneous dimension by

Q :=
∑
i

wi . (7)



G. Métivier [48] (Theorem 3.1) proves (in addition with the
regularity of θx already mentioned above) the following theorem.

Métivier Approximation Theorem

For any x , Xj ,x is of order ≤ 1. Furthermore,

I

Xk,x = X̂k,x + Rk,x ,

where X̂k,x is homogeneous of order 1 and Rk,x is (for a
suitable natural definition) of order ≤ 0.

I The X̂k,x generate a nilpotent Lie algebra Gx of dimension n
and rank r .

I The mapping x 7→ X̂j ,x is smooth.

Although, the lemma is established for a specific θx , there are
other posssible choices permitting to get the same conclusion.



By Métivier’s theorem (see also Colin de Verdière–Hillairet-Trélat)
we have the following Weyl formula, giving the structure of the
Weyl constant.

Spectral Theorem of G. Métivier

There exists a continuous, positive function x 7→ cWeyl
x such that

the counting function, of the selfadjoint realization of
−∆ = −∆M,µ

X satisfies, as λ→ +∞,

N−∆(λ) := #{j : λj(−∆) ≤ λ} ∼
(∫

M
cWeyl
x dµ(x)

)
λ

Q
2 . (8)

Note that, when r = 2, there were important contributions on the
subject starting from the end of the seventies. One has to give a
more explicit way to determine cWeyl

x .



A basic example

To make the general theory more concrete, let us consider
examples.
We denote coordinates on R3 by (x , y , z).
In Ω ⊂ R3, we consider

X1 =
∂

∂x
+ K1(x , y)

∂

∂z
, X2 =

∂

∂y
+ K2(x , y)

∂

∂z
,

with curl ~K = ∂
∂xK2 − ∂

∂yK1 > 0.
The measure µ is simply the Lebesgue measure dxdydz .
Our aim is to give an explicit criterion for getting Pleijel’s theorem
for the Dirichlet realization of the subLaplacian in Ω

−∆Ω
X = −X 2

1 − X 2
2 .



Let (x0, y0, z0) ∈ Ω. Then in the construction Gx0,y0,z0 is the
Heisenberg group H1 and the privileged coordinates at (x0, y0, z0)
are given (modulo higher order term if we use the canonical
privileged coordinates) in the form

u1 = x−x0 , u2 = y−y0 , u3 = δ̂(z−z0)+P(x−x0, y−y0) ,
(9)

where P is a polynomial of order 2 and

δ̂ =
1

curl ~K (x0, y0)
.

Hence the candidate to be the nilpotentized measure at
(x0, y0, z0) is

curl ~K (x0, y0) du1du2du3 . (10)

In these coordinates we have

X̂1 =
∂

∂u1
− 1

2
u2

∂

∂u3
, X̂2 =

∂

∂u2
+

1

2
u1

∂

∂u3
, X̂3 =

∂

∂u3
.

(11)



Conclusion in the setting of the example

We denote by cFK(H1) the Faber–Krahn constant on the
Heisenberg group H1.

We now apply the main Theorem or, more precisely, its version for
the sub-Laplacian on an open set with Dirichlet boundary
conditions. The condition (15) reads( (

cFK(H1)
)2

Ŵ (H1)
)
> 1 .

Under this condition, Pleijel’s theorem holds.

Currently we have no proof that(
cFK(H1)

)2
Ŵ (H1) > 1 .

Although this holds provided a well-known conjecture by Pansu
concerning the isoperimetric inequality on the Heisenberg group is
true.



Other examples

To have a positive example, we could repeat the above analysis
with

X 2
1 + X 2

2 + ∆w

on Ω ⊂ R3 × Rk with k ≥ 3.

We can also consider for n ∈ N, j = 1, · · · , n

X ′j = ∂xj − K j
1(xj , yj)∂z ,

X ′′j = ∂yj − K j
2(xj , yj)∂z ,

with CurlK j > 0.



Main result for sub-Laplacians in the equiregular case

By the nilpotent approximation (as also explicited in the previous
examples), we can associate to each point x ∈ M a nilpotent
group Gx (identified with the algebra Gx in the exponential
coordinates) and a corresponding sub-Laplacian

∆̂x =

p∑
i=1

X̂ 2
i ,x

in U2(Gx) (the elements in the enveloping algebra which are
homogeneous of degree 2) .
According to Varopoulos (see also Folland and Rothschild), we
have always, when Q > 2 with Q introduced in (7), a Sobolev
inequality L2 − Lq with

q = 2Q/(Q − 2) . (12)

By our assumption of equiregularity, Q is independent of x ∈ M.



In addition, for any x ∈ M we also have, for all Ω ⊂ Gx open, for
all v ∈ C∞0 (Ω), a Faber–Krahn inequality in the form

〈−∆̂xv , v〉L2(Gx ,µ̂x ) ≥ c µ̂x(Ω)−
2
Q ‖v‖2

L2(Gx ,µ̂x ) , (13)

with c > 0.
By definition cFKx is the largest constant such that (13) holds.
When Q > 2, a lower bound for cFKx can be deduced from the
Sobolev inequality (see Varopoulos or Rothschild).



Our main statement (Frank-Helffer) is the following theorem:

Main Theorem

Let −∆ =
∑

` X
?
` X` be an equiregular sub-Riemannian Laplacian

on a closed connected manifold M. Then

lim sup
k→+∞

ν(k)

k
≤
(∫

M
(cFKx )−

Q
2 dµ(x)

)
·
(∫

M
cWeyl
x dµ(x)

)−1
, (14)

where ν(k) denotes the maximal number of nodal domains of an
eigenfunction of −∆ associated with the eigenvalue λk ,



Corollary

If
(cFKx )

Q
2 cWeyl

x > 1 , (15)

then Pleijel’s theorem holds.

We can come back to the examples.



When M is replaced by an open set Ω in a fixed graded group G
and −∆Ω is the Dirichlet realization of the sub-Laplacian
(associated with this group) in Ω, examples where the condition
given in the corollary holds can be given. We can also consider a
Dirichlet realization −∆Ω of an equiregular sub-Riemannian
Laplacian in Ω ⊂ M. Other examples where the theorem can be
applied are in the form M3 × Tk with k large enough and with M3

a 3-dimensional contact manifold.



Second Part

In the first part, we have seen how we can hope to get Pleijel’s
theorem by analyzing the case of nilpotent groups. The formulas
involved indeed some cFKx relative to a group Gx with a specific
Haar measure µ̂x and some cWeyl

x relative to the spectral density of
−∆̂x in Gx .



The Pleijel argument for Hn × Rk

We work on Hn × Rk , where n ∈ N, k ∈ N. The case k = 0
corresponds to the Heisenberg group Hn.Typically, we will denote
coordinates in Hn by (x , y , z) with x , y ∈ Rn and z ∈ R, and we
will denote coordinates in Rk by w . The measure dx dy dz dw is
the Lebesgue measure on R2n+1+k .
For the vector fields we use the following normalization,

Xj = ∂xj + 2yj∂z , Yj = ∂yj − 2xj∂z , Wj = ∂wj .

The sub-Laplacian is

∆Hn×Rk
=

n∑
j=1

(X 2
j + Y 2

j ) +
k∑

i=1

W 2
i .



If Ω ⊂ Hn × Rk is an open set of finite measure, then the

spectrum of the Dirichlet realization of −∆Hn×Rk

Ω is discrete and
we can denote its eigenvalues, in nondecreasing order and repeated
according to multiplicities, by λ`(Ω).
We denote by ν`(Ω) the maximum number of nodal domains of
eigenfunctions corresponding to eigenvalue λ`(Ω). We are
interested in an upper bound on

lim sup
`→∞

ν`(Ω)

`

that depends only on n and k. Just as Pleijel’s bound, our bound
depends on two constants. The Weyl asymptotics states
that, for any open set Ω ⊂ Hn × Rk of finite measure,

µ−
2n+2+k

2 #{` : λ`(Ω) < µ} → W(Hn × Rk)|Ω| as µ→∞ .

We will give a (relatively) explicit expression for the constant
W(Hn × Rk).



The Faber–Krahn constant CFK(Hn × Rk) is the largest constant
such that for any open Ω ⊂ Hn × Rk of finite measure and for any
u ∈ S1

0 (Ω) one has∫
Ω(
∑n

j=1((Xju)2 + (Yju)2) +
∑k

i=1(Wiu)2) dx dy dz dw

≥ CFK(Hn × Rk)|Ω|−
2

2n+2+k
∫

Ω u2 dx dy dz dw .
(16)

Here S1
0 (Ω) denotes the form domain of the Dirichlet realization of

−∆ on Ω. The defining inequality for the Faber–Krahn constant
can also be stated as

λ1(Ω) ≥ CFK(Hn × Rk)|Ω|−
2

2n+2+k

for all open Ω ⊂ Hn × Rk of finite measure.



Let us set

γ(Hn×Rk) :=
(
CFK(Hn × Rk)

)− 2n+2+k
2
(
W(Hn × Rk)

)−1
. (17)

Here is our Pleijel-type bound.

Theorem (Frank–Helffer [20] )

For any open Ω ⊂ Hn × Rk of finite measure,

lim sup
`→∞

ν`(Ω)

`
≤ γ(Hn × Rk) .



Proof of Pleijel’s Theorem
Let u be an eigenfunction corresponding to the eigenvalue λ`(Ω).
Let (ωα)α be its nodal domains and let ν`(u) be their number. W
know that λ`(Ω) = λ1(ωα) and that u|ωα is the ground state of
the Dirichlet realization on ωα. Thus,

ν`(u)

`
=
λ`(Ω)

2n+2+k
2

`

∑
α

λ1(ωα)−
2n+2+k

2

≤ λ`(Ω)
2n+2+k

2

`

(
CFK(Hn × Rk)

)− 2
2n+2+k

∑
α

|ωα|

≤ λ`(Ω)
2n+2+k

2

`

(
CFK(Hn × Rk)

)− 2
2n+2+k |Ω| .

Since this holds for any eigenfunction, we get

ν`(Ω)

`
≤ λ`(Ω)

2n+2+k
2

`

(
CFK(Hn × Rk)

)− 2
2n+2+k |Ω| .

Taking the limsup as `→∞ and with in mind the Weyl
asymptotics, we arrive at the claimed bound.



It remains to give conditions on n and k for which γ(Hn×Rk) < 1.
We recall that for n = 0 this was shown to be the case for k = 2 by
Pleijel [55] and for general k by Bérard and Meyer [5]. Moreover,
Helffer and Persson Sundqvist [35] showed that, for n = 0,
k 7→ γ(Rk) is decreasing and actually exponentially decreasing.
At the moment we have the following.

Theorem Frank–Helffer

If k = 0, then for all n ≥ 4 one has γ(Hn) < 1.
If k = 1, then for all n ≥ 3 one has γ(Hn × R) < 1.
If n = 1, then for all k ≥ 2 one has γ(H1 × Rk) < 1.
If n = 2, then for all k ≥ 1 one has γ(H2 × Rk) < 1.

The cases that are still open are when both n ≥ 3 and k ≥ 2. And
k = 0, n = 1, 2, 3, k = 1, n = 1.



The constant in the Weyl asymptotics in the case of Hn

Here we follow more explicit computations of Hansson–Laptev [29],
which yields the Weyl asymptotics under the sole assumption that
Ω is an open set of finite measure.

W(Hn) =
1

2(n + 1)

1

(2π)n+1

∑
m∈N

(
m + n − 1

m

)
1

(2m + n)n+1
.

(18)



Faber-Krahn or Sobolev for Hn

We obtain a bound on the Faber–Krahn constant in terms of the
(critical) Sobolev inequality on Hn × Rk . By definition,
SSob(Hn × Rk) is the largest constant such that for all
u ∈ S1

0 (Hn × Rk)

∫
Hn×Rk

 n∑
j=1

((Xju)2 + (Yju)2) +
k∑

i=1

(Wiu)2

 dx dy dz dw

≥ CSob(Hn × Rk)

(∫
Hn×Rk

|u|
2(2n+2+k)

2n+k dx dy dz dw

) 2n+k
2n+2+k

.

By application of Hölder, we have

Lemma Sob-to-FK

CFK(Hn × Rk) ≥ CSob(Hn × Rk).



An explicit expression for CSob(Hn) was found by Jerison and Lee
[39]; for an alternative proof see [22]. We have

CSob(Hn) =
4πn2

(22nn!)
1

n+1

. (19)



The Pleijel constant γ(Hn)

Our goal in this subsection is to prove the part of our Theorem for
k = 0, that is, we are going to prove that γ(Hn) < 1 for n ≥ 4. To
bound γ(Hn) we use our previous bounds to get

γ(Hn) ≤
(
CSob(Hn)

)−n−1
W(Hn)−1 =

2n(n + 1)!

n2(n+1)

1

cn
=: γ̃n ,

(20)
where cn is defined by

cn :=
∑
m∈N

(
m + n − 1

m

)
1

(2m + n)n+1
.

Numerics treats the case n ≤ 13. The second step is to show that
γ̃n/γ̃n−1 becomes < 1. This is done first asymptotically and in a
second step, the estimate of the remainder in the asymptotics
shows that this holds for n ≥ 13.
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[35] B. Helffer and M. Persson Sundqvist.
On nodal domains in Euclidean balls.
Proc. Amer.Math. Soc. 144 (11): 4777–4791 (2017).

[36] L. Hörmander.
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