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Witten Laplacians. [1]

Main goals

The aim of these lectures is to present some basic
properties of the Witten Laplacians and to explain
how they can be used in statistical mechanics.

We will look at the simplest situations where this
method appears to be powerful, that is for the
analysis of the properties of a measure on RY (or on
an open set therein) taking the form

)
exp —— dzl¥

h
where ® is a phase (in C*°(R")) describing the

properties of the model, dz¥ denotes the Lebesgue
measure on RY and A is a small parameter.
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Two asymptotics will be considered :

h small (this could be the temperature)
called the semi-classical limit,

or N large (related to the number of particles),
called the thermodynamic limit.

The analysis of simultaneous asymptotics is the most
interesting but we will just analyze two examples
where only one of the two asymptotics is involved.

Another parameter J measuring the size of the
interaction will also appear permitting the use of
perturbative techniques.
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Contributors using the method

Witten (but not in this context) (1982)

Helffer-Sjostrand (1994), Sjostrand (1994)
(but previous works on Schrodinger operators...1982-

Further developments 1995-2005

In alphabetic order

Bach, Bodineau, Helffer, Jecko, Johnsen, Matte,
Moeller, Nier, Sjostrand, W.M. Wang ...
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But not disjoint of other methods : Bakry-Emery ...
Ledoux

In other domains it has inspired :

Naddaf-Spencer : On homogeneization and scaling

limit of some gradient perturbation of a massless free
field

Deuschel : The random Walk representation for
interacting diffusion processes..

For a extensive presentation of the subject, see
Helffer (book World Scientific), Helffer-Nier (LN in
Mathematics 1862).
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Witten Laplacians approach

We start with some standard mathematical basics.
The De Rham Complex

We denote by Q°(IR™) the space of the real C™ 0-
forms corresponding consequently to C*°(R™ ; R),
by Q'(R™) the real C*° 1-forms :

m
w = g wjidz? .
J=1

More generally we can define p-forms and we recall
that the m-forms can be identified with functions
through the correspondence ¢ — ¢dxr1 A dzo--- A
dx,,. The operation A associates to two forms
w € 0P and W' € QP the exterior product w A w' in
QPP and we have the property

wAw = (—1)pp’w' ANw,
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with in particular
dfl?i A diEz =0 , d.’Ez N d:l?j = —dLEj /\dfl?i .

The exterior differential d is defined on
T o (R™) with the properties :

o d restricted to Q°(R™) is denoted by d(®) and
goes from Q°(R™) into QY(R™) :

dOy = Z(@mju)dxj :

J

More generally the restriction of d to QP(R™)
is denoted by d® and goes from QP(R™) into
Qr+1(R™)

dod=0, (1)
that is
dPTodP =0, Vp=0,---,m—1. (2)
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e Forw € QP and o' € QF
d(pﬂ’,)(w/\w’) = dPw AW + (—1)Pw A APy’

In particular dV on Q(R™) is the operator
defined for w = > " | wjdz; by
dVw = Zj(d(o)wj) A dz;
=D 1(Op,wj)dzy A dz;
=D i (Op,w — Oy wjy)dxj A dzxy .

d™ =0.

The De Rham Complex is well defined (see (2)) by

d(0) d1)
0 — QO = Q' = P .- Q"0.

(3)
All this can be more generally defined on general C*°
manifolds M.
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We are now interested in the introduction of a
prehilbertian structure on these C°°- forms which
are now assumed to be with compact support (in
this case, we write ©25). This will permit to define by
completion the corresponding Hilbert spaces of L?
p-forms. It is sufficient for this to define the natural
norms on the tensor products. In particular we have

e For u in QY(R™)

Jal? = [ wotax, @

where dX corresponds to the usual Lebesgue
measure. By completion, we shall get the usual

standard L?(R™) space.

e For w in QY(R™)

w2 = Z/m w;(X)2dX .
j=1
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e For o in Q%(R™), we get

lol? =3 [ on(x)%dx

J<k

These norms are of course associated to scalar
products denoted by (- | -). We get of course

(w]w) = llw]|*.

Once we have this prehilbertian structure, it is
immediate to associate to d a formal adjoint d*.
More specifically we associate to each d(® defined
from Q2 into QP! a formal adjoint d**(?) which maps
QP+ into QP and is uniquely defined, for w € QP+1,
by the relation

< d*(p)

w o) = (w|dPw')

for all W’ € QF.
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d*" is a differential operator of order 1 mapping
explicitely QPT1 into QP.
We get in particular the following formulas :

e For a one-form w, we have

(0)
J

e For a 2-form o, we have

« (D
(d U)k:—zaxjajk,
J

where = +— o,i(x) has been extended as
a function with values in the space of the
antisymmetric matrices.

It is also easy to verify that d* is also a complex :

(p+1)

dod*=0o0rd*” od™ =0.  (5)
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The corresponding Laplacians A() defined in a
contracted way as

AO) = (d+ d*)? (6)

and more explicitely, for any p, whose by

(p—1)

A®) = 7 o 3@ 4 ge=1 o g* (7)

The Laplacian A®) maps QP(R™) into itself. This is
an elliptic operator of order 2 with diagonal principal
symbol.

All these constructions are valid when R™ is replaced
by a Riemannian manifold. The operator A(® s
usually called the Laplace-Beltrami operator.

In the case of R™, the situation is particularly simple
because we have the identity

AP = AO) & 14 .
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When p = 1, this gives

A(l)w = Z(A(O)w]) dil?j .

J

Note also that

0) _— A _—_ 2
AO = _A = Zla%.
]:
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In the case of a compact riemannian manifold M the
introduction of these De Rham Complexes and of
the corresponding Laplacians leads to the so-called
Hodge theory.

A central role is played by these Laplacians for which
a Fredholm theory can be developed. In particular,
they can be defined as unbounded operators on
L?-forms. These operators will be selfadjoint and
under some assumtions with compact resolvent. In
particular, their spectrum is a sequence of eigenvalues
with finite multiplicity tending to +oo with a
corresponding sequence of eigenvectors forming an
orthonormal basis.
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Witten Complex

The distorted exterior differential is

de = exp—P/2d expP/2 .

Note that
dg))u = d Oy + %u dOd
and more generally we have
de = d + %d@ A

This is a complex :

dq;Odcp:O.
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Keeping the prehilbertian structure given by the
initial L? norm, we can then define d} by duality

(dyw[w') = (w]dew') .

For a 1-form, we get in particular

1
2w = " + Sw(Ve).

Other distortions

More general distortions (sometimes for technical
reasons) can be introduced. See later (in the proof of

the decay estimates) and also Bach-Jecko-Sjostrand,
Bach-Moller.
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Witten Laplacians
We can define now the Witten Laplacians on the
forms by

AY = (do + d%)?. (11)

All these constructions were initially introduced by
E. Witten on a compact manifold and ® was a Morse
function (that is with non degenerate critical points).
His idea was to relate some invariants of the manifold
M with some indices of the Morse function ® at the
critical points.

These relations are called Morse inequalities.

In the case of R™, we get more explicitly

1 1
AP = AO) 4 AVeP—cae,  (12)

and
AY = AP ® Id + Hess® . (13)
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Note that we have the following important relation
dy Ay = Agdy) (14)
which is only the explicitation on the 0-forms of

dg © (dcp + d$)2 =dg O (dcpd:i) + d:;)dq))
= ch> O dfb O ch)
= (dods + dids) o do .

What is changed ?

At least if |[V®(X)| — +o0o0 and @ is with bounded
second derivatives, one can show that, although we

are on a non compact manifold, the operators Ag))

and Ag) can be extended as positive, selfadjoint

operators, with compact resolvent on L?*(R™) or
L2(R™; R™).
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For more information on criteria of compactness of
the resolvent, see the book of Helffer-Nier.

For the positivity, we observe indeed (at least for the
compactly supported forms) the identity

(Agw | w) = [|(de + dg)wl|* .
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Semi-classical considerations
If we replace ® by ®/h, we get th%, a new family

of h-dependent Laplacians considered by E. Witten
in the case of the compact manifolds. We get

1
A, = —h*A + 7 VeX)P gACD(X) . (15)

This has the form of a Schrodinger operator
—h?A + | %5

with
Vi, = Vo+ AV

and 1
Vo(X) := Z|V<I>(X)|2 .

For the Laplacian on 1—forms

1 h
AG), = (1 A+7IVE(X) P~ AR(X)) @I +hHess®

(16)
V1 becomes a non diagonal matrix |
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Conversely

If you start from Schrodinger
Shyv = —h*A+V — X\ (h)

so that O is the lowest eigenvalue.

Consider
® = —2hlogug

where ug is the groundstate.
Then

&y:Ag,
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About Witten lIdea

The main idea of E. Witten was that the dimension
of the kernels of these various Laplacians

— related by the Hodge theory to the Betti numbers
can be estimated from above by a rather crude
semiclassical analysis of the lowest eigenvalues of
these operators as h — 0.

If we observe that the minimum of V[ is obtained
at the critical values of ® and that the minima are
non degenerate if and only if the critical points are
non degenerate the harmonic approximation gives a
satisfactory answer. The only zeros eigenvalues of
the approximating harmonic operators correspond to
the minima of ®.

For Ag,)h, we will meet the critical points of ¢ of
type 1.
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An alternative point of view : Dirichlet forms

The idea is simply that we start from the usual
De Rham Complex but take for the definition
of the adjoint the prehilbertian structure given

by the scalar product associated to the norm in
L?(R™; exp —® dX).

This gives a natural adjoint complex d*'® and one
can similarly introduce associated Laplacians which

are denoted by AEI;).

In particular :
AP = —A+V®-V, (17)
and
Ag):AEI?)@)Id—I-HeSS(I). (18)
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These operators are unbounded operators on
L?>(R™,R; exp —® dX) and L?(R™,R™; exp —P dX).
They are also associated with the quadratic forms

u q((bo)(u,u) = / Vu|? exp—® dX ,

which is called the Dirichlet form, and

w = ¢ (w,w)

= [|dYw]?exp —®dX + [ |d*(9):®w|? exp —P dX .

The relation (on the compactly supported forms) is
given by :

0 0
¢ (u,u) = (APu | u) z2@m; exp -0 dx)

and similarly

1 1
qé)(w,w) — <A<(1>)w | W>L2(Rm,1[<<m; exp —® dX) -
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In this point of view, the techniques based on the
Lax-Milgram Lemma and the Friedrichs extension are
available for defining these Laplacians associated to
the Dirichlet forms.

In the case of a compact riemannian manifold M,
we have also a (modified) identity (18)

— In particular the Lebesgue measure is replaced
by the Riemannian measure on M and Hess® is
replaced by Hess® + Ric(M) where Ric(M) is the
Ricci curvature on the manifold —

or more precisely a modification of the corresponding
“form” version written in the form

0D (w,w) = 3 |10, wil*+ / (Hess® w)-w exp—B dX |
71k

is known from the geometers as the Bochner-
Lichnerowicz-Weitzenbock formula. It is actually
usually written only for exact 1-forms.
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This point of view is unitary equivalent to the Witten
Laplacian point of view. We simply observe the
following relations

. P
ASI)) = exXp —5

. )
o A((I)) o exp—l—E.

We note of course that u +— exp% uw 1S a unitary
map from L?(R™) onto L*(R™ ; exp —® dX).
Having this unitary equivalence, one can transfer
all the identities we have obtained for the Witten
Laplacians and we get in particular the identity

d0AY) = AP a© (19)

When trying to use standard theorems (about
Schrodinger or about compact injections) it is usually
more easy to come back to the point of view of the
Witten Laplacians which are defined on L?(R™).
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This intertwining property of d and Ag, leads to
simple connections between the spectra of the various
Laplacians.

Typically, if u is an eigenvector corresponding to
a non zero eigenvalue of AY) | then d@u is

an eigenfunction of Ag). Conversely, if w is an
eigenform of A((I)l), then d*®w if not zero is an
eigenvector of AEI?).

This will be mainly used for the two first Laplacians
but see also Matte-Moeller for a nice application of
this supersymmetric trick.
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Supersymmetry

In other words (coming back to W.L), we can
consider the “super charge operator”

Q =de + dg

The Witten Laplacian corresponds to (% and the
Hilbert space H of the L2-forms is splitted in the
direct sum H_ ® H of the odd and even forms. If
v is defined as the multiplication operator by + on
Hi, we get

NAe=Q%, Qv++vQ=0,~+"=1,

giving the classical supersymmetric picture (see
Witten).
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Towards statistical mechanics

We start from a phase ® representing the physical
system. We assume (possibly after renormalization)

7 = /exp _®(X)dX =1,  (20)

and h = 1.

The integration is over RY , where N corresponds (is
proportional) to the number of particles.

In the context of statistical mechanics, one is
Interested in the limit N — +o00, but for us this
will mean mainly estimates with uniform control with
respect to the dimension.

When temperature is involved, one has to replace ®
by 8® with 8 = 1/T. Semi-classical techniques are
efficient when temperature is small.
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A nice formula for the covariance

If we denote by (f), the mean value of f with respect
to the measure exp —®(X) dX, the covariance of
two functions f and g is defined by

Cov (f,9) =((f =) -(g—={g)).  (21)

The variance is recovered by taking f = g.

If we have in mind to write an expression of the
covariance in the form

Cov (f,9) = {dg | w) r2rm &m ; exp —& dx)

for a suitable 1-form w, we get, observing that
dg = d(g —(g)),

Cov (f,g) = / (g — (9))(d"%w) exp—® dX .

This leads to the question of solving

f—=({f)=d"w. (22)
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We can try to solve

f={f)=d"w.

with an w in the form w = du, and this leads to the
following equation for u

J— f>:AEI?)U}. (23)

As previously mentioned, A((I?) IS an unbounded
selfadjoint operator.

This operator AEI?) is positive (this is a Laplacian)
and Ag)) + Id is an invertible operator which maps
D(ASI?)) onto L?*(R™;exp —® dX) and its inverse is
(under suitable assumptions) a selfadjoint compact
operator. It can then be shown that A((I?) can be
diagonalized in the same basis with the property that
the eigenvalues A\, = )\7(10).

AEI?) being a positive operator, we know that )\go) >
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0. But it is immediately seen that
AV 1=0.

So X — u1(X) = 1 is a possible first eigenvector
(or ground state) of AEI?) attached to Aﬁ‘” = 0.

Now, in order to solve the equation (22)

it is clear that the necessary and sufficient condition
for solving Ag))u — f is the orthogonality of f with
the first eigenvector which is expressed by (f) = 0.
But f = f — (f) satisfies this condition, and this
explains why we can solve (22).
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For f in C!, such that df is bounded, we have seen
that there exists u such that (22)

is satisfied.
We get by differentiation and using the commutation
relation (19) with w := du,

df = ADw . (24)

There is for Agbl) an analogous Fredholm theory as

for Ag)). If we denote by )\511) the increasing sequence
of the eigenvalues, we know that

0< A <AV <. (25)
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In the case when )\gl) is strictly positive then Ag)
becomes invertible and we can consequently write
that

w=(4g))df ,

and this leads to the " nice” formula for the covariance
of two functions :

Cov (f,9) = (A 1df | dg)pyy,  (26)

where HD is the Hilbert space of the 1-forms with
coefficients in the space L*(R™;exp —® dX).
In particular we get for the variance :

Var (f) :/((AEIP)—ldf) df exp—® dX , (27)
and the Poincaré inequality

Var (f) < )Y, 0 - (28)

This inequality is not optimal in general.
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Remark
We have the inequality

Var (f) < O YIdEFIR, 0 - (29)

Hint
Observe that

df |2, = (AS(F = (D) | (F = ()2 -

Remark
Using (19), one can show

AL <A (30)

We now look at the question of getting explicit lower
bounds for Agl). This is rather easy in the convex
case.
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Convex phase

Let us now consider situations when an easy lower
bound of )\gl) is available. In the case when @ is
uniformly strictly convex,

Hess®(X) >0 >0, (31)

we observe the following inequality between
selfadjoint operators

Ag) = Ag))®[d+H€SS(I> > Hess® >0 >0, (32)
which is an immediate consequence of (31), the

positivity of ASI?), (18), and, using abstract analysis,
we obtain

(A((i)l))_1 < (Hess®) . (33)
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The Brascamp-Lieb inequality is then an immediate
consequence of (26) and says

Var (f) < ((Hess®)™"df | df)5,0) - (34)

Of course, together with (32), the inequality (34)
implies the Poincaré inequality.
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Notes

e The Witten Laplacians were introduced in a
different context by E. Witten as an elegant way
to prove by analytic technics Morse inequalities
on a compact manifold (see later).

e The appearance of these Laplacians in the analysis
of Poincaré inequalities is rather old, at least
in Riemannian geometry. In this context, the
Witten Laplacians appear together with Bochner
Laplacians.

e The understanding of the role of the Witten
Laplacians in the analysis of decay estimates is
due to Helffer-Sjostrand and more explicitly to
Sjostrand, but it is not so far from the approach of
Bakry-Emery (see Ledoux) or of other techniques
used in Quantum field theory.
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Typical models coming from statistical
mechanics

Our aim is to analyze the thermodynamic properties
(and particularly the decay of correlations) of
measures. Here we more precisely consider
the case with “boundary”, that is measures
exp —®4“(X) dX with some &M%, associated with

cubes A C Z¢ and some w € RZ defining the
boundary condition, in the form, for X € R4,

M (X) = Z¢(5L‘j)+g > |2—2k|”

JeEA ({JIU{k})NAAD , i~k
where
o X = (xj)jEA,

® ¢ is a one-particle phase on R with at least
quadratic increase’

10ne can in some case consider a weaker assumption but we always
assume that [ exp —¢(t) dt < 4o00o. R can be replaced by R*.

— Typeset by FollTEX —



Witten Laplacians. [39]

Z; z; ifjel,
5 = Wy If]%A

e j ~ k means that j and k are nearest neighbors 2
for the ¢!- distance in Z°.

We shall sometimes use the following decomposition
A
(I)A,w:q)éix—i_jq)i,w)

with

QLX) =) olx)
JEA
and

dM(X) = Z |z; — 23] .

{g3YH{ENNAFD , j~k

2One can also analyze the case when 3 and k are nearest neighbors in
A considered as a discrete torus. The same questions can be considered on
trees (Bach-Moeller)
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One can also consider the free boundary condition
corresponding to the phase

oM = oh + 7 M (35)

eMN(X) = Y zj-azl. (36)
1,kEN |, g~k

If necessary, the dependence on J will be mentioned
by the notation &4« = &M« T or M = @MST
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Single-spin phase

We assume that ¢ is C"*° on R and convex at 0o, so
there exists C' > 0 such that

& (z) > % VoeRst z]>C.  (37)

We assume also that there exists p > 0 and, for all
k € N, C such that,

oD (2)] < O < ¢'(x) >R+ Yz e R,
(38)
where, for u € R, < u >:= (1 + |u|2)% and, for
t € R, (t)1 := max(t,0).
The typical example will be (A > 0)
1,

1
= gt + —vz?.

$(z) = 35 5

We would like to analyze the possibility of having
any sign for v. That is to analyze non convex cases
(but convex at o).
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Our main problem will be to analyze the properties
of the measure

dip w = exp —(IDA""(X) dX/ (/
(

RN)A

exp —®M¥(X) dX) ,
or of the measure

duy = exp —®M (X)) dX/ ( / exp —®M7 (X) dX) .
(R

N)A

We shall in particular analyze the covariance
associating to f,g € C55,, (RY)

Cov puw(fr9) = ((Ff = (Nrw)(9 = (9Aaw))Aw

where ( - )5 ., denotes the mean value with respect to
dllﬁA,w and C’f.eomp(RA) is the space of C* functions
with polynomial growth.

Similarly, we associate with ®*7/ and the measure

dup the mean value ( - )4 and the covariance Cov 4.
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Main Theorem

Let us consider, for any w € R%" and A C Z¢, the
phase ® = M« = & + j@?"" with ¢ satisfying
(37) and (38). Then there exists a constant C' and
Jo > 0 such that, for any J € [0, Jo], for any w, for
any A C Z% and any tempered functions f and g on
R we have :

| COV A,Wﬁf? g)j|\§ A (39)
C exp —5d(5%, Sg) |ldaflz2 [ldagllz2 -

In this case, we say shortly that we have uniform
decay estimates.

Here S% (which is called the lattice support of f in A)
is the smallest subset of A such that f(X) = f(XS}\)

~ A
where f is a function on RF .

For example the support of X — f(X) = x; is {i}.

When f = g, we recover Poincaré inequality.
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When f = z; and g = z;, we get under the same
assumptions for the pair correlation

Cor (¢,7) = Cov (z,z;) ,

There exists Jp > 0, C' and &, such that, for any
A, wand J € [0,+Jp], the correlation pair function
satisfies

| Cor A,w(iaj)| < C’exp—md(i,j) ) \V/Z,] €.
(40)

— Typeset by FollTEX —



Witten Laplacians. [45]

The proof relies essentially on getting a

lower bound for the spectrum of the Witten
Laplacian on 1-forms

Let us recall that the Witten Laplacian on 1-forms
attached to the phase ® = ®*¢ is defined as,

Ag) =

o 10 o 10%
[ZJEA (_%j i 53%‘) (8% i 5%3')} @1
+ Hess® .

defined on the L? 1—forms with respect to the
standard Lebesgue measure on R™, with m = |A]|.

This Witten Laplacian Ag) Is essentially selfadjoint
from C§° if @ is C2.

The main results are perturbative in nature (small
interaction).
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The aim of this part is :

Theorem LB1

For any A C Z¢ and w € RZ" let & := AT pe
the phase on R* with ¢ satisfying (37)-(38). There
exists Jp and o1 > 0, such that the lowest eigenvalue
)\/1\’“”‘7, of the corresponding Witten Laplacian on 1-

forms Afbl), satisfies, for any cube A, w € RZd and

J €10, Jol,

AT > g (41)

Similarly, we have also :

Theorem LB2

For any A C Z%, let ® := ®*/+J be the phase on
R with ¢ satisfying (37)-(38). There exists 7, and

o1 > 0, such that the lowest eigenvalue )\f’f’j, of

the corresponding Witten Laplacian on 1-forms AL
satisfies, for any cube A and J € [0, Jo],

AMT > gy (42)
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The starting point for the proof is the basic identity

<A( )u|u Yr2 = Z||Xku]|| +Z/8x]8x u; up dX |

(43)
with |
X; =0+ §8j<1> : (44)
and
1,
0= 00, = 5, (45)

Denote by wj(-o) and wj(-) the single-spin Witten

Laplacians (respectively on 0- and 1- forms) attached
to the variable z; and the phase on R

$j(z;) = M7 (X) . (46)

The function qb"i depends actually only on the 2z, with
¢~ 7 and recall that zy =z, if £ € A and zy = wy if
¢ € 7%\ A. We have indeed

¢;(t) = o(t)+T > t—ze*+ (%) -
({OUGNNAZD , b~
(47)
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The last term is independent of ¢ and irrelevant in

the discussion. The operators w( ) and w( ) depend
only on the z, with £ ~ j.

It is quite important that the estimates are proved
independently of these parameters.
We note the relations

w® = X* X; (48)

J

and 82
]- 3k 3k
wi) = X; X¥ = X? X 82. (49)

According to the context, we shall see these identities
as identities between differential operators on L?(R*)
or on L*(R;,) (the other variables being considered
as parameters).
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With these conventions, we have

1 0
AP u]0) e =Y en sanlw uj | v))

+ZjeA<’w§-1)uj | v;) +J (Hess'®;u | v) ,

(50)

where @, = CI)‘Z{\’“’ denotes the interaction phase and
Hess' means that we consider only the terms outside

of the diagonal of the Hessian, that is such that for
k.l e A

(Hess'®;) e -1 ifk~/

=0 else .

(51)

Here we observe that Hess®; is independent of z
and that J Hess®; corresponds to a perturbation in
O(J), where O is uniform with respect to A, using
the discrete Schur's Lemma.

Note that we get from (51) the inequality

<A£I>1)U | u)p2 >

ZjeA(w§1)uj | u;) +J (Hess'®;u | u) .

(52)
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We get consequently the following theorem
Theorem
Let us assume that there exists p1 > 0 such that, for
any j € Z% and any z € RZ* \Ui}, the operator3 w( )
satisfies

wi > py (53)
then, for any ¢ > 0, there exists Jy > 0 such that
the Witten Laplacian W, with ® := ®4«+7 or with
d .= ®MFT | satisfies for any A € Z¢, w € RZ" and
J € [0,+70],

AY > (p1—e). (54)

We recall that the positivity of wj(-l) is immediate from

the definition. We also observe that it is sufficient
to treat the case of a fixed jg all the families being
unitary equivalent (after a simple change of the
names of the parameters).

The other important point is to verify the condition
of uniformity. This will be done later.

3For a given j € Zd, the effective parameters are actually the z, such
that £ ~ j.
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Uniform estimates for a family of
1-dimensional Witten Laplacians

We shall discuss various conditions under which these
uniform estimates can be obtained. ¢ is at least C?.

If 1 is a C? phase, we shall denote by wg)) and wibl)

the corresponding Witten Laplacians defined in this
simple case by

dZ 1 1
wy = o+ 7= 59", (59)
and 2 . |
(1) _ _ Lo N2 o

These two operators (being positive) are
automatically selfadjoint on L?(R) starting from C5°.
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The first condition is (for reference to the strictly
convex situation which was analyzed through the
Bakry-Emery argument) the existence of C' > 0 such

that
° 1

> = R . 7
> 5. Vte (57)

(sc) " (t)

A weaker condition is

(sc(00)) ¢"(t)> 5, VEER, [t >C . (59)

A still weaker assumption is that there exists a
bounded function y in C? such that

(sem) " (t) + X" (t) > é , Vi eR. (59)

These three conditions are ordered :

(sc) = (sc)(o0) = (scm) .
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Another family of conditions corresponds to
assumptions on the operator

Z 1
red .__ S n
W= - + 2q5 : (60)

or more precisely to the quadratic form associated to
,w'red :

w i "% u) = (W% | u) . (61)
We consider a new family of conditions starting with :

1
(gsc) q"**(u) > e |ul]®, Yu € C°(R) . (62)
A weaker condition is

(gsc(o0)) ") > 5llul®, Vu € OF(R\]-C, +C)

(63)
Finally a still weaker assumption is the existence of a
bounded function x in C? and of C's.t. Yu € C§°(R)

1 1
(gsem) qmd(UH—/ X" () [u(®)]* dt > 55 |[u]]* -
R

2
(64)
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These three new conditions are again ordered :
(gsc) = (gsc(o0)) = (gsem)

and it is also clear that (gsc) is weaker than (sc). The
condition (gsc) permits to treat roughly speaking
functions which are strictly convex in mean value.
Explicit criteria exist for verifying (qsc) and are
related to sharp versions of the Garding inequality.

We have shown that the proof of a uniform lower

bound for the Witten Laplacian Ag) can be deduced
from the study of one-dimensional Witten Laplacians.
We want to analyze

w 4> 1.,

wll) = =l 10 )+ (6 .a(0) , (65)

with

a=-2T) z. (66)
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The first theorem is the following :

Theorem ulbl

Let ¢ be a phase satisfying (62). Then, there
exists Jp, and p; > 0 such that, for any (o, J) €
R x [0, +J0], we have

1
wfpj),a 2 P1 - (67)
Proof : Just observe that
w >t 4 7d (68)
¢J,o¢ - )

Note that in the strictly convex case (sc), we simply
write

w;f;a > ¢ +27d . (69)
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The second theorem is :

Theorem ulb?2

Let ¢ be a phase satisfying (64). Then, there
exists Jp, and p; > 0 such that, for any (o, J) €
R x [0, +J0], we have

e

¢j,a 2 P1 - (70)

The proof is based on the following lemma :
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Lemma
If A1(2)) is the bottom of the spectrum of the Witten

Laplacian wibl) attached to v, then, for y and ¢ C?
such that x is bounded, we have

M(9) = (exp—2|[x][[z>) - Ml +x).  (71)

The proof consists in observing :

1
(wMulu) = (exp—X (=L +L(¢/ + X)) expX u|
exp —% (—g +3(¢' + X)) exp 3 u) .

(72)

We then deduce, that, for any u € C§°(R),
(wi ulu) > exp x|z (Wi, exp Xu|exp Fu)
o > X/l (wyy., exp Ju|exp Ju

> exp —||x||Le AM(p + x) || exp Xul|?
(73)

and consequently

(wulu) > exp =2||x|[ze M +x)[ull* . (74)

The minimax principle and (74) give (71). This ends
the proof of Lemma .
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A second proof consists in working with the second
eigenvalue )\( ) of w(o)

For the proof of Theorem ulb2, we can then use the
lemma and apply theorem ulbl, with ¢, s replaced

by ¢a,J + X.
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A proof of the uniform decay of
correlations

We now present the proof of the uniform decay
of correlations and show that one has just to
use the uniform Poincaré inequality for the Witten

Laplacian associated to the single-spin phase wéo)
(in other words the existence of a uniform lower

bound for the second eigenvalue )\go)(oz,j) of
this Laplacian) instead of the uniform control of

the lowest eigenvalue )\gl)(a, J) of the single-spin

(1)

Laplacian Wy on all 1-forms.

e

This makes no difference in our case because our
single particle phase are defined on R but this remark

is useful for extensions to the case when ¢ is defined
on R*.
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We would like to control the quantity Cov (f,g).

The initial remark was that we can solve

f={f)=APu, (75)

from which we get the identity

df =d AL u =AY du . (76)

We have in mind to take f = z;, ¢ = z; with 3
and 7 in A. The idea consists in the introduction
of weighted spaces on A, associated with strictly
positive weights satisfying

exp — < p(£)/p(k) < expr (77)

where £ ~ k (this means that /¢ and k are nearest
neighbors in Z%) and « will be determined later.
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For a given i € A, the function p(¢) = exp —kd(i, {)
where d is a usual distance on R? satisfies this
condition.  We will rather take later p({) =
exp —kd(SH, 0)

For a given A C Z2% with |A] = m, let us now

associate with a given weight p on A the m x m
diagonal matrix M = M? defined by

My = Oy p(f) , ford, k€ A (78)

We consequently can write

Cov pw(f,9) = (du-dg)
— (M ~du) - (Mdg)y. )

We have to control

o:=M‘du. (80)
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In order to do that, we rewrite (76) in the form

M=Ydf =M"TA MM~ tdu
= Ao + (M_lAlM — Al)O'
= A10 + (M~ 'Hess®M — Hess®)o .
(81)
We now take the scalar product in Qéf with o in the
identity (81) and get

(Uf*ﬁ%0>2«Am)ﬂ7—CJWﬂ@3-(&D

Here we have used for getting the last term
the pointwise estimate of |[|M~'Hess®;M|| in
L(F3(A; R)) .

We observe indeed that, for all X € RA
||Hess®(X) — M~ Hess®(X) M| z(2) =

|| ||Hess®;(X) — M_lHess@i(X)MHL(gz) .
(83)
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Observing that the coefficients of
611 (Hess®;) =: Hess®; — M~ 'Hess®; M

vanish if k£ +4 /£, it is immediate, using Schur's
Lemma, to get

|02 (Hess®;)| |£(z2)
< 2d sup,.; |(1 — 22

< 2d max ((1 —exp —k), (expk — 1))
= 2d6

(84)

with 6 := (expx — 1), and this is uniform with
respect to the lattice.
Then we rewrite (82) in the form

(MVdf) - Z % UJ C~7||0||2127

(85)
where afbj) is umtary equivalent to w( ) (through the

map w exp—5 w) and C'is unlform with respect
to all the parameters.
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The proof is then like for the uniform Poincaré
inequality.
On Lij (R), we first get

L2

1):4,2 1
A Nlosllgre < (057050507, - (86)
' J

Z

We then multiply by exp —(® — ¢,) this inequality,
integrate over (R)A\UJ} with respect to the other
variables Z;, and obtain

(M~df) - o) >

3 1 ;',Z
55 (i0Fas 05 A7) NIl 312 = CT ol 212
(87)

For a suitable constant C and for J > 0 small
enough, we get, after use of Cauchy-Schwarz in
(87), the inequality

1
—1 2
1M df)|grz - [lollgre > Slloflgrz, (88)
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and finally

||M_1du||91,2 < C||M_1df||91,2 : (89)
o ®

The end of the proof is the consequence of

| Cov A,w(fa g)| < ||M_1du||gc11;2 ' ||Mdg||Q(1£2 3
(90)
and (89).
We choose now the weight

p = exprd(S,)

for implementation in the matrix M. This ends the
proof of the theorem.
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Remark 1

As observed by J. Moeller, the proof gives that the
results is true with k ~ n(—log J) with n > 0 small
enough.

This leads to the improve statement :

Improved Main Theorem

Let us consider, for any w € RZd and A C Z¢, the
phase & = o497 = & + ‘7(1)‘;\’“’ with ¢ satisfying
(37) and (38). Then there exists a constant C' and
Jo > 0 such that, for any J € [0, Jp], for any w, for
any A C Z% and any tempered functions f and g on
RA . we have :

| Cov A,w$fag)| <
C' exp —5|log J|d(5]/}75£) ldafllz2 [|dagll L2 -

Remark 2

The quadratic interaction was just proposed for
giving an example. The proof is actually much
more general.
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Extension : Weighted decay estimates.

One can improve (see Helffer-Bodineau, Bach-
Moeller..) the decay estimates by taking account
of the possible growth of ¢" at oco. This could be
quite useful for considering more general interactions.
For example one has:

New improvment of Main Theorem

Under the assumptions of the previous Corollary,
there exists C' > 0, Jo > 0 such that, for any
ACZ*, any J € 10, Jo], any w € RZd, and any
tempered functions f and g on R%,

| Cov A,w(fvg)| S
C (exp—&d(S3,5)) 116 dafllzz 110+ dagllz2

with

(O(X))jk = (8" (z;) + C) 255, .

This should permit to control more general
interactions.
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Notes

e Most of the material presented is taken from
the series of papers by Helffer, which were
some elaboration of Helffer-Sjostrand to a non-
convex situation. In the same spirit, let us
also mention the papers by Bach-Jecko-Sjostrand,
Bach-Moeller, Matte... .

e The analysis of the decay of correlations has a long
story and we mention in particular Dobrushin,
Gross, Foellmer, Kuensch, Sokal and Deuschel.
May be one originality is the Hilbertian character
of the right hand side.
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e Theorem on Uniform decay is proved in Helffer.
Without the uniform control with respect to w,
it was also obtained by Bach-Jecko-Sjostrand.
Further much finer results on the correlations
are obtained by J. Sjostrand in the semi-classical
context.

e The strict positivity of the Witten Laplacian on
1-forms is a consequence of general arguments
(see J. Sjostrand and J. Johnsen). But this proof
does not give automatically the uniformity of the
lower bound with respect to parameters.

e The uniform decay when d = 1 has been proved
by B. Zegarlinski.
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e \We do not consider in these lectures the problem
of analyzing the existence and the uniqueness of a
limit measure as A — Z%. This leads in particular
to the notion of Gibbs measure.

See Dobrushin, Bellissard-Hoeghkrohn and
references therein, Antoniouk, Deuschel,
Albeverio, Kondratev, Roeckner and coauthors,
Matte (and references therein) for a discussion.
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Uniform log-Sobolev inequalities

We recall that our aim is to analyze
the thermodynamic properties of measures
exp —®M“(X) dX in the case when &4, which is
associated with subsets A C Z? and some w € R%"
defining the boundary condition.

Our main assumption is an assumption of convexity
at oo of the single spin phase ¢. We assume that
there exists a bounded C°° function s such that
@ := ¢ + s is strictly convex, that is that there exists
p > 0 such that

(p+3s)'(t)>p>0,VtcR.
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Our main problem will be to analyze the properties
of the renormalized measure

dEM = Zy - exp—®™(X) dX | (91)

with
Inw = / exp—MU(X)dX . (92)
RA

More specifically we would like to analyze under
which conditions we can prove the existence of an
uniform log-Sobolev inequality attached to this family
of probability measures. The following theorem is

mainly due to Zegarlinski with additional arguments
of N. Yoshida and Bodineau-Helffer.

Theorem (Uniform LogSobolev)
Let us assume that () is satisfied. Then there exists
Jo and a constant ¢ in ]0,+o0| such that for any

A CZ% any J €[0,Jo] and any w € R%, we have

I faw <26V a0+ (Faw {Faw

for all nonnegative functions f for which the right-
hand side is finite.
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The proof depends heavily,

— according to a criterion of Strook-Zegarlinski (see
also Dobrushin-Shlosman)-

on

e the uniform decay estimates and

e some “p-spin”’(p bounded) uniform LogSobolev
inequality,

and an argument due to Lu-Yau.

Zegarlinski and Yosida were using Superconvexity at
00.

Our proof gives the same result under Uniform
Convexity at oo.
See also a nice paper by Ledoux.
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There was some hope to use more directly the
Witten Laplacian method for a Bakry-Emery like
proof (which work under a strictly convex assumption
of the phase). But to my knowledge, this has not
been a success.

These results can be completed :

Theorem (Yoshida-Bodineau-Helffer).

Under the assumption that the single-spin phase is
superconvex at oo, then the following conditions are
equivalent :

1. Correlations decay exponentially fast uniformly
with respect to A,w in the sense of (39).

2. The Poincaré inequalities hold uniformly with
respect to A, w.

3. The log-Sobolev inequalities hold uniformly with
respect to A, w.
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Remark

Note that this last theorem does not say if the log-
Sobolev inequality holds uniformly or not. This is
actually true when d = 1 and for J small enough for
a general d. It just establishes that this property is
equivalent to simpler properties.
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Decay of correlation in the
semi-classical limit

Here we mention : Helffer-Sjostrand, Sjostrand,
Bach-Jecko-Sjostrand,  Sjostrand, Bach-Matte-
Moeller ....

The first results have been obtained under
assumptions of convexity. More generally, one hope
to treat the case where the one-particule phase
create a unique well (say at 0) and we have a,
say nearest neighbour interaction, controlled by the
main potential.

Although it is natural to think that everything should
be localized, in the semi-classical limit, near the
bottom of the potential, it was quite difficult to
prove it technically : the localization should be well
controlled with respect to the dimension !
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On the other hand, one can relate the decay of the
correlations more directly to the germ of @ at 0, and
more precisely to Hess®(0) which will be assumed
to be definite positive.

Actually, it will be useful (see Bach-Jecko-Sjostrand,
Bach-Moller) to use the approximation

Ag;)h ~ AEI?;)h ® I + hHess®(0) ,

instead of the Harmonic approximation.
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Feschbach-Grushin Method

Under different names this method of reduction
appears to be powerful in many contexts. So it
is may be useful to explain it here. As we have seen,
the important point is to have a good information
on the W.L on one-forms.

One introduces the auxiliary operator

Ry : QV2(RY) = 2(A)
associating to a 1-form u = } . u;dz; the sequence
(uj, exp —P/2h).
We consider instead of Ag}h the z-dependent family

NG *
P(z) = h 1A£I);)h—z RY
R 0

for z € C.
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For z in the neighborhood of 0, this operator can
be shown to be uniformly invertible, and the inverse
takes the form

Moreover, one has a good semi-classical
approximation by

Ei(z) = R_+O(h?), E_ = Ry + O(h?)
E_. =z — Hess®(0) + O(h2) .

At least formally, it is standard that z €
Spect h_lA((I,l;)h iff 0 € Spect E_,(z). But this

correspondance is more explicit, because we get the
following expression for the inverse

A(Ag) Y = E(0) — B+ (0)(E—+) " (0)E_(0)
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According to the covariance formula, applied with
f = x; and g = z;, this leads immediately
to an expression for the correlation Cor (i,5) =
Cov (x4, ;).

This is the second term on the right hand side
which gives the main term and relate it to the decay
properties of Hess®(0) ™! far from the diagonal.
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Fokker-Planck operators and Witten
Laplacians

The analysis of spectral problems for the Fokker-
Planck Operators initiated by Hérau-Nier leads to
new questions on the Witten Laplacians.

Questions about the return to equilibrium are indeed
strongly related to estimates on the gap between
the two first eigenvalues (or on the lowest positive
eigenvalue) of a Witten Laplacian. (See the book by
Helffer-Nier)

The Fokker-Planck operator (or Kramer's operator) is

defined as an unbounded, maximal accretive operator
2 2n .
on L=(R:"

K = —85 +y* —n+ A (Ve(2)d, — yd,) .
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Note that exp —(®(x) + y;) is in the kernel of K
and K*.

The strong links between these two operators is clear
if you think of the restriction of K to the space

exp— (%) ® L2(Ry).

Note that

K(f(z)exp—y°/2) = —Xy:(VOf-V[) exp—y°/2.
and consider then || K f]|2.

K can be also extended on p-forms and there
exists a supersymmetric structure (J. Kurchan and
coauthors).
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Exponentially small eigenvalues in the
semi-classical context

We now forget “large dimension problems” and are
interested in the exponentially small eigenvalues of
the Dirichlet realization in an open set ) or on a
manifold of the semiclassical Witten Laplacian on
0-forms

AY) = —h?A + |V f(z)]> - hAf(z) .

SORRY THERE IS A SMALL CHANGE IN THE

CONVENTIONS

was £ in the previous slides.
5 p
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Our aim is to describe the recent results which have
been recently obtained in three cases :

e The case of R™ (Bovier-Gayrard-Klein,Helffer-
Klein-Nier),

e The case of a compact riemannian manifold
(HelfferKleinNier),

e The case of a bounded set €2 with regular
boundary (HelfferNier) (in this case, we consider
the Dirichlet realization of this operator).
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Main assumptions

Assumption 1
The function f is assumed to be a C'*°- function on
(2 and a Morse function on (.

In the case when 2 = R",
Assumption 2

liminf |V f(z)|* >0,

|z| =400
and
IDgf| < Co(IVFI2+1),

for |a| = 2.

In the case with boundary,

Assumption 3

The function f has no critical points at the boundary
and the function f/5q is a Morse function on 0f).
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Initiated by E. Witten for compact
manifolds

It is known (see Simon, Witten, Helffer-Sjostrand
and more recently Chang-Liu, Helffer-Nier2) that the

Witten Laplacians on functions A admits exactl
f:h y

. . . 6
mg eigenvalues in some interval [0, Chs] for h > 0
small enough, where mg is the number of local
minima in €.

This Is easy to guess :

Consider, near each of the local minima UJ(O), the
function x,(z) exp —%, where x; is a suitable cut-off

function localizing near U;O) as suitable quasimode.

This shows that these small eigenvalues are actually
exponentially small as h — 0.
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Note that we consider the Dirichlet problem.
So

Assumption 3
The function f has no critical points at the boundary
and the function f/5q is a Morse function on 0f).

implies that the eigenfunctions corresponding to low
lying eigenvalues are localized far from the boundary.
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Morse Inequalities

In the compact case, this was the main point of
the semi-classical proof suggested by Witten of the
Morse inequalities.

Each of the W-Laplacians is essentially selfadjoint
and an analysis based on the harmonic approximation
shows that the dimension of the eigenspace
corresponding to |0, hg] is, for h small enough, equal
to m, the number of critical points of index p (the
index at a critical point U being defined as the
number of negative eigenvalues of the Hessian of f
at U.

Note that the dimension of the kernel of A;f} being

equal to the Betti number b,, this gives immediately
the so called “weak Morse Inequalities”

b, <m,, forallpe{0,...,n}.
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Questions in the case with boundary

In the case with boundary, two natural questions
appear :

What is the interesting selfadjoint realization to
consider (in order for example to show a Morse
inequality) ?

How do we define the notion of critical point and of
index for a point at the boundary?

We mainly concentrate here on the analysis of the
Witten Laplacians on O-forms and 1-forms.
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Our aim is to get the optimal accuracy asymptotic
formulas for the my first eigenvalues of the Dirichlet

realization of A;?,)l.

Previously via a  probabilistic approach
Freidlin-Wentcel, Holley-Kusuoka-Strook, Miclo,
Kolokoltsov, Bovier-Eckhoff-Gayrard-Klein  and
Bovier-Gayrard-Klein, but the proof of optimal
accuracy (except may be for the case of dimension
1) was open.

The Witten Laplacian is, in the case of an open set
(), associated to the Dirichlet form

C20(0) BU|—>/Q|(hV—I—Vf)u(a:)|2 iz

As already mentioned the probabilists look
equivalently at :

C°(Q) > v h? / Vo(z)|? e 2@/ gy
Q
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The case of R"

In the case of R™ and under assumptions 1 and 2
(together with a generic assumption), one gets :
Theorem

The first eigenvalues A\g(h), k € {2,...,mg}, of
Agg;b have the following expansions :

(0)
T (1) ‘det(Hessf(Uk ))‘
)\kz(h) - 7r|)‘1(U](k))| ‘det(Hessf(U;(lli)))‘

X exXp —% (f(UJ((llg)) — f(UIEO))> X (1 4+7ry(h)),

with r1(h) = o(1).

Here the Uéo) denote the local minima of f ordered
in some specific way, the U;(llz) are “saddle points”
(critical points of index 1) attached in a specific way
to the U,io) and Xl(U]((llz)) is the negative eigenvalue
of Hessf(U]((llz)).
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Actually, the estimate
ri(h) = O(hZ|logh|) .

is obtained in Bovier-Gayrard-Klein (under weaker
assumptions on f) and a complete asymptotics

Tl(h) ~ Z’I“ljhj ,

721

is obtained in Helffer-Klein-Nier.

Here we have left out the case £ = 1, which leads
to a specific assumption (see Assumption 2) in the
case of R™ for f at co. This implies that Agc,)l IS
essentially selfadjoint and that the bottom of the
essential spectrum is bounded below by some ¢; > 0
(independently of h €]0, hg], hg small enough). If
the function exp —1 is in L2, then

A(h) =0,
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But other examples like f(z) = —(z? — 1)? (with
n = 1) are interesting and an asymptotic of A{(h)
can be given for this example.

The approach given in HKN intensively uses, together
with the techniques of HelSj4, that

e the Witten Laplacian is associated to a
cohomology complex

® exp —@ is in the kernel of the Witten Laplacian

on 0—forms

This permits to construct — and this is specific of the

case of A;?;L— very efficiently quasimodes.
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Witten complex, Reduced Witten
complex

It is more convenient to consider the singular values
of the restricted differential dsj, : F(O — F(1)  The
space FY) is the my-dimensional spectral subspace

of AS&, ¢ e {0,1},
F(z) = Ran 1I(h) (A%%) ,
with I(h) = [0, hg] and the property

1 0
1I(h)(A§f,z)df,h - df,hlf(h)(Agc,;)l) :

We will analyze :

/ /
B 1= (di2) o)

We will mainly concentrate on the case £ = 0.
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Singular values

In order to exploit all the information which can be

extracted from well chosen quasimodes, working with
singular values of [3}?}{ happens to be more efficient
than considering their squares, the eigenvalues of
AP) . The main point is probably that the
errors appear “multiplicatively” when computing the
matrix of Bj(f?,)l in approximate well localized “almost”
orthogonal basis of F'(°) and F(1),

By this we mean :
A = \PP(1 + error) ,
instead of additively
A= A\"PP +error,

as for example in HeSj4. Here Ay, will be explicitly
obtained from the WKB analysis.
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The main result in the case with
boundary

In the case with boundary, the function exp —% does
not satisfy the Dirichlet condition, so the smallest
eigenvalue can not be 0.

For this case, a starting reference Freidlin-Wentzel,
which says (in particular) that, if f has no
critical points except a unique non degenerate local
minimum ,,;,, then the lowest eigenvalue \{(h) of

the Dirichlet realization A;O,)z in ) satisfies :

%1_% —h log Al(h) =2 g;lenafg(f(x> o f(xmzn)) .

Other results are given in the case of many
local minima but they are again limited to the
determination of logarithmic equivalents.
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We can show (Helffer-Nier) that, under a suitable
generic assumption “Assgeneric’, one can

e label the mg local minima

e introduce an injective map j from the set of the
local minima into the set of the m (generalized)

saddle points of the Morse functions in €2 of index
1.

We recall that V f does not vanish at the boundary.
Our problem leads us to define a point of index 1 at
the boundary as a point U which is a local minimum
of f/5a and for which the external normal derivative
of f is strictly positive.

At a generalized critical point U with index 1, we
can associate the Hessians Hessf(U), if U € €, or

(Hessf’ag)(U), if U € 090. When U € Q, \(U)
denotes the negative eigenvalue of Hessf(U).
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Theorem

Under Assumptions 1, 3 and “Assgeneric”’, there
exists hg such that, for h € (0, hg], the spectrum
in [O,h%) of the Dirichlet realization of A;?;L in €,
consists of mg eigenvalues A\i(h) < ... < Apy(h)
of multiplicity 1, which are exponentially small and
admit the following asymptotic expansions :

~ 1 det(Hessf(U(O)))
Ai(h) = 5:|A1(U;(g)>|\/ ‘d Ny (14 heb(m)
et(Hessf (U )))]

X exp —2 (f(U;g;)> - f(U,g0>>) iU eq,

and
() = IO [ oottt GOy
wl/2 ‘det(Hessf‘ag(U;(lli)))‘ k
x exp —2 <f(U]§(1,2)) ~ f(U,ff’))) . ifU(), €09
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Here c;(h) admits a complete expansion :
0
ci(h) ~ Z h"™ k. -
m=0

This theorem extends to the case with boundary the
previous results of BovGayKIl and HKN (see also the
books FrWe and Ko and references therein).
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About the proof in the case with
boundary

As in HelSj4, the proof is deeply connected with
the analysis of the small eigenvalues of a suitable
realization (which is not the Dirichlet realization) of
the Laplacian on the 1-forms. In order to understand
the strategy, three main points have to be explained.
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First point: define the Witten complex
and the associate Laplacian.

The case of a compact manifold was treated in the
foundational paper of Witten.

The case of R™ requires some care (See Johnsen,
Helffer or Helffer-Nierl).

The case with boundary creates specific new
problems.

Our starting problem being the analysis of the
Dirichlet realization of the Witten Laplacian, we
were led to find the right realization of the Witten
Laplacian on 1-forms in the case with boundary in
order to extend the commutation relation

(1) (0) _ (0) A (0
Afrdpy = dppAy).

in a suitable ‘“strong” sense (at the level of the
selfadjoint realizations).
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Towards the boundary conditions

The answer was present in the literature Chang-
Liu in connection with the analysis of the relative
cohomology.

Let us explain how we can find the right condition
by looking at the eigenvectors.

If u is eigenvector of the Dirichlet realization of A;Ozl,

then by commutation relation, d( )u (which can not
vanish) should be an elgenvector in the domain of
the realization of A( ). But d( %u does not satisfy
the Dirichlet condltlon in all |ts components, but
only in its tangential components.

This is the natural condition in the definition of the
variational domain to take for the quadratic form

w e |[dSwl[? +]1dE w]|2.
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The selfadjoint realization Agcl,)zDT obtained as the
Friedrichs extension associated to the quadratic form
gives the right answer.

Observing also that d;oz*(dgcozu) = Au (with A # 0),
we get the second natural (Neumann type)-boundary
condition saying that a one form w in the domain of

the operator AS},)IDT should satisfy

dinwjon =0
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Second point :“rough” localization of
the spectrum of this Laplacian on
1-formes.

The analysis was performed in Chang-Liu, in the spirit
of Witten's idea, extending the so called Harmonic
approximation. But these authors, because they were
interested in the Morse theory, used the possibility
to add symplifying assumptions on f and the metric
near the boundary. We emphasize that HelNi2 treats
the general case.
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Third point : construction of WKB
solutions for the critical points.

This was one in HelSj4 for the case without boundary,
as an extension of previous constructions of HelSj1.

The new point is the construction of WKB near
critical points of the restriction of the Morse function
at the boundary is done in Helffer-Nier for 1-forms.
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The analysis of a point of index 1 at the boundary of
a W KB solution is done in HelNi2. Let us explain
the main lines of the construction.

The construction is done locally around a local
minimum Uy of f‘aQ with 0,f(Up) > 0. The
function @ is a local solution of the eikonal equation

Vo' =|Vf",
which also satisfies
® = f on 002

and

On® = —0,, f on 0f)

and we normalize f so that f(Up) = f(0) =0.

We first consider a local solution u¥*® near the point
x = 0 of

eh AL uk = O(h*) |

with u¥*? in the form
P
ud*® = a(x, h)e™n |
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a(zx,h) ~ Zaj(x)hj :
J
and the condition at the boundary

a(z, h)e_% — ¢~k on 00 ,
which leads to the condition
a(:z:,h)‘aQ =1.

In order to verify locally the boundary condition for

_f : :
our future u¥’*®, we substract e % and still obtain

oh A(O)(u(z)ukb o

%
f

) = O(h*) .
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We now define the WKB solution u®*® by
considering :

g
up® = dypug™ = dypp(ug™ —e7F) .

The 1-form u%*® = d:,u¥*? satisfies locally the
1 f,h%0 y

Dirichlet tangential condition on the boundary and

u¥*® gives a good approximation for a ground state

(1)
f

of a suitable realization of A 1, in a neighborhood

of this boundary critical point.
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