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Introduction and main results

We consider mainly two-dimensional Laplacians
operators in bounded domains. We would like to
analyze the relations between the nodal domains of
the eigenfunctions of the Dirichlet Laplacians and
the partitions by k open sets Di which are minimal
in the sense that the maximum over the Di’s of the
ground state energy of the Dirichlet realization of
the Laplacian in Di is minimal.

Most of the results can be extended to
Schrödinger operators with an L∞-potential but we
will omit this here.
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Let Ω be a regular bounded domain (C(1,+) i.e.
C(1,α) for some α > 0)

Let us consider the Laplacian H(Ω) on a bounded
regular domain Ω ⊂ R

2 with Dirichlet boundary
condition. We denote by λj(Ω) the increasing
sequence of its eigenvalues and by uj some associated
orthonormal basis of eigenfunctions. We know that
the groundstate u1 can be chosen to be strictly
positive in Ω, but the other eigenfunctions uk must
have zerosets. We define for any function u ∈ C0

0(Ω)

N(u) = {x ∈ Ω
∣∣ u(x) = 0} (1)

and call the components of Ω \ N(u) the nodal
domains of u. The number of nodal domains of such
a function will be called µ(u).
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Partitions

We now introduce the notions of partition and
minimal partition.

Definition 1

Let 1 ≤ k ∈ N. We will call partition

(or k-partition for indicating the cardinal of the
partition) of Ω a family D = {Di}

k
i=1 of mutually

disjoint sets such that

∪k
i=1Di ⊂ Ω . (2)

We call it open if the Di are open sets of Ω,
connected if the Di are connected.
We denote by Ok the set of open connected
partitions.

Sometimes (at least for the proof) we have to
relax this definition by considering measurable sets
for the partitions.

– Typeset by FoilTEX – 4



Minimal partitions

We now introduce the notion of spectral minimal
partition sequence.

Definition 2

For any integer k ≥ 1, and for D in Ok, we
introduce

Λ(D) = max
i

λ(Di). (3)

Then we define

Lk = inf
D∈Ok

Λ(D). (4)

and call D ∈ Ok minimal if Lk = Λ(D).

Remark 3

If k = 2, it is rather well known (see for
example [HeHO1] or [CTV3]) that L2 is the
second eigenvalue and the associated minimal 2-
partition is a nodal partition, i.e. a partition
whose elements are the nodal domains of some
eigenfunction corresponding to λ2.
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We discuss roughly the notion of regular and
strong partition.

Definition 4

A partition D = {Di}
k
i=1 of Ω in Ok is called strong

if
Int (∪iDi) \ ∂Ω = Ω . (5)

Attached to a strong partition, we can naturally
associate a closed set in Ω defined by

N(D) = ∪i (∂Di ∩ Ω) . (6)

N(D) plays the role of the nodal set (in the case
of a nodal partition).
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Regular partitions

This leads us to introduce the set R(Ω) of regular
partitions (or nodal like) through the properties of
the associated closed set.

Definition 5

(i) There are finitely many distinct xi ∈ Ω ∩ N
and associated positive integers νi with νi ≥ 2 such
that, in a sufficiently small neighborhood of each of
the xi, N is the union of νi(xi) smooth curves with
one end at xi and such that in the complement of
these points in Ω, N is locally diffeomorphic to a
regular curve.
(ii) ∂Ω∩N consists of a (possibly empty) finite set
of points zi, s.t. at each zi, ρi, with ρi ≥ 1 lines
hit the boundary. Moreover, ∀zi ∈ ∂Ω, then N is
near zi the union of ρi distinct smooth half-curves
which hit zi.
(iii) Moreover, N has the equal angle meeting
property i.e. the half curves cross with equal angle
at each critical point of N and also at the boundary
together with the boundary.
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Figure 1: An example of regular strong bipartite
partition with associated graph.
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Figure 2: An example of regular strong nonbipartite
partition with associated graph.
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Main results

It has been proved by Conti-Terracini-Verzini
[CTV1, CTV2, CTV3] that

Theorem 6

For any k, there exists a minimal regular k-
partition.

This result is completed by (see Helffer–
Hoffmann-Ostenhof–Terracini [HeHOTe]) :

Theorem 7

Any minimal k-partition has a regular representative.

A natural question is whether a minimal partition
is the nodal partition induced by an eigenfunction.
Next theorem will give a simple criterion for a
partition to be associated to a nodal set.
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For this we need some additional definitions.

We say that Di,Dj are neighbors or Di ∼ Dj, if
Di,j := Int (Di ∪ Dj) \ ∂Ω is connected.

We associate to each D a graph G(D) by
associating to each Di a vertex and to each pair
Di ∼ Dj an edge.

We will say that the graph is bipartite if it can
be colored by two colors (two neighbours having two
different colors).

We recall that the graph associated to a collection
of nodal domains of an eigenfunction is always
bipartite.

We have now the following converse theorem :

Theorem 8

If the graph of the minimal partition is bipartite
this is a nodal partition.
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A natural question is now to determine how
general is the situation described in the previous
theorem. The surprise is that this will only occur in
the so called Courant-Sharp situation.
Let us recall some old results and notations. The
Courant nodal theorem says :

Theorem 9

Let k ≥ 1, λk be the k-th eigenvalue and E(λk) the
eigenspace of H(Ω) associated to λk. Then,

∀u ∈ E(λk) \ {0} , µ(u) ≤ k .

Then we say, as in [AnHeHO], that u is Courant-
sharp if

u ∈ E(λk) \ {0} and µ(u) = k .

For any integer k ≥ 1, we denote by Lk

the smallest eigenvalue whose eigenspace contains
an eigenfunction with k nodal domains. We set
Lk = ∞, if there are no eigenfunctions with k nodal
domains.

– Typeset by FoilTEX – 12



In general, one can show, that

λk ≤ Lk ≤ Lk . (7)

The last goal consists in giving the full picture of the
equality cases :

Theorem 10

Suppose Ω ⊂ R
2 is regular. Then, if Lk = Lk or

Lk = λk then

λk = Lk = Lk .

In addition, one can find in E(λk) a Courant-
sharp eigenfunction.

In other words, the only case when the k- nodal
domains of an eigenfunction of H(Ω) form a minimal
partition is the case when this eigenfunction is
Courant-Sharp.
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Remarks.

(i) For the one dimensional case the standard Sturm-
Liouville theory leads easily to the following

Lk = Lk = λk , ∀k ≥ 1 . (8)

(ii) It is easy to show, that for a given H

L1 = L1 = λ1, (9)

(by the property of the ground state) and (we
recall) that

L2 = L2 = λ2, (10)

by the orthogonality of u2 to the ground state
combined with Courant’s nodal Theorem.

(iii) Once it is shown that Lk is obtained for (at least)
a partition, it is easy to see that the sequence
(Lk)k∈N is strictly increasing.
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Example : the case of the rectangle

Using Theorem 10 it is now easier to analyze the
situation for the disk or for rectangles (at least in
the irrational case), since we have just to check for
which eigenvalues one can find associated Courant-
sharp eigenfunctions.

For a rectangle of sizes a and b, the spectrum is
given by π2(m2/a2 + n2/b2) ((m,n) ∈ (N∗)2).
The first remark is that all the eigenvalues are simple

if a2

b2 is irrational. We assume

(a/b)2 is irrational.

So we can associate to each eigenvalue λm,n, an
(essentially) unique eigenfunction um,n such that
µ(um,n) = nm. Given k ∈ N

∗, the lowest eigenvalue
corresponding to k nodal domains is given by

Lk = π2 inf
mn=k

(m2/a2 + n2/b2) .
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In the irrational case, λm,n cannot lead to
a Courant-sharp situation if inf(m, n) ≥ 3 or if
inf(m, n) ≥ 2 and m or n larger than 4.

So there are only very few cases to analyze by
hand, for which the answer can depend on a

b .

In the case of the square, it is not to difficult
to see that L3 is strictly less than L3. We observe
indeed that λ4 is Courant-sharp, so L4 = λ4, and
there is no eigenfunction corresponding to λ2 = λ3

with three nodal domains (by Courant’s Theorem).

Restricting to the half-rectangle and assuming
that there is a minimal partition which is symmetric
with one of the symmetry axes of the square
perpendicular to two opposite sides, one is reduced
to analyze a family of Dirichlet-Neumann problems.
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Numerical computations performed by V. Bonnaillie-
Noël and G. Vial lead to a natural candidate for a
symmetric minimal partition.
See http://www.bretagne.ens-cachan.fr
/math/Simulations/MinimalPartitions/

Figure 3: Trace on the half-square of the candidate
for the 3-partition of the square. The complete
structure is obtained from the half square by
symmetry with respect to the horizontal axis.
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About minimal 3-partitions of a simply

connected domain.

Here I discuss the starting point of recent results
obtained with Thomas Hoffmann-Ostenhof [HeHO4].

Proposition 11

Let Ω be simply-connected and consider a minimal
3-partition D = (D1, D2, D3) associated to L3 and
suppose that λ3 < L3. Let X(D) the singular
points of N(D)∩Ω and Y (D) = N(D)∩∂Ω. Then
there are three cases.
(a) X(D) consists of one point x with a meeting
of three half-lines (ν(x) = 3) and Y (D) consists of

• either three y1, y2, y3 points with ρ(y1) =
ρ(y2) = ρ(y3) = 1,

• or two points y1, y2 with
ρ(y1) = 2, ρ(y2) = 1,

• or one point y with ρ(y) = 3.

Here, for y ∈ ∂Ω, ρ(y) is the number of half-lines
ending at y.
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(b) X(D) consists of two distinct points x1, x2

so that ν(x1) = ν(x2) = 3.
Y (D) consists
either of two points y1, y2 such that

ρ(y1) + ρ(y2) = 2

or of one point y with

ρ(y) = 2 .

(c) X(D) consists again of two distinct points
x1, x2 with ν(x1) = ν(x2) = 3,
but Y (D) = ∅.

The proof of Proposition 11 relies essentially on
Euler formula.

This leads (with some success) to analyze the
minimal partition with some topological type. If in
addition, we introduce some symmetries, this leads
to guess some candidates for minimal partitions.
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About the proof of the regularity of a

minimal partition

First we have to relax the assumptions for the
elements of the partition.

Definition.

For any measurable D ⊂ Ω, let λ1(D) denotes the
first eigenvalue of the Dirichlet realization of the
Schrödinger operator in the following generalized
sense. We define

λ1(D) = +∞ ,

if
{
u ∈ W 1

0 (Ω) , u ≡ 0 a.e. on Ω \ D
}

= {0}, and

λ1(D) =

min

{R
Ω(|∇u(x)|2)dxR

Ω |u(x)|2dx
:

u ∈ W 1
0 (Ω) \ {0} , u ≡ 0 a.e. on Ω \ D

}
,

otherwise.
We call groundstate any function φ achieving the
above minimum.
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We also extend the minimal partition problem, by
considering :

Lk,p := inf
Bk

(
1

k

k∑

i=1

(
λ1(Di)

)p
)1/p

,

where the minimization is taken over the class of
partitions in k “disjoint” measurable subsets of Ω

Bk :={
D = (D1, . . . , Dk) :

⋃k
i=1 Di ⊂ Ω,

|Di ∩ Dj| = 0 if i 6= j} .

Our previous problem corresponds to p = +∞
and we were only minimizing on open partitions.

These problems have their own interest (with
application to biomathematics).
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The main result is the following

Theorem 12

Let D = (D̃1, ..., D̃k) ∈ Bk be any minimal

partition associated with Lk and let (φ̃i)i be any
set of positive eigenfunctions normalized in L2

corresponding to (λ1(D̃i))i. Then, there exist
ai ≥ 0, not all vanishing, s. t. the functions
ũi = aiφ̃i verify in Ω the differential inequalities

(I1) −∆ũi ≤ Lkũi , ∀i = 1, . . . , k ,

(I2) −∆
(
ũi −

∑
j 6=i ũj

)
≥ Lk

(
ũi −

∑
j 6=i ũj

)
,

∀i = 1, . . . , k .

Note that at this stage we do not know if the D̃i’s are
connected and consequently if the φ̃i’s are unique.
But these properties are true in two dimensions.
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The following results was proved by Conti-
Terracini-Verzini in [CTV3]:

Theorem.

Let p ∈ [1,+∞) and let D = (D1, ...,Dk) ∈ Bk be a
minimal partition associated with Lk,p and let (φi)i

be any set of positive eigenfunctions normalized in
L2 corresponding to (λ1(Di))i. Then, ∃ai > 0, such
that the functions ui = aiφi verify in Ω

(I1) −∆ui ≤ λ1(Di)ui,

(I2) −∆
(
ui −

∑
j 6=i uj

)
≥ λ1(Di)ui−

∑
j 6=i λ1(Dj)uj.

These inequalities imply that U = (u1, ..., uk)
is in the class S∗ as defined in [CTV2]. Hence
Theorem 8.3 in [CTV2] ensures the Lipschitz
continuity of the ui’s in Ω. Therefore we can
choose a partition made of open representatives
Di = {ui > 0}.
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The following result was shown in [CTV3]:

Theorem.

There holds, for every p ∈ [1, +∞),

1

k1/p
Lk ≤ Lk,p ≤ Mk,p ≤ Lk .

In particular

lim
p→+∞

Lk,p = Lk .

Moreover, there exists a minimizer of Lk such that
(I1)- (I2) hold for suitable non negative multiples
ui = aiφi of an appropriate set of associated
eigenfunctions.

One can go further in dimension two (many
problems remain open in larger dimension).

Theorem.

If N = 2 and Ω is bounded, connected with
a piecewise C1,+ boundary, then the assertion of
Theorem 12 holds with ai > 0.
Moreover any minimizing partition D admits an open
connected representative, having a piecewise C1,+

boundary.
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Let us sketch the proof of Theorem 12.

Let (D̃1, ..., D̃k) ∈ Bk be a particular minimal

partition associated with Lk and let (φ̃1, ..., φ̃k) be
any choice of associated eigenfunctions. We wish
to prove that (I1)-(I2) hold for a suitable set of

multiples of the φ̃j’s. We consider, for a given

q ∈ (1, (N/(N − 2)) , (11)

(or q ∈ (1, +∞) when N = 2), the penalized
Rayleigh quotient:

Fk,p(u1, ..., uk)

=

(
1
k

∑k
i=1

(R
Ω |∇ui(x)|2dxR
Ω |ui(x)|2dx

)p
)1/p

+
∑k

i=1

(
1 −

R
Ω ui(x)q eφi(x)q dx

(
R
Ω ui(x)2q dx

R
Ω

eφi(x)2q dx)
1/2

)
.
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We consider the minimization problem

Mk,p = inf {Fk,p(u1, ..., uk) : (u1, ..., uk) ∈ U} ,
(12)

where

U ={
(u1, ..., uk) ∈ (W 1

0 (Ω))k : ui · uj = 0 , for i 6= j ,
ui ≥ 0 , ui 6≡ 0 , ∀i = 1, ..., k} .

(13)

We note that the condition on q permits
us to have (weak and strong) continuity and
differentiability in W 1

0 (Ω) of the penalization term,
which involves integrals of powers of ui. This permits
us to apply the direct method of the Calculus of
Variations and to differentiate Fk,p at the minimum.

This permits to show the differential inequalities.
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