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Given an open set Ω and a partition of Ω by k open sets ωj , we
can consider the quantity maxj λ(ωj) where λ(ωj) is the ground
state energy of the Dirichlet realization of the Laplacian in ωj .If we
denote by Lk(Ω) the infimum over all the k-partitions of
maxj λ(ωj), a minimal k-partition is then a partition which realizes
the infimum. Although the analysis is rather standard when k = 2
(we find the nodal domains of a second eigenfunction), the analysis
of higher k’s becomes non trivial and quite interesting. In this talk,
we would like to discuss the properties of minimal spectral
partitions, illustrate the difficulties by considering simple cases like
the disc, the square or the sphere (k = 3) and will also exhibit the
possible role of the hexagone in the asymptotic behavior as
k → +∞ of Lk(Ω).
This work has started in collaboration with T. Hoffmann-Ostenhof
and has been continued (published or in progress) with the
coauthors mentioned above.



We consider mainly two-dimensional Laplacians operators in
bounded domains. We would like to analyze the relations between
the nodal domains of the eigenfunctions of the Dirichlet Laplacians
and the partitions by k open sets Di which are minimal in the
sense that the maximum over the Di ’s of the ground state energy
of the Dirichlet realization of the Laplacian in Di is minimal.



Let Ω be a regular bounded domain (C (1,+) i.e. C (1,α) for some
α > 0)

Let us consider the Laplacian H(Ω) on a bounded regular domain
Ω ⊂ R

2 with Dirichlet boundary condition. We denote by λj(Ω)
the increasing sequence of its eigenvalues and by uj some
associated orthonormal basis of eigenfunctions. We know that the
groundstate u1 can be chosen to be strictly positive in Ω, but the
other eigenfunctions uk must have zerosets. We define for any
function u ∈ C 0

0 (Ω)

N(u) = {x ∈ Ω
∣

∣ u(x) = 0} (1)

and call the components of Ω \ N(u) the nodal domains of u. The
number of nodal domains of such a function will be called µ(u).



We now introduce the notions of partition and minimal partition.

Definition 1

Let 1 ≤ k ∈ N. We will call partition (or k-partition for indicating
the cardinal of the partition) of Ω a family D = {Di}

k
i=1 of

mutually disjoint sets such that

∪k
i=1 Di ⊂ Ω . (2)

We call it open if the Di are open sets of Ω, connected if the Di

are connected.
We denote by Ok the set of open connected partitions.

Sometimes (at least for the proof) we have to relax this definition
by considering measurable sets for the partitions.



We now introduce the notion of spectral minimal partition
sequence.

Definition 2

For any integer k ≥ 1, and for D in Ok , we introduce

Λ(D) = max
i

λ(Di ). (3)

Then we define
Lk = inf

D∈Ok

Λ(D). (4)

and call D ∈ Ok minimal if Lk = Λ(D).

Remark A

If k = 2, it is rather well known (see [HeHO1] or [CTV3]) that L2

is the second eigenvalue and the associated minimal 2-partition is a
nodal partition, i.e. a partition whose elements are the nodal
domains of some eigenfunction corresponding to λ2.



We discuss roughly the notion of regular and strong partition.

Definition 3

A partition D = {Di}
k
i=1 of Ω in Ok is called strong if

Int (∪iDi) \ ∂Ω = Ω . (5)

Attached to a strong partition, we associate a closed set in Ω :

Definition 4 :“Nodal set”

N(D) = ∪i (∂Di ∩ Ω) . (6)

N(D) plays the role of the nodal set (in the case of a nodal
partition).



This leads us to introduce the set R(Ω) of regular partitions (or
nodal like) through the properties of the associated closed set.

Definition 5

(i) There are finitely many distinct xi ∈ Ω ∩ N and associated
positive integers νi with νi ≥ 2 s. t. near each of the xi , N is the
union of νi (xi) smooth curves with one end at xi and s. t. in the
complement of these points in Ω, N is locally diffeomorphic to a
regular curve.
(ii) ∂Ω ∩ N consists of a (possibly empty) finite set of points zi ,
s.t. at each zi , ρi , with ρi ≥ 1 lines hit the boundary. Moreover,
∀zi ∈ ∂Ω, then N is near zi the union of ρi distinct smooth
half-curves which hit zi .
(iii) N has the equal angle meeting property

By equal angle meeting property, we mean that the half curves
cross with equal angle at each critical point of N and also at the
boundary together with the tangent to the boundary.
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Figure: An example of regular strong bipartite partition with associated
graph.



Figure 2
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Figure: An example of regular strong nonbipartite partition with
associated graph.



It has been proved by Conti-Terracini-Verzini
[CTV1, CTV2, CTV3] that

Theorem 1

For any k, there exists a minimal regular k-partition.



It has been proved by Conti-Terracini-Verzini
[CTV1, CTV2, CTV3] that

Theorem 1

For any k, there exists a minimal regular k-partition.

Other proofs of somewhat weaker version of this statement have
been given by Bucur, Henrot, F. H. Lin- Caffarelli.



This result is completed by (see
Helffer–Hoffmann-Ostenhof–Terracini [HeHOTe]) :

Theorem 2

Any minimal k-partition has a regular representative.

A natural question is whether a minimal partition is the nodal
partition induced by an eigenfunction.



For the next theorem we need some additional definitions.

We say that Di ,Dj are neighbors or Di ∼ Dj , if
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For the next theorem we need some additional definitions.

We say that Di ,Dj are neighbors or Di ∼ Dj , if
Di ,j := Int (Di ∪ Dj) \ ∂Ω is connected.

We associate to each D a graph G (D) by associating to each Di a
vertex and to each pair Di ∼ Dj an edge.

We will say that the graph is bipartite if it can be colored by two
colors (two neighbours having two different colors).

We recall that the graph associated to a collection of nodal
domains of an eigenfunction is always bipartite.



We have now the following converse theorem :

Theorem 3

If the graph of the minimal partition is bipartite this is a nodal
partition.

A natural question is now to determine how general is the previous
situation.



Surprisingly this only occurs in the so called Courant-Sharp
situation.
The Courant nodal theorem says :

Theorem 4

Let k ≥ 1, λk be the k-th eigenvalue and E (λk) the eigenspace of
H(Ω) associated to λk . Then, ∀u ∈ E (λk) \ {0} , µ(u) ≤ k .

Then we say that

Definition 6

u is Courant-sharp if

u ∈ E (λk) \ {0} and µ(u) = k .



For any integer k ≥ 1, we denote by Lk the smallest eigenvalue
whose eigenspace contains an eigenfunction with k nodal domains.
We set Lk = ∞, if there are no eigenfunctions with k nodal
domains.
In general, one can show, that

λk ≤ Lk ≤ Lk . (7)

The last goal consists in giving the full picture of the equality
cases :

Theorem 5

Suppose Ω ⊂ R
2 is regular.

If Lk = Lk or Lk = λk then

λk = Lk = Lk .

In addition, one can find in E (λk) a Courant-sharp eigenfunction.



Remarks B

1. For the one dimensional case the standard Sturm-Liouville
theory gives

Lk = Lk = λk , ∀k ≥ 1 . (8)

2.
L1 = L1 = λ1, (9)

(by the property of the ground state) and (we recall) that

L2 = L2 = λ2, (10)

by the orthogonality of u2 to the ground state combined with
Courant’s nodal Theorem.

3. The sequence (Lk)k∈N is strictly increasing.



Using Theorem 5, it is now easier to analyze the situation for the
disk or for rectangles (at least in the irrational case), since we have
just to check for which eigenvalues one can find associated
Courant-sharp eigenfunctions.
For a rectangle of sizes a and b, the spectrum is given by
π2(m2/a2 + n2/b2) ((m, n) ∈ (N∗)2).

The first remark is that all the eigenvalues are simple if a2

b2 is
irrational. We assume

(a/b)2 is irrational.

So we can associate to each eigenvalue λm,n, an (essentially)
unique eigenfunction um,n such that µ(um,n) = nm. Given k ∈ N

∗,
the lowest eigenvalue corresponding to k nodal domains is given by

Lk = π2 inf
mn=k

(m2/a2 + n2/b2) .



In the irrational case, λm,n cannot lead to a Courant-sharp situation
if inf(m, n) ≥ 3 or if inf(m, n) ≥ 2 and m or n larger than 4.
So there are only very few cases to analyze by hand, for which the
answer can depend on a

b
.

In the case of the square, it is not to difficult to see that L3 is
strictly less than L3. We observe indeed that λ4 is Courant-sharp,
so L4 = λ4, and there is no eigenfunction corresponding to
λ2 = λ3 with three nodal domains (by Courant’s Theorem).

Restricting to the half-rectangle and assuming that there is a
minimal partition which is symmetric with one of the symmetry
axes of the square perpendicular to two opposite sides, one is
reduced to analyze a family of Dirichlet-Neumann problems.



Numerical computations performed by V. Bonnaillie-Noël and
G. Vial lead to a natural candidate for a symmetric minimal
partition.
See http://www.bretagne.ens-
cachan.fr/math/Simulations/MinimalPartitions/



Figure 3

Figure: Trace on the half-square of the candidate for the 3-partition of
the square. The complete structure is obtained from the half square by
symmetry with respect to the horizontal axis.



Here we describe some unpublished results [HeHO4] on the
possible “topological” types of 3-partitions.

Proposition A

Let Ω be simply-connected and consider a minimal 3-partition
D = (D1,D2,D3) associated to L3 and suppose that it is not
bipartite.
Let

◮ X (D) the singular points of N(D) ∩ Ω

◮ Y (D) = N(D) ∩ ∂Ω.

Then there are three cases.



(a)

X (D) consists of one point x with a meeting of three half-lines
(ν(x) = 3) and Y (D) consists of

◮ either three y1, y2, y3 points with ρ(y1) = ρ(y2) = ρ(y3) = 1,

◮ or two points y1, y2 with
ρ(y1) = 2, ρ(y2) = 1,

◮ or one point y with ρ(y) = 3.

Here, for y ∈ ∂Ω, ρ(y) is the number of half-lines ending at y .

Type (a) (first subcase)



(b)

X (D) consists of two distinct points x1, x2 so that
ν(x1) = ν(x2) = 3 and Y (D) consists

◮ either of two points y1, y2 such that

ρ(y1) + ρ(y2) = 2

◮ or of one point y with ρ(y) = 2 .

Type (b), second subcase



(c)

X (D) consists again of two distinct points x1, x2 with
ν(x1) = ν(x2) = 3,
but Y (D) = ∅.

Type (c)



The proof of Proposition A relies essentially on Euler formula
together with the property that the associated graph should be a
triangle.



The proof of Proposition A relies essentially on Euler formula
together with the property that the associated graph should be a
triangle.
This leads (with some success) to analyze the minimal partition
with some topological type. If in addition, we introduce some
symmetries, this leads to guess some candidates for minimal
partitions.



In the case of the disk, we have no proof that the minimal partition
is the “Mercedes star”. But if we assume that the minimal
3-partition is of type (a), then a double covering argument shows
that it is indeed the Mercedes star.

The logo Mercedes and associated graph

1

2

3

1

2 3



In the case of the square, we have no proof that the candidate
described by Figure 3 is a minimal 3-partition.



In the case of the square, we have no proof that the candidate
described by Figure 3 is a minimal 3-partition.

But if we assume that the minimal partition is of type (a) and has
the symmetry, then numerical computations lead to the Figure 3.
Numerics suggest more : the center of the square is the critical
point of the partition.

Once this property is accepted, a double covering argument shows
that this is the projection of a nodal partition on the covering



One can also try to look for a minimal partition having the
symmetry with respect to the diagonal.

Figure 5 : Another candidate
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One can also try to look for a minimal partition having the
symmetry with respect to the diagonal.

Figure 5 : Another candidate

to compare with the former

THIS LEADS TO THE SAME VALUE OF Λ(D).

So this strongly suggests that there is a continuous family of
minimal 3-partitions of the square.
This can be explained by a double covering argument, which is
analogous to the argument of isospectrality of
Jakobson-Levitin-Nadirashvili-Polterovich [JLNP] and
Levitin-Parnovski-Polterovich [LPP].



This is an alternative approach to the double covering approach.

One considers the Aharonov-Bohm Laplacian in the square minus
its center Ω̇ = Ω \ {0}, with the singularity of the potential at the
center and normalized flux 1

2 .
The magnetic potential takes the form

A(x , y) = (A1,A2) = α
(

−
y

r2
,

x

r2

)

. (11)
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z = x + iy = r exp iθ . (13)



This is an alternative approach to the double covering approach.

One considers the Aharonov-Bohm Laplacian in the square minus
its center Ω̇ = Ω \ {0}, with the singularity of the potential at the
center and normalized flux 1

2 .
The magnetic potential takes the form

A(x , y) = (A1,A2) = α
(

−
y

r2
,

x

r2

)

. (11)

We know that the magnetic field vanishes and in any cutted
domain (such that it becomes simply connected) one has

A(x , y) = α dθ , (12)

where
z = x + iy = r exp iθ . (13)

Then the flux condition reads

α =
1

2
. (14)



So the Aharonov-Bohm operator in any open set Ω ⊂ R
2 \ {0} is

the Friedrichs extension starting from C∞
0 (Ω) and the associated

differential operator is

−∆A := (Dx − A1)
2 + (Dy − A2)

2 . (15)
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So the Aharonov-Bohm operator in any open set Ω ⊂ R
2 \ {0} is

the Friedrichs extension starting from C∞
0 (Ω) and the associated

differential operator is

−∆A := (Dx − A1)
2 + (Dy − A2)

2 . (15)

In the case of the square, the operator commutes with the π

2
rotation.
In the case of rectangles, it commutes with the symmetries with
respect to the main axes but these symmetries should be quantized
by antilinear operators,

Σ1u(x , y) = i u(−x , y) .

and
Σ2u(x , y) = u(x ,−y) .



This operator is preserving “real” functions in the following sense.
We say (cf Helffer–M. and T. Hoffmann-Ostenhof–Owen) that a
function u is K -real, if it satisfies

Ku = u , (16)

where K is an anti-linear operator in the form

K = exp iθ Γ , (17)

where
Γu = ū . (18)



This operator is preserving “real” functions in the following sense.
We say (cf Helffer–M. and T. Hoffmann-Ostenhof–Owen) that a
function u is K -real, if it satisfies

Ku = u , (16)

where K is an anti-linear operator in the form

K = exp iθ Γ , (17)

where
Γu = ū . (18)

The fact that (−∆A) preserves K -real eigenfunctions is an
immediate consequence of

K ◦ (−∆A) = (−∆A) ◦ K . (19)



It is easy to find a basis of K -real eigenfunctions. These
eigenfunctions (which can be identified to real antisymmetric
eigenfunctions of the Laplacian on a suitable double covering of
the square) have a nice nodal structure,

◮ which is locally the same inside the punctured square as the
nodal set of real eigenfunctions of the Laplacian,

◮ with the specific property that the number of lines arriving at
the origine should be odd.

More generally a path of index one around the origine should
always meet an odd number of nodal lines.



Lemma B

The multiplicity of any eigenvalue is at least 2.



Lemma B

The multiplicity of any eigenvalue is at least 2.

Proposition B

The following problems have the same eigenvalues :

◮ The Dirichlet problem for the Aharonov-Bohm operator on the
punctured square.

◮ The Dirichlet-Neumann problem on the upper-half square.

◮ The Dirichlet-Neumann problem on the left-half square.

◮ The Dirichlet-Neumann problem on the upper diagonal-half
square.



The spectrum on the double covering of the square

λ
1
 = 4.9348 λ

2
 = 8.3624 λ

3
 = 8.3624 λ

4
 = 12.3369 λ

5
 = 12.3369 λ

6
 = 16.6451 λ

7
 = 16.6451

The cutoff is done on the half-line {x = 0 , y > 0}. The first line
describes the nodal sets of the first seven eigenfunctions on the
first sheet.
This picture has been obtained by V. Bonnaillie-Noël.



Remarks

◮ The guess for the square is that any nodal partition of a third
K -real eigenfunction gives a minimal 3-partition.

◮ In the case of the general rectangle, Proposition B holds true
except the last item but this is no more related to the
3-partition problem.



Remarks

◮ The guess for the square is that any nodal partition of a third
K -real eigenfunction gives a minimal 3-partition.

◮ In the case of the general rectangle, Proposition B holds true
except the last item but this is no more related to the
3-partition problem.

All the results or observations around the square and the rectangle
arise from discussions, preliminary manuscripts written by or in
collaboration with V. Bonnaillie-Noël, T. Hoffmann-Ostenhof,
S. Terracini, G. Verzini or G. Vial.



The problem for k large.
We mention two conjectures. The first one is that

Conjecture 1

The limit of Lk(Ω)/k as k → +∞ exists.

The second one is that this limit is more explicitly given by

Conjecture 2

|Ω| lim
k→+∞

Lk(Ω)

k
= λ1(Hexa1) .

This last conjecture says in particular that the limit is independent
of Ω if Ω is a regular domain.



Of course the optimality of the regular hexagonal tiling appears in
various contexts in Physics. It is easy to show the upper bound in
Conjecture 2 and Faber-Krahn gives a weaker lower bound
involving the first eigenvalue on the disk. But we have at the
moment no idea of any approach for proving this in our context.
We have explored in [BHV] numerically why this conjecture looks
numerically reasonable.



The problem on the sphere

Let us mention two interesting conjectures on S2.

We parametrize S2 by the spherical coordinates
(θ, φ) ∈ [0, π] × [−π, π] with θ = 0 corresponding to the north
pole, θ = π

2 corresponding to the equator and θ = π corresponding
to the south pole.

There is a particular partition of S2 corresponding to cutting S2 by
the half-hyperplanes φ = 0, 2π

3 ,−2π

3 . We call this partition the
Y -partition.



The conjecture due to C. Bishop is :

Conjecture

The Y -partition gives a minimal 3-partition for S2 when
minimizing

∑3
j=1 λ(Dj) over all the 3-partitions of S2 .



The conjecture due to C. Bishop is :

Conjecture

The Y -partition gives a minimal 3-partition for S2 when
minimizing

∑3
j=1 λ(Dj) over all the 3-partitions of S2 .

Actually we can have the same conjecture for maxj λ(Dj).

Conjecture

The Y -partition gives a minimal 3-partition for S2 when
minimizing maxj λ(Dj) over all the 3-partitions of S2 .

This conjecture is actually a consequence of the first conjecture
but could be easier to prove.
The techniques developed in the previous parts give some insight
on the second conjecture which has some similarity with the
Mercedes star conjecture.



We have seen that for the disk the minimal 4-partition for
maxj λ(Dj) consists simply in the complement in the disk of the
two perpendicular axes.
One could think that a minimal 4-partition of S2 could be what is
obtained by cutting S2

◮ either by the two planes φ = 0 and θ = π

2

◮ or by the two planes φ = 0 and φ = π

2 .

This is actually excluded by the following theorem.

Theorem 6

The minimal 4-partition on S2 cannot be a nodal partition.
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V. Bonnaillie-Noël, B. Helffer and G. Vial.



Preprint 2007.

M. Conti, S. Terracini, and G. Verzini.
An optimal partition problem related to nonlinear eigenvalues.
Journal of Functional Analysis 198, p. 160-196 (2003).

M. Conti, S. Terracini, and G. Verzini.
A variational problem for the spatial segregation of
reaction-diffusion systems.
Indiana Univ. Math. J. 54, p. 779-815 (2005).

M. Conti, S. Terracini, and G. Verzini.
On a class of optimal partition problems related to the Fucik
spectrum and to the monotonicity formula.
Calc. Var. 22, p. 45-72 (2005).

B. Helffer and T. Hoffmann-Ostenhof.
Converse spectral problems for nodal domains. Extended
version.
Preprint Sept. 2005, mp arc 05343.

B. Helffer and T. Hoffmann-Ostenhof.



Converse spectral problems for nodal domains.
Preprint April 2006. Moscow Mathematical Journal.

B. Helffer and T. Hoffmann-Ostenhof.
On nodal patterns and spectral optimal partitions.
Unpublished Notes, December 2005.

B. Helffer and T. Hoffmann-Ostenhof.
On minimal partitions for the disk.
Unpublished Notes.

B. Helffer, T. Hoffmann-Ostenhof and S. Terracini.
To appear in Annales Institut Henri Poincaré
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