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and Université de Nantes, Laboratoire Jean Leray

Bucarest, July 2014



Abstract:
If the first mathematical results were obtained more than 30 years
ago with the interpretation of the celebrated Hofstadter butterfly,
more recent experiments in Bose-Einstein theory suggest new
questions. I will start with a partial survey on old results
(Helffer-Sjöstrand, Puig, Avila-Jitomirskaya-Krikorian,...) and then
discuss more recent questions related to generalized butterflies
(Dalibard and coauthors, Hou, Kerdelhué–Royo-Letelier). These
new questions are strongly related to Harper on triangular or
hexagonal lattices (in connection with the now very popular
graphene). Our historics is focused on the mathematical results.



Introduction

The spectral properties of a charged particle in a two-dimensional
system submitted to a periodic electric potential and a uniform
magnetic field crucially depend on the arithmetic properties of the
number γ representing the magnetic flux quanta through the
elementary cell of periods, see e.g. [Bel] for a description of various
models.
Since the works by Azbel [Az] and Hofstadter [Hof] it is generally
believed that for irrational α = γ/2π the spectrum is a Cantor set,
that is a nowhere dense (the interior of the closure is empty) and
perfect set (closed + no isolated point), and the graphical
presentation of the dependence of the spectrum on γ shows a
fractal behavior known as the Hofstadter butterfly.



The gaps in the spectrum.
This is the ”colored” butterfly realized in 2003 by Y. Avron and his
team.

	  



After intensive efforts this was rigorously proved recently (Ten
Martinis conjecture) for all irrational values of α for the discrete
Hofstadter model, i.e. the discrete magnetic Laplacian admitting a
reduction to the almost Mathieu equation, see [AvJi] and
references therein.



Only few results are available for other models. Traditionally,
various semiclassical methods play an important role in the analysis
of the two-dimensional magnetic Schrödinger operators with
periodic potentials, see e.g. [BDP] for a review. In particular, the
bottom part of the spectrum for strong magnetic fields can be
described up to some extent using the tunnelling asymptotics,
Wannier functions where G. Nenciu was strongly involved,... and
this leads to simpler models like Harper.
Usually physicists have no problems to use these results without to
come back to the initial problem.



Coming back to mathematics, a more detailed analysis (Bellissard,
Helffer and Sjöstrand [HS1, HS2, HS3]) shows that the study of
some parts of the spectrum for the Schrödinger operator with a
magnetic field and a periodic electric potentials reduces to the
spectral problem for an operator pencil of one-dimensional
quasiperiodic pseudodifferential operators.

Under some symmetry conditions for the electric potentials, the
operator pencil reduces to the study of small perturbation of the
continuous analog of the almost-Mathieu (=Harper) operator,
which allowed one to carry out a rather detailed iterative analysis
for special values of α.
In particular, in several asymptotic regimes a Cantor structure of
the spectrum was proved.
This involved a pseudo-differential calculus, whose relevance in this
context was predicted by the british physicist Wilkinson.



Pseudo-differential operators

In [HS1, HS2, HS3] (1988-1990) a machinery was developed for an
iterative semiclassical analysis of a special class of
pseudodifferential operators. One was concerned with the
non-linear spectral problem (or, in other words, with the spectral
problem for an operator pencil). Namely, for a family of
self-adjoint operators A(µ) depending µ ∈ R the µ-spectrum
µ-specA(µ) denotes the set of all µ such that 0 ∈ SpecA(µ).
The simplest case being the family A− µ.



Quantization

Let L : R2 → R be a periodic smooth function,
L(x , ξ + 2π;µ, h) = L(x + 2π, ξ;µ, h) = L(x , ξ;µ, h). Here µ and h
are real parameters. By the Weyl quantization procedure one can
assign to L an operator L̂h(µ) in L2(R) by

L̂h(µ)f (x) =
1

2πh

∫
R

∫
R

e iξ(x−y)/hL
(x + y

2
, ξ;µ, h

)
f (y)dξ dy . (1)



The operator L̂h obtained is referred to as the Weyl h-quantization
of L, and quantum Hamiltonians resulting from periodic symbols
are often called Harper-like operators.

In particular, the symbol L(x , ξ) := cos x + cos ξ produces the
Harper operator on the real line,

L̂hf (x) =
f (x + h) + f (x − h)

2
+ cos x f (x). (2)



In [HS3], in order to treat the Harper operator and perturbations
of it occuring in a renormalization procedure, the following notion
was introduced.

Definition

A symbol L(x , ξ;µ, h) will be called of strong type I if the following
conditions are satisfied for all h ∈ (0, h0) with some h0 > 0:

(a) L depends analytically on µ ∈ [−4, 4].

(b) There exists ε > 0 such that

(b1) L(x , ξ;µ, h) is holomorphic in

Dε =
{

(µ, x , ξ) ∈ C× C× C : |µ| ≤ 4, |=x | < 1

ε
, |=ξ| < 1

ε
,
}
,

(b2) for (µ, x , ξ) ∈ Dε, there holds∣∣L(x , ξ;µ, h)− (cos x + cos ξ − µ)
∣∣ ≤ ε.



Continuation of the definition

(c) The following symmetry conditions hold:

L(x , ξ;µ, h) = L(ξ, x ;µ, h) = L(x ,−ξ;µ, h)
L(x , ξ;µ, h) = L(x + 2π, ξ;µ, h) = L(x , ξ + 2π;µ, h).

By ε(L) we will denote the minimal value of ε for which the above
conditions hold.



In [HS1, HS2, HS3] a detailed analysis was performed for
pseudodifferential operators associated with strong type I symbols.
One of the results was

Theorem 1

Let L(µ, h) be a strong type I symbol. There exist ε0 , C s. t. if
ε(L) ≤ ε0 and if (2π)−1h is an irrational admitting a representation
as a continuous fraction

h

2π
=

1

n1 +
1

n2 +
1

n3 + . . .

with nj ≥ C , then the µ-spectrum of the associated operators

L̂h(µ) is a zero measure Cantor set.

In particular, this applies to the spectrum of the Harper’s model.
But the theorem says also that this is stable by perturbations
respecting all the symmetries.



Schrödinger operators with magnetic potentials

For operators H =
∑2

j=1(~Dxj − Aj)
2 + V with periodic potentials

V ,
V (x1 + 2π, x2) ≡ V (x1, x2 + 2π) ≡ V (x1, x2) ,

and constant (or periodic) magnetic fields

Curl ~A = B ,

it was shown in several asymptotic regimes that the study of some
parts of the spectrum reduces to a non-linear spectral problem of
the type above.
We will see later that we can consider other symmetries.



This is for example the case for

I B−1-pseudodifferential operators with symbols close to
V (x , ξ) (see for example [HS4] which treats the strong
magnetic case)

I B-pseudodifferential operators with symbols to the first
Floquet eigenvalue of the Schrödinger operator without
magnetic field (Peierls substitution) (corresponding to the
case of the weak magnetic field, see [HS1], [HS3] and [HS4]
and earlier contributions by mathematicians and physicists
(see the surveys by J. Bellissard in [Bel], G. Nenciu in [Ne2],
J. Sjöstrand [Sj] and references therein).



Hence, strong type I operators appear for strong magnetic field
when considering potentials V close to cos x1 + cos x2.
Moreover in the semi-classical limit ~→ 0 or in the tight binding
situation, it can be shown (case of a square lattice) that—up to
the multiplication by an exponentially small term corresponding to
the tunneling—– the lowest Floquet eigenvalue is close to
(cos θ1 + cos θ2).
Here it is important to assume the symmetry for V
V (−x2, x1) = V (x1, x2), an assumption of non degenerate minima
for V (one for each cell) and a geometric assumption on the
geodesics for neighboring wells (the geometry is the Agmon metric
(V −min V )dx2).



Symbols associated with some discrete operators

It is well known that the spectrum of the operator (2) as a set
coincides with the spectrum of the discrete magnetic Laplacian
acting on `2(Z2), see e.g. [HS1],

Chf (m, n) = e ihnf (m+1, n)+e−ihnf (m−1, n)+f (m, n−1)+f (m, n+1).

More generaly consider a bounded linear operator Ch acting on
`2(Z2) given by an infinite matrix

(
C (p, q)

)
, p, q ∈ Z2, satisfying

C (p + k , q + k) = e−ihk2(p1−q1)C (p, q), p, q, k ∈ Z2, (3)

with some h > 0.



Proposition A

Let Ch be a bounded self-adjoint operator in `2(Z2) with the
property (3) and satisfying |C (p, q)| ≤ ae−b|p−q| for some a, b > 0
and all p, q ∈ Z2. Then the spectrum of Ch coincides with the
spectrum of the Weyl h-quantization of the symbol T given by

T (x , ξ) =
∑

m,n∈Z
c(m, n)e−imnh/2e i(mx+nξ), (4)

where c(m, n) = C
(
(0, 0), (m, n)

)
, m, n ∈ Z.



A third point of view

Let us return to the initial operator Ch. By assumption,
C (p, q) = exp

(
ihp2(q1 − p1)

)
c(q − p) for any p, q ∈ Z2, hence

Chf (p) =
∑

q∈Z2 e ihp2(q1−p1)c(q − p)f (q)

=
∑

q∈Z2 e ihp2q1c(q)f (p + q).

Therefore, Ch commutes with the shift f (p1, p2) 7→ f (p1 + 1, p2),
and the Floquet-Bloch theory is applicable.



We get a family of operators acting in `2(Z),

Ch(θ)g(m) =
∑
n∈Z

bn(mh + θ)g(m + n), m ∈ Z, θ ∈ R ,

which satisfies
Ch(θ) = Ch(θ + 2π) .



Therefore, by the Floquet-Bloch theory, one has

SpecCh =
⋃

θ∈[0,2π)

SpecCh(θ) .

Furthermore, for any θ the operators Ch(θ) and Ch(θ + h) are
unitarily equivalent, Ch(θ + h) = SCh(θ)S−1, where S is the shift
in `2(Z), Sf (n) = f (n + 1), which implies
SpecCh =

⋃
θ∈[0,h) SpecCh(θ).

This coincides with the spectrum of the following operator Th

acting in L2
(
Z× [0, h)

)
Thu(m, θ) = Ch(θ)uθ(m), uθ(m) = u(m, θ), m ∈ Z.

Finally when h/2π is irrational, the spectrum is independent of θ.



The Hofstadter butterfly

In the case of the symbol (x , ξ) 7→ cos x + cos ξ we get the
Hofstadter’s butterfly
On the vertical axis the parameter proportional to the flux
α = h

2π ∈ [0, 1]. On the horizontal line y = α the union over θ of
the spectra of the family Ch(θ). The picture results of
computations for rational α’s.



The hamiltonian point of view permits to explain the behavior of
the spectrum as α 7→ 0 or more generally as α→ p

q .



Cantor structure

Let us consider more generally the family of operators on `2(Z)

(Hλ,αu)n = un+1 + un−1 + 2λ cos 2π(θ + nα)un .

Different names for this operator are given including Harper or
Almost-Mathieu.
If α = p

q is rational the spectrum consists of the union of q
intervals possibly touching at the end point. If α is irrational the
spectrum is independent of θ and:

Ten Martini Theorem

The spectrum of the almost Mathieu operator Hλ,α is a Cantor set
for all irrational α and for all λ 6= 0.



Previously, we were discussing the case λ = 1. The Ten Martini
conjectures was popularized by B. Simon in reference to some offer
of M. Kac.
Computations for λ 6= 1 are proposed in a ”numerical” paper of
Guillement-Helffer-Treton [GHT].

Historics
Azbel (1964), Bellissard-Simon (1982), Van Mouche (1989),
Helffer-Sjöstrand (1989), Puig (2004), Avila-Krikorian (2008),
Avila-Jitomirskaya (2009).
Unfortunately Mark Kac died before to know that he has to buy
these ten Martini.



Other examples

We first mentione the triangular case

Figure: Picture by J. E. Avron, O. Kenneth and G. Yeshoshua (2013).



One should add the graphene case (or hexagonal case).

Figure: The colored Hofstadter butterfly for the Honeycomb lattice by A.
Agazzi, J.-P. Eckmann, and G.M. Graf (2014) .



In her thesis J. Royo-Letelier has started (see [Hou] ) to analyze
rigorously the case of a Kagome lattice. This was extended in a
paper in collaboration with P. Kerdelhué. Questions around the
Chambers’s formula have been analyzed by
Helffer-Kerdelhué-Royo-Letelier. This involves new semi-classical
problems related to ”flat” bands.



Kagome lattice

The kagome lattice is not a Bravais lattice, but is a discrete subset
of R2 invariant under translations along a triangular lattice and
containing three points per fundamental domain of this lattice.
Each point of the lattice has four nearest neighbours for the
Euclidean distance. The word kagome means a bamboo-basket
(kago) woven pattern (me) and it seems that the lattice was
named by the Japanese physicist K. Husimi .



Let Γ4 be the triangular lattice spanned by B = {2ν1, 2ν2}, where

ν` = r `−1(1, 0)

and r is the rotation of angle π
3 and center the origin.

The kagome lattice can be seen as the union of three conveniently
translated copies of Γ4 :

Γ =
{

mα,` = 2α1ν1 + 2α2ν2 + ν` ; (α1, α2) ∈ Z2 , ` = 1, 3, 5
}
.





Coming from a Schrödinger operator
As in the Harper model there is an electric potential whose minima
are on a Kagome lattice. Moreover there are examples obtained
with trigonometric polynomials. This means that they can be
obtained by a combination of lasers.
Remembering the definitions of the vectors νj , we denote by ν⊥

the vector deduced from ν by a rotation of π
2 and for j ∈ {1, 3, 5}

we define
µj =

√
3 ν⊥j .

For j = 1, 3, 5 we set φj = 3π/2 and define the potentials
Vj : R2 → R as

Vj(x) =

[
cos (x · πµj + φj) + 2 cos

(
x · πµj + φj

3

)]2
,

and V as
V = −V1 − V3 − V5 .

V has local minima at the points of the kagome lattice.





The minima appear on the center of the black zone around an
hexagon. The maximum at the center of the hexagon. Each
minimum has four nearest neighbors (for the Agmon distance).
These minima are leaving on a kagome lattice (subset of an
hexagonal lattice). The figure is invariant by the double triangular
lattice.



Analysis of the rational case and Chambers formula

Once a semi-classical (or tight-binding) approximation is done,
involving a tunneling analysis and a construction of Wannier
functions we arrive (modulo a controlled smaller error) in the case
of a square lattice to the so-called Harper model, which is defined
on `2(Z2,C) by

(Hu)m,n :=
1

2
(um+1,n + um−1,n) +

1

2
e iγmum,n+1 +

1

2
e−iγmum,n−1 ,

where γ denotes the flux of the constant magnetic field through
the fundamental cell of the lattice.
When γ

2π is a rational, a Floquet theory permits to reduce the
analysis to the analysis of the eigenvalues of a family of q × q
matrices depending on a parameter θ = (θ1, θ2) ∈ R2.



More precisely, when
γ = 2πp/q , (5)

where p ∈ Z and q ∈ N∗ are relatively prime, the two following
matrices play an important role:

Jp,q = diag(e i(j−1)γ) , (6)

and
(Kq)jk = 1 if k ≡ j + 1[q] , 0 else. (7)



In the case of Harper, the family of matrices is

MH(θ1, θ2) = e iθ1Jp,q + e−iθ1J∗p,q + e iθ2Kq + e−iθ2K ∗q . (8)

The Hofstadter butterfly is then obtained as a picture in the
rectangle (−2,+2)× [0, 1]. A point (λ, γ/2π) is in the picture if
there exists θ such that
det(MH(θ1, θ2)− λ) = 0 for some p

q with p/q ∈ [0, 1] (q ≤ 50).
The Chambers formula gives a very elegant formula for this
determinant:

det(MH(θ1, θ2)− λ) = f H
p,q(λ) + (−1)q (cos qθ1 + cos qθ2) , (9)

where f H is a polynomial of degree q.



Many other models have been considered. In the case of a
triangular lattice, the second model is, according to [Ke] (see also
[Avetal]),

MT (θ1, θ2, φ) = e iθ1Jp,q + e−iθ1J∗p,q + e iθ2Kq + e−iθ2K ∗q
+e iφe i(θ1−θ2)Jp,qK ∗q + e−iφe i(θ2−θ1)KqJ∗p,q

(10)
with φ = −γ/2.
The Chambers formula in this case takes the form

det(MT (θ1, θ2, φ)− λ)
= f T

p,q(λ) + (−1)q+1 (cos qθ1 + cos qθ2 + cos q(θ2 − θ1 − φ)) .
(11)



In the case of the hexagonal lattice, which appears also in the
analysis of the graphene, we have to analyze

MG (θ1, θ2) :=

(
0 Iq + e iθ1Jp,q + e iθ2Kq

Iq + e−iθ1J∗p,q + e−iθ2K ∗q 0

)
(12)

We denote by PG the characteristic polynomial of MG . The
resulting spectrum is given in Figure 3.



Finally, inspired by the physicist Hou, [KR] have shown that for the
kagome lattice, the following approximating model is relevant. we
consider the matrix:

MK (θ1, θ2, ω) =

 0 A(θ1, θ2, ω) B(θ1, θ2, ω)
A∗(θ1, θ2, ω) 0 C (θ1, θ2, ω)
B∗(θ1, θ2, ω) C ∗(θ1, θ2, ω) 0

 ,

(13)
with

A(θ1, θ2, ω) = e i(ω+
γ
8
)(e−iθ1J∗p,q + e−i

γ
2 e−i(θ1−θ2)J∗p,qKq)

B(θ1, θ2, ω) = e−i(ω+
γ
8
)(e−iθ1J∗p,q + e−iθ2K ∗q )

C (θ1, θ2, ω) = e i(ω+
γ
8
)(e−i

γ
2 e i(θ1−θ2)Jp,qK ∗q + e−iθ2K ∗q ) .

(14)
Here ω is a parameter appearing in the model (most of the
physicists consider without justification the case ω = 0). We refer
to [KR] for a discussion of this point.



The trigonometric polynomial

(x , ξ) 7→ p4(x , ξ) = cos x + cos ξ + cos(x − ξ) (15)

which was playing an important role in the analysis of the
triangular Harper model (see Claro-Wannier [CW] and Kerdelhué
[Ke]) will also appear in our analysis.
We denote by PK (θ1, θ2, λ) the characteristic polynomial
det(λ I3q −M(θ1, θ2)).
We prove that for a model considered by Hou [Hou] , there exists a
formula which is similar to the one obtained by Chambers [Ch] for
the Harper model. (see also Helffer-Sjöstrand [HS1], [HS2],
Bellissard-Simon [BelSim], C. Kreft [Kr], I. Avron (and coauthors)
[Avetal]).



The first statement is probably well known in the physical
literature.

Theorem [Graphene]

PG (θ1, θ2, λ) = (−1)q det(MT (θ1, θ2, 0) + 3− λ2) . (16)



The second statement was to our knowledge unobserved.

Theorem [Kagome]

There exists a polynomial Qω of degree 3q, with real coefficients,
depending on γ and possibly on ω, but not on (θ1, θ2), such that

PK (θ1, θ2, ω, λ)
= Qω(λ) + 2p4(q(θ1 + pπ), q(θ2 + pπ))

(
λ+ 2 cos(3ω − γ

8 )
)q
.

(17)

Corollary

A flat band exists if and only if

Qω(−2 cos(3ω − γ

8
)) = 0 .



Let us illustrate by some examples mainly extracted of [KR].
In the case when q = 1 and p = 0, one finds, for the Hou’s model:

P(θ1, θ2, λ) = −λ3 +6λ+4 cos(3ω)+2 (λ+ 2 cos(3ω)) p4(θ1, θ2) .

Hence, we have in this case:

Qω(λ) = −λ3 + 6λ+ 4 cos(3ω) .

The condition for a flat band reads:

Qω(−2 cos(3ω) ) = 0 ,

which takes the simple form: (cos 3ω)3 − cos 3ω = 0 .
Hence cos 3ω = 0 or cos 3ω = ±1. So the ”flat bands” appear only
for discrete value of ω, including the particular case ω = 0, mostly
considered in the physical literature. Note that in [KR], it is proved
only that ω → 0 as a function of the initial semi-classical
parameter.



We now consider other examples:

I For the triangular model, for p/q = 1/6, the spectrum is
given by :

λ6−18λ4−12
√

3λ3 + 45λ2 + 36
√

3λ+ 6−2p4(6θ1, 6θ2) = 0 .

Q(λ) satisfies Q(−
√

3) = Q ′(−
√

3) = 0. The second gap is
closed.

I For the Graphene model, for p/q = 1/2, the spectrum is given
by

λ4 − 6λ2 + 3− 2(cos(2θ1) + cos(2θ2)− cos(2(θ1 − θ2)))

The bands are [−
√

6,−
√

3], [−
√

3, 0], [0,
√

3] and [
√

3,
√

6].

I For the Hou-model, as shown in [KR] for ω = π/8 and
p/q = 3/2, the bands are {−2} (with multiplicity 2),
[1−
√

6, 1−
√

3], [1−
√

3, 1], [1, 1 +
√

3] and [1 +
√

3, 1 +
√

6].



The Kagome butterfly
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B. Helffer, P. Kerdelhué and J. Royo-Letelier.
In preparation.

B. Helffer and J. Sjöstrand.
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