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Main goals

We consider the Neumann Laplacian with constant
magnetic field on a regular domain. Let B be the
strength of the magnetic field, and let λ1(B) be the
first eigenvalue of the magnetic Neumann Laplacian
on the domain. It is proved that B 7→ λ1(B) is
monotone increasing for large B.

We discuss applications of this monotonicity for the
critical fields in superconductivity.



The Schrödinger operator with

magnetic field

Let, for B ∈ R+, the magnetic Neumann Laplacian
H(B) be the self-adj. operator (with Neumann
boundary conditions) associated to the quadratic
form

W 1,2(Ω) ∋ u 7→ Q
B,~F

(u) :=

∫

Ω

|(−i∇−B ~F )u|2 dx ,

where Ω is a fixed, regular, bounded set in R
2 and

~F is

div ~F = 0

curl ~F = 1

}
in Ω ,

and the boundary condition

~F · ν = 0 on ∂Ω .

We define λ1(B) as the lowest eigenvalue of H(B).



Basic domains
Here we can take

~F0 =
(
−x2

2
,
x1

2

)
.

Whole space R2

The spectrum is discrete with eigenvalues of infinite
multiplicity, which are called the Landau levels.
The bottom of the spectrum is |B|.

Half space R2
+

Continuous spectrum. The bottom of the spectrum
is Θ0|B|, with Θ0 ∈]0, 1[ . The spectral analysis is
based on the analysis of the family

H(ξ) = D2
t + (t+ ξ)2 ,

on the half-line (Neumann at 0) whose lowest
eigenvalue µ(ξ) admits a unique minimum at ξ0 <
0.e



Two universal constants.

We have to keep in mind two universal constants
attached to the problem on R+.

The first one is

Θ0 = µ(ξ0) . (1)

It corresponds to the bottom of the spectrum of the
Neumann realization in R2

+ (with B = 1).
Note that

Θ0 ∈]0, 1[ .

The second one is defined as follows. If uξ denotes
the L2-normalized groundstate of H(ξ), we will also
meet later the universal constant

C1 =
uξ0(0)

2

3
(2)



The case of the disk
All the previous models are dilation invariants, so it
was enough to treat B = 1.

The disk is an important model for understanding
curvature effects. The first results are due to Giorgi-
Phillips, but we give below a useful improvment for
the control of the third term.
Theorem [Eigenvalue asymptotics for the disc]
Suppose that Ω is the unit disc. Define δ(m,B), for
m ∈ Z, B > 0, by

δ(m,B) = m− B
2 − ξ0

√
B. (3)

Then there exist (computable) constants C0, δ0 ∈ R

such that, with ∆B = infm∈Z |δ(m,B) − δ0| ,

λ1(B) = Θ0B − C1

√
B + 3C1

√
Θ0

(
∆2
B + C0

)
+ O(B−1

2) ,
(4)

as B → +∞.



Note that we can recover the result for the disk of
radius R by dilation. So the second term in the
expansion becomes

−C1
1

R

√
B ,

and will show the role of the curvature.

This has also the following important consequence.

Proposition[Case of the disk]
Let Ω be the disc. Then the left- and right-hand
derivatives λ′1,±(B) exist and satisfy

λ′1,+(B) ≤ λ′1,−(B) ,

lim inf
B→+∞

λ′1,+(B) ≥ Θ0 − 3
2C1|ξ0| > 0 . (5)

In particular, B 7→ λ1(B) is strictly increasing for
large B.



Asymptotic expansions for λ1(B) in a

bounded regular domain

All the asymptotics below are for B large.

Version 1 (Lu-Pan or DelPino-Fellmer-Sternberg
(2000)).

λ1(B) = Θ0B + o(B) , (6)

+ better upper bound.

Version 2 (Helffer-Morame (2001)).

λ1(B) = Θ0B − C1kmax
√
B + o(

√
B) , (7)

where C1 > 0 is a spectral quantity attached to
the half space problem, and kmax is the maximal
curvature along the boundary.



Version 3 (Bernoff-Sternberg (1998) formal
construction, Fournais-Helffer (2005)).

If ∂Ω has only a finite number of points of maximal
curvature and that in addition these points are
non degenerate, we have a complete expansion in
fractional powers of B−1

8 :

λ1(B)/B

= Θ0 − C1kmaxB
−1

2

+C1Θ
1
4
0

√
3k2
2 B

−1
4

+
∑
j≥7 cjB

−j
8 ,

(8)

where
k2 = inf

x∈∂Ω k(x)=kmax
(−k′′(x)) ,

k(x) being the curvature.

For corners, see Bonnaillie-Noël, Bonnaillie-Noël–
Dauge.



Localization at the boundary

From the work of Helffer-Morame [HeMo2]

——(improving Del Pino-Fellmer-Sternberg and Lu-
Pan)—–

we know that, as B → +∞, the groundstate is
localized in a neighborhood of the boundary.

The proof is based on semi-classical Agmon
estimates, but the “Agmon distance” has to be
replaced by the distance to the boundary.

Note that the Agmon estimates give first, for some
α > 0,

|| expαB
1
2 d(x, ∂Ω)ψ||22 ≤ C ||ψ||22 ,



From semi-classical Agmon estimates to weak
localization

When speaking of semi-classical analysis, we mean
that the semi-classical parameter is 1

B
.

The previous inequality implies

||ψ||22 ≤M

∫

d(x,∂Ω)≤MB
−1

2

|ψ(x)|2dx ,

We will need the following weak form of this
localization :

||ψ||L2(Ω) ≤ C B−1
8 ||ψ||L4(Ω) , (9)

which is true for B large enough.



Localization inside the boundary

The statement in dimension 2 is that the groundstate
ψ is also localized in the tangential variable to a small
zone around the points of maximal curvature.
Here we speak about an exponential tangential decay
which is of lower rate B

1
4 (instead of B

1
2) and which

is measured through an Agmon distance associated
to the function (kmax− k(s)) playing the role of the
potential.
The proof is inspired by what was done in the
case of the Schrödinger operator with electric
potential (mini-well case) in Helffer-Sjöstrand, with
the following dictionary :

• The boundary plays the role of a degenerate well.

• The minima of the curvature inside the boundary
play the role of the miniwells.



New results on Diamagnetism

We know, by Kato’s inequality that

λ1(B) ≥ λ(0) .

But the monotonicity is unknown in full generality.

Here we refer to some recent results of [FoHe5].

Main Theorem
If Ω is bounded and has a regular boundary then
B 7→ λ1(B) is monotonically increasing for B large.



The case of the disk was treated previously.

We now assume that Ω is NOT a disk. We will play
with the gauge invariance in the following way. Let
Â be any magnetic potential such that curl Â = 1.
Then for a suitable choice of a ground state
eigenfunction ψ̂1,+(B) of the Hamiltonian Ĥ(B)
associated to the quadratic form Q

B, bA
), we can

first calculate,

λ′1,+(B) = 〈ψ̂1,+(B);
(
Â ·p

BbA
+p

BbA
·Â

)
ψ̂1,+(B)〉 .

Then, using the quadratic character of the operator
with respect to B, we get for any β > 0, the following
lower bound

λ′1,+(B)

=
Q
B+β, bA

( bψ1,+(B))−Q
B, bA

( bψ1,+(B))

β
− β

∫
Ω
(Â)2|ψ̂1,+(B)|2 dx

≥ λ1(B+β)−λ1(B)
β

− β
∫
Ω
(Â)2|ψ̂1,+(B)|2 dx.

The last inequality is no more gauge invariant BUT
.....



BUT we can now look look for a suitable choice of
β and Â.

The trick is that for a suitable gauge, we have

∫

Ω

(Â)2|ψ1,+(B)|2 dx ≤ C

∫

Ω

dist (x, ∂Ω)2|ψ1,+(B)|2 dx

+ ‖Â‖2
∞

∫

Ω\Ω′
|ψ1,+(B)|2 dx.

(10)

Here Ω′ is some tubular simply connected region
touching the boundary, whose complementary in Ω
is a region where |ψ1,+(B)| is exponentially small as
B → +∞.



That such a choice is possible is a consequence of

• the accurate normal Agmon estimates

• together with the (weak) tangential Agmon
estimates,

• together with the assumption that the curvature
is not constant.

Now in Ω
′

we can choose a gauge for which Â
vanishes at ∂Ω.
Using these Agmon estimates, we therefore find

∫

Ω

(Â)2|ψ1,+(B)|2 dx ≤ CB−1. (11)



Now choose β = ηB, where η > 0 is arbitrary, in
the previous lower bound of λ′1,+(B) . Using a weak
asymptotics for λ1(B), we therefore find

lim inf
B→∞

λ′1,+(B) ≥ Θ0 − ηC. (12)

Since η was arbitrary this implies

lim inf
B→∞

λ′1,+(B) ≥ Θ0. (13)

Applying the same argument to the left side
derivative, λ′1,−(B), we get (the inequality gets
turned since β < 0)

lim sup
B→∞

λ′1,−(B) ≤ Θ0. (14)

Since, by perturbation theory, λ′1,+(B) ≤ λ′1,−(B)
for all B, we get

lim
B→∞

λ′1,−(B) = Θ0 = lim
B→∞

λ′1,+(B) , (15)

hence the monotonicity of λ1(B).



In the first proof we gave, we were obliged to have an
asymptotic of λ1(B) modulo o(1). This was leading
to stronger assumptions on the boundary (isolated
points of maximal curvature + non degeneracy
assumption).

One could think that we now only use the knowledge
of λ1(B) modulo o(B).

This is not true because the tangential localization
suppose a knowledge (or is proved simultaneously

with the determination) of λ1(B) modulo o(B
1
2).

This was obtained (by Helffer-Morame) in full
generality when the boundary is compact and regular.



Ginzburg-Landau functional

The Ginzburg-Landau functional is given by

Eκ,H[ψ, ~A] =
∫
Ω

{
|∇

κH ~A
ψ|2 − κ2|ψ|2 + κ2

2 |ψ|4

+κ2H2| curl ~A− 1|2
}
dx ,

with Ω simply connected, (ψ, ~A) ∈ W 1,2(Ω; C) ×
W 1,2(Ω; R2) and where ∇ ~A

= (∇− i ~A).

We fix the choice of gauge by imposing that

div ~A = 0 in Ω , ~A · ν = 0 on ∂Ω .



Minimizers (ψ, ~A) of the functional satisfy the
Ginzburg-Landau equations,

−∇2
κH ~A

ψ = κ2(1 − |ψ|2)ψ
curl 2 ~A = − i

2κH(ψ∇ψ − ψ∇ψ) − |ψ|2 ~A

}
in Ω ;

(16a)

(∇
κH ~A

ψ) · ν = 0

curl ~A− 1 = 0

}
on ∂Ω .

(16b)

Here curl (A1, A2) = ∂x1A2 − ∂x2A1,

curl 2 ~A = (∂x2( curl ~A),−∂x1( curl ~A)) .



Terminology for the minimizers

The pair (0, ~F ) is called the Normal State.

A minimizer (ψ,A) for which ψ never vanishes will
be called SuperConducting State.

In the other cases, one will speak about Mixed State.

The general question is to determine the topology of
the subset in R

+ × R
+ of the (κ,H) corresponding

to minimizers belonging to each of these three
situations.



Existence of the third critical field HC3(κ)

It is known that, for a given pair κ,H, the functional
E has minimizers.

Moreover, after some analysis of the functional, one
finds (see [GiPh]) that, for given κ, there exists

H(κ) such that if H > H(κ) then (0, ~F ) is the
unique minimizer of Eκ,H (up to change of gauge).

Following Lu and Pan [LuPa1], we define

HC3
(κ) = inf{H > 0 : (0, ~F ) minimizer of Eκ,H} .

A central question in the mathematical treatment of
Type II superconductors is to establish the asymptotic
behavior of HC3

(κ) for large κ.



Our first result [FoHe3] is the following strengthening
of a result in [HePa].

Theorem A
Suppose Ω is a bounded simply-connected domain in
R

2 with smooth boundary. Let kmax be the maximal
curvature of ∂Ω. Then

HC3
(κ) =

κ

Θ0
+

C1

Θ
3
2
0

kmax + O(κ−
1
2) . (17)

Remark
The constants Θ0, C1 appear in the spectral analysis
of our basic models.



Discussion of critical fields

Actually, we should define more than one critical
field, instead of just HC3

.

We should also a priori define an upper third critical
field, by

HC3(κ)

= inf{H > 0 : ∀H ′ > H , (0, ~F )
unique minimizer of Eκ,H′} ,

Of course we have

HC3
(κ) ≤ HC3(κ) .

Note that one can prove that the asymptotics given
for HC3

(κ) is also valid for HC3(κ).



The local upper critical fields can now be defined
by :

H
loc

C3
(κ) = inf{H > 0 : ∀H ′ > H, λ1(κH

′) ≥ κ2} ,

and

H loc
C3

(κ) = inf{H > 0 : λ1(κH) ≥ κ2} .

The coincidence between H
loc

C3
(κ) and H loc

C3
(κ)

immediately results if we prove the strict
monotonicity of B 7→ λ1(B).

Comparison Theorem B
Let Ω be a bounded simply-connected domain in R2

with smooth boundary, then, for κ large enough, all
the critical fields coincide.



Questions, other results and

Perspectives

This is far to be the end of the story. Here are some
additional questions or remarks :

1. The case of corners was analyzed by Hadallah,
Bonnaillie, and a numerical analysis of the
tunneling in polygons was performed by Dauge-
Bonnaillie. New results about critical fields have
been obtained by Bonnaillie-Fournais.

2. Analyze the case when Ω is not simply connected !

3. Analyze the situation between HC3(κ) and
HC2(κ) (Pan, Fournais-Helffer, Almog-Helffer,
Sandier-Serfaty).

4. Analyze other conditions than Neumann (see the
analysis of Lu-Pan and Kachmar for the De Gennes
(Robin) conditions). Similar questions concern the
Josephson junctions.
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