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We review the properties of minimal spectral k-partitions in the
two-dimensional case and revisit the connexions with Pleijel’s
theorem. The hexagonal conjecture corresponds to the idea that,
when k is large, the minimal k-partitions will behave like the
restriction of an hexagonal tiling (when far from the boundary).
We focus on this large k problem (and the hexagonal conjecture)
in connexion with two recent papers by J. Bourgain and S.
Steinerberger on the Pleijel theorem and with I. Polterovich’s
conjecture, which could be the consequence of a ”square”
conjecture for minimal spectral bipartite partitions.



We consider mainly the Dirichlet Laplacian in a bounded domain
Ω ⊂ R2. We assume that Ω is sufficiently regular say with C∞

boundary.

In [14] we have started to analyze the relations between the nodal
domains of the real-valued eigenfunctions of this Laplacian and the
partitions of Ω by k open sets Di which are minimal in the sense
that the maximum over the Di ’s of the ground state energy (=
lowest eigenvalue) of the Dirichlet realization of the Laplacian
H(Di ) in Di is minimal.



We denote by λj(Ω) the increasing sequence of its eigenvalues and
by uj some associated orthonormal basis of real-valued
eigenfunctions. The groundstate u1 can be chosen to be strictly
positive in Ω, but the other eigenfunctions uk must have zerosets.
For any real-valued u ∈ C 0

0 (Ω), we define the zero set as

N(u) = {x ∈ Ω
∣∣ u(x) = 0} (1)

and call the components of Ω \ N(u) the nodal domains of u. The
number of nodal domains of u is called µ(u). These µ(u) nodal
domains define a k-partition of Ω, with k = µ(u).



We recall that the Courant nodal theorem says that, for k ≥ 1, and
if λk denotes the k-th eigenvalue and E (λk) the eigenspace of
H(Ω) associated with λk , then, for all real-valued
u ∈ E (λk) \ {0} , µ(u) ≤ k .

In dimension 1 the Sturm-Liouville theory says that we have always
equality (for Dirichlet in a bounded interval) in the previous
theorem (this is what we will call later a Courant-sharp situation).

A theorem due to Pleijel [16] in 1956 says that this cannot be true
when the dimension (here we consider the 2D-case) is larger than
one.



Minimal spectral partitions
We now introduce for k ∈ N (k ≥ 1), the notion of k-partition.
We will call k-partition of Ω a family D = {Di}ki=1 of mutually
disjoint sets in Ω. We call it open if the Di are open sets of Ω,
connected if the Di are connected. We denote by Ok(Ω) the set
of open connected partitions of Ω. A spectral minimal partition
sequence is defined by

Definition

For any integer k ≥ 1, and for D in Ok(Ω), we set

Λ(D) = max
i
λ(Di ). (2)

Lk(Ω) = inf
D∈Ok

Λ(D). (3)

and call D ∈ Ok a minimal k-partition if Lk = Λ(D).



More generally we can define, for p ∈ [1,+∞), Λp(D) and Lk,p by

replacing in (2) maxi λ(Di ) by
(∑

λ(Di )
p

k

) 1
p

:

Lk,p(Ω) = inf
D∈Ok

Λp(D). (4)

Note we can minimize over non necessarily connected partitions
and get the connectedness of the minimal partitions as a property
[14].

If k = 2, it is rather well known that L2 = λ2 and that the
associated minimal 2-partition is a nodal partition, i.e. a partition
whose elements are the nodal domains of some eigenfunction
corresponding to λ2.

A partition D = {Di}ki=1 of Ω in Ok is called strong if

Int (∪iDi ) \ ∂Ω = Ω . (5)



Attached to a strong partition, we associate a closed set in Ω,
which is called the boundary set of the partition :

N(D) = ∪i (∂Di ∩ Ω) . (6)

N(D) plays the role of the nodal set (in the case of a nodal
partition).



This suggests the following definition:

Definition

We call a partition D regular if its associated boundary set N(D),
has the following properties :
(i) Except for finitely many distinct xi ∈ Ω∩N in the neighborhood
of which N is the union of νi = ν(xi ) smooth curves (νi ≥ 3) with
one end at xi , N is locally diffeomorphic to a regular curve.
(ii) ∂Ω ∩ N consists of a (possibly empty) finite set of points zi .
Moreover N is near zi the union of ρi distinct smooth half-curves
which hit zi .
(iii) N has the equal angle meeting property

The xi are called the critical points and define the set X (N).
Similarly we denote by Y (N) the set of the boundary points zi . By
equal angle meeting property, we mean that the half curves
meet with equal angle at each critical point of N and also at the
boundary together with the tangent to the boundary.



We say that Di ,Dj are neighbors or Di ∼ Dj , if
Dij := Int (Di ∪ Dj) \ ∂Ω is connected. We associate with each D
a graph G (D) by associating with each Di a vertex and to each
pair Di ∼ Dj an edge. We will say that the graph is bipartite if it
can be colored by two colors (two neighbors having two different
colors). We recall that the graph associated with a collection of
nodal domains of an eigenfunction is always bipartite.



Pleijel’s theorem revisited

Pleijel’s theorem as stated in the introduction is the consequence
of a more precise theorem and this is the aim of this section to
present a formalized proof of the historical statement permitting to
understand recent improvements and formulated conjectures.
Generally, the classical proof is going through the proposition

Proposition 1

lim sup
n→+∞

µ(φn)

n
≤ 4π

A(Ω) lim infk→+∞
Lk (Ω)

k

, (7)

where µ(φn) is the cardinal of the nodal components of Ω \ N(φn)

and then to establishing a lower bound for A(Ω) lim infk→+∞
Lk (Ω)

k .



Behind this statement, we have actually the proposition:

Proposition 2

lim sup
n→+∞

µ(φn)

n
≤ 4π

A(Ω) lim infk→+∞
Lk (Ω)

k

. (8)

Here Lk(Ω) is the smallest eigenvalue (if any) such that there
exists in the corresponding eigenspace an eigenfunction with k
nodal domains. Otherwise, we take Lk(Ω) = +∞.



The proof of Proposition 2 is immediate observing first that for
any subsequence n`, we have

λn`
n`
≥

Lµ(φn` )

n`
=

Lµ(φn` )

µ(φn`)
· µ(φn`)

n`
.

If we choose the subsequence n` such that

lim
`→+∞

µ(φn`)

n`
= lim sup

n→+∞

µ(φn)

n
,

we observe that by Weyl’s formula that

lim
`→+∞

λn`
n`

= 4π/A(Ω) ,

and

lim inf
`→+∞

Lµ(φn` )

µ(φn`)
≥ lim inf

k→+∞

Lk
k
.

�



Proposition 1 is deduced from Proposition 2 by observing that it
was established in [14] that

λk(Ω) ≤ Lk(Ω) ≤ Lk(Ω) . (9)

Moreover, and this is a deep theorem, the equality Lk(Ω) = Lk(Ω)
implies Lk(Ω) = Lk(Ω) = λk(Ω).
We say in this case that we are in a Courant-sharp situation.



Towards improvements ??

If we think that only nodal partitions are involved in Pleijel’s
Theorem, it could be natural to introduce L]k(Ω) where we take
the infimum over a smaller non-empty class of k-partitions
D = (D1, · · · ,Dk). We call O]k this undefined class, which should
contain all the nodal k-partitions, if any.

Definition

L]k(Ω) := inf
D∈O]

k

maxλ(Di ) . (10)

Of course we have always

λk(Ω) ≤ Lk(Ω) ≤ L]k(Ω) ≤ Lk(Ω) . (11)



Hence we have:

Proposition

lim sup
n→+∞

µ(φn)

n
≤ 4π

A(Ω) lim infk→+∞
L]
k (Ω)
k

, (12)

Hence this is the right hand side of (12) which seems to be
interesting to analyze.
It is clear from (11) that all these upper bounds are less than one,
which corresponds to a weak asymptotic version of Courant’s
theorem.



Classical Pleijel’s Theorem (based on the Faber-Krahn inequality)
is the immediate consequence of the first proposition and of the
lower bound

A(Ω) lim inf
k→+∞

Lk(Ω)

k
≥ λ(Disk1) . (13)

(Note that the proof of Pleijel uses only a weak form of this
inequality, where Lk is replaced by Lk .)
This leads to

Pleijel’s Theorem

A(Ω) lim sup
n→+∞

µ(φn)

n
≤ νPl , (14)

with

νPl =
4π

λ(Disk1)
∼ 0.691 .



Remark

Note that the same result is true in the Neumann case (Polterovich
[17]) under some analyticity assumption on the boundary.

Remark

Note that we have the better:

A(Ω) lim inf
k→+∞

Lk,1(Ω)

k
≥ λ(Disk1) .

But this improvement has no incidence on Pleijel’s Theorem. In
particular, note that we do not have necessarily λk ≤ Lk,1 (take
k = 2 and use the criterion of Helffer-Hoffmann-Ostenhof [13]).

It is rather easy to prove that:

A(Ω) lim inf
k→+∞

Lk(Ω)

k
≤ A(Ω) lim sup

k→+∞

Lk(Ω)

k
≤ λ(Hexa1) . (15)



A now well known conjecture (hexagonal conjecture) (Van den
Berg, Caffarelli-Lin [7]) was discussed in
Helffer-Hoffmann-Ostenhof-Terracini [14], Bonnaillie-Helffer-Vial
[6], Bourdin-Bucur-Oudet [4] and reads as follows:

Hexagonal conjecture

A(Ω) lim inf
k→+∞

Lk(Ω)

k
= A(Ω) lim sup

k→+∞

Lk(Ω)

k
= λ(Hexa1) (16)



This was computed for the torus by Bourdin-Bucur-Oudet [4] (for
the sum), as the picture below shows.



This would lead to the conjecture that in Pleijel’s estimate we have
actually:

Hexagonal conjecture for Pleijel)

A(Ω) lim sup
n→+∞

µ(φn)

n
≤ νHex , (17)

with

νHex =
4π

λ(Hexa1)
∼ 0.677 .

We note indeed that

νHex
νPl

=
λ(Disk1)

λ(Hexa1)
∼ 0.977 .



If we think that we have lost some information by not using the
nodal character of the partition, one can think that the hexagonal
tiling should be replaced by a square tiling, the proof going
through the research of a suitable O]k as mentioned before. This
leads to the stronger conjecture that

Square conjecture for Pleijel (Polterovich)

lim sup
n→+∞

µ(φn)

n
≤ 4π

λ(Sq1)
=

2

π
. (18)

This conjecture is due to Iosif Polterovich [17] on the basis of
computations of Blum-Gutzman-Smilansky [3]. Due to the
computations on the square ([16],[18]), this would be the optimal
result.



Improving the use of Faber-Krahn by J. Bourgain and S.
Steinerberger

The goal of Bourgain and Steinerberger was to improve the lower
bound of lim infk→+∞

Lk (Ω)
k . Bourgain gives an estimate of his

improvement on the size of 10−9 and Steinerberger does not give
any estimate.
In any case, it is clear that

νHex ≤ νBo < νPl ,

and
νHex ≤ νSt < νPl ,

where νBo and νSt are the constants of Bourgain [5] and
Steinerberger [19].



Bourgain’s improvement

One ingredient is a refinement of the Faber-Krahn inequality:

Lemma (Hansen-Nadirashvili)

For a nonempty simply connected bounded domain Ω ⊂ R2, we
have

A(Ω)λ(Ω) ≥
(

1 +
1

250
(1− ri (Ω)

r0(Ω)
)2

)
λ(Disk1) ,

with r0(Ω) the radius of the disk of same area as Ω and ri (Ω) the
inradius of Ω.



Actually, one needs a modified version for treating non simply
connected domains. This is effectively unknown if we are in a non
simply connected situation.
The other very tricky idea is to use quantitatively that all the open
sets of the partition cannot be very close to disks (packing density)
(see Blind [2]).



The inequality obtained by Bourgain is the following (see (26) in
his note, first version) as k → +∞, is that for any δ ∈ (0, δ0)

Lk(Ω)

k
≥ (1 + o(1))λ(Disk1)A(Ω)−1 × b(δ) (19)

where

b(δ) := (1 + 250δ−3)(
π√
12

(1− δ)−2 + 250δ−3)−1 .

and δ0 ∈ (0, 1) is computed with the help of the packing
condition. This condition reads

δ3
0

250
= (

1− δ0

p
)2 − 1 ,

where p is a packing constant determined by Blind (p ∼ 0.743).



But for δ > 0 small enough, we get b(δ) > 1 (as a consequence of
π√
12
< 1), hence Bourgain has improved what was obtained via

Faber-Krahn.
As also observed by Steinerberger, one gets

λ(Hexa1)

λ(Disk1)
≥ sup

δ∈(0,δ0)
b(δ) > 1 ,

which gives a limit for any improvement of the estimate.
In any case, we have

lim inf
k→+∞

Lk(Ω)

k
≥ λ(Disk1)A(Ω)−1 × sup

δ∈(0,δ0)
b(δ) (20)



The uncertainty principle by S. Steinerberger
To explain this principle, we associate to a partition Ωi of Ω

D(Ωi ) = 1−
minj A(Ωj)

A(Ωi )
,

and, with the notation Ω4B = (Ω \ B) ∪ (B \ Ω),

A(Ω) = inf
B

A(Ω4B)

A(Ω)
,

where the infimum is over the balls of same area.
Steinerberger’s uncertainty principle reads:

Steinerberger’s principle

There exists a universal constant c > 0, and N0(Ω) such that, if
the cardinal N of the partition ≥ N0(Ω), then∑

i

(D(Ωi ) +A(Ωi ))
A(Ωi )

A(Ω)
≥ c . (21)



Application to equipartitions of energy λ

Let us show how we recover a lower bound for
lim infk→+∞ (Lk(Ω)/k). We consider a k-equipartition of energy
λ. The uncertainty principle says that its is enough to consider two
cases.
We first assume that ∑

i

D(Ωi )
A(Ωi )

A(Ω)
≥ c

2
.

We can rewrite this inequality in the form:

k inf
j
A(Ωj) ≤ (1− c

2
)A(Ω) .

After implementation of Faber-Krahn, we obtain

k

λ
λ(Disk1) ≤ (1− c

2
)A(Ω) . (22)



We now assume that ∑
i

A(Ωi )
A(Ωi )

A(Ω)
≥ c

2
.

This assumption implies

A
(
∪{A(Ωi )≥ c

6
}Ωi

)
≥ c

6
A(Ω) . (23)

The role of A can be understood in the following inequality due to
Brasco-De Philippis-Velichkov:
∃C > 0 such that ∀ω

A(ω)λ(ω)− λ(Disk1) ≥ CA(ω)2λ(Disk1) . (24)



We apply this inequality with ω = Ωi .
This reads

A(Ωi )λ− λ(Disk1) ≥ CA(Ωi )
2λ(Disk1) .

Hence we get for any i such that A(Ωi ) ≥ c
6 , to

λ(Disk1)(1 +
Cc2

36
) ≤ A(Ωi )λ . (25)

which is an improvement of Faber-Krahn for these Ωi .
Summing over i and using the information (23) leads to

k

λ
λ(Disk1) ≤ (1 +

Cc2

36
)−1 A(Ω)

(
1 + (1− c

6
)
Cc2

36

)
and finally to

k

λ
λ(Disk1) ≤

(
1− Cc3

216 + 6Cc2

)
A(Ω) (26)



Putting (22) and (25) together, we obtain that for k large enough
the k-partition satisfies

k

λ
λ(Disk1) ≤ max

(
(1− c

2
), (1− Cc3

216 + 6Cc2
)

)
A(Ω) . (27)

If we apply this to minimal partitions (λ = Lk(Ω)), this reads

λ(Disk1) ≤ max

(
(1− c

2
), (1− Cc3

216 + 6Cc2
)

)
A(Ω) lim inf

k→+∞

Lk(Ω)

k
.

(28)
One recovers Bourgain’s improvement (20) with a different
constant.

Remark

Steinerberger obtains also a similar lower bound for

lim infk→+∞
Lk,1(Ω)

k using a convexity argument.



Considerations around rectangles

Take the square Q = (0, 1)2. The eigenvalues are given by
λm,n = π2(m2 + n2). The following conjecture seems to be natural:
Let λm,n = π2(m2 + n2) and suppose that λm,n has multiplicity
m(m, n). Let µmax(u) be the maximum of the number of nodal
domains of the eigenfunctions in the eigenspace associated with
λm,n.

µmax = sup
j

(mjnj) ,

where the sup is computed over the pairs (mj , nj) such that

π2(m2
j + n2

j ) = λm,n .



The problem is difficult because one has to consider, in the case of
degenerate eigenvalues, linear combinations of the canonical
eigenfunctions associated with the λm,n .
Actually, as stated above, this conjecture is wrong. According to
Pleijel, this is wrong for the fifth eigenvalue on the square.
The eigenfunction (x , y) 7→ sin x sin y sin(x + y) sin(x − y) =
1
4 (sin x sin 3y − sin y sin 3x) = ψ1,3(x , y) has four nodal domains,
and the above quantity equals 3. More generally one can consider
ψ1,3(2kx , 2ky) to get an eigenfunction associated with the
eigenvalue 10 · 4k with 4k nodal domains. The corresponding µmax

for this subsequence is asymptotic to 2
5π . This does not infirm the

Polterovich’s conjecture.



The counterexample of Pleijel

Figure: Nodal sets of cos θ sin x sin 3y + sin θ sin y sin 3x for various θ’s.

Thanks to C. Lena for transmitting the pictures.



We continue by collecting some observations.

Proposition

Let R(a, b) = (0, aπ)× (0, bπ). For all a, b > 0 with a2

b2 ∈ R \Q
the Pleijel constant

Pl(R(a, b)) =
2

π
. (29)

Note that this has been already mentioned in [3] and in [17]. The
case when b2/a2 ∈ Q depends on an alternative to the conjecture
discussed before.



Proof

Since the Pleijel constant is scale invariant, it suffices to consider
R(π, bπ) for irrational b2. The eigenvalues are given by

λm,n = m2 + n2/b2 , (30)

and the eigenfunctions by um,n(x , y) = sinmx sin(ny/b). Since b is
irrational the eigenvalues are simple and

µ(um,n) = mn. (31)



Weyl asymptotics tells us that with λ = λm,n:

k(m, n) := #{(m̃, ñ) : λm̃,ñ(b) < λ} =
bπ

4
(m2 + n2/b2) + o(λ) .

(32)
We consider

P(m, n; b) =
mn

k(m, n)
=

4mn

π(m2b + n2/b)
≤ 2

π
(33)

Next we take a sequence b = limk→∞
pk
qk

with pk
qk

+ εk = b, εk > 0.
We pick n = mpk/qq and estimate with aj = pj/qj

4mn

π(m2b + n2/b)
=

2

π

2aj
aj + εj + a2

j (aj + εj)−1
. (34)



A simple calculation leads to

Pl(j) :=
2

π

2

1 + εj/aj + 1/(1 + εj/aj)
. (35)

We have cj := εj/aj → 0 and we can write for some finite constant
C

|Pl(j)− 2/π| < Cc2
j . (36)

This proves the proposition.



For varying θ, the nodal sets on ]0, π[2 of
u(x , y) = cos(θ) sin(3x) sin(5y) + sin(θ) sin(5x) sin(3y) .

Thanks to Corentin Lena for transmitting these pictures.



Bipartite partitions
We now start the discussion on possible choices of the class O]k .
If we think that only nodal partitions are involved in Pleijel’s
theorem, it could be natural to consider as class O]k the class Obp

k
of the bipartite strong regular connected k-partitions
D = (D1, · · · ,Dk) (we call this class). Note that there is some
arbitrariness in the definition. One would have perhaps preferred to
relax the assumptions on the partition like for Lk but ”strong” is
necessary to define a bipartite partition. Note that νi should be
even in the definition of ”regular” and hence

νi ≥ 4 .

Definition

Lbp
k (Ω) := inf

D∈Obp
k

maxλ(Di ) . (37)



By definition, we know that Lbp
k (Ω) ≤ Lk(Ω), if the inequality is

strict then it cannot by definition come from an eigenfunction. If
we want this notion to be helpful for improving Pleijel’s constant it
is necessary that

lim inf
k→+∞

Lbp
k (Ω)

k
> lim inf

k→+∞

Lk(Ω)

k
.

Unfortunately one can show that

Lbp
k (Ω) = Lk(Ω)



Let us explain why on a simple example. We consider the Mercedes
Star (MS). One easily sees that we have a bipartite 3-partition
whose energy can be arbitrarily close to the energy of MS.

Figure: Scheme of the construction for the Mercedes Star

One can extend the previous construction in order to have the
result in full generality. Hence this class do not lead to any
improvement of the hexagonal conjecture for Pleijel’s Theorem.



Almost nodal partitions

Here is a new try for a definition of O] in order to have a flexible
notion of partition which is close to a nodal partition. We will say
that a k-partition D of Ω of energy Λ(D) is almost nodal with
defect j , if there is a connected open set Ω′ ⊂ Ω and a
(k − j)-subpartition D′ of D such that D′ is a nodal partition of Ω′

of energy Λ(D). Of course a nodal partition is almost nodal with
defect j for any j ≤ k − 1.
The first useful observation is
If Ω is simply connected, there exists always an almost nodal
k-partition with defect 1.
The proof is obtained using a sufficiently thin ”square”
(k − 1)-partition in Ω and completing by the complementary in Ω
of the closure of the union of the preceding squares.



We also note that an almost nodal partition in Ω is almost nodal in
Ω̃ if Ω ⊂ Ω̃. We can now introduce

Definition

Denoting by Oanod ,j
k the set of the almost nodal partition with

defect j , we introduce

Lanod ,j
k (Ω) = inf

D∈Oanod,j
k

Λ(D) . (38)

Assuming Ω simply connected it is enough to take j = 1 and we
write simply Lanod

k (Ω).



Of course, we have

Lk(Ω) ≤ Lanod
k (Ω) ≤ Lk(Ω) . (39)

The next point is to observe, by playing with square tilings, that

A(Ω) lim sup
k→+∞

Lanod
k (Ω)

k
≤ λ(Sq1) . (40)

We can then continue in the same way as for Lbp
k (Ω), hoping this

time that

A(Ω) lim inf
k→+∞

Lanod
k (Ω)

k
= λ(Sq1) .
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