
Numer. Math. (2006) 102: 649–679
DOI 10.1007/s00211-005-0666-6 Numerische

Mathematik

B. Maury

A time-stepping scheme for inelastic collisions
Numerical handling of the nonoverlapping constraint

Received: 25 May 2004 / Revised: 20 October 2005 / Pubished online: 17 January 2006
© Springer-Verlag 2006

Abstract We propose here a numerical scheme to compute the motion of rigid
bodies with a non-elastic impact law. The method is based on a global compu-
tation of the reaction forces between bodies. Those forces, whose direction is
known since we neglect friction effects, are identified at the discrete level with a
scalar which plays the role of a Kuhn-Tucker multiplier associated to a first-order
approximation of the non-overlapping constraint, expressed in terms of velocities.
Since our original motivation is the handling of the non-overlapping constraint in
fluid-particle direct simulations, we paid a special attention to stability and robust-
ness. The scheme is proved to be stable and robust. As regards its asymptotic
behaviour, a convergence result is established in the case of a single contact. Some
numerical tests are presented to illustrate the properties of the algorithm. Firstly, we
investigate its asymptotic behaviour in a situation of non-uniqueness, for a single
particle. The two other sets of results show the good behaviour of the scheme for
large time steps.

1 Introduction

The present work was initially motivated by the necessity to handle particle col-
lisions in the direct simulation of fluid-rigid particle mixtures. By direct simula-
tion we mean that each particle is treated individually, and the Navier-Stokes (or
Stokes) equations are solved in the moving domain occupied by the fluid. Many
methods have been proposed recently to compute such flows. Some are based on
an embedding of the solid phase in a global domain which is covered by a cartesian
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mesh (see Glowinski [9, Chapter 8] or Bertoluzza et al. [2]); the other class of meth-
ods consists in using a conforming mesh of the fluid domain (see Hu [12], Johnson
et al. [13], Maury [16]).All these approaches face the problem of body overlapping,
which makes it difficult to guarantee the robustness of the computation. Different
strategies have been used. In Hu [12], the mesh is refined in the neighborhood of the
interparticle gap, so that lubrication forces can be approximated with accuracy and
consequently can be expected to prevent overlapping. Indeed, as the interparticle
force between two smooth bodies separated by a viscous fluid behaves like −ε̇/ε
(see Kim [14]), where ε is the distance, there cannot be any contact in finite time
for reasonably regular external forces. Another commonly used strategy consists
in adding short range repulsive forces between particles, which tend to prevent
particles to overlap (see Glowinski et al. [10]). Those methods have proved to
behave quite satisfactorily in many situations, but they necessitate a fine tuning
of some numerical parameters, and the actual minimal distance between bodies
cannot be controlled a priori. In [16], we introduced a heuristic method to control
this minimal distance, by running at each time step a minimization procedure on
a global functional of the particle positions, such that the minimal distance corre-
sponding to the resulting configuration is greater than a prescribed “safety distance”
ε>0. This method, although robust in practice, even in the case of multiple con-
tacts, is not consistent from the energy point of view, and its long-term effects on
the computed flow are difficult to estimate. The approach we proposed in [15] is
based on a first-order approximation of the lubrication forces exerted by the fluid
in the interparticle gap. It is more respectful of the underlying physics, but the
singular character of those forces (proportional to the reciprocal of the distance)
introduces new constraints on the time step, and we must add that this approach,
despite its very respect of local phenomena, does not seem to improve the overall
modeling of fluid-particle mixtures significantly. It made us look for more basic
tools, yet respectful of some basic physical properties like momentum balance and
decreasing character of energy.

In the present work, we propose a new algorithm to handle the nonoverlapping
constraint, which fits into the general class of Contact Dynamics methods, intro-
duced by Moreau [19]. The action of the surrounding fluid shall be simply described
by a given external force field, so that from now on we consider “dry” systems of
rigid bodies. Given the nature of the interaction between particles moving in a
viscous fluid, which is dissipative, we chose to consider here purely inelastic colli-
sions. The evolution problem on which our approach is based fits into the general
framework of differential measure inclusions (see Schatzman [20], or Moreau [19]).
From the theoretical point of view, the critical point is uniqueness, which necessi-
tates strong regularity assumptions on the data: analyticity is required. Uniqueness
is lost as soon as the external force is no longer analytic (see in Schatzman [20]
or Ballard [1] counter–examples to uniqueness with a C∞ force). This question
of uniqueness in regard with the numerical algorithm will be addressed at the end
of the paper. We refer to Stewart [23] for a general presentation of mathematical
issues raised by those models, and a wide presentation of numerical methods. The
most general result concerning convergence analysis of a numerical scheme for
granular flows can be found in [22], where Coulomb friction is taken into account.

The situation we consider here is less general than the aforementioned one, but
the scheme we propose presents the following features:
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1. Collisions are not treated as events1. All contacts which are likely to occur
during a time step are indeed handled globally, without any prior prediction of
actual violations of the non-overlapping constraint, and reactions are computed
as a field of Kuhn-Tucker multipliers associated to first-order approximations
of those constraints, expressed in terms of velocities.

2. As a consequence, this method can be proved to be unconditionally stable. For
any choice of the time step, the kinetic energy of the approximate solution dis-
sipates (when external forces are reduced to 0). Since there is no parameter to
tune up (except for the stopping criterium associated to the Uzawa algorithm),
this algorithm can be applied to very different situations with no modification.

3. Provided the quadratic minimization step is solved exactly, the scheme pro-
duces feasible configurations only (in the case of spherical bodies).

4. Non-smooth forcing terms can be taken into account, as soon as their mean val-
ues on subintervals can be computed. This makes it possible to handle multiple
solutions numerically (see section 6.1).

The paper is organized as follows. In section 2 we present the rigid-body prob-
lem, and we introduce the natural functional spaces for positions, velocities and
reaction forces. We then present the time-stepping scheme (section 3). In the next
section we prove some general properties of the scheme, all of which are valid for
any time step. Section 5 is devoted to the asymptotic behaviour of the scheme: as
the time step h goes to 0, a subsequence of the computed solutions is shown to
converge in some sense to a solution of the original problem, in the case of a sin-
gle contact. Some numerical tests are finally presented, to illustrate the behaviour
of the algorithm in different contexts: non-uniqueness, sticky particle model, and
many-body motion (section 6).

2 Model problem

2.1 Evolution model

We consider the mechanical system of N rigid spheres (or discs, or line segments)
in R

d (with d = 3, 2, or 1) of radii (ri)1≤i≤N and masses (mi)1≤i≤N . We introduce
the configuration space,

Q = {q = (q1,q2, . . . ,qN) ∈ R
dN }

and the associated feasible set

Q0 = {q ∈ Q,Dij (q) ≥ 0 ∀i, j , 1 ≤ i < j ≤ N}
whereDij (q) = |qi − qj | − (ri + rj ) is the signed distance between spheres i and
j (see Figure 2.1). Note that Dij is negative as soon as spheres i and j overlap.

As we do not consider rotations here, our configuration space is endowed with a
natural Euclidean structure, so that the tangent space at any q ∈ Q can be identified
with Q itself. We shall nevertheless denote by TQ = R

dN this tangent space in
1 Borrowing the terminology of numerical methods to handle discontinuity (in space) of solu-

tions to hyperbolic PDE’s, one may say that collisions (i.e. discontinuities in time for the veloc-
ities) are captured, whereas in most other methods, they are tracked.
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Fig. 1 Notations

order to distinguish velocities from positions. We define Gij =∇Dij as the gradient
of the distance between the two spheres i and j :

Gij = (· · · , 0,−eij , 0, . . . , 0, eij , 0, · · · ) , eij = qj − qi
∣
∣qj − qi

∣
∣
, (1)

and Cq as the set of feasible directions at q ∈ Q0,

Cq = {

v ∈ TQ , Gij · v ≥ 0 as soon as Dij (q) = 0
}

,

and the outward normal cone to Q0 at q as its polar cone:

Nq = C◦
q = {h ∈ TQ , h · v ≤ 0 ∀v ∈ Cq}

=
{

−
∑

i<j

µijGij (q),

µij = 0 if Dij (q) > 0, µij ∈ R
+ if Dij (q) = 0

}

.

Let u = (q̇1, q̇2, . . . , q̇N) ∈ TQ denote the generalized velocity vector. We
finally denote by f the force field acting on the spheres, and by M the mass matrix.
The problem we are interested in may be phrased formally:

Mq̈ + Nq � f (2)

u+ = PCq u−, (3)

where u− (resp. u+) is the left (resp. right) limit of the velocity vector at time t ,
and PCq is the Euclidean projection onto the closed convex cone Cq.

This model will be given a proper mathematical framework in the next section.
As regards its mechanical sense, equation (2), which can be read formally

∃h ∈ −Nq such that Mq̈ = f + h, (4)
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expresses the fact that overlapping is prevented by repulsive forces acting on each
sphere along the normal vector at the contact point. When there is no contact, Nq
reduces down to {0}, so that (2) reads as the ordinary differential equation Mq̈ = f .
Equation (3) provides the collision model. This is a particular case of a more general
model (which includes possibly an elastic behaviour)

u+ = u− − (1 + e)PNq u−, (5)

where e is a restitution coefficient, set to 0 in the case of a non-elastic impact law.
Indeed, as Nq and Cq are mutually polar, it holds I − PNq = PCq , where I is the
identity. (see Moreau [18]). Note that, in the non-elastic model we consider, some
energy is lost during each collision. This kinetic energy is actually transformed into
heat within the bodies. The reader may refer to Frémond [8], where this increase
in temperature is explicitly integrated into a general thermomechanical model for
collisions between rigid bodies.

Remark 1 For 1D problems (like the one which is presented in Section 6.2), it is
in fact more natural to define Q0 as a connected component of the set of all con-
figurations q with no overlapping. Indeed, the evolution problem does not allow
q to pass from a connected component to another (the bodies cannot leap across
each other). With this convention, the feasible set

Q0 = {q = (q1, . . . , qN) ∈ R
N , qi+1 − qi ≥ ri+1 + ri}

is closed and convex, and in this particular situation, Nq identifies with the sub-
differential of the indicatrix of Q0:

Nq = ∂IQ0(q) with IQ0(q) =
∣
∣
∣
∣

0 if q ∈ Q0
+∞ if q /∈ Q0

and hence q 
−→ Nq is a maximal monotone operator. In general Q0 is not con-
vex, but it is not far from being convex: it can be proved easily to be uniformly
η-prox-regular in the sense defined in Colombo [7], as soon as 1/η < 4 min(ri).

2.2 Functional framework

We consider the time interval I = (0, T ) and we introduce the following functional
spaces:

W 1,1 = set of all R
dN -valued functions which are absolutely continuous over

the interval I ;
BV = set of all dN vector-valued functions having bounded variation over I :

BV is the set of all functions t 
→ u(t) ∈ TQ, such that each component u of u
verifies

sup
S∈�

NS∑

n=1

|u(tn)− u(tn−1)| < ∞,

where S = (t0, t1, . . . , tNS ) runs over the set � of increasing subdivisions of the
time interval I ;
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M1 = set ofN(N−1)/2 vector2-valued bounded measures on I : it contains all
µ = (µij )1≤i<j≤N such thatµij is a continuous linear functional over the setC0(I )

of continuous functions over I , vanishing at 0 and T . The set of component-wise
positive measures will be denoted by

M1
+ = {µ = (µij )1≤i<j≤N ∈ M1,

〈

µij , ϕ
〉 ≥ 0 ∀ϕ ∈ C0(I ), ϕ ≥ 0}.

As regards the forcing term, we shall consider functions of t and q, with
Carathéodory type regularity conditions (see Coddington et al. [6]) : let the func-
tion f be defined in Q0 × I , measurable in t for fixed q and continuous in q for
fixed t , such that

∃F ∈ L1(I ) s.t. |f(q, t)| ≤ F(t) ∀(q, t) ∈ Q0 × I, (6)

and f is uniformly Lipschitz with respect to the space variable in the feasible set:

∃k , ∣
∣f(q′, t)− f(q, t)

∣
∣ ≤ k

∣
∣q′ − q

∣
∣ a.e. in I ∀q, q′ ∈ Q0. (7)

In order to avoid a special treatment of the initial time, we shall pick an initial
position q0 in the interior of Q0, so that Nq = {0}. It follows that the velocity is
continuous at 0+, and u(0) is defined without ambiguity.

We may now state the problem: Given a time interval I=(0, T ), a force f (which
meets regularity assumptions (6)–(7)), and initial conditions (q0,u0) ∈ Q0 × TQ,
with Dij (q0) > 0 for all i = j ,

Find (q,u,µ) ∈ W 1,1 × BV × M1
+ such that

u(0) = u0, (8)

q(t) = q0 +
∫ t

0
u(s) ds ∈ Q0 ∀ t ∈ I (9)

Mu̇ = f(q, t)+
∑

i<j

µijGij (q(t)), (10)

∀ i < j supp(µij ) ⊂ {t, Dij (q(t)) = 0}, (11)

u+(t) = u−(t)− PNq u−(t) ∀t ∈ I, (12)

where PNq is the euclidean projection onto the closed convex cone Nq. Equa-
tion (10) is to be understood in the sense of distributions (it identifies two 0-th
order distributions).

2 N(N − 1)/2 is the number of possible contacts.
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Remark 2 Note that f(·, t) is required to be in W 1,∞(Q0) and not necessarily in
W 1,∞(Q). This makes it possible to apply this approach to model interaction forces
like

f = −K∇V (|q2 − q1|),
where V : (0,+∞) → R

+ is smooth, decreasing and convex, possibly singular
at 0 : since the distance between any q ∈ Q0 and 0 is kept apart from 0 (it is always
greater than twice the smallest radius), such a function is indeed lipschitzian. For
instance an electrostatic potential, V (d) = K/d , meets the requirements.

Remark 3 As q has the W 1,1 regularity in time, we can consider that q is continu-
ous. Similarly, any u ∈ BV (or uh in the next section), shall be identified with the
right-continuous element of the class. With this convention, all pointwise identities
or inequalities will be meant in the classical sense (i.e. everywhere).

Remark 4 Obstacles like walls or fixed bodies may be taken into account. For the
sake of simplicity, we shall not introduce here extra notations for that purpose, but
the set of Kuhn-Tucker multipliers µ could be extended to include reaction forces
against obstacles.

3 Numerical scheme

3.1 Approximation spaces

Let h = T/Nh be the time step, and let P0
h denote the set of all those func-

tions which are piecewise constant over I according to the uniform subdivision
(0, h, 2h, . . . , (Nh − 1)h, T ). Similarly, P1

h denotes the set of continuous, piece-
wise affine functions according to the same subdivision. We introduce the following
approximation spaces for trajectories, velocities, and reaction forces, respectively:

Xh = {qh = (qi ) : I → Q , qi ∈ (P1
h)
d , 1 ≤ i ≤ N},

Vh = {uh = (ui ) : I → TQ , ui ∈ (P0
h)
d , 1 ≤ i ≤ N},

Rh = {µh = (µij ) : I → R
r , µij ∈ P0

h , 1 ≤ i < j ≤ N},
where r = N(N − 1)/2 is the number of constraints. For any uh ∈ Vh (resp.
µh ∈ Rh) we shall denote by unh (resp. µnh) its constant value in the subinterval
[(n − 1)h, nh). Similarly, qnh denotes qh(nh), for any qh ∈ Xh. As for external
forces, we shall use the following mean value approximation fh in Vh of f(q, ·)
defined for any q ∈ Q by its Nh values

t ∈ [(n− 1)h, nh) 
−→ fnh (q) = 1

h

∫ nh

(n−1)h
f(q, s) ds.

3.2 Time-stepping scheme

The sequence of approximated fields (qh,uh,µh) ∈ Xh×Vh×Rh is built according
to the following scheme, to which we shall refer as scheme (S):
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1. Initialization

(q0
h,u0

h) = (q0,u0). (13)

2. Compute un+1
h as the solution to the constrained minimization problem

min
u∈Kh(qnh)

1

2

∣
∣u − unh − hM−1fn+1

h (qnh)
∣
∣
2

M
(14)

with |v|2M = Mv · v, and

Kh(qnh) = {u ∈ TQ,Dij (qnh)+ hGij (qnh) · u ≥ 0}. (15)

The approximate reaction field µn+1
h = (µn+1

ij ) is the dual component of a
solution to the associated saddle-point problem

L(un+1
h ,λ) ≤ L(un+1

h ,µn+1
h ) ≤ L(v,µn+1

h ), (16)

for all λ ∈ R
N(N−1)/2
+ , v ∈ TQ, where L is the Lagrangian

L(v,λ) = 1

2

∣
∣v − unh − hM−1fn+1

h (qnh)
∣
∣
2

M

−
∑

1≤i<j≤N
λij (Dij

(

qnh)+ hGij (qnh) · v
)

. (17)

Note that un+1
h and µn+1

h = (µn+1
ij )1≤i<j≤N are related by

Mun+1
h = Munh + hfn+1

h (qnh)+ h
∑

1≤i<j≤N
µn+1
ij Gij (qnh). (18)

3. Update the positions

qn+1
h = qnh + hun+1

h . (19)

Remark 5 The velocity field un+1
h is uniquely defined (see (14): it minimizes a

strictly convex fonctional over a closed convex set), whereas µn+1
h is not. So in a

strict sense scheme (S) is an algorithm as far as q and u are concerned only.

The following remark explains why the previous scheme can be expected to
approximate the original problem.

Remark 6 Step 2, which is the essential (and time-consuming) part of the scheme,
can be written

Mun+1
h − Munh
h

+ ∂IKh(qnh)
(

un+1
h

) � fn+1
h (qnh) (20)

where ∂IKh(qnh) is the subdifferential of the indicatrix function of Kh(qnh). Now
observe that, for any q ∈ Q0, Nq is the sum of all half lines −R+Gij for indices
verifying Dij (q) = 0, and ∂IKh(q)(u) can be written as the same sum for indices i
and j such that

Dij (q)+ hGij · u = 0.
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As the latter quantity is a Taylor expansion of Dij (q + hu), the set ∂IKh(qnh)(u
n+1
h )

can be seen as a prediction of Nqn+1
h

. Therefore the scheme we propose can be con-
sidered, at least formally, as a semi-implicit time discretization of inclusion (2),

M
du
dt

+ Nq � f .

Note that the collision law (3) does not appear explicitly in the scheme. It is actually
implicitly contained in (20), which selects the velocity corresponding to the colli-
sion law we considered here. For this reason, this scheme is intrinsically dedicated
to inelastic impact models, and we must say that there is no obvious way to adapt
it to other impact laws.

3.3 Saddle-point problem

In the present approach we solve the saddle-point problem (16) by a Uzawa algo-
rithm. Note that this choice is not mandatory, since the way the minimization
procedure is performed is completely independant from the time-stepping scheme
itself. Other algorithms could be implemented to perform this task, and the theo-
retical results presented in the next sections would remain unchanged.

We introduce, for this section only, the vectors and matrices which are involved
in the Uzawa procedure:

u = un+1
h ∈ R

dN , F = Munh + hfn+1
h (qnh) ∈ R

dN ,

µ = (µn+1
ij )1≤i<j≤N ∈ R

r , D = (Dij (qnh))1≤i<j≤N,

C ∈ Mr,dN (R) such that − CTµ = h
∑

1≤i<j≤N
µn+1
ij Gij (qnh),

where r = N(N − 1)/2 is the number of constraints. The problem can be put in
the classical saddle-point form

Minimize J (v) = 1

2
Mv · v − F · v,

over K = {v , Cv ≤ D}.
The Lagrangian of the problem is

L(v,λ) = 1

2
Mv · v − F · v + λ · (Cv − D),

and any saddle-point of L, i.e. any couple (u,µ) verifying

sup
λ∈R

r+
L(u,λ) = L(u,µ) = inf

v∈RdN
L(v,µ),

is such that u minimizes J over K .
The Uzawa algorithm (see Ciarlet [5]) consists in approximating a saddle–point

(u,µ) of L by sequences (uk) and (µk). A step decomposes into two substeps:
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1. Solve the primal problem

Muk+1 = F − CTµk.

2. Update the Kuhn-Tucker multipliers

µk+1 = �+
(

µk + ρ(Cuk+1 − D)
)

,

where �+ is the orthogonal projection onto R
r
+:

µ ∈ R
r 
−→ �+(µ) = (

max(µij , 0)
)

1≤i<j≤N .

Proposition 1 We suppose that

0 < ρ < ρmax = 2α

‖CTC‖2
,

where α is the smallest eigenvalue of the matrix M. Then the sequence (uk) con-
verges to the solution u to the constrained minimization problem. The sequence
(µk) converges toward some µ such that (u,µ) is a saddle-point of L.

Proof The convergence of the primal sequence (uk) is a classical result (see Ciar-
let [5]). As for the Kuhn-Tucker multipliers, the sequence (µk) can be shown to
meet the assumptions of Opial’s Lemma (see Haraux [11]), and thus it converges
(weakly) to some µ in the dual solution set. As the problem is finite-dimensional,
the convergence is strong. ��

We conclude this section by two remarks on the actual implementation of this
algorithm.

Remark 7 It is not necessary to assemble the whole matrixC. At a given time step,
positions and velocities are known, so that most constraints (which correspond
to particles far away from each other) can be eliminated a priori, in the spirit of
what is presented in Sigurgeirsson [21]. For monodisperse situations (all radii are
identical), the total number of potentially active constraints (i.e. number of rows
of C) is κN/2, with κ = 6 in two dimensions (each disc is close to 6 other discs,
at most), and κ = 12 in three dimensions.

Remark 8 A sufficient condition on ρ for the algorithm to converge can be obtained
explicitly in standard situations. We give here a rough lower bound for ρmax in the
monodisperse case. In this situation, the maximal number of likely contacts per
body is smaller than the aforementioned parameter κ . The ellipticity constant α is
simply min(mi)1≤i≤N . Using expression (1) of Gij , we can writeCTC ∈ MdN(R)
by blocks:

CTC = h2 (Cij )1≤i,j≤N,

where Cij is a d × d matrix defined by

Cii =
∑

j∈Ji
eij ⊗ eij , Cij = −eij ⊗ eij for i = j,
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with Ji denoting the set of indices of the spheres which may get into contact with
sphere i. By Gerschgorin circle theorem, the spectral radius ofCTC (i.e. ||CTC||2)
is smaller than the maximum among the 1-norms of its rows. Since

∣
∣eij
∣
∣ = 1, it

follows that ||CTC||2 ≤ 2κh2
√
d, where κ is the upper bound of �(Ji) (cardinal

number of Ji). Finally,

ρmax ≥ min(mi)

2κh2
√
d
,

where κ is 12 for 3D problems, as mentioned in the previous remark. It is to be
noted that this lower bound is independent of N , the number of bodies.

4 Properties of the scheme

This section is devoted to some general properties of the algorithm in the general
case (multiple contacts are allowed). Some of those properties will be used in the
next section to prove convergence in the case of a single contact.

Proposition 2 (Feasibility) If the minimization step is solved exactly, then the
scheme (S) produces feasible configurations only:

qh(t) ∈ Q0 ∀h > 0,∀t.

Proof As Step 2 of Scheme (S) is supposed to be solved exactly, then for any h,
n, i = j ,

un+1
h ∈ Kh(qnh) �⇒ Dij (qnh)+ hGij (qnh) · un+1

h ≥ 0,

therefore

Dij (qn+1
h ) = Dij (qnh + hun+1

h )

≥ Dij (qnh)+ hGij (qnh) · un+1
h (since Dij is convex)

≥ 0. (21)

We established that qnh ∈ Q0 for any h, n. Now for any t = nh+θh, with θ ∈ [0, 1],
one has

Dij (qh(t)) = Dij (qnh + θhun+1
h )

≥ Dij (qnh)+ θhGij (qnh) · un+1
h (since Dij is convex)

= (1 − θ)Dij (qnh)+ θ
(

Dij (qnh)+ hGij (qnh) · un+1
h

)

(22)

≥ 0. (23)

Note that this property is no longer true if the bodies are not spherical, because the
functions q 
−→ Dij (q) are not convex in general. ��
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Proposition 3 (Stability) Let (qh,uh)h>0 be a sequence built according to Scheme
(S), for a given f . Assuming again that the minimization procedure (Step 2) is
performed exactly, then uh verifies the following estimate:

|uh(t)|M ≤ |u0|M + 1√
α

∫ t+h

0
F(s) ds, (24)

where |·|M is the euclidean norm associated to the symmetric positive definite
matrix M:

|u|M =
√

Mu · u,

F is the function which dominates f (see condition (6)), and α is the smallest
eigenvalue of M (α = min(mi)).

Proof Let us first establish that, for every n, i = j ,

µn+1
ij Gij (qnh) · un+1

h ≤ 0. (25)

It is a direct consequence of the fact that a Kuhn-Tucker multiplier may be different
from zero only if the corresponding constraint is active. Indeed, either µn+1

ij = 0

(the constraint is non-active), or, if µn+1
ij > 0, then necessarily (the constraint is

active)

Dij (qnh)+ hGij (qnh) · un+1
h = 0,

so that Gij (qnh) · un+1
h = −Dij (qnh)/h ≤ 0 by Proposition 2.

We perform the scalar product of the relation (18) with the velocity field un+1
h :

∣
∣un+1
h

∣
∣
2

M = Munh · un+1
h + hfn+1

h (qnh) · un+1
h

+h
∑

1≤i<j≤N
µijGij · un+1

h
︸ ︷︷ ︸

≤0

≤ ∣
∣unh
∣
∣
M

∣
∣un+1
h

∣
∣
M + h

∣
∣fn+1
h (qnh) · un+1

h

∣
∣

with

h
∣
∣fn+1
h (qnh) · un+1

h

∣
∣ =

∣
∣
∣
∣

∫ (n+1)h

nh

f(qnh, s) · un+1
h ds

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ (n+1)h

nh

M−1f(qnh, s) · Mun+1
h ds

∣
∣
∣
∣

≤ 1√
α

∣
∣un+1
h

∣
∣
M

∫ (n+1)h

nh

F (s) ds.

We finally get, by summing up over steps 0, 1, . . . , n,

∣
∣un+1
h

∣
∣
M ≤ |u0|M + 1√

α

∫ (n+1)h

0
F(s) ds,

which gives inequality (24). ��
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Remark 9 In the case f ≡ 0, the previous proposition expresses the fact that kinetic
energy decreases at the discrete level, for any time step.

Proposition 4 (Momentum balance) If the forcing term does not depend on q, then
the total momentum balance is exactly verified at the right end of each subinterval
by the approximated solution.

Proof Let us denote by P(u) the total momentum associated to the velocity field
u = (u1, . . . ,uN):

P(u) =
N
∑

i=1

miui ,

and by fi the force acting on sphere i. As the approximated reaction forces verify
the law of action and reaction, it follows from (18) that

P(un+1
h ) = P(unh)+

∫ (n+1)h

nh

f(s) ds,

where f = ∑
fi is the resultant force, so that

lim
t→(n+1)h−

P(uh(t)) = P(un+1
h ) = P(u0)+

∫ (n+1)h

0
f(s) ds,

which is exactly the momentum balance. ��
Remark 10 Note that the previous property remains valid even if the saddle-point
problem is not solved exactly.

Remark 11 As a direct consequence of the previous property, the computed tra-
jectory qh of the center of mass of the system turns out to be an interpolation of
its exact trajectory (which is uniquely defined, even if particle trajectories are not),
which can be expressed with obvious notations

q = q0 + u0 t +
∫ t

0

∫ τ

0
M−1f(s) ds dτ.

We shall complete this section by a proposition concerning the Kuhn-Tucker
multipliers. As un+1

h is uniquely defined, so is the global reaction term

Gqnh (µ
n+1
h ) =

∑

1≤i<j≤N
µn+1
ij Gij (qnh).

As for the vector µn+1
h itself, uniqueness does not hold in general, as shown by the

following example: considering a two-dimensional collection of N identical discs
in a cristal-like configuration such that most discs are in contact with 6 others, the
number of active constraints is asymptotically 3N , whereas the number of degrees
of freedom is 2N . This non-uniqueness of the vector of Kuhn-Tucker multipliers
is known to lead to numerical instabilities in some situations. We show next that
the risk of instabilities is actually limited, because the solution set is bounded, as
will be deduced from the following lemma.
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Lemma 1 We consider q ∈ Q0, µ = (µij ) ∈ R
r
+, and we define

F = Gq(µ) =
∑

1≤i<j≤N
µijGij (q) ∈ R

dN .

The set �F = {

λ = (λij ) ∈ R
r
+ , Gq(λ) = F

}

is bounded.

Proof Let us first establish the uniqueness for the homogeneous problem. For
q ∈ Q0, let λ = (λij ) ∈ R

r
+ be such that

Gq(λ) =
∑

1≤i<j≤N
λijGij (q) = 0.

Let i0 denote the index of an extremal vertex of the convex hull conv{qi , 1 ≤
i ≤ N}. By Hahn-Banach’s theorem, the compact {qi0} and the closed convex set
conv{qi , 1 ≤ i ≤ N, i = i0} can be separated in a strict sense by a plane in R

d .
We denote by x an element of this plane, and by v a normal vector to it. One has

(

qi0 − x
) · v > 0 ,

(

qj − x
) · v < 0 ∀j = 1, . . . , N , j = i0,

so that (qi0 − qj ) · v > 0 for j = i0. Now the balance of contact forces exerted
upon sphere i0 in the direction v reads

∑

j =i0
λji0 eji0(q) · v =

∑

j =i0
λji0

qi0 − qj
∣
∣qi0 − qj

∣
∣
· v

which is positive unless λji0 = 0 for all j = i0. Therefore all multipliers associated
to a contact with sphere i0 are equal to 0, and this approach can be iterated for the
reduced family (qj , j = i0). By downward induction on the number of active
spheres, we establish that �0 is actually reduced to {0}.

As for the non-homogeneous problem,�F is obviously convex. The asymptotic
cone of �F is defined as (see e.g. Bourbaki [3])

CF =
⋂

s>0

s(�F − λ),

where λ is any element of �F (for example µ). It can be checked that (the proof,
which is elementary, can be found in Maury [17]), in a finite-dimensional space, the
asymptotic cone of a convex set is reduced to {0} if and only if the set is bounded.
If �F is not bounded, then its asymptotic cone CF contains a half line R+ξ , with
ξ ∈ R

r
+, which yields µ + R+ξ ⊂ �F, and consequently ξ is a solution to the

homogeneous problem, so that ξ = 0. Therefore, �F is bounded. ��
Proposition 5 At each time step of Scheme (S), the solution set for µn+1

h is
bounded.

Proof This is a direct consequence of lemma 1, with q = qnh and

hF = M(un+1
h − unh)− hfn+1

h (qnh).

��
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5 Convergence theorem (case of a single contact)

We establish in this section a convergence result for the proposed time-stepping
scheme, in the case of a single constraint (two spheres) in R

3. As uniqueness
does not hold, neither does continuity with respect to initial conditions. Thus we
cannot expect any error estimate for the scheme (S). Moreover, the necessity to
extract a subsequence to establish convergence is not purely technical: different
subsequences may actually converge to distinct solutions to the same problem (see
Section 6.1).

In order to alleviate notations, we consider the system of two spheres with unit
mass and same radius r , but this assumption is not needed in the proof. The result
remains valid for the case of two different spheres, or a sphere and an obstacle. The
constrained minimization problem is again supposed to be solved exactly at each
time step.

5.1 Two-body system

We consider here the mechanical sytem of two identical, hard spheres, described
by

Q = {q = (q1,q2) ∈ R
3 × R

3},
and the associated feasible set

Q0 = {q ∈ Q , D(q) ≥ 0},
whereD(q) = |q2−q1|−2r is the distance between the two bodies.As previously,
the tangent space at any q ∈ Q is denoted by TQ = R

6. The convex cone Nq is
now

Nq =
∣
∣
∣
∣
∣

{0} if D(q) > 0,

−R
+G = {−λG , λ ∈ R

+} if D(q) = 0

where G = ∇D is the gradient of D. In order to avoid special care of the initial
instant, we shall pick an initial configuration q0 such that D(q0) > 0.

We may now state the single-contact problem: given a time interval I = (0, T ),
a force field (q, t) 
→ f(q, t) ∈ R

6 verifying the regularity conditions (6)–(7) and
the initial conditions (q0,u0) ∈ Q0 × TQ with D(q0) > 0, find (q,u, µ) ∈
W 1,1 × BV × M1

+ such that

u(0) = u0, (26)

q(t) = q0 + ∫ t

0 u(s) ds ∈ Q0 ∀t ∈ I, (27)

u̇(t) = f(q(t), t)+ µG(q(t)), (28)

supp(µ) ⊂ {t , D(q(t)) = 0}, (29)

u+ = u− − PNq u− ∀t ∈ I, (30)

where (28) is understood in the sense of distributions, and PNq is the Euclidean
projection onto the closed convex cone Nq.
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Let us now rewrite the overall time stepping-scheme in the present case of a
single contact. The discretization spaces for pathlines (Xh), velocities (Vh), and
reactions (Rh), are

Xh = {qh = (qi ) : I → Q , qi ∈ (P1
h)

3 , i = 1, 2},

Vh = {uh = (ui ) : I → TQ , ui ∈ (P0
h)

3 , i = 1, 2},

Rh = {

µh : I → R , µh ∈ P0
h

}

The approximated force field fh(q) ∈ Vh is defined for any q ∈ Q by

t ∈ [(n− 1)h, nh) 
−→ fnh (q) = 1

h

∫ nh

(n−1)h
f(q, s) ds.

For a given h > 0, we shall consider

(qh,uh, µh) ∈ Xh × Vh × Rh

built according to Scheme (S):
1. Initialization

(q0
h,u0

h) = (q0,u0). (31)

2. Time step

un+1
h = unh + hfn+1

h (qnh)+ hµn+1
h G(qnh) (32)

where un+1
h is the solution to the constrained minimization problem

min
u∈Kh(qnh)

|u − unh − hfn+1
h (qnh)|2 (33)

with

Kh(qnh) = {u ∈ TQ , D(qnh)+ hG(qnh) · u ≥ 0}, (34)

and µn+1
h ∈ R

+ is the associated Kuhn-Tucker multiplier.
3. Update the positions

qn+1
h = qnh + hun+1

h . (35)
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5.2 Convergence

Theorem 1 Let (qh,uh, µh)h be a sequence of solutions obtained by Scheme (S)
(equations (31) to (35)), with h → 0. Then there exists a subsequence of time steps
(still denoted by h), and

(q,u, µ) ∈ W 1,1 × BV × M1
+

such that

qh −→ q in W 1,1,

µh
�
⇀ µ in M1,

and (q,u, µ) is a solution to problem (26)–(30).

Proof The proof will be decomposed into 9 steps, which we shall briefly describe
below. The critical ones are steps 3 and 9.

1. The scheme produces feasible configurations only, i.e.,

qh(t) ∈ Q0 ∀h, t.
2. The family (uh) is uniformly bounded, i.e.,

∃C∞ , |uh(t)| ≤ C∞ ∀t ∈ [0, T ] , ∀h > 0.

3. The fields uh have uniform bounded variation, i.e.,

∃Cvar , var(uh) =
N
∑

n=1

|unh − un−1
h | ≤ Cvar ∀h.

4. The familly (uh) is relatively compact inL1(I ). One can extract a subsequence
(still denoted qh) such that qh 
−→ q inW 1,1. The limit velocity u = q̇ = lim q̇h
is in BV, and the limit motion q is feasible.

5. The sequence (µh)h is bounded in L1, so that one can extract a subsequence
which converges weak-� to a vector-valued bounded measure µ ∈ M1.

6. The pair (u, µ) verifies (28).
7. The complementarity slackness condition (29) holds true.
8. The initial condition (26) is verified.
9. The jump equation (30) is verified.

��
Step 1 (Feasibility)

This is exactly Proposition 2, which was established for any number of contacts:

D(qh(t)) ≥ 0 ∀h, t ∈ [0, T ].

Step 2 (uh is uniformly bounded)
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By Proposition 3,

|uh(t)|M ≤ |u0|M + 1√
α

∫ T

0
F(t) dt ≤ C∞.

Step 3 (uh has uniformly bounded variation)

We shall first establish a lemma, which can be seen as a mono-dimensional version
of the property.

Lemma 2 We consider sequences (uh)h, (ρh)h, and (gh)h in P0
h such that

un+1
h = hgnh + ρnhu

n
h , ρ

n
h ∈ [0, 1] ∀n , ∀h,

with u0
h = u0. We suppose furthermore that there exists a constant C ≥ 0 such that

h

N−1
∑

n=0

∣
∣gnh

∣
∣ ≤ C ∀h. (36)

Then the familly (uh) has uniform bounded variation:

∃Cvar , var(uh) =
N−1
∑

n=0

∣
∣un+1
h − unh

∣
∣ ≤ Cvar ∀h.

Proof A straightforward calculation leads to

un+1
h = ρ0

hρ
1
h . . . ρ

n
h u0

+hgnh + hρnhg
n−1
h + hρnhρ

n−1
h gn−2

h

+ · · · + hρnhρ
n−1
h . . . ρ1

hg
0
h

= ρ0
hρ

1
h . . . ρ

n
h u0 +

n
∑

k=0

hλkhg
k
h,

with λkh ∈ [0, 1] for any h, k. Therefore function uh can be written as a sum of the
homogeneous solution vh defined by

vn+1
h = ρnhv

n
h = ρnhρ

n−1
h . . . ρ0

hu0

and a function wh determined by

wn+1
h =

n
∑

k=0

hλkhg
k
h.

The first one vh is monotonous and keeps a constant sign, so that var(vh) ≤ |u0|.
The second one verifies

var(wh) =
N−1
∑

n=0

∣
∣wn+1

h − wnh

∣
∣ =

N−1
∑

n=0

hλnh

∣
∣gnh

∣
∣ ≤ C,

so that finally

var(uh) ≤ |u0| + C,

which ends the proof of Lemma 2. ��
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Remark now that, as un+1
h is defined as the Euclidean projection of

unh + hfn+1
h (qnh)

onto the half space of TQ

Kh(qnh) = {u ∈ TQ , D(qnh)+ hG(qnh) · u ≥ 0},

whose boundary is a hyperplane of TQ with normal G̃ = G/ |G|, one has

un+1
h − (unh + hfn+1

h (qnh)) = α G̃

where α ≥ 0 is some real parameter. If the constraint is non-active (i.e. unh +
hfn+1
h (qnh) ∈ Kh(qnh)), then α = 0. Otherwise, as D(qnh) ≥ 0,

(

unh + hfn+1
h (qnh)

) · G̃ ≤ 0,

so that αG̃ can be written

αG̃ = −λnh((unh + hfn+1
h (qnh)) · G̃) G̃,

where λnh is a non-negative real number. Let us show that λnh ≤ 1. Again, asD(qnh)
is non-negative, 0 lies in Kh(qnh), therefore

(

un+1
h − (unh + hfn+1

h (qnh)),un+1
h − 0

) ≤ 0,

which yields

λnh(λ
n
h − 1)

(

(unh + hfn+1
h (qnh)) · G̃

)2 ≤ 0,

and therefore λnh ≤ 1. We established that

un+1
h − (unh + hfn+1

h (qnh)) = −λnh((unh + hfn+1
h (qnh)) · G̃) G̃,

with λnh ∈ [0, 1].
Let us now introduce the Euclidean decomposition

unh = Un
h G̃(qnh)+ vnh,

where vnh is the projection of unh onto G̃⊥. We verify now thatUn
h meets the assump-

tions of Lemma 2 :

Un+1
h = un+1

h · G̃
(

qn+1
h

)

= un+1
h · G̃

(

qnh
)+ un+1

h · (G̃ (

qn+1
h

)− G̃
(

qnh
))

= (1 − λnh)unh · G̃
(

qnh
)+ (1 − λnh) h fn+1

h (qnh) · G̃
(

qnh
)

+un+1
h · (G̃ (

qn+1
h

)− G̃
(

qnh
))

= ρnhU
n
h + ρnhh fn+1

h

(

qnh
) · G̃

(

qnh
)

+un+1
h · (G̃ (

qn+1
h

)− G̃
(

qnh
))

,
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with ρnh = 1 − λnh. As qn+1
h = qnh + hun+1

h , with
∣
∣un+1
h

∣
∣ ≤ C∞, and as G̃ is

k̃-Lipschitz in Q0, one has
∣
∣un+1
h · (G̃(qn+1

h )− G̃(qnh)
)∣
∣ ≤ ∣

∣un+1
h

∣
∣ k̃ C∞h ≤ k̃ C2

∞h.

Finally, hfn+1
h (qnh) · G̃(qnh)+ un+1

h · (G̃(qn+1
h )− G̃(qnh)

)

can be written as hgnh , and
the corresponding family of piecewise constant functions (gh) verifies (36). As
ρnh ∈ [0, 1], all assumptions of Lemma 2 are met, which implies that var(Uh) is
bounded uniformly in h.

We denote by Pnh the projection onto G̃(qnh)
⊥, so that vnh = Pnh unh. We conclude

this step by writing

var(uh) =
N−1
∑

n=0

∣
∣un+1
h − unh

∣
∣

≤
N−1
∑

n=0

∣
∣(un+1

h − unh) · G̃(qnh)
∣
∣+

N−1
∑

n=0

∣
∣Pnh (u

n+1
h − unh)

∣
∣

≤
N−1
∑

n=0

∣
∣Un+1

h − Un
h

∣
∣+

N−1
∑

n=0

∣
∣un+1
h · (G̃(qn+1

h )− G̃(qnh))
∣
∣

+
N−1
∑

n=0

∣
∣hP nh fn+1

h (qnh)
∣
∣

(

because Pnh G̃(qnh) = 0
)

≤ var(Uh)+ T k̃ C2
∞ + ||F||1.

Step 4 (qh converges to a feasible trajectory)

As (uh), which is bounded inL∞, is now proved to have uniform bounded variations
over I , it is relatively compact in L1, so that one can extract a subsequence, still
denoted by (uh), which converges in L1 to u. As uh is the Sobolev derivative of qh
(in W 1,1), then qh converges to a q in W 1,1, and q̇ = u. The limit velocity u is in
BV. Indeed, for any ϕ ∈ (C1

c (I ))
6,

∣
∣
∣
∣

∫

I

u · ϕ′
∣
∣
∣
∣
= lim

h→0

∣
∣
∣
∣

∫

I

uh · ϕ′
∣
∣
∣
∣
≤ sup

h

var(uh)||ϕ||∞ < +∞.

Finally, as the convergence qh −→ q is uniform (W 1,1 ↪→ L∞), andD(qh(t)) ≥ 0
for every h, t , with D continuous with respect to q, then D(q(t)) ≥ 0 for every
t ∈ I .

Step 5 (µh converges weak-� to µ)

For any h,

|G|
∫

I

|µh| ≤
N−1
∑

n=0

∣
∣un+1
h − unh

∣
∣+

N−1
∑

n=0

h
∣
∣fn+1
h (qnh)

∣
∣

≤ var(uh)+ ||F||1,
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so that (µh) is bounded in L1 (|G| is the modulus of G(qh), which is a positive
constant). Therefore, by the De La Vallée Poussin compactness criterion, one can
extract a subsequence which converges weakly-� to µ in M1.

Step 6 (The balance of momentum is verified by the limits u and µ)

Let us first remark that the derivative of uh can be defined3 in the sense of distri-
butions as

u̇h =
N−1
∑

n=1

(un+1
h − unh) · δn,

where δn is the Dirac mass at tn = nh. For any ϕ ∈ (D(I))6, it comes

∫

I

u̇h · ϕ =
N−1
∑

n=1

(un+1
h − unh) · ϕ(tn) = −

N
∑

n=1

unh · (ϕ(tn)− ϕ(tn−1))

= −
N
∑

n=1

hunh · (ϕ′(tn)+ o(1)) −→ −
∫

I

u(t) · ϕ′(t) dt (37)

when h goes to 0. The integral
∫

I
u̇h · ϕ may also be expressed

∫

I

u̇h · ϕ =
N−1
∑

n=1

(hfn+1
h (qnh)+ hµn+1

h G(qnh)) · ϕ(tn)

=
∫

I

(fh(qh)+ µhGh) · ϕh dt

where ϕh ∈ Vh is defined by taking the left value of ϕ on each subinterval [tn, tn+1),
and similarly qh stands for the function of Vh which is equal to qnh on [tn, tn+1). As
f is uniformly Lipschitz with respect to q, and as qh converges to q in L∞, fh(q)
converges to t 
→ f(t,q(t)) in L1. Similarly ϕh converges to ϕ in L∞, so that

∫

I

fh(qh) · ϕh
h→0−→

∫

I

f(t,q(t)) · ϕ(t) dt.

For the second term, we remark that (µh) can be seen as a bounded sequence of
linear functionals on L∞. According to this remark, one may write (G ◦ q designs
t 
−→ G(q(t)), which is the uniform limit of G ◦ qh)

∫

I

µhGh · ϕh dt = < µh,Gh · ϕh >

= < µh,G ◦ q · ϕ >M1,C0(I )

+ < µh,G ◦ q · ϕ − Gh · ϕh >(L∞)′,L∞

−→ < µ,G ◦ q · ϕ > .

3 This notation means: for any v ∈ TQ, ϕ ∈ (D(I))6, < v · δn,ϕ >= v · ϕ(tn).
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Finally we have
∫

I

u̇h · ϕ −→
∫

I

f(t,q(t)) · ϕ(t) dt+ < µ,G ◦ q · ϕ > . (38)

From (37) and (38), it follows

−
∫

I

u(t) · ϕ′(t) dt =
∫

I

f(t,q(t)) · ϕ(t) dt+ < µ,G ◦ q · ϕ >

for all ϕ ∈ D(I): this is equation (28) in the sense of distributions.

Step 7 (The limit reaction field µ is non-active when there is no contact)

For any t0 ∈ I such that D(q(t0)) > 0, there exists η such that

D(q(t)) ≥ a > 0 ∀t ∈ (t0 − η, t0 + η),

so that, by uniform convergence of qh to q, there exists h1 such that

D(qh(t)) ≥ a/2 > 0 ∀t ∈]t0 − η, t0 + η[ ∀h ≤ h1.

Since the velocities uh are uniformly bounded in L∞, there exists h2 ≤ h1 such
that, for any h ≤ h2,

D(qh)+ hG(qh) · uh ≥ a/4 > 0,

so that the numerical constraintD+ hG · u ≥ 0 is not activated in (t0 − η, t0 + η).
Consequently, for h ≤ h2, µh ≡ 0 in (t0 − η, t0 + η), so that

supp(µ) ⊂ (t0 − η, t0 + η)C,

which yields the property.

Step 8 (The initial condition is verified)

As q0 is chosen apart from the boundary of Q0 and thanks again to the uniform
boundedness of uh in L∞, there exists η such that µh vanishes in (0, η) for all
values of h. It holds then

|uh(t)− u0| ≤
∫ t+h

0
F(s) ds,

so that

|u(t)− u0| ≤
∫ t

0
F(s) ds a.e. in (0, η),

which implies u(0) = u0.

Step 9 (The collision law is verified)
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For t0 such that D(q(t0)) > 0, we already established (see Step 7) that µ ≡ 0 in a
neighbourhood of t0, so that u is absolutely continuous in this neighbourhood (as
it solves (28)), hence continuous at t0:

u+ = u− = u− − P{0}u−.

The interesting case is of courseD(q(t0)) = 0. We first establish from (28) that
the discontinuity occurs along direction G :

Lemma 3 At any contact time t0 there exists λ ∈ R such that

u+(t0)− u−(t0) = λG̃(q(t0)),

where G̃ is the normalized gradient G/ |G| introduced in step 3.

Proof For η > 0, and H ∈ TQ such that H · G = 0, we consider the test function
ψηH where ψη is continuous, piecewise affine, zero outside [t0 −η, t0 +η], taking
values 0, 1, 0 at t0 − η, t0, t0 + η, respectively4. Now writing (28) against ψηH
yields

−
∫

I

u · Hψ ′
η =

∫

I

ψηH · f + 〈

µ,G ◦ q · Hψη
〉

.

The left-hand side can be expressed

−
∫

I

u · Hψ ′
η = 1

η

(∫ t0+η

t0

u · H −
∫ t0

t0−η
u · H

)

= (

u+(t0)− u−(t0)
) · H + o(η).

The force integral
∫

I
ψηH · f goes to zero with η. The last term can be bounded

∣
∣
〈

µ,G ◦ q · Hψη
〉∣
∣ ≤

(

sup
t∈[t0−η,t0+η]

|G ◦ q(t) · H|
)

∣
∣
〈

µ,ψη
〉∣
∣ ,

where the sup goes to zero because G ◦ q(t) tends to G(q(t0)) as η tends to 0, with
H · G(q(t0)) = 0. So finally the jump (u+ − u−) · H is zero for any H orthogonal
to G, which ends the proof of Lemma 3. ��

Unless explicitly mentioned, fields are now taken at t0, where t0 is a time at
which contact occurs, and G̃ designs G̃(q(t0)). We first check that u− · G̃ ≤ 0. If
otherwise, then D(q) = 0 implies that

D(q(t0 − ε)) = −εG · u− + o(ε)

is negative for some ε > 0, meaning that q(t0 − ε) /∈ Q0, which is impossible. So

u− · G̃ ≤ 0.

4 This “hat” function is obviously not inD(I), but it can be approximated by regular functions
in norm W 1,1, which is enough here as u ∈ L∞. Therefore it can be used as a test function.
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Let us show that λ ≥ −u− · G̃. If not, then

u+ · G̃ = u− · G̃ + λG̃ · G̃ < 0,

which implies similarly that q enters the forbidden domainQC
0 right after t0. There-

fore

λ ≥ −u− · G̃. (39)

Let us now notice that the condition (30) characterizes the velocity after the colli-
sion as the solution to a constrained minimization problem : it minimizes

∣
∣u − u−∣∣

over Cq, the polar cone of Nq, which is the closed half space

{u ∈ TQ , u · G ≥ 0}.
As u− · G ≤ 0, the solution to that problem is clearly

ũ = u− − (G̃ · u−)G̃,

which we have to identify with u+ to prove that the collision law (30) holds at time
t0. As we know that u+ is u− +λG̃ with condition (39) on λ, we just have to check
that

u+ · G ≤ ũ · G = 0. (40)

We extend notations of Step 3 by introducing U ∈ L1 (which can be seen as
the velocity in the moving G direction) as the limit of uh · G̃(qh). Now we recall
the property we want to establish : at any t0 such thatD(q(t0)) = 0, equation (40)
is verified. As t 
→ G(q(t)) is continuous, it can be formulated in terms of U : at
any contact time, U+ ≤ 0. We propose actually to establish the property (which is
stronger as U− ≤ 0 at any contact time) :

U− ≤ 0 �⇒ U+ ≤ 0. (41)

Proof of (41) : We first recall an important property of Uh = uh · G̃(qh) which
was established in Step 3 : there exists sequences gnh and ρnh such that

Un+1
h = hgnh + ρnhU

n
h ,

with ρnh ∈ [0, 1] and |gh| ≤ g for some g ∈ L1. By summing up over time steps
between t and t + τ , it comes

Uh(t + τ) = ε(h, t, τ )+ ρ(h, t, τ )Uh(t), (42)

with

|ε(h, t, τ )| ≤
∫ t+τ

t−h
g(s) ds (43)

and ρ(h, t, τ ) is in [0, 1].
Let t0 be such that U−(t0) ≤ 0. Then, for any ε > 0, there exists η1 such that

U(t) ≤ ε ∀t ∈ (t0 − η1, t0).
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Now, as g ∈ L1(I ), from (43) there exists η2 ≤ η1 such that, for any t ∈ (t0−η2, t0),

|ε(h, t, τ )| ≤ ε ∀τ ∈ (0, η2] ∀h ∈ (0, η2).

As Uh converges in L1 (t0 − η2, t0) to U ,

Uh(t) ≤ U(t)+ ε ≤ 2ε ∀t ∈ (t0 − η2, t0) \ Ah, (44)

for some measurable setAh ⊂ (t0−η2, t0)with |Ah| → 0. Using (42) to “translate”
approximately inequality (44), it comes

Uh(t) ≤ 2ρε + ε ∀t ∈ (t0, t0 + η2) \ A′
h ∀h ∈ (0, η2),

with
∣
∣A′

h

∣
∣ = |Ah|. The last inequality and L1 convergence of Uh to U (now con-

sidered in the translated interval (t0, t0 + η2)) imply

U(t) ≤ 2ρε + ε a.e. in (t0, t0 + η2),

so that U+(t0) ≤ 3ε, for any ε > 0. Therefore we have

U+(t0) ≤ 0.

This completes the proof. ��

6 Numerical experiments

6.1 Numerical non-uniqueness

This first set of results is somewhat distant from the original purpose of this work,
but it illustrates an interesting property of Scheme (S), which is the capability to
compute multiple solutions. We consider the situation of a single material point
moving on the real line, subject to the constraint q(t) ≥ 0, with an inelastic impact
law at 0+. The system reads :

u(0) = 0, (45)

q(t) =
∫ t

0
u(s) ds ∀t ∈ I, (46)

u̇(t) = f (t)+ µG(q(t)), (47)

supp(µ) ⊂ {t , q(t) = 0}, (48)

u+ = u− − PNq
u− ∀t ∈ I, (49)

where Nq is {0} whenever q > 0, and R
− as soon as q = 0. We shall consider a

force field f which does not depend explicitly on q, and which is defined in the
time interval I = (0, 4) by (see Figure 2)

f (t) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

1 for t ∈
(

1

2k+1
,

1

2k+1
+ 1

2k+2

)

−α for t ∈
(

1

2k+1
+ 1

2k+2
,

1

2k

)







k ∈ Z , k ≥ −4.
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Fig. 2 Force field t 
→ f (t)
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Fig. 4 Time step h = 2−9

We chose α = 1.8. When the time step h is a negative power of 2, the right–hand
side involved in the time-stepping process

f n+1
h =

∫ (n+1)h

nh

f (t) dt

can be computed exactly. We present two solutions which have been computed with
h = 2−8 and h = 2−9, respectively. Those approximations correspond to distinct
piecewise polynomial functions, which can be shown to be both solutions of the
problem. One can observe that for time steps of the type 2−2n, we have convergence
to a solution (Figure 3), and for h = 2−2(n+1), we have convergence to the other
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solution (which corresponds to Figure 4). Other sequences of time steps were not
investigated (f -integral can no longer be computed exactly).

6.2 Sticky particles

This second set of computations illustrates the good behaviour of the scheme when
the time step is large. The bodies we consider are punctual masses moving on a line,
with no external force, so that when two particles meet, they collide and behave
like a single particle. We consider the following situation: the initial condition is

q0 = (0, a, 2a, . . . , 1 − a, 1) with a = 1

N − 1
,

the initial velocity vector u0 is chosen arbitrarily in [−1, 1]N , and particles move
according to system (8)–(12).

Remark 12 This one-dimensional model is now commonly referred to as sticky
particle model (although particles do not stick in a strict sense, as they could be
pulled apart with infinitesimal forces). It is used in Brenier [4] to establish existence
of solutions to the pressureless gas model

∂tρ + ∂x(ρu) = 0,

∂t (ρu)+ ∂x(ρu
2) = 0.

Figures 5, 6 and 7 represent the computed pathlines of the particles in the time
interval [0, 3], for a “small” time step h = 0.01, and two larger time steps h = 0.5
and h = 1.5. For h = 0.01, all collisions are distinctly captured by the scheme.
For larger time steps, several collisions are taken into account by the scheme at the
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Fig. 5 Time step h = 0.01
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Fig. 7 Time step h = 1.5

same time, so that the individual behaviour of particles is poorly described. Never-
theless, all these computations give exactly the same final state (up to errors due to
the constrained minimization procedure). This behaviour is actually a direct con-
sequence of Proposition 4 and Remark 11. Indeed, in this one-dimensional model,
the final state (when all the masses are stuck together) is completely determined
by the position of the aggregate and its velocity. As the center of mass moves with
a constant velocity, the scheme is exact for its trajectory so that, no matter how
large the time step is (as soon as all collisions have been taken into account), the
approximated final state is exact.
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6.3 Many-body computation

Numerical tests have been performed satisfactorily for large numbers of spheres
(up to 50 000). We present here its application to a polydisperse collection of 2000
spheres. For readability reasons, we chose a situation such that the spheres remain

Fig. 8 Step 0

Fig. 9 Step 3

Fig. 10 Step 6

Fig. 11 Step 9



678 B. Maury

in a fixed plane of R
3, so that they behave like discs in R

2, but the algorithm can be
applied indifferently to genuine 3D problems. Radii are distributed in the interval
[0.8r0, 1.2r0], with r0 = 1.5 × 10−2, and the mass mi of sphere i is proportional
to its volume.

As initial condition, we consider a cluster of spheres with uniform downward
velocity U0 = −ez. We simulate the impact of this cluster with a rigid obstacle
defined as the half space R × R × R−. To illustrate the stability of the scheme, we
run a case where the time step h = 0.1 is such that the displacement of a sphere
during one time step is typically 3 times its own size. Figures 8, 9, 10, and 11
represent the 2000 spheres at steps 0, 3, 6, and 9.

7 Conclusion

We presented a scheme to compute the motion of rigid bodies with nonelastic
impact law. Because of its stability properties, its robustness (it produces feasible
configurations only, even for large time steps), this scheme is particularly suitable to
control the minimal distance between rigid particles in the context of fluid-particle
simulations, with a controlled influence of the perturbation on the energy.

Beside this particular purpose, the fact that it can be used to handle situa-
tions where uniqueness does not hold, and its special behaviour in the case of
simultaneous or quasi-simultaneous collisions even for large time steps, should
make it an efficient tool to model more general granular flows.
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